ipmr.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/uaccess.h>
  29. #include <linux/types.h>
  30. #include <linux/capability.h>
  31. #include <linux/errno.h>
  32. #include <linux/timer.h>
  33. #include <linux/mm.h>
  34. #include <linux/kernel.h>
  35. #include <linux/fcntl.h>
  36. #include <linux/stat.h>
  37. #include <linux/socket.h>
  38. #include <linux/in.h>
  39. #include <linux/inet.h>
  40. #include <linux/netdevice.h>
  41. #include <linux/inetdevice.h>
  42. #include <linux/igmp.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/seq_file.h>
  45. #include <linux/mroute.h>
  46. #include <linux/init.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/slab.h>
  49. #include <net/net_namespace.h>
  50. #include <net/ip.h>
  51. #include <net/protocol.h>
  52. #include <linux/skbuff.h>
  53. #include <net/route.h>
  54. #include <net/sock.h>
  55. #include <net/icmp.h>
  56. #include <net/udp.h>
  57. #include <net/raw.h>
  58. #include <linux/notifier.h>
  59. #include <linux/if_arp.h>
  60. #include <linux/netfilter_ipv4.h>
  61. #include <linux/compat.h>
  62. #include <linux/export.h>
  63. #include <net/ip_tunnels.h>
  64. #include <net/checksum.h>
  65. #include <net/netlink.h>
  66. #include <net/fib_rules.h>
  67. #include <linux/netconf.h>
  68. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  69. #define CONFIG_IP_PIMSM 1
  70. #endif
  71. struct mr_table {
  72. struct list_head list;
  73. #ifdef CONFIG_NET_NS
  74. struct net *net;
  75. #endif
  76. u32 id;
  77. struct sock __rcu *mroute_sk;
  78. struct timer_list ipmr_expire_timer;
  79. struct list_head mfc_unres_queue;
  80. struct list_head mfc_cache_array[MFC_LINES];
  81. struct vif_device vif_table[MAXVIFS];
  82. int maxvif;
  83. atomic_t cache_resolve_queue_len;
  84. bool mroute_do_assert;
  85. bool mroute_do_pim;
  86. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  87. int mroute_reg_vif_num;
  88. #endif
  89. };
  90. struct ipmr_rule {
  91. struct fib_rule common;
  92. };
  93. struct ipmr_result {
  94. struct mr_table *mrt;
  95. };
  96. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  97. * Note that the changes are semaphored via rtnl_lock.
  98. */
  99. static DEFINE_RWLOCK(mrt_lock);
  100. /*
  101. * Multicast router control variables
  102. */
  103. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  104. /* Special spinlock for queue of unresolved entries */
  105. static DEFINE_SPINLOCK(mfc_unres_lock);
  106. /* We return to original Alan's scheme. Hash table of resolved
  107. * entries is changed only in process context and protected
  108. * with weak lock mrt_lock. Queue of unresolved entries is protected
  109. * with strong spinlock mfc_unres_lock.
  110. *
  111. * In this case data path is free of exclusive locks at all.
  112. */
  113. static struct kmem_cache *mrt_cachep __read_mostly;
  114. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  115. static void ipmr_free_table(struct mr_table *mrt);
  116. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  117. struct sk_buff *skb, struct mfc_cache *cache,
  118. int local);
  119. static int ipmr_cache_report(struct mr_table *mrt,
  120. struct sk_buff *pkt, vifi_t vifi, int assert);
  121. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  122. struct mfc_cache *c, struct rtmsg *rtm);
  123. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  124. int cmd);
  125. static void mroute_clean_tables(struct mr_table *mrt);
  126. static void ipmr_expire_process(unsigned long arg);
  127. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  128. #define ipmr_for_each_table(mrt, net) \
  129. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  130. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  131. {
  132. struct mr_table *mrt;
  133. ipmr_for_each_table(mrt, net) {
  134. if (mrt->id == id)
  135. return mrt;
  136. }
  137. return NULL;
  138. }
  139. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  140. struct mr_table **mrt)
  141. {
  142. int err;
  143. struct ipmr_result res;
  144. struct fib_lookup_arg arg = {
  145. .result = &res,
  146. .flags = FIB_LOOKUP_NOREF,
  147. };
  148. err = fib_rules_lookup(net->ipv4.mr_rules_ops,
  149. flowi4_to_flowi(flp4), 0, &arg);
  150. if (err < 0)
  151. return err;
  152. *mrt = res.mrt;
  153. return 0;
  154. }
  155. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  156. int flags, struct fib_lookup_arg *arg)
  157. {
  158. struct ipmr_result *res = arg->result;
  159. struct mr_table *mrt;
  160. switch (rule->action) {
  161. case FR_ACT_TO_TBL:
  162. break;
  163. case FR_ACT_UNREACHABLE:
  164. return -ENETUNREACH;
  165. case FR_ACT_PROHIBIT:
  166. return -EACCES;
  167. case FR_ACT_BLACKHOLE:
  168. default:
  169. return -EINVAL;
  170. }
  171. mrt = ipmr_get_table(rule->fr_net, rule->table);
  172. if (mrt == NULL)
  173. return -EAGAIN;
  174. res->mrt = mrt;
  175. return 0;
  176. }
  177. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  178. {
  179. return 1;
  180. }
  181. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  182. FRA_GENERIC_POLICY,
  183. };
  184. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  185. struct fib_rule_hdr *frh, struct nlattr **tb)
  186. {
  187. return 0;
  188. }
  189. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  190. struct nlattr **tb)
  191. {
  192. return 1;
  193. }
  194. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  195. struct fib_rule_hdr *frh)
  196. {
  197. frh->dst_len = 0;
  198. frh->src_len = 0;
  199. frh->tos = 0;
  200. return 0;
  201. }
  202. static const struct fib_rules_ops __net_initconst ipmr_rules_ops_template = {
  203. .family = RTNL_FAMILY_IPMR,
  204. .rule_size = sizeof(struct ipmr_rule),
  205. .addr_size = sizeof(u32),
  206. .action = ipmr_rule_action,
  207. .match = ipmr_rule_match,
  208. .configure = ipmr_rule_configure,
  209. .compare = ipmr_rule_compare,
  210. .default_pref = fib_default_rule_pref,
  211. .fill = ipmr_rule_fill,
  212. .nlgroup = RTNLGRP_IPV4_RULE,
  213. .policy = ipmr_rule_policy,
  214. .owner = THIS_MODULE,
  215. };
  216. static int __net_init ipmr_rules_init(struct net *net)
  217. {
  218. struct fib_rules_ops *ops;
  219. struct mr_table *mrt;
  220. int err;
  221. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  222. if (IS_ERR(ops))
  223. return PTR_ERR(ops);
  224. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  225. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  226. if (mrt == NULL) {
  227. err = -ENOMEM;
  228. goto err1;
  229. }
  230. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  231. if (err < 0)
  232. goto err2;
  233. net->ipv4.mr_rules_ops = ops;
  234. return 0;
  235. err2:
  236. kfree(mrt);
  237. err1:
  238. fib_rules_unregister(ops);
  239. return err;
  240. }
  241. static void __net_exit ipmr_rules_exit(struct net *net)
  242. {
  243. struct mr_table *mrt, *next;
  244. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  245. list_del(&mrt->list);
  246. ipmr_free_table(mrt);
  247. }
  248. fib_rules_unregister(net->ipv4.mr_rules_ops);
  249. }
  250. #else
  251. #define ipmr_for_each_table(mrt, net) \
  252. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  253. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  254. {
  255. return net->ipv4.mrt;
  256. }
  257. static int ipmr_fib_lookup(struct net *net, struct flowi4 *flp4,
  258. struct mr_table **mrt)
  259. {
  260. *mrt = net->ipv4.mrt;
  261. return 0;
  262. }
  263. static int __net_init ipmr_rules_init(struct net *net)
  264. {
  265. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  266. return net->ipv4.mrt ? 0 : -ENOMEM;
  267. }
  268. static void __net_exit ipmr_rules_exit(struct net *net)
