ctatc.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "ctsrc.h"
  21. #include "ctamixer.h"
  22. #include "ctdaio.h"
  23. #include "cttimer.h"
  24. #include <linux/delay.h>
  25. #include <linux/slab.h>
  26. #include <sound/pcm.h>
  27. #include <sound/control.h>
  28. #include <sound/asoundef.h>
  29. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  30. #define MAX_MULTI_CHN 8
  31. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  32. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  33. | ((IEC958_AES1_CON_MIXER \
  34. | IEC958_AES1_CON_ORIGINAL) << 8) \
  35. | (0x10 << 16) \
  36. | ((IEC958_AES3_CON_FS_48000) << 24))
  37. static struct snd_pci_quirk subsys_20k1_list[] = {
  38. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  39. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  42. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  43. "UAA", CTUAA),
  44. { } /* terminator */
  45. };
  46. static struct snd_pci_quirk subsys_20k2_list[] = {
  47. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  48. "SB0760", CTSB0760),
  49. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270,
  50. "SB1270", CTSB1270),
  51. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  52. "SB0880", CTSB0880),
  53. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  54. "SB0880", CTSB0880),
  55. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  56. "SB0880", CTSB0880),
  57. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  58. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  59. CTHENDRIX),
  60. { } /* terminator */
  61. };
  62. static const char *ct_subsys_name[NUM_CTCARDS] = {
  63. /* 20k1 models */
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTUAA] = "UAA",
  67. [CT20K1_UNKNOWN] = "Unknown",
  68. /* 20k2 models */
  69. [CTSB0760] = "SB076x",
  70. [CTHENDRIX] = "Hendrix",
  71. [CTSB0880] = "SB0880",
  72. [CTSB1270] = "SB1270",
  73. [CT20K2_UNKNOWN] = "Unknown",
  74. };
  75. static struct {
  76. int (*create)(struct ct_atc *atc,
  77. enum CTALSADEVS device, const char *device_name);
  78. int (*destroy)(void *alsa_dev);
  79. const char *public_name;
  80. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  81. [FRONT] = { .create = ct_alsa_pcm_create,
  82. .destroy = NULL,
  83. .public_name = "Front/WaveIn"},
  84. [SURROUND] = { .create = ct_alsa_pcm_create,
  85. .destroy = NULL,
  86. .public_name = "Surround"},
  87. [CLFE] = { .create = ct_alsa_pcm_create,
  88. .destroy = NULL,
  89. .public_name = "Center/LFE"},
  90. [SIDE] = { .create = ct_alsa_pcm_create,
  91. .destroy = NULL,
  92. .public_name = "Side"},
  93. [IEC958] = { .create = ct_alsa_pcm_create,
  94. .destroy = NULL,
  95. .public_name = "IEC958 Non-audio"},
  96. [MIXER] = { .create = ct_alsa_mix_create,
  97. .destroy = NULL,
  98. .public_name = "Mixer"}
  99. };
  100. typedef int (*create_t)(void *, void **);
  101. typedef int (*destroy_t)(void *);
  102. static struct {
  103. int (*create)(void *hw, void **rmgr);
  104. int (*destroy)(void *mgr);
  105. } rsc_mgr_funcs[NUM_RSCTYP] = {
  106. [SRC] = { .create = (create_t)src_mgr_create,
  107. .destroy = (destroy_t)src_mgr_destroy },
  108. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  109. .destroy = (destroy_t)srcimp_mgr_destroy },
  110. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  111. .destroy = (destroy_t)amixer_mgr_destroy },
  112. [SUM] = { .create = (create_t)sum_mgr_create,
  113. .destroy = (destroy_t)sum_mgr_destroy },
  114. [DAIO] = { .create = (create_t)daio_mgr_create,
  115. .destroy = (destroy_t)daio_mgr_destroy }
  116. };
  117. static int
  118. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  119. /* *
  120. * Only mono and interleaved modes are supported now.
  121. * Always allocates a contiguous channel block.
  122. * */
  123. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  124. {
  125. struct snd_pcm_runtime *runtime;
  126. struct ct_vm *vm;
  127. if (!apcm->substream)
  128. return 0;
  129. runtime = apcm->substream->runtime;
  130. vm = atc->vm;
  131. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  132. if (!apcm->vm_block)
  133. return -ENOENT;
  134. return 0;
  135. }
  136. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  137. {
  138. struct ct_vm *vm;
  139. if (!apcm->vm_block)
  140. return;
  141. vm = atc->vm;
  142. vm->unmap(vm, apcm->vm_block);
  143. apcm->vm_block = NULL;
  144. }
  145. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  146. {
  147. return atc->vm->get_ptp_phys(atc->vm, index);
  148. }
  149. static unsigned int convert_format(snd_pcm_format_t snd_format)
  150. {
  151. switch (snd_format) {
  152. case SNDRV_PCM_FORMAT_U8:
  153. return SRC_SF_U8;
  154. case SNDRV_PCM_FORMAT_S16_LE:
  155. return SRC_SF_S16;
  156. case SNDRV_PCM_FORMAT_S24_3LE:
  157. return SRC_SF_S24;
  158. case SNDRV_PCM_FORMAT_S32_LE:
  159. return SRC_SF_S32;
  160. case SNDRV_PCM_FORMAT_FLOAT_LE:
  161. return SRC_SF_F32;
  162. default:
  163. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  164. snd_format);
  165. return SRC_SF_S16;
  166. }
  167. }
  168. static unsigned int
  169. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  170. {
  171. unsigned int pitch;
  172. int b;
  173. /* get pitch and convert to fixed-point 8.24 format. */
  174. pitch = (input_rate / output_rate) << 24;
  175. input_rate %= output_rate;
  176. input_rate /= 100;
  177. output_rate /= 100;
  178. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  179. b--;
  180. if (b >= 0) {
  181. input_rate <<= (31 - b);
  182. input_rate /= output_rate;
  183. b = 24 - (31 - b);
  184. if (b >= 0)
  185. input_rate <<= b;
  186. else
  187. input_rate >>= -b;
  188. pitch |= input_rate;
  189. }
  190. return pitch;
  191. }
  192. static int select_rom(unsigned int pitch)
  193. {
  194. if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
  195. /* 0.26 <= pitch <= 1.72 */
  196. return 1;
  197. } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
  198. /* pitch == 1.8375 */
  199. return 2;
  200. } else if (pitch == 0x02000000) {
  201. /* pitch == 2 */
  202. return 3;
