tcp_input.c 165 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #define pr_fmt(fmt) "TCP: " fmt
  63. #include <linux/mm.h>
  64. #include <linux/slab.h>
  65. #include <linux/module.h>
  66. #include <linux/sysctl.h>
  67. #include <linux/kernel.h>
  68. #include <net/dst.h>
  69. #include <net/tcp.h>
  70. #include <net/inet_common.h>
  71. #include <linux/ipsec.h>
  72. #include <asm/unaligned.h>
  73. #include <net/netdma.h>
  74. int sysctl_tcp_timestamps __read_mostly = 1;
  75. int sysctl_tcp_window_scaling __read_mostly = 1;
  76. int sysctl_tcp_sack __read_mostly = 1;
  77. int sysctl_tcp_fack __read_mostly = 1;
  78. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  79. EXPORT_SYMBOL(sysctl_tcp_reordering);
  80. int sysctl_tcp_dsack __read_mostly = 1;
  81. int sysctl_tcp_app_win __read_mostly = 31;
  82. int sysctl_tcp_adv_win_scale __read_mostly = 1;
  83. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  84. /* rfc5961 challenge ack rate limiting */
  85. int sysctl_tcp_challenge_ack_limit = 100;
  86. int sysctl_tcp_stdurg __read_mostly;
  87. int sysctl_tcp_rfc1337 __read_mostly;
  88. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  89. int sysctl_tcp_frto __read_mostly = 2;
  90. int sysctl_tcp_thin_dupack __read_mostly;
  91. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  92. int sysctl_tcp_early_retrans __read_mostly = 3;
  93. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  94. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  95. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  96. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  97. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  98. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  99. #define FLAG_ECE 0x40 /* ECE in this ACK */
  100. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  101. #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
  102. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  103. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  104. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  105. #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
  106. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  107. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  108. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  109. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  110. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  111. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  112. /* Adapt the MSS value used to make delayed ack decision to the
  113. * real world.
  114. */
  115. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  116. {
  117. struct inet_connection_sock *icsk = inet_csk(sk);
  118. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  119. unsigned int len;
  120. icsk->icsk_ack.last_seg_size = 0;
  121. /* skb->len may jitter because of SACKs, even if peer
  122. * sends good full-sized frames.
  123. */
  124. len = skb_shinfo(skb)->gso_size ? : skb->len;
  125. if (len >= icsk->icsk_ack.rcv_mss) {
  126. icsk->icsk_ack.rcv_mss = len;
  127. } else {
  128. /* Otherwise, we make more careful check taking into account,
  129. * that SACKs block is variable.
  130. *
  131. * "len" is invariant segment length, including TCP header.
  132. */
  133. len += skb->data - skb_transport_header(skb);
  134. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  135. /* If PSH is not set, packet should be
  136. * full sized, provided peer TCP is not badly broken.
  137. * This observation (if it is correct 8)) allows
  138. * to handle super-low mtu links fairly.
  139. */
  140. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  141. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  142. /* Subtract also invariant (if peer is RFC compliant),
  143. * tcp header plus fixed timestamp option length.
  144. * Resulting "len" is MSS free of SACK jitter.
  145. */
  146. len -= tcp_sk(sk)->tcp_header_len;
  147. icsk->icsk_ack.last_seg_size = len;
  148. if (len == lss) {
  149. icsk->icsk_ack.rcv_mss = len;
  150. return;
  151. }
  152. }
  153. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  154. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  155. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  156. }
  157. }
  158. static void tcp_incr_quickack(struct sock *sk)
  159. {
  160. struct inet_connection_sock *icsk = inet_csk(sk);
  161. unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  162. if (quickacks == 0)
  163. quickacks = 2;
  164. if (quickacks > icsk->icsk_ack.quick)
  165. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  166. }
  167. static void tcp_enter_quickack_mode(struct sock *sk)
  168. {
  169. struct inet_connection_sock *icsk = inet_csk(sk);
  170. tcp_incr_quickack(sk);
  171. icsk->icsk_ack.pingpong = 0;
  172. icsk->icsk_ack.ato = TCP_ATO_MIN;
  173. }
  174. /* Send ACKs quickly, if "quick" count is not exhausted
  175. * and the session is not interactive.
  176. */
  177. static inline bool tcp_in_quickack_mode(const struct sock *sk)
  178. {
  179. const struct inet_connection_sock *icsk = inet_csk(sk);
  180. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  181. }
  182. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  183. {
  184. if (tp->ecn_flags & TCP_ECN_OK)
  185. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  186. }
  187. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
  188. {
  189. if (tcp_hdr(skb)->cwr)
  190. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  191. }
  192. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  193. {
  194. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  195. }
  196. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
  197. {
  198. if (!(tp->ecn_flags & TCP_ECN_OK))
  199. return;
  200. switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
  201. case INET_ECN_NOT_ECT:
  202. /* Funny extension: if ECT is not set on a segment,
  203. * and we already seen ECT on a previous segment,
  204. * it is probably a retransmit.
  205. */
  206. if (tp->ecn_flags & TCP_ECN_SEEN)
  207. tcp_enter_quickack_mode((struct sock *)tp);
  208. break;
  209. case INET_ECN_CE:
  210. if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
  211. /* Better not delay acks, sender can have a very low cwnd */
  212. tcp_enter_quickack_mode((struct sock *)tp);
  213. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  214. }
  215. /* fallinto */
  216. default:
  217. tp->ecn_flags |= TCP_ECN_SEEN;
  218. }
  219. }
  220. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
  221. {
  222. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  223. tp->ecn_flags &= ~TCP_ECN_OK;
  224. }
  225. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
  226. {
  227. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  228. tp->ecn_flags &= ~TCP_ECN_OK;
  229. }
  230. static bool TCP_ECN_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
  231. {
  232. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  233. return true;
  234. return false;
  235. }
  236. /* Buffer size and advertised window tuning.
  237. *
  238. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  239. */
  240. static void tcp_sndbuf_expand(struct sock *sk)
  241. {
  242. const struct tcp_sock *tp = tcp_sk(sk);
  243. int sndmem, per_mss;
  244. u32 nr_segs;
  245. /* Worst case is non GSO/TSO : each frame consumes one skb
  246. * and skb->head is kmalloced using power of two area of memory
  247. */
  248. per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  249. MAX_TCP_HEADER +
  250. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  251. per_mss = roundup_pow_of_two(per_mss) +
  252. SKB_DATA_ALIGN(sizeof(struct sk_buff));
  253. nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
  254. nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
  255. /* Fast Recovery (RFC 5681 3.2) :
  256. * Cubic needs 1.7 factor, rounded to 2 to include
  257. * extra cushion (application might react slowly to POLLOUT)
  258. */
  259. sndmem = 2 * nr_segs * per_mss;
  260. if (sk->sk_sndbuf < sndmem)
  261. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  262. }
  263. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  264. *
  265. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  266. * forward and advertised in receiver window (tp->rcv_wnd) and
  267. * "application buffer", required to isolate scheduling/application
  268. * latencies from network.
  269. * window_clamp is maximal advertised window. It can be less than
  270. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  271. * is reserved for "application" buffer. The less window_clamp is
  272. * the smoother our behaviour from viewpoint of network, but the lower
  273. * throughput and the higher sensitivity of the connection to losses. 8)
  274. *
  275. * rcv_ssthresh is more strict window_clamp used at "slow start"
  276. * phase to predict further behaviour of this connection.
  277. * It is used for two goals:
  278. * - to enforce header prediction at sender, even when application
  279. * requires some significant "application buffer". It is check #1.
  280. * - to prevent pruning of receive queue because of misprediction
  281. * of receiver window. Check #2.
  282. *
  283. * The scheme does not work when sender sends good segments opening
  284. * window and then starts to feed us spaghetti. But it should work
  285. * in common situations. Otherwise, we have to rely on queue collapsing.
  286. */
  287. /* Slow part of check#2. */
  288. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  289. {
  290. struct tcp_sock *tp = tcp_sk(sk);
  291. /* Optimize this! */
  292. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  293. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  294. while (tp->rcv_ssthresh <= window) {
  295. if (truesize <= skb->len)
  296. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  297. truesize >>= 1;
  298. window >>= 1;
  299. }
  300. return 0;
  301. }
  302. static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
  303. {
  304. struct tcp_sock *tp = tcp_sk(sk);
  305. /* Check #1 */
  306. if (tp->rcv_ssthresh < tp->window_clamp &&
  307. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  308. !sk_under_memory_pressure(sk)) {
  309. int incr;
  310. /* Check #2. Increase window, if skb with such overhead
  311. * will fit to rcvbuf in future.
  312. */
  313. if (tcp_win_from_space(skb->truesize) <= skb->len)
  314. incr = 2 * tp->advmss;
  315. else
  316. incr = __tcp_grow_window(sk, skb);
  317. if (incr) {
  318. incr = max_t(int, incr, 2 * skb->len);
  319. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  320. tp->window_clamp);
  321. inet_csk(sk)->icsk_ack.quick |= 1;
  322. }
  323. }
  324. }
  325. /* 3. Tuning rcvbuf, when connection enters established state. */
  326. static void tcp_fixup_rcvbuf(struct sock *sk)
  327. {
  328. u32 mss = tcp_sk(sk)->advmss;
  329. int rcvmem;
  330. rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
  331. tcp_default_init_rwnd(mss);
  332. /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
  333. * Allow enough cushion so that sender is not limited by our window
  334. */
  335. if (sysctl_tcp_moderate_rcvbuf)
  336. rcvmem <<= 2;
  337. if (sk->sk_rcvbuf < rcvmem)
  338. sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
  339. }
  340. /* 4. Try to fixup all. It is made immediately after connection enters
  341. * established state.
  342. */
  343. void tcp_init_buffer_space(struct sock *sk)
  344. {
  345. struct tcp_sock *tp = tcp_sk(sk);
  346. int maxwin;
  347. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  348. tcp_fixup_rcvbuf(sk);
  349. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  350. tcp_sndbuf_expand(sk);
  351. tp->rcvq_space.space = tp->rcv_wnd;
  352. tp->rcvq_space.time = tcp_time_stamp;
  353. tp->rcvq_space.seq = tp->copied_seq;
  354. maxwin = tcp_full_space(sk);
  355. if (tp->window_clamp >= maxwin) {
  356. tp->window_clamp = maxwin;
  357. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  358. tp->window_clamp = max(maxwin -
  359. (maxwin >> sysctl_tcp_app_win),
  360. 4 * tp->advmss);
  361. }
  362. /* Force reservation of one segment. */
  363. if (sysctl_tcp_app_win &&
  364. tp->window_clamp > 2 * tp->advmss &&
  365. tp->window_clamp + tp->advmss > maxwin)
  366. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  367. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  368. tp->snd_cwnd_stamp = tcp_time_stamp;
  369. }
  370. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  371. static void tcp_clamp_window(struct sock *sk)
  372. {
  373. struct tcp_sock *tp = tcp_sk(sk);
  374. struct inet_connection_sock *icsk = inet_csk(sk);
  375. icsk->icsk_ack.quick = 0;
  376. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  377. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  378. !sk_under_memory_pressure(sk) &&
  379. sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
  380. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  381. sysctl_tcp_rmem[2]);
  382. }
  383. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  384. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  385. }
  386. /* Initialize RCV_MSS value.
  387. * RCV_MSS is an our guess about MSS used by the peer.
  388. * We haven't any direct information about the MSS.
  389. * It's better to underestimate the RCV_MSS rather than overestimate.
  390. * Overestimations make us ACKing less frequently than needed.
  391. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  392. */
  393. void tcp_initialize_rcv_mss(struct sock *sk)
  394. {
  395. const struct tcp_sock *tp = tcp_sk(sk);
  396. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  397. hint = min(hint, tp->rcv_wnd / 2);
  398. hint = min(hint, TCP_MSS_DEFAULT);
  399. hint = max(hint, TCP_MIN_MSS);
  400. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  401. }
  402. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  403. /* Receiver "autotuning" code.
  404. *
  405. * The algorithm for RTT estimation w/o timestamps is based on
  406. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  407. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  408. *
  409. * More detail on this code can be found at
  410. * <http://staff.psc.edu/jheffner/>,
  411. * though this reference is out of date. A new paper
  412. * is pending.
  413. */
  414. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  415. {
  416. u32 new_sample = tp->rcv_rtt_est.rtt;
  417. long m = sample;
  418. if (m == 0)
  419. m = 1;
  420. if (new_sample != 0) {
  421. /* If we sample in larger samples in the non-timestamp
  422. * case, we could grossly overestimate the RTT especially
  423. * with chatty applications or bulk transfer apps which
  424. * are stalled on filesystem I/O.
  425. *
  426. * Also, since we are only going for a minimum in the
  427. * non-timestamp case, we do not smooth things out
  428. * else with timestamps disabled convergence takes too
  429. * long.
  430. */
  431. if (!win_dep) {
  432. m -= (new_sample >> 3);
  433. new_sample += m;
  434. } else {
  435. m <<= 3;
  436. if (m < new_sample)
  437. new_sample = m;
  438. }
  439. } else {
  440. /* No previous measure. */
  441. new_sample = m << 3;
  442. }
  443. if (tp->rcv_rtt_est.rtt != new_sample)
  444. tp->rcv_rtt_est.rtt = new_sample;
  445. }
  446. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  447. {
  448. if (tp->rcv_rtt_est.time == 0)
  449. goto new_measure;
  450. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  451. return;
  452. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
  453. new_measure:
  454. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  455. tp->rcv_rtt_est.time = tcp_time_stamp;
  456. }
  457. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  458. const struct sk_buff *skb)
  459. {
  460. struct tcp_sock *tp = tcp_sk(sk);
  461. if (tp->rx_opt.rcv_tsecr &&
  462. (TCP_SKB_CB(skb)->end_seq -
  463. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  464. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  465. }
  466. /*
  467. * This function should be called every time data is copied to user space.
  468. * It calculates the appropriate TCP receive buffer space.
  469. */
  470. void tcp_rcv_space_adjust(struct sock *sk)
  471. {
  472. struct tcp_sock *tp = tcp_sk(sk);
  473. int time;
  474. int copied;
  475. time = tcp_time_stamp - tp->rcvq_space.time;
  476. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  477. return;
  478. /* Number of bytes copied to user in last RTT */
  479. copied = tp->copied_seq - tp->rcvq_space.seq;
  480. if (copied <= tp->rcvq_space.space)
  481. goto new_measure;
  482. /* A bit of theory :
  483. * copied = bytes received in previous RTT, our base window
  484. * To cope with packet losses, we need a 2x factor
  485. * To cope with slow start, and sender growing its cwin by 100 %
  486. * every RTT, we need a 4x factor, because the ACK we are sending
  487. * now is for the next RTT, not the current one :
  488. * <prev RTT . ><current RTT .. ><next RTT .... >
  489. */
  490. if (sysctl_tcp_moderate_rcvbuf &&
  491. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  492. int rcvwin, rcvmem, rcvbuf;
  493. /* minimal window to cope with packet losses, assuming
  494. * steady state. Add some cushion because of small variations.
  495. */
  496. rcvwin = (copied << 1) + 16 * tp->advmss;
  497. /* If rate increased by 25%,
  498. * assume slow start, rcvwin = 3 * copied
  499. * If rate increased by 50%,
  500. * assume sender can use 2x growth, rcvwin = 4 * copied
  501. */
  502. if (copied >=
  503. tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
  504. if (copied >=
  505. tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
  506. rcvwin <<= 1;
  507. else
  508. rcvwin += (rcvwin >> 1);
  509. }
  510. rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
  511. while (tcp_win_from_space(rcvmem) < tp->advmss)
  512. rcvmem += 128;
  513. rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
  514. if (rcvbuf > sk->sk_rcvbuf) {
  515. sk->sk_rcvbuf = rcvbuf;
  516. /* Make the window clamp follow along. */
  517. tp->window_clamp = rcvwin;
  518. }
  519. }
  520. tp->rcvq_space.space = copied;
  521. new_measure:
  522. tp->rcvq_space.seq = tp->copied_seq;
  523. tp->rcvq_space.time = tcp_time_stamp;
  524. }
  525. /* There is something which you must keep in mind when you analyze the
  526. * behavior of the tp->ato delayed ack timeout interval. When a
  527. * connection starts up, we want to ack as quickly as possible. The
  528. * problem is that "good" TCP's do slow start at the beginning of data
  529. * transmission. The means that until we send the first few ACK's the
  530. * sender will sit on his end and only queue most of his data, because
  531. * he can only send snd_cwnd unacked packets at any given time. For
  532. * each ACK we send, he increments snd_cwnd and transmits more of his
  533. * queue. -DaveM
  534. */
  535. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  536. {
  537. struct tcp_sock *tp = tcp_sk(sk);
  538. struct inet_connection_sock *icsk = inet_csk(sk);
  539. u32 now;
  540. inet_csk_schedule_ack(sk);
  541. tcp_measure_rcv_mss(sk, skb);
  542. tcp_rcv_rtt_measure(tp);
  543. now = tcp_time_stamp;
  544. if (!icsk->icsk_ack.ato) {
  545. /* The _first_ data packet received, initialize
  546. * delayed ACK engine.
  547. */
  548. tcp_incr_quickack(sk);
  549. icsk->icsk_ack.ato = TCP_ATO_MIN;
  550. } else {
  551. int m = now - icsk->icsk_ack.lrcvtime;
  552. if (m <= TCP_ATO_MIN / 2) {
  553. /* The fastest case is the first. */
  554. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  555. } else if (m < icsk->icsk_ack.ato) {
  556. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  557. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  558. icsk->icsk_ack.ato = icsk->icsk_rto;
  559. } else if (m > icsk->icsk_rto) {
  560. /* Too long gap. Apparently sender failed to
  561. * restart window, so that we send ACKs quickly.
  562. */
  563. tcp_incr_quickack(sk);
  564. sk_mem_reclaim(sk);
  565. }
  566. }
  567. icsk->icsk_ack.lrcvtime = now;
  568. TCP_ECN_check_ce(tp, skb);
  569. if (skb->len >= 128)
  570. tcp_grow_window(sk, skb);
  571. }
  572. /* Called to compute a smoothed rtt estimate. The data fed to this
  573. * routine either comes from timestamps, or from segments that were
  574. * known _not_ to have been retransmitted [see Karn/Partridge
  575. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  576. * piece by Van Jacobson.
  577. * NOTE: the next three routines used to be one big routine.
  578. * To save cycles in the RFC 1323 implementation it was better to break
  579. * it up into three procedures. -- erics
  580. */
  581. static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
  582. {
  583. struct tcp_sock *tp = tcp_sk(sk);
  584. long m = mrtt_us; /* RTT */
  585. u32 srtt = tp->srtt_us;
  586. /* The following amusing code comes from Jacobson's
  587. * article in SIGCOMM '88. Note that rtt and mdev
  588. * are scaled versions of rtt and mean deviation.
  589. * This is designed to be as fast as possible
  590. * m stands for "measurement".
  591. *
  592. * On a 1990 paper the rto value is changed to:
  593. * RTO = rtt + 4 * mdev
  594. *
  595. * Funny. This algorithm seems to be very broken.
  596. * These formulae increase RTO, when it should be decreased, increase
  597. * too slowly, when it should be increased quickly, decrease too quickly
  598. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  599. * does not matter how to _calculate_ it. Seems, it was trap
  600. * that VJ failed to avoid. 8)
  601. */
  602. if (srtt != 0) {
  603. m -= (srtt >> 3); /* m is now error in rtt est */
  604. srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  605. if (m < 0) {
  606. m = -m; /* m is now abs(error) */
  607. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  608. /* This is similar to one of Eifel findings.
  609. * Eifel blocks mdev updates when rtt decreases.
  610. * This solution is a bit different: we use finer gain
  611. * for mdev in this case (alpha*beta).
  612. * Like Eifel it also prevents growth of rto,
  613. * but also it limits too fast rto decreases,
  614. * happening in pure Eifel.
  615. */
  616. if (m > 0)
  617. m >>= 3;
  618. } else {
  619. m -= (tp->mdev_us >> 2); /* similar update on mdev */
  620. }
  621. tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
  622. if (tp->mdev_us > tp->mdev_max_us) {
  623. tp->mdev_max_us = tp->mdev_us;
  624. if (tp->mdev_max_us > tp->rttvar_us)
  625. tp->rttvar_us = tp->mdev_max_us;
  626. }
  627. if (after(tp->snd_una, tp->rtt_seq)) {
  628. if (tp->mdev_max_us < tp->rttvar_us)
  629. tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
  630. tp->rtt_seq = tp->snd_nxt;
  631. tp->mdev_max_us = tcp_rto_min_us(sk);
  632. }
  633. } else {
  634. /* no previous measure. */
  635. srtt = m << 3; /* take the measured time to be rtt */
  636. tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
  637. tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
  638. tp->mdev_max_us = tp->rttvar_us;
  639. tp->rtt_seq = tp->snd_nxt;
  640. }
  641. tp->srtt_us = max(1U, srtt);
  642. }
  643. /* Set the sk_pacing_rate to allow proper sizing of TSO packets.
  644. * Note: TCP stack does not yet implement pacing.
  645. * FQ packet scheduler can be used to implement cheap but effective
  646. * TCP pacing, to smooth the burst on large writes when packets
  647. * in flight is significantly lower than cwnd (or rwin)
  648. */
  649. static void tcp_update_pacing_rate(struct sock *sk)
  650. {
  651. const struct tcp_sock *tp = tcp_sk(sk);
  652. u64 rate;
  653. /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
  654. rate = (u64)tp->mss_cache * 2 * (USEC_PER_SEC << 3);
  655. rate *= max(tp->snd_cwnd, tp->packets_out);
  656. if (likely(tp->srtt_us))
  657. do_div(rate, tp->srtt_us);
  658. /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
  659. * without any lock. We want to make sure compiler wont store
  660. * intermediate values in this location.
  661. */
  662. ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
  663. sk->sk_max_pacing_rate);
  664. }
  665. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  666. * routine referred to above.
  667. */
  668. static void tcp_set_rto(struct sock *sk)
  669. {
  670. const struct tcp_sock *tp = tcp_sk(sk);
  671. /* Old crap is replaced with new one. 8)
  672. *
  673. * More seriously:
  674. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  675. * It cannot be less due to utterly erratic ACK generation made
  676. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  677. * to do with delayed acks, because at cwnd>2 true delack timeout
  678. * is invisible. Actually, Linux-2.4 also generates erratic
  679. * ACKs in some circumstances.
  680. */
  681. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  682. /* 2. Fixups made earlier cannot be right.
  683. * If we do not estimate RTO correctly without them,
  684. * all the algo is pure shit and should be replaced
  685. * with correct one. It is exactly, which we pretend to do.
  686. */
  687. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  688. * guarantees that rto is higher.
