rtnetlink.c 74 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Routing netlink socket interface: protocol independent part.
  7. *
  8. * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Fixes:
  16. * Vitaly E. Lavrov RTA_OK arithmetics was wrong.
  17. */
  18. #include <linux/errno.h>
  19. #include <linux/module.h>
  20. #include <linux/types.h>
  21. #include <linux/socket.h>
  22. #include <linux/kernel.h>
  23. #include <linux/timer.h>
  24. #include <linux/string.h>
  25. #include <linux/sockios.h>
  26. #include <linux/net.h>
  27. #include <linux/fcntl.h>
  28. #include <linux/mm.h>
  29. #include <linux/slab.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/capability.h>
  32. #include <linux/skbuff.h>
  33. #include <linux/init.h>
  34. #include <linux/security.h>
  35. #include <linux/mutex.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_bridge.h>
  38. #include <linux/pci.h>
  39. #include <linux/etherdevice.h>
  40. #include <asm/uaccess.h>
  41. #include <linux/inet.h>
  42. #include <linux/netdevice.h>
  43. #include <net/ip.h>
  44. #include <net/protocol.h>
  45. #include <net/arp.h>
  46. #include <net/route.h>
  47. #include <net/udp.h>
  48. #include <net/sock.h>
  49. #include <net/pkt_sched.h>
  50. #include <net/fib_rules.h>
  51. #include <net/rtnetlink.h>
  52. #include <net/net_namespace.h>
  53. struct rtnl_link {
  54. rtnl_doit_func doit;
  55. rtnl_dumpit_func dumpit;
  56. rtnl_calcit_func calcit;
  57. };
  58. static DEFINE_MUTEX(rtnl_mutex);
  59. void rtnl_lock(void)
  60. {
  61. mutex_lock(&rtnl_mutex);
  62. }
  63. EXPORT_SYMBOL(rtnl_lock);
  64. void __rtnl_unlock(void)
  65. {
  66. mutex_unlock(&rtnl_mutex);
  67. }
  68. void rtnl_unlock(void)
  69. {
  70. /* This fellow will unlock it for us. */
  71. netdev_run_todo();
  72. }
  73. EXPORT_SYMBOL(rtnl_unlock);
  74. int rtnl_trylock(void)
  75. {
  76. return mutex_trylock(&rtnl_mutex);
  77. }
  78. EXPORT_SYMBOL(rtnl_trylock);
  79. int rtnl_is_locked(void)
  80. {
  81. return mutex_is_locked(&rtnl_mutex);
  82. }
  83. EXPORT_SYMBOL(rtnl_is_locked);
  84. #ifdef CONFIG_PROVE_LOCKING
  85. int lockdep_rtnl_is_held(void)
  86. {
  87. return lockdep_is_held(&rtnl_mutex);
  88. }
  89. EXPORT_SYMBOL(lockdep_rtnl_is_held);
  90. #endif /* #ifdef CONFIG_PROVE_LOCKING */
  91. static struct rtnl_link *rtnl_msg_handlers[RTNL_FAMILY_MAX + 1];
  92. static inline int rtm_msgindex(int msgtype)
  93. {
  94. int msgindex = msgtype - RTM_BASE;
  95. /*
  96. * msgindex < 0 implies someone tried to register a netlink
  97. * control code. msgindex >= RTM_NR_MSGTYPES may indicate that
  98. * the message type has not been added to linux/rtnetlink.h
  99. */
  100. BUG_ON(msgindex < 0 || msgindex >= RTM_NR_MSGTYPES);
  101. return msgindex;
  102. }
  103. static rtnl_doit_func rtnl_get_doit(int protocol, int msgindex)
  104. {
  105. struct rtnl_link *tab;
  106. if (protocol <= RTNL_FAMILY_MAX)
  107. tab = rtnl_msg_handlers[protocol];
  108. else
  109. tab = NULL;
  110. if (tab == NULL || tab[msgindex].doit == NULL)
  111. tab = rtnl_msg_handlers[PF_UNSPEC];
  112. return tab[msgindex].doit;
  113. }
  114. static rtnl_dumpit_func rtnl_get_dumpit(int protocol, int msgindex)
  115. {
  116. struct rtnl_link *tab;
  117. if (protocol <= RTNL_FAMILY_MAX)
  118. tab = rtnl_msg_handlers[protocol];
  119. else
  120. tab = NULL;
  121. if (tab == NULL || tab[msgindex].dumpit == NULL)
  122. tab = rtnl_msg_handlers[PF_UNSPEC];
  123. return tab[msgindex].dumpit;
  124. }
  125. static rtnl_calcit_func rtnl_get_calcit(int protocol, int msgindex)
  126. {
  127. struct rtnl_link *tab;
  128. if (protocol <= RTNL_FAMILY_MAX)
  129. tab = rtnl_msg_handlers[protocol];
  130. else
  131. tab = NULL;
  132. if (tab == NULL || tab[msgindex].calcit == NULL)
  133. tab = rtnl_msg_handlers[PF_UNSPEC];
  134. return tab[msgindex].calcit;
  135. }
  136. /**
  137. * __rtnl_register - Register a rtnetlink message type
  138. * @protocol: Protocol family or PF_UNSPEC
  139. * @msgtype: rtnetlink message type
  140. * @doit: Function pointer called for each request message
  141. * @dumpit: Function pointer called for each dump request (NLM_F_DUMP) message
  142. * @calcit: Function pointer to calc size of dump message
  143. *
  144. * Registers the specified function pointers (at least one of them has
  145. * to be non-NULL) to be called whenever a request message for the
  146. * specified protocol family and message type is received.
  147. *
  148. * The special protocol family PF_UNSPEC may be used to define fallback
  149. * function pointers for the case when no entry for the specific protocol
  150. * family exists.
  151. *
  152. * Returns 0 on success or a negative error code.
  153. */
  154. int __rtnl_register(int protocol, int msgtype,
  155. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  156. rtnl_calcit_func calcit)
  157. {
  158. struct rtnl_link *tab;
  159. int msgindex;
  160. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  161. msgindex = rtm_msgindex(msgtype);
  162. tab = rtnl_msg_handlers[protocol];
  163. if (tab == NULL) {
  164. tab = kcalloc(RTM_NR_MSGTYPES, sizeof(*tab), GFP_KERNEL);
  165. if (tab == NULL)
  166. return -ENOBUFS;
  167. rtnl_msg_handlers[protocol] = tab;
  168. }
  169. if (doit)
  170. tab[msgindex].doit = doit;
  171. if (dumpit)
  172. tab[msgindex].dumpit = dumpit;
  173. if (calcit)
  174. tab[msgindex].calcit = calcit;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL_GPL(__rtnl_register);
  178. /**
  179. * rtnl_register - Register a rtnetlink message type
  180. *
  181. * Identical to __rtnl_register() but panics on failure. This is useful
  182. * as failure of this function is very unlikely, it can only happen due
  183. * to lack of memory when allocating the chain to store all message
  184. * handlers for a protocol. Meant for use in init functions where lack
  185. * of memory implies no sense in continuing.
  186. */
  187. void rtnl_register(int protocol, int msgtype,
  188. rtnl_doit_func doit, rtnl_dumpit_func dumpit,
  189. rtnl_calcit_func calcit)
  190. {
  191. if (__rtnl_register(protocol, msgtype, doit, dumpit, calcit) < 0)
  192. panic("Unable to register rtnetlink message handler, "
  193. "protocol = %d, message type = %d\n",
  194. protocol, msgtype);
  195. }
  196. EXPORT_SYMBOL_GPL(rtnl_register);
  197. /**
  198. * rtnl_unregister - Unregister a rtnetlink message type
  199. * @protocol: Protocol family or PF_UNSPEC
  200. * @msgtype: rtnetlink message type
  201. *
  202. * Returns 0 on success or a negative error code.
  203. */
  204. int rtnl_unregister(int protocol, int msgtype)
  205. {
  206. int msgindex;
  207. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  208. msgindex = rtm_msgindex(msgtype);
  209. if (rtnl_msg_handlers[protocol] == NULL)
  210. return -ENOENT;
  211. rtnl_msg_handlers[protocol][msgindex].doit = NULL;
  212. rtnl_msg_handlers[protocol][msgindex].dumpit = NULL;
  213. return 0;
  214. }
  215. EXPORT_SYMBOL_GPL(rtnl_unregister);
  216. /**
  217. * rtnl_unregister_all - Unregister all rtnetlink message type of a protocol
  218. * @protocol : Protocol family or PF_UNSPEC
  219. *
  220. * Identical to calling rtnl_unregster() for all registered message types
  221. * of a certain protocol family.
  222. */
  223. void rtnl_unregister_all(int protocol)
  224. {
  225. BUG_ON(protocol < 0 || protocol > RTNL_FAMILY_MAX);
  226. kfree(rtnl_msg_handlers[protocol]);
  227. rtnl_msg_handlers[protocol] = NULL;
  228. }
  229. EXPORT_SYMBOL_GPL(rtnl_unregister_all);
  230. static LIST_HEAD(link_ops);
  231. static const struct rtnl_link_ops *rtnl_link_ops_get(const char *kind)
  232. {
  233. const struct rtnl_link_ops *ops;
  234. list_for_each_entry(ops, &link_ops, list) {
  235. if (!strcmp(ops->kind, kind))
  236. return ops;
  237. }
  238. return NULL;
  239. }
  240. /**
  241. * __rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  242. * @ops: struct rtnl_link_ops * to register
  243. *
  244. * The caller must hold the rtnl_mutex. This function should be used
  245. * by drivers that create devices during module initialization. It
  246. * must be called before registering the devices.
  247. *
  248. * Returns 0 on success or a negative error code.
  249. */
  250. int __rtnl_link_register(struct rtnl_link_ops *ops)
  251. {
  252. if (rtnl_link_ops_get(ops->kind))
  253. return -EEXIST;
  254. /* The check for setup is here because if ops
  255. * does not have that filled up, it is not possible
  256. * to use the ops for creating device. So do not
  257. * fill up dellink as well. That disables rtnl_dellink.
  258. */
  259. if (ops->setup && !ops->dellink)
  260. ops->dellink = unregister_netdevice_queue;
  261. list_add_tail(&ops->list, &link_ops);
  262. return 0;
  263. }
  264. EXPORT_SYMBOL_GPL(__rtnl_link_register);
  265. /**
  266. * rtnl_link_register - Register rtnl_link_ops with rtnetlink.
  267. * @ops: struct rtnl_link_ops * to register
  268. *
  269. * Returns 0 on success or a negative error code.
  270. */
  271. int rtnl_link_register(struct rtnl_link_ops *ops)
  272. {
  273. int err;
  274. rtnl_lock();
  275. err = __rtnl_link_register(ops);
  276. rtnl_unlock();
  277. return err;
  278. }
  279. EXPORT_SYMBOL_GPL(rtnl_link_register);
  280. static void __rtnl_kill_links(struct net *net, struct rtnl_link_ops *ops)
  281. {
  282. struct net_device *dev;
  283. LIST_HEAD(list_kill);
  284. for_each_netdev(net, dev) {
  285. if (dev->rtnl_link_ops == ops)
  286. ops->dellink(dev, &list_kill);
  287. }
  288. unregister_netdevice_many(&list_kill);
  289. }
  290. /**
  291. * __rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  292. * @ops: struct rtnl_link_ops * to unregister
  293. *
  294. * The caller must hold the rtnl_mutex.
  295. */
  296. void __rtnl_link_unregister(struct rtnl_link_ops *ops)
  297. {
  298. struct net *net;
  299. for_each_net(net) {
  300. __rtnl_kill_links(net, ops);
  301. }
  302. list_del(&ops->list);
  303. }
  304. EXPORT_SYMBOL_GPL(__rtnl_link_unregister);
  305. /* Return with the rtnl_lock held when there are no network
  306. * devices unregistering in any network namespace.
  307. */
  308. static void rtnl_lock_unregistering_all(void)
  309. {
  310. struct net *net;
  311. bool unregistering;
  312. DEFINE_WAIT(wait);
  313. for (;;) {
  314. prepare_to_wait(&netdev_unregistering_wq, &wait,
  315. TASK_UNINTERRUPTIBLE);
  316. unregistering = false;
  317. rtnl_lock();
  318. for_each_net(net) {
  319. if (net->dev_unreg_count > 0) {
  320. unregistering = true;
  321. break;
  322. }
  323. }
  324. if (!unregistering)
  325. break;
  326. __rtnl_unlock();
  327. schedule();
  328. }
  329. finish_wait(&netdev_unregistering_wq, &wait);
  330. }
  331. /**
  332. * rtnl_link_unregister - Unregister rtnl_link_ops from rtnetlink.
  333. * @ops: struct rtnl_link_ops * to unregister
  334. */
  335. void rtnl_link_unregister(struct rtnl_link_ops *ops)
  336. {
  337. /* Close the race with cleanup_net() */
  338. mutex_lock(&net_mutex);
  339. rtnl_lock_unregistering_all();
  340. __rtnl_link_unregister(ops);
  341. rtnl_unlock();
  342. mutex_unlock(&net_mutex);
  343. }
  344. EXPORT_SYMBOL_GPL(rtnl_link_unregister);
  345. static size_t rtnl_link_get_slave_info_data_size(const struct net_device *dev)
  346. {
  347. struct net_device *master_dev;
  348. const struct rtnl_link_ops *ops;
  349. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  350. if (!master_dev)
  351. return 0;
  352. ops = master_dev->rtnl_link_ops;
  353. if (!ops || !ops->get_slave_size)
  354. return 0;
  355. /* IFLA_INFO_SLAVE_DATA + nested data */
  356. return nla_total_size(sizeof(struct nlattr)) +
  357. ops->get_slave_size(master_dev, dev);
  358. }
  359. static size_t rtnl_link_get_size(const struct net_device *dev)
  360. {
  361. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  362. size_t size;
  363. if (!ops)
  364. return 0;
  365. size = nla_total_size(sizeof(struct nlattr)) + /* IFLA_LINKINFO */
  366. nla_total_size(strlen(ops->kind) + 1); /* IFLA_INFO_KIND */
  367. if (ops->get_size)
  368. /* IFLA_INFO_DATA + nested data */
  369. size += nla_total_size(sizeof(struct nlattr)) +
  370. ops->get_size(dev);
  371. if (ops->get_xstats_size)
  372. /* IFLA_INFO_XSTATS */
  373. size += nla_total_size(ops->get_xstats_size(dev));
  374. size += rtnl_link_get_slave_info_data_size(dev);
  375. return size;
  376. }
  377. static LIST_HEAD(rtnl_af_ops);
  378. static const struct rtnl_af_ops *rtnl_af_lookup(const int family)
  379. {
  380. const struct rtnl_af_ops *ops;
  381. list_for_each_entry(ops, &rtnl_af_ops, list) {
  382. if (ops->family == family)
  383. return ops;
  384. }
  385. return NULL;
  386. }
  387. /**
  388. * rtnl_af_register - Register rtnl_af_ops with rtnetlink.