  203. } else if (pitch <= 0x08000000) {
  204. /* 0 <= pitch <= 8 */
  205. return 0;
  206. } else {
  207. return -ENOENT;
  208. }
  209. }
  210. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  211. {
  212. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  213. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  214. struct src_desc desc = {0};
  215. struct amixer_desc mix_dsc = {0};
  216. struct src *src;
  217. struct amixer *amixer;
  218. int err;
  219. int n_amixer = apcm->substream->runtime->channels, i = 0;
  220. int device = apcm->substream->pcm->device;
  221. unsigned int pitch;
  222. /* first release old resources */
  223. atc_pcm_release_resources(atc, apcm);
  224. /* Get SRC resource */
  225. desc.multi = apcm->substream->runtime->channels;
  226. desc.msr = atc->msr;
  227. desc.mode = MEMRD;
  228. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  229. if (err)
  230. goto error1;
  231. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  232. (atc->rsr * atc->msr));
  233. src = apcm->src;
  234. src->ops->set_pitch(src, pitch);
  235. src->ops->set_rom(src, select_rom(pitch));
  236. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  237. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  238. /* Get AMIXER resource */
  239. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  240. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  241. if (!apcm->amixers) {
  242. err = -ENOMEM;
  243. goto error1;
  244. }
  245. mix_dsc.msr = atc->msr;
  246. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  247. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  248. (struct amixer **)&apcm->amixers[i]);
  249. if (err)
  250. goto error1;
  251. apcm->n_amixer++;
  252. }
  253. /* Set up device virtual mem map */
  254. err = ct_map_audio_buffer(atc, apcm);
  255. if (err < 0)
  256. goto error1;
  257. /* Connect resources */
  258. src = apcm->src;
  259. for (i = 0; i < n_amixer; i++) {
  260. amixer = apcm->amixers[i];
  261. mutex_lock(&atc->atc_mutex);
  262. amixer->ops->setup(amixer, &src->rsc,
  263. INIT_VOL, atc->pcm[i+device*2]);
  264. mutex_unlock(&atc->atc_mutex);
  265. src = src->ops->next_interleave(src);
  266. if (!src)
  267. src = apcm->src;
  268. }
  269. ct_timer_prepare(apcm->timer);
  270. return 0;
  271. error1:
  272. atc_pcm_release_resources(atc, apcm);
  273. return err;
  274. }
  275. static int
  276. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  277. {
  278. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  279. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  280. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  281. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  282. struct srcimp *srcimp;
  283. int i;
  284. if (apcm->srcimps) {
  285. for (i = 0; i < apcm->n_srcimp; i++) {
  286. srcimp = apcm->srcimps[i];
  287. srcimp->ops->unmap(srcimp);
  288. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  289. apcm->srcimps[i] = NULL;
  290. }
  291. kfree(apcm->srcimps);
  292. apcm->srcimps = NULL;
  293. }
  294. if (apcm->srccs) {
  295. for (i = 0; i < apcm->n_srcc; i++) {
  296. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  297. apcm->srccs[i] = NULL;
  298. }
  299. kfree(apcm->srccs);
  300. apcm->srccs = NULL;
  301. }
  302. if (apcm->amixers) {
  303. for (i = 0; i < apcm->n_amixer; i++) {
  304. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  305. apcm->amixers[i] = NULL;
  306. }
  307. kfree(apcm->amixers);
  308. apcm->amixers = NULL;
  309. }
  310. if (apcm->mono) {
  311. sum_mgr->put_sum(sum_mgr, apcm->mono);
  312. apcm->mono = NULL;
  313. }
  314. if (apcm->src) {
  315. src_mgr->put_src(src_mgr, apcm->src);
  316. apcm->src = NULL;
  317. }
  318. if (apcm->vm_block) {
  319. /* Undo device virtual mem map */
  320. ct_unmap_audio_buffer(atc, apcm);
  321. apcm->vm_block = NULL;
  322. }
  323. return 0;
  324. }
  325. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  326. {
  327. unsigned int max_cisz;
  328. struct src *src = apcm->src;
  329. if (apcm->started)
  330. return 0;
  331. apcm->started = 1;
  332. max_cisz = src->multi * src->rsc.msr;
  333. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  334. src->ops->set_sa(src, apcm->vm_block->addr);
  335. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  336. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  337. src->ops->set_cisz(src, max_cisz);
  338. src->ops->set_bm(src, 1);
  339. src->ops->set_state(src, SRC_STATE_INIT);
  340. src->ops->commit_write(src);
  341. ct_timer_start(apcm->timer);
  342. return 0;
  343. }
  344. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  345. {
  346. struct src *src;
  347. int i;
  348. ct_timer_stop(apcm->timer);
  349. src = apcm->src;
  350. src->ops->set_bm(src, 0);
  351. src->ops->set_state(src, SRC_STATE_OFF);
  352. src->ops->commit_write(src);
  353. if (apcm->srccs) {
  354. for (i = 0; i < apcm->n_srcc; i++) {
  355. src = apcm->srccs[i];
  356. src->ops->set_bm(src, 0);
  357. src->ops->set_state(src, SRC_STATE_OFF);
  358. src->ops->commit_write(src);
  359. }
  360. }
  361. apcm->started = 0;
  362. return 0;
  363. }
  364. static int
  365. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  366. {
  367. struct src *src = apcm->src;
  368. u32 size, max_cisz;
  369. int position;
  370. if (!src)
  371. return 0;
  372. position = src->ops->get_ca(src);
  373. if (position < apcm->vm_block->addr) {
  374. snd_printdd("ctxfi: bad ca - ca=0x%08x, vba=0x%08x, vbs=0x%08x\n", position, apcm->vm_block->addr, apcm->vm_block->size);
  375. position = apcm->vm_block->addr;
  376. }
  377. size = apcm->vm_block->size;
  378. max_cisz = src->multi * src->rsc.msr;
  379. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  380. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  381. }
  382. struct src_node_conf_t {
  383. unsigned int pitch;
  384. unsigned int msr:8;
  385. unsigned int mix_msr:8;
  386. unsigned int imp_msr:8;
  387. unsigned int vo:1;
  388. };
  389. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  390. struct src_node_conf_t *conf, int *n_srcc)
