intel_ringbuffer.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003
  1. /*
  2. * Copyright © 2008-2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. * Zou Nan hai <nanhai.zou@intel.com>
  26. * Xiang Hai hao<haihao.xiang@intel.com>
  27. *
  28. */
  29. #include <drm/drmP.h>
  30. #include "i915_drv.h"
  31. #include <drm/i915_drm.h>
  32. #include "i915_trace.h"
  33. #include "intel_drv.h"
  34. bool
  35. intel_ring_initialized(struct intel_engine_cs *ring)
  36. {
  37. struct drm_device *dev = ring->dev;
  38. if (!dev)
  39. return false;
  40. if (i915.enable_execlists) {
  41. struct intel_context *dctx = ring->default_context;
  42. struct intel_ringbuffer *ringbuf = dctx->engine[ring->id].ringbuf;
  43. return ringbuf->obj;
  44. } else
  45. return ring->buffer && ring->buffer->obj;
  46. }
  47. int __intel_ring_space(int head, int tail, int size)
  48. {
  49. int space = head - tail;
  50. if (space <= 0)
  51. space += size;
  52. return space - I915_RING_FREE_SPACE;
  53. }
  54. void intel_ring_update_space(struct intel_ringbuffer *ringbuf)
  55. {
  56. if (ringbuf->last_retired_head != -1) {
  57. ringbuf->head = ringbuf->last_retired_head;
  58. ringbuf->last_retired_head = -1;
  59. }
  60. ringbuf->space = __intel_ring_space(ringbuf->head & HEAD_ADDR,
  61. ringbuf->tail, ringbuf->size);
  62. }
  63. int intel_ring_space(struct intel_ringbuffer *ringbuf)
  64. {
  65. intel_ring_update_space(ringbuf);
  66. return ringbuf->space;
  67. }
  68. bool intel_ring_stopped(struct intel_engine_cs *ring)
  69. {
  70. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  71. return dev_priv->gpu_error.stop_rings & intel_ring_flag(ring);
  72. }
  73. static void __intel_ring_advance(struct intel_engine_cs *ring)
  74. {
  75. struct intel_ringbuffer *ringbuf = ring->buffer;
  76. ringbuf->tail &= ringbuf->size - 1;
  77. if (intel_ring_stopped(ring))
  78. return;
  79. ring->write_tail(ring, ringbuf->tail);
  80. }
  81. static int
  82. gen2_render_ring_flush(struct drm_i915_gem_request *req,
  83. u32 invalidate_domains,
  84. u32 flush_domains)
  85. {
  86. struct intel_engine_cs *ring = req->ring;
  87. u32 cmd;
  88. int ret;
  89. cmd = MI_FLUSH;
  90. if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
  91. cmd |= MI_NO_WRITE_FLUSH;
  92. if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
  93. cmd |= MI_READ_FLUSH;
  94. ret = intel_ring_begin(req, 2);
  95. if (ret)
  96. return ret;
  97. intel_ring_emit(ring, cmd);
  98. intel_ring_emit(ring, MI_NOOP);
  99. intel_ring_advance(ring);
  100. return 0;
  101. }
  102. static int
  103. gen4_render_ring_flush(struct drm_i915_gem_request *req,
  104. u32 invalidate_domains,
  105. u32 flush_domains)
  106. {
  107. struct intel_engine_cs *ring = req->ring;
  108. struct drm_device *dev = ring->dev;
  109. u32 cmd;
  110. int ret;
  111. /*
  112. * read/write caches:
  113. *
  114. * I915_GEM_DOMAIN_RENDER is always invalidated, but is
  115. * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
  116. * also flushed at 2d versus 3d pipeline switches.
  117. *
  118. * read-only caches:
  119. *
  120. * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
  121. * MI_READ_FLUSH is set, and is always flushed on 965.
  122. *
  123. * I915_GEM_DOMAIN_COMMAND may not exist?
  124. *
  125. * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
  126. * invalidated when MI_EXE_FLUSH is set.
  127. *
  128. * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
  129. * invalidated with every MI_FLUSH.
  130. *
  131. * TLBs:
  132. *
  133. * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
  134. * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
  135. * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
  136. * are flushed at any MI_FLUSH.
  137. */
  138. cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
  139. if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
  140. cmd &= ~MI_NO_WRITE_FLUSH;
  141. if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
  142. cmd |= MI_EXE_FLUSH;
  143. if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
  144. (IS_G4X(dev) || IS_GEN5(dev)))
  145. cmd |= MI_INVALIDATE_ISP;
  146. ret = intel_ring_begin(req, 2);
  147. if (ret)
  148. return ret;
  149. intel_ring_emit(ring, cmd);
  150. intel_ring_emit(ring, MI_NOOP);
  151. intel_ring_advance(ring);
  152. return 0;
  153. }
  154. /**
  155. * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
  156. * implementing two workarounds on gen6. From section 1.4.7.1
  157. * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
  158. *
  159. * [DevSNB-C+{W/A}] Before any depth stall flush (including those
  160. * produced by non-pipelined state commands), software needs to first
  161. * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
  162. * 0.
  163. *
  164. * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
  165. * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
  166. *
  167. * And the workaround for these two requires this workaround first:
  168. *
  169. * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
  170. * BEFORE the pipe-control with a post-sync op and no write-cache
  171. * flushes.
  172. *
  173. * And this last workaround is tricky because of the requirements on
  174. * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
  175. * volume 2 part 1:
  176. *
  177. * "1 of the following must also be set:
  178. * - Render Target Cache Flush Enable ([12] of DW1)
  179. * - Depth Cache Flush Enable ([0] of DW1)
  180. * - Stall at Pixel Scoreboard ([1] of DW1)
  181. * - Depth Stall ([13] of DW1)
  182. * - Post-Sync Operation ([13] of DW1)
  183. * - Notify Enable ([8] of DW1)"
  184. *
  185. * The cache flushes require the workaround flush that triggered this
  186. * one, so we can't use it. Depth stall would trigger the same.
  187. * Post-sync nonzero is what triggered this second workaround, so we
  188. * can't use that one either. Notify enable is IRQs, which aren't
  189. * really our business. That leaves only stall at scoreboard.
  190. */
  191. static int
  192. intel_emit_post_sync_nonzero_flush(struct drm_i915_gem_request *req)
  193. {
  194. struct intel_engine_cs *ring = req->ring;
  195. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  196. int ret;
  197. ret = intel_ring_begin(req, 6);
  198. if (ret)
  199. return ret;
  200. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  201. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  202. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  203. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  204. intel_ring_emit(ring, 0); /* low dword */
  205. intel_ring_emit(ring, 0); /* high dword */
  206. intel_ring_emit(ring, MI_NOOP);
  207. intel_ring_advance(ring);
  208. ret = intel_ring_begin(req, 6);
  209. if (ret)
  210. return ret;
  211. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
  212. intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
  213. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
  214. intel_ring_emit(ring, 0);
  215. intel_ring_emit(ring, 0);
  216. intel_ring_emit(ring, MI_NOOP);
  217. intel_ring_advance(ring);
  218. return 0;
  219. }
  220. static int
  221. gen6_render_ring_flush(struct drm_i915_gem_request *req,
  222. u32 invalidate_domains, u32 flush_domains)
  223. {
  224. struct intel_engine_cs *ring = req->ring;
  225. u32 flags = 0;
  226. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  227. int ret;
  228. /* Force SNB workarounds for PIPE_CONTROL flushes */
  229. ret = intel_emit_post_sync_nonzero_flush(req);
  230. if (ret)
  231. return ret;
  232. /* Just flush everything. Experiments have shown that reducing the
  233. * number of bits based on the write domains has little performance
  234. * impact.
  235. */
  236. if (flush_domains) {
  237. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  238. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  239. /*
  240. * Ensure that any following seqno writes only happen
  241. * when the render cache is indeed flushed.
  242. */
  243. flags |= PIPE_CONTROL_CS_STALL;
  244. }
  245. if (invalidate_domains) {
  246. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  247. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  248. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  249. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  250. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  251. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  252. /*
  253. * TLB invalidate requires a post-sync write.
  254. */
  255. flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
  256. }
  257. ret = intel_ring_begin(req, 4);
  258. if (ret)
  259. return ret;
  260. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  261. intel_ring_emit(ring, flags);
  262. intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
  263. intel_ring_emit(ring, 0);
  264. intel_ring_advance(ring);
  265. return 0;
  266. }
  267. static int
  268. gen7_render_ring_cs_stall_wa(struct drm_i915_gem_request *req)
  269. {
  270. struct intel_engine_cs *ring = req->ring;
  271. int ret;
  272. ret = intel_ring_begin(req, 4);
  273. if (ret)
  274. return ret;
  275. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  276. intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
  277. PIPE_CONTROL_STALL_AT_SCOREBOARD);
  278. intel_ring_emit(ring, 0);
  279. intel_ring_emit(ring, 0);
  280. intel_ring_advance(ring);
  281. return 0;
  282. }
  283. static int
  284. gen7_render_ring_flush(struct drm_i915_gem_request *req,
  285. u32 invalidate_domains, u32 flush_domains)
  286. {
  287. struct intel_engine_cs *ring = req->ring;
  288. u32 flags = 0;
  289. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  290. int ret;
  291. /*
  292. * Ensure that any following seqno writes only happen when the render
  293. * cache is indeed flushed.
  294. *
  295. * Workaround: 4th PIPE_CONTROL command (except the ones with only
  296. * read-cache invalidate bits set) must have the CS_STALL bit set. We
  297. * don't try to be clever and just set it unconditionally.
  298. */
  299. flags |= PIPE_CONTROL_CS_STALL;
  300. /* Just flush everything. Experiments have shown that reducing the
  301. * number of bits based on the write domains has little performance
  302. * impact.
  303. */
  304. if (flush_domains) {
  305. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  306. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  307. }
  308. if (invalidate_domains) {
  309. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  310. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  311. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  312. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  313. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  314. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  315. flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
  316. /*
  317. * TLB invalidate requires a post-sync write.
  318. */
  319. flags |= PIPE_CONTROL_QW_WRITE;
  320. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  321. flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
  322. /* Workaround: we must issue a pipe_control with CS-stall bit
  323. * set before a pipe_control command that has the state cache
  324. * invalidate bit set. */
  325. gen7_render_ring_cs_stall_wa(req);
  326. }
  327. ret = intel_ring_begin(req, 4);
  328. if (ret)
  329. return ret;
  330. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
  331. intel_ring_emit(ring, flags);
  332. intel_ring_emit(ring, scratch_addr);
  333. intel_ring_emit(ring, 0);
  334. intel_ring_advance(ring);
  335. return 0;
  336. }
  337. static int
  338. gen8_emit_pipe_control(struct drm_i915_gem_request *req,
  339. u32 flags, u32 scratch_addr)
  340. {
  341. struct intel_engine_cs *ring = req->ring;
  342. int ret;
  343. ret = intel_ring_begin(req, 6);
  344. if (ret)
  345. return ret;
  346. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(6));
  347. intel_ring_emit(ring, flags);
  348. intel_ring_emit(ring, scratch_addr);
  349. intel_ring_emit(ring, 0);
  350. intel_ring_emit(ring, 0);
  351. intel_ring_emit(ring, 0);
  352. intel_ring_advance(ring);
  353. return 0;
  354. }
  355. static int
  356. gen8_render_ring_flush(struct drm_i915_gem_request *req,
  357. u32 invalidate_domains, u32 flush_domains)
  358. {
  359. u32 flags = 0;
  360. u32 scratch_addr = req->ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  361. int ret;
  362. flags |= PIPE_CONTROL_CS_STALL;
  363. if (flush_domains) {
  364. flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
  365. flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
  366. }
  367. if (invalidate_domains) {
  368. flags |= PIPE_CONTROL_TLB_INVALIDATE;
  369. flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
  370. flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
  371. flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
  372. flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
  373. flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
  374. flags |= PIPE_CONTROL_QW_WRITE;
  375. flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
  376. /* WaCsStallBeforeStateCacheInvalidate:bdw,chv */
  377. ret = gen8_emit_pipe_control(req,
  378. PIPE_CONTROL_CS_STALL |
  379. PIPE_CONTROL_STALL_AT_SCOREBOARD,
  380. 0);
  381. if (ret)
  382. return ret;
  383. }
  384. return gen8_emit_pipe_control(req, flags, scratch_addr);
  385. }
  386. static void ring_write_tail(struct intel_engine_cs *ring,
  387. u32 value)
  388. {
  389. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  390. I915_WRITE_TAIL(ring, value);
  391. }
  392. u64 intel_ring_get_active_head(struct intel_engine_cs *ring)
  393. {
  394. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  395. u64 acthd;
  396. if (INTEL_INFO(ring->dev)->gen >= 8)
  397. acthd = I915_READ64_2x32(RING_ACTHD(ring->mmio_base),
  398. RING_ACTHD_UDW(ring->mmio_base));
  399. else if (INTEL_INFO(ring->dev)->gen >= 4)
  400. acthd = I915_READ(RING_ACTHD(ring->mmio_base));
  401. else
  402. acthd = I915_READ(ACTHD);
  403. return acthd;
  404. }
  405. static void ring_setup_phys_status_page(struct intel_engine_cs *ring)
  406. {
  407. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  408. u32 addr;
  409. addr = dev_priv->status_page_dmah->busaddr;
  410. if (INTEL_INFO(ring->dev)->gen >= 4)
  411. addr |= (dev_priv->status_page_dmah->busaddr >> 28) & 0xf0;
  412. I915_WRITE(HWS_PGA, addr);
  413. }
  414. static void intel_ring_setup_status_page(struct intel_engine_cs *ring)
  415. {
  416. struct drm_device *dev = ring->dev;
  417. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  418. u32 mmio = 0;
  419. /* The ring status page addresses are no longer next to the rest of
  420. * the ring registers as of gen7.