  389. * @ops: struct rtnl_af_ops * to register
  390. *
  391. * Returns 0 on success or a negative error code.
  392. */
  393. void rtnl_af_register(struct rtnl_af_ops *ops)
  394. {
  395. rtnl_lock();
  396. list_add_tail(&ops->list, &rtnl_af_ops);
  397. rtnl_unlock();
  398. }
  399. EXPORT_SYMBOL_GPL(rtnl_af_register);
  400. /**
  401. * __rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  402. * @ops: struct rtnl_af_ops * to unregister
  403. *
  404. * The caller must hold the rtnl_mutex.
  405. */
  406. void __rtnl_af_unregister(struct rtnl_af_ops *ops)
  407. {
  408. list_del(&ops->list);
  409. }
  410. EXPORT_SYMBOL_GPL(__rtnl_af_unregister);
  411. /**
  412. * rtnl_af_unregister - Unregister rtnl_af_ops from rtnetlink.
  413. * @ops: struct rtnl_af_ops * to unregister
  414. */
  415. void rtnl_af_unregister(struct rtnl_af_ops *ops)
  416. {
  417. rtnl_lock();
  418. __rtnl_af_unregister(ops);
  419. rtnl_unlock();
  420. }
  421. EXPORT_SYMBOL_GPL(rtnl_af_unregister);
  422. static size_t rtnl_link_get_af_size(const struct net_device *dev)
  423. {
  424. struct rtnl_af_ops *af_ops;
  425. size_t size;
  426. /* IFLA_AF_SPEC */
  427. size = nla_total_size(sizeof(struct nlattr));
  428. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  429. if (af_ops->get_link_af_size) {
  430. /* AF_* + nested data */
  431. size += nla_total_size(sizeof(struct nlattr)) +
  432. af_ops->get_link_af_size(dev);
  433. }
  434. }
  435. return size;
  436. }
  437. static bool rtnl_have_link_slave_info(const struct net_device *dev)
  438. {
  439. struct net_device *master_dev;
  440. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  441. if (master_dev && master_dev->rtnl_link_ops)
  442. return true;
  443. return false;
  444. }
  445. static int rtnl_link_slave_info_fill(struct sk_buff *skb,
  446. const struct net_device *dev)
  447. {
  448. struct net_device *master_dev;
  449. const struct rtnl_link_ops *ops;
  450. struct nlattr *slave_data;
  451. int err;
  452. master_dev = netdev_master_upper_dev_get((struct net_device *) dev);
  453. if (!master_dev)
  454. return 0;
  455. ops = master_dev->rtnl_link_ops;
  456. if (!ops)
  457. return 0;
  458. if (nla_put_string(skb, IFLA_INFO_SLAVE_KIND, ops->kind) < 0)
  459. return -EMSGSIZE;
  460. if (ops->fill_slave_info) {
  461. slave_data = nla_nest_start(skb, IFLA_INFO_SLAVE_DATA);
  462. if (!slave_data)
  463. return -EMSGSIZE;
  464. err = ops->fill_slave_info(skb, master_dev, dev);
  465. if (err < 0)
  466. goto err_cancel_slave_data;
  467. nla_nest_end(skb, slave_data);
  468. }
  469. return 0;
  470. err_cancel_slave_data:
  471. nla_nest_cancel(skb, slave_data);
  472. return err;
  473. }
  474. static int rtnl_link_info_fill(struct sk_buff *skb,
  475. const struct net_device *dev)
  476. {
  477. const struct rtnl_link_ops *ops = dev->rtnl_link_ops;
  478. struct nlattr *data;
  479. int err;
  480. if (!ops)
  481. return 0;
  482. if (nla_put_string(skb, IFLA_INFO_KIND, ops->kind) < 0)
  483. return -EMSGSIZE;
  484. if (ops->fill_xstats) {
  485. err = ops->fill_xstats(skb, dev);
  486. if (err < 0)
  487. return err;
  488. }
  489. if (ops->fill_info) {
  490. data = nla_nest_start(skb, IFLA_INFO_DATA);
  491. if (data == NULL)
  492. return -EMSGSIZE;
  493. err = ops->fill_info(skb, dev);
  494. if (err < 0)
  495. goto err_cancel_data;
  496. nla_nest_end(skb, data);
  497. }
  498. return 0;
  499. err_cancel_data:
  500. nla_nest_cancel(skb, data);
  501. return err;
  502. }
  503. static int rtnl_link_fill(struct sk_buff *skb, const struct net_device *dev)
  504. {
  505. struct nlattr *linkinfo;
  506. int err = -EMSGSIZE;
  507. linkinfo = nla_nest_start(skb, IFLA_LINKINFO);
  508. if (linkinfo == NULL)
  509. goto out;
  510. err = rtnl_link_info_fill(skb, dev);
  511. if (err < 0)
  512. goto err_cancel_link;
  513. err = rtnl_link_slave_info_fill(skb, dev);
  514. if (err < 0)
  515. goto err_cancel_link;
  516. nla_nest_end(skb, linkinfo);
  517. return 0;
  518. err_cancel_link:
  519. nla_nest_cancel(skb, linkinfo);
  520. out:
  521. return err;
  522. }
  523. int rtnetlink_send(struct sk_buff *skb, struct net *net, u32 pid, unsigned int group, int echo)
  524. {
  525. struct sock *rtnl = net->rtnl;
  526. int err = 0;
  527. NETLINK_CB(skb).dst_group = group;
  528. if (echo)
  529. atomic_inc(&skb->users);
  530. netlink_broadcast(rtnl, skb, pid, group, GFP_KERNEL);
  531. if (echo)
  532. err = netlink_unicast(rtnl, skb, pid, MSG_DONTWAIT);
  533. return err;
  534. }
  535. int rtnl_unicast(struct sk_buff *skb, struct net *net, u32 pid)
  536. {
  537. struct sock *rtnl = net->rtnl;
  538. return nlmsg_unicast(rtnl, skb, pid);
  539. }
  540. EXPORT_SYMBOL(rtnl_unicast);
  541. void rtnl_notify(struct sk_buff *skb, struct net *net, u32 pid, u32 group,
  542. struct nlmsghdr *nlh, gfp_t flags)
  543. {
  544. struct sock *rtnl = net->rtnl;
  545. int report = 0;
  546. if (nlh)
  547. report = nlmsg_report(nlh);
  548. nlmsg_notify(rtnl, skb, pid, group, report, flags);
  549. }
  550. EXPORT_SYMBOL(rtnl_notify);
  551. void rtnl_set_sk_err(struct net *net, u32 group, int error)
  552. {
  553. struct sock *rtnl = net->rtnl;
  554. netlink_set_err(rtnl, 0, group, error);
  555. }
  556. EXPORT_SYMBOL(rtnl_set_sk_err);
  557. int rtnetlink_put_metrics(struct sk_buff *skb, u32 *metrics)
  558. {
  559. struct nlattr *mx;
  560. int i, valid = 0;
  561. mx = nla_nest_start(skb, RTA_METRICS);
  562. if (mx == NULL)
  563. return -ENOBUFS;
  564. for (i = 0; i < RTAX_MAX; i++) {
  565. if (metrics[i]) {
  566. valid++;
  567. if (nla_put_u32(skb, i+1, metrics[i]))
  568. goto nla_put_failure;
  569. }
  570. }
  571. if (!valid) {
  572. nla_nest_cancel(skb, mx);
  573. return 0;
  574. }
  575. return nla_nest_end(skb, mx);
  576. nla_put_failure:
  577. nla_nest_cancel(skb, mx);
  578. return -EMSGSIZE;
  579. }
  580. EXPORT_SYMBOL(rtnetlink_put_metrics);
  581. int rtnl_put_cacheinfo(struct sk_buff *skb, struct dst_entry *dst, u32 id,
  582. long expires, u32 error)
  583. {
  584. struct rta_cacheinfo ci = {
  585. .rta_lastuse = jiffies_delta_to_clock_t(jiffies - dst->lastuse),
  586. .rta_used = dst->__use,
  587. .rta_clntref = atomic_read(&(dst->__refcnt)),
  588. .rta_error = error,
  589. .rta_id = id,
  590. };
  591. if (expires) {
  592. unsigned long clock;
  593. clock = jiffies_to_clock_t(abs(expires));
  594. clock = min_t(unsigned long, clock, INT_MAX);
  595. ci.rta_expires = (expires > 0) ? clock : -clock;
  596. }
  597. return nla_put(skb, RTA_CACHEINFO, sizeof(ci), &ci);
  598. }
  599. EXPORT_SYMBOL_GPL(rtnl_put_cacheinfo);
  600. static void set_operstate(struct net_device *dev, unsigned char transition)
  601. {
  602. unsigned char operstate = dev->operstate;
  603. switch (transition) {
  604. case IF_OPER_UP:
  605. if ((operstate == IF_OPER_DORMANT ||
  606. operstate == IF_OPER_UNKNOWN) &&
  607. !netif_dormant(dev))
  608. operstate = IF_OPER_UP;
  609. break;
  610. case IF_OPER_DORMANT:
  611. if (operstate == IF_OPER_UP ||
  612. operstate == IF_OPER_UNKNOWN)
  613. operstate = IF_OPER_DORMANT;
  614. break;
  615. }
  616. if (dev->operstate != operstate) {
  617. write_lock_bh(&dev_base_lock);
  618. dev->operstate = operstate;
  619. write_unlock_bh(&dev_base_lock);
  620. netdev_state_change(dev);
  621. }
  622. }
  623. static unsigned int rtnl_dev_get_flags(const struct net_device *dev)
  624. {
  625. return (dev->flags & ~(IFF_PROMISC | IFF_ALLMULTI)) |
  626. (dev->gflags & (IFF_PROMISC | IFF_ALLMULTI));
  627. }
  628. static unsigned int rtnl_dev_combine_flags(const struct net_device *dev,
  629. const struct ifinfomsg *ifm)
  630. {
  631. unsigned int flags = ifm->ifi_flags;
  632. /* bugwards compatibility: ifi_change == 0 is treated as ~0 */
  633. if (ifm->ifi_change)
  634. flags = (flags & ifm->ifi_change) |
  635. (rtnl_dev_get_flags(dev) & ~ifm->ifi_change);
  636. return flags;
  637. }
  638. static void copy_rtnl_link_stats(struct rtnl_link_stats *a,
  639. const struct rtnl_link_stats64 *b)
  640. {
  641. a->rx_packets = b->rx_packets;
  642. a->tx_packets = b->tx_packets;
  643. a->rx_bytes = b->rx_bytes;
  644. a->tx_bytes = b->tx_bytes;
  645. a->rx_errors = b->rx_errors;
  646. a->tx_errors = b->tx_errors;
  647. a->rx_dropped = b->rx_dropped;
  648. a->tx_dropped = b->tx_dropped;
  649. a->multicast = b->multicast;
  650. a->collisions = b->collisions;
  651. a->rx_length_errors = b->rx_length_errors;
  652. a->rx_over_errors = b->rx_over_errors;
  653. a->rx_crc_errors = b->rx_crc_errors;
  654. a->rx_frame_errors = b->rx_frame_errors;
  655. a->rx_fifo_errors = b->rx_fifo_errors;
  656. a->rx_missed_errors = b->rx_missed_errors;
  657. a->tx_aborted_errors = b->tx_aborted_errors;
  658. a->tx_carrier_errors = b->tx_carrier_errors;
  659. a->tx_fifo_errors = b->tx_fifo_errors;
  660. a->tx_heartbeat_errors = b->tx_heartbeat_errors;
  661. a->tx_window_errors = b->tx_window_errors;
  662. a->rx_compressed = b->rx_compressed;
  663. a->tx_compressed = b->tx_compressed;
  664. }
  665. static void copy_rtnl_link_stats64(void *v, const struct rtnl_link_stats64 *b)
  666. {
  667. memcpy(v, b, sizeof(*b));
  668. }
  669. /* All VF info */
  670. static inline int rtnl_vfinfo_size(const struct net_device *dev,
  671. u32 ext_filter_mask)
  672. {
  673. if (dev->dev.parent && dev_is_pci(dev->dev.parent) &&
  674. (ext_filter_mask & RTEXT_FILTER_VF)) {
  675. int num_vfs = dev_num_vf(dev->dev.parent);
  676. size_t size = nla_total_size(sizeof(struct nlattr));
  677. size += nla_total_size(num_vfs * sizeof(struct nlattr));
  678. size += num_vfs *
  679. (nla_total_size(sizeof(struct ifla_vf_mac)) +
  680. nla_total_size(sizeof(struct ifla_vf_vlan)) +
  681. nla_total_size(sizeof(struct ifla_vf_spoofchk)) +
  682. nla_total_size(sizeof(struct ifla_vf_rate)));
  683. return size;
  684. } else
  685. return 0;
  686. }
  687. static size_t rtnl_port_size(const struct net_device *dev,
  688. u32 ext_filter_mask)
  689. {
  690. size_t port_size = nla_total_size(4) /* PORT_VF */
  691. + nla_total_size(PORT_PROFILE_MAX) /* PORT_PROFILE */
  692. + nla_total_size(sizeof(struct ifla_port_vsi))
  693. /* PORT_VSI_TYPE */
  694. + nla_total_size(PORT_UUID_MAX) /* PORT_INSTANCE_UUID */
  695. + nla_total_size(PORT_UUID_MAX) /* PORT_HOST_UUID */
  696. + nla_total_size(1) /* PROT_VDP_REQUEST */
  697. + nla_total_size(2); /* PORT_VDP_RESPONSE */
  698. size_t vf_ports_size = nla_total_size(sizeof(struct nlattr));
  699. size_t vf_port_size = nla_total_size(sizeof(struct nlattr))