  391. {
  392. unsigned int pitch;
  393. /* get pitch and convert to fixed-point 8.24 format. */
  394. pitch = atc_get_pitch((atc->rsr * atc->msr),
  395. apcm->substream->runtime->rate);
  396. *n_srcc = 0;
  397. if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */
  398. *n_srcc = apcm->substream->runtime->channels;
  399. conf[0].pitch = pitch;
  400. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  401. conf[0].vo = 1;
  402. } else if (2 <= atc->msr) {
  403. if (0x8000000 < pitch) {
  404. /* Need two-stage SRCs, SRCIMPs and
  405. * AMIXERs for converting format */
  406. conf[0].pitch = (atc->msr << 24);
  407. conf[0].msr = conf[0].mix_msr = 1;
  408. conf[0].imp_msr = atc->msr;
  409. conf[0].vo = 0;
  410. conf[1].pitch = atc_get_pitch(atc->rsr,
  411. apcm->substream->runtime->rate);
  412. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  413. conf[1].vo = 1;
  414. *n_srcc = apcm->substream->runtime->channels * 2;
  415. } else if (0x1000000 < pitch) {
  416. /* Need one-stage SRCs, SRCIMPs and
  417. * AMIXERs for converting format */
  418. conf[0].pitch = pitch;
  419. conf[0].msr = conf[0].mix_msr
  420. = conf[0].imp_msr = atc->msr;
  421. conf[0].vo = 1;
  422. *n_srcc = apcm->substream->runtime->channels;
  423. }
  424. }
  425. }
  426. static int
  427. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  428. {
  429. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  430. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  431. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  432. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  433. struct src_desc src_dsc = {0};
  434. struct src *src;
  435. struct srcimp_desc srcimp_dsc = {0};
  436. struct srcimp *srcimp;
  437. struct amixer_desc mix_dsc = {0};
  438. struct sum_desc sum_dsc = {0};
  439. unsigned int pitch;
  440. int multi, err, i;
  441. int n_srcimp, n_amixer, n_srcc, n_sum;
  442. struct src_node_conf_t src_node_conf[2] = {{0} };
  443. /* first release old resources */
  444. atc_pcm_release_resources(atc, apcm);
  445. /* The numbers of converting SRCs and SRCIMPs should be determined
  446. * by pitch value. */
  447. multi = apcm->substream->runtime->channels;
  448. /* get pitch and convert to fixed-point 8.24 format. */
  449. pitch = atc_get_pitch((atc->rsr * atc->msr),
  450. apcm->substream->runtime->rate);
  451. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  452. n_sum = (1 == multi) ? 1 : 0;
  453. n_amixer = n_sum * 2 + n_srcc;
  454. n_srcimp = n_srcc;
  455. if ((multi > 1) && (0x8000000 >= pitch)) {
  456. /* Need extra AMIXERs and SRCIMPs for special treatment
  457. * of interleaved recording of conjugate channels */
  458. n_amixer += multi * atc->msr;
  459. n_srcimp += multi * atc->msr;
  460. } else {
  461. n_srcimp += multi;
  462. }
  463. if (n_srcc) {
  464. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  465. if (!apcm->srccs)
  466. return -ENOMEM;
  467. }
  468. if (n_amixer) {
  469. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  470. if (!apcm->amixers) {
  471. err = -ENOMEM;
  472. goto error1;
  473. }
  474. }
  475. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  476. if (!apcm->srcimps) {
  477. err = -ENOMEM;
  478. goto error1;
  479. }
  480. /* Allocate SRCs for sample rate conversion if needed */
  481. src_dsc.multi = 1;
  482. src_dsc.mode = ARCRW;
  483. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  484. src_dsc.msr = src_node_conf[i/multi].msr;
  485. err = src_mgr->get_src(src_mgr, &src_dsc,
  486. (struct src **)&apcm->srccs[i]);
  487. if (err)
  488. goto error1;
  489. src = apcm->srccs[i];
  490. pitch = src_node_conf[i/multi].pitch;
  491. src->ops->set_pitch(src, pitch);
  492. src->ops->set_rom(src, select_rom(pitch));
  493. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  494. apcm->n_srcc++;
  495. }
  496. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  497. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  498. if (i < (n_sum*2))
  499. mix_dsc.msr = atc->msr;
  500. else if (i < (n_sum*2+n_srcc))
  501. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  502. else
  503. mix_dsc.msr = 1;
  504. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  505. (struct amixer **)&apcm->amixers[i]);
  506. if (err)
  507. goto error1;
  508. apcm->n_amixer++;
  509. }
  510. /* Allocate a SUM resource to mix all input channels together */
  511. sum_dsc.msr = atc->msr;
  512. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  513. if (err)
  514. goto error1;
  515. pitch = atc_get_pitch((atc->rsr * atc->msr),
  516. apcm->substream->runtime->rate);
  517. /* Allocate SRCIMP resources */
  518. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  519. if (i < (n_srcc))
  520. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  521. else if (1 == multi)
  522. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  523. else
  524. srcimp_dsc.msr = 1;
  525. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  526. if (err)
  527. goto error1;
  528. apcm->srcimps[i] = srcimp;
  529. apcm->n_srcimp++;
  530. }
  531. /* Allocate a SRC for writing data to host memory */
  532. src_dsc.multi = apcm->substream->runtime->channels;
  533. src_dsc.msr = 1;
  534. src_dsc.mode = MEMWR;
  535. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  536. if (err)
  537. goto error1;
  538. src = apcm->src;
  539. src->ops->set_pitch(src, pitch);
  540. /* Set up device virtual mem map */
  541. err = ct_map_audio_buffer(atc, apcm);
  542. if (err < 0)
  543. goto error1;
  544. return 0;
  545. error1:
  546. atc_pcm_release_resources(atc, apcm);
  547. return err;
  548. }
  549. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  550. {
  551. struct src *src;
  552. struct amixer *amixer;
  553. struct srcimp *srcimp;
  554. struct ct_mixer *mixer = atc->mixer;
  555. struct sum *mono;
  556. struct rsc *out_ports[8] = {NULL};
  557. int err, i, j, n_sum, multi;
  558. unsigned int pitch;
  559. int mix_base = 0, imp_base = 0;
  560. atc_pcm_release_resources(atc, apcm);
  561. /* Get needed resources. */
  562. err = atc_pcm_capture_get_resources(atc, apcm);