  269. {
  270. ipmr_free_table(net->ipv4.mrt);
  271. }
  272. #endif
  273. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  274. {
  275. struct mr_table *mrt;
  276. unsigned int i;
  277. mrt = ipmr_get_table(net, id);
  278. if (mrt != NULL)
  279. return mrt;
  280. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  281. if (mrt == NULL)
  282. return NULL;
  283. write_pnet(&mrt->net, net);
  284. mrt->id = id;
  285. /* Forwarding cache */
  286. for (i = 0; i < MFC_LINES; i++)
  287. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  288. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  289. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  290. (unsigned long)mrt);
  291. #ifdef CONFIG_IP_PIMSM
  292. mrt->mroute_reg_vif_num = -1;
  293. #endif
  294. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  295. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  296. #endif
  297. return mrt;
  298. }
  299. static void ipmr_free_table(struct mr_table *mrt)
  300. {
  301. del_timer_sync(&mrt->ipmr_expire_timer);
  302. mroute_clean_tables(mrt);
  303. kfree(mrt);
  304. }
  305. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  306. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  307. {
  308. struct net *net = dev_net(dev);
  309. dev_close(dev);
  310. dev = __dev_get_by_name(net, "tunl0");
  311. if (dev) {
  312. const struct net_device_ops *ops = dev->netdev_ops;
  313. struct ifreq ifr;
  314. struct ip_tunnel_parm p;
  315. memset(&p, 0, sizeof(p));
  316. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  317. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  318. p.iph.version = 4;
  319. p.iph.ihl = 5;
  320. p.iph.protocol = IPPROTO_IPIP;
  321. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  322. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  323. if (ops->ndo_do_ioctl) {
  324. mm_segment_t oldfs = get_fs();
  325. set_fs(KERNEL_DS);
  326. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  327. set_fs(oldfs);
  328. }
  329. }
  330. }
  331. static
  332. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  333. {
  334. struct net_device *dev;
  335. dev = __dev_get_by_name(net, "tunl0");
  336. if (dev) {
  337. const struct net_device_ops *ops = dev->netdev_ops;
  338. int err;
  339. struct ifreq ifr;
  340. struct ip_tunnel_parm p;
  341. struct in_device *in_dev;
  342. memset(&p, 0, sizeof(p));
  343. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  344. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  345. p.iph.version = 4;
  346. p.iph.ihl = 5;
  347. p.iph.protocol = IPPROTO_IPIP;
  348. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  349. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  350. if (ops->ndo_do_ioctl) {
  351. mm_segment_t oldfs = get_fs();
  352. set_fs(KERNEL_DS);
  353. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  354. set_fs(oldfs);
  355. } else {
  356. err = -EOPNOTSUPP;
  357. }
  358. dev = NULL;
  359. if (err == 0 &&
  360. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  361. dev->flags |= IFF_MULTICAST;
  362. in_dev = __in_dev_get_rtnl(dev);
  363. if (in_dev == NULL)
  364. goto failure;
  365. ipv4_devconf_setall(in_dev);
  366. neigh_parms_data_state_setall(in_dev->arp_parms);
  367. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  368. if (dev_open(dev))
  369. goto failure;
  370. dev_hold(dev);
  371. }
  372. }
  373. return dev;
  374. failure:
  375. /* allow the register to be completed before unregistering. */
  376. rtnl_unlock();
  377. rtnl_lock();
  378. unregister_netdevice(dev);
  379. return NULL;
  380. }
  381. #ifdef CONFIG_IP_PIMSM
  382. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  383. {
  384. struct net *net = dev_net(dev);
  385. struct mr_table *mrt;
  386. struct flowi4 fl4 = {
  387. .flowi4_oif = dev->ifindex,
  388. .flowi4_iif = skb->skb_iif ? : LOOPBACK_IFINDEX,
  389. .flowi4_mark = skb->mark,
  390. };
  391. int err;
  392. err = ipmr_fib_lookup(net, &fl4, &mrt);
  393. if (err < 0) {
  394. kfree_skb(skb);
  395. return err;
  396. }
  397. read_lock(&mrt_lock);
  398. dev->stats.tx_bytes += skb->len;
  399. dev->stats.tx_packets++;
  400. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  401. read_unlock(&mrt_lock);
  402. kfree_skb(skb);
  403. return NETDEV_TX_OK;
  404. }
  405. static const struct net_device_ops reg_vif_netdev_ops = {
  406. .ndo_start_xmit = reg_vif_xmit,
  407. };
  408. static void reg_vif_setup(struct net_device *dev)
  409. {
  410. dev->type = ARPHRD_PIMREG;
  411. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  412. dev->flags = IFF_NOARP;
  413. dev->netdev_ops = &reg_vif_netdev_ops;
  414. dev->destructor = free_netdev;
  415. dev->features |= NETIF_F_NETNS_LOCAL;
  416. }
  417. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  418. {
  419. struct net_device *dev;
  420. struct in_device *in_dev;
  421. char name[IFNAMSIZ];
  422. if (mrt->id == RT_TABLE_DEFAULT)
  423. sprintf(name, "pimreg");
  424. else
  425. sprintf(name, "pimreg%u", mrt->id);
  426. dev = alloc_netdev(0, name, reg_vif_setup);
  427. if (dev == NULL)
  428. return NULL;
  429. dev_net_set(dev, net);
  430. if (register_netdevice(dev)) {
  431. free_netdev(dev);
  432. return NULL;
  433. }
  434. dev->iflink = 0;
  435. rcu_read_lock();
  436. in_dev = __in_dev_get_rcu(dev);
  437. if (!in_dev) {
  438. rcu_read_unlock();
  439. goto failure;
  440. }
  441. ipv4_devconf_setall(in_dev);
  442. neigh_parms_data_state_setall(in_dev->arp_parms);
  443. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  444. rcu_read_unlock();
  445. if (dev_open(dev))
  446. goto failure;
  447. dev_hold(dev);
  448. return dev;
  449. failure:
  450. /* allow the register to be completed before unregistering. */
  451. rtnl_unlock();
  452. rtnl_lock();
  453. unregister_netdevice(dev);
  454. return NULL;
  455. }
  456. #endif
  457. /**
  458. * vif_delete - Delete a VIF entry
  459. * @notify: Set to 1, if the caller is a notifier_call
  460. */
  461. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  462. struct list_head *head)
  463. {
  464. struct vif_device *v;
  465. struct net_device *dev;
  466. struct in_device *in_dev;
  467. if (vifi < 0 || vifi >= mrt->maxvif)
  468. return -EADDRNOTAVAIL;
  469. v = &mrt->vif_table[vifi];
  470. write_lock_bh(&mrt_lock);
  471. dev = v->dev;
  472. v->dev = NULL;
  473. if (!dev) {
  474. write_unlock_bh(&mrt_lock);
  475. return -EADDRNOTAVAIL;
  476. }
  477. #ifdef CONFIG_IP_PIMSM
  478. if (vifi == mrt->mroute_reg_vif_num)
  479. mrt->mroute_reg_vif_num = -1;
  480. #endif
  481. if (vifi + 1 == mrt->maxvif) {
  482. int tmp;
  483. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  484. if (VIF_EXISTS(mrt, tmp))
  485. break;
  486. }
  487. mrt->maxvif = tmp+1;
  488. }
  489. write_unlock_bh(&mrt_lock);
  490. dev_set_allmulti(dev, -1);
  491. in_dev = __in_dev_get_rtnl(dev);
  492. if (in_dev) {
  493. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  494. inet_netconf_notify_devconf(dev_net(dev),
  495. NETCONFA_MC_FORWARDING,
  496. dev->ifindex, &in_dev->cnf);
  497. ip_rt_multicast_event(in_dev);
  498. }
  499. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  500. unregister_netdevice_queue(dev, head);
  501. dev_put(dev);
  502. return 0;
  503. }
  504. static void ipmr_cache_free_rcu(struct rcu_head *head)
  505. {
  506. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  507. kmem_cache_free(mrt_cachep, c);
  508. }
  509. static inline void ipmr_cache_free(struct mfc_cache *c)
  510. {
  511. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  512. }
  513. /* Destroy an unresolved cache entry, killing queued skbs
  514. * and reporting error to netlink readers.