  700. + port_size;
  701. size_t port_self_size = nla_total_size(sizeof(struct nlattr))
  702. + port_size;
  703. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  704. !(ext_filter_mask & RTEXT_FILTER_VF))
  705. return 0;
  706. if (dev_num_vf(dev->dev.parent))
  707. return port_self_size + vf_ports_size +
  708. vf_port_size * dev_num_vf(dev->dev.parent);
  709. else
  710. return port_self_size;
  711. }
  712. static noinline size_t if_nlmsg_size(const struct net_device *dev,
  713. u32 ext_filter_mask)
  714. {
  715. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  716. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  717. + nla_total_size(IFALIASZ) /* IFLA_IFALIAS */
  718. + nla_total_size(IFNAMSIZ) /* IFLA_QDISC */
  719. + nla_total_size(sizeof(struct rtnl_link_ifmap))
  720. + nla_total_size(sizeof(struct rtnl_link_stats))
  721. + nla_total_size(sizeof(struct rtnl_link_stats64))
  722. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  723. + nla_total_size(MAX_ADDR_LEN) /* IFLA_BROADCAST */
  724. + nla_total_size(4) /* IFLA_TXQLEN */
  725. + nla_total_size(4) /* IFLA_WEIGHT */
  726. + nla_total_size(4) /* IFLA_MTU */
  727. + nla_total_size(4) /* IFLA_LINK */
  728. + nla_total_size(4) /* IFLA_MASTER */
  729. + nla_total_size(1) /* IFLA_CARRIER */
  730. + nla_total_size(4) /* IFLA_PROMISCUITY */
  731. + nla_total_size(4) /* IFLA_NUM_TX_QUEUES */
  732. + nla_total_size(4) /* IFLA_NUM_RX_QUEUES */
  733. + nla_total_size(1) /* IFLA_OPERSTATE */
  734. + nla_total_size(1) /* IFLA_LINKMODE */
  735. + nla_total_size(4) /* IFLA_CARRIER_CHANGES */
  736. + nla_total_size(ext_filter_mask
  737. & RTEXT_FILTER_VF ? 4 : 0) /* IFLA_NUM_VF */
  738. + rtnl_vfinfo_size(dev, ext_filter_mask) /* IFLA_VFINFO_LIST */
  739. + rtnl_port_size(dev, ext_filter_mask) /* IFLA_VF_PORTS + IFLA_PORT_SELF */
  740. + rtnl_link_get_size(dev) /* IFLA_LINKINFO */
  741. + rtnl_link_get_af_size(dev) /* IFLA_AF_SPEC */
  742. + nla_total_size(MAX_PHYS_PORT_ID_LEN); /* IFLA_PHYS_PORT_ID */
  743. }
  744. static int rtnl_vf_ports_fill(struct sk_buff *skb, struct net_device *dev)
  745. {
  746. struct nlattr *vf_ports;
  747. struct nlattr *vf_port;
  748. int vf;
  749. int err;
  750. vf_ports = nla_nest_start(skb, IFLA_VF_PORTS);
  751. if (!vf_ports)
  752. return -EMSGSIZE;
  753. for (vf = 0; vf < dev_num_vf(dev->dev.parent); vf++) {
  754. vf_port = nla_nest_start(skb, IFLA_VF_PORT);
  755. if (!vf_port)
  756. goto nla_put_failure;
  757. if (nla_put_u32(skb, IFLA_PORT_VF, vf))
  758. goto nla_put_failure;
  759. err = dev->netdev_ops->ndo_get_vf_port(dev, vf, skb);
  760. if (err == -EMSGSIZE)
  761. goto nla_put_failure;
  762. if (err) {
  763. nla_nest_cancel(skb, vf_port);
  764. continue;
  765. }
  766. nla_nest_end(skb, vf_port);
  767. }
  768. nla_nest_end(skb, vf_ports);
  769. return 0;
  770. nla_put_failure:
  771. nla_nest_cancel(skb, vf_ports);
  772. return -EMSGSIZE;
  773. }
  774. static int rtnl_port_self_fill(struct sk_buff *skb, struct net_device *dev)
  775. {
  776. struct nlattr *port_self;
  777. int err;
  778. port_self = nla_nest_start(skb, IFLA_PORT_SELF);
  779. if (!port_self)
  780. return -EMSGSIZE;
  781. err = dev->netdev_ops->ndo_get_vf_port(dev, PORT_SELF_VF, skb);
  782. if (err) {
  783. nla_nest_cancel(skb, port_self);
  784. return (err == -EMSGSIZE) ? err : 0;
  785. }
  786. nla_nest_end(skb, port_self);
  787. return 0;
  788. }
  789. static int rtnl_port_fill(struct sk_buff *skb, struct net_device *dev,
  790. u32 ext_filter_mask)
  791. {
  792. int err;
  793. if (!dev->netdev_ops->ndo_get_vf_port || !dev->dev.parent ||
  794. !(ext_filter_mask & RTEXT_FILTER_VF))
  795. return 0;
  796. err = rtnl_port_self_fill(skb, dev);
  797. if (err)
  798. return err;
  799. if (dev_num_vf(dev->dev.parent)) {
  800. err = rtnl_vf_ports_fill(skb, dev);
  801. if (err)
  802. return err;
  803. }
  804. return 0;
  805. }
  806. static int rtnl_phys_port_id_fill(struct sk_buff *skb, struct net_device *dev)
  807. {
  808. int err;
  809. struct netdev_phys_port_id ppid;
  810. err = dev_get_phys_port_id(dev, &ppid);
  811. if (err) {
  812. if (err == -EOPNOTSUPP)
  813. return 0;
  814. return err;
  815. }
  816. if (nla_put(skb, IFLA_PHYS_PORT_ID, ppid.id_len, ppid.id))
  817. return -EMSGSIZE;
  818. return 0;
  819. }
  820. static int rtnl_fill_ifinfo(struct sk_buff *skb, struct net_device *dev,
  821. int type, u32 pid, u32 seq, u32 change,
  822. unsigned int flags, u32 ext_filter_mask)
  823. {
  824. struct ifinfomsg *ifm;
  825. struct nlmsghdr *nlh;
  826. struct rtnl_link_stats64 temp;
  827. const struct rtnl_link_stats64 *stats;
  828. struct nlattr *attr, *af_spec;
  829. struct rtnl_af_ops *af_ops;
  830. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  831. ASSERT_RTNL();
  832. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ifm), flags);
  833. if (nlh == NULL)
  834. return -EMSGSIZE;
  835. ifm = nlmsg_data(nlh);
  836. ifm->ifi_family = AF_UNSPEC;
  837. ifm->__ifi_pad = 0;
  838. ifm->ifi_type = dev->type;
  839. ifm->ifi_index = dev->ifindex;
  840. ifm->ifi_flags = dev_get_flags(dev);
  841. ifm->ifi_change = change;
  842. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  843. nla_put_u32(skb, IFLA_TXQLEN, dev->tx_queue_len) ||
  844. nla_put_u8(skb, IFLA_OPERSTATE,
  845. netif_running(dev) ? dev->operstate : IF_OPER_DOWN) ||
  846. nla_put_u8(skb, IFLA_LINKMODE, dev->link_mode) ||
  847. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  848. nla_put_u32(skb, IFLA_GROUP, dev->group) ||
  849. nla_put_u32(skb, IFLA_PROMISCUITY, dev->promiscuity) ||
  850. nla_put_u32(skb, IFLA_NUM_TX_QUEUES, dev->num_tx_queues) ||
  851. #ifdef CONFIG_RPS
  852. nla_put_u32(skb, IFLA_NUM_RX_QUEUES, dev->num_rx_queues) ||
  853. #endif
  854. (dev->ifindex != dev->iflink &&
  855. nla_put_u32(skb, IFLA_LINK, dev->iflink)) ||
  856. (upper_dev &&
  857. nla_put_u32(skb, IFLA_MASTER, upper_dev->ifindex)) ||
  858. nla_put_u8(skb, IFLA_CARRIER, netif_carrier_ok(dev)) ||
  859. (dev->qdisc &&
  860. nla_put_string(skb, IFLA_QDISC, dev->qdisc->ops->id)) ||
  861. (dev->ifalias &&
  862. nla_put_string(skb, IFLA_IFALIAS, dev->ifalias)) ||
  863. nla_put_u32(skb, IFLA_CARRIER_CHANGES,
  864. atomic_read(&dev->carrier_changes)))
  865. goto nla_put_failure;
  866. if (1) {
  867. struct rtnl_link_ifmap map = {
  868. .mem_start = dev->mem_start,
  869. .mem_end = dev->mem_end,
  870. .base_addr = dev->base_addr,
  871. .irq = dev->irq,
  872. .dma = dev->dma,
  873. .port = dev->if_port,
  874. };
  875. if (nla_put(skb, IFLA_MAP, sizeof(map), &map))
  876. goto nla_put_failure;
  877. }
  878. if (dev->addr_len) {
  879. if (nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr) ||
  880. nla_put(skb, IFLA_BROADCAST, dev->addr_len, dev->broadcast))
  881. goto nla_put_failure;
  882. }
  883. if (rtnl_phys_port_id_fill(skb, dev))
  884. goto nla_put_failure;
  885. attr = nla_reserve(skb, IFLA_STATS,
  886. sizeof(struct rtnl_link_stats));
  887. if (attr == NULL)
  888. goto nla_put_failure;
  889. stats = dev_get_stats(dev, &temp);
  890. copy_rtnl_link_stats(nla_data(attr), stats);
  891. attr = nla_reserve(skb, IFLA_STATS64,
  892. sizeof(struct rtnl_link_stats64));
  893. if (attr == NULL)
  894. goto nla_put_failure;
  895. copy_rtnl_link_stats64(nla_data(attr), stats);
  896. if (dev->dev.parent && (ext_filter_mask & RTEXT_FILTER_VF) &&
  897. nla_put_u32(skb, IFLA_NUM_VF, dev_num_vf(dev->dev.parent)))
  898. goto nla_put_failure;
  899. if (dev->netdev_ops->ndo_get_vf_config && dev->dev.parent
  900. && (ext_filter_mask & RTEXT_FILTER_VF)) {
  901. int i;
  902. struct nlattr *vfinfo, *vf;
  903. int num_vfs = dev_num_vf(dev->dev.parent);
  904. vfinfo = nla_nest_start(skb, IFLA_VFINFO_LIST);
  905. if (!vfinfo)
  906. goto nla_put_failure;
  907. for (i = 0; i < num_vfs; i++) {
  908. struct ifla_vf_info ivi;
  909. struct ifla_vf_mac vf_mac;
  910. struct ifla_vf_vlan vf_vlan;
  911. struct ifla_vf_rate vf_rate;
  912. struct ifla_vf_tx_rate vf_tx_rate;
  913. struct ifla_vf_spoofchk vf_spoofchk;
  914. struct ifla_vf_link_state vf_linkstate;
  915. /*
  916. * Not all SR-IOV capable drivers support the
  917. * spoofcheck query. Preset to -1 so the user
  918. * space tool can detect that the driver didn't
  919. * report anything.
  920. */
  921. ivi.spoofchk = -1;
  922. memset(ivi.mac, 0, sizeof(ivi.mac));
  923. /* The default value for VF link state is "auto"
  924. * IFLA_VF_LINK_STATE_AUTO which equals zero
  925. */
  926. ivi.linkstate = 0;
  927. if (dev->netdev_ops->ndo_get_vf_config(dev, i, &ivi))
  928. break;
  929. vf_mac.vf =
  930. vf_vlan.vf =
  931. vf_rate.vf =
  932. vf_tx_rate.vf =
  933. vf_spoofchk.vf =
  934. vf_linkstate.vf = ivi.vf;
  935. memcpy(vf_mac.mac, ivi.mac, sizeof(ivi.mac));
  936. vf_vlan.vlan = ivi.vlan;
  937. vf_vlan.qos = ivi.qos;
  938. vf_tx_rate.rate = ivi.max_tx_rate;
  939. vf_rate.min_tx_rate = ivi.min_tx_rate;
  940. vf_rate.max_tx_rate = ivi.max_tx_rate;
  941. vf_spoofchk.setting = ivi.spoofchk;
  942. vf_linkstate.link_state = ivi.linkstate;
  943. vf = nla_nest_start(skb, IFLA_VF_INFO);
  944. if (!vf) {
  945. nla_nest_cancel(skb, vfinfo);
  946. goto nla_put_failure;
  947. }
  948. if (nla_put(skb, IFLA_VF_MAC, sizeof(vf_mac), &vf_mac) ||
  949. nla_put(skb, IFLA_VF_VLAN, sizeof(vf_vlan), &vf_vlan) ||
  950. nla_put(skb, IFLA_VF_RATE, sizeof(vf_rate),
  951. &vf_rate) ||
  952. nla_put(skb, IFLA_VF_TX_RATE, sizeof(vf_tx_rate),
  953. &vf_tx_rate) ||
  954. nla_put(skb, IFLA_VF_SPOOFCHK, sizeof(vf_spoofchk),
  955. &vf_spoofchk) ||
  956. nla_put(skb, IFLA_VF_LINK_STATE, sizeof(vf_linkstate),
  957. &vf_linkstate))
  958. goto nla_put_failure;
  959. nla_nest_end(skb, vf);
  960. }
  961. nla_nest_end(skb, vfinfo);
  962. }
  963. if (rtnl_port_fill(skb, dev, ext_filter_mask))
  964. goto nla_put_failure;
  965. if (dev->rtnl_link_ops || rtnl_have_link_slave_info(dev)) {
  966. if (rtnl_link_fill(skb, dev) < 0)
  967. goto nla_put_failure;
  968. }
  969. if (!(af_spec = nla_nest_start(skb, IFLA_AF_SPEC)))
  970. goto nla_put_failure;
  971. list_for_each_entry(af_ops, &rtnl_af_ops, list) {
  972. if (af_ops->fill_link_af) {
  973. struct nlattr *af;
  974. int err;
  975. if (!(af = nla_nest_start(skb, af_ops->family)))
  976. goto nla_put_failure;
  977. err = af_ops->fill_link_af(skb, dev);
  978. /*
  979. * Caller may return ENODATA to indicate that there
  980. * was no data to be dumped. This is not an error, it
  981. * means we should trim the attribute header and
  982. * continue.