  421. */
  422. if (IS_GEN7(dev)) {
  423. switch (ring->id) {
  424. case RCS:
  425. mmio = RENDER_HWS_PGA_GEN7;
  426. break;
  427. case BCS:
  428. mmio = BLT_HWS_PGA_GEN7;
  429. break;
  430. /*
  431. * VCS2 actually doesn't exist on Gen7. Only shut up
  432. * gcc switch check warning
  433. */
  434. case VCS2:
  435. case VCS:
  436. mmio = BSD_HWS_PGA_GEN7;
  437. break;
  438. case VECS:
  439. mmio = VEBOX_HWS_PGA_GEN7;
  440. break;
  441. }
  442. } else if (IS_GEN6(ring->dev)) {
  443. mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
  444. } else {
  445. /* XXX: gen8 returns to sanity */
  446. mmio = RING_HWS_PGA(ring->mmio_base);
  447. }
  448. I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
  449. POSTING_READ(mmio);
  450. /*
  451. * Flush the TLB for this page
  452. *
  453. * FIXME: These two bits have disappeared on gen8, so a question
  454. * arises: do we still need this and if so how should we go about
  455. * invalidating the TLB?
  456. */
  457. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8) {
  458. u32 reg = RING_INSTPM(ring->mmio_base);
  459. /* ring should be idle before issuing a sync flush*/
  460. WARN_ON((I915_READ_MODE(ring) & MODE_IDLE) == 0);
  461. I915_WRITE(reg,
  462. _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
  463. INSTPM_SYNC_FLUSH));
  464. if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
  465. 1000))
  466. DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
  467. ring->name);
  468. }
  469. }
  470. static bool stop_ring(struct intel_engine_cs *ring)
  471. {
  472. struct drm_i915_private *dev_priv = to_i915(ring->dev);
  473. if (!IS_GEN2(ring->dev)) {
  474. I915_WRITE_MODE(ring, _MASKED_BIT_ENABLE(STOP_RING));
  475. if (wait_for((I915_READ_MODE(ring) & MODE_IDLE) != 0, 1000)) {
  476. DRM_ERROR("%s : timed out trying to stop ring\n", ring->name);
  477. /* Sometimes we observe that the idle flag is not
  478. * set even though the ring is empty. So double
  479. * check before giving up.
  480. */
  481. if (I915_READ_HEAD(ring) != I915_READ_TAIL(ring))
  482. return false;
  483. }
  484. }
  485. I915_WRITE_CTL(ring, 0);
  486. I915_WRITE_HEAD(ring, 0);
  487. ring->write_tail(ring, 0);
  488. if (!IS_GEN2(ring->dev)) {
  489. (void)I915_READ_CTL(ring);
  490. I915_WRITE_MODE(ring, _MASKED_BIT_DISABLE(STOP_RING));
  491. }
  492. return (I915_READ_HEAD(ring) & HEAD_ADDR) == 0;
  493. }
  494. static int init_ring_common(struct intel_engine_cs *ring)
  495. {
  496. struct drm_device *dev = ring->dev;
  497. struct drm_i915_private *dev_priv = dev->dev_private;
  498. struct intel_ringbuffer *ringbuf = ring->buffer;
  499. struct drm_i915_gem_object *obj = ringbuf->obj;
  500. int ret = 0;
  501. intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
  502. if (!stop_ring(ring)) {
  503. /* G45 ring initialization often fails to reset head to zero */
  504. DRM_DEBUG_KMS("%s head not reset to zero "
  505. "ctl %08x head %08x tail %08x start %08x\n",
  506. ring->name,
  507. I915_READ_CTL(ring),
  508. I915_READ_HEAD(ring),
  509. I915_READ_TAIL(ring),
  510. I915_READ_START(ring));
  511. if (!stop_ring(ring)) {
  512. DRM_ERROR("failed to set %s head to zero "
  513. "ctl %08x head %08x tail %08x start %08x\n",
  514. ring->name,
  515. I915_READ_CTL(ring),
  516. I915_READ_HEAD(ring),
  517. I915_READ_TAIL(ring),
  518. I915_READ_START(ring));
  519. ret = -EIO;
  520. goto out;
  521. }
  522. }
  523. if (I915_NEED_GFX_HWS(dev))
  524. intel_ring_setup_status_page(ring);
  525. else
  526. ring_setup_phys_status_page(ring);
  527. /* Enforce ordering by reading HEAD register back */
  528. I915_READ_HEAD(ring);
  529. /* Initialize the ring. This must happen _after_ we've cleared the ring
  530. * registers with the above sequence (the readback of the HEAD registers
  531. * also enforces ordering), otherwise the hw might lose the new ring
  532. * register values. */
  533. I915_WRITE_START(ring, i915_gem_obj_ggtt_offset(obj));
  534. /* WaClearRingBufHeadRegAtInit:ctg,elk */
  535. if (I915_READ_HEAD(ring))
  536. DRM_DEBUG("%s initialization failed [head=%08x], fudging\n",
  537. ring->name, I915_READ_HEAD(ring));
  538. I915_WRITE_HEAD(ring, 0);
  539. (void)I915_READ_HEAD(ring);
  540. I915_WRITE_CTL(ring,
  541. ((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES)
  542. | RING_VALID);
  543. /* If the head is still not zero, the ring is dead */
  544. if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
  545. I915_READ_START(ring) == i915_gem_obj_ggtt_offset(obj) &&
  546. (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
  547. DRM_ERROR("%s initialization failed "
  548. "ctl %08x (valid? %d) head %08x tail %08x start %08x [expected %08lx]\n",
  549. ring->name,
  550. I915_READ_CTL(ring), I915_READ_CTL(ring) & RING_VALID,
  551. I915_READ_HEAD(ring), I915_READ_TAIL(ring),
  552. I915_READ_START(ring), (unsigned long)i915_gem_obj_ggtt_offset(obj));
  553. ret = -EIO;
  554. goto out;
  555. }
  556. ringbuf->last_retired_head = -1;
  557. ringbuf->head = I915_READ_HEAD(ring);
  558. ringbuf->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
  559. intel_ring_update_space(ringbuf);
  560. memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
  561. out:
  562. intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
  563. return ret;
  564. }
  565. void
  566. intel_fini_pipe_control(struct intel_engine_cs *ring)
  567. {
  568. struct drm_device *dev = ring->dev;
  569. if (ring->scratch.obj == NULL)
  570. return;
  571. if (INTEL_INFO(dev)->gen >= 5) {
  572. kunmap(sg_page(ring->scratch.obj->pages->sgl));
  573. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  574. }
  575. drm_gem_object_unreference(&ring->scratch.obj->base);
  576. ring->scratch.obj = NULL;
  577. }
  578. int
  579. intel_init_pipe_control(struct intel_engine_cs *ring)
  580. {
  581. int ret;
  582. WARN_ON(ring->scratch.obj);
  583. ring->scratch.obj = i915_gem_alloc_object(ring->dev, 4096);
  584. if (ring->scratch.obj == NULL) {
  585. DRM_ERROR("Failed to allocate seqno page\n");
  586. ret = -ENOMEM;
  587. goto err;
  588. }
  589. ret = i915_gem_object_set_cache_level(ring->scratch.obj, I915_CACHE_LLC);
  590. if (ret)
  591. goto err_unref;
  592. ret = i915_gem_obj_ggtt_pin(ring->scratch.obj, 4096, 0);
  593. if (ret)
  594. goto err_unref;
  595. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(ring->scratch.obj);
  596. ring->scratch.cpu_page = kmap(sg_page(ring->scratch.obj->pages->sgl));
  597. if (ring->scratch.cpu_page == NULL) {
  598. ret = -ENOMEM;
  599. goto err_unpin;
  600. }
  601. DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
  602. ring->name, ring->scratch.gtt_offset);
  603. return 0;
  604. err_unpin:
  605. i915_gem_object_ggtt_unpin(ring->scratch.obj);
  606. err_unref:
  607. drm_gem_object_unreference(&ring->scratch.obj->base);
  608. err:
  609. return ret;
  610. }
  611. static int intel_ring_workarounds_emit(struct drm_i915_gem_request *req)
  612. {
  613. int ret, i;
  614. struct intel_engine_cs *ring = req->ring;
  615. struct drm_device *dev = ring->dev;
  616. struct drm_i915_private *dev_priv = dev->dev_private;
  617. struct i915_workarounds *w = &dev_priv->workarounds;
  618. if (WARN_ON_ONCE(w->count == 0))
  619. return 0;
  620. ring->gpu_caches_dirty = true;
  621. ret = intel_ring_flush_all_caches(req);
  622. if (ret)
  623. return ret;
  624. ret = intel_ring_begin(req, (w->count * 2 + 2));
  625. if (ret)
  626. return ret;
  627. intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(w->count));
  628. for (i = 0; i < w->count; i++) {
  629. intel_ring_emit(ring, w->reg[i].addr);
  630. intel_ring_emit(ring, w->reg[i].value);
  631. }
  632. intel_ring_emit(ring, MI_NOOP);
  633. intel_ring_advance(ring);
  634. ring->gpu_caches_dirty = true;
  635. ret = intel_ring_flush_all_caches(req);
  636. if (ret)
  637. return ret;
  638. DRM_DEBUG_DRIVER("Number of Workarounds emitted: %d\n", w->count);
  639. return 0;
  640. }
  641. static int intel_rcs_ctx_init(struct drm_i915_gem_request *req)
  642. {
  643. int ret;
  644. ret = intel_ring_workarounds_emit(req);
  645. if (ret != 0)
  646. return ret;
  647. ret = i915_gem_render_state_init(req);
  648. if (ret)
  649. DRM_ERROR("init render state: %d\n", ret);
  650. return ret;
  651. }
  652. static int wa_add(struct drm_i915_private *dev_priv,
  653. const u32 addr, const u32 mask, const u32 val)
  654. {
  655. const u32 idx = dev_priv->workarounds.count;
  656. if (WARN_ON(idx >= I915_MAX_WA_REGS))
  657. return -ENOSPC;
  658. dev_priv->workarounds.reg[idx].addr = addr;
  659. dev_priv->workarounds.reg[idx].value = val;
  660. dev_priv->workarounds.reg[idx].mask = mask;
  661. dev_priv->workarounds.count++;
  662. return 0;
  663. }
  664. #define WA_REG(addr, mask, val) do { \
  665. const int r = wa_add(dev_priv, (addr), (mask), (val)); \
  666. if (r) \
  667. return r; \
  668. } while (0)
  669. #define WA_SET_BIT_MASKED(addr, mask) \
  670. WA_REG(addr, (mask), _MASKED_BIT_ENABLE(mask))
  671. #define WA_CLR_BIT_MASKED(addr, mask) \
  672. WA_REG(addr, (mask), _MASKED_BIT_DISABLE(mask))
  673. #define WA_SET_FIELD_MASKED(addr, mask, value) \
  674. WA_REG(addr, mask, _MASKED_FIELD(mask, value))
  675. #define WA_SET_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) | (mask))
  676. #define WA_CLR_BIT(addr, mask) WA_REG(addr, mask, I915_READ(addr) & ~(mask))
  677. #define WA_WRITE(addr, val) WA_REG(addr, 0xffffffff, val)
  678. static int bdw_init_workarounds(struct intel_engine_cs *ring)
  679. {
  680. struct drm_device *dev = ring->dev;
  681. struct drm_i915_private *dev_priv = dev->dev_private;
  682. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  683. /* WaDisableAsyncFlipPerfMode:bdw */
  684. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  685. /* WaDisablePartialInstShootdown:bdw */
  686. /* WaDisableThreadStallDopClockGating:bdw (pre-production) */
  687. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  688. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  689. STALL_DOP_GATING_DISABLE);
  690. /* WaDisableDopClockGating:bdw */
  691. WA_SET_BIT_MASKED(GEN7_ROW_CHICKEN2,
  692. DOP_CLOCK_GATING_DISABLE);
  693. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  694. GEN8_SAMPLER_POWER_BYPASS_DIS);
  695. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  696. * workaround for for a possible hang in the unlikely event a TLB
  697. * invalidation occurs during a PSD flush.
  698. */
  699. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  700. /* WaForceEnableNonCoherent:bdw */
  701. HDC_FORCE_NON_COHERENT |
  702. /* WaForceContextSaveRestoreNonCoherent:bdw */
  703. HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
  704. /* WaHdcDisableFetchWhenMasked:bdw */
  705. HDC_DONOT_FETCH_MEM_WHEN_MASKED |
  706. /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
  707. (IS_BDW_GT3(dev) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
  708. /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
  709. * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
  710. * polygons in the same 8x4 pixel/sample area to be processed without
  711. * stalling waiting for the earlier ones to write to Hierarchical Z
  712. * buffer."
  713. *
  714. * This optimization is off by default for Broadwell; turn it on.
  715. */
  716. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  717. /* Wa4x4STCOptimizationDisable:bdw */
  718. WA_SET_BIT_MASKED(CACHE_MODE_1,
  719. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  720. /*
  721. * BSpec recommends 8x4 when MSAA is used,
  722. * however in practice 16x4 seems fastest.
