svc_rdma_transport.c 38 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369
  1. /*
  2. * Copyright (c) 2014 Open Grid Computing, Inc. All rights reserved.
  3. * Copyright (c) 2005-2007 Network Appliance, Inc. All rights reserved.
  4. *
  5. * This software is available to you under a choice of one of two
  6. * licenses. You may choose to be licensed under the terms of the GNU
  7. * General Public License (GPL) Version 2, available from the file
  8. * COPYING in the main directory of this source tree, or the BSD-type
  9. * license below:
  10. *
  11. * Redistribution and use in source and binary forms, with or without
  12. * modification, are permitted provided that the following conditions
  13. * are met:
  14. *
  15. * Redistributions of source code must retain the above copyright
  16. * notice, this list of conditions and the following disclaimer.
  17. *
  18. * Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials provided
  21. * with the distribution.
  22. *
  23. * Neither the name of the Network Appliance, Inc. nor the names of
  24. * its contributors may be used to endorse or promote products
  25. * derived from this software without specific prior written
  26. * permission.
  27. *
  28. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  31. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  32. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  33. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  34. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  35. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  36. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  38. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  39. *
  40. * Author: Tom Tucker <tom@opengridcomputing.com>
  41. */
  42. #include <linux/sunrpc/svc_xprt.h>
  43. #include <linux/sunrpc/debug.h>
  44. #include <linux/sunrpc/rpc_rdma.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/sched.h>
  47. #include <linux/slab.h>
  48. #include <linux/spinlock.h>
  49. #include <linux/workqueue.h>
  50. #include <rdma/ib_verbs.h>
  51. #include <rdma/rdma_cm.h>
  52. #include <linux/sunrpc/svc_rdma.h>
  53. #include <linux/export.h>
  54. #include "xprt_rdma.h"
  55. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  56. static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
  57. struct net *net,
  58. struct sockaddr *sa, int salen,
  59. int flags);
  60. static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt);
  61. static void svc_rdma_release_rqst(struct svc_rqst *);
  62. static void dto_tasklet_func(unsigned long data);
  63. static void svc_rdma_detach(struct svc_xprt *xprt);
  64. static void svc_rdma_free(struct svc_xprt *xprt);
  65. static int svc_rdma_has_wspace(struct svc_xprt *xprt);
  66. static int svc_rdma_secure_port(struct svc_rqst *);
  67. static void rq_cq_reap(struct svcxprt_rdma *xprt);
  68. static void sq_cq_reap(struct svcxprt_rdma *xprt);
  69. static DECLARE_TASKLET(dto_tasklet, dto_tasklet_func, 0UL);
  70. static DEFINE_SPINLOCK(dto_lock);
  71. static LIST_HEAD(dto_xprt_q);
  72. static struct svc_xprt_ops svc_rdma_ops = {
  73. .xpo_create = svc_rdma_create,
  74. .xpo_recvfrom = svc_rdma_recvfrom,
  75. .xpo_sendto = svc_rdma_sendto,
  76. .xpo_release_rqst = svc_rdma_release_rqst,
  77. .xpo_detach = svc_rdma_detach,
  78. .xpo_free = svc_rdma_free,
  79. .xpo_prep_reply_hdr = svc_rdma_prep_reply_hdr,
  80. .xpo_has_wspace = svc_rdma_has_wspace,
  81. .xpo_accept = svc_rdma_accept,
  82. .xpo_secure_port = svc_rdma_secure_port,
  83. };
  84. struct svc_xprt_class svc_rdma_class = {
  85. .xcl_name = "rdma",
  86. .xcl_owner = THIS_MODULE,
  87. .xcl_ops = &svc_rdma_ops,
  88. .xcl_max_payload = RPCSVC_MAXPAYLOAD_TCP,
  89. };
  90. struct svc_rdma_op_ctxt *svc_rdma_get_context(struct svcxprt_rdma *xprt)
  91. {
  92. struct svc_rdma_op_ctxt *ctxt;
  93. while (1) {
  94. ctxt = kmem_cache_alloc(svc_rdma_ctxt_cachep, GFP_KERNEL);
  95. if (ctxt)
  96. break;
  97. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  98. }
  99. ctxt->xprt = xprt;
  100. INIT_LIST_HEAD(&ctxt->dto_q);
  101. ctxt->count = 0;
  102. ctxt->frmr = NULL;
  103. atomic_inc(&xprt->sc_ctxt_used);
  104. return ctxt;
  105. }
  106. void svc_rdma_unmap_dma(struct svc_rdma_op_ctxt *ctxt)
  107. {
  108. struct svcxprt_rdma *xprt = ctxt->xprt;
  109. int i;
  110. for (i = 0; i < ctxt->count && ctxt->sge[i].length; i++) {
  111. /*
  112. * Unmap the DMA addr in the SGE if the lkey matches
  113. * the sc_dma_lkey, otherwise, ignore it since it is
  114. * an FRMR lkey and will be unmapped later when the
  115. * last WR that uses it completes.
  116. */
  117. if (ctxt->sge[i].lkey == xprt->sc_dma_lkey) {
  118. atomic_dec(&xprt->sc_dma_used);
  119. ib_dma_unmap_page(xprt->sc_cm_id->device,
  120. ctxt->sge[i].addr,
  121. ctxt->sge[i].length,
  122. ctxt->direction);
  123. }
  124. }
  125. }
  126. void svc_rdma_put_context(struct svc_rdma_op_ctxt *ctxt, int free_pages)
  127. {
  128. struct svcxprt_rdma *xprt;
  129. int i;
  130. BUG_ON(!ctxt);
  131. xprt = ctxt->xprt;
  132. if (free_pages)
  133. for (i = 0; i < ctxt->count; i++)
  134. put_page(ctxt->pages[i]);
  135. kmem_cache_free(svc_rdma_ctxt_cachep, ctxt);
  136. atomic_dec(&xprt->sc_ctxt_used);
  137. }
  138. /*
  139. * Temporary NFS req mappings are shared across all transport
  140. * instances. These are short lived and should be bounded by the number
  141. * of concurrent server threads * depth of the SQ.
