ib_recv.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/pci.h>
  36. #include <linux/dma-mapping.h>
  37. #include <rdma/rdma_cm.h>
  38. #include "rds.h"
  39. #include "ib.h"
  40. static struct kmem_cache *rds_ib_incoming_slab;
  41. static struct kmem_cache *rds_ib_frag_slab;
  42. static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
  43. void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
  44. {
  45. struct rds_ib_recv_work *recv;
  46. u32 i;
  47. for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
  48. struct ib_sge *sge;
  49. recv->r_ibinc = NULL;
  50. recv->r_frag = NULL;
  51. recv->r_wr.next = NULL;
  52. recv->r_wr.wr_id = i;
  53. recv->r_wr.sg_list = recv->r_sge;
  54. recv->r_wr.num_sge = RDS_IB_RECV_SGE;
  55. sge = &recv->r_sge[0];
  56. sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
  57. sge->length = sizeof(struct rds_header);
  58. sge->lkey = ic->i_mr->lkey;
  59. sge = &recv->r_sge[1];
  60. sge->addr = 0;
  61. sge->length = RDS_FRAG_SIZE;
  62. sge->lkey = ic->i_mr->lkey;
  63. }
  64. }
  65. /*
  66. * The entire 'from' list, including the from element itself, is put on
  67. * to the tail of the 'to' list.
  68. */
  69. static void list_splice_entire_tail(struct list_head *from,
  70. struct list_head *to)
  71. {
  72. struct list_head *from_last = from->prev;
  73. list_splice_tail(from_last, to);
  74. list_add_tail(from_last, to);
  75. }
  76. static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
  77. {
  78. struct list_head *tmp;
  79. tmp = xchg(&cache->xfer, NULL);
  80. if (tmp) {
  81. if (cache->ready)
  82. list_splice_entire_tail(tmp, cache->ready);
  83. else
  84. cache->ready = tmp;
  85. }
  86. }
  87. static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
  88. {
  89. struct rds_ib_cache_head *head;
  90. int cpu;
  91. cache->percpu = alloc_percpu(struct rds_ib_cache_head);
  92. if (!cache->percpu)
  93. return -ENOMEM;
  94. for_each_possible_cpu(cpu) {
  95. head = per_cpu_ptr(cache->percpu, cpu);
  96. head->first = NULL;
  97. head->count = 0;
  98. }
  99. cache->xfer = NULL;
  100. cache->ready = NULL;
  101. return 0;
  102. }
  103. int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
  104. {
  105. int ret;
  106. ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
  107. if (!ret) {
  108. ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
  109. if (ret)
  110. free_percpu(ic->i_cache_incs.percpu);
  111. }
  112. return ret;
  113. }
  114. static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
  115. struct list_head *caller_list)
  116. {
  117. struct rds_ib_cache_head *head;
  118. int cpu;
  119. for_each_possible_cpu(cpu) {
  120. head = per_cpu_ptr(cache->percpu, cpu);
  121. if (head->first) {
  122. list_splice_entire_tail(head->first, caller_list);
  123. head->first = NULL;
  124. }
  125. }
  126. if (cache->ready) {
  127. list_splice_entire_tail(cache->ready, caller_list);
  128. cache->ready = NULL;
  129. }
  130. }
  131. void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
  132. {
  133. struct rds_ib_incoming *inc;
  134. struct rds_ib_incoming *inc_tmp;
  135. struct rds_page_frag *frag;
  136. struct rds_page_frag *frag_tmp;
  137. LIST_HEAD(list);
  138. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  139. rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
  140. free_percpu(ic->i_cache_incs.percpu);
  141. list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
  142. list_del(&inc->ii_cache_entry);
  143. WARN_ON(!list_empty(&inc->ii_frags));
  144. kmem_cache_free(rds_ib_incoming_slab, inc);
  145. }
  146. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  147. rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
  148. free_percpu(ic->i_cache_frags.percpu);
  149. list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
  150. list_del(&frag->f_cache_entry);
  151. WARN_ON(!list_empty(&frag->f_item));
  152. kmem_cache_free(rds_ib_frag_slab, frag);
  153. }
  154. }
  155. /* fwd decl */
  156. static void rds_ib_recv_cache_put(struct list_head *new_item,