  983. */
  984. if (err == -ENODATA)
  985. nla_nest_cancel(skb, af);
  986. else if (err < 0)
  987. goto nla_put_failure;
  988. nla_nest_end(skb, af);
  989. }
  990. }
  991. nla_nest_end(skb, af_spec);
  992. return nlmsg_end(skb, nlh);
  993. nla_put_failure:
  994. nlmsg_cancel(skb, nlh);
  995. return -EMSGSIZE;
  996. }
  997. static const struct nla_policy ifla_policy[IFLA_MAX+1] = {
  998. [IFLA_IFNAME] = { .type = NLA_STRING, .len = IFNAMSIZ-1 },
  999. [IFLA_ADDRESS] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1000. [IFLA_BROADCAST] = { .type = NLA_BINARY, .len = MAX_ADDR_LEN },
  1001. [IFLA_MAP] = { .len = sizeof(struct rtnl_link_ifmap) },
  1002. [IFLA_MTU] = { .type = NLA_U32 },
  1003. [IFLA_LINK] = { .type = NLA_U32 },
  1004. [IFLA_MASTER] = { .type = NLA_U32 },
  1005. [IFLA_CARRIER] = { .type = NLA_U8 },
  1006. [IFLA_TXQLEN] = { .type = NLA_U32 },
  1007. [IFLA_WEIGHT] = { .type = NLA_U32 },
  1008. [IFLA_OPERSTATE] = { .type = NLA_U8 },
  1009. [IFLA_LINKMODE] = { .type = NLA_U8 },
  1010. [IFLA_LINKINFO] = { .type = NLA_NESTED },
  1011. [IFLA_NET_NS_PID] = { .type = NLA_U32 },
  1012. [IFLA_NET_NS_FD] = { .type = NLA_U32 },
  1013. [IFLA_IFALIAS] = { .type = NLA_STRING, .len = IFALIASZ-1 },
  1014. [IFLA_VFINFO_LIST] = {. type = NLA_NESTED },
  1015. [IFLA_VF_PORTS] = { .type = NLA_NESTED },
  1016. [IFLA_PORT_SELF] = { .type = NLA_NESTED },
  1017. [IFLA_AF_SPEC] = { .type = NLA_NESTED },
  1018. [IFLA_EXT_MASK] = { .type = NLA_U32 },
  1019. [IFLA_PROMISCUITY] = { .type = NLA_U32 },
  1020. [IFLA_NUM_TX_QUEUES] = { .type = NLA_U32 },
  1021. [IFLA_NUM_RX_QUEUES] = { .type = NLA_U32 },
  1022. [IFLA_PHYS_PORT_ID] = { .type = NLA_BINARY, .len = MAX_PHYS_PORT_ID_LEN },
  1023. [IFLA_CARRIER_CHANGES] = { .type = NLA_U32 }, /* ignored */
  1024. };
  1025. static const struct nla_policy ifla_info_policy[IFLA_INFO_MAX+1] = {
  1026. [IFLA_INFO_KIND] = { .type = NLA_STRING },
  1027. [IFLA_INFO_DATA] = { .type = NLA_NESTED },
  1028. [IFLA_INFO_SLAVE_KIND] = { .type = NLA_STRING },
  1029. [IFLA_INFO_SLAVE_DATA] = { .type = NLA_NESTED },
  1030. };
  1031. static const struct nla_policy ifla_vfinfo_policy[IFLA_VF_INFO_MAX+1] = {
  1032. [IFLA_VF_INFO] = { .type = NLA_NESTED },
  1033. };
  1034. static const struct nla_policy ifla_vf_policy[IFLA_VF_MAX+1] = {
  1035. [IFLA_VF_MAC] = { .type = NLA_BINARY,
  1036. .len = sizeof(struct ifla_vf_mac) },
  1037. [IFLA_VF_VLAN] = { .type = NLA_BINARY,
  1038. .len = sizeof(struct ifla_vf_vlan) },
  1039. [IFLA_VF_TX_RATE] = { .type = NLA_BINARY,
  1040. .len = sizeof(struct ifla_vf_tx_rate) },
  1041. [IFLA_VF_SPOOFCHK] = { .type = NLA_BINARY,
  1042. .len = sizeof(struct ifla_vf_spoofchk) },
  1043. [IFLA_VF_RATE] = { .type = NLA_BINARY,
  1044. .len = sizeof(struct ifla_vf_rate) },
  1045. [IFLA_VF_LINK_STATE] = { .type = NLA_BINARY,
  1046. .len = sizeof(struct ifla_vf_link_state) },
  1047. };
  1048. static const struct nla_policy ifla_port_policy[IFLA_PORT_MAX+1] = {
  1049. [IFLA_PORT_VF] = { .type = NLA_U32 },
  1050. [IFLA_PORT_PROFILE] = { .type = NLA_STRING,
  1051. .len = PORT_PROFILE_MAX },
  1052. [IFLA_PORT_VSI_TYPE] = { .type = NLA_BINARY,
  1053. .len = sizeof(struct ifla_port_vsi)},
  1054. [IFLA_PORT_INSTANCE_UUID] = { .type = NLA_BINARY,
  1055. .len = PORT_UUID_MAX },
  1056. [IFLA_PORT_HOST_UUID] = { .type = NLA_STRING,
  1057. .len = PORT_UUID_MAX },
  1058. [IFLA_PORT_REQUEST] = { .type = NLA_U8, },
  1059. [IFLA_PORT_RESPONSE] = { .type = NLA_U16, },
  1060. };
  1061. static int rtnl_dump_ifinfo(struct sk_buff *skb, struct netlink_callback *cb)
  1062. {
  1063. struct net *net = sock_net(skb->sk);
  1064. int h, s_h;
  1065. int idx = 0, s_idx;
  1066. struct net_device *dev;
  1067. struct hlist_head *head;
  1068. struct nlattr *tb[IFLA_MAX+1];
  1069. u32 ext_filter_mask = 0;
  1070. int err;
  1071. int hdrlen;
  1072. s_h = cb->args[0];
  1073. s_idx = cb->args[1];
  1074. rcu_read_lock();
  1075. cb->seq = net->dev_base_seq;
  1076. /* A hack to preserve kernel<->userspace interface.
  1077. * The correct header is ifinfomsg. It is consistent with rtnl_getlink.
  1078. * However, before Linux v3.9 the code here assumed rtgenmsg and that's
  1079. * what iproute2 < v3.9.0 used.
  1080. * We can detect the old iproute2. Even including the IFLA_EXT_MASK
  1081. * attribute, its netlink message is shorter than struct ifinfomsg.
  1082. */
  1083. hdrlen = nlmsg_len(cb->nlh) < sizeof(struct ifinfomsg) ?
  1084. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1085. if (nlmsg_parse(cb->nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1086. if (tb[IFLA_EXT_MASK])
  1087. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1088. }
  1089. for (h = s_h; h < NETDEV_HASHENTRIES; h++, s_idx = 0) {
  1090. idx = 0;
  1091. head = &net->dev_index_head[h];
  1092. hlist_for_each_entry_rcu(dev, head, index_hlist) {
  1093. if (idx < s_idx)
  1094. goto cont;
  1095. err = rtnl_fill_ifinfo(skb, dev, RTM_NEWLINK,
  1096. NETLINK_CB(cb->skb).portid,
  1097. cb->nlh->nlmsg_seq, 0,
  1098. NLM_F_MULTI,
  1099. ext_filter_mask);
  1100. /* If we ran out of room on the first message,
  1101. * we're in trouble
  1102. */
  1103. WARN_ON((err == -EMSGSIZE) && (skb->len == 0));
  1104. if (err <= 0)
  1105. goto out;
  1106. nl_dump_check_consistent(cb, nlmsg_hdr(skb));
  1107. cont:
  1108. idx++;
  1109. }
  1110. }
  1111. out:
  1112. rcu_read_unlock();
  1113. cb->args[1] = idx;
  1114. cb->args[0] = h;
  1115. return skb->len;
  1116. }
  1117. int rtnl_nla_parse_ifla(struct nlattr **tb, const struct nlattr *head, int len)
  1118. {
  1119. return nla_parse(tb, IFLA_MAX, head, len, ifla_policy);
  1120. }
  1121. EXPORT_SYMBOL(rtnl_nla_parse_ifla);
  1122. struct net *rtnl_link_get_net(struct net *src_net, struct nlattr *tb[])
  1123. {
  1124. struct net *net;
  1125. /* Examine the link attributes and figure out which
  1126. * network namespace we are talking about.
  1127. */
  1128. if (tb[IFLA_NET_NS_PID])
  1129. net = get_net_ns_by_pid(nla_get_u32(tb[IFLA_NET_NS_PID]));
  1130. else if (tb[IFLA_NET_NS_FD])
  1131. net = get_net_ns_by_fd(nla_get_u32(tb[IFLA_NET_NS_FD]));
  1132. else
  1133. net = get_net(src_net);
  1134. return net;
  1135. }
  1136. EXPORT_SYMBOL(rtnl_link_get_net);
  1137. static int validate_linkmsg(struct net_device *dev, struct nlattr *tb[])
  1138. {
  1139. if (dev) {
  1140. if (tb[IFLA_ADDRESS] &&
  1141. nla_len(tb[IFLA_ADDRESS]) < dev->addr_len)
  1142. return -EINVAL;
  1143. if (tb[IFLA_BROADCAST] &&
  1144. nla_len(tb[IFLA_BROADCAST]) < dev->addr_len)
  1145. return -EINVAL;
  1146. }
  1147. if (tb[IFLA_AF_SPEC]) {
  1148. struct nlattr *af;
  1149. int rem, err;
  1150. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1151. const struct rtnl_af_ops *af_ops;
  1152. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1153. return -EAFNOSUPPORT;
  1154. if (!af_ops->set_link_af)
  1155. return -EOPNOTSUPP;
  1156. if (af_ops->validate_link_af) {
  1157. err = af_ops->validate_link_af(dev, af);
  1158. if (err < 0)
  1159. return err;
  1160. }
  1161. }
  1162. }
  1163. return 0;
  1164. }
  1165. static int do_setvfinfo(struct net_device *dev, struct nlattr *attr)
  1166. {
  1167. int rem, err = -EINVAL;
  1168. struct nlattr *vf;
  1169. const struct net_device_ops *ops = dev->netdev_ops;
  1170. nla_for_each_nested(vf, attr, rem) {
  1171. switch (nla_type(vf)) {
  1172. case IFLA_VF_MAC: {
  1173. struct ifla_vf_mac *ivm;
  1174. ivm = nla_data(vf);
  1175. err = -EOPNOTSUPP;
  1176. if (ops->ndo_set_vf_mac)
  1177. err = ops->ndo_set_vf_mac(dev, ivm->vf,
  1178. ivm->mac);
  1179. break;
  1180. }
  1181. case IFLA_VF_VLAN: {
  1182. struct ifla_vf_vlan *ivv;
  1183. ivv = nla_data(vf);
  1184. err = -EOPNOTSUPP;
  1185. if (ops->ndo_set_vf_vlan)
  1186. err = ops->ndo_set_vf_vlan(dev, ivv->vf,
  1187. ivv->vlan,
  1188. ivv->qos);
  1189. break;
  1190. }
  1191. case IFLA_VF_TX_RATE: {
  1192. struct ifla_vf_tx_rate *ivt;
  1193. struct ifla_vf_info ivf;
  1194. ivt = nla_data(vf);
  1195. err = -EOPNOTSUPP;
  1196. if (ops->ndo_get_vf_config)
  1197. err = ops->ndo_get_vf_config(dev, ivt->vf,
  1198. &ivf);
  1199. if (err)
  1200. break;
  1201. err = -EOPNOTSUPP;
  1202. if (ops->ndo_set_vf_rate)
  1203. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1204. ivf.min_tx_rate,
  1205. ivt->rate);
  1206. break;
  1207. }
  1208. case IFLA_VF_RATE: {
  1209. struct ifla_vf_rate *ivt;
  1210. ivt = nla_data(vf);
  1211. err = -EOPNOTSUPP;
  1212. if (ops->ndo_set_vf_rate)
  1213. err = ops->ndo_set_vf_rate(dev, ivt->vf,
  1214. ivt->min_tx_rate,
  1215. ivt->max_tx_rate);
  1216. break;
  1217. }
  1218. case IFLA_VF_SPOOFCHK: {
  1219. struct ifla_vf_spoofchk *ivs;
  1220. ivs = nla_data(vf);
  1221. err = -EOPNOTSUPP;
  1222. if (ops->ndo_set_vf_spoofchk)
  1223. err = ops->ndo_set_vf_spoofchk(dev, ivs->vf,
  1224. ivs->setting);
  1225. break;
  1226. }
  1227. case IFLA_VF_LINK_STATE: {
  1228. struct ifla_vf_link_state *ivl;
  1229. ivl = nla_data(vf);
  1230. err = -EOPNOTSUPP;
  1231. if (ops->ndo_set_vf_link_state)
  1232. err = ops->ndo_set_vf_link_state(dev, ivl->vf,
  1233. ivl->link_state);
  1234. break;
  1235. }
  1236. default:
  1237. err = -EINVAL;
  1238. break;
  1239. }
  1240. if (err)
  1241. break;
  1242. }
  1243. return err;
  1244. }
  1245. static int do_set_master(struct net_device *dev, int ifindex)
  1246. {
  1247. struct net_device *upper_dev = netdev_master_upper_dev_get(dev);
  1248. const struct net_device_ops *ops;
  1249. int err;
  1250. if (upper_dev) {
  1251. if (upper_dev->ifindex == ifindex)
  1252. return 0;
  1253. ops = upper_dev->netdev_ops;
  1254. if (ops->ndo_del_slave) {
  1255. err = ops->ndo_del_slave(upper_dev, dev);
  1256. if (err)
  1257. return err;
  1258. } else {
  1259. return -EOPNOTSUPP;
  1260. }
  1261. }
  1262. if (ifindex) {
  1263. upper_dev = __dev_get_by_index(dev_net(dev), ifindex);
  1264. if (!upper_dev)
  1265. return -EINVAL;
  1266. ops = upper_dev->netdev_ops;
  1267. if (ops->ndo_add_slave) {
  1268. err = ops->ndo_add_slave(upper_dev, dev);
  1269. if (err)
  1270. return err;
  1271. } else {
  1272. return -EOPNOTSUPP;
  1273. }
  1274. }
  1275. return 0;
  1276. }
  1277. static int do_setlink(const struct sk_buff *skb,
  1278. struct net_device *dev, struct ifinfomsg *ifm,
  1279. struct nlattr **tb, char *ifname, int modified)
  1280. {
  1281. const struct net_device_ops *ops = dev->netdev_ops;
  1282. int err;
  1283. if (tb[IFLA_NET_NS_PID] || tb[IFLA_NET_NS_FD]) {
  1284. struct net *net = rtnl_link_get_net(dev_net(dev), tb);
  1285. if (IS_ERR(net)) {
  1286. err = PTR_ERR(net);
  1287. goto errout;
  1288. }
  1289. if (!netlink_ns_capable(skb, net->user_ns, CAP_NET_ADMIN)) {
  1290. err = -EPERM;
  1291. goto errout;
  1292. }
  1293. err = dev_change_net_namespace(dev, net, ifname);
  1294. put_net(net);
  1295. if (err)
  1296. goto errout;
  1297. modified = 1;
  1298. }
  1299. if (tb[IFLA_MAP]) {
  1300. struct rtnl_link_ifmap *u_map;
  1301. struct ifmap k_map;
  1302. if (!ops->ndo_set_config) {
  1303. err = -EOPNOTSUPP;
  1304. goto errout;
  1305. }
  1306. if (!netif_device_present(dev)) {
  1307. err = -ENODEV;
  1308. goto errout;
  1309. }
  1310. u_map = nla_data(tb[IFLA_MAP]);
  1311. k_map.mem_start = (unsigned long) u_map->mem_start;
  1312. k_map.mem_end = (unsigned long) u_map->mem_end;
  1313. k_map.base_addr = (unsigned short) u_map->base_addr;
  1314. k_map.irq = (unsigned char) u_map->irq;
  1315. k_map.dma = (unsigned char) u_map->dma;
  1316. k_map.port = (unsigned char) u_map->port;
  1317. err = ops->ndo_set_config(dev, &k_map);
  1318. if (err < 0)
  1319. goto errout;
  1320. modified = 1;
  1321. }
  1322. if (tb[IFLA_ADDRESS]) {
  1323. struct sockaddr *sa;
  1324. int len;
  1325. len = sizeof(sa_family_t) + dev->addr_len;
  1326. sa = kmalloc(len, GFP_KERNEL);
  1327. if (!sa) {
  1328. err = -ENOMEM;
  1329. goto errout;
  1330. }
  1331. sa->sa_family = dev->type;
  1332. memcpy(sa->sa_data, nla_data(tb[IFLA_ADDRESS]),
  1333. dev->addr_len);
  1334. err = dev_set_mac_address(dev, sa);
  1335. kfree(sa);
  1336. if (err)
  1337. goto errout;
  1338. modified = 1;
  1339. }
  1340. if (tb[IFLA_MTU]) {
  1341. err = dev_set_mtu(dev, nla_get_u32(tb[IFLA_MTU]));
  1342. if (err < 0)
  1343. goto errout;
  1344. modified = 1;
  1345. }
  1346. if (tb[IFLA_GROUP]) {
  1347. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1348. modified = 1;
  1349. }
  1350. /*
  1351. * Interface selected by interface index but interface
  1352. * name provided implies that a name change has been
  1353. * requested.