  563. if (err)
  564. return err;
  565. /* Connect resources */
  566. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  567. &out_ports[0], &out_ports[1]);
  568. multi = apcm->substream->runtime->channels;
  569. if (1 == multi) {
  570. mono = apcm->mono;
  571. for (i = 0; i < 2; i++) {
  572. amixer = apcm->amixers[i];
  573. amixer->ops->setup(amixer, out_ports[i],
  574. MONO_SUM_SCALE, mono);
  575. }
  576. out_ports[0] = &mono->rsc;
  577. n_sum = 1;
  578. mix_base = n_sum * 2;
  579. }
  580. for (i = 0; i < apcm->n_srcc; i++) {
  581. src = apcm->srccs[i];
  582. srcimp = apcm->srcimps[imp_base+i];
  583. amixer = apcm->amixers[mix_base+i];
  584. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  585. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  586. out_ports[i%multi] = &amixer->rsc;
  587. }
  588. pitch = atc_get_pitch((atc->rsr * atc->msr),
  589. apcm->substream->runtime->rate);
  590. if ((multi > 1) && (pitch <= 0x8000000)) {
  591. /* Special connection for interleaved
  592. * recording with conjugate channels */
  593. for (i = 0; i < multi; i++) {
  594. out_ports[i]->ops->master(out_ports[i]);
  595. for (j = 0; j < atc->msr; j++) {
  596. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  597. amixer->ops->set_input(amixer, out_ports[i]);
  598. amixer->ops->set_scale(amixer, INIT_VOL);
  599. amixer->ops->set_sum(amixer, NULL);
  600. amixer->ops->commit_raw_write(amixer);
  601. out_ports[i]->ops->next_conj(out_ports[i]);
  602. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  603. srcimp->ops->map(srcimp, apcm->src,
  604. &amixer->rsc);
  605. }
  606. }
  607. } else {
  608. for (i = 0; i < multi; i++) {
  609. srcimp = apcm->srcimps[apcm->n_srcc+i];
  610. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  611. }
  612. }
  613. ct_timer_prepare(apcm->timer);
  614. return 0;
  615. }
  616. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  617. {
  618. struct src *src;
  619. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  620. int i, multi;
  621. if (apcm->started)
  622. return 0;
  623. apcm->started = 1;
  624. multi = apcm->substream->runtime->channels;
  625. /* Set up converting SRCs */
  626. for (i = 0; i < apcm->n_srcc; i++) {
  627. src = apcm->srccs[i];
  628. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  629. src_mgr->src_disable(src_mgr, src);
  630. }
  631. /* Set up recording SRC */
  632. src = apcm->src;
  633. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  634. src->ops->set_sa(src, apcm->vm_block->addr);
  635. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  636. src->ops->set_ca(src, apcm->vm_block->addr);
  637. src_mgr->src_disable(src_mgr, src);
  638. /* Disable relevant SRCs firstly */
  639. src_mgr->commit_write(src_mgr);
  640. /* Enable SRCs respectively */
  641. for (i = 0; i < apcm->n_srcc; i++) {
  642. src = apcm->srccs[i];
  643. src->ops->set_state(src, SRC_STATE_RUN);
  644. src->ops->commit_write(src);
  645. src_mgr->src_enable_s(src_mgr, src);
  646. }
  647. src = apcm->src;
  648. src->ops->set_bm(src, 1);
  649. src->ops->set_state(src, SRC_STATE_RUN);
  650. src->ops->commit_write(src);
  651. src_mgr->src_enable_s(src_mgr, src);
  652. /* Enable relevant SRCs synchronously */
  653. src_mgr->commit_write(src_mgr);
  654. ct_timer_start(apcm->timer);
  655. return 0;
  656. }
  657. static int
  658. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  659. {
  660. struct src *src = apcm->src;
  661. if (!src)
  662. return 0;
  663. return src->ops->get_ca(src) - apcm->vm_block->addr;
  664. }
  665. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  666. struct ct_atc_pcm *apcm)
  667. {
  668. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  669. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  670. struct src_desc desc = {0};
  671. struct amixer_desc mix_dsc = {0};
  672. struct src *src;
  673. int err;
  674. int n_amixer = apcm->substream->runtime->channels, i;
  675. unsigned int pitch, rsr = atc->pll_rate;
  676. /* first release old resources */
  677. atc_pcm_release_resources(atc, apcm);
  678. /* Get SRC resource */
  679. desc.multi = apcm->substream->runtime->channels;
  680. desc.msr = 1;
  681. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  682. desc.msr <<= 1;
  683. desc.mode = MEMRD;
  684. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  685. if (err)
  686. goto error1;
  687. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  688. src = apcm->src;
  689. src->ops->set_pitch(src, pitch);
  690. src->ops->set_rom(src, select_rom(pitch));
  691. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  692. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  693. src->ops->set_bp(src, 1);
  694. /* Get AMIXER resource */
  695. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  696. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  697. if (!apcm->amixers) {
  698. err = -ENOMEM;
  699. goto error1;
  700. }
  701. mix_dsc.msr = desc.msr;
  702. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  703. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  704. (struct amixer **)&apcm->amixers[i]);
  705. if (err)
  706. goto error1;
  707. apcm->n_amixer++;
  708. }
  709. /* Set up device virtual mem map */
  710. err = ct_map_audio_buffer(atc, apcm);
  711. if (err < 0)
  712. goto error1;
  713. return 0;
  714. error1:
  715. atc_pcm_release_resources(atc, apcm);
  716. return err;
  717. }
  718. static int atc_pll_init(struct ct_atc *atc, int rate)
  719. {
  720. struct hw *hw = atc->hw;
  721. int err;
  722. err = hw->pll_init(hw, rate);
  723. atc->pll_rate = err ? 0 : rate;
  724. return err;
  725. }
  726. static int
  727. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  728. {
  729. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  730. unsigned int rate = apcm->substream->runtime->rate;
  731. unsigned int status;
  732. int err = 0;
  733. unsigned char iec958_con_fs;
  734. switch (rate) {
  735. case 48000:
  736. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  737. break;
  738. case 44100:
  739. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  740. break;
  741. case 32000:
  742. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  743. break;
  744. default:
  745. return -ENOENT;
  746. }
  747. mutex_lock(&atc->atc_mutex);
  748. dao->ops->get_spos(dao, &status);
  749. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  750. status &= ~(IEC958_AES3_CON_FS << 24);
  751. status |= (iec958_con_fs << 24);
  752. dao->ops->set_spos(dao, status);
  753. dao->ops->commit_write(dao);
  754. }
  755. if ((rate != atc->pll_rate) && (32000 != rate))
  756. err = atc_pll_init(atc, rate);
  757. mutex_unlock(&atc->atc_mutex);
  758. return err;
  759. }
  760. static int
  761. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  762. {
  763. struct src *src;
  764. struct amixer *amixer;
  765. struct dao *dao;
  766. int err;
  767. int i;
  768. atc_pcm_release_resources(atc, apcm);
  769. /* Configure SPDIFOO and PLL to passthrough mode;
  770. * determine pll_rate. */
  771. err = spdif_passthru_playback_setup(atc, apcm);
  772. if (err)
  773. return err;
  774. /* Get needed resources. */
  775. err = spdif_passthru_playback_get_resources(atc, apcm);
  776. if (err)
  777. return err;
  778. /* Connect resources */
  779. src = apcm->src;
  780. for (i = 0; i < apcm->n_amixer; i++) {
  781. amixer = apcm->amixers[i];
  782. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  783. src = src->ops->next_interleave(src);
  784. if (!src)
  785. src = apcm->src;
  786. }
  787. /* Connect to SPDIFOO */
  788. mutex_lock(&atc->atc_mutex);
  789. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  790. amixer = apcm->amixers[0];
  791. dao->ops->set_left_input(dao, &amixer->rsc);
  792. amixer = apcm->amixers[1];
  793. dao->ops->set_right_input(dao, &amixer->rsc);
  794. mutex_unlock(&atc->atc_mutex);
  795. ct_timer_prepare(apcm->timer);
  796. return 0;
  797. }
  798. static int atc_select_line_in(struct ct_atc *atc)
  799. {
  800. struct hw *hw = atc->hw;
  801. struct ct_mixer *mixer = atc->mixer;
  802. struct src *src;
  803. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  804. return 0;
  805. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  806. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  807. hw->select_adc_source(hw, ADC_LINEIN);
  808. src = atc->srcs[2];
  809. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  810. src = atc->srcs[3];
  811. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  812. return 0;
  813. }
  814. static int atc_select_mic_in(struct ct_atc *atc)
  815. {
  816. struct hw *hw = atc->hw;
  817. struct ct_mixer *mixer = atc->mixer;
  818. struct src *src;
  819. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  820. return 0;
  821. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  822. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  823. hw->select_adc_source(hw, ADC_MICIN);
  824. src = atc->srcs[2];
  825. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  826. src = atc->srcs[3];
  827. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  828. return 0;
  829. }
  830. static struct capabilities atc_capabilities(struct ct_atc *atc)
  831. {
  832. struct hw *hw = atc->hw;
  833. return hw->capabilities(hw);
  834. }
  835. static int atc_output_switch_get(struct ct_atc *atc)
  836. {
  837. struct hw *hw = atc->hw;
  838. return hw->output_switch_get(hw);
  839. }
  840. static int atc_output_switch_put(struct ct_atc *atc, int position)
  841. {
  842. struct hw *hw = atc->hw;
  843. return hw->output_switch_put(hw, position);
  844. }
  845. static int atc_mic_source_switch_get(struct ct_atc *atc)
  846. {
  847. struct hw *hw = atc->hw;
  848. return hw->mic_source_switch_get(hw);
  849. }
  850. static int atc_mic_source_switch_put(struct ct_atc *atc, int position)
  851. {
  852. struct hw *hw = atc->hw;
  853. return hw->mic_source_switch_put(hw, position);
  854. }
  855. static int atc_select_digit_io(struct ct_atc *atc)
  856. {
  857. struct hw *hw = atc->hw;
  858. if (hw->is_adc_source_selected(hw, ADC_NONE))
  859. return 0;
  860. hw->select_adc_source(hw, ADC_NONE);
  861. return 0;
  862. }
  863. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  864. {
  865. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  866. if (state)
  867. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  868. else
  869. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  870. daio_mgr->commit_write(daio_mgr);
  871. return 0;
  872. }
  873. static int
  874. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  875. {
  876. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  877. return dao->ops->get_spos(dao, status);
  878. }
  879. static int
  880. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  881. {
  882. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  883. dao->ops->set_spos(dao, status);
  884. dao->ops->commit_write(dao);
  885. return 0;
  886. }
  887. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  888. {
  889. return atc_daio_unmute(atc, state, LINEO1);
  890. }
  891. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  892. {
  893. return atc_daio_unmute(atc, state, LINEO2);
  894. }
  895. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  896. {
  897. return atc_daio_unmute(atc, state, LINEO3);
  898. }
  899. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  900. {
  901. return atc_daio_unmute(atc, state, LINEO4);
  902. }
  903. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  904. {
  905. return atc_daio_unmute(atc, state, LINEIM);
  906. }
  907. static int atc_mic_unmute(struct ct_atc *atc, unsigned char state)
  908. {
  909. return atc_daio_unmute(atc, state, MIC);
  910. }
  911. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  912. {
  913. return atc_daio_unmute(atc, state, SPDIFOO);
  914. }
  915. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  916. {
  917. return atc_daio_unmute(atc, state, SPDIFIO);
  918. }
  919. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  920. {
  921. return atc_dao_get_status(atc, status, SPDIFOO);
  922. }
  923. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  924. {