  142. */
  143. struct svc_rdma_req_map *svc_rdma_get_req_map(void)
  144. {
  145. struct svc_rdma_req_map *map;
  146. while (1) {
  147. map = kmem_cache_alloc(svc_rdma_map_cachep, GFP_KERNEL);
  148. if (map)
  149. break;
  150. schedule_timeout_uninterruptible(msecs_to_jiffies(500));
  151. }
  152. map->count = 0;
  153. return map;
  154. }
  155. void svc_rdma_put_req_map(struct svc_rdma_req_map *map)
  156. {
  157. kmem_cache_free(svc_rdma_map_cachep, map);
  158. }
  159. /* ib_cq event handler */
  160. static void cq_event_handler(struct ib_event *event, void *context)
  161. {
  162. struct svc_xprt *xprt = context;
  163. dprintk("svcrdma: received CQ event id=%d, context=%p\n",
  164. event->event, context);
  165. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  166. }
  167. /* QP event handler */
  168. static void qp_event_handler(struct ib_event *event, void *context)
  169. {
  170. struct svc_xprt *xprt = context;
  171. switch (event->event) {
  172. /* These are considered benign events */
  173. case IB_EVENT_PATH_MIG:
  174. case IB_EVENT_COMM_EST:
  175. case IB_EVENT_SQ_DRAINED:
  176. case IB_EVENT_QP_LAST_WQE_REACHED:
  177. dprintk("svcrdma: QP event %d received for QP=%p\n",
  178. event->event, event->element.qp);
  179. break;
  180. /* These are considered fatal events */
  181. case IB_EVENT_PATH_MIG_ERR:
  182. case IB_EVENT_QP_FATAL:
  183. case IB_EVENT_QP_REQ_ERR:
  184. case IB_EVENT_QP_ACCESS_ERR:
  185. case IB_EVENT_DEVICE_FATAL:
  186. default:
  187. dprintk("svcrdma: QP ERROR event %d received for QP=%p, "
  188. "closing transport\n",
  189. event->event, event->element.qp);
  190. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  191. break;
  192. }
  193. }
  194. /*
  195. * Data Transfer Operation Tasklet
  196. *
  197. * Walks a list of transports with I/O pending, removing entries as
  198. * they are added to the server's I/O pending list. Two bits indicate
  199. * if SQ, RQ, or both have I/O pending. The dto_lock is an irqsave
  200. * spinlock that serializes access to the transport list with the RQ
  201. * and SQ interrupt handlers.
  202. */
  203. static void dto_tasklet_func(unsigned long data)
  204. {
  205. struct svcxprt_rdma *xprt;
  206. unsigned long flags;
  207. spin_lock_irqsave(&dto_lock, flags);
  208. while (!list_empty(&dto_xprt_q)) {
  209. xprt = list_entry(dto_xprt_q.next,
  210. struct svcxprt_rdma, sc_dto_q);
  211. list_del_init(&xprt->sc_dto_q);
  212. spin_unlock_irqrestore(&dto_lock, flags);
  213. rq_cq_reap(xprt);
  214. sq_cq_reap(xprt);
  215. svc_xprt_put(&xprt->sc_xprt);
  216. spin_lock_irqsave(&dto_lock, flags);
  217. }
  218. spin_unlock_irqrestore(&dto_lock, flags);
  219. }
  220. /*
  221. * Receive Queue Completion Handler
  222. *
  223. * Since an RQ completion handler is called on interrupt context, we
  224. * need to defer the handling of the I/O to a tasklet
  225. */
  226. static void rq_comp_handler(struct ib_cq *cq, void *cq_context)
  227. {
  228. struct svcxprt_rdma *xprt = cq_context;
  229. unsigned long flags;
  230. /* Guard against unconditional flush call for destroyed QP */
  231. if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
  232. return;
  233. /*
  234. * Set the bit regardless of whether or not it's on the list
  235. * because it may be on the list already due to an SQ
  236. * completion.
  237. */
  238. set_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags);
  239. /*
  240. * If this transport is not already on the DTO transport queue,
  241. * add it
  242. */
  243. spin_lock_irqsave(&dto_lock, flags);
  244. if (list_empty(&xprt->sc_dto_q)) {
  245. svc_xprt_get(&xprt->sc_xprt);
  246. list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
  247. }
  248. spin_unlock_irqrestore(&dto_lock, flags);
  249. /* Tasklet does all the work to avoid irqsave locks. */
  250. tasklet_schedule(&dto_tasklet);
  251. }
  252. /*
  253. * rq_cq_reap - Process the RQ CQ.
  254. *
  255. * Take all completing WC off the CQE and enqueue the associated DTO
  256. * context on the dto_q for the transport.
  257. *
  258. * Note that caller must hold a transport reference.
  259. */
  260. static void rq_cq_reap(struct svcxprt_rdma *xprt)
  261. {
  262. int ret;
  263. struct ib_wc wc;
  264. struct svc_rdma_op_ctxt *ctxt = NULL;
  265. if (!test_and_clear_bit(RDMAXPRT_RQ_PENDING, &xprt->sc_flags))
  266. return;
  267. ib_req_notify_cq(xprt->sc_rq_cq, IB_CQ_NEXT_COMP);
  268. atomic_inc(&rdma_stat_rq_poll);
  269. while ((ret = ib_poll_cq(xprt->sc_rq_cq, 1, &wc)) > 0) {
  270. ctxt = (struct svc_rdma_op_ctxt *)(unsigned long)wc.wr_id;
  271. ctxt->wc_status = wc.status;
  272. ctxt->byte_len = wc.byte_len;
  273. svc_rdma_unmap_dma(ctxt);
  274. if (wc.status != IB_WC_SUCCESS) {
  275. /* Close the transport */
  276. dprintk("svcrdma: transport closing putting ctxt %p\n", ctxt);
  277. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  278. svc_rdma_put_context(ctxt, 1);
  279. svc_xprt_put(&xprt->sc_xprt);
  280. continue;
  281. }
  282. spin_lock_bh(&xprt->sc_rq_dto_lock);
  283. list_add_tail(&ctxt->dto_q, &xprt->sc_rq_dto_q);
  284. spin_unlock_bh(&xprt->sc_rq_dto_lock);
  285. svc_xprt_put(&xprt->sc_xprt);
  286. }
  287. if (ctxt)
  288. atomic_inc(&rdma_stat_rq_prod);
  289. set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
  290. /*
  291. * If data arrived before established event,
  292. * don't enqueue. This defers RPC I/O until the
  293. * RDMA connection is complete.
  294. */
  295. if (!test_bit(RDMAXPRT_CONN_PENDING, &xprt->sc_flags))
  296. svc_xprt_enqueue(&xprt->sc_xprt);
  297. }
  298. /*
  299. * Process a completion context
  300. */
  301. static void process_context(struct svcxprt_rdma *xprt,
  302. struct svc_rdma_op_ctxt *ctxt)
  303. {
  304. svc_rdma_unmap_dma(ctxt);
  305. switch (ctxt->wr_op) {
  306. case IB_WR_SEND:
  307. BUG_ON(ctxt->frmr);
  308. svc_rdma_put_context(ctxt, 1);
  309. break;
  310. case IB_WR_RDMA_WRITE:
  311. BUG_ON(ctxt->frmr);
  312. svc_rdma_put_context(ctxt, 0);
  313. break;
  314. case IB_WR_RDMA_READ:
  315. case IB_WR_RDMA_READ_WITH_INV:
  316. svc_rdma_put_frmr(xprt, ctxt->frmr);
  317. if (test_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags)) {
  318. struct svc_rdma_op_ctxt *read_hdr = ctxt->read_hdr;
  319. BUG_ON(!read_hdr);
  320. spin_lock_bh(&xprt->sc_rq_dto_lock);
  321. set_bit(XPT_DATA, &xprt->sc_xprt.xpt_flags);
  322. list_add_tail(&read_hdr->dto_q,
  323. &xprt->sc_read_complete_q);
  324. spin_unlock_bh(&xprt->sc_rq_dto_lock);
  325. svc_xprt_enqueue(&xprt->sc_xprt);
  326. }
  327. svc_rdma_put_context(ctxt, 0);
  328. break;
  329. default:
  330. BUG_ON(1);
  331. printk(KERN_ERR "svcrdma: unexpected completion type, "
  332. "opcode=%d\n",
  333. ctxt->wr_op);
  334. break;
  335. }
  336. }
  337. /*
  338. * Send Queue Completion Handler - potentially called on interrupt context.