  1354. */
  1355. if (ifm->ifi_index > 0 && ifname[0]) {
  1356. err = dev_change_name(dev, ifname);
  1357. if (err < 0)
  1358. goto errout;
  1359. modified = 1;
  1360. }
  1361. if (tb[IFLA_IFALIAS]) {
  1362. err = dev_set_alias(dev, nla_data(tb[IFLA_IFALIAS]),
  1363. nla_len(tb[IFLA_IFALIAS]));
  1364. if (err < 0)
  1365. goto errout;
  1366. modified = 1;
  1367. }
  1368. if (tb[IFLA_BROADCAST]) {
  1369. nla_memcpy(dev->broadcast, tb[IFLA_BROADCAST], dev->addr_len);
  1370. call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
  1371. }
  1372. if (ifm->ifi_flags || ifm->ifi_change) {
  1373. err = dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1374. if (err < 0)
  1375. goto errout;
  1376. }
  1377. if (tb[IFLA_MASTER]) {
  1378. err = do_set_master(dev, nla_get_u32(tb[IFLA_MASTER]));
  1379. if (err)
  1380. goto errout;
  1381. modified = 1;
  1382. }
  1383. if (tb[IFLA_CARRIER]) {
  1384. err = dev_change_carrier(dev, nla_get_u8(tb[IFLA_CARRIER]));
  1385. if (err)
  1386. goto errout;
  1387. modified = 1;
  1388. }
  1389. if (tb[IFLA_TXQLEN])
  1390. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1391. if (tb[IFLA_OPERSTATE])
  1392. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1393. if (tb[IFLA_LINKMODE]) {
  1394. write_lock_bh(&dev_base_lock);
  1395. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1396. write_unlock_bh(&dev_base_lock);
  1397. }
  1398. if (tb[IFLA_VFINFO_LIST]) {
  1399. struct nlattr *attr;
  1400. int rem;
  1401. nla_for_each_nested(attr, tb[IFLA_VFINFO_LIST], rem) {
  1402. if (nla_type(attr) != IFLA_VF_INFO) {
  1403. err = -EINVAL;
  1404. goto errout;
  1405. }
  1406. err = do_setvfinfo(dev, attr);
  1407. if (err < 0)
  1408. goto errout;
  1409. modified = 1;
  1410. }
  1411. }
  1412. err = 0;
  1413. if (tb[IFLA_VF_PORTS]) {
  1414. struct nlattr *port[IFLA_PORT_MAX+1];
  1415. struct nlattr *attr;
  1416. int vf;
  1417. int rem;
  1418. err = -EOPNOTSUPP;
  1419. if (!ops->ndo_set_vf_port)
  1420. goto errout;
  1421. nla_for_each_nested(attr, tb[IFLA_VF_PORTS], rem) {
  1422. if (nla_type(attr) != IFLA_VF_PORT)
  1423. continue;
  1424. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1425. attr, ifla_port_policy);
  1426. if (err < 0)
  1427. goto errout;
  1428. if (!port[IFLA_PORT_VF]) {
  1429. err = -EOPNOTSUPP;
  1430. goto errout;
  1431. }
  1432. vf = nla_get_u32(port[IFLA_PORT_VF]);
  1433. err = ops->ndo_set_vf_port(dev, vf, port);
  1434. if (err < 0)
  1435. goto errout;
  1436. modified = 1;
  1437. }
  1438. }
  1439. err = 0;
  1440. if (tb[IFLA_PORT_SELF]) {
  1441. struct nlattr *port[IFLA_PORT_MAX+1];
  1442. err = nla_parse_nested(port, IFLA_PORT_MAX,
  1443. tb[IFLA_PORT_SELF], ifla_port_policy);
  1444. if (err < 0)
  1445. goto errout;
  1446. err = -EOPNOTSUPP;
  1447. if (ops->ndo_set_vf_port)
  1448. err = ops->ndo_set_vf_port(dev, PORT_SELF_VF, port);
  1449. if (err < 0)
  1450. goto errout;
  1451. modified = 1;
  1452. }
  1453. if (tb[IFLA_AF_SPEC]) {
  1454. struct nlattr *af;
  1455. int rem;
  1456. nla_for_each_nested(af, tb[IFLA_AF_SPEC], rem) {
  1457. const struct rtnl_af_ops *af_ops;
  1458. if (!(af_ops = rtnl_af_lookup(nla_type(af))))
  1459. BUG();
  1460. err = af_ops->set_link_af(dev, af);
  1461. if (err < 0)
  1462. goto errout;
  1463. modified = 1;
  1464. }
  1465. }
  1466. err = 0;
  1467. errout:
  1468. if (err < 0 && modified)
  1469. net_warn_ratelimited("A link change request failed with some changes committed already. Interface %s may have been left with an inconsistent configuration, please check.\n",
  1470. dev->name);
  1471. return err;
  1472. }
  1473. static int rtnl_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1474. {
  1475. struct net *net = sock_net(skb->sk);
  1476. struct ifinfomsg *ifm;
  1477. struct net_device *dev;
  1478. int err;
  1479. struct nlattr *tb[IFLA_MAX+1];
  1480. char ifname[IFNAMSIZ];
  1481. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1482. if (err < 0)
  1483. goto errout;
  1484. if (tb[IFLA_IFNAME])
  1485. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1486. else
  1487. ifname[0] = '\0';
  1488. err = -EINVAL;
  1489. ifm = nlmsg_data(nlh);
  1490. if (ifm->ifi_index > 0)
  1491. dev = __dev_get_by_index(net, ifm->ifi_index);
  1492. else if (tb[IFLA_IFNAME])
  1493. dev = __dev_get_by_name(net, ifname);
  1494. else
  1495. goto errout;
  1496. if (dev == NULL) {
  1497. err = -ENODEV;
  1498. goto errout;
  1499. }
  1500. err = validate_linkmsg(dev, tb);
  1501. if (err < 0)
  1502. goto errout;
  1503. err = do_setlink(skb, dev, ifm, tb, ifname, 0);
  1504. errout:
  1505. return err;
  1506. }
  1507. static int rtnl_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1508. {
  1509. struct net *net = sock_net(skb->sk);
  1510. const struct rtnl_link_ops *ops;
  1511. struct net_device *dev;
  1512. struct ifinfomsg *ifm;
  1513. char ifname[IFNAMSIZ];
  1514. struct nlattr *tb[IFLA_MAX+1];
  1515. int err;
  1516. LIST_HEAD(list_kill);
  1517. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1518. if (err < 0)
  1519. return err;
  1520. if (tb[IFLA_IFNAME])
  1521. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1522. ifm = nlmsg_data(nlh);
  1523. if (ifm->ifi_index > 0)
  1524. dev = __dev_get_by_index(net, ifm->ifi_index);
  1525. else if (tb[IFLA_IFNAME])
  1526. dev = __dev_get_by_name(net, ifname);
  1527. else
  1528. return -EINVAL;
  1529. if (!dev)
  1530. return -ENODEV;
  1531. ops = dev->rtnl_link_ops;
  1532. if (!ops || !ops->dellink)
  1533. return -EOPNOTSUPP;
  1534. ops->dellink(dev, &list_kill);
  1535. unregister_netdevice_many(&list_kill);
  1536. return 0;
  1537. }
  1538. int rtnl_configure_link(struct net_device *dev, const struct ifinfomsg *ifm)
  1539. {
  1540. unsigned int old_flags;
  1541. int err;
  1542. old_flags = dev->flags;
  1543. if (ifm && (ifm->ifi_flags || ifm->ifi_change)) {
  1544. err = __dev_change_flags(dev, rtnl_dev_combine_flags(dev, ifm));
  1545. if (err < 0)
  1546. return err;
  1547. }
  1548. dev->rtnl_link_state = RTNL_LINK_INITIALIZED;
  1549. __dev_notify_flags(dev, old_flags, ~0U);
  1550. return 0;
  1551. }
  1552. EXPORT_SYMBOL(rtnl_configure_link);
  1553. struct net_device *rtnl_create_link(struct net *net,
  1554. char *ifname, unsigned char name_assign_type,
  1555. const struct rtnl_link_ops *ops, struct nlattr *tb[])
  1556. {
  1557. int err;
  1558. struct net_device *dev;
  1559. unsigned int num_tx_queues = 1;
  1560. unsigned int num_rx_queues = 1;
  1561. if (tb[IFLA_NUM_TX_QUEUES])
  1562. num_tx_queues = nla_get_u32(tb[IFLA_NUM_TX_QUEUES]);
  1563. else if (ops->get_num_tx_queues)
  1564. num_tx_queues = ops->get_num_tx_queues();
  1565. if (tb[IFLA_NUM_RX_QUEUES])
  1566. num_rx_queues = nla_get_u32(tb[IFLA_NUM_RX_QUEUES]);
  1567. else if (ops->get_num_rx_queues)
  1568. num_rx_queues = ops->get_num_rx_queues();
  1569. err = -ENOMEM;
  1570. dev = alloc_netdev_mqs(ops->priv_size, ifname, name_assign_type,
  1571. ops->setup, num_tx_queues, num_rx_queues);
  1572. if (!dev)
  1573. goto err;
  1574. dev_net_set(dev, net);
  1575. dev->rtnl_link_ops = ops;
  1576. dev->rtnl_link_state = RTNL_LINK_INITIALIZING;
  1577. if (tb[IFLA_MTU])
  1578. dev->mtu = nla_get_u32(tb[IFLA_MTU]);
  1579. if (tb[IFLA_ADDRESS]) {
  1580. memcpy(dev->dev_addr, nla_data(tb[IFLA_ADDRESS]),
  1581. nla_len(tb[IFLA_ADDRESS]));
  1582. dev->addr_assign_type = NET_ADDR_SET;
  1583. }
  1584. if (tb[IFLA_BROADCAST])
  1585. memcpy(dev->broadcast, nla_data(tb[IFLA_BROADCAST]),
  1586. nla_len(tb[IFLA_BROADCAST]));
  1587. if (tb[IFLA_TXQLEN])
  1588. dev->tx_queue_len = nla_get_u32(tb[IFLA_TXQLEN]);
  1589. if (tb[IFLA_OPERSTATE])
  1590. set_operstate(dev, nla_get_u8(tb[IFLA_OPERSTATE]));
  1591. if (tb[IFLA_LINKMODE])
  1592. dev->link_mode = nla_get_u8(tb[IFLA_LINKMODE]);
  1593. if (tb[IFLA_GROUP])
  1594. dev_set_group(dev, nla_get_u32(tb[IFLA_GROUP]));
  1595. return dev;
  1596. err:
  1597. return ERR_PTR(err);
  1598. }
  1599. EXPORT_SYMBOL(rtnl_create_link);
  1600. static int rtnl_group_changelink(const struct sk_buff *skb,
  1601. struct net *net, int group,
  1602. struct ifinfomsg *ifm,
  1603. struct nlattr **tb)
  1604. {
  1605. struct net_device *dev;
  1606. int err;
  1607. for_each_netdev(net, dev) {
  1608. if (dev->group == group) {
  1609. err = do_setlink(skb, dev, ifm, tb, NULL, 0);
  1610. if (err < 0)
  1611. return err;
  1612. }
  1613. }
  1614. return 0;
  1615. }
  1616. static int rtnl_newlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  1617. {
  1618. struct net *net = sock_net(skb->sk);
  1619. const struct rtnl_link_ops *ops;
  1620. const struct rtnl_link_ops *m_ops = NULL;
  1621. struct net_device *dev;
  1622. struct net_device *master_dev = NULL;
  1623. struct ifinfomsg *ifm;
  1624. char kind[MODULE_NAME_LEN];
  1625. char ifname[IFNAMSIZ];
  1626. struct nlattr *tb[IFLA_MAX+1];
  1627. struct nlattr *linkinfo[IFLA_INFO_MAX+1];
  1628. unsigned char name_assign_type = NET_NAME_USER;
  1629. int err;
  1630. #ifdef CONFIG_MODULES
  1631. replay:
  1632. #endif
  1633. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1634. if (err < 0)
  1635. return err;
  1636. if (tb[IFLA_IFNAME])
  1637. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1638. else
  1639. ifname[0] = '\0';
  1640. ifm = nlmsg_data(nlh);
  1641. if (ifm->ifi_index > 0)
  1642. dev = __dev_get_by_index(net, ifm->ifi_index);
  1643. else {
  1644. if (ifname[0])
  1645. dev = __dev_get_by_name(net, ifname);
  1646. else
  1647. dev = NULL;
  1648. }
  1649. if (dev) {
  1650. master_dev = netdev_master_upper_dev_get(dev);
  1651. if (master_dev)
  1652. m_ops = master_dev->rtnl_link_ops;
  1653. }
  1654. err = validate_linkmsg(dev, tb);
  1655. if (err < 0)
  1656. return err;
  1657. if (tb[IFLA_LINKINFO]) {
  1658. err = nla_parse_nested(linkinfo, IFLA_INFO_MAX,
  1659. tb[IFLA_LINKINFO], ifla_info_policy);
  1660. if (err < 0)
  1661. return err;
  1662. } else
  1663. memset(linkinfo, 0, sizeof(linkinfo));
  1664. if (linkinfo[IFLA_INFO_KIND]) {