  925. return atc_dao_set_status(atc, status, SPDIFOO);
  926. }
  927. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  928. {
  929. struct dao_desc da_dsc = {0};
  930. struct dao *dao;
  931. int err;
  932. struct ct_mixer *mixer = atc->mixer;
  933. struct rsc *rscs[2] = {NULL};
  934. unsigned int spos = 0;
  935. mutex_lock(&atc->atc_mutex);
  936. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  937. da_dsc.msr = state ? 1 : atc->msr;
  938. da_dsc.passthru = state ? 1 : 0;
  939. err = dao->ops->reinit(dao, &da_dsc);
  940. if (state) {
  941. spos = IEC958_DEFAULT_CON;
  942. } else {
  943. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  944. &rscs[0], &rscs[1]);
  945. dao->ops->set_left_input(dao, rscs[0]);
  946. dao->ops->set_right_input(dao, rscs[1]);
  947. /* Restore PLL to atc->rsr if needed. */
  948. if (atc->pll_rate != atc->rsr)
  949. err = atc_pll_init(atc, atc->rsr);
  950. }
  951. dao->ops->set_spos(dao, spos);
  952. dao->ops->commit_write(dao);
  953. mutex_unlock(&atc->atc_mutex);
  954. return err;
  955. }
  956. static int atc_release_resources(struct ct_atc *atc)
  957. {
  958. int i;
  959. struct daio_mgr *daio_mgr = NULL;
  960. struct dao *dao = NULL;
  961. struct dai *dai = NULL;
  962. struct daio *daio = NULL;
  963. struct sum_mgr *sum_mgr = NULL;
  964. struct src_mgr *src_mgr = NULL;
  965. struct srcimp_mgr *srcimp_mgr = NULL;
  966. struct srcimp *srcimp = NULL;
  967. struct ct_mixer *mixer = NULL;
  968. /* disconnect internal mixer objects */
  969. if (atc->mixer) {
  970. mixer = atc->mixer;
  971. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  972. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  973. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  974. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  975. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  976. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  977. }
  978. if (atc->daios) {
  979. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  980. for (i = 0; i < atc->n_daio; i++) {
  981. daio = atc->daios[i];
  982. if (daio->type < LINEIM) {
  983. dao = container_of(daio, struct dao, daio);
  984. dao->ops->clear_left_input(dao);
  985. dao->ops->clear_right_input(dao);
  986. } else {
  987. dai = container_of(daio, struct dai, daio);
  988. /* some thing to do for dai ... */
  989. }
  990. daio_mgr->put_daio(daio_mgr, daio);
  991. }
  992. kfree(atc->daios);
  993. atc->daios = NULL;
  994. }
  995. if (atc->pcm) {
  996. sum_mgr = atc->rsc_mgrs[SUM];
  997. for (i = 0; i < atc->n_pcm; i++)
  998. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  999. kfree(atc->pcm);
  1000. atc->pcm = NULL;
  1001. }
  1002. if (atc->srcs) {
  1003. src_mgr = atc->rsc_mgrs[SRC];
  1004. for (i = 0; i < atc->n_src; i++)
  1005. src_mgr->put_src(src_mgr, atc->srcs[i]);
  1006. kfree(atc->srcs);
  1007. atc->srcs = NULL;
  1008. }
  1009. if (atc->srcimps) {
  1010. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1011. for (i = 0; i < atc->n_srcimp; i++) {
  1012. srcimp = atc->srcimps[i];
  1013. srcimp->ops->unmap(srcimp);
  1014. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  1015. }
  1016. kfree(atc->srcimps);
  1017. atc->srcimps = NULL;
  1018. }
  1019. return 0;
  1020. }
  1021. static int ct_atc_destroy(struct ct_atc *atc)
  1022. {
  1023. int i = 0;
  1024. if (!atc)
  1025. return 0;
  1026. if (atc->timer) {
  1027. ct_timer_free(atc->timer);
  1028. atc->timer = NULL;
  1029. }
  1030. atc_release_resources(atc);
  1031. /* Destroy internal mixer objects */
  1032. if (atc->mixer)
  1033. ct_mixer_destroy(atc->mixer);
  1034. for (i = 0; i < NUM_RSCTYP; i++) {
  1035. if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
  1036. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1037. }
  1038. if (atc->hw)
  1039. destroy_hw_obj((struct hw *)atc->hw);
  1040. /* Destroy device virtual memory manager object */
  1041. if (atc->vm) {
  1042. ct_vm_destroy(atc->vm);
  1043. atc->vm = NULL;
  1044. }
  1045. kfree(atc);
  1046. return 0;
  1047. }
  1048. static int atc_dev_free(struct snd_device *dev)
  1049. {
  1050. struct ct_atc *atc = dev->device_data;
  1051. return ct_atc_destroy(atc);
  1052. }
  1053. static int atc_identify_card(struct ct_atc *atc, unsigned int ssid)
  1054. {
  1055. const struct snd_pci_quirk *p;
  1056. const struct snd_pci_quirk *list;
  1057. u16 vendor_id, device_id;
  1058. switch (atc->chip_type) {
  1059. case ATC20K1:
  1060. atc->chip_name = "20K1";
  1061. list = subsys_20k1_list;
  1062. break;
  1063. case ATC20K2:
  1064. atc->chip_name = "20K2";
  1065. list = subsys_20k2_list;
  1066. break;
  1067. default:
  1068. return -ENOENT;
  1069. }
  1070. if (ssid) {
  1071. vendor_id = ssid >> 16;
  1072. device_id = ssid & 0xffff;
  1073. } else {
  1074. vendor_id = atc->pci->subsystem_vendor;
  1075. device_id = atc->pci->subsystem_device;
  1076. }
  1077. p = snd_pci_quirk_lookup_id(vendor_id, device_id, list);
  1078. if (p) {
  1079. if (p->value < 0) {
  1080. printk(KERN_ERR "ctxfi: "
  1081. "Device %04x:%04x is black-listed\n",
  1082. vendor_id, device_id);
  1083. return -ENOENT;
  1084. }
  1085. atc->model = p->value;
  1086. } else {
  1087. if (atc->chip_type == ATC20K1)
  1088. atc->model = CT20K1_UNKNOWN;
  1089. else
  1090. atc->model = CT20K2_UNKNOWN;
  1091. }
  1092. atc->model_name = ct_subsys_name[atc->model];
  1093. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1094. atc->chip_name, atc->model_name,
  1095. vendor_id, device_id);
  1096. return 0;
  1097. }
  1098. int ct_atc_create_alsa_devs(struct ct_atc *atc)
  1099. {
  1100. enum CTALSADEVS i;
  1101. int err;
  1102. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1103. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1104. if (!alsa_dev_funcs[i].create)
  1105. continue;
  1106. err = alsa_dev_funcs[i].create(atc, i,
  1107. alsa_dev_funcs[i].public_name);
  1108. if (err) {
  1109. printk(KERN_ERR "ctxfi: "
  1110. "Creating alsa device %d failed!\n", i);
  1111. return err;
  1112. }
  1113. }
  1114. return 0;
  1115. }