  157. struct rds_ib_refill_cache *cache);
  158. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
  159. /* Recycle frag and attached recv buffer f_sg */
  160. static void rds_ib_frag_free(struct rds_ib_connection *ic,
  161. struct rds_page_frag *frag)
  162. {
  163. rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
  164. rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
  165. }
  166. /* Recycle inc after freeing attached frags */
  167. void rds_ib_inc_free(struct rds_incoming *inc)
  168. {
  169. struct rds_ib_incoming *ibinc;
  170. struct rds_page_frag *frag;
  171. struct rds_page_frag *pos;
  172. struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
  173. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  174. /* Free attached frags */
  175. list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
  176. list_del_init(&frag->f_item);
  177. rds_ib_frag_free(ic, frag);
  178. }
  179. BUG_ON(!list_empty(&ibinc->ii_frags));
  180. rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
  181. rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
  182. }
  183. static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
  184. struct rds_ib_recv_work *recv)
  185. {
  186. if (recv->r_ibinc) {
  187. rds_inc_put(&recv->r_ibinc->ii_inc);
  188. recv->r_ibinc = NULL;
  189. }
  190. if (recv->r_frag) {
  191. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  192. rds_ib_frag_free(ic, recv->r_frag);
  193. recv->r_frag = NULL;
  194. }
  195. }
  196. void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
  197. {
  198. u32 i;
  199. for (i = 0; i < ic->i_recv_ring.w_nr; i++)
  200. rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
  201. }
  202. static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
  203. gfp_t slab_mask)
  204. {
  205. struct rds_ib_incoming *ibinc;
  206. struct list_head *cache_item;
  207. int avail_allocs;
  208. cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
  209. if (cache_item) {
  210. ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
  211. } else {
  212. avail_allocs = atomic_add_unless(&rds_ib_allocation,
  213. 1, rds_ib_sysctl_max_recv_allocation);
  214. if (!avail_allocs) {
  215. rds_ib_stats_inc(s_ib_rx_alloc_limit);
  216. return NULL;
  217. }
  218. ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
  219. if (!ibinc) {
  220. atomic_dec(&rds_ib_allocation);
  221. return NULL;
  222. }
  223. }
  224. INIT_LIST_HEAD(&ibinc->ii_frags);
  225. rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
  226. return ibinc;
  227. }
  228. static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
  229. gfp_t slab_mask, gfp_t page_mask)
  230. {
  231. struct rds_page_frag *frag;
  232. struct list_head *cache_item;
  233. int ret;
  234. cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
  235. if (cache_item) {
  236. frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
  237. } else {
  238. frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
  239. if (!frag)
  240. return NULL;
  241. sg_init_table(&frag->f_sg, 1);
  242. ret = rds_page_remainder_alloc(&frag->f_sg,
  243. RDS_FRAG_SIZE, page_mask);
  244. if (ret) {
  245. kmem_cache_free(rds_ib_frag_slab, frag);
  246. return NULL;
  247. }
  248. }
  249. INIT_LIST_HEAD(&frag->f_item);
  250. return frag;
  251. }
  252. static int rds_ib_recv_refill_one(struct rds_connection *conn,
  253. struct rds_ib_recv_work *recv, int prefill)
  254. {
  255. struct rds_ib_connection *ic = conn->c_transport_data;
  256. struct ib_sge *sge;
  257. int ret = -ENOMEM;
  258. gfp_t slab_mask = GFP_NOWAIT;
  259. gfp_t page_mask = GFP_NOWAIT;
  260. if (prefill) {
  261. slab_mask = GFP_KERNEL;
  262. page_mask = GFP_HIGHUSER;
  263. }
  264. if (!ic->i_cache_incs.ready)
  265. rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
  266. if (!ic->i_cache_frags.ready)
  267. rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
  268. /*
  269. * ibinc was taken from recv if recv contained the start of a message.
  270. * recvs that were continuations will still have this allocated.