  723. *
  724. * Note that PS/WM thread counts depend on the WIZ hashing
  725. * disable bit, which we don't touch here, but it's good
  726. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  727. */
  728. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  729. GEN6_WIZ_HASHING_MASK,
  730. GEN6_WIZ_HASHING_16x4);
  731. return 0;
  732. }
  733. static int chv_init_workarounds(struct intel_engine_cs *ring)
  734. {
  735. struct drm_device *dev = ring->dev;
  736. struct drm_i915_private *dev_priv = dev->dev_private;
  737. WA_SET_BIT_MASKED(INSTPM, INSTPM_FORCE_ORDERING);
  738. /* WaDisableAsyncFlipPerfMode:chv */
  739. WA_SET_BIT_MASKED(MI_MODE, ASYNC_FLIP_PERF_DISABLE);
  740. /* WaDisablePartialInstShootdown:chv */
  741. /* WaDisableThreadStallDopClockGating:chv */
  742. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  743. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE |
  744. STALL_DOP_GATING_DISABLE);
  745. /* Use Force Non-Coherent whenever executing a 3D context. This is a
  746. * workaround for a possible hang in the unlikely event a TLB
  747. * invalidation occurs during a PSD flush.
  748. */
  749. /* WaForceEnableNonCoherent:chv */
  750. /* WaHdcDisableFetchWhenMasked:chv */
  751. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  752. HDC_FORCE_NON_COHERENT |
  753. HDC_DONOT_FETCH_MEM_WHEN_MASKED);
  754. /* According to the CACHE_MODE_0 default value documentation, some
  755. * CHV platforms disable this optimization by default. Turn it on.
  756. */
  757. WA_CLR_BIT_MASKED(CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
  758. /* Wa4x4STCOptimizationDisable:chv */
  759. WA_SET_BIT_MASKED(CACHE_MODE_1,
  760. GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  761. /* Improve HiZ throughput on CHV. */
  762. WA_SET_BIT_MASKED(HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
  763. /*
  764. * BSpec recommends 8x4 when MSAA is used,
  765. * however in practice 16x4 seems fastest.
  766. *
  767. * Note that PS/WM thread counts depend on the WIZ hashing
  768. * disable bit, which we don't touch here, but it's good
  769. * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
  770. */
  771. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  772. GEN6_WIZ_HASHING_MASK,
  773. GEN6_WIZ_HASHING_16x4);
  774. return 0;
  775. }
  776. static int gen9_init_workarounds(struct intel_engine_cs *ring)
  777. {
  778. struct drm_device *dev = ring->dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. uint32_t tmp;
  781. /* WaDisablePartialInstShootdown:skl,bxt */
  782. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  783. PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
  784. /* Syncing dependencies between camera and graphics:skl,bxt */
  785. WA_SET_BIT_MASKED(HALF_SLICE_CHICKEN3,
  786. GEN9_DISABLE_OCL_OOB_SUPPRESS_LOGIC);
  787. if ((IS_SKYLAKE(dev) && (INTEL_REVID(dev) == SKL_REVID_A0 ||
  788. INTEL_REVID(dev) == SKL_REVID_B0)) ||
  789. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  790. /* WaDisableDgMirrorFixInHalfSliceChicken5:skl,bxt */
  791. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  792. GEN9_DG_MIRROR_FIX_ENABLE);
  793. }
  794. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) <= SKL_REVID_B0) ||
  795. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0)) {
  796. /* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
  797. WA_SET_BIT_MASKED(GEN7_COMMON_SLICE_CHICKEN1,
  798. GEN9_RHWO_OPTIMIZATION_DISABLE);
  799. /*
  800. * WA also requires GEN9_SLICE_COMMON_ECO_CHICKEN0[14:14] to be set
  801. * but we do that in per ctx batchbuffer as there is an issue
  802. * with this register not getting restored on ctx restore
  803. */
  804. }
  805. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) >= SKL_REVID_C0) ||
  806. IS_BROXTON(dev)) {
  807. /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt */
  808. WA_SET_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN7,
  809. GEN9_ENABLE_YV12_BUGFIX);
  810. }
  811. /* Wa4x4STCOptimizationDisable:skl,bxt */
  812. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
  813. /* WaDisablePartialResolveInVc:skl,bxt */
  814. WA_SET_BIT_MASKED(CACHE_MODE_1, GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
  815. /* WaCcsTlbPrefetchDisable:skl,bxt */
  816. WA_CLR_BIT_MASKED(GEN9_HALF_SLICE_CHICKEN5,
  817. GEN9_CCS_TLB_PREFETCH_ENABLE);
  818. /* WaDisableMaskBasedCammingInRCC:skl,bxt */
  819. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_C0) ||
  820. (IS_BROXTON(dev) && INTEL_REVID(dev) < BXT_REVID_B0))
  821. WA_SET_BIT_MASKED(SLICE_ECO_CHICKEN0,
  822. PIXEL_MASK_CAMMING_DISABLE);
  823. /* WaForceContextSaveRestoreNonCoherent:skl,bxt */
  824. tmp = HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT;
  825. if ((IS_SKYLAKE(dev) && INTEL_REVID(dev) == SKL_REVID_F0) ||
  826. (IS_BROXTON(dev) && INTEL_REVID(dev) >= BXT_REVID_B0))
  827. tmp |= HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE;
  828. WA_SET_BIT_MASKED(HDC_CHICKEN0, tmp);
  829. return 0;
  830. }
  831. static int skl_tune_iz_hashing(struct intel_engine_cs *ring)
  832. {
  833. struct drm_device *dev = ring->dev;
  834. struct drm_i915_private *dev_priv = dev->dev_private;
  835. u8 vals[3] = { 0, 0, 0 };
  836. unsigned int i;
  837. for (i = 0; i < 3; i++) {
  838. u8 ss;
  839. /*
  840. * Only consider slices where one, and only one, subslice has 7
  841. * EUs
  842. */
  843. if (hweight8(dev_priv->info.subslice_7eu[i]) != 1)
  844. continue;
  845. /*
  846. * subslice_7eu[i] != 0 (because of the check above) and
  847. * ss_max == 4 (maximum number of subslices possible per slice)
  848. *
  849. * -> 0 <= ss <= 3;
  850. */
  851. ss = ffs(dev_priv->info.subslice_7eu[i]) - 1;
  852. vals[i] = 3 - ss;
  853. }
  854. if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
  855. return 0;
  856. /* Tune IZ hashing. See intel_device_info_runtime_init() */
  857. WA_SET_FIELD_MASKED(GEN7_GT_MODE,
  858. GEN9_IZ_HASHING_MASK(2) |
  859. GEN9_IZ_HASHING_MASK(1) |
  860. GEN9_IZ_HASHING_MASK(0),
  861. GEN9_IZ_HASHING(2, vals[2]) |
  862. GEN9_IZ_HASHING(1, vals[1]) |
  863. GEN9_IZ_HASHING(0, vals[0]));
  864. return 0;
  865. }
  866. static int skl_init_workarounds(struct intel_engine_cs *ring)
  867. {
  868. struct drm_device *dev = ring->dev;
  869. struct drm_i915_private *dev_priv = dev->dev_private;
  870. gen9_init_workarounds(ring);
  871. /* WaDisablePowerCompilerClockGating:skl */
  872. if (INTEL_REVID(dev) == SKL_REVID_B0)
  873. WA_SET_BIT_MASKED(HIZ_CHICKEN,
  874. BDW_HIZ_POWER_COMPILER_CLOCK_GATING_DISABLE);
  875. if (INTEL_REVID(dev) <= SKL_REVID_D0) {
  876. /*
  877. *Use Force Non-Coherent whenever executing a 3D context. This
  878. * is a workaround for a possible hang in the unlikely event
  879. * a TLB invalidation occurs during a PSD flush.
  880. */
  881. /* WaForceEnableNonCoherent:skl */
  882. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  883. HDC_FORCE_NON_COHERENT);
  884. }
  885. if (INTEL_REVID(dev) == SKL_REVID_C0 ||
  886. INTEL_REVID(dev) == SKL_REVID_D0)
  887. /* WaBarrierPerformanceFixDisable:skl */
  888. WA_SET_BIT_MASKED(HDC_CHICKEN0,
  889. HDC_FENCE_DEST_SLM_DISABLE |
  890. HDC_BARRIER_PERFORMANCE_DISABLE);
  891. /* WaDisableSbeCacheDispatchPortSharing:skl */
  892. if (INTEL_REVID(dev) <= SKL_REVID_F0) {
  893. WA_SET_BIT_MASKED(
  894. GEN7_HALF_SLICE_CHICKEN1,
  895. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  896. }
  897. return skl_tune_iz_hashing(ring);
  898. }
  899. static int bxt_init_workarounds(struct intel_engine_cs *ring)
  900. {
  901. struct drm_device *dev = ring->dev;
  902. struct drm_i915_private *dev_priv = dev->dev_private;
  903. gen9_init_workarounds(ring);
  904. /* WaDisableThreadStallDopClockGating:bxt */
  905. WA_SET_BIT_MASKED(GEN8_ROW_CHICKEN,
  906. STALL_DOP_GATING_DISABLE);
  907. /* WaDisableSbeCacheDispatchPortSharing:bxt */
  908. if (INTEL_REVID(dev) <= BXT_REVID_B0) {
  909. WA_SET_BIT_MASKED(
  910. GEN7_HALF_SLICE_CHICKEN1,
  911. GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
  912. }
  913. return 0;
  914. }
  915. int init_workarounds_ring(struct intel_engine_cs *ring)
  916. {
  917. struct drm_device *dev = ring->dev;
  918. struct drm_i915_private *dev_priv = dev->dev_private;
  919. WARN_ON(ring->id != RCS);
  920. dev_priv->workarounds.count = 0;
  921. if (IS_BROADWELL(dev))
  922. return bdw_init_workarounds(ring);
  923. if (IS_CHERRYVIEW(dev))
  924. return chv_init_workarounds(ring);
  925. if (IS_SKYLAKE(dev))
  926. return skl_init_workarounds(ring);
  927. if (IS_BROXTON(dev))
  928. return bxt_init_workarounds(ring);
  929. return 0;
  930. }
  931. static int init_render_ring(struct intel_engine_cs *ring)
  932. {
  933. struct drm_device *dev = ring->dev;
  934. struct drm_i915_private *dev_priv = dev->dev_private;
  935. int ret = init_ring_common(ring);
  936. if (ret)
  937. return ret;
  938. /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
  939. if (INTEL_INFO(dev)->gen >= 4 && INTEL_INFO(dev)->gen < 7)
  940. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
  941. /* We need to disable the AsyncFlip performance optimisations in order
  942. * to use MI_WAIT_FOR_EVENT within the CS. It should already be
  943. * programmed to '1' on all products.
  944. *
  945. * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
  946. */
  947. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  948. I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
  949. /* Required for the hardware to program scanline values for waiting */
  950. /* WaEnableFlushTlbInvalidationMode:snb */
  951. if (INTEL_INFO(dev)->gen == 6)
  952. I915_WRITE(GFX_MODE,
  953. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
  954. /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
  955. if (IS_GEN7(dev))
  956. I915_WRITE(GFX_MODE_GEN7,
  957. _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
  958. _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
  959. if (IS_GEN6(dev)) {
  960. /* From the Sandybridge PRM, volume 1 part 3, page 24:
  961. * "If this bit is set, STCunit will have LRA as replacement
  962. * policy. [...] This bit must be reset. LRA replacement
  963. * policy is not supported."