  515. */
  516. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  517. {
  518. struct net *net = read_pnet(&mrt->net);
  519. struct sk_buff *skb;
  520. struct nlmsgerr *e;
  521. atomic_dec(&mrt->cache_resolve_queue_len);
  522. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  523. if (ip_hdr(skb)->version == 0) {
  524. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  525. nlh->nlmsg_type = NLMSG_ERROR;
  526. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  527. skb_trim(skb, nlh->nlmsg_len);
  528. e = nlmsg_data(nlh);
  529. e->error = -ETIMEDOUT;
  530. memset(&e->msg, 0, sizeof(e->msg));
  531. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  532. } else {
  533. kfree_skb(skb);
  534. }
  535. }
  536. ipmr_cache_free(c);
  537. }
  538. /* Timer process for the unresolved queue. */
  539. static void ipmr_expire_process(unsigned long arg)
  540. {
  541. struct mr_table *mrt = (struct mr_table *)arg;
  542. unsigned long now;
  543. unsigned long expires;
  544. struct mfc_cache *c, *next;
  545. if (!spin_trylock(&mfc_unres_lock)) {
  546. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  547. return;
  548. }
  549. if (list_empty(&mrt->mfc_unres_queue))
  550. goto out;
  551. now = jiffies;
  552. expires = 10*HZ;
  553. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  554. if (time_after(c->mfc_un.unres.expires, now)) {
  555. unsigned long interval = c->mfc_un.unres.expires - now;
  556. if (interval < expires)
  557. expires = interval;
  558. continue;
  559. }
  560. list_del(&c->list);
  561. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  562. ipmr_destroy_unres(mrt, c);
  563. }
  564. if (!list_empty(&mrt->mfc_unres_queue))
  565. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  566. out:
  567. spin_unlock(&mfc_unres_lock);
  568. }
  569. /* Fill oifs list. It is called under write locked mrt_lock. */
  570. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  571. unsigned char *ttls)
  572. {
  573. int vifi;
  574. cache->mfc_un.res.minvif = MAXVIFS;
  575. cache->mfc_un.res.maxvif = 0;
  576. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  577. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  578. if (VIF_EXISTS(mrt, vifi) &&
  579. ttls[vifi] && ttls[vifi] < 255) {
  580. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  581. if (cache->mfc_un.res.minvif > vifi)
  582. cache->mfc_un.res.minvif = vifi;
  583. if (cache->mfc_un.res.maxvif <= vifi)
  584. cache->mfc_un.res.maxvif = vifi + 1;
  585. }
  586. }
  587. }
  588. static int vif_add(struct net *net, struct mr_table *mrt,
  589. struct vifctl *vifc, int mrtsock)
  590. {
  591. int vifi = vifc->vifc_vifi;
  592. struct vif_device *v = &mrt->vif_table[vifi];
  593. struct net_device *dev;
  594. struct in_device *in_dev;
  595. int err;
  596. /* Is vif busy ? */
  597. if (VIF_EXISTS(mrt, vifi))
  598. return -EADDRINUSE;
  599. switch (vifc->vifc_flags) {
  600. #ifdef CONFIG_IP_PIMSM
  601. case VIFF_REGISTER:
  602. /*
  603. * Special Purpose VIF in PIM
  604. * All the packets will be sent to the daemon
  605. */
  606. if (mrt->mroute_reg_vif_num >= 0)
  607. return -EADDRINUSE;
  608. dev = ipmr_reg_vif(net, mrt);
  609. if (!dev)
  610. return -ENOBUFS;
  611. err = dev_set_allmulti(dev, 1);
  612. if (err) {
  613. unregister_netdevice(dev);
  614. dev_put(dev);
  615. return err;
  616. }
  617. break;
  618. #endif
  619. case VIFF_TUNNEL:
  620. dev = ipmr_new_tunnel(net, vifc);
  621. if (!dev)
  622. return -ENOBUFS;
  623. err = dev_set_allmulti(dev, 1);
  624. if (err) {
  625. ipmr_del_tunnel(dev, vifc);
  626. dev_put(dev);
  627. return err;
  628. }
  629. break;
  630. case VIFF_USE_IFINDEX:
  631. case 0:
  632. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  633. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  634. if (dev && __in_dev_get_rtnl(dev) == NULL) {
  635. dev_put(dev);
  636. return -EADDRNOTAVAIL;
  637. }
  638. } else {
  639. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  640. }
  641. if (!dev)
  642. return -EADDRNOTAVAIL;
  643. err = dev_set_allmulti(dev, 1);
  644. if (err) {
  645. dev_put(dev);
  646. return err;
  647. }
  648. break;
  649. default:
  650. return -EINVAL;
  651. }
  652. in_dev = __in_dev_get_rtnl(dev);
  653. if (!in_dev) {
  654. dev_put(dev);
  655. return -EADDRNOTAVAIL;
  656. }
  657. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  658. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING, dev->ifindex,
  659. &in_dev->cnf);
  660. ip_rt_multicast_event(in_dev);
  661. /* Fill in the VIF structures */
  662. v->rate_limit = vifc->vifc_rate_limit;
  663. v->local = vifc->vifc_lcl_addr.s_addr;
  664. v->remote = vifc->vifc_rmt_addr.s_addr;
  665. v->flags = vifc->vifc_flags;
  666. if (!mrtsock)
  667. v->flags |= VIFF_STATIC;
  668. v->threshold = vifc->vifc_threshold;
  669. v->bytes_in = 0;
  670. v->bytes_out = 0;
  671. v->pkt_in = 0;
  672. v->pkt_out = 0;
  673. v->link = dev->ifindex;
  674. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  675. v->link = dev->iflink;
  676. /* And finish update writing critical data */
  677. write_lock_bh(&mrt_lock);
  678. v->dev = dev;
  679. #ifdef CONFIG_IP_PIMSM
  680. if (v->flags & VIFF_REGISTER)
  681. mrt->mroute_reg_vif_num = vifi;
  682. #endif
  683. if (vifi+1 > mrt->maxvif)
  684. mrt->maxvif = vifi+1;
  685. write_unlock_bh(&mrt_lock);
  686. return 0;
  687. }
  688. /* called with rcu_read_lock() */
  689. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  690. __be32 origin,
  691. __be32 mcastgrp)
  692. {
  693. int line = MFC_HASH(mcastgrp, origin);
  694. struct mfc_cache *c;
  695. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  696. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  697. return c;
  698. }
  699. return NULL;
  700. }
  701. /* Look for a (*,*,oif) entry */
  702. static struct mfc_cache *ipmr_cache_find_any_parent(struct mr_table *mrt,
  703. int vifi)
  704. {
  705. int line = MFC_HASH(htonl(INADDR_ANY), htonl(INADDR_ANY));
  706. struct mfc_cache *c;
  707. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  708. if (c->mfc_origin == htonl(INADDR_ANY) &&
  709. c->mfc_mcastgrp == htonl(INADDR_ANY) &&
  710. c->mfc_un.res.ttls[vifi] < 255)
  711. return c;
  712. return NULL;
  713. }
  714. /* Look for a (*,G) entry */
  715. static struct mfc_cache *ipmr_cache_find_any(struct mr_table *mrt,
  716. __be32 mcastgrp, int vifi)
  717. {
  718. int line = MFC_HASH(mcastgrp, htonl(INADDR_ANY));
  719. struct mfc_cache *c, *proxy;
  720. if (mcastgrp == htonl(INADDR_ANY))
  721. goto skip;
  722. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list)
  723. if (c->mfc_origin == htonl(INADDR_ANY) &&
  724. c->mfc_mcastgrp == mcastgrp) {
  725. if (c->mfc_un.res.ttls[vifi] < 255)
  726. return c;
  727. /* It's ok if the vifi is part of the static tree */
  728. proxy = ipmr_cache_find_any_parent(mrt,
  729. c->mfc_parent);
  730. if (proxy && proxy->mfc_un.res.ttls[vifi] < 255)
  731. return c;
  732. }
  733. skip:
  734. return ipmr_cache_find_any_parent(mrt, vifi);
  735. }
  736. /*
  737. * Allocate a multicast cache entry
  738. */
  739. static struct mfc_cache *ipmr_cache_alloc(void)
  740. {
  741. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  742. if (c)
  743. c->mfc_un.res.minvif = MAXVIFS;
  744. return c;
  745. }
  746. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  747. {
  748. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  749. if (c) {
  750. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  751. c->mfc_un.unres.expires = jiffies + 10*HZ;
  752. }
  753. return c;
  754. }
  755. /*
  756. * A cache entry has gone into a resolved state from queued
  757. */
  758. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  759. struct mfc_cache *uc, struct mfc_cache *c)
  760. {
  761. struct sk_buff *skb;
  762. struct nlmsgerr *e;
  763. /* Play the pending entries through our router */
  764. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  765. if (ip_hdr(skb)->version == 0) {
  766. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  767. if (__ipmr_fill_mroute(mrt, skb, c, nlmsg_data(nlh)) > 0) {
  768. nlh->nlmsg_len = skb_tail_pointer(skb) -
  769. (u8 *)nlh;
  770. } else {
  771. nlh->nlmsg_type = NLMSG_ERROR;
  772. nlh->nlmsg_len = nlmsg_msg_size(sizeof(struct nlmsgerr));
  773. skb_trim(skb, nlh->nlmsg_len);
  774. e = nlmsg_data(nlh);
  775. e->error = -EMSGSIZE;
  776. memset(&e->msg, 0, sizeof(e->msg));
  777. }
  778. rtnl_unicast(skb, net, NETLINK_CB(skb).portid);
  779. } else {
  780. ip_mr_forward(net, mrt, skb, c, 0);
  781. }
  782. }
  783. }
  784. /*
  785. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  786. * expects the following bizarre scheme.