  271. */
  272. if (!recv->r_ibinc) {
  273. recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
  274. if (!recv->r_ibinc)
  275. goto out;
  276. }
  277. WARN_ON(recv->r_frag); /* leak! */
  278. recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
  279. if (!recv->r_frag)
  280. goto out;
  281. ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
  282. 1, DMA_FROM_DEVICE);
  283. WARN_ON(ret != 1);
  284. sge = &recv->r_sge[0];
  285. sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
  286. sge->length = sizeof(struct rds_header);
  287. sge = &recv->r_sge[1];
  288. sge->addr = ib_sg_dma_address(ic->i_cm_id->device, &recv->r_frag->f_sg);
  289. sge->length = ib_sg_dma_len(ic->i_cm_id->device, &recv->r_frag->f_sg);
  290. ret = 0;
  291. out:
  292. return ret;
  293. }
  294. /*
  295. * This tries to allocate and post unused work requests after making sure that
  296. * they have all the allocations they need to queue received fragments into
  297. * sockets.
  298. *
  299. * -1 is returned if posting fails due to temporary resource exhaustion.
  300. */
  301. void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
  302. {
  303. struct rds_ib_connection *ic = conn->c_transport_data;
  304. struct rds_ib_recv_work *recv;
  305. struct ib_recv_wr *failed_wr;
  306. unsigned int posted = 0;
  307. int ret = 0;
  308. u32 pos;
  309. while ((prefill || rds_conn_up(conn)) &&
  310. rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
  311. if (pos >= ic->i_recv_ring.w_nr) {
  312. printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
  313. pos);
  314. break;
  315. }
  316. recv = &ic->i_recvs[pos];
  317. ret = rds_ib_recv_refill_one(conn, recv, prefill);
  318. if (ret) {
  319. break;
  320. }
  321. /* XXX when can this fail? */
  322. ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
  323. rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
  324. recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
  325. (long) ib_sg_dma_address(
  326. ic->i_cm_id->device,
  327. &recv->r_frag->f_sg),
  328. ret);
  329. if (ret) {
  330. rds_ib_conn_error(conn, "recv post on "
  331. "%pI4 returned %d, disconnecting and "
  332. "reconnecting\n", &conn->c_faddr,
  333. ret);
  334. break;
  335. }
  336. posted++;
  337. }
  338. /* We're doing flow control - update the window. */
  339. if (ic->i_flowctl && posted)
  340. rds_ib_advertise_credits(conn, posted);
  341. if (ret)
  342. rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
  343. }
  344. /*
  345. * We want to recycle several types of recv allocations, like incs and frags.
  346. * To use this, the *_free() function passes in the ptr to a list_head within
  347. * the recyclee, as well as the cache to put it on.
  348. *
  349. * First, we put the memory on a percpu list. When this reaches a certain size,
  350. * We move it to an intermediate non-percpu list in a lockless manner, with some
  351. * xchg/compxchg wizardry.
  352. *
  353. * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
  354. * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
  355. * list_empty() will return true with one element is actually present.
  356. */
  357. static void rds_ib_recv_cache_put(struct list_head *new_item,
  358. struct rds_ib_refill_cache *cache)
  359. {
  360. unsigned long flags;
  361. struct list_head *old, *chpfirst;
  362. local_irq_save(flags);
  363. chpfirst = __this_cpu_read(cache->percpu->first);
  364. if (!chpfirst)
  365. INIT_LIST_HEAD(new_item);
  366. else /* put on front */
  367. list_add_tail(new_item, chpfirst);
  368. __this_cpu_write(cache->percpu->first, new_item);
  369. __this_cpu_inc(cache->percpu->count);
  370. if (__this_cpu_read(cache->percpu->count) < RDS_IB_RECYCLE_BATCH_COUNT)
  371. goto end;
  372. /*
  373. * Return our per-cpu first list to the cache's xfer by atomically
  374. * grabbing the current xfer list, appending it to our per-cpu list,
  375. * and then atomically returning that entire list back to the
  376. * cache's xfer list as long as it's still empty.