  339. *
  340. * Note that caller must hold a transport reference.
  341. */
  342. static void sq_cq_reap(struct svcxprt_rdma *xprt)
  343. {
  344. struct svc_rdma_op_ctxt *ctxt = NULL;
  345. struct ib_wc wc_a[6];
  346. struct ib_wc *wc;
  347. struct ib_cq *cq = xprt->sc_sq_cq;
  348. int ret;
  349. memset(wc_a, 0, sizeof(wc_a));
  350. if (!test_and_clear_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags))
  351. return;
  352. ib_req_notify_cq(xprt->sc_sq_cq, IB_CQ_NEXT_COMP);
  353. atomic_inc(&rdma_stat_sq_poll);
  354. while ((ret = ib_poll_cq(cq, ARRAY_SIZE(wc_a), wc_a)) > 0) {
  355. int i;
  356. for (i = 0; i < ret; i++) {
  357. wc = &wc_a[i];
  358. if (wc->status != IB_WC_SUCCESS) {
  359. dprintk("svcrdma: sq wc err status %d\n",
  360. wc->status);
  361. /* Close the transport */
  362. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  363. }
  364. /* Decrement used SQ WR count */
  365. atomic_dec(&xprt->sc_sq_count);
  366. wake_up(&xprt->sc_send_wait);
  367. ctxt = (struct svc_rdma_op_ctxt *)
  368. (unsigned long)wc->wr_id;
  369. if (ctxt)
  370. process_context(xprt, ctxt);
  371. svc_xprt_put(&xprt->sc_xprt);
  372. }
  373. }
  374. if (ctxt)
  375. atomic_inc(&rdma_stat_sq_prod);
  376. }
  377. static void sq_comp_handler(struct ib_cq *cq, void *cq_context)
  378. {
  379. struct svcxprt_rdma *xprt = cq_context;
  380. unsigned long flags;
  381. /* Guard against unconditional flush call for destroyed QP */
  382. if (atomic_read(&xprt->sc_xprt.xpt_ref.refcount)==0)
  383. return;
  384. /*
  385. * Set the bit regardless of whether or not it's on the list
  386. * because it may be on the list already due to an RQ
  387. * completion.
  388. */
  389. set_bit(RDMAXPRT_SQ_PENDING, &xprt->sc_flags);
  390. /*
  391. * If this transport is not already on the DTO transport queue,
  392. * add it
  393. */
  394. spin_lock_irqsave(&dto_lock, flags);
  395. if (list_empty(&xprt->sc_dto_q)) {
  396. svc_xprt_get(&xprt->sc_xprt);
  397. list_add_tail(&xprt->sc_dto_q, &dto_xprt_q);
  398. }
  399. spin_unlock_irqrestore(&dto_lock, flags);
  400. /* Tasklet does all the work to avoid irqsave locks. */
  401. tasklet_schedule(&dto_tasklet);
  402. }
  403. static struct svcxprt_rdma *rdma_create_xprt(struct svc_serv *serv,
  404. int listener)
  405. {
  406. struct svcxprt_rdma *cma_xprt = kzalloc(sizeof *cma_xprt, GFP_KERNEL);
  407. if (!cma_xprt)
  408. return NULL;
  409. svc_xprt_init(&init_net, &svc_rdma_class, &cma_xprt->sc_xprt, serv);
  410. INIT_LIST_HEAD(&cma_xprt->sc_accept_q);
  411. INIT_LIST_HEAD(&cma_xprt->sc_dto_q);
  412. INIT_LIST_HEAD(&cma_xprt->sc_rq_dto_q);
  413. INIT_LIST_HEAD(&cma_xprt->sc_read_complete_q);
  414. INIT_LIST_HEAD(&cma_xprt->sc_frmr_q);
  415. init_waitqueue_head(&cma_xprt->sc_send_wait);
  416. spin_lock_init(&cma_xprt->sc_lock);
  417. spin_lock_init(&cma_xprt->sc_rq_dto_lock);
  418. spin_lock_init(&cma_xprt->sc_frmr_q_lock);
  419. cma_xprt->sc_ord = svcrdma_ord;
  420. cma_xprt->sc_max_req_size = svcrdma_max_req_size;
  421. cma_xprt->sc_max_requests = svcrdma_max_requests;
  422. cma_xprt->sc_sq_depth = svcrdma_max_requests * RPCRDMA_SQ_DEPTH_MULT;
  423. atomic_set(&cma_xprt->sc_sq_count, 0);
  424. atomic_set(&cma_xprt->sc_ctxt_used, 0);
  425. if (listener)
  426. set_bit(XPT_LISTENER, &cma_xprt->sc_xprt.xpt_flags);
  427. return cma_xprt;
  428. }
  429. struct page *svc_rdma_get_page(void)
  430. {
  431. struct page *page;
  432. while ((page = alloc_page(GFP_KERNEL)) == NULL) {
  433. /* If we can't get memory, wait a bit and try again */
  434. printk(KERN_INFO "svcrdma: out of memory...retrying in 1s\n");
  435. schedule_timeout_uninterruptible(msecs_to_jiffies(1000));
  436. }
  437. return page;
  438. }
  439. int svc_rdma_post_recv(struct svcxprt_rdma *xprt)
  440. {
  441. struct ib_recv_wr recv_wr, *bad_recv_wr;
  442. struct svc_rdma_op_ctxt *ctxt;
  443. struct page *page;
  444. dma_addr_t pa;
  445. int sge_no;
  446. int buflen;
  447. int ret;
  448. ctxt = svc_rdma_get_context(xprt);
  449. buflen = 0;
  450. ctxt->direction = DMA_FROM_DEVICE;
  451. for (sge_no = 0; buflen < xprt->sc_max_req_size; sge_no++) {
  452. BUG_ON(sge_no >= xprt->sc_max_sge);
  453. page = svc_rdma_get_page();
  454. ctxt->pages[sge_no] = page;
  455. pa = ib_dma_map_page(xprt->sc_cm_id->device,
  456. page, 0, PAGE_SIZE,
  457. DMA_FROM_DEVICE);
  458. if (ib_dma_mapping_error(xprt->sc_cm_id->device, pa))
  459. goto err_put_ctxt;
  460. atomic_inc(&xprt->sc_dma_used);
  461. ctxt->sge[sge_no].addr = pa;
  462. ctxt->sge[sge_no].length = PAGE_SIZE;
  463. ctxt->sge[sge_no].lkey = xprt->sc_dma_lkey;
  464. ctxt->count = sge_no + 1;
  465. buflen += PAGE_SIZE;
  466. }
  467. recv_wr.next = NULL;
  468. recv_wr.sg_list = &ctxt->sge[0];
  469. recv_wr.num_sge = ctxt->count;
  470. recv_wr.wr_id = (u64)(unsigned long)ctxt;
  471. svc_xprt_get(&xprt->sc_xprt);
  472. ret = ib_post_recv(xprt->sc_qp, &recv_wr, &bad_recv_wr);
  473. if (ret) {
  474. svc_rdma_unmap_dma(ctxt);
  475. svc_rdma_put_context(ctxt, 1);
  476. svc_xprt_put(&xprt->sc_xprt);
  477. }
  478. return ret;
  479. err_put_ctxt:
  480. svc_rdma_unmap_dma(ctxt);
  481. svc_rdma_put_context(ctxt, 1);
  482. return -ENOMEM;
  483. }
  484. /*
  485. * This function handles the CONNECT_REQUEST event on a listening
  486. * endpoint. It is passed the cma_id for the _new_ connection. The context in
  487. * this cma_id is inherited from the listening cma_id and is the svc_xprt
  488. * structure for the listening endpoint.