  787. *
  788. * Called under mrt_lock.
  789. */
  790. static int ipmr_cache_report(struct mr_table *mrt,
  791. struct sk_buff *pkt, vifi_t vifi, int assert)
  792. {
  793. struct sk_buff *skb;
  794. const int ihl = ip_hdrlen(pkt);
  795. struct igmphdr *igmp;
  796. struct igmpmsg *msg;
  797. struct sock *mroute_sk;
  798. int ret;
  799. #ifdef CONFIG_IP_PIMSM
  800. if (assert == IGMPMSG_WHOLEPKT)
  801. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  802. else
  803. #endif
  804. skb = alloc_skb(128, GFP_ATOMIC);
  805. if (!skb)
  806. return -ENOBUFS;
  807. #ifdef CONFIG_IP_PIMSM
  808. if (assert == IGMPMSG_WHOLEPKT) {
  809. /* Ugly, but we have no choice with this interface.
  810. * Duplicate old header, fix ihl, length etc.
  811. * And all this only to mangle msg->im_msgtype and
  812. * to set msg->im_mbz to "mbz" :-)
  813. */
  814. skb_push(skb, sizeof(struct iphdr));
  815. skb_reset_network_header(skb);
  816. skb_reset_transport_header(skb);
  817. msg = (struct igmpmsg *)skb_network_header(skb);
  818. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  819. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  820. msg->im_mbz = 0;
  821. msg->im_vif = mrt->mroute_reg_vif_num;
  822. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  823. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  824. sizeof(struct iphdr));
  825. } else
  826. #endif
  827. {
  828. /* Copy the IP header */
  829. skb_set_network_header(skb, skb->len);
  830. skb_put(skb, ihl);
  831. skb_copy_to_linear_data(skb, pkt->data, ihl);
  832. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  833. msg = (struct igmpmsg *)skb_network_header(skb);
  834. msg->im_vif = vifi;
  835. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  836. /* Add our header */
  837. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  838. igmp->type =
  839. msg->im_msgtype = assert;
  840. igmp->code = 0;
  841. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  842. skb->transport_header = skb->network_header;
  843. }
  844. rcu_read_lock();
  845. mroute_sk = rcu_dereference(mrt->mroute_sk);
  846. if (mroute_sk == NULL) {
  847. rcu_read_unlock();
  848. kfree_skb(skb);
  849. return -EINVAL;
  850. }
  851. /* Deliver to mrouted */
  852. ret = sock_queue_rcv_skb(mroute_sk, skb);
  853. rcu_read_unlock();
  854. if (ret < 0) {
  855. net_warn_ratelimited("mroute: pending queue full, dropping entries\n");
  856. kfree_skb(skb);
  857. }
  858. return ret;
  859. }
  860. /*
  861. * Queue a packet for resolution. It gets locked cache entry!
  862. */
  863. static int
  864. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  865. {
  866. bool found = false;
  867. int err;
  868. struct mfc_cache *c;
  869. const struct iphdr *iph = ip_hdr(skb);
  870. spin_lock_bh(&mfc_unres_lock);
  871. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  872. if (c->mfc_mcastgrp == iph->daddr &&
  873. c->mfc_origin == iph->saddr) {
  874. found = true;
  875. break;
  876. }
  877. }
  878. if (!found) {
  879. /* Create a new entry if allowable */
  880. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  881. (c = ipmr_cache_alloc_unres()) == NULL) {
  882. spin_unlock_bh(&mfc_unres_lock);
  883. kfree_skb(skb);
  884. return -ENOBUFS;
  885. }
  886. /* Fill in the new cache entry */
  887. c->mfc_parent = -1;
  888. c->mfc_origin = iph->saddr;
  889. c->mfc_mcastgrp = iph->daddr;
  890. /* Reflect first query at mrouted. */
  891. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  892. if (err < 0) {
  893. /* If the report failed throw the cache entry
  894. out - Brad Parker
  895. */
  896. spin_unlock_bh(&mfc_unres_lock);
  897. ipmr_cache_free(c);
  898. kfree_skb(skb);
  899. return err;
  900. }
  901. atomic_inc(&mrt->cache_resolve_queue_len);
  902. list_add(&c->list, &mrt->mfc_unres_queue);
  903. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  904. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  905. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  906. }
  907. /* See if we can append the packet */
  908. if (c->mfc_un.unres.unresolved.qlen > 3) {
  909. kfree_skb(skb);
  910. err = -ENOBUFS;
  911. } else {
  912. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  913. err = 0;
  914. }
  915. spin_unlock_bh(&mfc_unres_lock);
  916. return err;
  917. }
  918. /*
  919. * MFC cache manipulation by user space mroute daemon
  920. */
  921. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc, int parent)
  922. {
  923. int line;
  924. struct mfc_cache *c, *next;
  925. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  926. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  927. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  928. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  929. (parent == -1 || parent == c->mfc_parent)) {
  930. list_del_rcu(&c->list);
  931. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  932. ipmr_cache_free(c);
  933. return 0;
  934. }
  935. }
  936. return -ENOENT;
  937. }
  938. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  939. struct mfcctl *mfc, int mrtsock, int parent)
  940. {
  941. bool found = false;
  942. int line;
  943. struct mfc_cache *uc, *c;
  944. if (mfc->mfcc_parent >= MAXVIFS)
  945. return -ENFILE;
  946. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  947. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  948. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  949. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr &&
  950. (parent == -1 || parent == c->mfc_parent)) {
  951. found = true;
  952. break;
  953. }
  954. }
  955. if (found) {
  956. write_lock_bh(&mrt_lock);
  957. c->mfc_parent = mfc->mfcc_parent;
  958. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  959. if (!mrtsock)
  960. c->mfc_flags |= MFC_STATIC;
  961. write_unlock_bh(&mrt_lock);
  962. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  963. return 0;
  964. }
  965. if (mfc->mfcc_mcastgrp.s_addr != htonl(INADDR_ANY) &&
  966. !ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  967. return -EINVAL;
  968. c = ipmr_cache_alloc();
  969. if (c == NULL)
  970. return -ENOMEM;
  971. c->mfc_origin = mfc->mfcc_origin.s_addr;
  972. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  973. c->mfc_parent = mfc->mfcc_parent;
  974. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  975. if (!mrtsock)
  976. c->mfc_flags |= MFC_STATIC;
  977. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  978. /*
  979. * Check to see if we resolved a queued list. If so we
  980. * need to send on the frames and tidy up.