  689. */
  690. tcp_bound_rto(sk);
  691. }
  692. __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
  693. {
  694. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  695. if (!cwnd)
  696. cwnd = TCP_INIT_CWND;
  697. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  698. }
  699. /*
  700. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  701. * disables it when reordering is detected
  702. */
  703. void tcp_disable_fack(struct tcp_sock *tp)
  704. {
  705. /* RFC3517 uses different metric in lost marker => reset on change */
  706. if (tcp_is_fack(tp))
  707. tp->lost_skb_hint = NULL;
  708. tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
  709. }
  710. /* Take a notice that peer is sending D-SACKs */
  711. static void tcp_dsack_seen(struct tcp_sock *tp)
  712. {
  713. tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
  714. }
  715. static void tcp_update_reordering(struct sock *sk, const int metric,
  716. const int ts)
  717. {
  718. struct tcp_sock *tp = tcp_sk(sk);
  719. if (metric > tp->reordering) {
  720. int mib_idx;
  721. tp->reordering = min(TCP_MAX_REORDERING, metric);
  722. /* This exciting event is worth to be remembered. 8) */
  723. if (ts)
  724. mib_idx = LINUX_MIB_TCPTSREORDER;
  725. else if (tcp_is_reno(tp))
  726. mib_idx = LINUX_MIB_TCPRENOREORDER;
  727. else if (tcp_is_fack(tp))
  728. mib_idx = LINUX_MIB_TCPFACKREORDER;
  729. else
  730. mib_idx = LINUX_MIB_TCPSACKREORDER;
  731. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  732. #if FASTRETRANS_DEBUG > 1
  733. pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
  734. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  735. tp->reordering,
  736. tp->fackets_out,
  737. tp->sacked_out,
  738. tp->undo_marker ? tp->undo_retrans : 0);
  739. #endif
  740. tcp_disable_fack(tp);
  741. }
  742. if (metric > 0)
  743. tcp_disable_early_retrans(tp);
  744. }
  745. /* This must be called before lost_out is incremented */
  746. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  747. {
  748. if ((tp->retransmit_skb_hint == NULL) ||
  749. before(TCP_SKB_CB(skb)->seq,
  750. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  751. tp->retransmit_skb_hint = skb;
  752. if (!tp->lost_out ||
  753. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  754. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  755. }
  756. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  757. {
  758. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  759. tcp_verify_retransmit_hint(tp, skb);
  760. tp->lost_out += tcp_skb_pcount(skb);
  761. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  762. }
  763. }
  764. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  765. struct sk_buff *skb)
  766. {
  767. tcp_verify_retransmit_hint(tp, skb);
  768. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  769. tp->lost_out += tcp_skb_pcount(skb);
  770. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  771. }
  772. }
  773. /* This procedure tags the retransmission queue when SACKs arrive.
  774. *
  775. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  776. * Packets in queue with these bits set are counted in variables
  777. * sacked_out, retrans_out and lost_out, correspondingly.
  778. *
  779. * Valid combinations are:
  780. * Tag InFlight Description
  781. * 0 1 - orig segment is in flight.
  782. * S 0 - nothing flies, orig reached receiver.
  783. * L 0 - nothing flies, orig lost by net.
  784. * R 2 - both orig and retransmit are in flight.
  785. * L|R 1 - orig is lost, retransmit is in flight.
  786. * S|R 1 - orig reached receiver, retrans is still in flight.
  787. * (L|S|R is logically valid, it could occur when L|R is sacked,
  788. * but it is equivalent to plain S and code short-curcuits it to S.
  789. * L|S is logically invalid, it would mean -1 packet in flight 8))
  790. *
  791. * These 6 states form finite state machine, controlled by the following events:
  792. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  793. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  794. * 3. Loss detection event of two flavors:
  795. * A. Scoreboard estimator decided the packet is lost.
  796. * A'. Reno "three dupacks" marks head of queue lost.
  797. * A''. Its FACK modification, head until snd.fack is lost.
  798. * B. SACK arrives sacking SND.NXT at the moment, when the
  799. * segment was retransmitted.
  800. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  801. *
  802. * It is pleasant to note, that state diagram turns out to be commutative,
  803. * so that we are allowed not to be bothered by order of our actions,
  804. * when multiple events arrive simultaneously. (see the function below).
  805. *
  806. * Reordering detection.
  807. * --------------------
  808. * Reordering metric is maximal distance, which a packet can be displaced
  809. * in packet stream. With SACKs we can estimate it:
  810. *
  811. * 1. SACK fills old hole and the corresponding segment was not
  812. * ever retransmitted -> reordering. Alas, we cannot use it
  813. * when segment was retransmitted.
  814. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  815. * for retransmitted and already SACKed segment -> reordering..
  816. * Both of these heuristics are not used in Loss state, when we cannot
  817. * account for retransmits accurately.
  818. *
  819. * SACK block validation.
  820. * ----------------------
  821. *
  822. * SACK block range validation checks that the received SACK block fits to
  823. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  824. * Note that SND.UNA is not included to the range though being valid because
  825. * it means that the receiver is rather inconsistent with itself reporting
  826. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  827. * perfectly valid, however, in light of RFC2018 which explicitly states
  828. * that "SACK block MUST reflect the newest segment. Even if the newest
  829. * segment is going to be discarded ...", not that it looks very clever
  830. * in case of head skb. Due to potentional receiver driven attacks, we
  831. * choose to avoid immediate execution of a walk in write queue due to
  832. * reneging and defer head skb's loss recovery to standard loss recovery
  833. * procedure that will eventually trigger (nothing forbids us doing this).
  834. *
  835. * Implements also blockage to start_seq wrap-around. Problem lies in the
  836. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  837. * there's no guarantee that it will be before snd_nxt (n). The problem
  838. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  839. * wrap (s_w):
  840. *
  841. * <- outs wnd -> <- wrapzone ->
  842. * u e n u_w e_w s n_w
  843. * | | | | | | |
  844. * |<------------+------+----- TCP seqno space --------------+---------->|
  845. * ...-- <2^31 ->| |<--------...
  846. * ...---- >2^31 ------>| |<--------...
  847. *
  848. * Current code wouldn't be vulnerable but it's better still to discard such
  849. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  850. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  851. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  852. * equal to the ideal case (infinite seqno space without wrap caused issues).
  853. *
  854. * With D-SACK the lower bound is extended to cover sequence space below
  855. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  856. * again, D-SACK block must not to go across snd_una (for the same reason as
  857. * for the normal SACK blocks, explained above). But there all simplicity
  858. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  859. * fully below undo_marker they do not affect behavior in anyway and can
  860. * therefore be safely ignored. In rare cases (which are more or less
  861. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  862. * fragmentation and packet reordering past skb's retransmission. To consider
  863. * them correctly, the acceptable range must be extended even more though
  864. * the exact amount is rather hard to quantify. However, tp->max_window can
  865. * be used as an exaggerated estimate.
  866. */
  867. static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
  868. u32 start_seq, u32 end_seq)
  869. {
  870. /* Too far in future, or reversed (interpretation is ambiguous) */
  871. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  872. return false;
  873. /* Nasty start_seq wrap-around check (see comments above) */
  874. if (!before(start_seq, tp->snd_nxt))
  875. return false;
  876. /* In outstanding window? ...This is valid exit for D-SACKs too.
  877. * start_seq == snd_una is non-sensical (see comments above)
  878. */
  879. if (after(start_seq, tp->snd_una))
  880. return true;
  881. if (!is_dsack || !tp->undo_marker)
  882. return false;
  883. /* ...Then it's D-SACK, and must reside below snd_una completely */
  884. if (after(end_seq, tp->snd_una))
  885. return false;
  886. if (!before(start_seq, tp->undo_marker))
  887. return true;
  888. /* Too old */
  889. if (!after(end_seq, tp->undo_marker))
  890. return false;
  891. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  892. * start_seq < undo_marker and end_seq >= undo_marker.
  893. */
  894. return !before(start_seq, end_seq - tp->max_window);
  895. }
  896. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  897. * Event "B". Later note: FACK people cheated me again 8), we have to account
  898. * for reordering! Ugly, but should help.
  899. *
  900. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  901. * less than what is now known to be received by the other end (derived from
  902. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  903. * retransmitted skbs to avoid some costly processing per ACKs.
  904. */
  905. static void tcp_mark_lost_retrans(struct sock *sk)
  906. {
  907. const struct inet_connection_sock *icsk = inet_csk(sk);
  908. struct tcp_sock *tp = tcp_sk(sk);
  909. struct sk_buff *skb;
  910. int cnt = 0;
  911. u32 new_low_seq = tp->snd_nxt;
  912. u32 received_upto = tcp_highest_sack_seq(tp);
  913. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  914. !after(received_upto, tp->lost_retrans_low) ||
  915. icsk->icsk_ca_state != TCP_CA_Recovery)
  916. return;
  917. tcp_for_write_queue(skb, sk) {
  918. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  919. if (skb == tcp_send_head(sk))
  920. break;
  921. if (cnt == tp->retrans_out)
  922. break;
  923. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  924. continue;
  925. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  926. continue;
  927. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  928. * constraint here (see above) but figuring out that at
  929. * least tp->reordering SACK blocks reside between ack_seq
  930. * and received_upto is not easy task to do cheaply with
  931. * the available datastructures.
  932. *
  933. * Whether FACK should check here for tp->reordering segs
  934. * in-between one could argue for either way (it would be
  935. * rather simple to implement as we could count fack_count
  936. * during the walk and do tp->fackets_out - fack_count).
  937. */
  938. if (after(received_upto, ack_seq)) {
  939. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  940. tp->retrans_out -= tcp_skb_pcount(skb);
  941. tcp_skb_mark_lost_uncond_verify(tp, skb);
  942. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  943. } else {
  944. if (before(ack_seq, new_low_seq))
  945. new_low_seq = ack_seq;
  946. cnt += tcp_skb_pcount(skb);
  947. }
  948. }
  949. if (tp->retrans_out)
  950. tp->lost_retrans_low = new_low_seq;
  951. }
  952. static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
  953. struct tcp_sack_block_wire *sp, int num_sacks,
  954. u32 prior_snd_una)
  955. {
  956. struct tcp_sock *tp = tcp_sk(sk);
  957. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  958. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  959. bool dup_sack = false;
  960. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  961. dup_sack = true;
  962. tcp_dsack_seen(tp);
  963. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  964. } else if (num_sacks > 1) {
  965. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  966. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  967. if (!after(end_seq_0, end_seq_1) &&
  968. !before(start_seq_0, start_seq_1)) {
  969. dup_sack = true;
  970. tcp_dsack_seen(tp);
  971. NET_INC_STATS_BH(sock_net(sk),
  972. LINUX_MIB_TCPDSACKOFORECV);
  973. }
  974. }
  975. /* D-SACK for already forgotten data... Do dumb counting. */
  976. if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
  977. !after(end_seq_0, prior_snd_una) &&
  978. after(end_seq_0, tp->undo_marker))
  979. tp->undo_retrans--;
  980. return dup_sack;
  981. }
  982. struct tcp_sacktag_state {
  983. int reord;
  984. int fack_count;
  985. long rtt_us; /* RTT measured by SACKing never-retransmitted data */
  986. int flag;
  987. };
  988. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  989. * the incoming SACK may not exactly match but we can find smaller MSS
  990. * aligned portion of it that matches. Therefore we might need to fragment
  991. * which may fail and creates some hassle (caller must handle error case
  992. * returns).
  993. *
  994. * FIXME: this could be merged to shift decision code
  995. */
  996. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  997. u32 start_seq, u32 end_seq)
  998. {
  999. int err;
  1000. bool in_sack;
  1001. unsigned int pkt_len;
  1002. unsigned int mss;
  1003. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1004. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1005. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1006. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1007. mss = tcp_skb_mss(skb);
  1008. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1009. if (!in_sack) {
  1010. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1011. if (pkt_len < mss)
  1012. pkt_len = mss;
  1013. } else {
  1014. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1015. if (pkt_len < mss)
  1016. return -EINVAL;
  1017. }
  1018. /* Round if necessary so that SACKs cover only full MSSes
  1019. * and/or the remaining small portion (if present)
  1020. */
  1021. if (pkt_len > mss) {
  1022. unsigned int new_len = (pkt_len / mss) * mss;
  1023. if (!in_sack && new_len < pkt_len) {
  1024. new_len += mss;
  1025. if (new_len >= skb->len)
  1026. return 0;
  1027. }
  1028. pkt_len = new_len;
  1029. }
  1030. err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
  1031. if (err < 0)
  1032. return err;
  1033. }
  1034. return in_sack;
  1035. }
  1036. /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
  1037. static u8 tcp_sacktag_one(struct sock *sk,
  1038. struct tcp_sacktag_state *state, u8 sacked,
  1039. u32 start_seq, u32 end_seq,
  1040. int dup_sack, int pcount,
  1041. const struct skb_mstamp *xmit_time)
  1042. {
  1043. struct tcp_sock *tp = tcp_sk(sk);
  1044. int fack_count = state->fack_count;
  1045. /* Account D-SACK for retransmitted packet. */
  1046. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1047. if (tp->undo_marker && tp->undo_retrans > 0 &&
  1048. after(end_seq, tp->undo_marker))
  1049. tp->undo_retrans--;
  1050. if (sacked & TCPCB_SACKED_ACKED)
  1051. state->reord = min(fack_count, state->reord);
  1052. }
  1053. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1054. if (!after(end_seq, tp->snd_una))
  1055. return sacked;
  1056. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1057. if (sacked & TCPCB_SACKED_RETRANS) {
  1058. /* If the segment is not tagged as lost,
  1059. * we do not clear RETRANS, believing
  1060. * that retransmission is still in flight.
  1061. */
  1062. if (sacked & TCPCB_LOST) {
  1063. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1064. tp->lost_out -= pcount;
  1065. tp->retrans_out -= pcount;
  1066. }
  1067. } else {
  1068. if (!(sacked & TCPCB_RETRANS)) {
  1069. /* New sack for not retransmitted frame,
  1070. * which was in hole. It is reordering.
  1071. */
  1072. if (before(start_seq,
  1073. tcp_highest_sack_seq(tp)))
  1074. state->reord = min(fack_count,
  1075. state->reord);
  1076. if (!after(end_seq, tp->high_seq))
  1077. state->flag |= FLAG_ORIG_SACK_ACKED;
  1078. /* Pick the earliest sequence sacked for RTT */
  1079. if (state->rtt_us < 0) {
  1080. struct skb_mstamp now;
  1081. skb_mstamp_get(&now);
  1082. state->rtt_us = skb_mstamp_us_delta(&now,
  1083. xmit_time);
  1084. }
  1085. }
  1086. if (sacked & TCPCB_LOST) {
  1087. sacked &= ~TCPCB_LOST;
  1088. tp->lost_out -= pcount;
  1089. }
  1090. }
  1091. sacked |= TCPCB_SACKED_ACKED;
  1092. state->flag |= FLAG_DATA_SACKED;
  1093. tp->sacked_out += pcount;
  1094. fack_count += pcount;
  1095. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1096. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1097. before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1098. tp->lost_cnt_hint += pcount;
  1099. if (fack_count > tp->fackets_out)
  1100. tp->fackets_out = fack_count;
  1101. }
  1102. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1103. * frames and clear it. undo_retrans is decreased above, L|R frames
  1104. * are accounted above as well.
  1105. */
  1106. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1107. sacked &= ~TCPCB_SACKED_RETRANS;
  1108. tp->retrans_out -= pcount;
  1109. }
  1110. return sacked;
  1111. }
  1112. /* Shift newly-SACKed bytes from this skb to the immediately previous
  1113. * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
  1114. */
  1115. static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1116. struct tcp_sacktag_state *state,
  1117. unsigned int pcount, int shifted, int mss,
  1118. bool dup_sack)
  1119. {
  1120. struct tcp_sock *tp = tcp_sk(sk);
  1121. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1122. u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
  1123. u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
  1124. BUG_ON(!pcount);
  1125. /* Adjust counters and hints for the newly sacked sequence
  1126. * range but discard the return value since prev is already
  1127. * marked. We must tag the range first because the seq
  1128. * advancement below implicitly advances
  1129. * tcp_highest_sack_seq() when skb is highest_sack.
  1130. */
  1131. tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
  1132. start_seq, end_seq, dup_sack, pcount,
  1133. &skb->skb_mstamp);
  1134. if (skb == tp->lost_skb_hint)
  1135. tp->lost_cnt_hint += pcount;
  1136. TCP_SKB_CB(prev)->end_seq += shifted;
  1137. TCP_SKB_CB(skb)->seq += shifted;
  1138. skb_shinfo(prev)->gso_segs += pcount;
  1139. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1140. skb_shinfo(skb)->gso_segs -= pcount;
  1141. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1142. * in theory this shouldn't be necessary but as long as DSACK
  1143. * code can come after this skb later on it's better to keep
  1144. * setting gso_size to something.
  1145. */
  1146. if (!skb_shinfo(prev)->gso_size) {
  1147. skb_shinfo(prev)->gso_size = mss;
  1148. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1149. }
  1150. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1151. if (skb_shinfo(skb)->gso_segs <= 1) {
  1152. skb_shinfo(skb)->gso_size = 0;
  1153. skb_shinfo(skb)->gso_type = 0;
  1154. }
  1155. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1156. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1157. if (skb->len > 0) {
  1158. BUG_ON(!tcp_skb_pcount(skb));
  1159. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1160. return false;
  1161. }
  1162. /* Whole SKB was eaten :-) */
  1163. if (skb == tp->retransmit_skb_hint)
  1164. tp->retransmit_skb_hint = prev;
  1165. if (skb == tp->lost_skb_hint) {
  1166. tp->lost_skb_hint = prev;
  1167. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1168. }
  1169. TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
  1170. if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
  1171. TCP_SKB_CB(prev)->end_seq++;
  1172. if (skb == tcp_highest_sack(sk))
  1173. tcp_advance_highest_sack(sk, skb);
  1174. tcp_unlink_write_queue(skb, sk);
  1175. sk_wmem_free_skb(sk, skb);
  1176. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1177. return true;
  1178. }
  1179. /* I wish gso_size would have a bit more sane initialization than
  1180. * something-or-zero which complicates things
  1181. */
  1182. static int tcp_skb_seglen(const struct sk_buff *skb)
  1183. {
  1184. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1185. }
  1186. /* Shifting pages past head area doesn't work */
  1187. static int skb_can_shift(const struct sk_buff *skb)
  1188. {
  1189. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1190. }
  1191. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1192. * skb.
  1193. */
  1194. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1195. struct tcp_sacktag_state *state,
  1196. u32 start_seq, u32 end_seq,
  1197. bool dup_sack)
  1198. {
  1199. struct tcp_sock *tp = tcp_sk(sk);
  1200. struct sk_buff *prev;
  1201. int mss;
  1202. int pcount = 0;
  1203. int len;
  1204. int in_sack;
  1205. if (!sk_can_gso(sk))
  1206. goto fallback;
  1207. /* Normally R but no L won't result in plain S */
  1208. if (!dup_sack &&
  1209. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1210. goto fallback;
  1211. if (!skb_can_shift(skb))
  1212. goto fallback;
  1213. /* This frame is about to be dropped (was ACKed). */
  1214. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1215. goto fallback;
  1216. /* Can only happen with delayed DSACK + discard craziness */
  1217. if (unlikely(skb == tcp_write_queue_head(sk)))
  1218. goto fallback;
  1219. prev = tcp_write_queue_prev(sk, skb);
  1220. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1221. goto fallback;
  1222. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1223. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1224. if (in_sack) {
  1225. len = skb->len;
  1226. pcount = tcp_skb_pcount(skb);
  1227. mss = tcp_skb_seglen(skb);
  1228. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1229. * drop this restriction as unnecessary
  1230. */
  1231. if (mss != tcp_skb_seglen(prev))
  1232. goto fallback;
  1233. } else {
  1234. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1235. goto noop;
  1236. /* CHECKME: This is non-MSS split case only?, this will
  1237. * cause skipped skbs due to advancing loop btw, original
  1238. * has that feature too
  1239. */
  1240. if (tcp_skb_pcount(skb) <= 1)
  1241. goto noop;
  1242. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1243. if (!in_sack) {
  1244. /* TODO: head merge to next could be attempted here
  1245. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1246. * though it might not be worth of the additional hassle
  1247. *
  1248. * ...we can probably just fallback to what was done
  1249. * previously. We could try merging non-SACKed ones
  1250. * as well but it probably isn't going to buy off
  1251. * because later SACKs might again split them, and
  1252. * it would make skb timestamp tracking considerably
  1253. * harder problem.
  1254. */
  1255. goto fallback;
  1256. }
  1257. len = end_seq - TCP_SKB_CB(skb)->seq;
  1258. BUG_ON(len < 0);
  1259. BUG_ON(len > skb->len);
  1260. /* MSS boundaries should be honoured or else pcount will
  1261. * severely break even though it makes things bit trickier.
  1262. * Optimize common case to avoid most of the divides
  1263. */
  1264. mss = tcp_skb_mss(skb);
  1265. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1266. * drop this restriction as unnecessary
  1267. */
  1268. if (mss != tcp_skb_seglen(prev))
  1269. goto fallback;
  1270. if (len == mss) {
  1271. pcount = 1;
  1272. } else if (len < mss) {
  1273. goto noop;
  1274. } else {
  1275. pcount = len / mss;
  1276. len = pcount * mss;
  1277. }
  1278. }
  1279. /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
  1280. if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
  1281. goto fallback;
  1282. if (!skb_shift(prev, skb, len))
  1283. goto fallback;
  1284. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1285. goto out;
  1286. /* Hole filled allows collapsing with the next as well, this is very
  1287. * useful when hole on every nth skb pattern happens
  1288. */
  1289. if (prev == tcp_write_queue_tail(sk))
  1290. goto out;
  1291. skb = tcp_write_queue_next(sk, prev);
  1292. if (!skb_can_shift(skb) ||
  1293. (skb == tcp_send_head(sk)) ||
  1294. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1295. (mss != tcp_skb_seglen(skb)))
  1296. goto out;
  1297. len = skb->len;
  1298. if (skb_shift(prev, skb, len)) {
  1299. pcount += tcp_skb_pcount(skb);
  1300. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1301. }
  1302. out:
  1303. state->fack_count += pcount;
  1304. return prev;
  1305. noop:
  1306. return skb;
  1307. fallback:
  1308. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1309. return NULL;
  1310. }
  1311. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1312. struct tcp_sack_block *next_dup,
  1313. struct tcp_sacktag_state *state,
  1314. u32 start_seq, u32 end_seq,
  1315. bool dup_sack_in)
  1316. {
  1317. struct tcp_sock *tp = tcp_sk(sk);
  1318. struct sk_buff *tmp;
  1319. tcp_for_write_queue_from(skb, sk) {
  1320. int in_sack = 0;
  1321. bool dup_sack = dup_sack_in;
  1322. if (skb == tcp_send_head(sk))
  1323. break;
  1324. /* queue is in-order => we can short-circuit the walk early */
  1325. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1326. break;
  1327. if ((next_dup != NULL) &&
  1328. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1329. in_sack = tcp_match_skb_to_sack(sk, skb,
  1330. next_dup->start_seq,
  1331. next_dup->end_seq);
  1332. if (in_sack > 0)
  1333. dup_sack = true;
  1334. }
  1335. /* skb reference here is a bit tricky to get right, since
  1336. * shifting can eat and free both this skb and the next,
  1337. * so not even _safe variant of the loop is enough.