  1665. nla_strlcpy(kind, linkinfo[IFLA_INFO_KIND], sizeof(kind));
  1666. ops = rtnl_link_ops_get(kind);
  1667. } else {
  1668. kind[0] = '\0';
  1669. ops = NULL;
  1670. }
  1671. if (1) {
  1672. struct nlattr *attr[ops ? ops->maxtype + 1 : 0];
  1673. struct nlattr *slave_attr[m_ops ? m_ops->slave_maxtype + 1 : 0];
  1674. struct nlattr **data = NULL;
  1675. struct nlattr **slave_data = NULL;
  1676. struct net *dest_net;
  1677. if (ops) {
  1678. if (ops->maxtype && linkinfo[IFLA_INFO_DATA]) {
  1679. err = nla_parse_nested(attr, ops->maxtype,
  1680. linkinfo[IFLA_INFO_DATA],
  1681. ops->policy);
  1682. if (err < 0)
  1683. return err;
  1684. data = attr;
  1685. }
  1686. if (ops->validate) {
  1687. err = ops->validate(tb, data);
  1688. if (err < 0)
  1689. return err;
  1690. }
  1691. }
  1692. if (m_ops) {
  1693. if (m_ops->slave_maxtype &&
  1694. linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1695. err = nla_parse_nested(slave_attr,
  1696. m_ops->slave_maxtype,
  1697. linkinfo[IFLA_INFO_SLAVE_DATA],
  1698. m_ops->slave_policy);
  1699. if (err < 0)
  1700. return err;
  1701. slave_data = slave_attr;
  1702. }
  1703. if (m_ops->slave_validate) {
  1704. err = m_ops->slave_validate(tb, slave_data);
  1705. if (err < 0)
  1706. return err;
  1707. }
  1708. }
  1709. if (dev) {
  1710. int modified = 0;
  1711. if (nlh->nlmsg_flags & NLM_F_EXCL)
  1712. return -EEXIST;
  1713. if (nlh->nlmsg_flags & NLM_F_REPLACE)
  1714. return -EOPNOTSUPP;
  1715. if (linkinfo[IFLA_INFO_DATA]) {
  1716. if (!ops || ops != dev->rtnl_link_ops ||
  1717. !ops->changelink)
  1718. return -EOPNOTSUPP;
  1719. err = ops->changelink(dev, tb, data);
  1720. if (err < 0)
  1721. return err;
  1722. modified = 1;
  1723. }
  1724. if (linkinfo[IFLA_INFO_SLAVE_DATA]) {
  1725. if (!m_ops || !m_ops->slave_changelink)
  1726. return -EOPNOTSUPP;
  1727. err = m_ops->slave_changelink(master_dev, dev,
  1728. tb, slave_data);
  1729. if (err < 0)
  1730. return err;
  1731. modified = 1;
  1732. }
  1733. return do_setlink(skb, dev, ifm, tb, ifname, modified);
  1734. }
  1735. if (!(nlh->nlmsg_flags & NLM_F_CREATE)) {
  1736. if (ifm->ifi_index == 0 && tb[IFLA_GROUP])
  1737. return rtnl_group_changelink(skb, net,
  1738. nla_get_u32(tb[IFLA_GROUP]),
  1739. ifm, tb);
  1740. return -ENODEV;
  1741. }
  1742. if (tb[IFLA_MAP] || tb[IFLA_MASTER] || tb[IFLA_PROTINFO])
  1743. return -EOPNOTSUPP;
  1744. if (!ops) {
  1745. #ifdef CONFIG_MODULES
  1746. if (kind[0]) {
  1747. __rtnl_unlock();
  1748. request_module("rtnl-link-%s", kind);
  1749. rtnl_lock();
  1750. ops = rtnl_link_ops_get(kind);
  1751. if (ops)
  1752. goto replay;
  1753. }
  1754. #endif
  1755. return -EOPNOTSUPP;
  1756. }
  1757. if (!ops->setup)
  1758. return -EOPNOTSUPP;
  1759. if (!ifname[0]) {
  1760. snprintf(ifname, IFNAMSIZ, "%s%%d", ops->kind);
  1761. name_assign_type = NET_NAME_ENUM;
  1762. }
  1763. dest_net = rtnl_link_get_net(net, tb);
  1764. if (IS_ERR(dest_net))
  1765. return PTR_ERR(dest_net);
  1766. dev = rtnl_create_link(dest_net, ifname, name_assign_type, ops, tb);
  1767. if (IS_ERR(dev)) {
  1768. err = PTR_ERR(dev);
  1769. goto out;
  1770. }
  1771. dev->ifindex = ifm->ifi_index;
  1772. if (ops->newlink) {
  1773. err = ops->newlink(net, dev, tb, data);
  1774. /* Drivers should call free_netdev() in ->destructor
  1775. * and unregister it on failure after registration
  1776. * so that device could be finally freed in rtnl_unlock.
  1777. */
  1778. if (err < 0) {
  1779. /* If device is not registered at all, free it now */
  1780. if (dev->reg_state == NETREG_UNINITIALIZED)
  1781. free_netdev(dev);
  1782. goto out;
  1783. }
  1784. } else {
  1785. err = register_netdevice(dev);
  1786. if (err < 0) {
  1787. free_netdev(dev);
  1788. goto out;
  1789. }
  1790. }
  1791. err = rtnl_configure_link(dev, ifm);
  1792. if (err < 0)
  1793. unregister_netdevice(dev);
  1794. out:
  1795. put_net(dest_net);
  1796. return err;
  1797. }
  1798. }
  1799. static int rtnl_getlink(struct sk_buff *skb, struct nlmsghdr* nlh)
  1800. {
  1801. struct net *net = sock_net(skb->sk);
  1802. struct ifinfomsg *ifm;
  1803. char ifname[IFNAMSIZ];
  1804. struct nlattr *tb[IFLA_MAX+1];
  1805. struct net_device *dev = NULL;
  1806. struct sk_buff *nskb;
  1807. int err;
  1808. u32 ext_filter_mask = 0;
  1809. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFLA_MAX, ifla_policy);
  1810. if (err < 0)
  1811. return err;
  1812. if (tb[IFLA_IFNAME])
  1813. nla_strlcpy(ifname, tb[IFLA_IFNAME], IFNAMSIZ);
  1814. if (tb[IFLA_EXT_MASK])
  1815. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1816. ifm = nlmsg_data(nlh);
  1817. if (ifm->ifi_index > 0)
  1818. dev = __dev_get_by_index(net, ifm->ifi_index);
  1819. else if (tb[IFLA_IFNAME])
  1820. dev = __dev_get_by_name(net, ifname);
  1821. else
  1822. return -EINVAL;
  1823. if (dev == NULL)
  1824. return -ENODEV;
  1825. nskb = nlmsg_new(if_nlmsg_size(dev, ext_filter_mask), GFP_KERNEL);
  1826. if (nskb == NULL)
  1827. return -ENOBUFS;
  1828. err = rtnl_fill_ifinfo(nskb, dev, RTM_NEWLINK, NETLINK_CB(skb).portid,
  1829. nlh->nlmsg_seq, 0, 0, ext_filter_mask);
  1830. if (err < 0) {
  1831. /* -EMSGSIZE implies BUG in if_nlmsg_size */
  1832. WARN_ON(err == -EMSGSIZE);
  1833. kfree_skb(nskb);
  1834. } else
  1835. err = rtnl_unicast(nskb, net, NETLINK_CB(skb).portid);
  1836. return err;
  1837. }
  1838. static u16 rtnl_calcit(struct sk_buff *skb, struct nlmsghdr *nlh)
  1839. {
  1840. struct net *net = sock_net(skb->sk);
  1841. struct net_device *dev;
  1842. struct nlattr *tb[IFLA_MAX+1];
  1843. u32 ext_filter_mask = 0;
  1844. u16 min_ifinfo_dump_size = 0;
  1845. int hdrlen;
  1846. /* Same kernel<->userspace interface hack as in rtnl_dump_ifinfo. */
  1847. hdrlen = nlmsg_len(nlh) < sizeof(struct ifinfomsg) ?
  1848. sizeof(struct rtgenmsg) : sizeof(struct ifinfomsg);
  1849. if (nlmsg_parse(nlh, hdrlen, tb, IFLA_MAX, ifla_policy) >= 0) {
  1850. if (tb[IFLA_EXT_MASK])
  1851. ext_filter_mask = nla_get_u32(tb[IFLA_EXT_MASK]);
  1852. }
  1853. if (!ext_filter_mask)
  1854. return NLMSG_GOODSIZE;
  1855. /*
  1856. * traverse the list of net devices and compute the minimum
  1857. * buffer size based upon the filter mask.
  1858. */
  1859. list_for_each_entry(dev, &net->dev_base_head, dev_list) {
  1860. min_ifinfo_dump_size = max_t(u16, min_ifinfo_dump_size,
  1861. if_nlmsg_size(dev,
  1862. ext_filter_mask));
  1863. }
  1864. return min_ifinfo_dump_size;
  1865. }
  1866. static int rtnl_dump_all(struct sk_buff *skb, struct netlink_callback *cb)
  1867. {
  1868. int idx;
  1869. int s_idx = cb->family;
  1870. if (s_idx == 0)
  1871. s_idx = 1;
  1872. for (idx = 1; idx <= RTNL_FAMILY_MAX; idx++) {
  1873. int type = cb->nlh->nlmsg_type-RTM_BASE;
  1874. if (idx < s_idx || idx == PF_PACKET)
  1875. continue;
  1876. if (rtnl_msg_handlers[idx] == NULL ||
  1877. rtnl_msg_handlers[idx][type].dumpit == NULL)
  1878. continue;
  1879. if (idx > s_idx) {
  1880. memset(&cb->args[0], 0, sizeof(cb->args));
  1881. cb->prev_seq = 0;
  1882. cb->seq = 0;
  1883. }
  1884. if (rtnl_msg_handlers[idx][type].dumpit(skb, cb))
  1885. break;
  1886. }
  1887. cb->family = idx;
  1888. return skb->len;
  1889. }
  1890. void rtmsg_ifinfo(int type, struct net_device *dev, unsigned int change,
  1891. gfp_t flags)
  1892. {
  1893. struct net *net = dev_net(dev);
  1894. struct sk_buff *skb;
  1895. int err = -ENOBUFS;
  1896. size_t if_info_size;
  1897. skb = nlmsg_new((if_info_size = if_nlmsg_size(dev, 0)), flags);
  1898. if (skb == NULL)
  1899. goto errout;
  1900. err = rtnl_fill_ifinfo(skb, dev, type, 0, 0, change, 0, 0);
  1901. if (err < 0) {
  1902. /* -EMSGSIZE implies BUG in if_nlmsg_size() */
  1903. WARN_ON(err == -EMSGSIZE);
  1904. kfree_skb(skb);
  1905. goto errout;
  1906. }
  1907. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, flags);
  1908. return;
  1909. errout:
  1910. if (err < 0)
  1911. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  1912. }
  1913. EXPORT_SYMBOL(rtmsg_ifinfo);
  1914. static int nlmsg_populate_fdb_fill(struct sk_buff *skb,
  1915. struct net_device *dev,
  1916. u8 *addr, u32 pid, u32 seq,
  1917. int type, unsigned int flags,
  1918. int nlflags)
  1919. {
  1920. struct nlmsghdr *nlh;
  1921. struct ndmsg *ndm;
  1922. nlh = nlmsg_put(skb, pid, seq, type, sizeof(*ndm), nlflags);
  1923. if (!nlh)
  1924. return -EMSGSIZE;
  1925. ndm = nlmsg_data(nlh);
  1926. ndm->ndm_family = AF_BRIDGE;
  1927. ndm->ndm_pad1 = 0;
  1928. ndm->ndm_pad2 = 0;
  1929. ndm->ndm_flags = flags;
  1930. ndm->ndm_type = 0;
  1931. ndm->ndm_ifindex = dev->ifindex;
  1932. ndm->ndm_state = NUD_PERMANENT;
  1933. if (nla_put(skb, NDA_LLADDR, ETH_ALEN, addr))
  1934. goto nla_put_failure;
  1935. return nlmsg_end(skb, nlh);
  1936. nla_put_failure:
  1937. nlmsg_cancel(skb, nlh);
  1938. return -EMSGSIZE;
  1939. }
  1940. static inline size_t rtnl_fdb_nlmsg_size(void)
  1941. {
  1942. return NLMSG_ALIGN(sizeof(struct ndmsg)) + nla_total_size(ETH_ALEN);
  1943. }
  1944. static void rtnl_fdb_notify(struct net_device *dev, u8 *addr, int type)
  1945. {
  1946. struct net *net = dev_net(dev);
  1947. struct sk_buff *skb;
  1948. int err = -ENOBUFS;
  1949. skb = nlmsg_new(rtnl_fdb_nlmsg_size(), GFP_ATOMIC);
  1950. if (!skb)
  1951. goto errout;
  1952. err = nlmsg_populate_fdb_fill(skb, dev, addr, 0, 0, type, NTF_SELF, 0);
  1953. if (err < 0) {
  1954. kfree_skb(skb);
  1955. goto errout;
  1956. }
  1957. rtnl_notify(skb, net, 0, RTNLGRP_NEIGH, NULL, GFP_ATOMIC);
  1958. return;
  1959. errout:
  1960. rtnl_set_sk_err(net, RTNLGRP_NEIGH, err);
  1961. }
  1962. /**
  1963. * ndo_dflt_fdb_add - default netdevice operation to add an FDB entry
  1964. */
  1965. int ndo_dflt_fdb_add(struct ndmsg *ndm,
  1966. struct nlattr *tb[],
  1967. struct net_device *dev,
  1968. const unsigned char *addr,
  1969. u16 flags)
  1970. {
  1971. int err = -EINVAL;
  1972. /* If aging addresses are supported device will need to
  1973. * implement its own handler for this.