  489. *
  490. * This function creates a new xprt for the new connection and enqueues it on
  491. * the accept queue for the listent xprt. When the listen thread is kicked, it
  492. * will call the recvfrom method on the listen xprt which will accept the new
  493. * connection.
  494. */
  495. static void handle_connect_req(struct rdma_cm_id *new_cma_id, size_t client_ird)
  496. {
  497. struct svcxprt_rdma *listen_xprt = new_cma_id->context;
  498. struct svcxprt_rdma *newxprt;
  499. struct sockaddr *sa;
  500. /* Create a new transport */
  501. newxprt = rdma_create_xprt(listen_xprt->sc_xprt.xpt_server, 0);
  502. if (!newxprt) {
  503. dprintk("svcrdma: failed to create new transport\n");
  504. return;
  505. }
  506. newxprt->sc_cm_id = new_cma_id;
  507. new_cma_id->context = newxprt;
  508. dprintk("svcrdma: Creating newxprt=%p, cm_id=%p, listenxprt=%p\n",
  509. newxprt, newxprt->sc_cm_id, listen_xprt);
  510. /* Save client advertised inbound read limit for use later in accept. */
  511. newxprt->sc_ord = client_ird;
  512. /* Set the local and remote addresses in the transport */
  513. sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.dst_addr;
  514. svc_xprt_set_remote(&newxprt->sc_xprt, sa, svc_addr_len(sa));
  515. sa = (struct sockaddr *)&newxprt->sc_cm_id->route.addr.src_addr;
  516. svc_xprt_set_local(&newxprt->sc_xprt, sa, svc_addr_len(sa));
  517. /*
  518. * Enqueue the new transport on the accept queue of the listening
  519. * transport
  520. */
  521. spin_lock_bh(&listen_xprt->sc_lock);
  522. list_add_tail(&newxprt->sc_accept_q, &listen_xprt->sc_accept_q);
  523. spin_unlock_bh(&listen_xprt->sc_lock);
  524. set_bit(XPT_CONN, &listen_xprt->sc_xprt.xpt_flags);
  525. svc_xprt_enqueue(&listen_xprt->sc_xprt);
  526. }
  527. /*
  528. * Handles events generated on the listening endpoint. These events will be
  529. * either be incoming connect requests or adapter removal events.
  530. */
  531. static int rdma_listen_handler(struct rdma_cm_id *cma_id,
  532. struct rdma_cm_event *event)
  533. {
  534. struct svcxprt_rdma *xprt = cma_id->context;
  535. int ret = 0;
  536. switch (event->event) {
  537. case RDMA_CM_EVENT_CONNECT_REQUEST:
  538. dprintk("svcrdma: Connect request on cma_id=%p, xprt = %p, "
  539. "event=%d\n", cma_id, cma_id->context, event->event);
  540. handle_connect_req(cma_id,
  541. event->param.conn.initiator_depth);
  542. break;
  543. case RDMA_CM_EVENT_ESTABLISHED:
  544. /* Accept complete */
  545. dprintk("svcrdma: Connection completed on LISTEN xprt=%p, "
  546. "cm_id=%p\n", xprt, cma_id);
  547. break;
  548. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  549. dprintk("svcrdma: Device removal xprt=%p, cm_id=%p\n",
  550. xprt, cma_id);
  551. if (xprt)
  552. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  553. break;
  554. default:
  555. dprintk("svcrdma: Unexpected event on listening endpoint %p, "
  556. "event=%d\n", cma_id, event->event);
  557. break;
  558. }
  559. return ret;
  560. }
  561. static int rdma_cma_handler(struct rdma_cm_id *cma_id,
  562. struct rdma_cm_event *event)
  563. {
  564. struct svc_xprt *xprt = cma_id->context;
  565. struct svcxprt_rdma *rdma =
  566. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  567. switch (event->event) {
  568. case RDMA_CM_EVENT_ESTABLISHED:
  569. /* Accept complete */
  570. svc_xprt_get(xprt);
  571. dprintk("svcrdma: Connection completed on DTO xprt=%p, "
  572. "cm_id=%p\n", xprt, cma_id);
  573. clear_bit(RDMAXPRT_CONN_PENDING, &rdma->sc_flags);
  574. svc_xprt_enqueue(xprt);
  575. break;
  576. case RDMA_CM_EVENT_DISCONNECTED:
  577. dprintk("svcrdma: Disconnect on DTO xprt=%p, cm_id=%p\n",
  578. xprt, cma_id);
  579. if (xprt) {
  580. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  581. svc_xprt_enqueue(xprt);
  582. svc_xprt_put(xprt);
  583. }
  584. break;
  585. case RDMA_CM_EVENT_DEVICE_REMOVAL:
  586. dprintk("svcrdma: Device removal cma_id=%p, xprt = %p, "
  587. "event=%d\n", cma_id, xprt, event->event);
  588. if (xprt) {
  589. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  590. svc_xprt_enqueue(xprt);
  591. }
  592. break;
  593. default:
  594. dprintk("svcrdma: Unexpected event on DTO endpoint %p, "
  595. "event=%d\n", cma_id, event->event);
  596. break;
  597. }
  598. return 0;
  599. }
  600. /*
  601. * Create a listening RDMA service endpoint.
  602. */
  603. static struct svc_xprt *svc_rdma_create(struct svc_serv *serv,
  604. struct net *net,
  605. struct sockaddr *sa, int salen,
  606. int flags)
  607. {
  608. struct rdma_cm_id *listen_id;
  609. struct svcxprt_rdma *cma_xprt;
  610. struct svc_xprt *xprt;
  611. int ret;
  612. dprintk("svcrdma: Creating RDMA socket\n");
  613. if (sa->sa_family != AF_INET) {
  614. dprintk("svcrdma: Address family %d is not supported.\n", sa->sa_family);
  615. return ERR_PTR(-EAFNOSUPPORT);
  616. }
  617. cma_xprt = rdma_create_xprt(serv, 1);
  618. if (!cma_xprt)
  619. return ERR_PTR(-ENOMEM);
  620. xprt = &cma_xprt->sc_xprt;
  621. listen_id = rdma_create_id(rdma_listen_handler, cma_xprt, RDMA_PS_TCP,
  622. IB_QPT_RC);
  623. if (IS_ERR(listen_id)) {
  624. ret = PTR_ERR(listen_id);
  625. dprintk("svcrdma: rdma_create_id failed = %d\n", ret);
  626. goto err0;
  627. }
  628. ret = rdma_bind_addr(listen_id, sa);
  629. if (ret) {
  630. dprintk("svcrdma: rdma_bind_addr failed = %d\n", ret);
  631. goto err1;
  632. }
  633. cma_xprt->sc_cm_id = listen_id;
  634. ret = rdma_listen(listen_id, RPCRDMA_LISTEN_BACKLOG);
  635. if (ret) {
  636. dprintk("svcrdma: rdma_listen failed = %d\n", ret);
  637. goto err1;
  638. }
  639. /*
  640. * We need to use the address from the cm_id in case the
  641. * caller specified 0 for the port number.