  1116. static int atc_create_hw_devs(struct ct_atc *atc)
  1117. {
  1118. struct hw *hw;
  1119. struct card_conf info = {0};
  1120. int i, err;
  1121. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1122. if (err) {
  1123. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1124. return err;
  1125. }
  1126. atc->hw = hw;
  1127. /* Initialize card hardware. */
  1128. info.rsr = atc->rsr;
  1129. info.msr = atc->msr;
  1130. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1131. err = hw->card_init(hw, &info);
  1132. if (err < 0)
  1133. return err;
  1134. for (i = 0; i < NUM_RSCTYP; i++) {
  1135. if (!rsc_mgr_funcs[i].create)
  1136. continue;
  1137. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1138. if (err) {
  1139. printk(KERN_ERR "ctxfi: "
  1140. "Failed to create rsc_mgr %d!!!\n", i);
  1141. return err;
  1142. }
  1143. }
  1144. return 0;
  1145. }
  1146. static int atc_get_resources(struct ct_atc *atc)
  1147. {
  1148. struct daio_desc da_desc = {0};
  1149. struct daio_mgr *daio_mgr;
  1150. struct src_desc src_dsc = {0};
  1151. struct src_mgr *src_mgr;
  1152. struct srcimp_desc srcimp_dsc = {0};
  1153. struct srcimp_mgr *srcimp_mgr;
  1154. struct sum_desc sum_dsc = {0};
  1155. struct sum_mgr *sum_mgr;
  1156. int err, i, num_srcs, num_daios;
  1157. num_daios = ((atc->model == CTSB1270) ? 8 : 7);
  1158. num_srcs = ((atc->model == CTSB1270) ? 6 : 4);
  1159. atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL);
  1160. if (!atc->daios)
  1161. return -ENOMEM;
  1162. atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
  1163. if (!atc->srcs)
  1164. return -ENOMEM;
  1165. atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL);
  1166. if (!atc->srcimps)
  1167. return -ENOMEM;
  1168. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1169. if (!atc->pcm)
  1170. return -ENOMEM;
  1171. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1172. da_desc.msr = atc->msr;
  1173. for (i = 0, atc->n_daio = 0; i < num_daios; i++) {
  1174. da_desc.type = (atc->model != CTSB073X) ? i :
  1175. ((i == SPDIFIO) ? SPDIFI1 : i);
  1176. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1177. (struct daio **)&atc->daios[i]);
  1178. if (err) {
  1179. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1180. "resource %d!!!\n", i);
  1181. return err;
  1182. }
  1183. atc->n_daio++;
  1184. }
  1185. src_mgr = atc->rsc_mgrs[SRC];
  1186. src_dsc.multi = 1;
  1187. src_dsc.msr = atc->msr;
  1188. src_dsc.mode = ARCRW;
  1189. for (i = 0, atc->n_src = 0; i < num_srcs; i++) {
  1190. err = src_mgr->get_src(src_mgr, &src_dsc,
  1191. (struct src **)&atc->srcs[i]);
  1192. if (err)
  1193. return err;
  1194. atc->n_src++;
  1195. }
  1196. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1197. srcimp_dsc.msr = 8;
  1198. for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) {
  1199. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1200. (struct srcimp **)&atc->srcimps[i]);
  1201. if (err)
  1202. return err;
  1203. atc->n_srcimp++;
  1204. }
  1205. sum_mgr = atc->rsc_mgrs[SUM];
  1206. sum_dsc.msr = atc->msr;
  1207. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1208. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1209. (struct sum **)&atc->pcm[i]);
  1210. if (err)
  1211. return err;
  1212. atc->n_pcm++;
  1213. }
  1214. return 0;
  1215. }
  1216. static void
  1217. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1218. struct src **srcs, struct srcimp **srcimps)
  1219. {
  1220. struct rsc *rscs[2] = {NULL};
  1221. struct src *src;
  1222. struct srcimp *srcimp;
  1223. int i = 0;
  1224. rscs[0] = &dai->daio.rscl;
  1225. rscs[1] = &dai->daio.rscr;
  1226. for (i = 0; i < 2; i++) {
  1227. src = srcs[i];
  1228. srcimp = srcimps[i];
  1229. srcimp->ops->map(srcimp, src, rscs[i]);
  1230. src_mgr->src_disable(src_mgr, src);
  1231. }
  1232. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1233. src = srcs[0];
  1234. src->ops->set_pm(src, 1);
  1235. for (i = 0; i < 2; i++) {
  1236. src = srcs[i];
  1237. src->ops->set_state(src, SRC_STATE_RUN);
  1238. src->ops->commit_write(src);
  1239. src_mgr->src_enable_s(src_mgr, src);
  1240. }
  1241. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1242. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1243. dai->ops->set_enb_src(dai, 1);
  1244. dai->ops->set_enb_srt(dai, 1);
  1245. dai->ops->commit_write(dai);
  1246. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1247. }
  1248. static void atc_connect_resources(struct ct_atc *atc)
  1249. {
  1250. struct dai *dai;
  1251. struct dao *dao;
  1252. struct src *src;
  1253. struct sum *sum;
  1254. struct ct_mixer *mixer;
  1255. struct rsc *rscs[2] = {NULL};
  1256. int i, j;
  1257. mixer = atc->mixer;
  1258. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1259. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1260. dao = container_of(atc->daios[j], struct dao, daio);
  1261. dao->ops->set_left_input(dao, rscs[0]);
  1262. dao->ops->set_right_input(dao, rscs[1]);
  1263. }
  1264. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1265. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1266. (struct src **)&atc->srcs[2],
  1267. (struct srcimp **)&atc->srcimps[2]);
  1268. src = atc->srcs[2];
  1269. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1270. src = atc->srcs[3];
  1271. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1272. if (atc->model == CTSB1270) {
  1273. /* Titanium HD has a dedicated ADC for the Mic. */
  1274. dai = container_of(atc->daios[MIC], struct dai, daio);
  1275. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1276. (struct src **)&atc->srcs[4],
  1277. (struct srcimp **)&atc->srcimps[4]);
  1278. src = atc->srcs[4];
  1279. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  1280. src = atc->srcs[5];
  1281. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  1282. }
  1283. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1284. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1285. (struct src **)&atc->srcs[0],
  1286. (struct srcimp **)&atc->srcimps[0]);
  1287. src = atc->srcs[0];
  1288. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1289. src = atc->srcs[1];