  981. */
  982. found = false;
  983. spin_lock_bh(&mfc_unres_lock);
  984. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  985. if (uc->mfc_origin == c->mfc_origin &&
  986. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  987. list_del(&uc->list);
  988. atomic_dec(&mrt->cache_resolve_queue_len);
  989. found = true;
  990. break;
  991. }
  992. }
  993. if (list_empty(&mrt->mfc_unres_queue))
  994. del_timer(&mrt->ipmr_expire_timer);
  995. spin_unlock_bh(&mfc_unres_lock);
  996. if (found) {
  997. ipmr_cache_resolve(net, mrt, uc, c);
  998. ipmr_cache_free(uc);
  999. }
  1000. mroute_netlink_event(mrt, c, RTM_NEWROUTE);
  1001. return 0;
  1002. }
  1003. /*
  1004. * Close the multicast socket, and clear the vif tables etc
  1005. */
  1006. static void mroute_clean_tables(struct mr_table *mrt)
  1007. {
  1008. int i;
  1009. LIST_HEAD(list);
  1010. struct mfc_cache *c, *next;
  1011. /* Shut down all active vif entries */
  1012. for (i = 0; i < mrt->maxvif; i++) {
  1013. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  1014. vif_delete(mrt, i, 0, &list);
  1015. }
  1016. unregister_netdevice_many(&list);
  1017. /* Wipe the cache */
  1018. for (i = 0; i < MFC_LINES; i++) {
  1019. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  1020. if (c->mfc_flags & MFC_STATIC)
  1021. continue;
  1022. list_del_rcu(&c->list);
  1023. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1024. ipmr_cache_free(c);
  1025. }
  1026. }
  1027. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  1028. spin_lock_bh(&mfc_unres_lock);
  1029. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  1030. list_del(&c->list);
  1031. mroute_netlink_event(mrt, c, RTM_DELROUTE);
  1032. ipmr_destroy_unres(mrt, c);
  1033. }
  1034. spin_unlock_bh(&mfc_unres_lock);
  1035. }
  1036. }
  1037. /* called from ip_ra_control(), before an RCU grace period,
  1038. * we dont need to call synchronize_rcu() here
  1039. */
  1040. static void mrtsock_destruct(struct sock *sk)
  1041. {
  1042. struct net *net = sock_net(sk);
  1043. struct mr_table *mrt;
  1044. rtnl_lock();
  1045. ipmr_for_each_table(mrt, net) {
  1046. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1047. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  1048. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1049. NETCONFA_IFINDEX_ALL,
  1050. net->ipv4.devconf_all);
  1051. RCU_INIT_POINTER(mrt->mroute_sk, NULL);
  1052. mroute_clean_tables(mrt);
  1053. }
  1054. }
  1055. rtnl_unlock();
  1056. }
  1057. /*
  1058. * Socket options and virtual interface manipulation. The whole
  1059. * virtual interface system is a complete heap, but unfortunately
  1060. * that's how BSD mrouted happens to think. Maybe one day with a proper
  1061. * MOSPF/PIM router set up we can clean this up.
  1062. */
  1063. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  1064. {
  1065. int ret, parent = 0;
  1066. struct vifctl vif;
  1067. struct mfcctl mfc;
  1068. struct net *net = sock_net(sk);
  1069. struct mr_table *mrt;
  1070. if (sk->sk_type != SOCK_RAW ||
  1071. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1072. return -EOPNOTSUPP;
  1073. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1074. if (mrt == NULL)
  1075. return -ENOENT;
  1076. if (optname != MRT_INIT) {
  1077. if (sk != rcu_access_pointer(mrt->mroute_sk) &&
  1078. !ns_capable(net->user_ns, CAP_NET_ADMIN))
  1079. return -EACCES;
  1080. }
  1081. switch (optname) {
  1082. case MRT_INIT:
  1083. if (optlen != sizeof(int))
  1084. return -EINVAL;
  1085. rtnl_lock();
  1086. if (rtnl_dereference(mrt->mroute_sk)) {
  1087. rtnl_unlock();
  1088. return -EADDRINUSE;
  1089. }
  1090. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1091. if (ret == 0) {
  1092. rcu_assign_pointer(mrt->mroute_sk, sk);
  1093. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1094. inet_netconf_notify_devconf(net, NETCONFA_MC_FORWARDING,
  1095. NETCONFA_IFINDEX_ALL,
  1096. net->ipv4.devconf_all);
  1097. }
  1098. rtnl_unlock();
  1099. return ret;
  1100. case MRT_DONE:
  1101. if (sk != rcu_access_pointer(mrt->mroute_sk))
  1102. return -EACCES;
  1103. return ip_ra_control(sk, 0, NULL);
  1104. case MRT_ADD_VIF:
  1105. case MRT_DEL_VIF:
  1106. if (optlen != sizeof(vif))
  1107. return -EINVAL;
  1108. if (copy_from_user(&vif, optval, sizeof(vif)))
  1109. return -EFAULT;
  1110. if (vif.vifc_vifi >= MAXVIFS)
  1111. return -ENFILE;
  1112. rtnl_lock();
  1113. if (optname == MRT_ADD_VIF) {
  1114. ret = vif_add(net, mrt, &vif,
  1115. sk == rtnl_dereference(mrt->mroute_sk));
  1116. } else {
  1117. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1118. }
  1119. rtnl_unlock();
  1120. return ret;
  1121. /*
  1122. * Manipulate the forwarding caches. These live
  1123. * in a sort of kernel/user symbiosis.
  1124. */
  1125. case MRT_ADD_MFC:
  1126. case MRT_DEL_MFC:
  1127. parent = -1;
  1128. case MRT_ADD_MFC_PROXY:
  1129. case MRT_DEL_MFC_PROXY:
  1130. if (optlen != sizeof(mfc))
  1131. return -EINVAL;
  1132. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1133. return -EFAULT;
  1134. if (parent == 0)
  1135. parent = mfc.mfcc_parent;
  1136. rtnl_lock();
  1137. if (optname == MRT_DEL_MFC || optname == MRT_DEL_MFC_PROXY)
  1138. ret = ipmr_mfc_delete(mrt, &mfc, parent);
  1139. else
  1140. ret = ipmr_mfc_add(net, mrt, &mfc,
  1141. sk == rtnl_dereference(mrt->mroute_sk),
  1142. parent);
  1143. rtnl_unlock();
  1144. return ret;
  1145. /*
  1146. * Control PIM assert.