  377. */
  378. do {
  379. old = xchg(&cache->xfer, NULL);
  380. if (old)
  381. list_splice_entire_tail(old, chpfirst);
  382. old = cmpxchg(&cache->xfer, NULL, chpfirst);
  383. } while (old);
  384. __this_cpu_write(cache->percpu->first, NULL);
  385. __this_cpu_write(cache->percpu->count, 0);
  386. end:
  387. local_irq_restore(flags);
  388. }
  389. static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
  390. {
  391. struct list_head *head = cache->ready;
  392. if (head) {
  393. if (!list_empty(head)) {
  394. cache->ready = head->next;
  395. list_del_init(head);
  396. } else
  397. cache->ready = NULL;
  398. }
  399. return head;
  400. }
  401. int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
  402. size_t size)
  403. {
  404. struct rds_ib_incoming *ibinc;
  405. struct rds_page_frag *frag;
  406. struct iovec *iov = first_iov;
  407. unsigned long to_copy;
  408. unsigned long frag_off = 0;
  409. unsigned long iov_off = 0;
  410. int copied = 0;
  411. int ret;
  412. u32 len;
  413. ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
  414. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  415. len = be32_to_cpu(inc->i_hdr.h_len);
  416. while (copied < size && copied < len) {
  417. if (frag_off == RDS_FRAG_SIZE) {
  418. frag = list_entry(frag->f_item.next,
  419. struct rds_page_frag, f_item);
  420. frag_off = 0;
  421. }
  422. while (iov_off == iov->iov_len) {
  423. iov_off = 0;
  424. iov++;
  425. }
  426. to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
  427. to_copy = min_t(size_t, to_copy, size - copied);
  428. to_copy = min_t(unsigned long, to_copy, len - copied);
  429. rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
  430. "[%p, %u] + %lu\n",
  431. to_copy, iov->iov_base, iov->iov_len, iov_off,
  432. sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
  433. /* XXX needs + offset for multiple recvs per page */
  434. ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
  435. frag->f_sg.offset + frag_off,
  436. iov->iov_base + iov_off,
  437. to_copy);
  438. if (ret) {
  439. copied = ret;
  440. break;
  441. }
  442. iov_off += to_copy;
  443. frag_off += to_copy;
  444. copied += to_copy;
  445. }
  446. return copied;
  447. }
  448. /* ic starts out kzalloc()ed */
  449. void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
  450. {
  451. struct ib_send_wr *wr = &ic->i_ack_wr;
  452. struct ib_sge *sge = &ic->i_ack_sge;
  453. sge->addr = ic->i_ack_dma;
  454. sge->length = sizeof(struct rds_header);
  455. sge->lkey = ic->i_mr->lkey;
  456. wr->sg_list = sge;
  457. wr->num_sge = 1;
  458. wr->opcode = IB_WR_SEND;
  459. wr->wr_id = RDS_IB_ACK_WR_ID;
  460. wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
  461. }
  462. /*
  463. * You'd think that with reliable IB connections you wouldn't need to ack
  464. * messages that have been received. The problem is that IB hardware generates
  465. * an ack message before it has DMAed the message into memory. This creates a
  466. * potential message loss if the HCA is disabled for any reason between when it
  467. * sends the ack and before the message is DMAed and processed. This is only a
  468. * potential issue if another HCA is available for fail-over.
  469. *
  470. * When the remote host receives our ack they'll free the sent message from
  471. * their send queue. To decrease the latency of this we always send an ack
  472. * immediately after we've received messages.
  473. *
  474. * For simplicity, we only have one ack in flight at a time. This puts
  475. * pressure on senders to have deep enough send queues to absorb the latency of
  476. * a single ack frame being in flight. This might not be good enough.
  477. *
  478. * This is implemented by have a long-lived send_wr and sge which point to a
  479. * statically allocated ack frame. This ack wr does not fall under the ring
  480. * accounting that the tx and rx wrs do. The QP attribute specifically makes
  481. * room for it beyond the ring size. Send completion notices its special
  482. * wr_id and avoids working with the ring in that case.