  964. */
  965. I915_WRITE(CACHE_MODE_0,
  966. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  967. }
  968. if (INTEL_INFO(dev)->gen >= 6 && INTEL_INFO(dev)->gen < 8)
  969. I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
  970. if (HAS_L3_DPF(dev))
  971. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  972. return init_workarounds_ring(ring);
  973. }
  974. static void render_ring_cleanup(struct intel_engine_cs *ring)
  975. {
  976. struct drm_device *dev = ring->dev;
  977. struct drm_i915_private *dev_priv = dev->dev_private;
  978. if (dev_priv->semaphore_obj) {
  979. i915_gem_object_ggtt_unpin(dev_priv->semaphore_obj);
  980. drm_gem_object_unreference(&dev_priv->semaphore_obj->base);
  981. dev_priv->semaphore_obj = NULL;
  982. }
  983. intel_fini_pipe_control(ring);
  984. }
  985. static int gen8_rcs_signal(struct drm_i915_gem_request *signaller_req,
  986. unsigned int num_dwords)
  987. {
  988. #define MBOX_UPDATE_DWORDS 8
  989. struct intel_engine_cs *signaller = signaller_req->ring;
  990. struct drm_device *dev = signaller->dev;
  991. struct drm_i915_private *dev_priv = dev->dev_private;
  992. struct intel_engine_cs *waiter;
  993. int i, ret, num_rings;
  994. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  995. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  996. #undef MBOX_UPDATE_DWORDS
  997. ret = intel_ring_begin(signaller_req, num_dwords);
  998. if (ret)
  999. return ret;
  1000. for_each_ring(waiter, dev_priv, i) {
  1001. u32 seqno;
  1002. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1003. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1004. continue;
  1005. seqno = i915_gem_request_get_seqno(signaller_req);
  1006. intel_ring_emit(signaller, GFX_OP_PIPE_CONTROL(6));
  1007. intel_ring_emit(signaller, PIPE_CONTROL_GLOBAL_GTT_IVB |
  1008. PIPE_CONTROL_QW_WRITE |
  1009. PIPE_CONTROL_FLUSH_ENABLE);
  1010. intel_ring_emit(signaller, lower_32_bits(gtt_offset));
  1011. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1012. intel_ring_emit(signaller, seqno);
  1013. intel_ring_emit(signaller, 0);
  1014. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1015. MI_SEMAPHORE_TARGET(waiter->id));
  1016. intel_ring_emit(signaller, 0);
  1017. }
  1018. return 0;
  1019. }
  1020. static int gen8_xcs_signal(struct drm_i915_gem_request *signaller_req,
  1021. unsigned int num_dwords)
  1022. {
  1023. #define MBOX_UPDATE_DWORDS 6
  1024. struct intel_engine_cs *signaller = signaller_req->ring;
  1025. struct drm_device *dev = signaller->dev;
  1026. struct drm_i915_private *dev_priv = dev->dev_private;
  1027. struct intel_engine_cs *waiter;
  1028. int i, ret, num_rings;
  1029. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1030. num_dwords += (num_rings-1) * MBOX_UPDATE_DWORDS;
  1031. #undef MBOX_UPDATE_DWORDS
  1032. ret = intel_ring_begin(signaller_req, num_dwords);
  1033. if (ret)
  1034. return ret;
  1035. for_each_ring(waiter, dev_priv, i) {
  1036. u32 seqno;
  1037. u64 gtt_offset = signaller->semaphore.signal_ggtt[i];
  1038. if (gtt_offset == MI_SEMAPHORE_SYNC_INVALID)
  1039. continue;
  1040. seqno = i915_gem_request_get_seqno(signaller_req);
  1041. intel_ring_emit(signaller, (MI_FLUSH_DW + 1) |
  1042. MI_FLUSH_DW_OP_STOREDW);
  1043. intel_ring_emit(signaller, lower_32_bits(gtt_offset) |
  1044. MI_FLUSH_DW_USE_GTT);
  1045. intel_ring_emit(signaller, upper_32_bits(gtt_offset));
  1046. intel_ring_emit(signaller, seqno);
  1047. intel_ring_emit(signaller, MI_SEMAPHORE_SIGNAL |
  1048. MI_SEMAPHORE_TARGET(waiter->id));
  1049. intel_ring_emit(signaller, 0);
  1050. }
  1051. return 0;
  1052. }
  1053. static int gen6_signal(struct drm_i915_gem_request *signaller_req,
  1054. unsigned int num_dwords)
  1055. {
  1056. struct intel_engine_cs *signaller = signaller_req->ring;
  1057. struct drm_device *dev = signaller->dev;
  1058. struct drm_i915_private *dev_priv = dev->dev_private;
  1059. struct intel_engine_cs *useless;
  1060. int i, ret, num_rings;
  1061. #define MBOX_UPDATE_DWORDS 3
  1062. num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
  1063. num_dwords += round_up((num_rings-1) * MBOX_UPDATE_DWORDS, 2);
  1064. #undef MBOX_UPDATE_DWORDS
  1065. ret = intel_ring_begin(signaller_req, num_dwords);
  1066. if (ret)
  1067. return ret;
  1068. for_each_ring(useless, dev_priv, i) {
  1069. u32 mbox_reg = signaller->semaphore.mbox.signal[i];
  1070. if (mbox_reg != GEN6_NOSYNC) {
  1071. u32 seqno = i915_gem_request_get_seqno(signaller_req);
  1072. intel_ring_emit(signaller, MI_LOAD_REGISTER_IMM(1));
  1073. intel_ring_emit(signaller, mbox_reg);
  1074. intel_ring_emit(signaller, seqno);
  1075. }
  1076. }
  1077. /* If num_dwords was rounded, make sure the tail pointer is correct */
  1078. if (num_rings % 2 == 0)
  1079. intel_ring_emit(signaller, MI_NOOP);
  1080. return 0;
  1081. }
  1082. /**
  1083. * gen6_add_request - Update the semaphore mailbox registers
  1084. *
  1085. * @request - request to write to the ring
  1086. *
  1087. * Update the mailbox registers in the *other* rings with the current seqno.
  1088. * This acts like a signal in the canonical semaphore.
  1089. */
  1090. static int
  1091. gen6_add_request(struct drm_i915_gem_request *req)
  1092. {
  1093. struct intel_engine_cs *ring = req->ring;
  1094. int ret;
  1095. if (ring->semaphore.signal)
  1096. ret = ring->semaphore.signal(req, 4);
  1097. else
  1098. ret = intel_ring_begin(req, 4);
  1099. if (ret)
  1100. return ret;
  1101. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1102. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1103. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1104. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1105. __intel_ring_advance(ring);
  1106. return 0;
  1107. }
  1108. static inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
  1109. u32 seqno)
  1110. {
  1111. struct drm_i915_private *dev_priv = dev->dev_private;
  1112. return dev_priv->last_seqno < seqno;
  1113. }
  1114. /**
  1115. * intel_ring_sync - sync the waiter to the signaller on seqno
  1116. *
  1117. * @waiter - ring that is waiting
  1118. * @signaller - ring which has, or will signal
  1119. * @seqno - seqno which the waiter will block on
  1120. */
  1121. static int
  1122. gen8_ring_sync(struct drm_i915_gem_request *waiter_req,
  1123. struct intel_engine_cs *signaller,
  1124. u32 seqno)
  1125. {
  1126. struct intel_engine_cs *waiter = waiter_req->ring;
  1127. struct drm_i915_private *dev_priv = waiter->dev->dev_private;
  1128. int ret;
  1129. ret = intel_ring_begin(waiter_req, 4);
  1130. if (ret)
  1131. return ret;
  1132. intel_ring_emit(waiter, MI_SEMAPHORE_WAIT |
  1133. MI_SEMAPHORE_GLOBAL_GTT |
  1134. MI_SEMAPHORE_POLL |
  1135. MI_SEMAPHORE_SAD_GTE_SDD);
  1136. intel_ring_emit(waiter, seqno);
  1137. intel_ring_emit(waiter,
  1138. lower_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1139. intel_ring_emit(waiter,
  1140. upper_32_bits(GEN8_WAIT_OFFSET(waiter, signaller->id)));
  1141. intel_ring_advance(waiter);
  1142. return 0;
  1143. }
  1144. static int
  1145. gen6_ring_sync(struct drm_i915_gem_request *waiter_req,
  1146. struct intel_engine_cs *signaller,
  1147. u32 seqno)
  1148. {
  1149. struct intel_engine_cs *waiter = waiter_req->ring;
  1150. u32 dw1 = MI_SEMAPHORE_MBOX |
  1151. MI_SEMAPHORE_COMPARE |
  1152. MI_SEMAPHORE_REGISTER;
  1153. u32 wait_mbox = signaller->semaphore.mbox.wait[waiter->id];
  1154. int ret;
  1155. /* Throughout all of the GEM code, seqno passed implies our current
  1156. * seqno is >= the last seqno executed. However for hardware the
  1157. * comparison is strictly greater than.
  1158. */
  1159. seqno -= 1;
  1160. WARN_ON(wait_mbox == MI_SEMAPHORE_SYNC_INVALID);
  1161. ret = intel_ring_begin(waiter_req, 4);
  1162. if (ret)
  1163. return ret;
  1164. /* If seqno wrap happened, omit the wait with no-ops */
  1165. if (likely(!i915_gem_has_seqno_wrapped(waiter->dev, seqno))) {
  1166. intel_ring_emit(waiter, dw1 | wait_mbox);
  1167. intel_ring_emit(waiter, seqno);
  1168. intel_ring_emit(waiter, 0);
  1169. intel_ring_emit(waiter, MI_NOOP);
  1170. } else {
  1171. intel_ring_emit(waiter, MI_NOOP);
  1172. intel_ring_emit(waiter, MI_NOOP);
  1173. intel_ring_emit(waiter, MI_NOOP);
  1174. intel_ring_emit(waiter, MI_NOOP);
  1175. }
  1176. intel_ring_advance(waiter);
  1177. return 0;
  1178. }
  1179. #define PIPE_CONTROL_FLUSH(ring__, addr__) \
  1180. do { \
  1181. intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
  1182. PIPE_CONTROL_DEPTH_STALL); \
  1183. intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
  1184. intel_ring_emit(ring__, 0); \
  1185. intel_ring_emit(ring__, 0); \
  1186. } while (0)
  1187. static int
  1188. pc_render_add_request(struct drm_i915_gem_request *req)
  1189. {
  1190. struct intel_engine_cs *ring = req->ring;
  1191. u32 scratch_addr = ring->scratch.gtt_offset + 2 * CACHELINE_BYTES;
  1192. int ret;
  1193. /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
  1194. * incoherent with writes to memory, i.e. completely fubar,
  1195. * so we need to use PIPE_NOTIFY instead.
  1196. *
  1197. * However, we also need to workaround the qword write
  1198. * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
  1199. * memory before requesting an interrupt.
  1200. */
  1201. ret = intel_ring_begin(req, 32);
  1202. if (ret)
  1203. return ret;
  1204. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1205. PIPE_CONTROL_WRITE_FLUSH |
  1206. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
  1207. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1208. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1209. intel_ring_emit(ring, 0);
  1210. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1211. scratch_addr += 2 * CACHELINE_BYTES; /* write to separate cachelines */
  1212. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1213. scratch_addr += 2 * CACHELINE_BYTES;
  1214. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1215. scratch_addr += 2 * CACHELINE_BYTES;
  1216. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1217. scratch_addr += 2 * CACHELINE_BYTES;
  1218. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1219. scratch_addr += 2 * CACHELINE_BYTES;
  1220. PIPE_CONTROL_FLUSH(ring, scratch_addr);
  1221. intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
  1222. PIPE_CONTROL_WRITE_FLUSH |
  1223. PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
  1224. PIPE_CONTROL_NOTIFY);
  1225. intel_ring_emit(ring, ring->scratch.gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
  1226. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1227. intel_ring_emit(ring, 0);
  1228. __intel_ring_advance(ring);
  1229. return 0;
  1230. }
  1231. static u32
  1232. gen6_ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1233. {
  1234. /* Workaround to force correct ordering between irq and seqno writes on
  1235. * ivb (and maybe also on snb) by reading from a CS register (like
  1236. * ACTHD) before reading the status page. */
  1237. if (!lazy_coherency) {
  1238. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1239. POSTING_READ(RING_ACTHD(ring->mmio_base));
  1240. }
  1241. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1242. }
  1243. static u32
  1244. ring_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1245. {
  1246. return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
  1247. }
  1248. static void
  1249. ring_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1250. {
  1251. intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
  1252. }
  1253. static u32
  1254. pc_render_get_seqno(struct intel_engine_cs *ring, bool lazy_coherency)
  1255. {
  1256. return ring->scratch.cpu_page[0];
  1257. }
  1258. static void
  1259. pc_render_set_seqno(struct intel_engine_cs *ring, u32 seqno)
  1260. {
  1261. ring->scratch.cpu_page[0] = seqno;
  1262. }
  1263. static bool
  1264. gen5_ring_get_irq(struct intel_engine_cs *ring)
  1265. {
  1266. struct drm_device *dev = ring->dev;
  1267. struct drm_i915_private *dev_priv = dev->dev_private;
  1268. unsigned long flags;
  1269. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1270. return false;
  1271. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1272. if (ring->irq_refcount++ == 0)
  1273. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1274. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1275. return true;
  1276. }
  1277. static void
  1278. gen5_ring_put_irq(struct intel_engine_cs *ring)
  1279. {
  1280. struct drm_device *dev = ring->dev;
  1281. struct drm_i915_private *dev_priv = dev->dev_private;
  1282. unsigned long flags;
  1283. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1284. if (--ring->irq_refcount == 0)
  1285. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1286. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1287. }
  1288. static bool
  1289. i9xx_ring_get_irq(struct intel_engine_cs *ring)
  1290. {
  1291. struct drm_device *dev = ring->dev;
  1292. struct drm_i915_private *dev_priv = dev->dev_private;
  1293. unsigned long flags;
  1294. if (!intel_irqs_enabled(dev_priv))
  1295. return false;
  1296. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1297. if (ring->irq_refcount++ == 0) {
  1298. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1299. I915_WRITE(IMR, dev_priv->irq_mask);
  1300. POSTING_READ(IMR);
  1301. }
  1302. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1303. return true;
  1304. }
  1305. static void
  1306. i9xx_ring_put_irq(struct intel_engine_cs *ring)
  1307. {
  1308. struct drm_device *dev = ring->dev;
  1309. struct drm_i915_private *dev_priv = dev->dev_private;
  1310. unsigned long flags;
  1311. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1312. if (--ring->irq_refcount == 0) {
  1313. dev_priv->irq_mask |= ring->irq_enable_mask;
  1314. I915_WRITE(IMR, dev_priv->irq_mask);
  1315. POSTING_READ(IMR);
  1316. }
  1317. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1318. }
  1319. static bool