  1147. */
  1148. case MRT_ASSERT:
  1149. {
  1150. int v;
  1151. if (optlen != sizeof(v))
  1152. return -EINVAL;
  1153. if (get_user(v, (int __user *)optval))
  1154. return -EFAULT;
  1155. mrt->mroute_do_assert = v;
  1156. return 0;
  1157. }
  1158. #ifdef CONFIG_IP_PIMSM
  1159. case MRT_PIM:
  1160. {
  1161. int v;
  1162. if (optlen != sizeof(v))
  1163. return -EINVAL;
  1164. if (get_user(v, (int __user *)optval))
  1165. return -EFAULT;
  1166. v = !!v;
  1167. rtnl_lock();
  1168. ret = 0;
  1169. if (v != mrt->mroute_do_pim) {
  1170. mrt->mroute_do_pim = v;
  1171. mrt->mroute_do_assert = v;
  1172. }
  1173. rtnl_unlock();
  1174. return ret;
  1175. }
  1176. #endif
  1177. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1178. case MRT_TABLE:
  1179. {
  1180. u32 v;
  1181. if (optlen != sizeof(u32))
  1182. return -EINVAL;
  1183. if (get_user(v, (u32 __user *)optval))
  1184. return -EFAULT;
  1185. /* "pimreg%u" should not exceed 16 bytes (IFNAMSIZ) */
  1186. if (v != RT_TABLE_DEFAULT && v >= 1000000000)
  1187. return -EINVAL;
  1188. rtnl_lock();
  1189. ret = 0;
  1190. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1191. ret = -EBUSY;
  1192. } else {
  1193. if (!ipmr_new_table(net, v))
  1194. ret = -ENOMEM;
  1195. else
  1196. raw_sk(sk)->ipmr_table = v;
  1197. }
  1198. rtnl_unlock();
  1199. return ret;
  1200. }
  1201. #endif
  1202. /*
  1203. * Spurious command, or MRT_VERSION which you cannot
  1204. * set.
  1205. */
  1206. default:
  1207. return -ENOPROTOOPT;
  1208. }
  1209. }
  1210. /*
  1211. * Getsock opt support for the multicast routing system.
  1212. */
  1213. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1214. {
  1215. int olr;
  1216. int val;
  1217. struct net *net = sock_net(sk);
  1218. struct mr_table *mrt;
  1219. if (sk->sk_type != SOCK_RAW ||
  1220. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1221. return -EOPNOTSUPP;
  1222. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1223. if (mrt == NULL)
  1224. return -ENOENT;
  1225. if (optname != MRT_VERSION &&
  1226. #ifdef CONFIG_IP_PIMSM
  1227. optname != MRT_PIM &&
  1228. #endif
  1229. optname != MRT_ASSERT)
  1230. return -ENOPROTOOPT;
  1231. if (get_user(olr, optlen))
  1232. return -EFAULT;
  1233. olr = min_t(unsigned int, olr, sizeof(int));
  1234. if (olr < 0)
  1235. return -EINVAL;
  1236. if (put_user(olr, optlen))
  1237. return -EFAULT;
  1238. if (optname == MRT_VERSION)
  1239. val = 0x0305;
  1240. #ifdef CONFIG_IP_PIMSM
  1241. else if (optname == MRT_PIM)
  1242. val = mrt->mroute_do_pim;
  1243. #endif
  1244. else
  1245. val = mrt->mroute_do_assert;
  1246. if (copy_to_user(optval, &val, olr))
  1247. return -EFAULT;
  1248. return 0;
  1249. }
  1250. /*
  1251. * The IP multicast ioctl support routines.
  1252. */
  1253. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1254. {
  1255. struct sioc_sg_req sr;
  1256. struct sioc_vif_req vr;
  1257. struct vif_device *vif;
  1258. struct mfc_cache *c;
  1259. struct net *net = sock_net(sk);
  1260. struct mr_table *mrt;
  1261. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1262. if (mrt == NULL)
  1263. return -ENOENT;
  1264. switch (cmd) {
  1265. case SIOCGETVIFCNT:
  1266. if (copy_from_user(&vr, arg, sizeof(vr)))
  1267. return -EFAULT;
  1268. if (vr.vifi >= mrt->maxvif)
  1269. return -EINVAL;
  1270. read_lock(&mrt_lock);
  1271. vif = &mrt->vif_table[vr.vifi];
  1272. if (VIF_EXISTS(mrt, vr.vifi)) {
  1273. vr.icount = vif->pkt_in;
  1274. vr.ocount = vif->pkt_out;
  1275. vr.ibytes = vif->bytes_in;
  1276. vr.obytes = vif->bytes_out;
  1277. read_unlock(&mrt_lock);
  1278. if (copy_to_user(arg, &vr, sizeof(vr)))
  1279. return -EFAULT;
  1280. return 0;
  1281. }
  1282. read_unlock(&mrt_lock);
  1283. return -EADDRNOTAVAIL;
  1284. case SIOCGETSGCNT:
  1285. if (copy_from_user(&sr, arg, sizeof(sr)))
  1286. return -EFAULT;
  1287. rcu_read_lock();
  1288. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1289. if (c) {
  1290. sr.pktcnt = c->mfc_un.res.pkt;
  1291. sr.bytecnt = c->mfc_un.res.bytes;
  1292. sr.wrong_if = c->mfc_un.res.wrong_if;
  1293. rcu_read_unlock();
  1294. if (copy_to_user(arg, &sr, sizeof(sr)))
  1295. return -EFAULT;
  1296. return 0;
  1297. }
  1298. rcu_read_unlock();
  1299. return -EADDRNOTAVAIL;
  1300. default:
  1301. return -ENOIOCTLCMD;
  1302. }
  1303. }
  1304. #ifdef CONFIG_COMPAT
  1305. struct compat_sioc_sg_req {
  1306. struct in_addr src;
  1307. struct in_addr grp;
  1308. compat_ulong_t pktcnt;
  1309. compat_ulong_t bytecnt;
  1310. compat_ulong_t wrong_if;
  1311. };
  1312. struct compat_sioc_vif_req {
  1313. vifi_t vifi; /* Which iface */
  1314. compat_ulong_t icount;
  1315. compat_ulong_t ocount;
  1316. compat_ulong_t ibytes;
  1317. compat_ulong_t obytes;
  1318. };
  1319. int ipmr_compat_ioctl(struct sock *sk, unsigned int cmd, void __user *arg)
  1320. {
  1321. struct compat_sioc_sg_req sr;
  1322. struct compat_sioc_vif_req vr;
  1323. struct vif_device *vif;
  1324. struct mfc_cache *c;
  1325. struct net *net = sock_net(sk);
  1326. struct mr_table *mrt;
  1327. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1328. if (mrt == NULL)
  1329. return -ENOENT;
  1330. switch (cmd) {
  1331. case SIOCGETVIFCNT:
  1332. if (copy_from_user(&vr, arg, sizeof(vr)))
  1333. return -EFAULT;
  1334. if (vr.vifi >= mrt->maxvif)
  1335. return -EINVAL;
  1336. read_lock(&mrt_lock);
  1337. vif = &mrt->vif_table[vr.vifi];
  1338. if (VIF_EXISTS(mrt, vr.vifi)) {
  1339. vr.icount = vif->pkt_in;
  1340. vr.ocount = vif->pkt_out;
  1341. vr.ibytes = vif->bytes_in;
  1342. vr.obytes = vif->bytes_out;
  1343. read_unlock(&mrt_lock);
  1344. if (copy_to_user(arg, &vr, sizeof(vr)))
  1345. return -EFAULT;
  1346. return 0;
  1347. }
  1348. read_unlock(&mrt_lock);
  1349. return -EADDRNOTAVAIL;
  1350. case SIOCGETSGCNT:
  1351. if (copy_from_user(&sr, arg, sizeof(sr)))
  1352. return -EFAULT;
  1353. rcu_read_lock();
  1354. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1355. if (c) {
  1356. sr.pktcnt = c->mfc_un.res.pkt;
  1357. sr.bytecnt = c->mfc_un.res.bytes;
  1358. sr.wrong_if = c->mfc_un.res.wrong_if;
  1359. rcu_read_unlock();
  1360. if (copy_to_user(arg, &sr, sizeof(sr)))
  1361. return -EFAULT;
  1362. return 0;
  1363. }
  1364. rcu_read_unlock();
  1365. return -EADDRNOTAVAIL;
  1366. default:
  1367. return -ENOIOCTLCMD;
  1368. }
  1369. }
  1370. #endif
  1371. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1372. {
  1373. struct net_device *dev = netdev_notifier_info_to_dev(ptr);
  1374. struct net *net = dev_net(dev);
  1375. struct mr_table *mrt;
  1376. struct vif_device *v;
  1377. int ct;
  1378. if (event != NETDEV_UNREGISTER)
  1379. return NOTIFY_DONE;
  1380. ipmr_for_each_table(mrt, net) {
  1381. v = &mrt->vif_table[0];
  1382. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1383. if (v->dev == dev)
  1384. vif_delete(mrt, ct, 1, NULL);
  1385. }
  1386. }
  1387. return NOTIFY_DONE;
  1388. }
  1389. static struct notifier_block ip_mr_notifier = {
  1390. .notifier_call = ipmr_device_event,
  1391. };
  1392. /*
  1393. * Encapsulate a packet by attaching a valid IPIP header to it.