  642. */
  643. sa = (struct sockaddr *)&cma_xprt->sc_cm_id->route.addr.src_addr;
  644. svc_xprt_set_local(&cma_xprt->sc_xprt, sa, salen);
  645. return &cma_xprt->sc_xprt;
  646. err1:
  647. rdma_destroy_id(listen_id);
  648. err0:
  649. kfree(cma_xprt);
  650. return ERR_PTR(ret);
  651. }
  652. static struct svc_rdma_fastreg_mr *rdma_alloc_frmr(struct svcxprt_rdma *xprt)
  653. {
  654. struct ib_mr *mr;
  655. struct ib_fast_reg_page_list *pl;
  656. struct svc_rdma_fastreg_mr *frmr;
  657. frmr = kmalloc(sizeof(*frmr), GFP_KERNEL);
  658. if (!frmr)
  659. goto err;
  660. mr = ib_alloc_fast_reg_mr(xprt->sc_pd, RPCSVC_MAXPAGES);
  661. if (IS_ERR(mr))
  662. goto err_free_frmr;
  663. pl = ib_alloc_fast_reg_page_list(xprt->sc_cm_id->device,
  664. RPCSVC_MAXPAGES);
  665. if (IS_ERR(pl))
  666. goto err_free_mr;
  667. frmr->mr = mr;
  668. frmr->page_list = pl;
  669. INIT_LIST_HEAD(&frmr->frmr_list);
  670. return frmr;
  671. err_free_mr:
  672. ib_dereg_mr(mr);
  673. err_free_frmr:
  674. kfree(frmr);
  675. err:
  676. return ERR_PTR(-ENOMEM);
  677. }
  678. static void rdma_dealloc_frmr_q(struct svcxprt_rdma *xprt)
  679. {
  680. struct svc_rdma_fastreg_mr *frmr;
  681. while (!list_empty(&xprt->sc_frmr_q)) {
  682. frmr = list_entry(xprt->sc_frmr_q.next,
  683. struct svc_rdma_fastreg_mr, frmr_list);
  684. list_del_init(&frmr->frmr_list);
  685. ib_dereg_mr(frmr->mr);
  686. ib_free_fast_reg_page_list(frmr->page_list);
  687. kfree(frmr);
  688. }
  689. }
  690. struct svc_rdma_fastreg_mr *svc_rdma_get_frmr(struct svcxprt_rdma *rdma)
  691. {
  692. struct svc_rdma_fastreg_mr *frmr = NULL;
  693. spin_lock_bh(&rdma->sc_frmr_q_lock);
  694. if (!list_empty(&rdma->sc_frmr_q)) {
  695. frmr = list_entry(rdma->sc_frmr_q.next,
  696. struct svc_rdma_fastreg_mr, frmr_list);
  697. list_del_init(&frmr->frmr_list);
  698. frmr->map_len = 0;
  699. frmr->page_list_len = 0;
  700. }
  701. spin_unlock_bh(&rdma->sc_frmr_q_lock);
  702. if (frmr)
  703. return frmr;
  704. return rdma_alloc_frmr(rdma);
  705. }
  706. static void frmr_unmap_dma(struct svcxprt_rdma *xprt,
  707. struct svc_rdma_fastreg_mr *frmr)
  708. {
  709. int page_no;
  710. for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
  711. dma_addr_t addr = frmr->page_list->page_list[page_no];
  712. if (ib_dma_mapping_error(frmr->mr->device, addr))
  713. continue;
  714. atomic_dec(&xprt->sc_dma_used);
  715. ib_dma_unmap_page(frmr->mr->device, addr, PAGE_SIZE,
  716. frmr->direction);
  717. }
  718. }
  719. void svc_rdma_put_frmr(struct svcxprt_rdma *rdma,
  720. struct svc_rdma_fastreg_mr *frmr)
  721. {
  722. if (frmr) {
  723. frmr_unmap_dma(rdma, frmr);
  724. spin_lock_bh(&rdma->sc_frmr_q_lock);
  725. BUG_ON(!list_empty(&frmr->frmr_list));
  726. list_add(&frmr->frmr_list, &rdma->sc_frmr_q);
  727. spin_unlock_bh(&rdma->sc_frmr_q_lock);
  728. }
  729. }
  730. /*
  731. * This is the xpo_recvfrom function for listening endpoints. Its
  732. * purpose is to accept incoming connections. The CMA callback handler
  733. * has already created a new transport and attached it to the new CMA
  734. * ID.
  735. *
  736. * There is a queue of pending connections hung on the listening
  737. * transport. This queue contains the new svc_xprt structure. This
  738. * function takes svc_xprt structures off the accept_q and completes
  739. * the connection.
  740. */
  741. static struct svc_xprt *svc_rdma_accept(struct svc_xprt *xprt)
  742. {
  743. struct svcxprt_rdma *listen_rdma;
  744. struct svcxprt_rdma *newxprt = NULL;
  745. struct rdma_conn_param conn_param;
  746. struct ib_qp_init_attr qp_attr;
  747. struct ib_device_attr devattr;
  748. int uninitialized_var(dma_mr_acc);
  749. int need_dma_mr;
  750. int ret;
  751. int i;
  752. listen_rdma = container_of(xprt, struct svcxprt_rdma, sc_xprt);
  753. clear_bit(XPT_CONN, &xprt->xpt_flags);
  754. /* Get the next entry off the accept list */
  755. spin_lock_bh(&listen_rdma->sc_lock);
  756. if (!list_empty(&listen_rdma->sc_accept_q)) {
  757. newxprt = list_entry(listen_rdma->sc_accept_q.next,
  758. struct svcxprt_rdma, sc_accept_q);
  759. list_del_init(&newxprt->sc_accept_q);
  760. }
  761. if (!list_empty(&listen_rdma->sc_accept_q))
  762. set_bit(XPT_CONN, &listen_rdma->sc_xprt.xpt_flags);
  763. spin_unlock_bh(&listen_rdma->sc_lock);
  764. if (!newxprt)
  765. return NULL;
  766. dprintk("svcrdma: newxprt from accept queue = %p, cm_id=%p\n",
  767. newxprt, newxprt->sc_cm_id);
  768. ret = ib_query_device(newxprt->sc_cm_id->device, &devattr);
  769. if (ret) {
  770. dprintk("svcrdma: could not query device attributes on "
  771. "device %p, rc=%d\n", newxprt->sc_cm_id->device, ret);
  772. goto errout;
  773. }
  774. /* Qualify the transport resource defaults with the
  775. * capabilities of this particular device */
  776. newxprt->sc_max_sge = min((size_t)devattr.max_sge,
  777. (size_t)RPCSVC_MAXPAGES);
  778. newxprt->sc_max_requests = min((size_t)devattr.max_qp_wr,
  779. (size_t)svcrdma_max_requests);
  780. newxprt->sc_sq_depth = RPCRDMA_SQ_DEPTH_MULT * newxprt->sc_max_requests;
  781. /*
  782. * Limit ORD based on client limit, local device limit, and
  783. * configured svcrdma limit.