  1974. */
  1975. if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
  1976. pr_info("%s: FDB only supports static addresses\n", dev->name);
  1977. return err;
  1978. }
  1979. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  1980. err = dev_uc_add_excl(dev, addr);
  1981. else if (is_multicast_ether_addr(addr))
  1982. err = dev_mc_add_excl(dev, addr);
  1983. /* Only return duplicate errors if NLM_F_EXCL is set */
  1984. if (err == -EEXIST && !(flags & NLM_F_EXCL))
  1985. err = 0;
  1986. return err;
  1987. }
  1988. EXPORT_SYMBOL(ndo_dflt_fdb_add);
  1989. static int rtnl_fdb_add(struct sk_buff *skb, struct nlmsghdr *nlh)
  1990. {
  1991. struct net *net = sock_net(skb->sk);
  1992. struct ndmsg *ndm;
  1993. struct nlattr *tb[NDA_MAX+1];
  1994. struct net_device *dev;
  1995. u8 *addr;
  1996. int err;
  1997. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  1998. if (err < 0)
  1999. return err;
  2000. ndm = nlmsg_data(nlh);
  2001. if (ndm->ndm_ifindex == 0) {
  2002. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid ifindex\n");
  2003. return -EINVAL;
  2004. }
  2005. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2006. if (dev == NULL) {
  2007. pr_info("PF_BRIDGE: RTM_NEWNEIGH with unknown ifindex\n");
  2008. return -ENODEV;
  2009. }
  2010. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2011. pr_info("PF_BRIDGE: RTM_NEWNEIGH with invalid address\n");
  2012. return -EINVAL;
  2013. }
  2014. addr = nla_data(tb[NDA_LLADDR]);
  2015. err = -EOPNOTSUPP;
  2016. /* Support fdb on master device the net/bridge default case */
  2017. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2018. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2019. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2020. const struct net_device_ops *ops = br_dev->netdev_ops;
  2021. err = ops->ndo_fdb_add(ndm, tb, dev, addr, nlh->nlmsg_flags);
  2022. if (err)
  2023. goto out;
  2024. else
  2025. ndm->ndm_flags &= ~NTF_MASTER;
  2026. }
  2027. /* Embedded bridge, macvlan, and any other device support */
  2028. if ((ndm->ndm_flags & NTF_SELF)) {
  2029. if (dev->netdev_ops->ndo_fdb_add)
  2030. err = dev->netdev_ops->ndo_fdb_add(ndm, tb, dev, addr,
  2031. nlh->nlmsg_flags);
  2032. else
  2033. err = ndo_dflt_fdb_add(ndm, tb, dev, addr,
  2034. nlh->nlmsg_flags);
  2035. if (!err) {
  2036. rtnl_fdb_notify(dev, addr, RTM_NEWNEIGH);
  2037. ndm->ndm_flags &= ~NTF_SELF;
  2038. }
  2039. }
  2040. out:
  2041. return err;
  2042. }
  2043. /**
  2044. * ndo_dflt_fdb_del - default netdevice operation to delete an FDB entry
  2045. */
  2046. int ndo_dflt_fdb_del(struct ndmsg *ndm,
  2047. struct nlattr *tb[],
  2048. struct net_device *dev,
  2049. const unsigned char *addr)
  2050. {
  2051. int err = -EINVAL;
  2052. /* If aging addresses are supported device will need to
  2053. * implement its own handler for this.
  2054. */
  2055. if (!(ndm->ndm_state & NUD_PERMANENT)) {
  2056. pr_info("%s: FDB only supports static addresses\n", dev->name);
  2057. return err;
  2058. }
  2059. if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
  2060. err = dev_uc_del(dev, addr);
  2061. else if (is_multicast_ether_addr(addr))
  2062. err = dev_mc_del(dev, addr);
  2063. return err;
  2064. }
  2065. EXPORT_SYMBOL(ndo_dflt_fdb_del);
  2066. static int rtnl_fdb_del(struct sk_buff *skb, struct nlmsghdr *nlh)
  2067. {
  2068. struct net *net = sock_net(skb->sk);
  2069. struct ndmsg *ndm;
  2070. struct nlattr *tb[NDA_MAX+1];
  2071. struct net_device *dev;
  2072. int err = -EINVAL;
  2073. __u8 *addr;
  2074. if (!netlink_capable(skb, CAP_NET_ADMIN))
  2075. return -EPERM;
  2076. err = nlmsg_parse(nlh, sizeof(*ndm), tb, NDA_MAX, NULL);
  2077. if (err < 0)
  2078. return err;
  2079. ndm = nlmsg_data(nlh);
  2080. if (ndm->ndm_ifindex == 0) {
  2081. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid ifindex\n");
  2082. return -EINVAL;
  2083. }
  2084. dev = __dev_get_by_index(net, ndm->ndm_ifindex);
  2085. if (dev == NULL) {
  2086. pr_info("PF_BRIDGE: RTM_DELNEIGH with unknown ifindex\n");
  2087. return -ENODEV;
  2088. }
  2089. if (!tb[NDA_LLADDR] || nla_len(tb[NDA_LLADDR]) != ETH_ALEN) {
  2090. pr_info("PF_BRIDGE: RTM_DELNEIGH with invalid address\n");
  2091. return -EINVAL;
  2092. }
  2093. addr = nla_data(tb[NDA_LLADDR]);
  2094. err = -EOPNOTSUPP;
  2095. /* Support fdb on master device the net/bridge default case */
  2096. if ((!ndm->ndm_flags || ndm->ndm_flags & NTF_MASTER) &&
  2097. (dev->priv_flags & IFF_BRIDGE_PORT)) {
  2098. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2099. const struct net_device_ops *ops = br_dev->netdev_ops;
  2100. if (ops->ndo_fdb_del)
  2101. err = ops->ndo_fdb_del(ndm, tb, dev, addr);
  2102. if (err)
  2103. goto out;
  2104. else
  2105. ndm->ndm_flags &= ~NTF_MASTER;
  2106. }
  2107. /* Embedded bridge, macvlan, and any other device support */
  2108. if (ndm->ndm_flags & NTF_SELF) {
  2109. if (dev->netdev_ops->ndo_fdb_del)
  2110. err = dev->netdev_ops->ndo_fdb_del(ndm, tb, dev, addr);
  2111. else
  2112. err = ndo_dflt_fdb_del(ndm, tb, dev, addr);
  2113. if (!err) {
  2114. rtnl_fdb_notify(dev, addr, RTM_DELNEIGH);
  2115. ndm->ndm_flags &= ~NTF_SELF;
  2116. }
  2117. }
  2118. out:
  2119. return err;
  2120. }
  2121. static int nlmsg_populate_fdb(struct sk_buff *skb,
  2122. struct netlink_callback *cb,
  2123. struct net_device *dev,
  2124. int *idx,
  2125. struct netdev_hw_addr_list *list)
  2126. {
  2127. struct netdev_hw_addr *ha;
  2128. int err;
  2129. u32 portid, seq;
  2130. portid = NETLINK_CB(cb->skb).portid;
  2131. seq = cb->nlh->nlmsg_seq;
  2132. list_for_each_entry(ha, &list->list, list) {
  2133. if (*idx < cb->args[0])
  2134. goto skip;
  2135. err = nlmsg_populate_fdb_fill(skb, dev, ha->addr,
  2136. portid, seq,
  2137. RTM_NEWNEIGH, NTF_SELF,
  2138. NLM_F_MULTI);
  2139. if (err < 0)
  2140. return err;
  2141. skip:
  2142. *idx += 1;
  2143. }
  2144. return 0;
  2145. }
  2146. /**
  2147. * ndo_dflt_fdb_dump - default netdevice operation to dump an FDB table.
  2148. * @nlh: netlink message header
  2149. * @dev: netdevice
  2150. *
  2151. * Default netdevice operation to dump the existing unicast address list.
  2152. * Returns number of addresses from list put in skb.
  2153. */
  2154. int ndo_dflt_fdb_dump(struct sk_buff *skb,
  2155. struct netlink_callback *cb,
  2156. struct net_device *dev,
  2157. struct net_device *filter_dev,
  2158. int idx)
  2159. {
  2160. int err;
  2161. netif_addr_lock_bh(dev);
  2162. err = nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->uc);
  2163. if (err)
  2164. goto out;
  2165. nlmsg_populate_fdb(skb, cb, dev, &idx, &dev->mc);
  2166. out:
  2167. netif_addr_unlock_bh(dev);
  2168. return idx;
  2169. }
  2170. EXPORT_SYMBOL(ndo_dflt_fdb_dump);
  2171. static int rtnl_fdb_dump(struct sk_buff *skb, struct netlink_callback *cb)
  2172. {
  2173. struct net_device *dev;
  2174. struct nlattr *tb[IFLA_MAX+1];
  2175. struct net_device *bdev = NULL;
  2176. struct net_device *br_dev = NULL;
  2177. const struct net_device_ops *ops = NULL;
  2178. const struct net_device_ops *cops = NULL;
  2179. struct ifinfomsg *ifm = nlmsg_data(cb->nlh);
  2180. struct net *net = sock_net(skb->sk);
  2181. int brport_idx = 0;
  2182. int br_idx = 0;
  2183. int idx = 0;
  2184. if (nlmsg_parse(cb->nlh, sizeof(struct ifinfomsg), tb, IFLA_MAX,
  2185. ifla_policy) == 0) {
  2186. if (tb[IFLA_MASTER])
  2187. br_idx = nla_get_u32(tb[IFLA_MASTER]);
  2188. }
  2189. brport_idx = ifm->ifi_index;
  2190. if (br_idx) {
  2191. br_dev = __dev_get_by_index(net, br_idx);
  2192. if (!br_dev)
  2193. return -ENODEV;
  2194. ops = br_dev->netdev_ops;
  2195. bdev = br_dev;
  2196. }
  2197. for_each_netdev(net, dev) {
  2198. if (brport_idx && (dev->ifindex != brport_idx))
  2199. continue;
  2200. if (!br_idx) { /* user did not specify a specific bridge */
  2201. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2202. br_dev = netdev_master_upper_dev_get(dev);
  2203. cops = br_dev->netdev_ops;
  2204. }
  2205. bdev = dev;
  2206. } else {
  2207. if (dev != br_dev &&
  2208. !(dev->priv_flags & IFF_BRIDGE_PORT))
  2209. continue;
  2210. if (br_dev != netdev_master_upper_dev_get(dev) &&
  2211. !(dev->priv_flags & IFF_EBRIDGE))
  2212. continue;
  2213. bdev = br_dev;
  2214. cops = ops;
  2215. }
  2216. if (dev->priv_flags & IFF_BRIDGE_PORT) {
  2217. if (cops && cops->ndo_fdb_dump)
  2218. idx = cops->ndo_fdb_dump(skb, cb, br_dev, dev,
  2219. idx);
  2220. }
  2221. idx = ndo_dflt_fdb_dump(skb, cb, dev, NULL, idx);
  2222. if (dev->netdev_ops->ndo_fdb_dump)
  2223. idx = dev->netdev_ops->ndo_fdb_dump(skb, cb, bdev, dev,
  2224. idx);
  2225. cops = NULL;
  2226. }
  2227. cb->args[0] = idx;
  2228. return skb->len;
  2229. }
  2230. int ndo_dflt_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
  2231. struct net_device *dev, u16 mode)
  2232. {
  2233. struct nlmsghdr *nlh;
  2234. struct ifinfomsg *ifm;
  2235. struct nlattr *br_afspec;
  2236. u8 operstate = netif_running(dev) ? dev->operstate : IF_OPER_DOWN;
  2237. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2238. nlh = nlmsg_put(skb, pid, seq, RTM_NEWLINK, sizeof(*ifm), NLM_F_MULTI);
  2239. if (nlh == NULL)
  2240. return -EMSGSIZE;
  2241. ifm = nlmsg_data(nlh);
  2242. ifm->ifi_family = AF_BRIDGE;
  2243. ifm->__ifi_pad = 0;
  2244. ifm->ifi_type = dev->type;
  2245. ifm->ifi_index = dev->ifindex;
  2246. ifm->ifi_flags = dev_get_flags(dev);
  2247. ifm->ifi_change = 0;
  2248. if (nla_put_string(skb, IFLA_IFNAME, dev->name) ||
  2249. nla_put_u32(skb, IFLA_MTU, dev->mtu) ||
  2250. nla_put_u8(skb, IFLA_OPERSTATE, operstate) ||
  2251. (br_dev &&
  2252. nla_put_u32(skb, IFLA_MASTER, br_dev->ifindex)) ||
  2253. (dev->addr_len &&
  2254. nla_put(skb, IFLA_ADDRESS, dev->addr_len, dev->dev_addr)) ||
  2255. (dev->ifindex != dev->iflink &&
  2256. nla_put_u32(skb, IFLA_LINK, dev->iflink)))
  2257. goto nla_put_failure;
  2258. br_afspec = nla_nest_start(skb, IFLA_AF_SPEC);
  2259. if (!br_afspec)
  2260. goto nla_put_failure;
  2261. if (nla_put_u16(skb, IFLA_BRIDGE_FLAGS, BRIDGE_FLAGS_SELF) ||
  2262. nla_put_u16(skb, IFLA_BRIDGE_MODE, mode)) {
  2263. nla_nest_cancel(skb, br_afspec);
  2264. goto nla_put_failure;
  2265. }
  2266. nla_nest_end(skb, br_afspec);
  2267. return nlmsg_end(skb, nlh);
  2268. nla_put_failure:
  2269. nlmsg_cancel(skb, nlh);
  2270. return -EMSGSIZE;
  2271. }
  2272. EXPORT_SYMBOL(ndo_dflt_bridge_getlink);
  2273. static int rtnl_bridge_getlink(struct sk_buff *skb, struct netlink_callback *cb)
  2274. {
  2275. struct net *net = sock_net(skb->sk);
  2276. struct net_device *dev;
  2277. int idx = 0;
  2278. u32 portid = NETLINK_CB(cb->skb).portid;
  2279. u32 seq = cb->nlh->nlmsg_seq;
  2280. struct nlattr *extfilt;
  2281. u32 filter_mask = 0;