  1338. */
  1339. if (in_sack <= 0) {
  1340. tmp = tcp_shift_skb_data(sk, skb, state,
  1341. start_seq, end_seq, dup_sack);
  1342. if (tmp != NULL) {
  1343. if (tmp != skb) {
  1344. skb = tmp;
  1345. continue;
  1346. }
  1347. in_sack = 0;
  1348. } else {
  1349. in_sack = tcp_match_skb_to_sack(sk, skb,
  1350. start_seq,
  1351. end_seq);
  1352. }
  1353. }
  1354. if (unlikely(in_sack < 0))
  1355. break;
  1356. if (in_sack) {
  1357. TCP_SKB_CB(skb)->sacked =
  1358. tcp_sacktag_one(sk,
  1359. state,
  1360. TCP_SKB_CB(skb)->sacked,
  1361. TCP_SKB_CB(skb)->seq,
  1362. TCP_SKB_CB(skb)->end_seq,
  1363. dup_sack,
  1364. tcp_skb_pcount(skb),
  1365. &skb->skb_mstamp);
  1366. if (!before(TCP_SKB_CB(skb)->seq,
  1367. tcp_highest_sack_seq(tp)))
  1368. tcp_advance_highest_sack(sk, skb);
  1369. }
  1370. state->fack_count += tcp_skb_pcount(skb);
  1371. }
  1372. return skb;
  1373. }
  1374. /* Avoid all extra work that is being done by sacktag while walking in
  1375. * a normal way
  1376. */
  1377. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1378. struct tcp_sacktag_state *state,
  1379. u32 skip_to_seq)
  1380. {
  1381. tcp_for_write_queue_from(skb, sk) {
  1382. if (skb == tcp_send_head(sk))
  1383. break;
  1384. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1385. break;
  1386. state->fack_count += tcp_skb_pcount(skb);
  1387. }
  1388. return skb;
  1389. }
  1390. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1391. struct sock *sk,
  1392. struct tcp_sack_block *next_dup,
  1393. struct tcp_sacktag_state *state,
  1394. u32 skip_to_seq)
  1395. {
  1396. if (next_dup == NULL)
  1397. return skb;
  1398. if (before(next_dup->start_seq, skip_to_seq)) {
  1399. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1400. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1401. next_dup->start_seq, next_dup->end_seq,
  1402. 1);
  1403. }
  1404. return skb;
  1405. }
  1406. static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
  1407. {
  1408. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1409. }
  1410. static int
  1411. tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
  1412. u32 prior_snd_una, long *sack_rtt_us)
  1413. {
  1414. struct tcp_sock *tp = tcp_sk(sk);
  1415. const unsigned char *ptr = (skb_transport_header(ack_skb) +
  1416. TCP_SKB_CB(ack_skb)->sacked);
  1417. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1418. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1419. struct tcp_sack_block *cache;
  1420. struct tcp_sacktag_state state;
  1421. struct sk_buff *skb;
  1422. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1423. int used_sacks;
  1424. bool found_dup_sack = false;
  1425. int i, j;
  1426. int first_sack_index;
  1427. state.flag = 0;
  1428. state.reord = tp->packets_out;
  1429. state.rtt_us = -1L;
  1430. if (!tp->sacked_out) {
  1431. if (WARN_ON(tp->fackets_out))
  1432. tp->fackets_out = 0;
  1433. tcp_highest_sack_reset(sk);
  1434. }
  1435. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1436. num_sacks, prior_snd_una);
  1437. if (found_dup_sack)
  1438. state.flag |= FLAG_DSACKING_ACK;
  1439. /* Eliminate too old ACKs, but take into
  1440. * account more or less fresh ones, they can
  1441. * contain valid SACK info.
  1442. */
  1443. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1444. return 0;
  1445. if (!tp->packets_out)
  1446. goto out;
  1447. used_sacks = 0;
  1448. first_sack_index = 0;
  1449. for (i = 0; i < num_sacks; i++) {
  1450. bool dup_sack = !i && found_dup_sack;
  1451. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1452. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1453. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1454. sp[used_sacks].start_seq,
  1455. sp[used_sacks].end_seq)) {
  1456. int mib_idx;
  1457. if (dup_sack) {
  1458. if (!tp->undo_marker)
  1459. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1460. else
  1461. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1462. } else {
  1463. /* Don't count olds caused by ACK reordering */
  1464. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1465. !after(sp[used_sacks].end_seq, tp->snd_una))
  1466. continue;
  1467. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1468. }
  1469. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1470. if (i == 0)
  1471. first_sack_index = -1;
  1472. continue;
  1473. }
  1474. /* Ignore very old stuff early */
  1475. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1476. continue;
  1477. used_sacks++;
  1478. }
  1479. /* order SACK blocks to allow in order walk of the retrans queue */
  1480. for (i = used_sacks - 1; i > 0; i--) {
  1481. for (j = 0; j < i; j++) {
  1482. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1483. swap(sp[j], sp[j + 1]);
  1484. /* Track where the first SACK block goes to */
  1485. if (j == first_sack_index)
  1486. first_sack_index = j + 1;
  1487. }
  1488. }
  1489. }
  1490. skb = tcp_write_queue_head(sk);
  1491. state.fack_count = 0;
  1492. i = 0;
  1493. if (!tp->sacked_out) {
  1494. /* It's already past, so skip checking against it */
  1495. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1496. } else {
  1497. cache = tp->recv_sack_cache;
  1498. /* Skip empty blocks in at head of the cache */
  1499. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1500. !cache->end_seq)
  1501. cache++;
  1502. }
  1503. while (i < used_sacks) {
  1504. u32 start_seq = sp[i].start_seq;
  1505. u32 end_seq = sp[i].end_seq;
  1506. bool dup_sack = (found_dup_sack && (i == first_sack_index));
  1507. struct tcp_sack_block *next_dup = NULL;
  1508. if (found_dup_sack && ((i + 1) == first_sack_index))
  1509. next_dup = &sp[i + 1];
  1510. /* Skip too early cached blocks */
  1511. while (tcp_sack_cache_ok(tp, cache) &&
  1512. !before(start_seq, cache->end_seq))
  1513. cache++;
  1514. /* Can skip some work by looking recv_sack_cache? */
  1515. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1516. after(end_seq, cache->start_seq)) {
  1517. /* Head todo? */
  1518. if (before(start_seq, cache->start_seq)) {
  1519. skb = tcp_sacktag_skip(skb, sk, &state,
  1520. start_seq);
  1521. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1522. &state,
  1523. start_seq,
  1524. cache->start_seq,
  1525. dup_sack);
  1526. }
  1527. /* Rest of the block already fully processed? */
  1528. if (!after(end_seq, cache->end_seq))
  1529. goto advance_sp;
  1530. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1531. &state,
  1532. cache->end_seq);
  1533. /* ...tail remains todo... */
  1534. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1535. /* ...but better entrypoint exists! */
  1536. skb = tcp_highest_sack(sk);
  1537. if (skb == NULL)
  1538. break;
  1539. state.fack_count = tp->fackets_out;
  1540. cache++;
  1541. goto walk;
  1542. }
  1543. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1544. /* Check overlap against next cached too (past this one already) */
  1545. cache++;
  1546. continue;
  1547. }
  1548. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1549. skb = tcp_highest_sack(sk);
  1550. if (skb == NULL)
  1551. break;
  1552. state.fack_count = tp->fackets_out;
  1553. }
  1554. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1555. walk:
  1556. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1557. start_seq, end_seq, dup_sack);
  1558. advance_sp:
  1559. i++;
  1560. }
  1561. /* Clear the head of the cache sack blocks so we can skip it next time */
  1562. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1563. tp->recv_sack_cache[i].start_seq = 0;
  1564. tp->recv_sack_cache[i].end_seq = 0;
  1565. }
  1566. for (j = 0; j < used_sacks; j++)
  1567. tp->recv_sack_cache[i++] = sp[j];
  1568. tcp_mark_lost_retrans(sk);
  1569. tcp_verify_left_out(tp);
  1570. if ((state.reord < tp->fackets_out) &&
  1571. ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
  1572. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1573. out:
  1574. #if FASTRETRANS_DEBUG > 0
  1575. WARN_ON((int)tp->sacked_out < 0);
  1576. WARN_ON((int)tp->lost_out < 0);
  1577. WARN_ON((int)tp->retrans_out < 0);
  1578. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1579. #endif
  1580. *sack_rtt_us = state.rtt_us;
  1581. return state.flag;
  1582. }
  1583. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1584. * packets_out. Returns false if sacked_out adjustement wasn't necessary.
  1585. */
  1586. static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
  1587. {
  1588. u32 holes;
  1589. holes = max(tp->lost_out, 1U);
  1590. holes = min(holes, tp->packets_out);
  1591. if ((tp->sacked_out + holes) > tp->packets_out) {
  1592. tp->sacked_out = tp->packets_out - holes;
  1593. return true;
  1594. }
  1595. return false;
  1596. }
  1597. /* If we receive more dupacks than we expected counting segments
  1598. * in assumption of absent reordering, interpret this as reordering.
  1599. * The only another reason could be bug in receiver TCP.
  1600. */
  1601. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1602. {
  1603. struct tcp_sock *tp = tcp_sk(sk);
  1604. if (tcp_limit_reno_sacked(tp))
  1605. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1606. }
  1607. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1608. static void tcp_add_reno_sack(struct sock *sk)
  1609. {
  1610. struct tcp_sock *tp = tcp_sk(sk);
  1611. tp->sacked_out++;
  1612. tcp_check_reno_reordering(sk, 0);
  1613. tcp_verify_left_out(tp);
  1614. }
  1615. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1616. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1617. {
  1618. struct tcp_sock *tp = tcp_sk(sk);
  1619. if (acked > 0) {
  1620. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1621. if (acked - 1 >= tp->sacked_out)
  1622. tp->sacked_out = 0;
  1623. else
  1624. tp->sacked_out -= acked - 1;
  1625. }
  1626. tcp_check_reno_reordering(sk, acked);
  1627. tcp_verify_left_out(tp);
  1628. }
  1629. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1630. {
  1631. tp->sacked_out = 0;
  1632. }
  1633. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1634. {
  1635. tp->retrans_out = 0;
  1636. tp->lost_out = 0;
  1637. tp->undo_marker = 0;
  1638. tp->undo_retrans = -1;
  1639. }
  1640. void tcp_clear_retrans(struct tcp_sock *tp)
  1641. {
  1642. tcp_clear_retrans_partial(tp);
  1643. tp->fackets_out = 0;
  1644. tp->sacked_out = 0;
  1645. }
  1646. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1647. * and reset tags completely, otherwise preserve SACKs. If receiver
  1648. * dropped its ofo queue, we will know this due to reneging detection.
  1649. */
  1650. void tcp_enter_loss(struct sock *sk, int how)
  1651. {
  1652. const struct inet_connection_sock *icsk = inet_csk(sk);
  1653. struct tcp_sock *tp = tcp_sk(sk);
  1654. struct sk_buff *skb;
  1655. bool new_recovery = false;
  1656. /* Reduce ssthresh if it has not yet been made inside this window. */
  1657. if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
  1658. !after(tp->high_seq, tp->snd_una) ||
  1659. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1660. new_recovery = true;
  1661. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1662. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1663. tcp_ca_event(sk, CA_EVENT_LOSS);
  1664. }
  1665. tp->snd_cwnd = 1;
  1666. tp->snd_cwnd_cnt = 0;
  1667. tp->snd_cwnd_stamp = tcp_time_stamp;
  1668. tcp_clear_retrans_partial(tp);
  1669. if (tcp_is_reno(tp))
  1670. tcp_reset_reno_sack(tp);
  1671. tp->undo_marker = tp->snd_una;
  1672. if (how) {
  1673. tp->sacked_out = 0;
  1674. tp->fackets_out = 0;
  1675. }
  1676. tcp_clear_all_retrans_hints(tp);
  1677. tcp_for_write_queue(skb, sk) {
  1678. if (skb == tcp_send_head(sk))
  1679. break;
  1680. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1681. tp->undo_marker = 0;
  1682. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1683. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1684. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1685. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1686. tp->lost_out += tcp_skb_pcount(skb);
  1687. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1688. }
  1689. }
  1690. tcp_verify_left_out(tp);
  1691. /* Timeout in disordered state after receiving substantial DUPACKs
  1692. * suggests that the degree of reordering is over-estimated.
  1693. */
  1694. if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
  1695. tp->sacked_out >= sysctl_tcp_reordering)
  1696. tp->reordering = min_t(unsigned int, tp->reordering,
  1697. sysctl_tcp_reordering);
  1698. tcp_set_ca_state(sk, TCP_CA_Loss);
  1699. tp->high_seq = tp->snd_nxt;
  1700. TCP_ECN_queue_cwr(tp);
  1701. /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
  1702. * loss recovery is underway except recurring timeout(s) on
  1703. * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
  1704. */
  1705. tp->frto = sysctl_tcp_frto &&
  1706. (new_recovery || icsk->icsk_retransmits) &&
  1707. !inet_csk(sk)->icsk_mtup.probe_size;
  1708. }
  1709. /* If ACK arrived pointing to a remembered SACK, it means that our
  1710. * remembered SACKs do not reflect real state of receiver i.e.
  1711. * receiver _host_ is heavily congested (or buggy).
  1712. *
  1713. * Do processing similar to RTO timeout.
  1714. */
  1715. static bool tcp_check_sack_reneging(struct sock *sk, int flag)
  1716. {
  1717. if (flag & FLAG_SACK_RENEGING) {
  1718. struct inet_connection_sock *icsk = inet_csk(sk);
  1719. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1720. tcp_enter_loss(sk, 1);
  1721. icsk->icsk_retransmits++;
  1722. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1723. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1724. icsk->icsk_rto, TCP_RTO_MAX);
  1725. return true;
  1726. }
  1727. return false;
  1728. }
  1729. static inline int tcp_fackets_out(const struct tcp_sock *tp)
  1730. {
  1731. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1732. }
  1733. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1734. * counter when SACK is enabled (without SACK, sacked_out is used for
  1735. * that purpose).
  1736. *
  1737. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1738. * segments up to the highest received SACK block so far and holes in
  1739. * between them.
  1740. *
  1741. * With reordering, holes may still be in flight, so RFC3517 recovery
  1742. * uses pure sacked_out (total number of SACKed segments) even though
  1743. * it violates the RFC that uses duplicate ACKs, often these are equal
  1744. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1745. * they differ. Since neither occurs due to loss, TCP should really
  1746. * ignore them.
  1747. */
  1748. static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
  1749. {
  1750. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  1751. }
  1752. static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
  1753. {
  1754. struct tcp_sock *tp = tcp_sk(sk);
  1755. unsigned long delay;
  1756. /* Delay early retransmit and entering fast recovery for
  1757. * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
  1758. * available, or RTO is scheduled to fire first.
  1759. */
  1760. if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
  1761. (flag & FLAG_ECE) || !tp->srtt_us)
  1762. return false;
  1763. delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
  1764. msecs_to_jiffies(2));
  1765. if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
  1766. return false;
  1767. inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
  1768. TCP_RTO_MAX);
  1769. return true;
  1770. }
  1771. /* Linux NewReno/SACK/FACK/ECN state machine.
  1772. * --------------------------------------
  1773. *
  1774. * "Open" Normal state, no dubious events, fast path.
  1775. * "Disorder" In all the respects it is "Open",
  1776. * but requires a bit more attention. It is entered when
  1777. * we see some SACKs or dupacks. It is split of "Open"
  1778. * mainly to move some processing from fast path to slow one.
  1779. * "CWR" CWND was reduced due to some Congestion Notification event.
  1780. * It can be ECN, ICMP source quench, local device congestion.
  1781. * "Recovery" CWND was reduced, we are fast-retransmitting.
  1782. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  1783. *
  1784. * tcp_fastretrans_alert() is entered:
  1785. * - each incoming ACK, if state is not "Open"
  1786. * - when arrived ACK is unusual, namely:
  1787. * * SACK
  1788. * * Duplicate ACK.
  1789. * * ECN ECE.
  1790. *
  1791. * Counting packets in flight is pretty simple.
  1792. *
  1793. * in_flight = packets_out - left_out + retrans_out
  1794. *
  1795. * packets_out is SND.NXT-SND.UNA counted in packets.
  1796. *
  1797. * retrans_out is number of retransmitted segments.
  1798. *
  1799. * left_out is number of segments left network, but not ACKed yet.
  1800. *
  1801. * left_out = sacked_out + lost_out
  1802. *
  1803. * sacked_out: Packets, which arrived to receiver out of order
  1804. * and hence not ACKed. With SACKs this number is simply
  1805. * amount of SACKed data. Even without SACKs
  1806. * it is easy to give pretty reliable estimate of this number,
  1807. * counting duplicate ACKs.
  1808. *
  1809. * lost_out: Packets lost by network. TCP has no explicit
  1810. * "loss notification" feedback from network (for now).
  1811. * It means that this number can be only _guessed_.
  1812. * Actually, it is the heuristics to predict lossage that
  1813. * distinguishes different algorithms.
  1814. *
  1815. * F.e. after RTO, when all the queue is considered as lost,
  1816. * lost_out = packets_out and in_flight = retrans_out.
  1817. *
  1818. * Essentially, we have now two algorithms counting
  1819. * lost packets.
  1820. *
  1821. * FACK: It is the simplest heuristics. As soon as we decided
  1822. * that something is lost, we decide that _all_ not SACKed
  1823. * packets until the most forward SACK are lost. I.e.
  1824. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  1825. * It is absolutely correct estimate, if network does not reorder
  1826. * packets. And it loses any connection to reality when reordering
  1827. * takes place. We use FACK by default until reordering
  1828. * is suspected on the path to this destination.
  1829. *
  1830. * NewReno: when Recovery is entered, we assume that one segment
  1831. * is lost (classic Reno). While we are in Recovery and
  1832. * a partial ACK arrives, we assume that one more packet
  1833. * is lost (NewReno). This heuristics are the same in NewReno
  1834. * and SACK.
  1835. *
  1836. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  1837. * deflation etc. CWND is real congestion window, never inflated, changes
  1838. * only according to classic VJ rules.
  1839. *
  1840. * Really tricky (and requiring careful tuning) part of algorithm
  1841. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  1842. * The first determines the moment _when_ we should reduce CWND and,
  1843. * hence, slow down forward transmission. In fact, it determines the moment
  1844. * when we decide that hole is caused by loss, rather than by a reorder.
  1845. *
  1846. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  1847. * holes, caused by lost packets.
  1848. *
  1849. * And the most logically complicated part of algorithm is undo
  1850. * heuristics. We detect false retransmits due to both too early
  1851. * fast retransmit (reordering) and underestimated RTO, analyzing
  1852. * timestamps and D-SACKs. When we detect that some segments were
  1853. * retransmitted by mistake and CWND reduction was wrong, we undo
  1854. * window reduction and abort recovery phase. This logic is hidden
  1855. * inside several functions named tcp_try_undo_<something>.
  1856. */
  1857. /* This function decides, when we should leave Disordered state
  1858. * and enter Recovery phase, reducing congestion window.
  1859. *
  1860. * Main question: may we further continue forward transmission
  1861. * with the same cwnd?
  1862. */
  1863. static bool tcp_time_to_recover(struct sock *sk, int flag)
  1864. {
  1865. struct tcp_sock *tp = tcp_sk(sk);
  1866. __u32 packets_out;
  1867. /* Trick#1: The loss is proven. */
  1868. if (tp->lost_out)
  1869. return true;
  1870. /* Not-A-Trick#2 : Classic rule... */
  1871. if (tcp_dupack_heuristics(tp) > tp->reordering)
  1872. return true;
  1873. /* Trick#4: It is still not OK... But will it be useful to delay
  1874. * recovery more?
  1875. */
  1876. packets_out = tp->packets_out;
  1877. if (packets_out <= tp->reordering &&
  1878. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  1879. !tcp_may_send_now(sk)) {
  1880. /* We have nothing to send. This connection is limited
  1881. * either by receiver window or by application.
  1882. */
  1883. return true;
  1884. }
  1885. /* If a thin stream is detected, retransmit after first
  1886. * received dupack. Employ only if SACK is supported in order
  1887. * to avoid possible corner-case series of spurious retransmissions
  1888. * Use only if there are no unsent data.
  1889. */
  1890. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  1891. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  1892. tcp_is_sack(tp) && !tcp_send_head(sk))
  1893. return true;
  1894. /* Trick#6: TCP early retransmit, per RFC5827. To avoid spurious
  1895. * retransmissions due to small network reorderings, we implement
  1896. * Mitigation A.3 in the RFC and delay the retransmission for a short
  1897. * interval if appropriate.
  1898. */
  1899. if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
  1900. (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
  1901. !tcp_may_send_now(sk))
  1902. return !tcp_pause_early_retransmit(sk, flag);
  1903. return false;
  1904. }
  1905. /* Detect loss in event "A" above by marking head of queue up as lost.
  1906. * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
  1907. * are considered lost. For RFC3517 SACK, a segment is considered lost if it
  1908. * has at least tp->reordering SACKed seqments above it; "packets" refers to
  1909. * the maximum SACKed segments to pass before reaching this limit.
  1910. */
  1911. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  1912. {
  1913. struct tcp_sock *tp = tcp_sk(sk);
  1914. struct sk_buff *skb;
  1915. int cnt, oldcnt;
  1916. int err;
  1917. unsigned int mss;
  1918. /* Use SACK to deduce losses of new sequences sent during recovery */
  1919. const u32 loss_high = tcp_is_sack(tp) ? tp->snd_nxt : tp->high_seq;
  1920. WARN_ON(packets > tp->packets_out);
  1921. if (tp->lost_skb_hint) {
  1922. skb = tp->lost_skb_hint;
  1923. cnt = tp->lost_cnt_hint;
  1924. /* Head already handled? */
  1925. if (mark_head && skb != tcp_write_queue_head(sk))
  1926. return;
  1927. } else {
  1928. skb = tcp_write_queue_head(sk);
  1929. cnt = 0;
  1930. }
  1931. tcp_for_write_queue_from(skb, sk) {
  1932. if (skb == tcp_send_head(sk))
  1933. break;
  1934. /* TODO: do this better */
  1935. /* this is not the most efficient way to do this... */
  1936. tp->lost_skb_hint = skb;
  1937. tp->lost_cnt_hint = cnt;
  1938. if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
  1939. break;
  1940. oldcnt = cnt;
  1941. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  1942. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1943. cnt += tcp_skb_pcount(skb);
  1944. if (cnt > packets) {
  1945. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  1946. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
  1947. (oldcnt >= packets))
  1948. break;
  1949. mss = skb_shinfo(skb)->gso_size;
  1950. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss,
  1951. mss, GFP_ATOMIC);
  1952. if (err < 0)
  1953. break;
  1954. cnt = packets;
  1955. }
  1956. tcp_skb_mark_lost(tp, skb);
  1957. if (mark_head)
  1958. break;
  1959. }
  1960. tcp_verify_left_out(tp);
  1961. }
  1962. /* Account newly detected lost packet(s) */
  1963. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  1964. {
  1965. struct tcp_sock *tp = tcp_sk(sk);
  1966. if (tcp_is_reno(tp)) {
  1967. tcp_mark_head_lost(sk, 1, 1);
  1968. } else if (tcp_is_fack(tp)) {
  1969. int lost = tp->fackets_out - tp->reordering;
  1970. if (lost <= 0)
  1971. lost = 1;
  1972. tcp_mark_head_lost(sk, lost, 0);
  1973. } else {
  1974. int sacked_upto = tp->sacked_out - tp->reordering;
  1975. if (sacked_upto >= 0)
  1976. tcp_mark_head_lost(sk, sacked_upto, 0);
  1977. else if (fast_rexmit)
  1978. tcp_mark_head_lost(sk, 1, 1);
  1979. }
  1980. }
  1981. /* CWND moderation, preventing bursts due to too big ACKs
  1982. * in dubious situations.