  483. */
  484. #ifndef KERNEL_HAS_ATOMIC64
  485. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  486. int ack_required)
  487. {
  488. unsigned long flags;
  489. spin_lock_irqsave(&ic->i_ack_lock, flags);
  490. ic->i_ack_next = seq;
  491. if (ack_required)
  492. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  493. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  494. }
  495. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  496. {
  497. unsigned long flags;
  498. u64 seq;
  499. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  500. spin_lock_irqsave(&ic->i_ack_lock, flags);
  501. seq = ic->i_ack_next;
  502. spin_unlock_irqrestore(&ic->i_ack_lock, flags);
  503. return seq;
  504. }
  505. #else
  506. static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
  507. int ack_required)
  508. {
  509. atomic64_set(&ic->i_ack_next, seq);
  510. if (ack_required) {
  511. smp_mb__before_atomic();
  512. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  513. }
  514. }
  515. static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
  516. {
  517. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  518. smp_mb__after_atomic();
  519. return atomic64_read(&ic->i_ack_next);
  520. }
  521. #endif
  522. static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
  523. {
  524. struct rds_header *hdr = ic->i_ack;
  525. struct ib_send_wr *failed_wr;
  526. u64 seq;
  527. int ret;
  528. seq = rds_ib_get_ack(ic);
  529. rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
  530. rds_message_populate_header(hdr, 0, 0, 0);
  531. hdr->h_ack = cpu_to_be64(seq);
  532. hdr->h_credit = adv_credits;
  533. rds_message_make_checksum(hdr);
  534. ic->i_ack_queued = jiffies;
  535. ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
  536. if (unlikely(ret)) {
  537. /* Failed to send. Release the WR, and
  538. * force another ACK.
  539. */
  540. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  541. set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  542. rds_ib_stats_inc(s_ib_ack_send_failure);
  543. rds_ib_conn_error(ic->conn, "sending ack failed\n");
  544. } else
  545. rds_ib_stats_inc(s_ib_ack_sent);
  546. }
  547. /*
  548. * There are 3 ways of getting acknowledgements to the peer:
  549. * 1. We call rds_ib_attempt_ack from the recv completion handler
  550. * to send an ACK-only frame.
  551. * However, there can be only one such frame in the send queue
  552. * at any time, so we may have to postpone it.
  553. * 2. When another (data) packet is transmitted while there's
  554. * an ACK in the queue, we piggyback the ACK sequence number
  555. * on the data packet.
  556. * 3. If the ACK WR is done sending, we get called from the
  557. * send queue completion handler, and check whether there's
  558. * another ACK pending (postponed because the WR was on the
  559. * queue). If so, we transmit it.
  560. *
  561. * We maintain 2 variables:
  562. * - i_ack_flags, which keeps track of whether the ACK WR
  563. * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
  564. * - i_ack_next, which is the last sequence number we received
  565. *
  566. * Potentially, send queue and receive queue handlers can run concurrently.
  567. * It would be nice to not have to use a spinlock to synchronize things,
  568. * but the one problem that rules this out is that 64bit updates are
  569. * not atomic on all platforms. Things would be a lot simpler if
  570. * we had atomic64 or maybe cmpxchg64 everywhere.
  571. *
  572. * Reconnecting complicates this picture just slightly. When we
  573. * reconnect, we may be seeing duplicate packets. The peer
  574. * is retransmitting them, because it hasn't seen an ACK for
  575. * them. It is important that we ACK these.
  576. *
  577. * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
  578. * this flag set *MUST* be acknowledged immediately.
  579. */
  580. /*
  581. * When we get here, we're called from the recv queue handler.
  582. * Check whether we ought to transmit an ACK.
  583. */
  584. void rds_ib_attempt_ack(struct rds_ib_connection *ic)
  585. {
  586. unsigned int adv_credits;
  587. if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  588. return;
  589. if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
  590. rds_ib_stats_inc(s_ib_ack_send_delayed);
  591. return;
  592. }
  593. /* Can we get a send credit? */
  594. if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
  595. rds_ib_stats_inc(s_ib_tx_throttle);
  596. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  597. return;
  598. }
  599. clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
  600. rds_ib_send_ack(ic, adv_credits);
  601. }
  602. /*
  603. * We get here from the send completion handler, when the
  604. * adapter tells us the ACK frame was sent.
  605. */
  606. void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
  607. {
  608. clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
  609. rds_ib_attempt_ack(ic);
  610. }
  611. /*
  612. * This is called by the regular xmit code when it wants to piggyback
  613. * an ACK on an outgoing frame.