  2282. extfilt = nlmsg_find_attr(cb->nlh, sizeof(struct ifinfomsg),
  2283. IFLA_EXT_MASK);
  2284. if (extfilt)
  2285. filter_mask = nla_get_u32(extfilt);
  2286. rcu_read_lock();
  2287. for_each_netdev_rcu(net, dev) {
  2288. const struct net_device_ops *ops = dev->netdev_ops;
  2289. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2290. if (br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2291. if (idx >= cb->args[0] &&
  2292. br_dev->netdev_ops->ndo_bridge_getlink(
  2293. skb, portid, seq, dev, filter_mask) < 0)
  2294. break;
  2295. idx++;
  2296. }
  2297. if (ops->ndo_bridge_getlink) {
  2298. if (idx >= cb->args[0] &&
  2299. ops->ndo_bridge_getlink(skb, portid, seq, dev,
  2300. filter_mask) < 0)
  2301. break;
  2302. idx++;
  2303. }
  2304. }
  2305. rcu_read_unlock();
  2306. cb->args[0] = idx;
  2307. return skb->len;
  2308. }
  2309. static inline size_t bridge_nlmsg_size(void)
  2310. {
  2311. return NLMSG_ALIGN(sizeof(struct ifinfomsg))
  2312. + nla_total_size(IFNAMSIZ) /* IFLA_IFNAME */
  2313. + nla_total_size(MAX_ADDR_LEN) /* IFLA_ADDRESS */
  2314. + nla_total_size(sizeof(u32)) /* IFLA_MASTER */
  2315. + nla_total_size(sizeof(u32)) /* IFLA_MTU */
  2316. + nla_total_size(sizeof(u32)) /* IFLA_LINK */
  2317. + nla_total_size(sizeof(u32)) /* IFLA_OPERSTATE */
  2318. + nla_total_size(sizeof(u8)) /* IFLA_PROTINFO */
  2319. + nla_total_size(sizeof(struct nlattr)) /* IFLA_AF_SPEC */
  2320. + nla_total_size(sizeof(u16)) /* IFLA_BRIDGE_FLAGS */
  2321. + nla_total_size(sizeof(u16)); /* IFLA_BRIDGE_MODE */
  2322. }
  2323. static int rtnl_bridge_notify(struct net_device *dev, u16 flags)
  2324. {
  2325. struct net *net = dev_net(dev);
  2326. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2327. struct sk_buff *skb;
  2328. int err = -EOPNOTSUPP;
  2329. skb = nlmsg_new(bridge_nlmsg_size(), GFP_ATOMIC);
  2330. if (!skb) {
  2331. err = -ENOMEM;
  2332. goto errout;
  2333. }
  2334. if ((!flags || (flags & BRIDGE_FLAGS_MASTER)) &&
  2335. br_dev && br_dev->netdev_ops->ndo_bridge_getlink) {
  2336. err = br_dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2337. if (err < 0)
  2338. goto errout;
  2339. }
  2340. if ((flags & BRIDGE_FLAGS_SELF) &&
  2341. dev->netdev_ops->ndo_bridge_getlink) {
  2342. err = dev->netdev_ops->ndo_bridge_getlink(skb, 0, 0, dev, 0);
  2343. if (err < 0)
  2344. goto errout;
  2345. }
  2346. rtnl_notify(skb, net, 0, RTNLGRP_LINK, NULL, GFP_ATOMIC);
  2347. return 0;
  2348. errout:
  2349. WARN_ON(err == -EMSGSIZE);
  2350. kfree_skb(skb);
  2351. rtnl_set_sk_err(net, RTNLGRP_LINK, err);
  2352. return err;
  2353. }
  2354. static int rtnl_bridge_setlink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2355. {
  2356. struct net *net = sock_net(skb->sk);
  2357. struct ifinfomsg *ifm;
  2358. struct net_device *dev;
  2359. struct nlattr *br_spec, *attr = NULL;
  2360. int rem, err = -EOPNOTSUPP;
  2361. u16 oflags, flags = 0;
  2362. bool have_flags = false;
  2363. if (nlmsg_len(nlh) < sizeof(*ifm))
  2364. return -EINVAL;
  2365. ifm = nlmsg_data(nlh);
  2366. if (ifm->ifi_family != AF_BRIDGE)
  2367. return -EPFNOSUPPORT;
  2368. dev = __dev_get_by_index(net, ifm->ifi_index);
  2369. if (!dev) {
  2370. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2371. return -ENODEV;
  2372. }
  2373. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2374. if (br_spec) {
  2375. nla_for_each_nested(attr, br_spec, rem) {
  2376. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2377. have_flags = true;
  2378. flags = nla_get_u16(attr);
  2379. break;
  2380. }
  2381. }
  2382. }
  2383. oflags = flags;
  2384. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2385. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2386. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_setlink) {
  2387. err = -EOPNOTSUPP;
  2388. goto out;
  2389. }
  2390. err = br_dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2391. if (err)
  2392. goto out;
  2393. flags &= ~BRIDGE_FLAGS_MASTER;
  2394. }
  2395. if ((flags & BRIDGE_FLAGS_SELF)) {
  2396. if (!dev->netdev_ops->ndo_bridge_setlink)
  2397. err = -EOPNOTSUPP;
  2398. else
  2399. err = dev->netdev_ops->ndo_bridge_setlink(dev, nlh);
  2400. if (!err)
  2401. flags &= ~BRIDGE_FLAGS_SELF;
  2402. }
  2403. if (have_flags)
  2404. memcpy(nla_data(attr), &flags, sizeof(flags));
  2405. /* Generate event to notify upper layer of bridge change */
  2406. if (!err)
  2407. err = rtnl_bridge_notify(dev, oflags);
  2408. out:
  2409. return err;
  2410. }
  2411. static int rtnl_bridge_dellink(struct sk_buff *skb, struct nlmsghdr *nlh)
  2412. {
  2413. struct net *net = sock_net(skb->sk);
  2414. struct ifinfomsg *ifm;
  2415. struct net_device *dev;
  2416. struct nlattr *br_spec, *attr = NULL;
  2417. int rem, err = -EOPNOTSUPP;
  2418. u16 oflags, flags = 0;
  2419. bool have_flags = false;
  2420. if (nlmsg_len(nlh) < sizeof(*ifm))
  2421. return -EINVAL;
  2422. ifm = nlmsg_data(nlh);
  2423. if (ifm->ifi_family != AF_BRIDGE)
  2424. return -EPFNOSUPPORT;
  2425. dev = __dev_get_by_index(net, ifm->ifi_index);
  2426. if (!dev) {
  2427. pr_info("PF_BRIDGE: RTM_SETLINK with unknown ifindex\n");
  2428. return -ENODEV;
  2429. }
  2430. br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
  2431. if (br_spec) {
  2432. nla_for_each_nested(attr, br_spec, rem) {
  2433. if (nla_type(attr) == IFLA_BRIDGE_FLAGS) {
  2434. have_flags = true;
  2435. flags = nla_get_u16(attr);
  2436. break;
  2437. }
  2438. }
  2439. }
  2440. oflags = flags;
  2441. if (!flags || (flags & BRIDGE_FLAGS_MASTER)) {
  2442. struct net_device *br_dev = netdev_master_upper_dev_get(dev);
  2443. if (!br_dev || !br_dev->netdev_ops->ndo_bridge_dellink) {
  2444. err = -EOPNOTSUPP;
  2445. goto out;
  2446. }
  2447. err = br_dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2448. if (err)
  2449. goto out;
  2450. flags &= ~BRIDGE_FLAGS_MASTER;
  2451. }
  2452. if ((flags & BRIDGE_FLAGS_SELF)) {
  2453. if (!dev->netdev_ops->ndo_bridge_dellink)
  2454. err = -EOPNOTSUPP;
  2455. else
  2456. err = dev->netdev_ops->ndo_bridge_dellink(dev, nlh);
  2457. if (!err)
  2458. flags &= ~BRIDGE_FLAGS_SELF;
  2459. }
  2460. if (have_flags)
  2461. memcpy(nla_data(attr), &flags, sizeof(flags));
  2462. /* Generate event to notify upper layer of bridge change */
  2463. if (!err)
  2464. err = rtnl_bridge_notify(dev, oflags);
  2465. out:
  2466. return err;
  2467. }
  2468. /* Process one rtnetlink message. */
  2469. static int rtnetlink_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
  2470. {
  2471. struct net *net = sock_net(skb->sk);
  2472. rtnl_doit_func doit;
  2473. int sz_idx, kind;
  2474. int family;
  2475. int type;
  2476. int err;
  2477. type = nlh->nlmsg_type;
  2478. if (type > RTM_MAX)
  2479. return -EOPNOTSUPP;
  2480. type -= RTM_BASE;
  2481. /* All the messages must have at least 1 byte length */
  2482. if (nlmsg_len(nlh) < sizeof(struct rtgenmsg))
  2483. return 0;
  2484. family = ((struct rtgenmsg *)nlmsg_data(nlh))->rtgen_family;
  2485. sz_idx = type>>2;
  2486. kind = type&3;
  2487. if (kind != 2 && !netlink_net_capable(skb, CAP_NET_ADMIN))
  2488. return -EPERM;
  2489. if (kind == 2 && nlh->nlmsg_flags&NLM_F_DUMP) {
  2490. struct sock *rtnl;
  2491. rtnl_dumpit_func dumpit;
  2492. rtnl_calcit_func calcit;
  2493. u16 min_dump_alloc = 0;
  2494. dumpit = rtnl_get_dumpit(family, type);
  2495. if (dumpit == NULL)
  2496. return -EOPNOTSUPP;
  2497. calcit = rtnl_get_calcit(family, type);
  2498. if (calcit)
  2499. min_dump_alloc = calcit(skb, nlh);
  2500. __rtnl_unlock();
  2501. rtnl = net->rtnl;
  2502. {
  2503. struct netlink_dump_control c = {
  2504. .dump = dumpit,
  2505. .min_dump_alloc = min_dump_alloc,
  2506. };
  2507. err = netlink_dump_start(rtnl, skb, nlh, &c);
  2508. }
  2509. rtnl_lock();
  2510. return err;
  2511. }
  2512. doit = rtnl_get_doit(family, type);
  2513. if (doit == NULL)
  2514. return -EOPNOTSUPP;
  2515. return doit(skb, nlh);
  2516. }
  2517. static void rtnetlink_rcv(struct sk_buff *skb)
  2518. {
  2519. rtnl_lock();
  2520. netlink_rcv_skb(skb, &rtnetlink_rcv_msg);
  2521. rtnl_unlock();
  2522. }
  2523. static int rtnetlink_event(struct notifier_block *this, unsigned long event, void *ptr)
  2524. {
  2525. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  2526. switch (event) {
  2527. case NETDEV_UP:
  2528. case NETDEV_DOWN:
  2529. case NETDEV_PRE_UP:
  2530. case NETDEV_POST_INIT:
  2531. case NETDEV_REGISTER:
  2532. case NETDEV_CHANGE:
  2533. case NETDEV_PRE_TYPE_CHANGE:
  2534. case NETDEV_GOING_DOWN:
  2535. case NETDEV_UNREGISTER:
  2536. case NETDEV_UNREGISTER_FINAL:
  2537. case NETDEV_RELEASE:
  2538. case NETDEV_JOIN:
  2539. break;
  2540. default:
  2541. rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
  2542. break;
  2543. }
  2544. return NOTIFY_DONE;
  2545. }
  2546. static struct notifier_block rtnetlink_dev_notifier = {
  2547. .notifier_call = rtnetlink_event,
  2548. };
  2549. static int __net_init rtnetlink_net_init(struct net *net)
  2550. {
  2551. struct sock *sk;
  2552. struct netlink_kernel_cfg cfg = {
  2553. .groups = RTNLGRP_MAX,
  2554. .input = rtnetlink_rcv,
  2555. .cb_mutex = &rtnl_mutex,
  2556. .flags = NL_CFG_F_NONROOT_RECV,
  2557. };
  2558. sk = netlink_kernel_create(net, NETLINK_ROUTE, &cfg);
  2559. if (!sk)
  2560. return -ENOMEM;
  2561. net->rtnl = sk;
  2562. return 0;
  2563. }
  2564. static void __net_exit rtnetlink_net_exit(struct net *net)
  2565. {
  2566. netlink_kernel_release(net->rtnl);
  2567. net->rtnl = NULL;
  2568. }
  2569. static struct pernet_operations rtnetlink_net_ops = {
  2570. .init = rtnetlink_net_init,
  2571. .exit = rtnetlink_net_exit,
  2572. };
  2573. void __init rtnetlink_init(void)
  2574. {
  2575. if (register_pernet_subsys(&rtnetlink_net_ops))
  2576. panic("rtnetlink_init: cannot initialize rtnetlink\n");
  2577. register_netdevice_notifier(&rtnetlink_dev_notifier);
  2578. rtnl_register(PF_UNSPEC, RTM_GETLINK, rtnl_getlink,
  2579. rtnl_dump_ifinfo, rtnl_calcit);
  2580. rtnl_register(PF_UNSPEC, RTM_SETLINK, rtnl_setlink, NULL, NULL);
  2581. rtnl_register(PF_UNSPEC, RTM_NEWLINK, rtnl_newlink, NULL, NULL);
  2582. rtnl_register(PF_UNSPEC, RTM_DELLINK, rtnl_dellink, NULL, NULL);
  2583. rtnl_register(PF_UNSPEC, RTM_GETADDR, NULL, rtnl_dump_all, NULL);
  2584. rtnl_register(PF_UNSPEC, RTM_GETROUTE, NULL, rtnl_dump_all, NULL);
  2585. rtnl_register(PF_BRIDGE, RTM_NEWNEIGH, rtnl_fdb_add, NULL, NULL);
  2586. rtnl_register(PF_BRIDGE, RTM_DELNEIGH, rtnl_fdb_del, NULL, NULL);
  2587. rtnl_register(PF_BRIDGE, RTM_GETNEIGH, NULL, rtnl_fdb_dump, NULL);
  2588. rtnl_register(PF_BRIDGE, RTM_GETLINK, NULL, rtnl_bridge_getlink, NULL);
  2589. rtnl_register(PF_BRIDGE, RTM_DELLINK, rtnl_bridge_dellink, NULL, NULL);
  2590. rtnl_register(PF_BRIDGE, RTM_SETLINK, rtnl_bridge_setlink, NULL, NULL);
  2591. }