  1983. */
  1984. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  1985. {
  1986. tp->snd_cwnd = min(tp->snd_cwnd,
  1987. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  1988. tp->snd_cwnd_stamp = tcp_time_stamp;
  1989. }
  1990. /* Nothing was retransmitted or returned timestamp is less
  1991. * than timestamp of the first retransmission.
  1992. */
  1993. static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
  1994. {
  1995. return !tp->retrans_stamp ||
  1996. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  1997. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  1998. }
  1999. /* Undo procedures. */
  2000. #if FASTRETRANS_DEBUG > 1
  2001. static void DBGUNDO(struct sock *sk, const char *msg)
  2002. {
  2003. struct tcp_sock *tp = tcp_sk(sk);
  2004. struct inet_sock *inet = inet_sk(sk);
  2005. if (sk->sk_family == AF_INET) {
  2006. pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2007. msg,
  2008. &inet->inet_daddr, ntohs(inet->inet_dport),
  2009. tp->snd_cwnd, tcp_left_out(tp),
  2010. tp->snd_ssthresh, tp->prior_ssthresh,
  2011. tp->packets_out);
  2012. }
  2013. #if IS_ENABLED(CONFIG_IPV6)
  2014. else if (sk->sk_family == AF_INET6) {
  2015. struct ipv6_pinfo *np = inet6_sk(sk);
  2016. pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2017. msg,
  2018. &np->daddr, ntohs(inet->inet_dport),
  2019. tp->snd_cwnd, tcp_left_out(tp),
  2020. tp->snd_ssthresh, tp->prior_ssthresh,
  2021. tp->packets_out);
  2022. }
  2023. #endif
  2024. }
  2025. #else
  2026. #define DBGUNDO(x...) do { } while (0)
  2027. #endif
  2028. static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
  2029. {
  2030. struct tcp_sock *tp = tcp_sk(sk);
  2031. if (unmark_loss) {
  2032. struct sk_buff *skb;
  2033. tcp_for_write_queue(skb, sk) {
  2034. if (skb == tcp_send_head(sk))
  2035. break;
  2036. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2037. }
  2038. tp->lost_out = 0;
  2039. tcp_clear_all_retrans_hints(tp);
  2040. }
  2041. if (tp->prior_ssthresh) {
  2042. const struct inet_connection_sock *icsk = inet_csk(sk);
  2043. if (icsk->icsk_ca_ops->undo_cwnd)
  2044. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2045. else
  2046. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2047. if (tp->prior_ssthresh > tp->snd_ssthresh) {
  2048. tp->snd_ssthresh = tp->prior_ssthresh;
  2049. TCP_ECN_withdraw_cwr(tp);
  2050. }
  2051. } else {
  2052. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2053. }
  2054. tp->snd_cwnd_stamp = tcp_time_stamp;
  2055. tp->undo_marker = 0;
  2056. }
  2057. static inline bool tcp_may_undo(const struct tcp_sock *tp)
  2058. {
  2059. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2060. }
  2061. /* People celebrate: "We love our President!" */
  2062. static bool tcp_try_undo_recovery(struct sock *sk)
  2063. {
  2064. struct tcp_sock *tp = tcp_sk(sk);
  2065. if (tcp_may_undo(tp)) {
  2066. int mib_idx;
  2067. /* Happy end! We did not retransmit anything
  2068. * or our original transmission succeeded.
  2069. */
  2070. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2071. tcp_undo_cwnd_reduction(sk, false);
  2072. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2073. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2074. else
  2075. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2076. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2077. }
  2078. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2079. /* Hold old state until something *above* high_seq
  2080. * is ACKed. For Reno it is MUST to prevent false
  2081. * fast retransmits (RFC2582). SACK TCP is safe. */
  2082. tcp_moderate_cwnd(tp);
  2083. return true;
  2084. }
  2085. tcp_set_ca_state(sk, TCP_CA_Open);
  2086. return false;
  2087. }
  2088. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2089. static bool tcp_try_undo_dsack(struct sock *sk)
  2090. {
  2091. struct tcp_sock *tp = tcp_sk(sk);
  2092. if (tp->undo_marker && !tp->undo_retrans) {
  2093. DBGUNDO(sk, "D-SACK");
  2094. tcp_undo_cwnd_reduction(sk, false);
  2095. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2096. return true;
  2097. }
  2098. return false;
  2099. }
  2100. /* We can clear retrans_stamp when there are no retransmissions in the
  2101. * window. It would seem that it is trivially available for us in
  2102. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2103. * what will happen if errors occur when sending retransmission for the
  2104. * second time. ...It could the that such segment has only
  2105. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2106. * the head skb is enough except for some reneging corner cases that
  2107. * are not worth the effort.
  2108. *
  2109. * Main reason for all this complexity is the fact that connection dying
  2110. * time now depends on the validity of the retrans_stamp, in particular,
  2111. * that successive retransmissions of a segment must not advance
  2112. * retrans_stamp under any conditions.
  2113. */
  2114. static bool tcp_any_retrans_done(const struct sock *sk)
  2115. {
  2116. const struct tcp_sock *tp = tcp_sk(sk);
  2117. struct sk_buff *skb;
  2118. if (tp->retrans_out)
  2119. return true;
  2120. skb = tcp_write_queue_head(sk);
  2121. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2122. return true;
  2123. return false;
  2124. }
  2125. /* Undo during loss recovery after partial ACK or using F-RTO. */
  2126. static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
  2127. {
  2128. struct tcp_sock *tp = tcp_sk(sk);
  2129. if (frto_undo || tcp_may_undo(tp)) {
  2130. tcp_undo_cwnd_reduction(sk, true);
  2131. DBGUNDO(sk, "partial loss");
  2132. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2133. if (frto_undo)
  2134. NET_INC_STATS_BH(sock_net(sk),
  2135. LINUX_MIB_TCPSPURIOUSRTOS);
  2136. inet_csk(sk)->icsk_retransmits = 0;
  2137. if (frto_undo || tcp_is_sack(tp))
  2138. tcp_set_ca_state(sk, TCP_CA_Open);
  2139. return true;
  2140. }
  2141. return false;
  2142. }
  2143. /* The cwnd reduction in CWR and Recovery use the PRR algorithm
  2144. * https://datatracker.ietf.org/doc/draft-ietf-tcpm-proportional-rate-reduction/
  2145. * It computes the number of packets to send (sndcnt) based on packets newly
  2146. * delivered:
  2147. * 1) If the packets in flight is larger than ssthresh, PRR spreads the
  2148. * cwnd reductions across a full RTT.
  2149. * 2) If packets in flight is lower than ssthresh (such as due to excess
  2150. * losses and/or application stalls), do not perform any further cwnd
  2151. * reductions, but instead slow start up to ssthresh.
  2152. */
  2153. static void tcp_init_cwnd_reduction(struct sock *sk, const bool set_ssthresh)
  2154. {
  2155. struct tcp_sock *tp = tcp_sk(sk);
  2156. tp->high_seq = tp->snd_nxt;
  2157. tp->tlp_high_seq = 0;
  2158. tp->snd_cwnd_cnt = 0;
  2159. tp->prior_cwnd = tp->snd_cwnd;
  2160. tp->prr_delivered = 0;
  2161. tp->prr_out = 0;
  2162. if (set_ssthresh)
  2163. tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
  2164. TCP_ECN_queue_cwr(tp);
  2165. }
  2166. static void tcp_cwnd_reduction(struct sock *sk, const int prior_unsacked,
  2167. int fast_rexmit)
  2168. {
  2169. struct tcp_sock *tp = tcp_sk(sk);
  2170. int sndcnt = 0;
  2171. int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
  2172. int newly_acked_sacked = prior_unsacked -
  2173. (tp->packets_out - tp->sacked_out);
  2174. tp->prr_delivered += newly_acked_sacked;
  2175. if (tcp_packets_in_flight(tp) > tp->snd_ssthresh) {
  2176. u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
  2177. tp->prior_cwnd - 1;
  2178. sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
  2179. } else {
  2180. sndcnt = min_t(int, delta,
  2181. max_t(int, tp->prr_delivered - tp->prr_out,
  2182. newly_acked_sacked) + 1);
  2183. }
  2184. sndcnt = max(sndcnt, (fast_rexmit ? 1 : 0));
  2185. tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
  2186. }
  2187. static inline void tcp_end_cwnd_reduction(struct sock *sk)
  2188. {
  2189. struct tcp_sock *tp = tcp_sk(sk);
  2190. /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
  2191. if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
  2192. (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
  2193. tp->snd_cwnd = tp->snd_ssthresh;
  2194. tp->snd_cwnd_stamp = tcp_time_stamp;
  2195. }
  2196. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2197. }
  2198. /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
  2199. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  2200. {
  2201. struct tcp_sock *tp = tcp_sk(sk);
  2202. tp->prior_ssthresh = 0;
  2203. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2204. tp->undo_marker = 0;
  2205. tcp_init_cwnd_reduction(sk, set_ssthresh);
  2206. tcp_set_ca_state(sk, TCP_CA_CWR);
  2207. }
  2208. }
  2209. static void tcp_try_keep_open(struct sock *sk)
  2210. {
  2211. struct tcp_sock *tp = tcp_sk(sk);
  2212. int state = TCP_CA_Open;
  2213. if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
  2214. state = TCP_CA_Disorder;
  2215. if (inet_csk(sk)->icsk_ca_state != state) {
  2216. tcp_set_ca_state(sk, state);
  2217. tp->high_seq = tp->snd_nxt;
  2218. }
  2219. }
  2220. static void tcp_try_to_open(struct sock *sk, int flag, const int prior_unsacked)
  2221. {
  2222. struct tcp_sock *tp = tcp_sk(sk);
  2223. tcp_verify_left_out(tp);
  2224. if (!tcp_any_retrans_done(sk))
  2225. tp->retrans_stamp = 0;
  2226. if (flag & FLAG_ECE)
  2227. tcp_enter_cwr(sk, 1);
  2228. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2229. tcp_try_keep_open(sk);
  2230. } else {
  2231. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2232. }
  2233. }
  2234. static void tcp_mtup_probe_failed(struct sock *sk)
  2235. {
  2236. struct inet_connection_sock *icsk = inet_csk(sk);
  2237. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2238. icsk->icsk_mtup.probe_size = 0;
  2239. }
  2240. static void tcp_mtup_probe_success(struct sock *sk)
  2241. {
  2242. struct tcp_sock *tp = tcp_sk(sk);
  2243. struct inet_connection_sock *icsk = inet_csk(sk);
  2244. /* FIXME: breaks with very large cwnd */
  2245. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2246. tp->snd_cwnd = tp->snd_cwnd *
  2247. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2248. icsk->icsk_mtup.probe_size;
  2249. tp->snd_cwnd_cnt = 0;
  2250. tp->snd_cwnd_stamp = tcp_time_stamp;
  2251. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2252. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2253. icsk->icsk_mtup.probe_size = 0;
  2254. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2255. }
  2256. /* Do a simple retransmit without using the backoff mechanisms in
  2257. * tcp_timer. This is used for path mtu discovery.
  2258. * The socket is already locked here.
  2259. */
  2260. void tcp_simple_retransmit(struct sock *sk)
  2261. {
  2262. const struct inet_connection_sock *icsk = inet_csk(sk);
  2263. struct tcp_sock *tp = tcp_sk(sk);
  2264. struct sk_buff *skb;
  2265. unsigned int mss = tcp_current_mss(sk);
  2266. u32 prior_lost = tp->lost_out;
  2267. tcp_for_write_queue(skb, sk) {
  2268. if (skb == tcp_send_head(sk))
  2269. break;
  2270. if (tcp_skb_seglen(skb) > mss &&
  2271. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2272. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2273. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2274. tp->retrans_out -= tcp_skb_pcount(skb);
  2275. }
  2276. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2277. }
  2278. }
  2279. tcp_clear_retrans_hints_partial(tp);
  2280. if (prior_lost == tp->lost_out)
  2281. return;
  2282. if (tcp_is_reno(tp))
  2283. tcp_limit_reno_sacked(tp);
  2284. tcp_verify_left_out(tp);
  2285. /* Don't muck with the congestion window here.
  2286. * Reason is that we do not increase amount of _data_
  2287. * in network, but units changed and effective
  2288. * cwnd/ssthresh really reduced now.
  2289. */
  2290. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2291. tp->high_seq = tp->snd_nxt;
  2292. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2293. tp->prior_ssthresh = 0;
  2294. tp->undo_marker = 0;
  2295. tcp_set_ca_state(sk, TCP_CA_Loss);
  2296. }
  2297. tcp_xmit_retransmit_queue(sk);
  2298. }
  2299. EXPORT_SYMBOL(tcp_simple_retransmit);
  2300. static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
  2301. {
  2302. struct tcp_sock *tp = tcp_sk(sk);
  2303. int mib_idx;
  2304. if (tcp_is_reno(tp))
  2305. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2306. else
  2307. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2308. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2309. tp->prior_ssthresh = 0;
  2310. tp->undo_marker = tp->snd_una;
  2311. tp->undo_retrans = tp->retrans_out ? : -1;
  2312. if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
  2313. if (!ece_ack)
  2314. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2315. tcp_init_cwnd_reduction(sk, true);
  2316. }
  2317. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2318. }
  2319. /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
  2320. * recovered or spurious. Otherwise retransmits more on partial ACKs.
  2321. */
  2322. static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack)
  2323. {
  2324. struct inet_connection_sock *icsk = inet_csk(sk);
  2325. struct tcp_sock *tp = tcp_sk(sk);
  2326. bool recovered = !before(tp->snd_una, tp->high_seq);
  2327. if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
  2328. /* Step 3.b. A timeout is spurious if not all data are
  2329. * lost, i.e., never-retransmitted data are (s)acked.
  2330. */
  2331. if (tcp_try_undo_loss(sk, flag & FLAG_ORIG_SACK_ACKED))
  2332. return;
  2333. if (after(tp->snd_nxt, tp->high_seq) &&
  2334. (flag & FLAG_DATA_SACKED || is_dupack)) {
  2335. tp->frto = 0; /* Loss was real: 2nd part of step 3.a */
  2336. } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
  2337. tp->high_seq = tp->snd_nxt;
  2338. __tcp_push_pending_frames(sk, tcp_current_mss(sk),
  2339. TCP_NAGLE_OFF);
  2340. if (after(tp->snd_nxt, tp->high_seq))
  2341. return; /* Step 2.b */
  2342. tp->frto = 0;
  2343. }
  2344. }
  2345. if (recovered) {
  2346. /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
  2347. icsk->icsk_retransmits = 0;
  2348. tcp_try_undo_recovery(sk);
  2349. return;
  2350. }
  2351. if (flag & FLAG_DATA_ACKED)
  2352. icsk->icsk_retransmits = 0;
  2353. if (tcp_is_reno(tp)) {
  2354. /* A Reno DUPACK means new data in F-RTO step 2.b above are
  2355. * delivered. Lower inflight to clock out (re)tranmissions.
  2356. */
  2357. if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
  2358. tcp_add_reno_sack(sk);
  2359. else if (flag & FLAG_SND_UNA_ADVANCED)
  2360. tcp_reset_reno_sack(tp);
  2361. }
  2362. if (tcp_try_undo_loss(sk, false))
  2363. return;
  2364. tcp_xmit_retransmit_queue(sk);
  2365. }
  2366. /* Undo during fast recovery after partial ACK. */
  2367. static bool tcp_try_undo_partial(struct sock *sk, const int acked,
  2368. const int prior_unsacked)
  2369. {
  2370. struct tcp_sock *tp = tcp_sk(sk);
  2371. if (tp->undo_marker && tcp_packet_delayed(tp)) {
  2372. /* Plain luck! Hole if filled with delayed
  2373. * packet, rather than with a retransmit.
  2374. */
  2375. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2376. /* We are getting evidence that the reordering degree is higher
  2377. * than we realized. If there are no retransmits out then we
  2378. * can undo. Otherwise we clock out new packets but do not
  2379. * mark more packets lost or retransmit more.
  2380. */
  2381. if (tp->retrans_out) {
  2382. tcp_cwnd_reduction(sk, prior_unsacked, 0);
  2383. return true;
  2384. }
  2385. if (!tcp_any_retrans_done(sk))
  2386. tp->retrans_stamp = 0;
  2387. DBGUNDO(sk, "partial recovery");
  2388. tcp_undo_cwnd_reduction(sk, true);
  2389. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2390. tcp_try_keep_open(sk);
  2391. return true;
  2392. }
  2393. return false;
  2394. }
  2395. /* Process an event, which can update packets-in-flight not trivially.
  2396. * Main goal of this function is to calculate new estimate for left_out,
  2397. * taking into account both packets sitting in receiver's buffer and
  2398. * packets lost by network.
  2399. *
  2400. * Besides that it does CWND reduction, when packet loss is detected
  2401. * and changes state of machine.
  2402. *
  2403. * It does _not_ decide what to send, it is made in function
  2404. * tcp_xmit_retransmit_queue().
  2405. */
  2406. static void tcp_fastretrans_alert(struct sock *sk, const int acked,
  2407. const int prior_unsacked,
  2408. bool is_dupack, int flag)
  2409. {
  2410. struct inet_connection_sock *icsk = inet_csk(sk);
  2411. struct tcp_sock *tp = tcp_sk(sk);
  2412. bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2413. (tcp_fackets_out(tp) > tp->reordering));
  2414. int fast_rexmit = 0;
  2415. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2416. tp->sacked_out = 0;
  2417. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2418. tp->fackets_out = 0;
  2419. /* Now state machine starts.
  2420. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2421. if (flag & FLAG_ECE)
  2422. tp->prior_ssthresh = 0;
  2423. /* B. In all the states check for reneging SACKs. */
  2424. if (tcp_check_sack_reneging(sk, flag))
  2425. return;
  2426. /* C. Check consistency of the current state. */
  2427. tcp_verify_left_out(tp);
  2428. /* D. Check state exit conditions. State can be terminated
  2429. * when high_seq is ACKed. */
  2430. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2431. WARN_ON(tp->retrans_out != 0);
  2432. tp->retrans_stamp = 0;
  2433. } else if (!before(tp->snd_una, tp->high_seq)) {
  2434. switch (icsk->icsk_ca_state) {
  2435. case TCP_CA_CWR:
  2436. /* CWR is to be held something *above* high_seq
  2437. * is ACKed for CWR bit to reach receiver. */
  2438. if (tp->snd_una != tp->high_seq) {
  2439. tcp_end_cwnd_reduction(sk);
  2440. tcp_set_ca_state(sk, TCP_CA_Open);
  2441. }
  2442. break;
  2443. case TCP_CA_Recovery:
  2444. if (tcp_is_reno(tp))
  2445. tcp_reset_reno_sack(tp);
  2446. if (tcp_try_undo_recovery(sk))
  2447. return;
  2448. tcp_end_cwnd_reduction(sk);
  2449. break;
  2450. }
  2451. }
  2452. /* E. Process state. */
  2453. switch (icsk->icsk_ca_state) {
  2454. case TCP_CA_Recovery:
  2455. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2456. if (tcp_is_reno(tp) && is_dupack)
  2457. tcp_add_reno_sack(sk);
  2458. } else {
  2459. if (tcp_try_undo_partial(sk, acked, prior_unsacked))
  2460. return;
  2461. /* Partial ACK arrived. Force fast retransmit. */
  2462. do_lost = tcp_is_reno(tp) ||
  2463. tcp_fackets_out(tp) > tp->reordering;
  2464. }
  2465. if (tcp_try_undo_dsack(sk)) {
  2466. tcp_try_keep_open(sk);
  2467. return;
  2468. }
  2469. break;
  2470. case TCP_CA_Loss:
  2471. tcp_process_loss(sk, flag, is_dupack);
  2472. if (icsk->icsk_ca_state != TCP_CA_Open)
  2473. return;
  2474. /* Fall through to processing in Open state. */
  2475. default:
  2476. if (tcp_is_reno(tp)) {
  2477. if (flag & FLAG_SND_UNA_ADVANCED)
  2478. tcp_reset_reno_sack(tp);
  2479. if (is_dupack)
  2480. tcp_add_reno_sack(sk);
  2481. }
  2482. if (icsk->icsk_ca_state <= TCP_CA_Disorder)
  2483. tcp_try_undo_dsack(sk);
  2484. if (!tcp_time_to_recover(sk, flag)) {
  2485. tcp_try_to_open(sk, flag, prior_unsacked);
  2486. return;
  2487. }
  2488. /* MTU probe failure: don't reduce cwnd */
  2489. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2490. icsk->icsk_mtup.probe_size &&
  2491. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2492. tcp_mtup_probe_failed(sk);
  2493. /* Restores the reduction we did in tcp_mtup_probe() */
  2494. tp->snd_cwnd++;
  2495. tcp_simple_retransmit(sk);
  2496. return;
  2497. }
  2498. /* Otherwise enter Recovery state */
  2499. tcp_enter_recovery(sk, (flag & FLAG_ECE));
  2500. fast_rexmit = 1;
  2501. }
  2502. if (do_lost)
  2503. tcp_update_scoreboard(sk, fast_rexmit);
  2504. tcp_cwnd_reduction(sk, prior_unsacked, fast_rexmit);
  2505. tcp_xmit_retransmit_queue(sk);
  2506. }
  2507. static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
  2508. long seq_rtt_us, long sack_rtt_us)
  2509. {
  2510. const struct tcp_sock *tp = tcp_sk(sk);
  2511. /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
  2512. * broken middle-boxes or peers may corrupt TS-ECR fields. But
  2513. * Karn's algorithm forbids taking RTT if some retransmitted data
  2514. * is acked (RFC6298).
  2515. */
  2516. if (flag & FLAG_RETRANS_DATA_ACKED)
  2517. seq_rtt_us = -1L;
  2518. if (seq_rtt_us < 0)
  2519. seq_rtt_us = sack_rtt_us;
  2520. /* RTTM Rule: A TSecr value received in a segment is used to
  2521. * update the averaged RTT measurement only if the segment
  2522. * acknowledges some new data, i.e., only if it advances the
  2523. * left edge of the send window.