  614. */
  615. u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
  616. {
  617. if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
  618. rds_ib_stats_inc(s_ib_ack_send_piggybacked);
  619. return rds_ib_get_ack(ic);
  620. }
  621. /*
  622. * It's kind of lame that we're copying from the posted receive pages into
  623. * long-lived bitmaps. We could have posted the bitmaps and rdma written into
  624. * them. But receiving new congestion bitmaps should be a *rare* event, so
  625. * hopefully we won't need to invest that complexity in making it more
  626. * efficient. By copying we can share a simpler core with TCP which has to
  627. * copy.
  628. */
  629. static void rds_ib_cong_recv(struct rds_connection *conn,
  630. struct rds_ib_incoming *ibinc)
  631. {
  632. struct rds_cong_map *map;
  633. unsigned int map_off;
  634. unsigned int map_page;
  635. struct rds_page_frag *frag;
  636. unsigned long frag_off;
  637. unsigned long to_copy;
  638. unsigned long copied;
  639. uint64_t uncongested = 0;
  640. void *addr;
  641. /* catch completely corrupt packets */
  642. if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
  643. return;
  644. map = conn->c_fcong;
  645. map_page = 0;
  646. map_off = 0;
  647. frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
  648. frag_off = 0;
  649. copied = 0;
  650. while (copied < RDS_CONG_MAP_BYTES) {
  651. uint64_t *src, *dst;
  652. unsigned int k;
  653. to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
  654. BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
  655. addr = kmap_atomic(sg_page(&frag->f_sg));
  656. src = addr + frag_off;
  657. dst = (void *)map->m_page_addrs[map_page] + map_off;
  658. for (k = 0; k < to_copy; k += 8) {
  659. /* Record ports that became uncongested, ie
  660. * bits that changed from 0 to 1. */
  661. uncongested |= ~(*src) & *dst;
  662. *dst++ = *src++;
  663. }
  664. kunmap_atomic(addr);
  665. copied += to_copy;
  666. map_off += to_copy;
  667. if (map_off == PAGE_SIZE) {
  668. map_off = 0;
  669. map_page++;
  670. }
  671. frag_off += to_copy;
  672. if (frag_off == RDS_FRAG_SIZE) {
  673. frag = list_entry(frag->f_item.next,
  674. struct rds_page_frag, f_item);
  675. frag_off = 0;
  676. }
  677. }
  678. /* the congestion map is in little endian order */
  679. uncongested = le64_to_cpu(uncongested);
  680. rds_cong_map_updated(map, uncongested);
  681. }
  682. /*
  683. * Rings are posted with all the allocations they'll need to queue the
  684. * incoming message to the receiving socket so this can't fail.
  685. * All fragments start with a header, so we can make sure we're not receiving
  686. * garbage, and we can tell a small 8 byte fragment from an ACK frame.
  687. */
  688. struct rds_ib_ack_state {
  689. u64 ack_next;
  690. u64 ack_recv;
  691. unsigned int ack_required:1;
  692. unsigned int ack_next_valid:1;
  693. unsigned int ack_recv_valid:1;
  694. };
  695. static void rds_ib_process_recv(struct rds_connection *conn,
  696. struct rds_ib_recv_work *recv, u32 data_len,
  697. struct rds_ib_ack_state *state)
  698. {
  699. struct rds_ib_connection *ic = conn->c_transport_data;
  700. struct rds_ib_incoming *ibinc = ic->i_ibinc;
  701. struct rds_header *ihdr, *hdr;
  702. /* XXX shut down the connection if port 0,0 are seen? */
  703. rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
  704. data_len);
  705. if (data_len < sizeof(struct rds_header)) {
  706. rds_ib_conn_error(conn, "incoming message "
  707. "from %pI4 didn't include a "
  708. "header, disconnecting and "
  709. "reconnecting\n",
  710. &conn->c_faddr);
  711. return;
  712. }
  713. data_len -= sizeof(struct rds_header);
  714. ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
  715. /* Validate the checksum. */
  716. if (!rds_message_verify_checksum(ihdr)) {
  717. rds_ib_conn_error(conn, "incoming message "
  718. "from %pI4 has corrupted header - "
  719. "forcing a reconnect\n",
  720. &conn->c_faddr);
  721. rds_stats_inc(s_recv_drop_bad_checksum);
  722. return;
  723. }
  724. /* Process the ACK sequence which comes with every packet */
  725. state->ack_recv = be64_to_cpu(ihdr->h_ack);
  726. state->ack_recv_valid = 1;
  727. /* Process the credits update if there was one */
  728. if (ihdr->h_credit)
  729. rds_ib_send_add_credits(conn, ihdr->h_credit);
  730. if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
  731. /* This is an ACK-only packet. The fact that it gets
  732. * special treatment here is that historically, ACKs
  733. * were rather special beasts.