  1320. i8xx_ring_get_irq(struct intel_engine_cs *ring)
  1321. {
  1322. struct drm_device *dev = ring->dev;
  1323. struct drm_i915_private *dev_priv = dev->dev_private;
  1324. unsigned long flags;
  1325. if (!intel_irqs_enabled(dev_priv))
  1326. return false;
  1327. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1328. if (ring->irq_refcount++ == 0) {
  1329. dev_priv->irq_mask &= ~ring->irq_enable_mask;
  1330. I915_WRITE16(IMR, dev_priv->irq_mask);
  1331. POSTING_READ16(IMR);
  1332. }
  1333. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1334. return true;
  1335. }
  1336. static void
  1337. i8xx_ring_put_irq(struct intel_engine_cs *ring)
  1338. {
  1339. struct drm_device *dev = ring->dev;
  1340. struct drm_i915_private *dev_priv = dev->dev_private;
  1341. unsigned long flags;
  1342. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1343. if (--ring->irq_refcount == 0) {
  1344. dev_priv->irq_mask |= ring->irq_enable_mask;
  1345. I915_WRITE16(IMR, dev_priv->irq_mask);
  1346. POSTING_READ16(IMR);
  1347. }
  1348. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1349. }
  1350. static int
  1351. bsd_ring_flush(struct drm_i915_gem_request *req,
  1352. u32 invalidate_domains,
  1353. u32 flush_domains)
  1354. {
  1355. struct intel_engine_cs *ring = req->ring;
  1356. int ret;
  1357. ret = intel_ring_begin(req, 2);
  1358. if (ret)
  1359. return ret;
  1360. intel_ring_emit(ring, MI_FLUSH);
  1361. intel_ring_emit(ring, MI_NOOP);
  1362. intel_ring_advance(ring);
  1363. return 0;
  1364. }
  1365. static int
  1366. i9xx_add_request(struct drm_i915_gem_request *req)
  1367. {
  1368. struct intel_engine_cs *ring = req->ring;
  1369. int ret;
  1370. ret = intel_ring_begin(req, 4);
  1371. if (ret)
  1372. return ret;
  1373. intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
  1374. intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
  1375. intel_ring_emit(ring, i915_gem_request_get_seqno(req));
  1376. intel_ring_emit(ring, MI_USER_INTERRUPT);
  1377. __intel_ring_advance(ring);
  1378. return 0;
  1379. }
  1380. static bool
  1381. gen6_ring_get_irq(struct intel_engine_cs *ring)
  1382. {
  1383. struct drm_device *dev = ring->dev;
  1384. struct drm_i915_private *dev_priv = dev->dev_private;
  1385. unsigned long flags;
  1386. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1387. return false;
  1388. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1389. if (ring->irq_refcount++ == 0) {
  1390. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1391. I915_WRITE_IMR(ring,
  1392. ~(ring->irq_enable_mask |
  1393. GT_PARITY_ERROR(dev)));
  1394. else
  1395. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1396. gen5_enable_gt_irq(dev_priv, ring->irq_enable_mask);
  1397. }
  1398. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1399. return true;
  1400. }
  1401. static void
  1402. gen6_ring_put_irq(struct intel_engine_cs *ring)
  1403. {
  1404. struct drm_device *dev = ring->dev;
  1405. struct drm_i915_private *dev_priv = dev->dev_private;
  1406. unsigned long flags;
  1407. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1408. if (--ring->irq_refcount == 0) {
  1409. if (HAS_L3_DPF(dev) && ring->id == RCS)
  1410. I915_WRITE_IMR(ring, ~GT_PARITY_ERROR(dev));
  1411. else
  1412. I915_WRITE_IMR(ring, ~0);
  1413. gen5_disable_gt_irq(dev_priv, ring->irq_enable_mask);
  1414. }
  1415. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1416. }
  1417. static bool
  1418. hsw_vebox_get_irq(struct intel_engine_cs *ring)
  1419. {
  1420. struct drm_device *dev = ring->dev;
  1421. struct drm_i915_private *dev_priv = dev->dev_private;
  1422. unsigned long flags;
  1423. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1424. return false;
  1425. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1426. if (ring->irq_refcount++ == 0) {
  1427. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1428. gen6_enable_pm_irq(dev_priv, ring->irq_enable_mask);
  1429. }
  1430. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1431. return true;
  1432. }
  1433. static void
  1434. hsw_vebox_put_irq(struct intel_engine_cs *ring)
  1435. {
  1436. struct drm_device *dev = ring->dev;
  1437. struct drm_i915_private *dev_priv = dev->dev_private;
  1438. unsigned long flags;
  1439. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1440. if (--ring->irq_refcount == 0) {
  1441. I915_WRITE_IMR(ring, ~0);
  1442. gen6_disable_pm_irq(dev_priv, ring->irq_enable_mask);
  1443. }
  1444. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1445. }
  1446. static bool
  1447. gen8_ring_get_irq(struct intel_engine_cs *ring)
  1448. {
  1449. struct drm_device *dev = ring->dev;
  1450. struct drm_i915_private *dev_priv = dev->dev_private;
  1451. unsigned long flags;
  1452. if (WARN_ON(!intel_irqs_enabled(dev_priv)))
  1453. return false;
  1454. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1455. if (ring->irq_refcount++ == 0) {
  1456. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1457. I915_WRITE_IMR(ring,
  1458. ~(ring->irq_enable_mask |
  1459. GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
  1460. } else {
  1461. I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
  1462. }
  1463. POSTING_READ(RING_IMR(ring->mmio_base));
  1464. }
  1465. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1466. return true;
  1467. }
  1468. static void
  1469. gen8_ring_put_irq(struct intel_engine_cs *ring)
  1470. {
  1471. struct drm_device *dev = ring->dev;
  1472. struct drm_i915_private *dev_priv = dev->dev_private;
  1473. unsigned long flags;
  1474. spin_lock_irqsave(&dev_priv->irq_lock, flags);
  1475. if (--ring->irq_refcount == 0) {
  1476. if (HAS_L3_DPF(dev) && ring->id == RCS) {
  1477. I915_WRITE_IMR(ring,
  1478. ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
  1479. } else {
  1480. I915_WRITE_IMR(ring, ~0);
  1481. }
  1482. POSTING_READ(RING_IMR(ring->mmio_base));
  1483. }
  1484. spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
  1485. }
  1486. static int
  1487. i965_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1488. u64 offset, u32 length,
  1489. unsigned dispatch_flags)
  1490. {
  1491. struct intel_engine_cs *ring = req->ring;
  1492. int ret;
  1493. ret = intel_ring_begin(req, 2);
  1494. if (ret)
  1495. return ret;
  1496. intel_ring_emit(ring,
  1497. MI_BATCH_BUFFER_START |
  1498. MI_BATCH_GTT |
  1499. (dispatch_flags & I915_DISPATCH_SECURE ?
  1500. 0 : MI_BATCH_NON_SECURE_I965));
  1501. intel_ring_emit(ring, offset);
  1502. intel_ring_advance(ring);
  1503. return 0;
  1504. }
  1505. /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
  1506. #define I830_BATCH_LIMIT (256*1024)
  1507. #define I830_TLB_ENTRIES (2)
  1508. #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
  1509. static int
  1510. i830_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1511. u64 offset, u32 len,
  1512. unsigned dispatch_flags)
  1513. {
  1514. struct intel_engine_cs *ring = req->ring;
  1515. u32 cs_offset = ring->scratch.gtt_offset;
  1516. int ret;
  1517. ret = intel_ring_begin(req, 6);
  1518. if (ret)
  1519. return ret;
  1520. /* Evict the invalid PTE TLBs */
  1521. intel_ring_emit(ring, COLOR_BLT_CMD | BLT_WRITE_RGBA);
  1522. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096);
  1523. intel_ring_emit(ring, I830_TLB_ENTRIES << 16 | 4); /* load each page */
  1524. intel_ring_emit(ring, cs_offset);
  1525. intel_ring_emit(ring, 0xdeadbeef);
  1526. intel_ring_emit(ring, MI_NOOP);
  1527. intel_ring_advance(ring);
  1528. if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
  1529. if (len > I830_BATCH_LIMIT)
  1530. return -ENOSPC;
  1531. ret = intel_ring_begin(req, 6 + 2);
  1532. if (ret)
  1533. return ret;
  1534. /* Blit the batch (which has now all relocs applied) to the
  1535. * stable batch scratch bo area (so that the CS never
  1536. * stumbles over its tlb invalidation bug) ...
  1537. */
  1538. intel_ring_emit(ring, SRC_COPY_BLT_CMD | BLT_WRITE_RGBA);
  1539. intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096);
  1540. intel_ring_emit(ring, DIV_ROUND_UP(len, 4096) << 16 | 4096);
  1541. intel_ring_emit(ring, cs_offset);
  1542. intel_ring_emit(ring, 4096);
  1543. intel_ring_emit(ring, offset);
  1544. intel_ring_emit(ring, MI_FLUSH);
  1545. intel_ring_emit(ring, MI_NOOP);
  1546. intel_ring_advance(ring);
  1547. /* ... and execute it. */
  1548. offset = cs_offset;
  1549. }
  1550. ret = intel_ring_begin(req, 4);
  1551. if (ret)
  1552. return ret;
  1553. intel_ring_emit(ring, MI_BATCH_BUFFER);
  1554. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1555. 0 : MI_BATCH_NON_SECURE));
  1556. intel_ring_emit(ring, offset + len - 8);
  1557. intel_ring_emit(ring, MI_NOOP);
  1558. intel_ring_advance(ring);
  1559. return 0;
  1560. }
  1561. static int
  1562. i915_dispatch_execbuffer(struct drm_i915_gem_request *req,
  1563. u64 offset, u32 len,
  1564. unsigned dispatch_flags)
  1565. {
  1566. struct intel_engine_cs *ring = req->ring;
  1567. int ret;
  1568. ret = intel_ring_begin(req, 2);
  1569. if (ret)
  1570. return ret;
  1571. intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
  1572. intel_ring_emit(ring, offset | (dispatch_flags & I915_DISPATCH_SECURE ?
  1573. 0 : MI_BATCH_NON_SECURE));
  1574. intel_ring_advance(ring);
  1575. return 0;
  1576. }
  1577. static void cleanup_status_page(struct intel_engine_cs *ring)
  1578. {
  1579. struct drm_i915_gem_object *obj;
  1580. obj = ring->status_page.obj;
  1581. if (obj == NULL)
  1582. return;
  1583. kunmap(sg_page(obj->pages->sgl));
  1584. i915_gem_object_ggtt_unpin(obj);
  1585. drm_gem_object_unreference(&obj->base);
  1586. ring->status_page.obj = NULL;
  1587. }
  1588. static int init_status_page(struct intel_engine_cs *ring)
  1589. {
  1590. struct drm_i915_gem_object *obj;
  1591. if ((obj = ring->status_page.obj) == NULL) {
  1592. unsigned flags;
  1593. int ret;
  1594. obj = i915_gem_alloc_object(ring->dev, 4096);
  1595. if (obj == NULL) {
  1596. DRM_ERROR("Failed to allocate status page\n");
  1597. return -ENOMEM;
  1598. }
  1599. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  1600. if (ret)
  1601. goto err_unref;
  1602. flags = 0;
  1603. if (!HAS_LLC(ring->dev))
  1604. /* On g33, we cannot place HWS above 256MiB, so
  1605. * restrict its pinning to the low mappable arena.
  1606. * Though this restriction is not documented for
  1607. * gen4, gen5, or byt, they also behave similarly
  1608. * and hang if the HWS is placed at the top of the
  1609. * GTT. To generalise, it appears that all !llc
  1610. * platforms have issues with us placing the HWS
  1611. * above the mappable region (even though we never
  1612. * actualy map it).
  1613. */
  1614. flags |= PIN_MAPPABLE;
  1615. ret = i915_gem_obj_ggtt_pin(obj, 4096, flags);
  1616. if (ret) {
  1617. err_unref:
  1618. drm_gem_object_unreference(&obj->base);
  1619. return ret;
  1620. }
  1621. ring->status_page.obj = obj;
  1622. }
  1623. ring->status_page.gfx_addr = i915_gem_obj_ggtt_offset(obj);
  1624. ring->status_page.page_addr = kmap(sg_page(obj->pages->sgl));
  1625. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1626. DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
  1627. ring->name, ring->status_page.gfx_addr);
  1628. return 0;
  1629. }
  1630. static int init_phys_status_page(struct intel_engine_cs *ring)
  1631. {
  1632. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1633. if (!dev_priv->status_page_dmah) {
  1634. dev_priv->status_page_dmah =
  1635. drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE);
  1636. if (!dev_priv->status_page_dmah)
  1637. return -ENOMEM;
  1638. }
  1639. ring->status_page.page_addr = dev_priv->status_page_dmah->vaddr;
  1640. memset(ring->status_page.page_addr, 0, PAGE_SIZE);
  1641. return 0;
  1642. }
  1643. void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1644. {
  1645. iounmap(ringbuf->virtual_start);
  1646. ringbuf->virtual_start = NULL;
  1647. i915_gem_object_ggtt_unpin(ringbuf->obj);
  1648. }
  1649. int intel_pin_and_map_ringbuffer_obj(struct drm_device *dev,
  1650. struct intel_ringbuffer *ringbuf)
  1651. {
  1652. struct drm_i915_private *dev_priv = to_i915(dev);
  1653. struct drm_i915_gem_object *obj = ringbuf->obj;
  1654. int ret;
  1655. ret = i915_gem_obj_ggtt_pin(obj, PAGE_SIZE, PIN_MAPPABLE);
  1656. if (ret)
  1657. return ret;
  1658. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  1659. if (ret) {
  1660. i915_gem_object_ggtt_unpin(obj);
  1661. return ret;
  1662. }
  1663. ringbuf->virtual_start = ioremap_wc(dev_priv->gtt.mappable_base +
  1664. i915_gem_obj_ggtt_offset(obj), ringbuf->size);
  1665. if (ringbuf->virtual_start == NULL) {
  1666. i915_gem_object_ggtt_unpin(obj);
  1667. return -EINVAL;
  1668. }
  1669. return 0;
  1670. }
  1671. static void intel_destroy_ringbuffer_obj(struct intel_ringbuffer *ringbuf)
  1672. {
  1673. drm_gem_object_unreference(&ringbuf->obj->base);
  1674. ringbuf->obj = NULL;
  1675. }
  1676. static int intel_alloc_ringbuffer_obj(struct drm_device *dev,
  1677. struct intel_ringbuffer *ringbuf)
  1678. {
  1679. struct drm_i915_gem_object *obj;
  1680. obj = NULL;
  1681. if (!HAS_LLC(dev))
  1682. obj = i915_gem_object_create_stolen(dev, ringbuf->size);
  1683. if (obj == NULL)
  1684. obj = i915_gem_alloc_object(dev, ringbuf->size);
  1685. if (obj == NULL)
  1686. return -ENOMEM;
  1687. /* mark ring buffers as read-only from GPU side by default */
  1688. obj->gt_ro = 1;
  1689. ringbuf->obj = obj;
  1690. return 0;
  1691. }
  1692. struct intel_ringbuffer *
  1693. intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size)
  1694. {
  1695. struct intel_ringbuffer *ring;
  1696. int ret;
  1697. ring = kzalloc(sizeof(*ring), GFP_KERNEL);
  1698. if (ring == NULL)
  1699. return ERR_PTR(-ENOMEM);
  1700. ring->ring = engine;
  1701. ring->size = size;
  1702. /* Workaround an erratum on the i830 which causes a hang if
  1703. * the TAIL pointer points to within the last 2 cachelines
  1704. * of the buffer.