  2524. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2525. */
  2526. if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2527. flag & FLAG_ACKED)
  2528. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2529. if (seq_rtt_us < 0)
  2530. return false;
  2531. tcp_rtt_estimator(sk, seq_rtt_us);
  2532. tcp_set_rto(sk);
  2533. /* RFC6298: only reset backoff on valid RTT measurement. */
  2534. inet_csk(sk)->icsk_backoff = 0;
  2535. return true;
  2536. }
  2537. /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
  2538. static void tcp_synack_rtt_meas(struct sock *sk, const u32 synack_stamp)
  2539. {
  2540. struct tcp_sock *tp = tcp_sk(sk);
  2541. long seq_rtt_us = -1L;
  2542. if (synack_stamp && !tp->total_retrans)
  2543. seq_rtt_us = jiffies_to_usecs(tcp_time_stamp - synack_stamp);
  2544. /* If the ACK acks both the SYNACK and the (Fast Open'd) data packets
  2545. * sent in SYN_RECV, SYNACK RTT is the smooth RTT computed in tcp_ack()
  2546. */
  2547. if (!tp->srtt_us)
  2548. tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, seq_rtt_us, -1L);
  2549. }
  2550. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
  2551. {
  2552. const struct inet_connection_sock *icsk = inet_csk(sk);
  2553. icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
  2554. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2555. }
  2556. /* Restart timer after forward progress on connection.
  2557. * RFC2988 recommends to restart timer to now+rto.
  2558. */
  2559. void tcp_rearm_rto(struct sock *sk)
  2560. {
  2561. const struct inet_connection_sock *icsk = inet_csk(sk);
  2562. struct tcp_sock *tp = tcp_sk(sk);
  2563. /* If the retrans timer is currently being used by Fast Open
  2564. * for SYN-ACK retrans purpose, stay put.
  2565. */
  2566. if (tp->fastopen_rsk)
  2567. return;
  2568. if (!tp->packets_out) {
  2569. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2570. } else {
  2571. u32 rto = inet_csk(sk)->icsk_rto;
  2572. /* Offset the time elapsed after installing regular RTO */
  2573. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2574. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
  2575. struct sk_buff *skb = tcp_write_queue_head(sk);
  2576. const u32 rto_time_stamp = TCP_SKB_CB(skb)->when + rto;
  2577. s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
  2578. /* delta may not be positive if the socket is locked
  2579. * when the retrans timer fires and is rescheduled.
  2580. */
  2581. if (delta > 0)
  2582. rto = delta;
  2583. }
  2584. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
  2585. TCP_RTO_MAX);
  2586. }
  2587. }
  2588. /* This function is called when the delayed ER timer fires. TCP enters
  2589. * fast recovery and performs fast-retransmit.
  2590. */
  2591. void tcp_resume_early_retransmit(struct sock *sk)
  2592. {
  2593. struct tcp_sock *tp = tcp_sk(sk);
  2594. tcp_rearm_rto(sk);
  2595. /* Stop if ER is disabled after the delayed ER timer is scheduled */
  2596. if (!tp->do_early_retrans)
  2597. return;
  2598. tcp_enter_recovery(sk, false);
  2599. tcp_update_scoreboard(sk, 1);
  2600. tcp_xmit_retransmit_queue(sk);
  2601. }
  2602. /* If we get here, the whole TSO packet has not been acked. */
  2603. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2604. {
  2605. struct tcp_sock *tp = tcp_sk(sk);
  2606. u32 packets_acked;
  2607. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2608. packets_acked = tcp_skb_pcount(skb);
  2609. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2610. return 0;
  2611. packets_acked -= tcp_skb_pcount(skb);
  2612. if (packets_acked) {
  2613. BUG_ON(tcp_skb_pcount(skb) == 0);
  2614. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2615. }
  2616. return packets_acked;
  2617. }
  2618. /* Remove acknowledged frames from the retransmission queue. If our packet
  2619. * is before the ack sequence we can discard it as it's confirmed to have
  2620. * arrived at the other end.
  2621. */
  2622. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2623. u32 prior_snd_una, long sack_rtt_us)
  2624. {
  2625. const struct inet_connection_sock *icsk = inet_csk(sk);
  2626. struct skb_mstamp first_ackt, last_ackt, now;
  2627. struct tcp_sock *tp = tcp_sk(sk);
  2628. u32 prior_sacked = tp->sacked_out;
  2629. u32 reord = tp->packets_out;
  2630. bool fully_acked = true;
  2631. long ca_seq_rtt_us = -1L;
  2632. long seq_rtt_us = -1L;
  2633. struct sk_buff *skb;
  2634. u32 pkts_acked = 0;
  2635. bool rtt_update;
  2636. int flag = 0;
  2637. first_ackt.v64 = 0;
  2638. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2639. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2640. u8 sacked = scb->sacked;
  2641. u32 acked_pcount;
  2642. /* Determine how many packets and what bytes were acked, tso and else */
  2643. if (after(scb->end_seq, tp->snd_una)) {
  2644. if (tcp_skb_pcount(skb) == 1 ||
  2645. !after(tp->snd_una, scb->seq))
  2646. break;
  2647. acked_pcount = tcp_tso_acked(sk, skb);
  2648. if (!acked_pcount)
  2649. break;
  2650. fully_acked = false;
  2651. } else {
  2652. acked_pcount = tcp_skb_pcount(skb);
  2653. }
  2654. if (sacked & TCPCB_RETRANS) {
  2655. if (sacked & TCPCB_SACKED_RETRANS)
  2656. tp->retrans_out -= acked_pcount;
  2657. flag |= FLAG_RETRANS_DATA_ACKED;
  2658. } else {
  2659. last_ackt = skb->skb_mstamp;
  2660. WARN_ON_ONCE(last_ackt.v64 == 0);
  2661. if (!first_ackt.v64)
  2662. first_ackt = last_ackt;
  2663. if (!(sacked & TCPCB_SACKED_ACKED))
  2664. reord = min(pkts_acked, reord);
  2665. if (!after(scb->end_seq, tp->high_seq))
  2666. flag |= FLAG_ORIG_SACK_ACKED;
  2667. }
  2668. if (sacked & TCPCB_SACKED_ACKED)
  2669. tp->sacked_out -= acked_pcount;
  2670. if (sacked & TCPCB_LOST)
  2671. tp->lost_out -= acked_pcount;
  2672. tp->packets_out -= acked_pcount;
  2673. pkts_acked += acked_pcount;
  2674. /* Initial outgoing SYN's get put onto the write_queue
  2675. * just like anything else we transmit. It is not
  2676. * true data, and if we misinform our callers that
  2677. * this ACK acks real data, we will erroneously exit
  2678. * connection startup slow start one packet too
  2679. * quickly. This is severely frowned upon behavior.
  2680. */
  2681. if (!(scb->tcp_flags & TCPHDR_SYN)) {
  2682. flag |= FLAG_DATA_ACKED;
  2683. } else {
  2684. flag |= FLAG_SYN_ACKED;
  2685. tp->retrans_stamp = 0;
  2686. }
  2687. if (!fully_acked)
  2688. break;
  2689. tcp_unlink_write_queue(skb, sk);
  2690. sk_wmem_free_skb(sk, skb);
  2691. if (skb == tp->retransmit_skb_hint)
  2692. tp->retransmit_skb_hint = NULL;
  2693. if (skb == tp->lost_skb_hint)
  2694. tp->lost_skb_hint = NULL;
  2695. }
  2696. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2697. tp->snd_up = tp->snd_una;
  2698. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2699. flag |= FLAG_SACK_RENEGING;
  2700. skb_mstamp_get(&now);
  2701. if (first_ackt.v64) {
  2702. seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
  2703. ca_seq_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
  2704. }
  2705. rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us);
  2706. if (flag & FLAG_ACKED) {
  2707. const struct tcp_congestion_ops *ca_ops
  2708. = inet_csk(sk)->icsk_ca_ops;
  2709. tcp_rearm_rto(sk);
  2710. if (unlikely(icsk->icsk_mtup.probe_size &&
  2711. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2712. tcp_mtup_probe_success(sk);
  2713. }
  2714. if (tcp_is_reno(tp)) {
  2715. tcp_remove_reno_sacks(sk, pkts_acked);
  2716. } else {
  2717. int delta;
  2718. /* Non-retransmitted hole got filled? That's reordering */
  2719. if (reord < prior_fackets)
  2720. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2721. delta = tcp_is_fack(tp) ? pkts_acked :
  2722. prior_sacked - tp->sacked_out;
  2723. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2724. }
  2725. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2726. if (ca_ops->pkts_acked)
  2727. ca_ops->pkts_acked(sk, pkts_acked, ca_seq_rtt_us);
  2728. } else if (skb && rtt_update && sack_rtt_us >= 0 &&
  2729. sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
  2730. /* Do not re-arm RTO if the sack RTT is measured from data sent
  2731. * after when the head was last (re)transmitted. Otherwise the
  2732. * timeout may continue to extend in loss recovery.
  2733. */
  2734. tcp_rearm_rto(sk);
  2735. }
  2736. #if FASTRETRANS_DEBUG > 0
  2737. WARN_ON((int)tp->sacked_out < 0);
  2738. WARN_ON((int)tp->lost_out < 0);
  2739. WARN_ON((int)tp->retrans_out < 0);
  2740. if (!tp->packets_out && tcp_is_sack(tp)) {
  2741. icsk = inet_csk(sk);
  2742. if (tp->lost_out) {
  2743. pr_debug("Leak l=%u %d\n",
  2744. tp->lost_out, icsk->icsk_ca_state);
  2745. tp->lost_out = 0;
  2746. }
  2747. if (tp->sacked_out) {
  2748. pr_debug("Leak s=%u %d\n",
  2749. tp->sacked_out, icsk->icsk_ca_state);
  2750. tp->sacked_out = 0;
  2751. }
  2752. if (tp->retrans_out) {
  2753. pr_debug("Leak r=%u %d\n",
  2754. tp->retrans_out, icsk->icsk_ca_state);
  2755. tp->retrans_out = 0;
  2756. }
  2757. }
  2758. #endif
  2759. return flag;
  2760. }
  2761. static void tcp_ack_probe(struct sock *sk)
  2762. {
  2763. const struct tcp_sock *tp = tcp_sk(sk);
  2764. struct inet_connection_sock *icsk = inet_csk(sk);
  2765. /* Was it a usable window open? */
  2766. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2767. icsk->icsk_backoff = 0;
  2768. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2769. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2770. * This function is not for random using!
  2771. */
  2772. } else {
  2773. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2774. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2775. TCP_RTO_MAX);
  2776. }
  2777. }
  2778. static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2779. {
  2780. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2781. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2782. }
  2783. /* Decide wheather to run the increase function of congestion control. */
  2784. static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2785. {
  2786. if (tcp_in_cwnd_reduction(sk))
  2787. return false;
  2788. /* If reordering is high then always grow cwnd whenever data is
  2789. * delivered regardless of its ordering. Otherwise stay conservative
  2790. * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
  2791. * new SACK or ECE mark may first advance cwnd here and later reduce
  2792. * cwnd in tcp_fastretrans_alert() based on more states.
  2793. */
  2794. if (tcp_sk(sk)->reordering > sysctl_tcp_reordering)
  2795. return flag & FLAG_FORWARD_PROGRESS;
  2796. return flag & FLAG_DATA_ACKED;
  2797. }
  2798. /* Check that window update is acceptable.
  2799. * The function assumes that snd_una<=ack<=snd_next.
  2800. */
  2801. static inline bool tcp_may_update_window(const struct tcp_sock *tp,
  2802. const u32 ack, const u32 ack_seq,
  2803. const u32 nwin)
  2804. {
  2805. return after(ack, tp->snd_una) ||
  2806. after(ack_seq, tp->snd_wl1) ||
  2807. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2808. }
  2809. /* Update our send window.
  2810. *
  2811. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2812. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2813. */
  2814. static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
  2815. u32 ack_seq)
  2816. {
  2817. struct tcp_sock *tp = tcp_sk(sk);
  2818. int flag = 0;
  2819. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2820. if (likely(!tcp_hdr(skb)->syn))
  2821. nwin <<= tp->rx_opt.snd_wscale;
  2822. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2823. flag |= FLAG_WIN_UPDATE;
  2824. tcp_update_wl(tp, ack_seq);
  2825. if (tp->snd_wnd != nwin) {
  2826. tp->snd_wnd = nwin;
  2827. /* Note, it is the only place, where
  2828. * fast path is recovered for sending TCP.
  2829. */
  2830. tp->pred_flags = 0;
  2831. tcp_fast_path_check(sk);
  2832. if (nwin > tp->max_window) {
  2833. tp->max_window = nwin;
  2834. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  2835. }
  2836. }
  2837. }
  2838. tp->snd_una = ack;
  2839. return flag;
  2840. }
  2841. /* RFC 5961 7 [ACK Throttling] */
  2842. static void tcp_send_challenge_ack(struct sock *sk)
  2843. {
  2844. /* unprotected vars, we dont care of overwrites */
  2845. static u32 challenge_timestamp;
  2846. static unsigned int challenge_count;
  2847. u32 now = jiffies / HZ;
  2848. if (now != challenge_timestamp) {
  2849. challenge_timestamp = now;
  2850. challenge_count = 0;
  2851. }
  2852. if (++challenge_count <= sysctl_tcp_challenge_ack_limit) {
  2853. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
  2854. tcp_send_ack(sk);
  2855. }
  2856. }
  2857. static void tcp_store_ts_recent(struct tcp_sock *tp)
  2858. {
  2859. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  2860. tp->rx_opt.ts_recent_stamp = get_seconds();
  2861. }
  2862. static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  2863. {
  2864. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  2865. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  2866. * extra check below makes sure this can only happen
  2867. * for pure ACK frames. -DaveM
  2868. *
  2869. * Not only, also it occurs for expired timestamps.
  2870. */
  2871. if (tcp_paws_check(&tp->rx_opt, 0))
  2872. tcp_store_ts_recent(tp);
  2873. }
  2874. }
  2875. /* This routine deals with acks during a TLP episode.
  2876. * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
  2877. */
  2878. static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
  2879. {
  2880. struct tcp_sock *tp = tcp_sk(sk);
  2881. bool is_tlp_dupack = (ack == tp->tlp_high_seq) &&
  2882. !(flag & (FLAG_SND_UNA_ADVANCED |
  2883. FLAG_NOT_DUP | FLAG_DATA_SACKED));
  2884. /* Mark the end of TLP episode on receiving TLP dupack or when
  2885. * ack is after tlp_high_seq.
  2886. */
  2887. if (is_tlp_dupack) {
  2888. tp->tlp_high_seq = 0;
  2889. return;
  2890. }
  2891. if (after(ack, tp->tlp_high_seq)) {
  2892. tp->tlp_high_seq = 0;
  2893. /* Don't reduce cwnd if DSACK arrives for TLP retrans. */
  2894. if (!(flag & FLAG_DSACKING_ACK)) {
  2895. tcp_init_cwnd_reduction(sk, true);
  2896. tcp_set_ca_state(sk, TCP_CA_CWR);
  2897. tcp_end_cwnd_reduction(sk);
  2898. tcp_try_keep_open(sk);
  2899. NET_INC_STATS_BH(sock_net(sk),
  2900. LINUX_MIB_TCPLOSSPROBERECOVERY);
  2901. }
  2902. }
  2903. }
  2904. /* This routine deals with incoming acks, but not outgoing ones. */
  2905. static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
  2906. {
  2907. struct inet_connection_sock *icsk = inet_csk(sk);
  2908. struct tcp_sock *tp = tcp_sk(sk);
  2909. u32 prior_snd_una = tp->snd_una;
  2910. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  2911. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  2912. bool is_dupack = false;
  2913. u32 prior_fackets;
  2914. int prior_packets = tp->packets_out;
  2915. const int prior_unsacked = tp->packets_out - tp->sacked_out;
  2916. int acked = 0; /* Number of packets newly acked */
  2917. long sack_rtt_us = -1L;
  2918. /* If the ack is older than previous acks
  2919. * then we can probably ignore it.
  2920. */
  2921. if (before(ack, prior_snd_una)) {
  2922. /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
  2923. if (before(ack, prior_snd_una - tp->max_window)) {
  2924. tcp_send_challenge_ack(sk);
  2925. return -1;
  2926. }
  2927. goto old_ack;
  2928. }
  2929. /* If the ack includes data we haven't sent yet, discard
  2930. * this segment (RFC793 Section 3.9).
  2931. */
  2932. if (after(ack, tp->snd_nxt))
  2933. goto invalid_ack;
  2934. if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
  2935. icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
  2936. tcp_rearm_rto(sk);
  2937. if (after(ack, prior_snd_una))
  2938. flag |= FLAG_SND_UNA_ADVANCED;
  2939. prior_fackets = tp->fackets_out;
  2940. /* ts_recent update must be made after we are sure that the packet
  2941. * is in window.
  2942. */
  2943. if (flag & FLAG_UPDATE_TS_RECENT)
  2944. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  2945. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  2946. /* Window is constant, pure forward advance.
  2947. * No more checks are required.
  2948. * Note, we use the fact that SND.UNA>=SND.WL2.
  2949. */
  2950. tcp_update_wl(tp, ack_seq);
  2951. tp->snd_una = ack;
  2952. flag |= FLAG_WIN_UPDATE;
  2953. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  2954. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  2955. } else {
  2956. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  2957. flag |= FLAG_DATA;
  2958. else
  2959. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  2960. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  2961. if (TCP_SKB_CB(skb)->sacked)
  2962. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  2963. &sack_rtt_us);
  2964. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  2965. flag |= FLAG_ECE;
  2966. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  2967. }
  2968. /* We passed data and got it acked, remove any soft error
  2969. * log. Something worked...
  2970. */
  2971. sk->sk_err_soft = 0;
  2972. icsk->icsk_probes_out = 0;
  2973. tp->rcv_tstamp = tcp_time_stamp;
  2974. if (!prior_packets)
  2975. goto no_queue;
  2976. /* See if we can take anything off of the retransmit queue. */
  2977. acked = tp->packets_out;
  2978. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una,
  2979. sack_rtt_us);
  2980. acked -= tp->packets_out;
  2981. /* Advance cwnd if state allows */
  2982. if (tcp_may_raise_cwnd(sk, flag))
  2983. tcp_cong_avoid(sk, ack, acked);
  2984. if (tcp_ack_is_dubious(sk, flag)) {
  2985. is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2986. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  2987. is_dupack, flag);
  2988. }
  2989. if (tp->tlp_high_seq)
  2990. tcp_process_tlp_ack(sk, ack, flag);
  2991. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
  2992. struct dst_entry *dst = __sk_dst_get(sk);
  2993. if (dst)
  2994. dst_confirm(dst);
  2995. }
  2996. if (icsk->icsk_pending == ICSK_TIME_RETRANS)
  2997. tcp_schedule_loss_probe(sk);
  2998. tcp_update_pacing_rate(sk);
  2999. return 1;
  3000. no_queue:
  3001. /* If data was DSACKed, see if we can undo a cwnd reduction. */
  3002. if (flag & FLAG_DSACKING_ACK)
  3003. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3004. is_dupack, flag);
  3005. /* If this ack opens up a zero window, clear backoff. It was
  3006. * being used to time the probes, and is probably far higher than
  3007. * it needs to be for normal retransmission.
  3008. */
  3009. if (tcp_send_head(sk))
  3010. tcp_ack_probe(sk);
  3011. if (tp->tlp_high_seq)
  3012. tcp_process_tlp_ack(sk, ack, flag);
  3013. return 1;
  3014. invalid_ack:
  3015. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3016. return -1;
  3017. old_ack:
  3018. /* If data was SACKed, tag it and see if we should send more data.
  3019. * If data was DSACKed, see if we can undo a cwnd reduction.
  3020. */
  3021. if (TCP_SKB_CB(skb)->sacked) {
  3022. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
  3023. &sack_rtt_us);
  3024. tcp_fastretrans_alert(sk, acked, prior_unsacked,
  3025. is_dupack, flag);
  3026. }
  3027. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3028. return 0;
  3029. }
  3030. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3031. * But, this can also be called on packets in the established flow when
  3032. * the fast version below fails.
  3033. */
  3034. void tcp_parse_options(const struct sk_buff *skb,
  3035. struct tcp_options_received *opt_rx, int estab,
  3036. struct tcp_fastopen_cookie *foc)
  3037. {
  3038. const unsigned char *ptr;
  3039. const struct tcphdr *th = tcp_hdr(skb);
  3040. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3041. ptr = (const unsigned char *)(th + 1);
  3042. opt_rx->saw_tstamp = 0;
  3043. while (length > 0) {
  3044. int opcode = *ptr++;
  3045. int opsize;
  3046. switch (opcode) {
  3047. case TCPOPT_EOL:
  3048. return;
  3049. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3050. length--;
  3051. continue;
  3052. default:
  3053. opsize = *ptr++;
  3054. if (opsize < 2) /* "silly options" */
  3055. return;
  3056. if (opsize > length)
  3057. return; /* don't parse partial options */
  3058. switch (opcode) {
  3059. case TCPOPT_MSS:
  3060. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3061. u16 in_mss = get_unaligned_be16(ptr);
  3062. if (in_mss) {
  3063. if (opt_rx->user_mss &&
  3064. opt_rx->user_mss < in_mss)
  3065. in_mss = opt_rx->user_mss;
  3066. opt_rx->mss_clamp = in_mss;
  3067. }
  3068. }
  3069. break;
  3070. case TCPOPT_WINDOW:
  3071. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3072. !estab && sysctl_tcp_window_scaling) {
  3073. __u8 snd_wscale = *(__u8 *)ptr;
  3074. opt_rx->wscale_ok = 1;
  3075. if (snd_wscale > 14) {
  3076. net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
  3077. __func__,
  3078. snd_wscale);
  3079. snd_wscale = 14;
  3080. }
  3081. opt_rx->snd_wscale = snd_wscale;
  3082. }
  3083. break;
  3084. case TCPOPT_TIMESTAMP:
  3085. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3086. ((estab && opt_rx->tstamp_ok) ||
  3087. (!estab && sysctl_tcp_timestamps))) {
  3088. opt_rx->saw_tstamp = 1;
  3089. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3090. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3091. }
  3092. break;
  3093. case TCPOPT_SACK_PERM:
  3094. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3095. !estab && sysctl_tcp_sack) {
  3096. opt_rx->sack_ok = TCP_SACK_SEEN;
  3097. tcp_sack_reset(opt_rx);
  3098. }
  3099. break;
  3100. case TCPOPT_SACK:
  3101. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3102. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3103. opt_rx->sack_ok) {
  3104. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3105. }
  3106. break;
  3107. #ifdef CONFIG_TCP_MD5SIG
  3108. case TCPOPT_MD5SIG:
  3109. /*
  3110. * The MD5 Hash has already been
  3111. * checked (see tcp_v{4,6}_do_rcv()).
  3112. */
  3113. break;
  3114. #endif
  3115. case TCPOPT_EXP:
  3116. /* Fast Open option shares code 254 using a
  3117. * 16 bits magic number. It's valid only in
  3118. * SYN or SYN-ACK with an even size.