  784. */
  785. newxprt->sc_ord = min_t(size_t, devattr.max_qp_rd_atom, newxprt->sc_ord);
  786. newxprt->sc_ord = min_t(size_t, svcrdma_ord, newxprt->sc_ord);
  787. newxprt->sc_pd = ib_alloc_pd(newxprt->sc_cm_id->device);
  788. if (IS_ERR(newxprt->sc_pd)) {
  789. dprintk("svcrdma: error creating PD for connect request\n");
  790. goto errout;
  791. }
  792. newxprt->sc_sq_cq = ib_create_cq(newxprt->sc_cm_id->device,
  793. sq_comp_handler,
  794. cq_event_handler,
  795. newxprt,
  796. newxprt->sc_sq_depth,
  797. 0);
  798. if (IS_ERR(newxprt->sc_sq_cq)) {
  799. dprintk("svcrdma: error creating SQ CQ for connect request\n");
  800. goto errout;
  801. }
  802. newxprt->sc_rq_cq = ib_create_cq(newxprt->sc_cm_id->device,
  803. rq_comp_handler,
  804. cq_event_handler,
  805. newxprt,
  806. newxprt->sc_max_requests,
  807. 0);
  808. if (IS_ERR(newxprt->sc_rq_cq)) {
  809. dprintk("svcrdma: error creating RQ CQ for connect request\n");
  810. goto errout;
  811. }
  812. memset(&qp_attr, 0, sizeof qp_attr);
  813. qp_attr.event_handler = qp_event_handler;
  814. qp_attr.qp_context = &newxprt->sc_xprt;
  815. qp_attr.cap.max_send_wr = newxprt->sc_sq_depth;
  816. qp_attr.cap.max_recv_wr = newxprt->sc_max_requests;
  817. qp_attr.cap.max_send_sge = newxprt->sc_max_sge;
  818. qp_attr.cap.max_recv_sge = newxprt->sc_max_sge;
  819. qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
  820. qp_attr.qp_type = IB_QPT_RC;
  821. qp_attr.send_cq = newxprt->sc_sq_cq;
  822. qp_attr.recv_cq = newxprt->sc_rq_cq;
  823. dprintk("svcrdma: newxprt->sc_cm_id=%p, newxprt->sc_pd=%p\n"
  824. " cm_id->device=%p, sc_pd->device=%p\n"
  825. " cap.max_send_wr = %d\n"
  826. " cap.max_recv_wr = %d\n"
  827. " cap.max_send_sge = %d\n"
  828. " cap.max_recv_sge = %d\n",
  829. newxprt->sc_cm_id, newxprt->sc_pd,
  830. newxprt->sc_cm_id->device, newxprt->sc_pd->device,
  831. qp_attr.cap.max_send_wr,
  832. qp_attr.cap.max_recv_wr,
  833. qp_attr.cap.max_send_sge,
  834. qp_attr.cap.max_recv_sge);
  835. ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd, &qp_attr);
  836. if (ret) {
  837. /*
  838. * XXX: This is a hack. We need a xx_request_qp interface
  839. * that will adjust the qp_attr's with a best-effort
  840. * number
  841. */
  842. qp_attr.cap.max_send_sge -= 2;
  843. qp_attr.cap.max_recv_sge -= 2;
  844. ret = rdma_create_qp(newxprt->sc_cm_id, newxprt->sc_pd,
  845. &qp_attr);
  846. if (ret) {
  847. dprintk("svcrdma: failed to create QP, ret=%d\n", ret);
  848. goto errout;
  849. }
  850. newxprt->sc_max_sge = qp_attr.cap.max_send_sge;
  851. newxprt->sc_max_sge = qp_attr.cap.max_recv_sge;
  852. newxprt->sc_sq_depth = qp_attr.cap.max_send_wr;
  853. newxprt->sc_max_requests = qp_attr.cap.max_recv_wr;
  854. }
  855. newxprt->sc_qp = newxprt->sc_cm_id->qp;
  856. /*
  857. * Use the most secure set of MR resources based on the
  858. * transport type and available memory management features in
  859. * the device. Here's the table implemented below:
  860. *
  861. * Fast Global DMA Remote WR
  862. * Reg LKEY MR Access
  863. * Sup'd Sup'd Needed Needed
  864. *
  865. * IWARP N N Y Y
  866. * N Y Y Y
  867. * Y N Y N
  868. * Y Y N -
  869. *
  870. * IB N N Y N
  871. * N Y N -
  872. * Y N Y N
  873. * Y Y N -
  874. *
  875. * NB: iWARP requires remote write access for the data sink
  876. * of an RDMA_READ. IB does not.