  1394. * This avoids tunnel drivers and other mess and gives us the speed so
  1395. * important for multicast video.
  1396. */
  1397. static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
  1398. {
  1399. struct iphdr *iph;
  1400. const struct iphdr *old_iph = ip_hdr(skb);
  1401. skb_push(skb, sizeof(struct iphdr));
  1402. skb->transport_header = skb->network_header;
  1403. skb_reset_network_header(skb);
  1404. iph = ip_hdr(skb);
  1405. iph->version = 4;
  1406. iph->tos = old_iph->tos;
  1407. iph->ttl = old_iph->ttl;
  1408. iph->frag_off = 0;
  1409. iph->daddr = daddr;
  1410. iph->saddr = saddr;
  1411. iph->protocol = IPPROTO_IPIP;
  1412. iph->ihl = 5;
  1413. iph->tot_len = htons(skb->len);
  1414. ip_select_ident(skb, NULL);
  1415. ip_send_check(iph);
  1416. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1417. nf_reset(skb);
  1418. }
  1419. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1420. {
  1421. struct ip_options *opt = &(IPCB(skb)->opt);
  1422. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1423. IP_ADD_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTOCTETS, skb->len);
  1424. if (unlikely(opt->optlen))
  1425. ip_forward_options(skb);
  1426. return dst_output(skb);
  1427. }
  1428. /*
  1429. * Processing handlers for ipmr_forward
  1430. */
  1431. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1432. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1433. {
  1434. const struct iphdr *iph = ip_hdr(skb);
  1435. struct vif_device *vif = &mrt->vif_table[vifi];
  1436. struct net_device *dev;
  1437. struct rtable *rt;
  1438. struct flowi4 fl4;
  1439. int encap = 0;
  1440. if (vif->dev == NULL)
  1441. goto out_free;
  1442. #ifdef CONFIG_IP_PIMSM
  1443. if (vif->flags & VIFF_REGISTER) {
  1444. vif->pkt_out++;
  1445. vif->bytes_out += skb->len;
  1446. vif->dev->stats.tx_bytes += skb->len;
  1447. vif->dev->stats.tx_packets++;
  1448. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1449. goto out_free;
  1450. }
  1451. #endif
  1452. if (vif->flags & VIFF_TUNNEL) {
  1453. rt = ip_route_output_ports(net, &fl4, NULL,
  1454. vif->remote, vif->local,
  1455. 0, 0,
  1456. IPPROTO_IPIP,
  1457. RT_TOS(iph->tos), vif->link);
  1458. if (IS_ERR(rt))
  1459. goto out_free;
  1460. encap = sizeof(struct iphdr);
  1461. } else {
  1462. rt = ip_route_output_ports(net, &fl4, NULL, iph->daddr, 0,
  1463. 0, 0,
  1464. IPPROTO_IPIP,
  1465. RT_TOS(iph->tos), vif->link);
  1466. if (IS_ERR(rt))
  1467. goto out_free;
  1468. }
  1469. dev = rt->dst.dev;
  1470. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1471. /* Do not fragment multicasts. Alas, IPv4 does not
  1472. * allow to send ICMP, so that packets will disappear
  1473. * to blackhole.
  1474. */
  1475. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1476. ip_rt_put(rt);
  1477. goto out_free;
  1478. }
  1479. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1480. if (skb_cow(skb, encap)) {
  1481. ip_rt_put(rt);
  1482. goto out_free;
  1483. }
  1484. vif->pkt_out++;
  1485. vif->bytes_out += skb->len;
  1486. skb_dst_drop(skb);
  1487. skb_dst_set(skb, &rt->dst);
  1488. ip_decrease_ttl(ip_hdr(skb));
  1489. /* FIXME: forward and output firewalls used to be called here.
  1490. * What do we do with netfilter? -- RR
  1491. */
  1492. if (vif->flags & VIFF_TUNNEL) {
  1493. ip_encap(skb, vif->local, vif->remote);
  1494. /* FIXME: extra output firewall step used to be here. --RR */
  1495. vif->dev->stats.tx_packets++;
  1496. vif->dev->stats.tx_bytes += skb->len;
  1497. }
  1498. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1499. /*
  1500. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1501. * not only before forwarding, but after forwarding on all output
  1502. * interfaces. It is clear, if mrouter runs a multicasting
  1503. * program, it should receive packets not depending to what interface
  1504. * program is joined.
  1505. * If we will not make it, the program will have to join on all
  1506. * interfaces. On the other hand, multihoming host (or router, but
  1507. * not mrouter) cannot join to more than one interface - it will
  1508. * result in receiving multiple packets.
  1509. */
  1510. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1511. ipmr_forward_finish);
  1512. return;
  1513. out_free:
  1514. kfree_skb(skb);
  1515. }
  1516. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1517. {
  1518. int ct;
  1519. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1520. if (mrt->vif_table[ct].dev == dev)
  1521. break;
  1522. }
  1523. return ct;
  1524. }
  1525. /* "local" means that we should preserve one skb (for local delivery) */
  1526. static void ip_mr_forward(struct net *net, struct mr_table *mrt,
  1527. struct sk_buff *skb, struct mfc_cache *cache,
  1528. int local)
  1529. {
  1530. int psend = -1;
  1531. int vif, ct;
  1532. int true_vifi = ipmr_find_vif(mrt, skb->dev);
  1533. vif = cache->mfc_parent;
  1534. cache->mfc_un.res.pkt++;
  1535. cache->mfc_un.res.bytes += skb->len;
  1536. if (cache->mfc_origin == htonl(INADDR_ANY) && true_vifi >= 0) {
  1537. struct mfc_cache *cache_proxy;
  1538. /* For an (*,G) entry, we only check that the incomming
  1539. * interface is part of the static tree.
  1540. */
  1541. cache_proxy = ipmr_cache_find_any_parent(mrt, vif);
  1542. if (cache_proxy &&
  1543. cache_proxy->mfc_un.res.ttls[true_vifi] < 255)
  1544. goto forward;
  1545. }
  1546. /*
  1547. * Wrong interface: drop packet and (maybe) send PIM assert.
  1548. */
  1549. if (mrt->vif_table[vif].dev != skb->dev) {
  1550. if (rt_is_output_route(skb_rtable(skb))) {
  1551. /* It is our own packet, looped back.
  1552. * Very complicated situation...
  1553. *
  1554. * The best workaround until routing daemons will be
  1555. * fixed is not to redistribute packet, if it was
  1556. * send through wrong interface. It means, that
  1557. * multicast applications WILL NOT work for
  1558. * (S,G), which have default multicast route pointing
  1559. * to wrong oif. In any case, it is not a good
  1560. * idea to use multicasting applications on router.
  1561. */
  1562. goto dont_forward;
  1563. }
  1564. cache->mfc_un.res.wrong_if++;
  1565. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1566. /* pimsm uses asserts, when switching from RPT to SPT,
  1567. * so that we cannot check that packet arrived on an oif.