  734. */
  735. rds_ib_stats_inc(s_ib_ack_received);
  736. /*
  737. * Usually the frags make their way on to incs and are then freed as
  738. * the inc is freed. We don't go that route, so we have to drop the
  739. * page ref ourselves. We can't just leave the page on the recv
  740. * because that confuses the dma mapping of pages and each recv's use
  741. * of a partial page.
  742. *
  743. * FIXME: Fold this into the code path below.
  744. */
  745. rds_ib_frag_free(ic, recv->r_frag);
  746. recv->r_frag = NULL;
  747. return;
  748. }
  749. /*
  750. * If we don't already have an inc on the connection then this
  751. * fragment has a header and starts a message.. copy its header
  752. * into the inc and save the inc so we can hang upcoming fragments
  753. * off its list.
  754. */
  755. if (!ibinc) {
  756. ibinc = recv->r_ibinc;
  757. recv->r_ibinc = NULL;
  758. ic->i_ibinc = ibinc;
  759. hdr = &ibinc->ii_inc.i_hdr;
  760. memcpy(hdr, ihdr, sizeof(*hdr));
  761. ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
  762. rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
  763. ic->i_recv_data_rem, hdr->h_flags);
  764. } else {
  765. hdr = &ibinc->ii_inc.i_hdr;
  766. /* We can't just use memcmp here; fragments of a
  767. * single message may carry different ACKs */
  768. if (hdr->h_sequence != ihdr->h_sequence ||
  769. hdr->h_len != ihdr->h_len ||
  770. hdr->h_sport != ihdr->h_sport ||
  771. hdr->h_dport != ihdr->h_dport) {
  772. rds_ib_conn_error(conn,
  773. "fragment header mismatch; forcing reconnect\n");
  774. return;
  775. }
  776. }
  777. list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
  778. recv->r_frag = NULL;
  779. if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
  780. ic->i_recv_data_rem -= RDS_FRAG_SIZE;
  781. else {
  782. ic->i_recv_data_rem = 0;
  783. ic->i_ibinc = NULL;
  784. if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
  785. rds_ib_cong_recv(conn, ibinc);
  786. else {
  787. rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
  788. &ibinc->ii_inc, GFP_ATOMIC);
  789. state->ack_next = be64_to_cpu(hdr->h_sequence);
  790. state->ack_next_valid = 1;
  791. }
  792. /* Evaluate the ACK_REQUIRED flag *after* we received
  793. * the complete frame, and after bumping the next_rx
  794. * sequence. */
  795. if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
  796. rds_stats_inc(s_recv_ack_required);
  797. state->ack_required = 1;
  798. }
  799. rds_inc_put(&ibinc->ii_inc);
  800. }
  801. }
  802. /*
  803. * Plucking the oldest entry from the ring can be done concurrently with
  804. * the thread refilling the ring. Each ring operation is protected by
  805. * spinlocks and the transient state of refilling doesn't change the
  806. * recording of which entry is oldest.
  807. *
  808. * This relies on IB only calling one cq comp_handler for each cq so that
  809. * there will only be one caller of rds_recv_incoming() per RDS connection.