  1705. */
  1706. ring->effective_size = size;
  1707. if (IS_I830(engine->dev) || IS_845G(engine->dev))
  1708. ring->effective_size -= 2 * CACHELINE_BYTES;
  1709. ring->last_retired_head = -1;
  1710. intel_ring_update_space(ring);
  1711. ret = intel_alloc_ringbuffer_obj(engine->dev, ring);
  1712. if (ret) {
  1713. DRM_ERROR("Failed to allocate ringbuffer %s: %d\n",
  1714. engine->name, ret);
  1715. kfree(ring);
  1716. return ERR_PTR(ret);
  1717. }
  1718. return ring;
  1719. }
  1720. void
  1721. intel_ringbuffer_free(struct intel_ringbuffer *ring)
  1722. {
  1723. intel_destroy_ringbuffer_obj(ring);
  1724. kfree(ring);
  1725. }
  1726. static int intel_init_ring_buffer(struct drm_device *dev,
  1727. struct intel_engine_cs *ring)
  1728. {
  1729. struct intel_ringbuffer *ringbuf;
  1730. int ret;
  1731. WARN_ON(ring->buffer);
  1732. ring->dev = dev;
  1733. INIT_LIST_HEAD(&ring->active_list);
  1734. INIT_LIST_HEAD(&ring->request_list);
  1735. INIT_LIST_HEAD(&ring->execlist_queue);
  1736. i915_gem_batch_pool_init(dev, &ring->batch_pool);
  1737. memset(ring->semaphore.sync_seqno, 0, sizeof(ring->semaphore.sync_seqno));
  1738. init_waitqueue_head(&ring->irq_queue);
  1739. ringbuf = intel_engine_create_ringbuffer(ring, 32 * PAGE_SIZE);
  1740. if (IS_ERR(ringbuf))
  1741. return PTR_ERR(ringbuf);
  1742. ring->buffer = ringbuf;
  1743. if (I915_NEED_GFX_HWS(dev)) {
  1744. ret = init_status_page(ring);
  1745. if (ret)
  1746. goto error;
  1747. } else {
  1748. BUG_ON(ring->id != RCS);
  1749. ret = init_phys_status_page(ring);
  1750. if (ret)
  1751. goto error;
  1752. }
  1753. ret = intel_pin_and_map_ringbuffer_obj(dev, ringbuf);
  1754. if (ret) {
  1755. DRM_ERROR("Failed to pin and map ringbuffer %s: %d\n",
  1756. ring->name, ret);
  1757. intel_destroy_ringbuffer_obj(ringbuf);
  1758. goto error;
  1759. }
  1760. ret = i915_cmd_parser_init_ring(ring);
  1761. if (ret)
  1762. goto error;
  1763. return 0;
  1764. error:
  1765. intel_ringbuffer_free(ringbuf);
  1766. ring->buffer = NULL;
  1767. return ret;
  1768. }
  1769. void intel_cleanup_ring_buffer(struct intel_engine_cs *ring)
  1770. {
  1771. struct drm_i915_private *dev_priv;
  1772. if (!intel_ring_initialized(ring))
  1773. return;
  1774. dev_priv = to_i915(ring->dev);
  1775. intel_stop_ring_buffer(ring);
  1776. WARN_ON(!IS_GEN2(ring->dev) && (I915_READ_MODE(ring) & MODE_IDLE) == 0);
  1777. intel_unpin_ringbuffer_obj(ring->buffer);
  1778. intel_ringbuffer_free(ring->buffer);
  1779. ring->buffer = NULL;
  1780. if (ring->cleanup)
  1781. ring->cleanup(ring);
  1782. cleanup_status_page(ring);
  1783. i915_cmd_parser_fini_ring(ring);
  1784. i915_gem_batch_pool_fini(&ring->batch_pool);
  1785. }
  1786. static int ring_wait_for_space(struct intel_engine_cs *ring, int n)
  1787. {
  1788. struct intel_ringbuffer *ringbuf = ring->buffer;
  1789. struct drm_i915_gem_request *request;
  1790. unsigned space;
  1791. int ret;
  1792. if (intel_ring_space(ringbuf) >= n)
  1793. return 0;
  1794. /* The whole point of reserving space is to not wait! */
  1795. WARN_ON(ringbuf->reserved_in_use);
  1796. list_for_each_entry(request, &ring->request_list, list) {
  1797. space = __intel_ring_space(request->postfix, ringbuf->tail,
  1798. ringbuf->size);
  1799. if (space >= n)
  1800. break;
  1801. }
  1802. if (WARN_ON(&request->list == &ring->request_list))
  1803. return -ENOSPC;
  1804. ret = i915_wait_request(request);
  1805. if (ret)
  1806. return ret;
  1807. ringbuf->space = space;
  1808. return 0;
  1809. }
  1810. static void __wrap_ring_buffer(struct intel_ringbuffer *ringbuf)
  1811. {
  1812. uint32_t __iomem *virt;
  1813. int rem = ringbuf->size - ringbuf->tail;
  1814. virt = ringbuf->virtual_start + ringbuf->tail;
  1815. rem /= 4;
  1816. while (rem--)
  1817. iowrite32(MI_NOOP, virt++);
  1818. ringbuf->tail = 0;
  1819. intel_ring_update_space(ringbuf);
  1820. }
  1821. int intel_ring_idle(struct intel_engine_cs *ring)
  1822. {
  1823. struct drm_i915_gem_request *req;
  1824. /* Wait upon the last request to be completed */
  1825. if (list_empty(&ring->request_list))
  1826. return 0;
  1827. req = list_entry(ring->request_list.prev,
  1828. struct drm_i915_gem_request,
  1829. list);
  1830. /* Make sure we do not trigger any retires */
  1831. return __i915_wait_request(req,
  1832. atomic_read(&to_i915(ring->dev)->gpu_error.reset_counter),
  1833. to_i915(ring->dev)->mm.interruptible,
  1834. NULL, NULL);
  1835. }
  1836. int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request)
  1837. {
  1838. request->ringbuf = request->ring->buffer;
  1839. return 0;
  1840. }
  1841. int intel_ring_reserve_space(struct drm_i915_gem_request *request)
  1842. {
  1843. /*
  1844. * The first call merely notes the reserve request and is common for
  1845. * all back ends. The subsequent localised _begin() call actually
  1846. * ensures that the reservation is available. Without the begin, if
  1847. * the request creator immediately submitted the request without
  1848. * adding any commands to it then there might not actually be
  1849. * sufficient room for the submission commands.
  1850. */
  1851. intel_ring_reserved_space_reserve(request->ringbuf, MIN_SPACE_FOR_ADD_REQUEST);
  1852. return intel_ring_begin(request, 0);
  1853. }
  1854. void intel_ring_reserved_space_reserve(struct intel_ringbuffer *ringbuf, int size)
  1855. {
  1856. WARN_ON(ringbuf->reserved_size);
  1857. WARN_ON(ringbuf->reserved_in_use);
  1858. ringbuf->reserved_size = size;
  1859. }
  1860. void intel_ring_reserved_space_cancel(struct intel_ringbuffer *ringbuf)
  1861. {
  1862. WARN_ON(ringbuf->reserved_in_use);
  1863. ringbuf->reserved_size = 0;
  1864. ringbuf->reserved_in_use = false;
  1865. }
  1866. void intel_ring_reserved_space_use(struct intel_ringbuffer *ringbuf)
  1867. {
  1868. WARN_ON(ringbuf->reserved_in_use);
  1869. ringbuf->reserved_in_use = true;
  1870. ringbuf->reserved_tail = ringbuf->tail;
  1871. }
  1872. void intel_ring_reserved_space_end(struct intel_ringbuffer *ringbuf)
  1873. {
  1874. WARN_ON(!ringbuf->reserved_in_use);
  1875. if (ringbuf->tail > ringbuf->reserved_tail) {
  1876. WARN(ringbuf->tail > ringbuf->reserved_tail + ringbuf->reserved_size,
  1877. "request reserved size too small: %d vs %d!\n",
  1878. ringbuf->tail - ringbuf->reserved_tail, ringbuf->reserved_size);
  1879. } else {
  1880. /*
  1881. * The ring was wrapped while the reserved space was in use.
  1882. * That means that some unknown amount of the ring tail was
  1883. * no-op filled and skipped. Thus simply adding the ring size
  1884. * to the tail and doing the above space check will not work.
  1885. * Rather than attempt to track how much tail was skipped,
  1886. * it is much simpler to say that also skipping the sanity
  1887. * check every once in a while is not a big issue.
  1888. */
  1889. }
  1890. ringbuf->reserved_size = 0;
  1891. ringbuf->reserved_in_use = false;
  1892. }
  1893. static int __intel_ring_prepare(struct intel_engine_cs *ring, int bytes)
  1894. {
  1895. struct intel_ringbuffer *ringbuf = ring->buffer;
  1896. int remain_usable = ringbuf->effective_size - ringbuf->tail;
  1897. int remain_actual = ringbuf->size - ringbuf->tail;
  1898. int ret, total_bytes, wait_bytes = 0;
  1899. bool need_wrap = false;
  1900. if (ringbuf->reserved_in_use)
  1901. total_bytes = bytes;
  1902. else
  1903. total_bytes = bytes + ringbuf->reserved_size;
  1904. if (unlikely(bytes > remain_usable)) {
  1905. /*
  1906. * Not enough space for the basic request. So need to flush
  1907. * out the remainder and then wait for base + reserved.
  1908. */
  1909. wait_bytes = remain_actual + total_bytes;
  1910. need_wrap = true;
  1911. } else {
  1912. if (unlikely(total_bytes > remain_usable)) {
  1913. /*
  1914. * The base request will fit but the reserved space
  1915. * falls off the end. So only need to to wait for the
  1916. * reserved size after flushing out the remainder.
  1917. */
  1918. wait_bytes = remain_actual + ringbuf->reserved_size;
  1919. need_wrap = true;
  1920. } else if (total_bytes > ringbuf->space) {
  1921. /* No wrapping required, just waiting. */
  1922. wait_bytes = total_bytes;
  1923. }
  1924. }
  1925. if (wait_bytes) {
  1926. ret = ring_wait_for_space(ring, wait_bytes);
  1927. if (unlikely(ret))
  1928. return ret;
  1929. if (need_wrap)
  1930. __wrap_ring_buffer(ringbuf);
  1931. }
  1932. return 0;
  1933. }
  1934. int intel_ring_begin(struct drm_i915_gem_request *req,
  1935. int num_dwords)
  1936. {
  1937. struct intel_engine_cs *ring;
  1938. struct drm_i915_private *dev_priv;
  1939. int ret;
  1940. WARN_ON(req == NULL);
  1941. ring = req->ring;
  1942. dev_priv = ring->dev->dev_private;
  1943. ret = i915_gem_check_wedge(&dev_priv->gpu_error,
  1944. dev_priv->mm.interruptible);
  1945. if (ret)
  1946. return ret;
  1947. ret = __intel_ring_prepare(ring, num_dwords * sizeof(uint32_t));
  1948. if (ret)
  1949. return ret;
  1950. ring->buffer->space -= num_dwords * sizeof(uint32_t);
  1951. return 0;
  1952. }
  1953. /* Align the ring tail to a cacheline boundary */
  1954. int intel_ring_cacheline_align(struct drm_i915_gem_request *req)
  1955. {
  1956. struct intel_engine_cs *ring = req->ring;
  1957. int num_dwords = (ring->buffer->tail & (CACHELINE_BYTES - 1)) / sizeof(uint32_t);
  1958. int ret;
  1959. if (num_dwords == 0)
  1960. return 0;
  1961. num_dwords = CACHELINE_BYTES / sizeof(uint32_t) - num_dwords;
  1962. ret = intel_ring_begin(req, num_dwords);
  1963. if (ret)
  1964. return ret;
  1965. while (num_dwords--)
  1966. intel_ring_emit(ring, MI_NOOP);
  1967. intel_ring_advance(ring);
  1968. return 0;
  1969. }
  1970. void intel_ring_init_seqno(struct intel_engine_cs *ring, u32 seqno)
  1971. {
  1972. struct drm_device *dev = ring->dev;
  1973. struct drm_i915_private *dev_priv = dev->dev_private;
  1974. if (INTEL_INFO(dev)->gen == 6 || INTEL_INFO(dev)->gen == 7) {
  1975. I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
  1976. I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
  1977. if (HAS_VEBOX(dev))
  1978. I915_WRITE(RING_SYNC_2(ring->mmio_base), 0);
  1979. }
  1980. ring->set_seqno(ring, seqno);
  1981. ring->hangcheck.seqno = seqno;
  1982. }
  1983. static void gen6_bsd_ring_write_tail(struct intel_engine_cs *ring,
  1984. u32 value)
  1985. {
  1986. struct drm_i915_private *dev_priv = ring->dev->dev_private;
  1987. /* Every tail move must follow the sequence below */
  1988. /* Disable notification that the ring is IDLE. The GT
  1989. * will then assume that it is busy and bring it out of rc6.