  1290. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1291. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1292. sum = atc->pcm[j];
  1293. mixer->set_input_left(mixer, i, &sum->rsc);
  1294. sum = atc->pcm[j+1];
  1295. mixer->set_input_right(mixer, i, &sum->rsc);
  1296. }
  1297. }
  1298. #ifdef CONFIG_PM_SLEEP
  1299. static int atc_suspend(struct ct_atc *atc)
  1300. {
  1301. int i;
  1302. struct hw *hw = atc->hw;
  1303. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1304. for (i = FRONT; i < NUM_PCMS; i++) {
  1305. if (!atc->pcms[i])
  1306. continue;
  1307. snd_pcm_suspend_all(atc->pcms[i]);
  1308. }
  1309. atc_release_resources(atc);
  1310. hw->suspend(hw);
  1311. return 0;
  1312. }
  1313. static int atc_hw_resume(struct ct_atc *atc)
  1314. {
  1315. struct hw *hw = atc->hw;
  1316. struct card_conf info = {0};
  1317. /* Re-initialize card hardware. */
  1318. info.rsr = atc->rsr;
  1319. info.msr = atc->msr;
  1320. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1321. return hw->resume(hw, &info);
  1322. }
  1323. static int atc_resources_resume(struct ct_atc *atc)
  1324. {
  1325. struct ct_mixer *mixer;
  1326. int err = 0;
  1327. /* Get resources */
  1328. err = atc_get_resources(atc);
  1329. if (err < 0) {
  1330. atc_release_resources(atc);
  1331. return err;
  1332. }
  1333. /* Build topology */
  1334. atc_connect_resources(atc);
  1335. mixer = atc->mixer;
  1336. mixer->resume(mixer);
  1337. return 0;
  1338. }
  1339. static int atc_resume(struct ct_atc *atc)
  1340. {
  1341. int err = 0;
  1342. /* Do hardware resume. */
  1343. err = atc_hw_resume(atc);
  1344. if (err < 0) {
  1345. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1346. "disabling device\n");
  1347. snd_card_disconnect(atc->card);
  1348. return err;
  1349. }
  1350. err = atc_resources_resume(atc);
  1351. if (err < 0)
  1352. return err;
  1353. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1354. return 0;
  1355. }
  1356. #endif
  1357. static struct ct_atc atc_preset = {
  1358. .map_audio_buffer = ct_map_audio_buffer,
  1359. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1360. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1361. .pcm_release_resources = atc_pcm_release_resources,
  1362. .pcm_playback_start = atc_pcm_playback_start,
  1363. .pcm_playback_stop = atc_pcm_stop,
  1364. .pcm_playback_position = atc_pcm_playback_position,
  1365. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1366. .pcm_capture_start = atc_pcm_capture_start,
  1367. .pcm_capture_stop = atc_pcm_stop,
  1368. .pcm_capture_position = atc_pcm_capture_position,
  1369. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1370. .get_ptp_phys = atc_get_ptp_phys,
  1371. .select_line_in = atc_select_line_in,
  1372. .select_mic_in = atc_select_mic_in,
  1373. .select_digit_io = atc_select_digit_io,
  1374. .line_front_unmute = atc_line_front_unmute,
  1375. .line_surround_unmute = atc_line_surround_unmute,
  1376. .line_clfe_unmute = atc_line_clfe_unmute,
  1377. .line_rear_unmute = atc_line_rear_unmute,
  1378. .line_in_unmute = atc_line_in_unmute,
  1379. .mic_unmute = atc_mic_unmute,
  1380. .spdif_out_unmute = atc_spdif_out_unmute,
  1381. .spdif_in_unmute = atc_spdif_in_unmute,
  1382. .spdif_out_get_status = atc_spdif_out_get_status,
  1383. .spdif_out_set_status = atc_spdif_out_set_status,
  1384. .spdif_out_passthru = atc_spdif_out_passthru,
  1385. .capabilities = atc_capabilities,
  1386. .output_switch_get = atc_output_switch_get,
  1387. .output_switch_put = atc_output_switch_put,
  1388. .mic_source_switch_get = atc_mic_source_switch_get,
  1389. .mic_source_switch_put = atc_mic_source_switch_put,
  1390. #ifdef CONFIG_PM_SLEEP
  1391. .suspend = atc_suspend,
  1392. .resume = atc_resume,
  1393. #endif
  1394. };
  1395. /**
  1396. * ct_atc_create - create and initialize a hardware manager
  1397. * @card: corresponding alsa card object
  1398. * @pci: corresponding kernel pci device object
  1399. * @ratc: return created object address in it
  1400. *
  1401. * Creates and initializes a hardware manager.
  1402. *
  1403. * Creates kmallocated ct_atc structure. Initializes hardware.
  1404. * Returns 0 if succeeds, or negative error code if fails.
  1405. */
  1406. int ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1407. unsigned int rsr, unsigned int msr,
  1408. int chip_type, unsigned int ssid,
  1409. struct ct_atc **ratc)
  1410. {
  1411. struct ct_atc *atc;
  1412. static struct snd_device_ops ops = {
  1413. .dev_free = atc_dev_free,
  1414. };
  1415. int err;
  1416. *ratc = NULL;
  1417. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1418. if (!atc)
  1419. return -ENOMEM;
  1420. /* Set operations */
  1421. *atc = atc_preset;
  1422. atc->card = card;
  1423. atc->pci = pci;
  1424. atc->rsr = rsr;
  1425. atc->msr = msr;
  1426. atc->chip_type = chip_type;
  1427. mutex_init(&atc->atc_mutex);
  1428. /* Find card model */
  1429. err = atc_identify_card(atc, ssid);
  1430. if (err < 0) {
  1431. printk(KERN_ERR "ctatc: Card not recognised\n");
  1432. goto error1;
  1433. }
  1434. /* Set up device virtual memory management object */
  1435. err = ct_vm_create(&atc->vm, pci);
  1436. if (err < 0)
  1437. goto error1;
  1438. /* Create all atc hw devices */
  1439. err = atc_create_hw_devs(atc);
  1440. if (err < 0)
  1441. goto error1;
  1442. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1443. if (err) {
  1444. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1445. goto error1;
  1446. }
  1447. /* Get resources */
  1448. err = atc_get_resources(atc);
  1449. if (err < 0)
  1450. goto error1;
  1451. /* Build topology */
  1452. atc_connect_resources(atc);
  1453. atc->timer = ct_timer_new(atc);
  1454. if (!atc->timer) {
  1455. err = -ENOMEM;
  1456. goto error1;
  1457. }
  1458. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1459. if (err < 0)
  1460. goto error1;
  1461. *ratc = atc;
  1462. return 0;
  1463. error1:
  1464. ct_atc_destroy(atc);
  1465. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1466. return err;
  1467. }