  810. */
  811. void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
  812. {
  813. struct rds_connection *conn = context;
  814. struct rds_ib_connection *ic = conn->c_transport_data;
  815. rdsdebug("conn %p cq %p\n", conn, cq);
  816. rds_ib_stats_inc(s_ib_rx_cq_call);
  817. tasklet_schedule(&ic->i_recv_tasklet);
  818. }
  819. static inline void rds_poll_cq(struct rds_ib_connection *ic,
  820. struct rds_ib_ack_state *state)
  821. {
  822. struct rds_connection *conn = ic->conn;
  823. struct ib_wc wc;
  824. struct rds_ib_recv_work *recv;
  825. while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
  826. rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
  827. (unsigned long long)wc.wr_id, wc.status,
  828. rds_ib_wc_status_str(wc.status), wc.byte_len,
  829. be32_to_cpu(wc.ex.imm_data));
  830. rds_ib_stats_inc(s_ib_rx_cq_event);
  831. recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
  832. ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
  833. /*
  834. * Also process recvs in connecting state because it is possible
  835. * to get a recv completion _before_ the rdmacm ESTABLISHED
  836. * event is processed.
  837. */
  838. if (wc.status == IB_WC_SUCCESS) {
  839. rds_ib_process_recv(conn, recv, wc.byte_len, state);
  840. } else {
  841. /* We expect errors as the qp is drained during shutdown */
  842. if (rds_conn_up(conn) || rds_conn_connecting(conn))
  843. rds_ib_conn_error(conn, "recv completion on %pI4 had "
  844. "status %u (%s), disconnecting and "
  845. "reconnecting\n", &conn->c_faddr,
  846. wc.status,
  847. rds_ib_wc_status_str(wc.status));
  848. }
  849. /*
  850. * It's very important that we only free this ring entry if we've truly
  851. * freed the resources allocated to the entry. The refilling path can
  852. * leak if we don't.
  853. */
  854. rds_ib_ring_free(&ic->i_recv_ring, 1);
  855. }
  856. }
  857. void rds_ib_recv_tasklet_fn(unsigned long data)
  858. {
  859. struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
  860. struct rds_connection *conn = ic->conn;
  861. struct rds_ib_ack_state state = { 0, };
  862. rds_poll_cq(ic, &state);
  863. ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
  864. rds_poll_cq(ic, &state);
  865. if (state.ack_next_valid)
  866. rds_ib_set_ack(ic, state.ack_next, state.ack_required);
  867. if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
  868. rds_send_drop_acked(conn, state.ack_recv, NULL);
  869. ic->i_ack_recv = state.ack_recv;
  870. }
  871. if (rds_conn_up(conn))
  872. rds_ib_attempt_ack(ic);
  873. /* If we ever end up with a really empty receive ring, we're
  874. * in deep trouble, as the sender will definitely see RNR
  875. * timeouts. */
  876. if (rds_ib_ring_empty(&ic->i_recv_ring))
  877. rds_ib_stats_inc(s_ib_rx_ring_empty);
  878. if (rds_ib_ring_low(&ic->i_recv_ring))
  879. rds_ib_recv_refill(conn, 0);
  880. }
  881. int rds_ib_recv(struct rds_connection *conn)
  882. {
  883. struct rds_ib_connection *ic = conn->c_transport_data;
  884. int ret = 0;
  885. rdsdebug("conn %p\n", conn);
  886. if (rds_conn_up(conn))
  887. rds_ib_attempt_ack(ic);
  888. return ret;
  889. }
  890. int rds_ib_recv_init(void)
  891. {
  892. struct sysinfo si;
  893. int ret = -ENOMEM;
  894. /* Default to 30% of all available RAM for recv memory */
  895. si_meminfo(&si);
  896. rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
  897. rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
  898. sizeof(struct rds_ib_incoming),
  899. 0, SLAB_HWCACHE_ALIGN, NULL);
  900. if (!rds_ib_incoming_slab)
  901. goto out;
  902. rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
  903. sizeof(struct rds_page_frag),
  904. 0, SLAB_HWCACHE_ALIGN, NULL);
  905. if (!rds_ib_frag_slab)
  906. kmem_cache_destroy(rds_ib_incoming_slab);
  907. else
  908. ret = 0;
  909. out:
  910. return ret;
  911. }
  912. void rds_ib_recv_exit(void)
  913. {
  914. kmem_cache_destroy(rds_ib_incoming_slab);
  915. kmem_cache_destroy(rds_ib_frag_slab);
  916. }