  877. */
  878. if (devattr.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) {
  879. newxprt->sc_frmr_pg_list_len =
  880. devattr.max_fast_reg_page_list_len;
  881. newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_FAST_REG;
  882. }
  883. /*
  884. * Determine if a DMA MR is required and if so, what privs are required
  885. */
  886. switch (rdma_node_get_transport(newxprt->sc_cm_id->device->node_type)) {
  887. case RDMA_TRANSPORT_IWARP:
  888. newxprt->sc_dev_caps |= SVCRDMA_DEVCAP_READ_W_INV;
  889. if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
  890. need_dma_mr = 1;
  891. dma_mr_acc =
  892. (IB_ACCESS_LOCAL_WRITE |
  893. IB_ACCESS_REMOTE_WRITE);
  894. } else if (!(devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) {
  895. need_dma_mr = 1;
  896. dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
  897. } else
  898. need_dma_mr = 0;
  899. break;
  900. case RDMA_TRANSPORT_IB:
  901. if (!(newxprt->sc_dev_caps & SVCRDMA_DEVCAP_FAST_REG)) {
  902. need_dma_mr = 1;
  903. dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
  904. } else if (!(devattr.device_cap_flags &
  905. IB_DEVICE_LOCAL_DMA_LKEY)) {
  906. need_dma_mr = 1;
  907. dma_mr_acc = IB_ACCESS_LOCAL_WRITE;
  908. } else
  909. need_dma_mr = 0;
  910. break;
  911. default:
  912. goto errout;
  913. }
  914. /* Create the DMA MR if needed, otherwise, use the DMA LKEY */
  915. if (need_dma_mr) {
  916. /* Register all of physical memory */
  917. newxprt->sc_phys_mr =
  918. ib_get_dma_mr(newxprt->sc_pd, dma_mr_acc);
  919. if (IS_ERR(newxprt->sc_phys_mr)) {
  920. dprintk("svcrdma: Failed to create DMA MR ret=%d\n",
  921. ret);
  922. goto errout;
  923. }
  924. newxprt->sc_dma_lkey = newxprt->sc_phys_mr->lkey;
  925. } else
  926. newxprt->sc_dma_lkey =
  927. newxprt->sc_cm_id->device->local_dma_lkey;
  928. /* Post receive buffers */
  929. for (i = 0; i < newxprt->sc_max_requests; i++) {
  930. ret = svc_rdma_post_recv(newxprt);
  931. if (ret) {
  932. dprintk("svcrdma: failure posting receive buffers\n");
  933. goto errout;
  934. }
  935. }
  936. /* Swap out the handler */
  937. newxprt->sc_cm_id->event_handler = rdma_cma_handler;
  938. /*
  939. * Arm the CQs for the SQ and RQ before accepting so we can't
  940. * miss the first message
  941. */
  942. ib_req_notify_cq(newxprt->sc_sq_cq, IB_CQ_NEXT_COMP);
  943. ib_req_notify_cq(newxprt->sc_rq_cq, IB_CQ_NEXT_COMP);
  944. /* Accept Connection */
  945. set_bit(RDMAXPRT_CONN_PENDING, &newxprt->sc_flags);
  946. memset(&conn_param, 0, sizeof conn_param);
  947. conn_param.responder_resources = 0;
  948. conn_param.initiator_depth = newxprt->sc_ord;
  949. ret = rdma_accept(newxprt->sc_cm_id, &conn_param);
  950. if (ret) {
  951. dprintk("svcrdma: failed to accept new connection, ret=%d\n",
  952. ret);
  953. goto errout;
  954. }
  955. dprintk("svcrdma: new connection %p accepted with the following "
  956. "attributes:\n"
  957. " local_ip : %pI4\n"
  958. " local_port : %d\n"
  959. " remote_ip : %pI4\n"
  960. " remote_port : %d\n"
  961. " max_sge : %d\n"
  962. " sq_depth : %d\n"
  963. " max_requests : %d\n"
  964. " ord : %d\n",
  965. newxprt,
  966. &((struct sockaddr_in *)&newxprt->sc_cm_id->
  967. route.addr.src_addr)->sin_addr.s_addr,
  968. ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
  969. route.addr.src_addr)->sin_port),
  970. &((struct sockaddr_in *)&newxprt->sc_cm_id->
  971. route.addr.dst_addr)->sin_addr.s_addr,
  972. ntohs(((struct sockaddr_in *)&newxprt->sc_cm_id->
  973. route.addr.dst_addr)->sin_port),
  974. newxprt->sc_max_sge,
  975. newxprt->sc_sq_depth,
  976. newxprt->sc_max_requests,
  977. newxprt->sc_ord);
  978. return &newxprt->sc_xprt;
  979. errout:
  980. dprintk("svcrdma: failure accepting new connection rc=%d.\n", ret);
  981. /* Take a reference in case the DTO handler runs */
  982. svc_xprt_get(&newxprt->sc_xprt);
  983. if (newxprt->sc_qp && !IS_ERR(newxprt->sc_qp))
  984. ib_destroy_qp(newxprt->sc_qp);
  985. rdma_destroy_id(newxprt->sc_cm_id);
  986. /* This call to put will destroy the transport */
  987. svc_xprt_put(&newxprt->sc_xprt);
  988. return NULL;
  989. }
  990. static void svc_rdma_release_rqst(struct svc_rqst *rqstp)
  991. {
  992. }
  993. /*
  994. * When connected, an svc_xprt has at least two references:
  995. *
  996. * - A reference held by the cm_id between the ESTABLISHED and
  997. * DISCONNECTED events. If the remote peer disconnected first, this
  998. * reference could be gone.
  999. *
  1000. * - A reference held by the svc_recv code that called this function
  1001. * as part of close processing.
  1002. *
  1003. * At a minimum one references should still be held.
  1004. */
  1005. static void svc_rdma_detach(struct svc_xprt *xprt)
  1006. {
  1007. struct svcxprt_rdma *rdma =
  1008. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  1009. dprintk("svc: svc_rdma_detach(%p)\n", xprt);
  1010. /* Disconnect and flush posted WQE */
  1011. rdma_disconnect(rdma->sc_cm_id);
  1012. }
  1013. static void __svc_rdma_free(struct work_struct *work)
  1014. {
  1015. struct svcxprt_rdma *rdma =
  1016. container_of(work, struct svcxprt_rdma, sc_work);
  1017. dprintk("svcrdma: svc_rdma_free(%p)\n", rdma);
  1018. /* We should only be called from kref_put */
  1019. BUG_ON(atomic_read(&rdma->sc_xprt.xpt_ref.refcount) != 0);
  1020. /*
  1021. * Destroy queued, but not processed read completions. Note
  1022. * that this cleanup has to be done before destroying the
  1023. * cm_id because the device ptr is needed to unmap the dma in
  1024. * svc_rdma_put_context.
  1025. */
  1026. while (!list_empty(&rdma->sc_read_complete_q)) {
  1027. struct svc_rdma_op_ctxt *ctxt;
  1028. ctxt = list_entry(rdma->sc_read_complete_q.next,
  1029. struct svc_rdma_op_ctxt,
  1030. dto_q);
  1031. list_del_init(&ctxt->dto_q);
  1032. svc_rdma_put_context(ctxt, 1);
  1033. }
  1034. /* Destroy queued, but not processed recv completions */
  1035. while (!list_empty(&rdma->sc_rq_dto_q)) {
  1036. struct svc_rdma_op_ctxt *ctxt;
  1037. ctxt = list_entry(rdma->sc_rq_dto_q.next,
  1038. struct svc_rdma_op_ctxt,
  1039. dto_q);
  1040. list_del_init(&ctxt->dto_q);
  1041. svc_rdma_put_context(ctxt, 1);
  1042. }
  1043. /* Warn if we leaked a resource or under-referenced */
  1044. WARN_ON(atomic_read(&rdma->sc_ctxt_used) != 0);
  1045. WARN_ON(atomic_read(&rdma->sc_dma_used) != 0);
  1046. /* De-allocate fastreg mr */
  1047. rdma_dealloc_frmr_q(rdma);
  1048. /* Destroy the QP if present (not a listener) */
  1049. if (rdma->sc_qp && !IS_ERR(rdma->sc_qp))
  1050. ib_destroy_qp(rdma->sc_qp);
  1051. if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq))
  1052. ib_destroy_cq(rdma->sc_sq_cq);
  1053. if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq))
  1054. ib_destroy_cq(rdma->sc_rq_cq);
  1055. if (rdma->sc_phys_mr && !IS_ERR(rdma->sc_phys_mr))
  1056. ib_dereg_mr(rdma->sc_phys_mr);
  1057. if (rdma->sc_pd && !IS_ERR(rdma->sc_pd))
  1058. ib_dealloc_pd(rdma->sc_pd);
  1059. /* Destroy the CM ID */
  1060. rdma_destroy_id(rdma->sc_cm_id);
  1061. kfree(rdma);
  1062. }
  1063. static void svc_rdma_free(struct svc_xprt *xprt)
  1064. {
  1065. struct svcxprt_rdma *rdma =
  1066. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  1067. INIT_WORK(&rdma->sc_work, __svc_rdma_free);
  1068. queue_work(svc_rdma_wq, &rdma->sc_work);
  1069. }
  1070. static int svc_rdma_has_wspace(struct svc_xprt *xprt)
  1071. {
  1072. struct svcxprt_rdma *rdma =
  1073. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  1074. /*
  1075. * If there are already waiters on the SQ,
  1076. * return false.