  1990. */
  1991. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  1992. _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  1993. /* Clear the context id. Here be magic! */
  1994. I915_WRITE64(GEN6_BSD_RNCID, 0x0);
  1995. /* Wait for the ring not to be idle, i.e. for it to wake up. */
  1996. if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
  1997. GEN6_BSD_SLEEP_INDICATOR) == 0,
  1998. 50))
  1999. DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
  2000. /* Now that the ring is fully powered up, update the tail */
  2001. I915_WRITE_TAIL(ring, value);
  2002. POSTING_READ(RING_TAIL(ring->mmio_base));
  2003. /* Let the ring send IDLE messages to the GT again,
  2004. * and so let it sleep to conserve power when idle.
  2005. */
  2006. I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
  2007. _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
  2008. }
  2009. static int gen6_bsd_ring_flush(struct drm_i915_gem_request *req,
  2010. u32 invalidate, u32 flush)
  2011. {
  2012. struct intel_engine_cs *ring = req->ring;
  2013. uint32_t cmd;
  2014. int ret;
  2015. ret = intel_ring_begin(req, 4);
  2016. if (ret)
  2017. return ret;
  2018. cmd = MI_FLUSH_DW;
  2019. if (INTEL_INFO(ring->dev)->gen >= 8)
  2020. cmd += 1;
  2021. /* We always require a command barrier so that subsequent
  2022. * commands, such as breadcrumb interrupts, are strictly ordered
  2023. * wrt the contents of the write cache being flushed to memory
  2024. * (and thus being coherent from the CPU).
  2025. */
  2026. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2027. /*
  2028. * Bspec vol 1c.5 - video engine command streamer:
  2029. * "If ENABLED, all TLBs will be invalidated once the flush
  2030. * operation is complete. This bit is only valid when the
  2031. * Post-Sync Operation field is a value of 1h or 3h."
  2032. */
  2033. if (invalidate & I915_GEM_GPU_DOMAINS)
  2034. cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD;
  2035. intel_ring_emit(ring, cmd);
  2036. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2037. if (INTEL_INFO(ring->dev)->gen >= 8) {
  2038. intel_ring_emit(ring, 0); /* upper addr */
  2039. intel_ring_emit(ring, 0); /* value */
  2040. } else {
  2041. intel_ring_emit(ring, 0);
  2042. intel_ring_emit(ring, MI_NOOP);
  2043. }
  2044. intel_ring_advance(ring);
  2045. return 0;
  2046. }
  2047. static int
  2048. gen8_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2049. u64 offset, u32 len,
  2050. unsigned dispatch_flags)
  2051. {
  2052. struct intel_engine_cs *ring = req->ring;
  2053. bool ppgtt = USES_PPGTT(ring->dev) &&
  2054. !(dispatch_flags & I915_DISPATCH_SECURE);
  2055. int ret;
  2056. ret = intel_ring_begin(req, 4);
  2057. if (ret)
  2058. return ret;
  2059. /* FIXME(BDW): Address space and security selectors. */
  2060. intel_ring_emit(ring, MI_BATCH_BUFFER_START_GEN8 | (ppgtt<<8) |
  2061. (dispatch_flags & I915_DISPATCH_RS ?
  2062. MI_BATCH_RESOURCE_STREAMER : 0));
  2063. intel_ring_emit(ring, lower_32_bits(offset));
  2064. intel_ring_emit(ring, upper_32_bits(offset));
  2065. intel_ring_emit(ring, MI_NOOP);
  2066. intel_ring_advance(ring);
  2067. return 0;
  2068. }
  2069. static int
  2070. hsw_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2071. u64 offset, u32 len,
  2072. unsigned dispatch_flags)
  2073. {
  2074. struct intel_engine_cs *ring = req->ring;
  2075. int ret;
  2076. ret = intel_ring_begin(req, 2);
  2077. if (ret)
  2078. return ret;
  2079. intel_ring_emit(ring,
  2080. MI_BATCH_BUFFER_START |
  2081. (dispatch_flags & I915_DISPATCH_SECURE ?
  2082. 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW) |
  2083. (dispatch_flags & I915_DISPATCH_RS ?
  2084. MI_BATCH_RESOURCE_STREAMER : 0));
  2085. /* bit0-7 is the length on GEN6+ */
  2086. intel_ring_emit(ring, offset);
  2087. intel_ring_advance(ring);
  2088. return 0;
  2089. }
  2090. static int
  2091. gen6_ring_dispatch_execbuffer(struct drm_i915_gem_request *req,
  2092. u64 offset, u32 len,
  2093. unsigned dispatch_flags)
  2094. {
  2095. struct intel_engine_cs *ring = req->ring;
  2096. int ret;
  2097. ret = intel_ring_begin(req, 2);
  2098. if (ret)
  2099. return ret;
  2100. intel_ring_emit(ring,
  2101. MI_BATCH_BUFFER_START |
  2102. (dispatch_flags & I915_DISPATCH_SECURE ?
  2103. 0 : MI_BATCH_NON_SECURE_I965));
  2104. /* bit0-7 is the length on GEN6+ */
  2105. intel_ring_emit(ring, offset);
  2106. intel_ring_advance(ring);
  2107. return 0;
  2108. }
  2109. /* Blitter support (SandyBridge+) */
  2110. static int gen6_ring_flush(struct drm_i915_gem_request *req,
  2111. u32 invalidate, u32 flush)
  2112. {
  2113. struct intel_engine_cs *ring = req->ring;
  2114. struct drm_device *dev = ring->dev;
  2115. uint32_t cmd;
  2116. int ret;
  2117. ret = intel_ring_begin(req, 4);
  2118. if (ret)
  2119. return ret;
  2120. cmd = MI_FLUSH_DW;
  2121. if (INTEL_INFO(dev)->gen >= 8)
  2122. cmd += 1;
  2123. /* We always require a command barrier so that subsequent
  2124. * commands, such as breadcrumb interrupts, are strictly ordered
  2125. * wrt the contents of the write cache being flushed to memory
  2126. * (and thus being coherent from the CPU).
  2127. */
  2128. cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
  2129. /*
  2130. * Bspec vol 1c.3 - blitter engine command streamer:
  2131. * "If ENABLED, all TLBs will be invalidated once the flush
  2132. * operation is complete. This bit is only valid when the
  2133. * Post-Sync Operation field is a value of 1h or 3h."
  2134. */
  2135. if (invalidate & I915_GEM_DOMAIN_RENDER)
  2136. cmd |= MI_INVALIDATE_TLB;
  2137. intel_ring_emit(ring, cmd);
  2138. intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
  2139. if (INTEL_INFO(dev)->gen >= 8) {
  2140. intel_ring_emit(ring, 0); /* upper addr */
  2141. intel_ring_emit(ring, 0); /* value */
  2142. } else {
  2143. intel_ring_emit(ring, 0);
  2144. intel_ring_emit(ring, MI_NOOP);
  2145. }
  2146. intel_ring_advance(ring);
  2147. return 0;
  2148. }
  2149. int intel_init_render_ring_buffer(struct drm_device *dev)
  2150. {
  2151. struct drm_i915_private *dev_priv = dev->dev_private;
  2152. struct intel_engine_cs *ring = &dev_priv->ring[RCS];
  2153. struct drm_i915_gem_object *obj;
  2154. int ret;
  2155. ring->name = "render ring";
  2156. ring->id = RCS;
  2157. ring->mmio_base = RENDER_RING_BASE;
  2158. if (INTEL_INFO(dev)->gen >= 8) {
  2159. if (i915_semaphore_is_enabled(dev)) {
  2160. obj = i915_gem_alloc_object(dev, 4096);
  2161. if (obj == NULL) {
  2162. DRM_ERROR("Failed to allocate semaphore bo. Disabling semaphores\n");
  2163. i915.semaphores = 0;
  2164. } else {
  2165. i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
  2166. ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_NONBLOCK);
  2167. if (ret != 0) {
  2168. drm_gem_object_unreference(&obj->base);
  2169. DRM_ERROR("Failed to pin semaphore bo. Disabling semaphores\n");
  2170. i915.semaphores = 0;
  2171. } else
  2172. dev_priv->semaphore_obj = obj;
  2173. }
  2174. }
  2175. ring->init_context = intel_rcs_ctx_init;
  2176. ring->add_request = gen6_add_request;
  2177. ring->flush = gen8_render_ring_flush;
  2178. ring->irq_get = gen8_ring_get_irq;
  2179. ring->irq_put = gen8_ring_put_irq;
  2180. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2181. ring->get_seqno = gen6_ring_get_seqno;
  2182. ring->set_seqno = ring_set_seqno;
  2183. if (i915_semaphore_is_enabled(dev)) {
  2184. WARN_ON(!dev_priv->semaphore_obj);
  2185. ring->semaphore.sync_to = gen8_ring_sync;
  2186. ring->semaphore.signal = gen8_rcs_signal;
  2187. GEN8_RING_SEMAPHORE_INIT;
  2188. }
  2189. } else if (INTEL_INFO(dev)->gen >= 6) {
  2190. ring->add_request = gen6_add_request;
  2191. ring->flush = gen7_render_ring_flush;
  2192. if (INTEL_INFO(dev)->gen == 6)
  2193. ring->flush = gen6_render_ring_flush;
  2194. ring->irq_get = gen6_ring_get_irq;
  2195. ring->irq_put = gen6_ring_put_irq;
  2196. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
  2197. ring->get_seqno = gen6_ring_get_seqno;
  2198. ring->set_seqno = ring_set_seqno;
  2199. if (i915_semaphore_is_enabled(dev)) {
  2200. ring->semaphore.sync_to = gen6_ring_sync;
  2201. ring->semaphore.signal = gen6_signal;
  2202. /*
  2203. * The current semaphore is only applied on pre-gen8
  2204. * platform. And there is no VCS2 ring on the pre-gen8
  2205. * platform. So the semaphore between RCS and VCS2 is
  2206. * initialized as INVALID. Gen8 will initialize the
  2207. * sema between VCS2 and RCS later.