  3119. */
  3120. if (opsize < TCPOLEN_EXP_FASTOPEN_BASE ||
  3121. get_unaligned_be16(ptr) != TCPOPT_FASTOPEN_MAGIC ||
  3122. foc == NULL || !th->syn || (opsize & 1))
  3123. break;
  3124. foc->len = opsize - TCPOLEN_EXP_FASTOPEN_BASE;
  3125. if (foc->len >= TCP_FASTOPEN_COOKIE_MIN &&
  3126. foc->len <= TCP_FASTOPEN_COOKIE_MAX)
  3127. memcpy(foc->val, ptr + 2, foc->len);
  3128. else if (foc->len != 0)
  3129. foc->len = -1;
  3130. break;
  3131. }
  3132. ptr += opsize-2;
  3133. length -= opsize;
  3134. }
  3135. }
  3136. }
  3137. EXPORT_SYMBOL(tcp_parse_options);
  3138. static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
  3139. {
  3140. const __be32 *ptr = (const __be32 *)(th + 1);
  3141. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3142. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3143. tp->rx_opt.saw_tstamp = 1;
  3144. ++ptr;
  3145. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3146. ++ptr;
  3147. if (*ptr)
  3148. tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
  3149. else
  3150. tp->rx_opt.rcv_tsecr = 0;
  3151. return true;
  3152. }
  3153. return false;
  3154. }
  3155. /* Fast parse options. This hopes to only see timestamps.
  3156. * If it is wrong it falls back on tcp_parse_options().
  3157. */
  3158. static bool tcp_fast_parse_options(const struct sk_buff *skb,
  3159. const struct tcphdr *th, struct tcp_sock *tp)
  3160. {
  3161. /* In the spirit of fast parsing, compare doff directly to constant
  3162. * values. Because equality is used, short doff can be ignored here.
  3163. */
  3164. if (th->doff == (sizeof(*th) / 4)) {
  3165. tp->rx_opt.saw_tstamp = 0;
  3166. return false;
  3167. } else if (tp->rx_opt.tstamp_ok &&
  3168. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3169. if (tcp_parse_aligned_timestamp(tp, th))
  3170. return true;
  3171. }
  3172. tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
  3173. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  3174. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  3175. return true;
  3176. }
  3177. #ifdef CONFIG_TCP_MD5SIG
  3178. /*
  3179. * Parse MD5 Signature option
  3180. */
  3181. const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
  3182. {
  3183. int length = (th->doff << 2) - sizeof(*th);
  3184. const u8 *ptr = (const u8 *)(th + 1);
  3185. /* If the TCP option is too short, we can short cut */
  3186. if (length < TCPOLEN_MD5SIG)
  3187. return NULL;
  3188. while (length > 0) {
  3189. int opcode = *ptr++;
  3190. int opsize;
  3191. switch (opcode) {
  3192. case TCPOPT_EOL:
  3193. return NULL;
  3194. case TCPOPT_NOP:
  3195. length--;
  3196. continue;
  3197. default:
  3198. opsize = *ptr++;
  3199. if (opsize < 2 || opsize > length)
  3200. return NULL;
  3201. if (opcode == TCPOPT_MD5SIG)
  3202. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3203. }
  3204. ptr += opsize - 2;
  3205. length -= opsize;
  3206. }
  3207. return NULL;
  3208. }
  3209. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3210. #endif
  3211. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3212. *
  3213. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3214. * it can pass through stack. So, the following predicate verifies that
  3215. * this segment is not used for anything but congestion avoidance or
  3216. * fast retransmit. Moreover, we even are able to eliminate most of such
  3217. * second order effects, if we apply some small "replay" window (~RTO)
  3218. * to timestamp space.
  3219. *
  3220. * All these measures still do not guarantee that we reject wrapped ACKs
  3221. * on networks with high bandwidth, when sequence space is recycled fastly,
  3222. * but it guarantees that such events will be very rare and do not affect
  3223. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3224. * buggy extension.
  3225. *
  3226. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3227. * states that events when retransmit arrives after original data are rare.
  3228. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3229. * the biggest problem on large power networks even with minor reordering.
  3230. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3231. * up to bandwidth of 18Gigabit/sec. 8) ]
  3232. */
  3233. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3234. {
  3235. const struct tcp_sock *tp = tcp_sk(sk);
  3236. const struct tcphdr *th = tcp_hdr(skb);
  3237. u32 seq = TCP_SKB_CB(skb)->seq;
  3238. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3239. return (/* 1. Pure ACK with correct sequence number. */
  3240. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3241. /* 2. ... and duplicate ACK. */
  3242. ack == tp->snd_una &&
  3243. /* 3. ... and does not update window. */
  3244. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3245. /* 4. ... and sits in replay window. */
  3246. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3247. }
  3248. static inline bool tcp_paws_discard(const struct sock *sk,
  3249. const struct sk_buff *skb)
  3250. {
  3251. const struct tcp_sock *tp = tcp_sk(sk);
  3252. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3253. !tcp_disordered_ack(sk, skb);
  3254. }
  3255. /* Check segment sequence number for validity.
  3256. *
  3257. * Segment controls are considered valid, if the segment
  3258. * fits to the window after truncation to the window. Acceptability
  3259. * of data (and SYN, FIN, of course) is checked separately.
  3260. * See tcp_data_queue(), for example.
  3261. *
  3262. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3263. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3264. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3265. * (borrowed from freebsd)
  3266. */
  3267. static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
  3268. {
  3269. return !before(end_seq, tp->rcv_wup) &&
  3270. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3271. }
  3272. /* When we get a reset we do this. */
  3273. void tcp_reset(struct sock *sk)
  3274. {
  3275. /* We want the right error as BSD sees it (and indeed as we do). */
  3276. switch (sk->sk_state) {
  3277. case TCP_SYN_SENT:
  3278. sk->sk_err = ECONNREFUSED;
  3279. break;
  3280. case TCP_CLOSE_WAIT:
  3281. sk->sk_err = EPIPE;
  3282. break;
  3283. case TCP_CLOSE:
  3284. return;
  3285. default:
  3286. sk->sk_err = ECONNRESET;
  3287. }
  3288. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3289. smp_wmb();
  3290. if (!sock_flag(sk, SOCK_DEAD))
  3291. sk->sk_error_report(sk);
  3292. tcp_done(sk);
  3293. }
  3294. /*
  3295. * Process the FIN bit. This now behaves as it is supposed to work
  3296. * and the FIN takes effect when it is validly part of sequence
  3297. * space. Not before when we get holes.
  3298. *
  3299. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3300. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3301. * TIME-WAIT)
  3302. *
  3303. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3304. * close and we go into CLOSING (and later onto TIME-WAIT)
  3305. *
  3306. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3307. */
  3308. static void tcp_fin(struct sock *sk)
  3309. {
  3310. struct tcp_sock *tp = tcp_sk(sk);
  3311. const struct dst_entry *dst;
  3312. inet_csk_schedule_ack(sk);
  3313. sk->sk_shutdown |= RCV_SHUTDOWN;
  3314. sock_set_flag(sk, SOCK_DONE);
  3315. switch (sk->sk_state) {
  3316. case TCP_SYN_RECV:
  3317. case TCP_ESTABLISHED:
  3318. /* Move to CLOSE_WAIT */
  3319. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3320. dst = __sk_dst_get(sk);
  3321. if (!dst || !dst_metric(dst, RTAX_QUICKACK))
  3322. inet_csk(sk)->icsk_ack.pingpong = 1;
  3323. break;
  3324. case TCP_CLOSE_WAIT:
  3325. case TCP_CLOSING:
  3326. /* Received a retransmission of the FIN, do
  3327. * nothing.
  3328. */
  3329. break;
  3330. case TCP_LAST_ACK:
  3331. /* RFC793: Remain in the LAST-ACK state. */
  3332. break;
  3333. case TCP_FIN_WAIT1:
  3334. /* This case occurs when a simultaneous close
  3335. * happens, we must ack the received FIN and
  3336. * enter the CLOSING state.
  3337. */
  3338. tcp_send_ack(sk);
  3339. tcp_set_state(sk, TCP_CLOSING);
  3340. break;
  3341. case TCP_FIN_WAIT2:
  3342. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3343. tcp_send_ack(sk);
  3344. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3345. break;
  3346. default:
  3347. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3348. * cases we should never reach this piece of code.
  3349. */
  3350. pr_err("%s: Impossible, sk->sk_state=%d\n",
  3351. __func__, sk->sk_state);
  3352. break;
  3353. }
  3354. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3355. * Probably, we should reset in this case. For now drop them.
  3356. */
  3357. __skb_queue_purge(&tp->out_of_order_queue);
  3358. if (tcp_is_sack(tp))
  3359. tcp_sack_reset(&tp->rx_opt);
  3360. sk_mem_reclaim(sk);
  3361. if (!sock_flag(sk, SOCK_DEAD)) {
  3362. sk->sk_state_change(sk);
  3363. /* Do not send POLL_HUP for half duplex close. */
  3364. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3365. sk->sk_state == TCP_CLOSE)
  3366. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3367. else
  3368. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3369. }
  3370. }
  3371. static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3372. u32 end_seq)
  3373. {
  3374. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3375. if (before(seq, sp->start_seq))
  3376. sp->start_seq = seq;
  3377. if (after(end_seq, sp->end_seq))
  3378. sp->end_seq = end_seq;
  3379. return true;
  3380. }
  3381. return false;
  3382. }
  3383. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3384. {
  3385. struct tcp_sock *tp = tcp_sk(sk);
  3386. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3387. int mib_idx;
  3388. if (before(seq, tp->rcv_nxt))
  3389. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3390. else
  3391. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3392. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3393. tp->rx_opt.dsack = 1;
  3394. tp->duplicate_sack[0].start_seq = seq;
  3395. tp->duplicate_sack[0].end_seq = end_seq;
  3396. }
  3397. }
  3398. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3399. {
  3400. struct tcp_sock *tp = tcp_sk(sk);
  3401. if (!tp->rx_opt.dsack)
  3402. tcp_dsack_set(sk, seq, end_seq);
  3403. else
  3404. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3405. }
  3406. static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
  3407. {
  3408. struct tcp_sock *tp = tcp_sk(sk);
  3409. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3410. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3411. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3412. tcp_enter_quickack_mode(sk);
  3413. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3414. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3415. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3416. end_seq = tp->rcv_nxt;
  3417. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3418. }
  3419. }
  3420. tcp_send_ack(sk);
  3421. }
  3422. /* These routines update the SACK block as out-of-order packets arrive or
  3423. * in-order packets close up the sequence space.
  3424. */
  3425. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3426. {
  3427. int this_sack;
  3428. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3429. struct tcp_sack_block *swalk = sp + 1;
  3430. /* See if the recent change to the first SACK eats into
  3431. * or hits the sequence space of other SACK blocks, if so coalesce.
  3432. */
  3433. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3434. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3435. int i;
  3436. /* Zap SWALK, by moving every further SACK up by one slot.
  3437. * Decrease num_sacks.
  3438. */
  3439. tp->rx_opt.num_sacks--;
  3440. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3441. sp[i] = sp[i + 1];
  3442. continue;
  3443. }
  3444. this_sack++, swalk++;
  3445. }
  3446. }
  3447. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3448. {
  3449. struct tcp_sock *tp = tcp_sk(sk);
  3450. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3451. int cur_sacks = tp->rx_opt.num_sacks;
  3452. int this_sack;
  3453. if (!cur_sacks)
  3454. goto new_sack;
  3455. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3456. if (tcp_sack_extend(sp, seq, end_seq)) {
  3457. /* Rotate this_sack to the first one. */
  3458. for (; this_sack > 0; this_sack--, sp--)
  3459. swap(*sp, *(sp - 1));
  3460. if (cur_sacks > 1)
  3461. tcp_sack_maybe_coalesce(tp);
  3462. return;
  3463. }
  3464. }
  3465. /* Could not find an adjacent existing SACK, build a new one,
  3466. * put it at the front, and shift everyone else down. We
  3467. * always know there is at least one SACK present already here.
  3468. *
  3469. * If the sack array is full, forget about the last one.
  3470. */
  3471. if (this_sack >= TCP_NUM_SACKS) {
  3472. this_sack--;
  3473. tp->rx_opt.num_sacks--;
  3474. sp--;
  3475. }
  3476. for (; this_sack > 0; this_sack--, sp--)
  3477. *sp = *(sp - 1);
  3478. new_sack:
  3479. /* Build the new head SACK, and we're done. */
  3480. sp->start_seq = seq;
  3481. sp->end_seq = end_seq;
  3482. tp->rx_opt.num_sacks++;
  3483. }
  3484. /* RCV.NXT advances, some SACKs should be eaten. */
  3485. static void tcp_sack_remove(struct tcp_sock *tp)
  3486. {
  3487. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3488. int num_sacks = tp->rx_opt.num_sacks;
  3489. int this_sack;
  3490. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3491. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3492. tp->rx_opt.num_sacks = 0;
  3493. return;
  3494. }
  3495. for (this_sack = 0; this_sack < num_sacks;) {
  3496. /* Check if the start of the sack is covered by RCV.NXT. */
  3497. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3498. int i;
  3499. /* RCV.NXT must cover all the block! */
  3500. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3501. /* Zap this SACK, by moving forward any other SACKS. */
  3502. for (i = this_sack+1; i < num_sacks; i++)
  3503. tp->selective_acks[i-1] = tp->selective_acks[i];
  3504. num_sacks--;
  3505. continue;
  3506. }
  3507. this_sack++;
  3508. sp++;
  3509. }
  3510. tp->rx_opt.num_sacks = num_sacks;
  3511. }
  3512. /* This one checks to see if we can put data from the
  3513. * out_of_order queue into the receive_queue.
  3514. */
  3515. static void tcp_ofo_queue(struct sock *sk)
  3516. {
  3517. struct tcp_sock *tp = tcp_sk(sk);
  3518. __u32 dsack_high = tp->rcv_nxt;
  3519. struct sk_buff *skb;
  3520. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3521. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3522. break;
  3523. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3524. __u32 dsack = dsack_high;
  3525. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3526. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3527. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3528. }
  3529. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3530. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3531. __skb_unlink(skb, &tp->out_of_order_queue);
  3532. __kfree_skb(skb);
  3533. continue;
  3534. }
  3535. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3536. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3537. TCP_SKB_CB(skb)->end_seq);
  3538. __skb_unlink(skb, &tp->out_of_order_queue);
  3539. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3540. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3541. if (tcp_hdr(skb)->fin)
  3542. tcp_fin(sk);
  3543. }
  3544. }
  3545. static bool tcp_prune_ofo_queue(struct sock *sk);
  3546. static int tcp_prune_queue(struct sock *sk);
  3547. static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
  3548. unsigned int size)
  3549. {
  3550. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3551. !sk_rmem_schedule(sk, skb, size)) {
  3552. if (tcp_prune_queue(sk) < 0)
  3553. return -1;
  3554. if (!sk_rmem_schedule(sk, skb, size)) {
  3555. if (!tcp_prune_ofo_queue(sk))
  3556. return -1;
  3557. if (!sk_rmem_schedule(sk, skb, size))
  3558. return -1;
  3559. }
  3560. }
  3561. return 0;
  3562. }
  3563. /**
  3564. * tcp_try_coalesce - try to merge skb to prior one
  3565. * @sk: socket
  3566. * @to: prior buffer
  3567. * @from: buffer to add in queue
  3568. * @fragstolen: pointer to boolean
  3569. *
  3570. * Before queueing skb @from after @to, try to merge them
  3571. * to reduce overall memory use and queue lengths, if cost is small.
  3572. * Packets in ofo or receive queues can stay a long time.
  3573. * Better try to coalesce them right now to avoid future collapses.
  3574. * Returns true if caller should free @from instead of queueing it
  3575. */
  3576. static bool tcp_try_coalesce(struct sock *sk,
  3577. struct sk_buff *to,
  3578. struct sk_buff *from,
  3579. bool *fragstolen)
  3580. {
  3581. int delta;
  3582. *fragstolen = false;
  3583. if (tcp_hdr(from)->fin)
  3584. return false;
  3585. /* Its possible this segment overlaps with prior segment in queue */
  3586. if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
  3587. return false;
  3588. if (!skb_try_coalesce(to, from, fragstolen, &delta))
  3589. return false;
  3590. atomic_add(delta, &sk->sk_rmem_alloc);
  3591. sk_mem_charge(sk, delta);
  3592. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
  3593. TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
  3594. TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
  3595. return true;
  3596. }
  3597. static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
  3598. {
  3599. struct tcp_sock *tp = tcp_sk(sk);
  3600. struct sk_buff *skb1;
  3601. u32 seq, end_seq;
  3602. TCP_ECN_check_ce(tp, skb);
  3603. if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
  3604. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFODROP);
  3605. __kfree_skb(skb);
  3606. return;
  3607. }
  3608. /* Disable header prediction. */
  3609. tp->pred_flags = 0;
  3610. inet_csk_schedule_ack(sk);
  3611. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
  3612. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3613. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3614. skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3615. if (!skb1) {
  3616. /* Initial out of order segment, build 1 SACK. */
  3617. if (tcp_is_sack(tp)) {
  3618. tp->rx_opt.num_sacks = 1;
  3619. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3620. tp->selective_acks[0].end_seq =
  3621. TCP_SKB_CB(skb)->end_seq;
  3622. }
  3623. __skb_queue_head(&tp->out_of_order_queue, skb);
  3624. goto end;
  3625. }
  3626. seq = TCP_SKB_CB(skb)->seq;
  3627. end_seq = TCP_SKB_CB(skb)->end_seq;
  3628. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3629. bool fragstolen;
  3630. if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
  3631. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3632. } else {
  3633. tcp_grow_window(sk, skb);
  3634. kfree_skb_partial(skb, fragstolen);
  3635. skb = NULL;
  3636. }
  3637. if (!tp->rx_opt.num_sacks ||
  3638. tp->selective_acks[0].end_seq != seq)
  3639. goto add_sack;
  3640. /* Common case: data arrive in order after hole. */
  3641. tp->selective_acks[0].end_seq = end_seq;
  3642. goto end;
  3643. }
  3644. /* Find place to insert this segment. */
  3645. while (1) {
  3646. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3647. break;
  3648. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3649. skb1 = NULL;
  3650. break;
  3651. }
  3652. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3653. }
  3654. /* Do skb overlap to previous one? */
  3655. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3656. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3657. /* All the bits are present. Drop. */
  3658. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3659. __kfree_skb(skb);
  3660. skb = NULL;
  3661. tcp_dsack_set(sk, seq, end_seq);
  3662. goto add_sack;
  3663. }
  3664. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3665. /* Partial overlap. */
  3666. tcp_dsack_set(sk, seq,
  3667. TCP_SKB_CB(skb1)->end_seq);
  3668. } else {
  3669. if (skb_queue_is_first(&tp->out_of_order_queue,
  3670. skb1))
  3671. skb1 = NULL;
  3672. else
  3673. skb1 = skb_queue_prev(
  3674. &tp->out_of_order_queue,
  3675. skb1);
  3676. }
  3677. }
  3678. if (!skb1)
  3679. __skb_queue_head(&tp->out_of_order_queue, skb);
  3680. else
  3681. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3682. /* And clean segments covered by new one as whole. */
  3683. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3684. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3685. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3686. break;
  3687. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3688. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3689. end_seq);
  3690. break;
  3691. }
  3692. __skb_unlink(skb1, &tp->out_of_order_queue);
  3693. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3694. TCP_SKB_CB(skb1)->end_seq);
  3695. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
  3696. __kfree_skb(skb1);
  3697. }
  3698. add_sack:
  3699. if (tcp_is_sack(tp))
  3700. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3701. end:
  3702. if (skb) {
  3703. tcp_grow_window(sk, skb);
  3704. skb_set_owner_r(skb, sk);
  3705. }
  3706. }
  3707. static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
  3708. bool *fragstolen)
  3709. {
  3710. int eaten;
  3711. struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
  3712. __skb_pull(skb, hdrlen);
  3713. eaten = (tail &&
  3714. tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
  3715. tcp_sk(sk)->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3716. if (!eaten) {
  3717. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3718. skb_set_owner_r(skb, sk);
  3719. }
  3720. return eaten;
  3721. }
  3722. int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
  3723. {
  3724. struct sk_buff *skb = NULL;
  3725. struct tcphdr *th;
  3726. bool fragstolen;
  3727. if (size == 0)
  3728. return 0;
  3729. skb = alloc_skb(size + sizeof(*th), sk->sk_allocation);
  3730. if (!skb)
  3731. goto err;
  3732. if (tcp_try_rmem_schedule(sk, skb, size + sizeof(*th)))
  3733. goto err_free;
  3734. th = (struct tcphdr *)skb_put(skb, sizeof(*th));
  3735. skb_reset_transport_header(skb);
  3736. memset(th, 0, sizeof(*th));
  3737. if (memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size))
  3738. goto err_free;
  3739. TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
  3740. TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
  3741. TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
  3742. if (tcp_queue_rcv(sk, skb, sizeof(*th), &fragstolen)) {
  3743. WARN_ON_ONCE(fragstolen); /* should not happen */
  3744. __kfree_skb(skb);
  3745. }
  3746. return size;
  3747. err_free:
  3748. kfree_skb(skb);
  3749. err:
  3750. return -ENOMEM;
  3751. }
  3752. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3753. {
  3754. const struct tcphdr *th = tcp_hdr(skb);
  3755. struct tcp_sock *tp = tcp_sk(sk);
  3756. int eaten = -1;
  3757. bool fragstolen = false;
  3758. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3759. goto drop;
  3760. skb_dst_drop(skb);
  3761. __skb_pull(skb, th->doff * 4);
  3762. TCP_ECN_accept_cwr(tp, skb);
  3763. tp->rx_opt.dsack = 0;
  3764. /* Queue data for delivery to the user.
  3765. * Packets in sequence go to the receive queue.
  3766. * Out of sequence packets to the out_of_order_queue.
  3767. */
  3768. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3769. if (tcp_receive_window(tp) == 0)
  3770. goto out_of_window;
  3771. /* Ok. In sequence. In window. */
  3772. if (tp->ucopy.task == current &&
  3773. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3774. sock_owned_by_user(sk) && !tp->urg_data) {
  3775. int chunk = min_t(unsigned int, skb->len,
  3776. tp->ucopy.len);
  3777. __set_current_state(TASK_RUNNING);
  3778. local_bh_enable();
  3779. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3780. tp->ucopy.len -= chunk;
  3781. tp->copied_seq += chunk;
  3782. eaten = (chunk == skb->len);
  3783. tcp_rcv_space_adjust(sk);
  3784. }
  3785. local_bh_disable();
  3786. }
  3787. if (eaten <= 0) {
  3788. queue_and_out:
  3789. if (eaten < 0 &&
  3790. tcp_try_rmem_schedule(sk, skb, skb->truesize))
  3791. goto drop;
  3792. eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
  3793. }
  3794. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3795. if (skb->len)
  3796. tcp_event_data_recv(sk, skb);
  3797. if (th->fin)
  3798. tcp_fin(sk);
  3799. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3800. tcp_ofo_queue(sk);
  3801. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3802. * gap in queue is filled.