  1077. */
  1078. if (waitqueue_active(&rdma->sc_send_wait))
  1079. return 0;
  1080. /* Otherwise return true. */
  1081. return 1;
  1082. }
  1083. static int svc_rdma_secure_port(struct svc_rqst *rqstp)
  1084. {
  1085. return 1;
  1086. }
  1087. /*
  1088. * Attempt to register the kvec representing the RPC memory with the
  1089. * device.
  1090. *
  1091. * Returns:
  1092. * NULL : The device does not support fastreg or there were no more
  1093. * fastreg mr.
  1094. * frmr : The kvec register request was successfully posted.
  1095. * <0 : An error was encountered attempting to register the kvec.
  1096. */
  1097. int svc_rdma_fastreg(struct svcxprt_rdma *xprt,
  1098. struct svc_rdma_fastreg_mr *frmr)
  1099. {
  1100. struct ib_send_wr fastreg_wr;
  1101. u8 key;
  1102. /* Bump the key */
  1103. key = (u8)(frmr->mr->lkey & 0x000000FF);
  1104. ib_update_fast_reg_key(frmr->mr, ++key);
  1105. /* Prepare FASTREG WR */
  1106. memset(&fastreg_wr, 0, sizeof fastreg_wr);
  1107. fastreg_wr.opcode = IB_WR_FAST_REG_MR;
  1108. fastreg_wr.send_flags = IB_SEND_SIGNALED;
  1109. fastreg_wr.wr.fast_reg.iova_start = (unsigned long)frmr->kva;
  1110. fastreg_wr.wr.fast_reg.page_list = frmr->page_list;
  1111. fastreg_wr.wr.fast_reg.page_list_len = frmr->page_list_len;
  1112. fastreg_wr.wr.fast_reg.page_shift = PAGE_SHIFT;
  1113. fastreg_wr.wr.fast_reg.length = frmr->map_len;
  1114. fastreg_wr.wr.fast_reg.access_flags = frmr->access_flags;
  1115. fastreg_wr.wr.fast_reg.rkey = frmr->mr->lkey;
  1116. return svc_rdma_send(xprt, &fastreg_wr);
  1117. }
  1118. int svc_rdma_send(struct svcxprt_rdma *xprt, struct ib_send_wr *wr)
  1119. {
  1120. struct ib_send_wr *bad_wr, *n_wr;
  1121. int wr_count;
  1122. int i;
  1123. int ret;
  1124. if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
  1125. return -ENOTCONN;
  1126. BUG_ON(wr->send_flags != IB_SEND_SIGNALED);
  1127. wr_count = 1;
  1128. for (n_wr = wr->next; n_wr; n_wr = n_wr->next)
  1129. wr_count++;
  1130. /* If the SQ is full, wait until an SQ entry is available */
  1131. while (1) {
  1132. spin_lock_bh(&xprt->sc_lock);
  1133. if (xprt->sc_sq_depth < atomic_read(&xprt->sc_sq_count) + wr_count) {
  1134. spin_unlock_bh(&xprt->sc_lock);
  1135. atomic_inc(&rdma_stat_sq_starve);
  1136. /* See if we can opportunistically reap SQ WR to make room */
  1137. sq_cq_reap(xprt);
  1138. /* Wait until SQ WR available if SQ still full */
  1139. wait_event(xprt->sc_send_wait,
  1140. atomic_read(&xprt->sc_sq_count) <
  1141. xprt->sc_sq_depth);
  1142. if (test_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags))
  1143. return -ENOTCONN;
  1144. continue;
  1145. }
  1146. /* Take a transport ref for each WR posted */
  1147. for (i = 0; i < wr_count; i++)
  1148. svc_xprt_get(&xprt->sc_xprt);
  1149. /* Bump used SQ WR count and post */
  1150. atomic_add(wr_count, &xprt->sc_sq_count);
  1151. ret = ib_post_send(xprt->sc_qp, wr, &bad_wr);
  1152. if (ret) {
  1153. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  1154. atomic_sub(wr_count, &xprt->sc_sq_count);
  1155. for (i = 0; i < wr_count; i ++)
  1156. svc_xprt_put(&xprt->sc_xprt);
  1157. dprintk("svcrdma: failed to post SQ WR rc=%d, "
  1158. "sc_sq_count=%d, sc_sq_depth=%d\n",
  1159. ret, atomic_read(&xprt->sc_sq_count),
  1160. xprt->sc_sq_depth);
  1161. }
  1162. spin_unlock_bh(&xprt->sc_lock);
  1163. if (ret)
  1164. wake_up(&xprt->sc_send_wait);
  1165. break;
  1166. }
  1167. return ret;
  1168. }
  1169. void svc_rdma_send_error(struct svcxprt_rdma *xprt, struct rpcrdma_msg *rmsgp,
  1170. enum rpcrdma_errcode err)
  1171. {
  1172. struct ib_send_wr err_wr;
  1173. struct page *p;
  1174. struct svc_rdma_op_ctxt *ctxt;
  1175. u32 *va;
  1176. int length;
  1177. int ret;
  1178. p = svc_rdma_get_page();
  1179. va = page_address(p);
  1180. /* XDR encode error */
  1181. length = svc_rdma_xdr_encode_error(xprt, rmsgp, err, va);
  1182. ctxt = svc_rdma_get_context(xprt);
  1183. ctxt->direction = DMA_FROM_DEVICE;
  1184. ctxt->count = 1;
  1185. ctxt->pages[0] = p;
  1186. /* Prepare SGE for local address */
  1187. ctxt->sge[0].addr = ib_dma_map_page(xprt->sc_cm_id->device,
  1188. p, 0, length, DMA_FROM_DEVICE);
  1189. if (ib_dma_mapping_error(xprt->sc_cm_id->device, ctxt->sge[0].addr)) {
  1190. put_page(p);
  1191. svc_rdma_put_context(ctxt, 1);
  1192. return;
  1193. }
  1194. atomic_inc(&xprt->sc_dma_used);
  1195. ctxt->sge[0].lkey = xprt->sc_dma_lkey;
  1196. ctxt->sge[0].length = length;
  1197. /* Prepare SEND WR */
  1198. memset(&err_wr, 0, sizeof err_wr);
  1199. ctxt->wr_op = IB_WR_SEND;
  1200. err_wr.wr_id = (unsigned long)ctxt;
  1201. err_wr.sg_list = ctxt->sge;
  1202. err_wr.num_sge = 1;
  1203. err_wr.opcode = IB_WR_SEND;
  1204. err_wr.send_flags = IB_SEND_SIGNALED;
  1205. /* Post It */
  1206. ret = svc_rdma_send(xprt, &err_wr);
  1207. if (ret) {
  1208. dprintk("svcrdma: Error %d posting send for protocol error\n",
  1209. ret);
  1210. svc_rdma_unmap_dma(ctxt);
  1211. svc_rdma_put_context(ctxt, 1);
  1212. }
  1213. }