  2208. */
  2209. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_INVALID;
  2210. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_RV;
  2211. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_RB;
  2212. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_RVE;
  2213. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2214. ring->semaphore.mbox.signal[RCS] = GEN6_NOSYNC;
  2215. ring->semaphore.mbox.signal[VCS] = GEN6_VRSYNC;
  2216. ring->semaphore.mbox.signal[BCS] = GEN6_BRSYNC;
  2217. ring->semaphore.mbox.signal[VECS] = GEN6_VERSYNC;
  2218. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2219. }
  2220. } else if (IS_GEN5(dev)) {
  2221. ring->add_request = pc_render_add_request;
  2222. ring->flush = gen4_render_ring_flush;
  2223. ring->get_seqno = pc_render_get_seqno;
  2224. ring->set_seqno = pc_render_set_seqno;
  2225. ring->irq_get = gen5_ring_get_irq;
  2226. ring->irq_put = gen5_ring_put_irq;
  2227. ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
  2228. GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
  2229. } else {
  2230. ring->add_request = i9xx_add_request;
  2231. if (INTEL_INFO(dev)->gen < 4)
  2232. ring->flush = gen2_render_ring_flush;
  2233. else
  2234. ring->flush = gen4_render_ring_flush;
  2235. ring->get_seqno = ring_get_seqno;
  2236. ring->set_seqno = ring_set_seqno;
  2237. if (IS_GEN2(dev)) {
  2238. ring->irq_get = i8xx_ring_get_irq;
  2239. ring->irq_put = i8xx_ring_put_irq;
  2240. } else {
  2241. ring->irq_get = i9xx_ring_get_irq;
  2242. ring->irq_put = i9xx_ring_put_irq;
  2243. }
  2244. ring->irq_enable_mask = I915_USER_INTERRUPT;
  2245. }
  2246. ring->write_tail = ring_write_tail;
  2247. if (IS_HASWELL(dev))
  2248. ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
  2249. else if (IS_GEN8(dev))
  2250. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2251. else if (INTEL_INFO(dev)->gen >= 6)
  2252. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2253. else if (INTEL_INFO(dev)->gen >= 4)
  2254. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2255. else if (IS_I830(dev) || IS_845G(dev))
  2256. ring->dispatch_execbuffer = i830_dispatch_execbuffer;
  2257. else
  2258. ring->dispatch_execbuffer = i915_dispatch_execbuffer;
  2259. ring->init_hw = init_render_ring;
  2260. ring->cleanup = render_ring_cleanup;
  2261. /* Workaround batchbuffer to combat CS tlb bug. */
  2262. if (HAS_BROKEN_CS_TLB(dev)) {
  2263. obj = i915_gem_alloc_object(dev, I830_WA_SIZE);
  2264. if (obj == NULL) {
  2265. DRM_ERROR("Failed to allocate batch bo\n");
  2266. return -ENOMEM;
  2267. }
  2268. ret = i915_gem_obj_ggtt_pin(obj, 0, 0);
  2269. if (ret != 0) {
  2270. drm_gem_object_unreference(&obj->base);
  2271. DRM_ERROR("Failed to ping batch bo\n");
  2272. return ret;
  2273. }
  2274. ring->scratch.obj = obj;
  2275. ring->scratch.gtt_offset = i915_gem_obj_ggtt_offset(obj);
  2276. }
  2277. ret = intel_init_ring_buffer(dev, ring);
  2278. if (ret)
  2279. return ret;
  2280. if (INTEL_INFO(dev)->gen >= 5) {
  2281. ret = intel_init_pipe_control(ring);
  2282. if (ret)
  2283. return ret;
  2284. }
  2285. return 0;
  2286. }
  2287. int intel_init_bsd_ring_buffer(struct drm_device *dev)
  2288. {
  2289. struct drm_i915_private *dev_priv = dev->dev_private;
  2290. struct intel_engine_cs *ring = &dev_priv->ring[VCS];
  2291. ring->name = "bsd ring";
  2292. ring->id = VCS;
  2293. ring->write_tail = ring_write_tail;
  2294. if (INTEL_INFO(dev)->gen >= 6) {
  2295. ring->mmio_base = GEN6_BSD_RING_BASE;
  2296. /* gen6 bsd needs a special wa for tail updates */
  2297. if (IS_GEN6(dev))
  2298. ring->write_tail = gen6_bsd_ring_write_tail;
  2299. ring->flush = gen6_bsd_ring_flush;
  2300. ring->add_request = gen6_add_request;
  2301. ring->get_seqno = gen6_ring_get_seqno;
  2302. ring->set_seqno = ring_set_seqno;
  2303. if (INTEL_INFO(dev)->gen >= 8) {
  2304. ring->irq_enable_mask =
  2305. GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT;
  2306. ring->irq_get = gen8_ring_get_irq;
  2307. ring->irq_put = gen8_ring_put_irq;
  2308. ring->dispatch_execbuffer =
  2309. gen8_ring_dispatch_execbuffer;
  2310. if (i915_semaphore_is_enabled(dev)) {
  2311. ring->semaphore.sync_to = gen8_ring_sync;
  2312. ring->semaphore.signal = gen8_xcs_signal;
  2313. GEN8_RING_SEMAPHORE_INIT;
  2314. }
  2315. } else {
  2316. ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
  2317. ring->irq_get = gen6_ring_get_irq;
  2318. ring->irq_put = gen6_ring_put_irq;
  2319. ring->dispatch_execbuffer =
  2320. gen6_ring_dispatch_execbuffer;
  2321. if (i915_semaphore_is_enabled(dev)) {
  2322. ring->semaphore.sync_to = gen6_ring_sync;
  2323. ring->semaphore.signal = gen6_signal;
  2324. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VR;
  2325. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_INVALID;
  2326. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VB;
  2327. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_VVE;
  2328. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2329. ring->semaphore.mbox.signal[RCS] = GEN6_RVSYNC;
  2330. ring->semaphore.mbox.signal[VCS] = GEN6_NOSYNC;
  2331. ring->semaphore.mbox.signal[BCS] = GEN6_BVSYNC;
  2332. ring->semaphore.mbox.signal[VECS] = GEN6_VEVSYNC;
  2333. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2334. }
  2335. }
  2336. } else {
  2337. ring->mmio_base = BSD_RING_BASE;
  2338. ring->flush = bsd_ring_flush;
  2339. ring->add_request = i9xx_add_request;
  2340. ring->get_seqno = ring_get_seqno;
  2341. ring->set_seqno = ring_set_seqno;
  2342. if (IS_GEN5(dev)) {
  2343. ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
  2344. ring->irq_get = gen5_ring_get_irq;
  2345. ring->irq_put = gen5_ring_put_irq;
  2346. } else {
  2347. ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
  2348. ring->irq_get = i9xx_ring_get_irq;
  2349. ring->irq_put = i9xx_ring_put_irq;
  2350. }
  2351. ring->dispatch_execbuffer = i965_dispatch_execbuffer;
  2352. }
  2353. ring->init_hw = init_ring_common;
  2354. return intel_init_ring_buffer(dev, ring);
  2355. }
  2356. /**
  2357. * Initialize the second BSD ring (eg. Broadwell GT3, Skylake GT3)
  2358. */
  2359. int intel_init_bsd2_ring_buffer(struct drm_device *dev)
  2360. {
  2361. struct drm_i915_private *dev_priv = dev->dev_private;
  2362. struct intel_engine_cs *ring = &dev_priv->ring[VCS2];
  2363. ring->name = "bsd2 ring";
  2364. ring->id = VCS2;
  2365. ring->write_tail = ring_write_tail;
  2366. ring->mmio_base = GEN8_BSD2_RING_BASE;
  2367. ring->flush = gen6_bsd_ring_flush;
  2368. ring->add_request = gen6_add_request;
  2369. ring->get_seqno = gen6_ring_get_seqno;
  2370. ring->set_seqno = ring_set_seqno;
  2371. ring->irq_enable_mask =
  2372. GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT;
  2373. ring->irq_get = gen8_ring_get_irq;
  2374. ring->irq_put = gen8_ring_put_irq;
  2375. ring->dispatch_execbuffer =
  2376. gen8_ring_dispatch_execbuffer;
  2377. if (i915_semaphore_is_enabled(dev)) {
  2378. ring->semaphore.sync_to = gen8_ring_sync;
  2379. ring->semaphore.signal = gen8_xcs_signal;
  2380. GEN8_RING_SEMAPHORE_INIT;
  2381. }
  2382. ring->init_hw = init_ring_common;
  2383. return intel_init_ring_buffer(dev, ring);
  2384. }
  2385. int intel_init_blt_ring_buffer(struct drm_device *dev)
  2386. {
  2387. struct drm_i915_private *dev_priv = dev->dev_private;
  2388. struct intel_engine_cs *ring = &dev_priv->ring[BCS];
  2389. ring->name = "blitter ring";
  2390. ring->id = BCS;
  2391. ring->mmio_base = BLT_RING_BASE;
  2392. ring->write_tail = ring_write_tail;
  2393. ring->flush = gen6_ring_flush;
  2394. ring->add_request = gen6_add_request;
  2395. ring->get_seqno = gen6_ring_get_seqno;
  2396. ring->set_seqno = ring_set_seqno;
  2397. if (INTEL_INFO(dev)->gen >= 8) {
  2398. ring->irq_enable_mask =
  2399. GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
  2400. ring->irq_get = gen8_ring_get_irq;
  2401. ring->irq_put = gen8_ring_put_irq;
  2402. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2403. if (i915_semaphore_is_enabled(dev)) {
  2404. ring->semaphore.sync_to = gen8_ring_sync;
  2405. ring->semaphore.signal = gen8_xcs_signal;
  2406. GEN8_RING_SEMAPHORE_INIT;
  2407. }
  2408. } else {
  2409. ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
  2410. ring->irq_get = gen6_ring_get_irq;
  2411. ring->irq_put = gen6_ring_put_irq;
  2412. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2413. if (i915_semaphore_is_enabled(dev)) {
  2414. ring->semaphore.signal = gen6_signal;
  2415. ring->semaphore.sync_to = gen6_ring_sync;
  2416. /*
  2417. * The current semaphore is only applied on pre-gen8
  2418. * platform. And there is no VCS2 ring on the pre-gen8
  2419. * platform. So the semaphore between BCS and VCS2 is
  2420. * initialized as INVALID. Gen8 will initialize the
  2421. * sema between BCS and VCS2 later.
  2422. */
  2423. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_BR;
  2424. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_BV;
  2425. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_INVALID;
  2426. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_BVE;
  2427. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2428. ring->semaphore.mbox.signal[RCS] = GEN6_RBSYNC;
  2429. ring->semaphore.mbox.signal[VCS] = GEN6_VBSYNC;
  2430. ring->semaphore.mbox.signal[BCS] = GEN6_NOSYNC;
  2431. ring->semaphore.mbox.signal[VECS] = GEN6_VEBSYNC;
  2432. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2433. }
  2434. }
  2435. ring->init_hw = init_ring_common;
  2436. return intel_init_ring_buffer(dev, ring);
  2437. }
  2438. int intel_init_vebox_ring_buffer(struct drm_device *dev)
  2439. {
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. struct intel_engine_cs *ring = &dev_priv->ring[VECS];
  2442. ring->name = "video enhancement ring";
  2443. ring->id = VECS;
  2444. ring->mmio_base = VEBOX_RING_BASE;
  2445. ring->write_tail = ring_write_tail;
  2446. ring->flush = gen6_ring_flush;
  2447. ring->add_request = gen6_add_request;
  2448. ring->get_seqno = gen6_ring_get_seqno;
  2449. ring->set_seqno = ring_set_seqno;
  2450. if (INTEL_INFO(dev)->gen >= 8) {
  2451. ring->irq_enable_mask =
  2452. GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT;
  2453. ring->irq_get = gen8_ring_get_irq;
  2454. ring->irq_put = gen8_ring_put_irq;
  2455. ring->dispatch_execbuffer = gen8_ring_dispatch_execbuffer;
  2456. if (i915_semaphore_is_enabled(dev)) {
  2457. ring->semaphore.sync_to = gen8_ring_sync;
  2458. ring->semaphore.signal = gen8_xcs_signal;
  2459. GEN8_RING_SEMAPHORE_INIT;
  2460. }
  2461. } else {
  2462. ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
  2463. ring->irq_get = hsw_vebox_get_irq;
  2464. ring->irq_put = hsw_vebox_put_irq;
  2465. ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
  2466. if (i915_semaphore_is_enabled(dev)) {
  2467. ring->semaphore.sync_to = gen6_ring_sync;
  2468. ring->semaphore.signal = gen6_signal;
  2469. ring->semaphore.mbox.wait[RCS] = MI_SEMAPHORE_SYNC_VER;
  2470. ring->semaphore.mbox.wait[VCS] = MI_SEMAPHORE_SYNC_VEV;
  2471. ring->semaphore.mbox.wait[BCS] = MI_SEMAPHORE_SYNC_VEB;
  2472. ring->semaphore.mbox.wait[VECS] = MI_SEMAPHORE_SYNC_INVALID;
  2473. ring->semaphore.mbox.wait[VCS2] = MI_SEMAPHORE_SYNC_INVALID;
  2474. ring->semaphore.mbox.signal[RCS] = GEN6_RVESYNC;
  2475. ring->semaphore.mbox.signal[VCS] = GEN6_VVESYNC;
  2476. ring->semaphore.mbox.signal[BCS] = GEN6_BVESYNC;
  2477. ring->semaphore.mbox.signal[VECS] = GEN6_NOSYNC;
  2478. ring->semaphore.mbox.signal[VCS2] = GEN6_NOSYNC;
  2479. }
  2480. }
  2481. ring->init_hw = init_ring_common;
  2482. return intel_init_ring_buffer(dev, ring);
  2483. }
  2484. int
  2485. intel_ring_flush_all_caches(struct drm_i915_gem_request *req)
  2486. {
  2487. struct intel_engine_cs *ring = req->ring;
  2488. int ret;
  2489. if (!ring->gpu_caches_dirty)
  2490. return 0;
  2491. ret = ring->flush(req, 0, I915_GEM_GPU_DOMAINS);
  2492. if (ret)
  2493. return ret;
  2494. trace_i915_gem_ring_flush(req, 0, I915_GEM_GPU_DOMAINS);
  2495. ring->gpu_caches_dirty = false;
  2496. return 0;
  2497. }
  2498. int
  2499. intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
  2500. {
  2501. struct intel_engine_cs *ring = req->ring;
  2502. uint32_t flush_domains;
  2503. int ret;
  2504. flush_domains = 0;
  2505. if (ring->gpu_caches_dirty)
  2506. flush_domains = I915_GEM_GPU_DOMAINS;
  2507. ret = ring->flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2508. if (ret)
  2509. return ret;
  2510. trace_i915_gem_ring_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
  2511. ring->gpu_caches_dirty = false;
  2512. return 0;
  2513. }
  2514. void
  2515. intel_stop_ring_buffer(struct intel_engine_cs *ring)
  2516. {
  2517. int ret;
  2518. if (!intel_ring_initialized(ring))
  2519. return;
  2520. ret = intel_ring_idle(ring);
  2521. if (ret && !i915_reset_in_progress(&to_i915(ring->dev)->gpu_error))
  2522. DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
  2523. ring->name, ret);
  2524. stop_ring(ring);
  2525. }