  3803. */
  3804. if (skb_queue_empty(&tp->out_of_order_queue))
  3805. inet_csk(sk)->icsk_ack.pingpong = 0;
  3806. }
  3807. if (tp->rx_opt.num_sacks)
  3808. tcp_sack_remove(tp);
  3809. tcp_fast_path_check(sk);
  3810. if (eaten > 0)
  3811. kfree_skb_partial(skb, fragstolen);
  3812. if (!sock_flag(sk, SOCK_DEAD))
  3813. sk->sk_data_ready(sk);
  3814. return;
  3815. }
  3816. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3817. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3818. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3819. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3820. out_of_window:
  3821. tcp_enter_quickack_mode(sk);
  3822. inet_csk_schedule_ack(sk);
  3823. drop:
  3824. __kfree_skb(skb);
  3825. return;
  3826. }
  3827. /* Out of window. F.e. zero window probe. */
  3828. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3829. goto out_of_window;
  3830. tcp_enter_quickack_mode(sk);
  3831. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3832. /* Partial packet, seq < rcv_next < end_seq */
  3833. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3834. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3835. TCP_SKB_CB(skb)->end_seq);
  3836. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3837. /* If window is closed, drop tail of packet. But after
  3838. * remembering D-SACK for its head made in previous line.
  3839. */
  3840. if (!tcp_receive_window(tp))
  3841. goto out_of_window;
  3842. goto queue_and_out;
  3843. }
  3844. tcp_data_queue_ofo(sk, skb);
  3845. }
  3846. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3847. struct sk_buff_head *list)
  3848. {
  3849. struct sk_buff *next = NULL;
  3850. if (!skb_queue_is_last(list, skb))
  3851. next = skb_queue_next(list, skb);
  3852. __skb_unlink(skb, list);
  3853. __kfree_skb(skb);
  3854. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3855. return next;
  3856. }
  3857. /* Collapse contiguous sequence of skbs head..tail with
  3858. * sequence numbers start..end.
  3859. *
  3860. * If tail is NULL, this means until the end of the list.
  3861. *
  3862. * Segments with FIN/SYN are not collapsed (only because this
  3863. * simplifies code)
  3864. */
  3865. static void
  3866. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3867. struct sk_buff *head, struct sk_buff *tail,
  3868. u32 start, u32 end)
  3869. {
  3870. struct sk_buff *skb, *n;
  3871. bool end_of_skbs;
  3872. /* First, check that queue is collapsible and find
  3873. * the point where collapsing can be useful. */
  3874. skb = head;
  3875. restart:
  3876. end_of_skbs = true;
  3877. skb_queue_walk_from_safe(list, skb, n) {
  3878. if (skb == tail)
  3879. break;
  3880. /* No new bits? It is possible on ofo queue. */
  3881. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3882. skb = tcp_collapse_one(sk, skb, list);
  3883. if (!skb)
  3884. break;
  3885. goto restart;
  3886. }
  3887. /* The first skb to collapse is:
  3888. * - not SYN/FIN and
  3889. * - bloated or contains data before "start" or
  3890. * overlaps to the next one.
  3891. */
  3892. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  3893. (tcp_win_from_space(skb->truesize) > skb->len ||
  3894. before(TCP_SKB_CB(skb)->seq, start))) {
  3895. end_of_skbs = false;
  3896. break;
  3897. }
  3898. if (!skb_queue_is_last(list, skb)) {
  3899. struct sk_buff *next = skb_queue_next(list, skb);
  3900. if (next != tail &&
  3901. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  3902. end_of_skbs = false;
  3903. break;
  3904. }
  3905. }
  3906. /* Decided to skip this, advance start seq. */
  3907. start = TCP_SKB_CB(skb)->end_seq;
  3908. }
  3909. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  3910. return;
  3911. while (before(start, end)) {
  3912. struct sk_buff *nskb;
  3913. unsigned int header = skb_headroom(skb);
  3914. int copy = SKB_MAX_ORDER(header, 0);
  3915. /* Too big header? This can happen with IPv6. */
  3916. if (copy < 0)
  3917. return;
  3918. if (end - start < copy)
  3919. copy = end - start;
  3920. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  3921. if (!nskb)
  3922. return;
  3923. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  3924. skb_set_network_header(nskb, (skb_network_header(skb) -
  3925. skb->head));
  3926. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  3927. skb->head));
  3928. skb_reserve(nskb, header);
  3929. memcpy(nskb->head, skb->head, header);
  3930. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  3931. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  3932. __skb_queue_before(list, skb, nskb);
  3933. skb_set_owner_r(nskb, sk);
  3934. /* Copy data, releasing collapsed skbs. */
  3935. while (copy > 0) {
  3936. int offset = start - TCP_SKB_CB(skb)->seq;
  3937. int size = TCP_SKB_CB(skb)->end_seq - start;
  3938. BUG_ON(offset < 0);
  3939. if (size > 0) {
  3940. size = min(copy, size);
  3941. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  3942. BUG();
  3943. TCP_SKB_CB(nskb)->end_seq += size;
  3944. copy -= size;
  3945. start += size;
  3946. }
  3947. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  3948. skb = tcp_collapse_one(sk, skb, list);
  3949. if (!skb ||
  3950. skb == tail ||
  3951. tcp_hdr(skb)->syn ||
  3952. tcp_hdr(skb)->fin)
  3953. return;
  3954. }
  3955. }
  3956. }
  3957. }
  3958. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  3959. * and tcp_collapse() them until all the queue is collapsed.
  3960. */
  3961. static void tcp_collapse_ofo_queue(struct sock *sk)
  3962. {
  3963. struct tcp_sock *tp = tcp_sk(sk);
  3964. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  3965. struct sk_buff *head;
  3966. u32 start, end;
  3967. if (skb == NULL)
  3968. return;
  3969. start = TCP_SKB_CB(skb)->seq;
  3970. end = TCP_SKB_CB(skb)->end_seq;
  3971. head = skb;
  3972. for (;;) {
  3973. struct sk_buff *next = NULL;
  3974. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  3975. next = skb_queue_next(&tp->out_of_order_queue, skb);
  3976. skb = next;
  3977. /* Segment is terminated when we see gap or when
  3978. * we are at the end of all the queue. */
  3979. if (!skb ||
  3980. after(TCP_SKB_CB(skb)->seq, end) ||
  3981. before(TCP_SKB_CB(skb)->end_seq, start)) {
  3982. tcp_collapse(sk, &tp->out_of_order_queue,
  3983. head, skb, start, end);
  3984. head = skb;
  3985. if (!skb)
  3986. break;
  3987. /* Start new segment */
  3988. start = TCP_SKB_CB(skb)->seq;
  3989. end = TCP_SKB_CB(skb)->end_seq;
  3990. } else {
  3991. if (before(TCP_SKB_CB(skb)->seq, start))
  3992. start = TCP_SKB_CB(skb)->seq;
  3993. if (after(TCP_SKB_CB(skb)->end_seq, end))
  3994. end = TCP_SKB_CB(skb)->end_seq;
  3995. }
  3996. }
  3997. }
  3998. /*
  3999. * Purge the out-of-order queue.
  4000. * Return true if queue was pruned.
  4001. */
  4002. static bool tcp_prune_ofo_queue(struct sock *sk)
  4003. {
  4004. struct tcp_sock *tp = tcp_sk(sk);
  4005. bool res = false;
  4006. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4007. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4008. __skb_queue_purge(&tp->out_of_order_queue);
  4009. /* Reset SACK state. A conforming SACK implementation will
  4010. * do the same at a timeout based retransmit. When a connection
  4011. * is in a sad state like this, we care only about integrity
  4012. * of the connection not performance.
  4013. */
  4014. if (tp->rx_opt.sack_ok)
  4015. tcp_sack_reset(&tp->rx_opt);
  4016. sk_mem_reclaim(sk);
  4017. res = true;
  4018. }
  4019. return res;
  4020. }
  4021. /* Reduce allocated memory if we can, trying to get
  4022. * the socket within its memory limits again.
  4023. *
  4024. * Return less than zero if we should start dropping frames
  4025. * until the socket owning process reads some of the data
  4026. * to stabilize the situation.
  4027. */
  4028. static int tcp_prune_queue(struct sock *sk)
  4029. {
  4030. struct tcp_sock *tp = tcp_sk(sk);
  4031. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4032. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4033. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4034. tcp_clamp_window(sk);
  4035. else if (sk_under_memory_pressure(sk))
  4036. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4037. tcp_collapse_ofo_queue(sk);
  4038. if (!skb_queue_empty(&sk->sk_receive_queue))
  4039. tcp_collapse(sk, &sk->sk_receive_queue,
  4040. skb_peek(&sk->sk_receive_queue),
  4041. NULL,
  4042. tp->copied_seq, tp->rcv_nxt);
  4043. sk_mem_reclaim(sk);
  4044. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4045. return 0;
  4046. /* Collapsing did not help, destructive actions follow.
  4047. * This must not ever occur. */
  4048. tcp_prune_ofo_queue(sk);
  4049. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4050. return 0;
  4051. /* If we are really being abused, tell the caller to silently
  4052. * drop receive data on the floor. It will get retransmitted
  4053. * and hopefully then we'll have sufficient space.
  4054. */
  4055. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4056. /* Massive buffer overcommit. */
  4057. tp->pred_flags = 0;
  4058. return -1;
  4059. }
  4060. static bool tcp_should_expand_sndbuf(const struct sock *sk)
  4061. {
  4062. const struct tcp_sock *tp = tcp_sk(sk);
  4063. /* If the user specified a specific send buffer setting, do
  4064. * not modify it.
  4065. */
  4066. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4067. return false;
  4068. /* If we are under global TCP memory pressure, do not expand. */
  4069. if (sk_under_memory_pressure(sk))
  4070. return false;
  4071. /* If we are under soft global TCP memory pressure, do not expand. */
  4072. if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
  4073. return false;
  4074. /* If we filled the congestion window, do not expand. */
  4075. if (tp->packets_out >= tp->snd_cwnd)
  4076. return false;
  4077. return true;
  4078. }
  4079. /* When incoming ACK allowed to free some skb from write_queue,
  4080. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4081. * on the exit from tcp input handler.
  4082. *
  4083. * PROBLEM: sndbuf expansion does not work well with largesend.
  4084. */
  4085. static void tcp_new_space(struct sock *sk)
  4086. {
  4087. struct tcp_sock *tp = tcp_sk(sk);
  4088. if (tcp_should_expand_sndbuf(sk)) {
  4089. tcp_sndbuf_expand(sk);
  4090. tp->snd_cwnd_stamp = tcp_time_stamp;
  4091. }
  4092. sk->sk_write_space(sk);
  4093. }
  4094. static void tcp_check_space(struct sock *sk)
  4095. {
  4096. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4097. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4098. if (sk->sk_socket &&
  4099. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4100. tcp_new_space(sk);
  4101. }
  4102. }
  4103. static inline void tcp_data_snd_check(struct sock *sk)
  4104. {
  4105. tcp_push_pending_frames(sk);
  4106. tcp_check_space(sk);
  4107. }
  4108. /*
  4109. * Check if sending an ack is needed.
  4110. */
  4111. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4112. {
  4113. struct tcp_sock *tp = tcp_sk(sk);
  4114. /* More than one full frame received... */
  4115. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4116. /* ... and right edge of window advances far enough.
  4117. * (tcp_recvmsg() will send ACK otherwise). Or...
  4118. */
  4119. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4120. /* We ACK each frame or... */
  4121. tcp_in_quickack_mode(sk) ||
  4122. /* We have out of order data. */
  4123. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4124. /* Then ack it now */
  4125. tcp_send_ack(sk);
  4126. } else {
  4127. /* Else, send delayed ack. */
  4128. tcp_send_delayed_ack(sk);
  4129. }
  4130. }
  4131. static inline void tcp_ack_snd_check(struct sock *sk)
  4132. {
  4133. if (!inet_csk_ack_scheduled(sk)) {
  4134. /* We sent a data segment already. */
  4135. return;
  4136. }
  4137. __tcp_ack_snd_check(sk, 1);
  4138. }
  4139. /*
  4140. * This routine is only called when we have urgent data
  4141. * signaled. Its the 'slow' part of tcp_urg. It could be
  4142. * moved inline now as tcp_urg is only called from one
  4143. * place. We handle URGent data wrong. We have to - as
  4144. * BSD still doesn't use the correction from RFC961.
  4145. * For 1003.1g we should support a new option TCP_STDURG to permit
  4146. * either form (or just set the sysctl tcp_stdurg).
  4147. */
  4148. static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
  4149. {
  4150. struct tcp_sock *tp = tcp_sk(sk);
  4151. u32 ptr = ntohs(th->urg_ptr);
  4152. if (ptr && !sysctl_tcp_stdurg)
  4153. ptr--;
  4154. ptr += ntohl(th->seq);
  4155. /* Ignore urgent data that we've already seen and read. */
  4156. if (after(tp->copied_seq, ptr))
  4157. return;
  4158. /* Do not replay urg ptr.
  4159. *
  4160. * NOTE: interesting situation not covered by specs.
  4161. * Misbehaving sender may send urg ptr, pointing to segment,
  4162. * which we already have in ofo queue. We are not able to fetch
  4163. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4164. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4165. * situations. But it is worth to think about possibility of some
  4166. * DoSes using some hypothetical application level deadlock.
  4167. */
  4168. if (before(ptr, tp->rcv_nxt))
  4169. return;
  4170. /* Do we already have a newer (or duplicate) urgent pointer? */
  4171. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4172. return;
  4173. /* Tell the world about our new urgent pointer. */
  4174. sk_send_sigurg(sk);
  4175. /* We may be adding urgent data when the last byte read was
  4176. * urgent. To do this requires some care. We cannot just ignore
  4177. * tp->copied_seq since we would read the last urgent byte again
  4178. * as data, nor can we alter copied_seq until this data arrives
  4179. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4180. *
  4181. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4182. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4183. * and expect that both A and B disappear from stream. This is _wrong_.
  4184. * Though this happens in BSD with high probability, this is occasional.
  4185. * Any application relying on this is buggy. Note also, that fix "works"
  4186. * only in this artificial test. Insert some normal data between A and B and we will
  4187. * decline of BSD again. Verdict: it is better to remove to trap
  4188. * buggy users.
  4189. */
  4190. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4191. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4192. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4193. tp->copied_seq++;
  4194. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4195. __skb_unlink(skb, &sk->sk_receive_queue);
  4196. __kfree_skb(skb);
  4197. }
  4198. }
  4199. tp->urg_data = TCP_URG_NOTYET;
  4200. tp->urg_seq = ptr;
  4201. /* Disable header prediction. */
  4202. tp->pred_flags = 0;
  4203. }
  4204. /* This is the 'fast' part of urgent handling. */
  4205. static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
  4206. {
  4207. struct tcp_sock *tp = tcp_sk(sk);
  4208. /* Check if we get a new urgent pointer - normally not. */
  4209. if (th->urg)
  4210. tcp_check_urg(sk, th);
  4211. /* Do we wait for any urgent data? - normally not... */
  4212. if (tp->urg_data == TCP_URG_NOTYET) {
  4213. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4214. th->syn;
  4215. /* Is the urgent pointer pointing into this packet? */
  4216. if (ptr < skb->len) {
  4217. u8 tmp;
  4218. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4219. BUG();
  4220. tp->urg_data = TCP_URG_VALID | tmp;
  4221. if (!sock_flag(sk, SOCK_DEAD))
  4222. sk->sk_data_ready(sk);
  4223. }
  4224. }
  4225. }
  4226. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4227. {
  4228. struct tcp_sock *tp = tcp_sk(sk);
  4229. int chunk = skb->len - hlen;
  4230. int err;
  4231. local_bh_enable();
  4232. if (skb_csum_unnecessary(skb))
  4233. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4234. else
  4235. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4236. tp->ucopy.iov);
  4237. if (!err) {
  4238. tp->ucopy.len -= chunk;
  4239. tp->copied_seq += chunk;
  4240. tcp_rcv_space_adjust(sk);
  4241. }
  4242. local_bh_disable();
  4243. return err;
  4244. }
  4245. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4246. struct sk_buff *skb)
  4247. {
  4248. __sum16 result;
  4249. if (sock_owned_by_user(sk)) {
  4250. local_bh_enable();
  4251. result = __tcp_checksum_complete(skb);
  4252. local_bh_disable();
  4253. } else {
  4254. result = __tcp_checksum_complete(skb);
  4255. }
  4256. return result;
  4257. }
  4258. static inline bool tcp_checksum_complete_user(struct sock *sk,
  4259. struct sk_buff *skb)
  4260. {
  4261. return !skb_csum_unnecessary(skb) &&
  4262. __tcp_checksum_complete_user(sk, skb);
  4263. }
  4264. #ifdef CONFIG_NET_DMA
  4265. static bool tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4266. int hlen)
  4267. {
  4268. struct tcp_sock *tp = tcp_sk(sk);
  4269. int chunk = skb->len - hlen;
  4270. int dma_cookie;
  4271. bool copied_early = false;
  4272. if (tp->ucopy.wakeup)
  4273. return false;
  4274. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4275. tp->ucopy.dma_chan = net_dma_find_channel();
  4276. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4277. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4278. skb, hlen,
  4279. tp->ucopy.iov, chunk,
  4280. tp->ucopy.pinned_list);
  4281. if (dma_cookie < 0)
  4282. goto out;
  4283. tp->ucopy.dma_cookie = dma_cookie;
  4284. copied_early = true;
  4285. tp->ucopy.len -= chunk;
  4286. tp->copied_seq += chunk;
  4287. tcp_rcv_space_adjust(sk);
  4288. if ((tp->ucopy.len == 0) ||
  4289. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4290. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4291. tp->ucopy.wakeup = 1;
  4292. sk->sk_data_ready(sk);
  4293. }
  4294. } else if (chunk > 0) {
  4295. tp->ucopy.wakeup = 1;
  4296. sk->sk_data_ready(sk);
  4297. }
  4298. out:
  4299. return copied_early;
  4300. }
  4301. #endif /* CONFIG_NET_DMA */
  4302. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4303. * play significant role here.
  4304. */
  4305. static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4306. const struct tcphdr *th, int syn_inerr)
  4307. {
  4308. struct tcp_sock *tp = tcp_sk(sk);
  4309. /* RFC1323: H1. Apply PAWS check first. */
  4310. if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
  4311. tcp_paws_discard(sk, skb)) {
  4312. if (!th->rst) {
  4313. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4314. tcp_send_dupack(sk, skb);
  4315. goto discard;
  4316. }
  4317. /* Reset is accepted even if it did not pass PAWS. */
  4318. }
  4319. /* Step 1: check sequence number */
  4320. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4321. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4322. * (RST) segments are validated by checking their SEQ-fields."
  4323. * And page 69: "If an incoming segment is not acceptable,
  4324. * an acknowledgment should be sent in reply (unless the RST
  4325. * bit is set, if so drop the segment and return)".
  4326. */
  4327. if (!th->rst) {
  4328. if (th->syn)
  4329. goto syn_challenge;
  4330. tcp_send_dupack(sk, skb);
  4331. }
  4332. goto discard;
  4333. }
  4334. /* Step 2: check RST bit */
  4335. if (th->rst) {
  4336. /* RFC 5961 3.2 :
  4337. * If sequence number exactly matches RCV.NXT, then
  4338. * RESET the connection
  4339. * else
  4340. * Send a challenge ACK
  4341. */
  4342. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
  4343. tcp_reset(sk);
  4344. else
  4345. tcp_send_challenge_ack(sk);
  4346. goto discard;
  4347. }
  4348. /* step 3: check security and precedence [ignored] */
  4349. /* step 4: Check for a SYN
  4350. * RFC 5691 4.2 : Send a challenge ack
  4351. */
  4352. if (th->syn) {
  4353. syn_challenge:
  4354. if (syn_inerr)
  4355. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4356. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
  4357. tcp_send_challenge_ack(sk);
  4358. goto discard;
  4359. }
  4360. return true;
  4361. discard:
  4362. __kfree_skb(skb);
  4363. return false;
  4364. }
  4365. /*
  4366. * TCP receive function for the ESTABLISHED state.
  4367. *
  4368. * It is split into a fast path and a slow path. The fast path is
  4369. * disabled when:
  4370. * - A zero window was announced from us - zero window probing
  4371. * is only handled properly in the slow path.
  4372. * - Out of order segments arrived.
  4373. * - Urgent data is expected.
  4374. * - There is no buffer space left
  4375. * - Unexpected TCP flags/window values/header lengths are received
  4376. * (detected by checking the TCP header against pred_flags)
  4377. * - Data is sent in both directions. Fast path only supports pure senders
  4378. * or pure receivers (this means either the sequence number or the ack
  4379. * value must stay constant)
  4380. * - Unexpected TCP option.
  4381. *
  4382. * When these conditions are not satisfied it drops into a standard
  4383. * receive procedure patterned after RFC793 to handle all cases.
  4384. * The first three cases are guaranteed by proper pred_flags setting,
  4385. * the rest is checked inline. Fast processing is turned on in
  4386. * tcp_data_queue when everything is OK.
  4387. */
  4388. void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4389. const struct tcphdr *th, unsigned int len)
  4390. {
  4391. struct tcp_sock *tp = tcp_sk(sk);
  4392. if (unlikely(sk->sk_rx_dst == NULL))
  4393. inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4394. /*
  4395. * Header prediction.
  4396. * The code loosely follows the one in the famous
  4397. * "30 instruction TCP receive" Van Jacobson mail.
  4398. *
  4399. * Van's trick is to deposit buffers into socket queue
  4400. * on a device interrupt, to call tcp_recv function
  4401. * on the receive process context and checksum and copy
  4402. * the buffer to user space. smart...
  4403. *
  4404. * Our current scheme is not silly either but we take the
  4405. * extra cost of the net_bh soft interrupt processing...
  4406. * We do checksum and copy also but from device to kernel.
  4407. */
  4408. tp->rx_opt.saw_tstamp = 0;
  4409. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4410. * if header_prediction is to be made
  4411. * 'S' will always be tp->tcp_header_len >> 2
  4412. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4413. * turn it off (when there are holes in the receive
  4414. * space for instance)
  4415. * PSH flag is ignored.
  4416. */
  4417. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4418. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4419. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4420. int tcp_header_len = tp->tcp_header_len;
  4421. /* Timestamp header prediction: tcp_header_len
  4422. * is automatically equal to th->doff*4 due to pred_flags
  4423. * match.
  4424. */
  4425. /* Check timestamp */
  4426. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4427. /* No? Slow path! */
  4428. if (!tcp_parse_aligned_timestamp(tp, th))
  4429. goto slow_path;
  4430. /* If PAWS failed, check it more carefully in slow path */
  4431. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4432. goto slow_path;
  4433. /* DO NOT update ts_recent here, if checksum fails
  4434. * and timestamp was corrupted part, it will result
  4435. * in a hung connection since we will drop all
  4436. * future packets due to the PAWS test.
  4437. */
  4438. }
  4439. if (len <= tcp_header_len) {
  4440. /* Bulk data transfer: sender */
  4441. if (len == tcp_header_len) {
  4442. /* Predicted packet is in window by definition.
  4443. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4444. * Hence, check seq<=rcv_wup reduces to:
  4445. */
  4446. if (tcp_header_len ==
  4447. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4448. tp->rcv_nxt == tp->rcv_wup)
  4449. tcp_store_ts_recent(tp);
  4450. /* We know that such packets are checksummed
  4451. * on entry.
  4452. */
  4453. tcp_ack(sk, skb, 0);
  4454. __kfree_skb(skb);
  4455. tcp_data_snd_check(sk);
  4456. return;
  4457. } else { /* Header too small */
  4458. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4459. goto discard;
  4460. }
  4461. } else {
  4462. int eaten = 0;
  4463. int copied_early = 0;
  4464. bool fragstolen = false;
  4465. if (tp->copied_seq == tp->rcv_nxt &&
  4466. len - tcp_header_len <= tp->ucopy.len) {
  4467. #ifdef CONFIG_NET_DMA
  4468. if (tp->ucopy.task == current &&
  4469. sock_owned_by_user(sk) &&
  4470. tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4471. copied_early = 1;
  4472. eaten = 1;
  4473. }
  4474. #endif
  4475. if (tp->ucopy.task == current &&
  4476. sock_owned_by_user(sk) && !copied_early) {
  4477. __set_current_state(TASK_RUNNING);
  4478. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4479. eaten = 1;
  4480. }
  4481. if (eaten) {
  4482. /* Predicted packet is in window by definition.
  4483. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4484. * Hence, check seq<=rcv_wup reduces to:
  4485. */
  4486. if (tcp_header_len ==
  4487. (sizeof(struct tcphdr) +
  4488. TCPOLEN_TSTAMP_ALIGNED) &&
  4489. tp->rcv_nxt == tp->rcv_wup)
  4490. tcp_store_ts_recent(tp);
  4491. tcp_rcv_rtt_measure_ts(sk, skb);
  4492. __skb_pull(skb, tcp_header_len);
  4493. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4494. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4495. }
  4496. if (copied_early)
  4497. tcp_cleanup_rbuf(sk, skb->len);
  4498. }
  4499. if (!eaten) {
  4500. if (tcp_checksum_complete_user(sk, skb))
  4501. goto csum_error;
  4502. if ((int)skb->truesize > sk->sk_forward_alloc)
  4503. goto step5;
  4504. /* Predicted packet is in window by definition.
  4505. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4506. * Hence, check seq<=rcv_wup reduces to:
  4507. */
  4508. if (tcp_header_len ==
  4509. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4510. tp->rcv_nxt == tp->rcv_wup)
  4511. tcp_store_ts_recent(tp);
  4512. tcp_rcv_rtt_measure_ts(sk, skb);
  4513. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4514. /* Bulk data transfer: receiver */
  4515. eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
  4516. &fragstolen);
  4517. }
  4518. tcp_event_data_recv(sk, skb);
  4519. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4520. /* Well, only one small jumplet in fast path... */
  4521. tcp_ack(sk, skb, FLAG_DATA);
  4522. tcp_data_snd_check(sk);
  4523. if (!inet_csk_ack_scheduled(sk))
  4524. goto no_ack;
  4525. }
  4526. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4527. __tcp_ack_snd_check(sk, 0);
  4528. no_ack:
  4529. #ifdef CONFIG_NET_DMA
  4530. if (copied_early)
  4531. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4532. else
  4533. #endif
  4534. if (eaten)
  4535. kfree_skb_partial(skb, fragstolen);
  4536. sk->sk_data_ready(sk);
  4537. return;
  4538. }
  4539. }
  4540. slow_path:
  4541. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4542. goto csum_error;
  4543. if (!th->ack && !th->rst)
  4544. goto discard;
  4545. /*
  4546. * Standard slow path.
  4547. */
  4548. if (!tcp_validate_incoming(sk, skb, th, 1))
  4549. return;
  4550. step5:
  4551. if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
  4552. goto discard;
  4553. tcp_rcv_rtt_measure_ts(sk, skb);
  4554. /* Process urgent data. */
  4555. tcp_urg(sk, skb, th);
  4556. /* step 7: process the segment text */
  4557. tcp_data_queue(sk, skb);
  4558. tcp_data_snd_check(sk);
  4559. tcp_ack_snd_check(sk);
  4560. return;
  4561. csum_error:
  4562. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_CSUMERRORS);
  4563. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4564. discard:
  4565. __kfree_skb(skb);
  4566. }
  4567. EXPORT_SYMBOL(tcp_rcv_established);
  4568. void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
  4569. {
  4570. struct tcp_sock *tp = tcp_sk(sk);
  4571. struct inet_connection_sock *icsk = inet_csk(sk);
  4572. tcp_set_state(sk, TCP_ESTABLISHED);
  4573. if (skb != NULL) {
  4574. icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
  4575. security_inet_conn_established(sk, skb);
  4576. }
  4577. /* Make sure socket is routed, for correct metrics. */
  4578. icsk->icsk_af_ops->rebuild_header(sk);
  4579. tcp_init_metrics(sk);
  4580. tcp_init_congestion_control(sk);
  4581. /* Prevent spurious tcp_cwnd_restart() on first data
  4582. * packet.
  4583. */
  4584. tp->lsndtime = tcp_time_stamp;
  4585. tcp_init_buffer_space(sk);
  4586. if (sock_flag(sk, SOCK_KEEPOPEN))
  4587. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4588. if (!tp->rx_opt.snd_wscale)
  4589. __tcp_fast_path_on(tp, tp->snd_wnd);
  4590. else
  4591. tp->pred_flags = 0;
  4592. if (!sock_flag(sk, SOCK_DEAD)) {
  4593. sk->sk_state_change(sk);
  4594. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4595. }
  4596. }
  4597. static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
  4598. struct tcp_fastopen_cookie *cookie)
  4599. {
  4600. struct tcp_sock *tp = tcp_sk(sk);
  4601. struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
  4602. u16 mss = tp->rx_opt.mss_clamp;
  4603. bool syn_drop;
  4604. if (mss == tp->rx_opt.user_mss) {
  4605. struct tcp_options_received opt;
  4606. /* Get original SYNACK MSS value if user MSS sets mss_clamp */
  4607. tcp_clear_options(&opt);
  4608. opt.user_mss = opt.mss_clamp = 0;
  4609. tcp_parse_options(synack, &opt, 0, NULL);
  4610. mss = opt.mss_clamp;
  4611. }
  4612. if (!tp->syn_fastopen) /* Ignore an unsolicited cookie */
  4613. cookie->len = -1;
  4614. /* The SYN-ACK neither has cookie nor acknowledges the data. Presumably
  4615. * the remote receives only the retransmitted (regular) SYNs: either
  4616. * the original SYN-data or the corresponding SYN-ACK is lost.
  4617. */
  4618. syn_drop = (cookie->len <= 0 && data && tp->total_retrans);
  4619. tcp_fastopen_cache_set(sk, mss, cookie, syn_drop);
  4620. if (data) { /* Retransmit unacked data in SYN */
  4621. tcp_for_write_queue_from(data, sk) {
  4622. if (data == tcp_send_head(sk) ||
  4623. __tcp_retransmit_skb(sk, data))
  4624. break;
  4625. }
  4626. tcp_rearm_rto(sk);
  4627. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL);
  4628. return true;
  4629. }
  4630. tp->syn_data_acked = tp->syn_data;
  4631. if (tp->syn_data_acked)
  4632. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
  4633. return false;
  4634. }
  4635. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4636. const struct tcphdr *th, unsigned int len)
  4637. {
  4638. struct inet_connection_sock *icsk = inet_csk(sk);
  4639. struct tcp_sock *tp = tcp_sk(sk);
  4640. struct tcp_fastopen_cookie foc = { .len = -1 };
  4641. int saved_clamp = tp->rx_opt.mss_clamp;
  4642. tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
  4643. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  4644. tp->rx_opt.rcv_tsecr -= tp->tsoffset;
  4645. if (th->ack) {
  4646. /* rfc793:
  4647. * "If the state is SYN-SENT then
  4648. * first check the ACK bit
  4649. * If the ACK bit is set
  4650. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4651. * a reset (unless the RST bit is set, if so drop
  4652. * the segment and return)"
  4653. */
  4654. if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
  4655. after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
  4656. goto reset_and_undo;
  4657. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4658. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4659. tcp_time_stamp)) {
  4660. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4661. goto reset_and_undo;
  4662. }
  4663. /* Now ACK is acceptable.
  4664. *
  4665. * "If the RST bit is set
  4666. * If the ACK was acceptable then signal the user "error:
  4667. * connection reset", drop the segment, enter CLOSED state,
  4668. * delete TCB, and return."
  4669. */
  4670. if (th->rst) {
  4671. tcp_reset(sk);
  4672. goto discard;
  4673. }
  4674. /* rfc793:
  4675. * "fifth, if neither of the SYN or RST bits is set then
  4676. * drop the segment and return."
  4677. *
  4678. * See note below!
  4679. * --ANK(990513)
  4680. */
  4681. if (!th->syn)
  4682. goto discard_and_undo;
  4683. /* rfc793:
  4684. * "If the SYN bit is on ...
  4685. * are acceptable then ...
  4686. * (our SYN has been ACKed), change the connection
  4687. * state to ESTABLISHED..."
  4688. */
  4689. TCP_ECN_rcv_synack(tp, th);
  4690. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4691. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4692. /* Ok.. it's good. Set up sequence numbers and
  4693. * move to established.
  4694. */
  4695. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4696. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4697. /* RFC1323: The window in SYN & SYN/ACK segments is
  4698. * never scaled.
  4699. */
  4700. tp->snd_wnd = ntohs(th->window);
  4701. if (!tp->rx_opt.wscale_ok) {
  4702. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4703. tp->window_clamp = min(tp->window_clamp, 65535U);
  4704. }
  4705. if (tp->rx_opt.saw_tstamp) {
  4706. tp->rx_opt.tstamp_ok = 1;
  4707. tp->tcp_header_len =
  4708. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4709. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4710. tcp_store_ts_recent(tp);
  4711. } else {
  4712. tp->tcp_header_len = sizeof(struct tcphdr);
  4713. }
  4714. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4715. tcp_enable_fack(tp);
  4716. tcp_mtup_init(sk);
  4717. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4718. tcp_initialize_rcv_mss(sk);
  4719. /* Remember, tcp_poll() does not lock socket!
  4720. * Change state from SYN-SENT only after copied_seq
  4721. * is initialized. */
  4722. tp->copied_seq = tp->rcv_nxt;
  4723. smp_mb();
  4724. tcp_finish_connect(sk, skb);
  4725. if ((tp->syn_fastopen || tp->syn_data) &&
  4726. tcp_rcv_fastopen_synack(sk, skb, &foc))
  4727. return -1;
  4728. if (sk->sk_write_pending ||
  4729. icsk->icsk_accept_queue.rskq_defer_accept ||
  4730. icsk->icsk_ack.pingpong) {
  4731. /* Save one ACK. Data will be ready after
  4732. * several ticks, if write_pending is set.
  4733. *
  4734. * It may be deleted, but with this feature tcpdumps
  4735. * look so _wonderfully_ clever, that I was not able
  4736. * to stand against the temptation 8) --ANK
  4737. */
  4738. inet_csk_schedule_ack(sk);
  4739. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4740. tcp_enter_quickack_mode(sk);
  4741. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4742. TCP_DELACK_MAX, TCP_RTO_MAX);
  4743. discard:
  4744. __kfree_skb(skb);
  4745. return 0;
  4746. } else {
  4747. tcp_send_ack(sk);
  4748. }
  4749. return -1;
  4750. }
  4751. /* No ACK in the segment */
  4752. if (th->rst) {
  4753. /* rfc793:
  4754. * "If the RST bit is set
  4755. *
  4756. * Otherwise (no ACK) drop the segment and return."
  4757. */
  4758. goto discard_and_undo;
  4759. }
  4760. /* PAWS check. */
  4761. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4762. tcp_paws_reject(&tp->rx_opt, 0))
  4763. goto discard_and_undo;
  4764. if (th->syn) {
  4765. /* We see SYN without ACK. It is attempt of
  4766. * simultaneous connect with crossed SYNs.
  4767. * Particularly, it can be connect to self.
  4768. */
  4769. tcp_set_state(sk, TCP_SYN_RECV);
  4770. if (tp->rx_opt.saw_tstamp) {
  4771. tp->rx_opt.tstamp_ok = 1;
  4772. tcp_store_ts_recent(tp);
  4773. tp->tcp_header_len =
  4774. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4775. } else {
  4776. tp->tcp_header_len = sizeof(struct tcphdr);
  4777. }
  4778. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4779. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4780. /* RFC1323: The window in SYN & SYN/ACK segments is
  4781. * never scaled.
  4782. */
  4783. tp->snd_wnd = ntohs(th->window);
  4784. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4785. tp->max_window = tp->snd_wnd;
  4786. TCP_ECN_rcv_syn(tp, th);
  4787. tcp_mtup_init(sk);
  4788. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4789. tcp_initialize_rcv_mss(sk);
  4790. tcp_send_synack(sk);
  4791. #if 0
  4792. /* Note, we could accept data and URG from this segment.
  4793. * There are no obstacles to make this (except that we must
  4794. * either change tcp_recvmsg() to prevent it from returning data
  4795. * before 3WHS completes per RFC793, or employ TCP Fast Open).
  4796. *
  4797. * However, if we ignore data in ACKless segments sometimes,
  4798. * we have no reasons to accept it sometimes.
  4799. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4800. * is not flawless. So, discard packet for sanity.
  4801. * Uncomment this return to process the data.
  4802. */
  4803. return -1;
  4804. #else
  4805. goto discard;
  4806. #endif
  4807. }
  4808. /* "fifth, if neither of the SYN or RST bits is set then
  4809. * drop the segment and return."
  4810. */
  4811. discard_and_undo:
  4812. tcp_clear_options(&tp->rx_opt);
  4813. tp->rx_opt.mss_clamp = saved_clamp;
  4814. goto discard;
  4815. reset_and_undo:
  4816. tcp_clear_options(&tp->rx_opt);
  4817. tp->rx_opt.mss_clamp = saved_clamp;
  4818. return 1;
  4819. }
  4820. /*
  4821. * This function implements the receiving procedure of RFC 793 for
  4822. * all states except ESTABLISHED and TIME_WAIT.
  4823. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4824. * address independent.
  4825. */
  4826. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4827. const struct tcphdr *th, unsigned int len)
  4828. {
  4829. struct tcp_sock *tp = tcp_sk(sk);
  4830. struct inet_connection_sock *icsk = inet_csk(sk);
  4831. struct request_sock *req;
  4832. int queued = 0;
  4833. bool acceptable;
  4834. u32 synack_stamp;
  4835. tp->rx_opt.saw_tstamp = 0;
  4836. switch (sk->sk_state) {
  4837. case TCP_CLOSE:
  4838. goto discard;
  4839. case TCP_LISTEN:
  4840. if (th->ack)
  4841. return 1;
  4842. if (th->rst)
  4843. goto discard;
  4844. if (th->syn) {
  4845. if (th->fin)
  4846. goto discard;
  4847. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4848. return 1;
  4849. /* Now we have several options: In theory there is
  4850. * nothing else in the frame. KA9Q has an option to
  4851. * send data with the syn, BSD accepts data with the
  4852. * syn up to the [to be] advertised window and
  4853. * Solaris 2.1 gives you a protocol error. For now
  4854. * we just ignore it, that fits the spec precisely
  4855. * and avoids incompatibilities. It would be nice in
  4856. * future to drop through and process the data.
  4857. *
  4858. * Now that TTCP is starting to be used we ought to
  4859. * queue this data.
  4860. * But, this leaves one open to an easy denial of
  4861. * service attack, and SYN cookies can't defend
  4862. * against this problem. So, we drop the data
  4863. * in the interest of security over speed unless
  4864. * it's still in use.
  4865. */
  4866. kfree_skb(skb);
  4867. return 0;
  4868. }
  4869. goto discard;
  4870. case TCP_SYN_SENT:
  4871. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4872. if (queued >= 0)
  4873. return queued;
  4874. /* Do step6 onward by hand. */
  4875. tcp_urg(sk, skb, th);
  4876. __kfree_skb(skb);
  4877. tcp_data_snd_check(sk);
  4878. return 0;
  4879. }
  4880. req = tp->fastopen_rsk;
  4881. if (req != NULL) {
  4882. WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
  4883. sk->sk_state != TCP_FIN_WAIT1);
  4884. if (tcp_check_req(sk, skb, req, NULL, true) == NULL)
  4885. goto discard;
  4886. }
  4887. if (!th->ack && !th->rst)
  4888. goto discard;
  4889. if (!tcp_validate_incoming(sk, skb, th, 0))
  4890. return 0;
  4891. /* step 5: check the ACK field */
  4892. acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
  4893. FLAG_UPDATE_TS_RECENT) > 0;
  4894. switch (sk->sk_state) {
  4895. case TCP_SYN_RECV:
  4896. if (!acceptable)
  4897. return 1;
  4898. /* Once we leave TCP_SYN_RECV, we no longer need req
  4899. * so release it.
  4900. */
  4901. if (req) {
  4902. synack_stamp = tcp_rsk(req)->snt_synack;
  4903. tp->total_retrans = req->num_retrans;
  4904. reqsk_fastopen_remove(sk, req, false);
  4905. } else {
  4906. synack_stamp = tp->lsndtime;
  4907. /* Make sure socket is routed, for correct metrics. */
  4908. icsk->icsk_af_ops->rebuild_header(sk);
  4909. tcp_init_congestion_control(sk);
  4910. tcp_mtup_init(sk);
  4911. tp->copied_seq = tp->rcv_nxt;
  4912. tcp_init_buffer_space(sk);
  4913. }
  4914. smp_mb();
  4915. tcp_set_state(sk, TCP_ESTABLISHED);
  4916. sk->sk_state_change(sk);
  4917. /* Note, that this wakeup is only for marginal crossed SYN case.
  4918. * Passively open sockets are not waked up, because
  4919. * sk->sk_sleep == NULL and sk->sk_socket == NULL.
  4920. */
  4921. if (sk->sk_socket)
  4922. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4923. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  4924. tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
  4925. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4926. tcp_synack_rtt_meas(sk, synack_stamp);
  4927. if (tp->rx_opt.tstamp_ok)
  4928. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4929. if (req) {
  4930. /* Re-arm the timer because data may have been sent out.
  4931. * This is similar to the regular data transmission case
  4932. * when new data has just been ack'ed.
  4933. *
  4934. * (TFO) - we could try to be more aggressive and
  4935. * retransmitting any data sooner based on when they
  4936. * are sent out.
  4937. */
  4938. tcp_rearm_rto(sk);
  4939. } else
  4940. tcp_init_metrics(sk);
  4941. tcp_update_pacing_rate(sk);
  4942. /* Prevent spurious tcp_cwnd_restart() on first data packet */
  4943. tp->lsndtime = tcp_time_stamp;
  4944. tcp_initialize_rcv_mss(sk);
  4945. tcp_fast_path_on(tp);
  4946. break;
  4947. case TCP_FIN_WAIT1: {
  4948. struct dst_entry *dst;
  4949. int tmo;
  4950. /* If we enter the TCP_FIN_WAIT1 state and we are a
  4951. * Fast Open socket and this is the first acceptable
  4952. * ACK we have received, this would have acknowledged
  4953. * our SYNACK so stop the SYNACK timer.
  4954. */
  4955. if (req != NULL) {
  4956. /* Return RST if ack_seq is invalid.
  4957. * Note that RFC793 only says to generate a
  4958. * DUPACK for it but for TCP Fast Open it seems
  4959. * better to treat this case like TCP_SYN_RECV
  4960. * above.
  4961. */
  4962. if (!acceptable)
  4963. return 1;
  4964. /* We no longer need the request sock. */
  4965. reqsk_fastopen_remove(sk, req, false);
  4966. tcp_rearm_rto(sk);
  4967. }
  4968. if (tp->snd_una != tp->write_seq)
  4969. break;
  4970. tcp_set_state(sk, TCP_FIN_WAIT2);
  4971. sk->sk_shutdown |= SEND_SHUTDOWN;
  4972. dst = __sk_dst_get(sk);
  4973. if (dst)
  4974. dst_confirm(dst);
  4975. if (!sock_flag(sk, SOCK_DEAD)) {
  4976. /* Wake up lingering close() */
  4977. sk->sk_state_change(sk);
  4978. break;
  4979. }
  4980. if (tp->linger2 < 0 ||
  4981. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  4982. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  4983. tcp_done(sk);
  4984. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  4985. return 1;
  4986. }
  4987. tmo = tcp_fin_time(sk);
  4988. if (tmo > TCP_TIMEWAIT_LEN) {
  4989. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  4990. } else if (th->fin || sock_owned_by_user(sk)) {
  4991. /* Bad case. We could lose such FIN otherwise.
  4992. * It is not a big problem, but it looks confusing
  4993. * and not so rare event. We still can lose it now,
  4994. * if it spins in bh_lock_sock(), but it is really
  4995. * marginal case.
  4996. */
  4997. inet_csk_reset_keepalive_timer(sk, tmo);
  4998. } else {
  4999. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5000. goto discard;
  5001. }
  5002. break;
  5003. }
  5004. case TCP_CLOSING:
  5005. if (tp->snd_una == tp->write_seq) {
  5006. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5007. goto discard;
  5008. }
  5009. break;
  5010. case TCP_LAST_ACK:
  5011. if (tp->snd_una == tp->write_seq) {
  5012. tcp_update_metrics(sk);
  5013. tcp_done(sk);
  5014. goto discard;
  5015. }
  5016. break;
  5017. }
  5018. /* step 6: check the URG bit */
  5019. tcp_urg(sk, skb, th);
  5020. /* step 7: process the segment text */
  5021. switch (sk->sk_state) {
  5022. case TCP_CLOSE_WAIT:
  5023. case TCP_CLOSING:
  5024. case TCP_LAST_ACK:
  5025. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5026. break;
  5027. case TCP_FIN_WAIT1:
  5028. case TCP_FIN_WAIT2:
  5029. /* RFC 793 says to queue data in these states,
  5030. * RFC 1122 says we MUST send a reset.
  5031. * BSD 4.4 also does reset.
  5032. */
  5033. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5034. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5035. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5036. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5037. tcp_reset(sk);
  5038. return 1;
  5039. }
  5040. }
  5041. /* Fall through */
  5042. case TCP_ESTABLISHED:
  5043. tcp_data_queue(sk, skb);
  5044. queued = 1;
  5045. break;
  5046. }
  5047. /* tcp_data could move socket to TIME-WAIT */
  5048. if (sk->sk_state != TCP_CLOSE) {
  5049. tcp_data_snd_check(sk);
  5050. tcp_ack_snd_check(sk);
  5051. }
  5052. if (!queued) {
  5053. discard:
  5054. __kfree_skb(skb);
  5055. }
  5056. return 0;
  5057. }
  5058. EXPORT_SYMBOL(tcp_rcv_state_process);