  1568. * It is bad, but otherwise we would need to move pretty
  1569. * large chunk of pimd to kernel. Ough... --ANK
  1570. */
  1571. (mrt->mroute_do_pim ||
  1572. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1573. time_after(jiffies,
  1574. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1575. cache->mfc_un.res.last_assert = jiffies;
  1576. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1577. }
  1578. goto dont_forward;
  1579. }
  1580. forward:
  1581. mrt->vif_table[vif].pkt_in++;
  1582. mrt->vif_table[vif].bytes_in += skb->len;
  1583. /*
  1584. * Forward the frame
  1585. */
  1586. if (cache->mfc_origin == htonl(INADDR_ANY) &&
  1587. cache->mfc_mcastgrp == htonl(INADDR_ANY)) {
  1588. if (true_vifi >= 0 &&
  1589. true_vifi != cache->mfc_parent &&
  1590. ip_hdr(skb)->ttl >
  1591. cache->mfc_un.res.ttls[cache->mfc_parent]) {
  1592. /* It's an (*,*) entry and the packet is not coming from
  1593. * the upstream: forward the packet to the upstream
  1594. * only.
  1595. */
  1596. psend = cache->mfc_parent;
  1597. goto last_forward;
  1598. }
  1599. goto dont_forward;
  1600. }
  1601. for (ct = cache->mfc_un.res.maxvif - 1;
  1602. ct >= cache->mfc_un.res.minvif; ct--) {
  1603. /* For (*,G) entry, don't forward to the incoming interface */
  1604. if ((cache->mfc_origin != htonl(INADDR_ANY) ||
  1605. ct != true_vifi) &&
  1606. ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1607. if (psend != -1) {
  1608. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1609. if (skb2)
  1610. ipmr_queue_xmit(net, mrt, skb2, cache,
  1611. psend);
  1612. }
  1613. psend = ct;
  1614. }
  1615. }
  1616. last_forward:
  1617. if (psend != -1) {
  1618. if (local) {
  1619. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1620. if (skb2)
  1621. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1622. } else {
  1623. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1624. return;
  1625. }
  1626. }
  1627. dont_forward:
  1628. if (!local)
  1629. kfree_skb(skb);
  1630. }
  1631. static struct mr_table *ipmr_rt_fib_lookup(struct net *net, struct sk_buff *skb)
  1632. {
  1633. struct rtable *rt = skb_rtable(skb);
  1634. struct iphdr *iph = ip_hdr(skb);
  1635. struct flowi4 fl4 = {
  1636. .daddr = iph->daddr,
  1637. .saddr = iph->saddr,
  1638. .flowi4_tos = RT_TOS(iph->tos),
  1639. .flowi4_oif = (rt_is_output_route(rt) ?
  1640. skb->dev->ifindex : 0),
  1641. .flowi4_iif = (rt_is_output_route(rt) ?
  1642. LOOPBACK_IFINDEX :
  1643. skb->dev->ifindex),
  1644. .flowi4_mark = skb->mark,
  1645. };
  1646. struct mr_table *mrt;
  1647. int err;
  1648. err = ipmr_fib_lookup(net, &fl4, &mrt);
  1649. if (err)
  1650. return ERR_PTR(err);
  1651. return mrt;
  1652. }
  1653. /*
  1654. * Multicast packets for forwarding arrive here
  1655. * Called with rcu_read_lock();
  1656. */
  1657. int ip_mr_input(struct sk_buff *skb)
  1658. {
  1659. struct mfc_cache *cache;
  1660. struct net *net = dev_net(skb->dev);
  1661. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1662. struct mr_table *mrt;
  1663. /* Packet is looped back after forward, it should not be
  1664. * forwarded second time, but still can be delivered locally.
  1665. */
  1666. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1667. goto dont_forward;
  1668. mrt = ipmr_rt_fib_lookup(net, skb);
  1669. if (IS_ERR(mrt)) {
  1670. kfree_skb(skb);
  1671. return PTR_ERR(mrt);
  1672. }
  1673. if (!local) {
  1674. if (IPCB(skb)->opt.router_alert) {
  1675. if (ip_call_ra_chain(skb))
  1676. return 0;
  1677. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1678. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1679. * Cisco IOS <= 11.2(8)) do not put router alert
  1680. * option to IGMP packets destined to routable
  1681. * groups. It is very bad, because it means
  1682. * that we can forward NO IGMP messages.
  1683. */
  1684. struct sock *mroute_sk;
  1685. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1686. if (mroute_sk) {
  1687. nf_reset(skb);
  1688. raw_rcv(mroute_sk, skb);
  1689. return 0;
  1690. }
  1691. }
  1692. }
  1693. /* already under rcu_read_lock() */
  1694. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1695. if (cache == NULL) {
  1696. int vif = ipmr_find_vif(mrt, skb->dev);
  1697. if (vif >= 0)
  1698. cache = ipmr_cache_find_any(mrt, ip_hdr(skb)->daddr,
  1699. vif);
  1700. }
  1701. /*
  1702. * No usable cache entry
  1703. */
  1704. if (cache == NULL) {
  1705. int vif;
  1706. if (local) {
  1707. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1708. ip_local_deliver(skb);
  1709. if (skb2 == NULL)
  1710. return -ENOBUFS;
  1711. skb = skb2;
  1712. }
  1713. read_lock(&mrt_lock);
  1714. vif = ipmr_find_vif(mrt, skb->dev);
  1715. if (vif >= 0) {
  1716. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1717. read_unlock(&mrt_lock);
  1718. return err2;
  1719. }
  1720. read_unlock(&mrt_lock);
  1721. kfree_skb(skb);
  1722. return -ENODEV;
  1723. }
  1724. read_lock(&mrt_lock);
  1725. ip_mr_forward(net, mrt, skb, cache, local);
  1726. read_unlock(&mrt_lock);
  1727. if (local)
  1728. return ip_local_deliver(skb);
  1729. return 0;
  1730. dont_forward:
  1731. if (local)
  1732. return ip_local_deliver(skb);
  1733. kfree_skb(skb);
  1734. return 0;
  1735. }
  1736. #ifdef CONFIG_IP_PIMSM
  1737. /* called with rcu_read_lock() */
  1738. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1739. unsigned int pimlen)
  1740. {
  1741. struct net_device *reg_dev = NULL;
  1742. struct iphdr *encap;
  1743. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1744. /*
  1745. * Check that:
  1746. * a. packet is really sent to a multicast group
  1747. * b. packet is not a NULL-REGISTER
  1748. * c. packet is not truncated
  1749. */
  1750. if (!ipv4_is_multicast(encap->daddr) ||
  1751. encap->tot_len == 0 ||
  1752. ntohs(encap->tot_len) + pimlen > skb->len)
  1753. return 1;
  1754. read_lock(&mrt_lock);
  1755. if (mrt->mroute_reg_vif_num >= 0)
  1756. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1757. read_unlock(&mrt_lock);
  1758. if (reg_dev == NULL)
  1759. return 1;
  1760. skb->mac_header = skb->network_header;
  1761. skb_pull(skb, (u8 *)encap - skb->data);
  1762. skb_reset_network_header(skb);
  1763. skb->protocol = htons(ETH_P_IP);
  1764. skb->ip_summed = CHECKSUM_NONE;
  1765. skb_tunnel_rx(skb, reg_dev, dev_net(reg_dev));
  1766. netif_rx(skb);
  1767. return NET_RX_SUCCESS;
  1768. }
  1769. #endif
  1770. #ifdef CONFIG_IP_PIMSM_V1
  1771. /*
  1772. * Handle IGMP messages of PIMv1
  1773. */
  1774. int pim_rcv_v1(struct sk_buff *skb)
  1775. {
  1776. struct igmphdr *pim;
  1777. struct net *net = dev_net(skb->dev);
  1778. struct mr_table *mrt;
  1779. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1780. goto drop;
  1781. pim = igmp_hdr(skb);
  1782. mrt = ipmr_rt_fib_lookup(net, skb);
  1783. if (IS_ERR(mrt))
  1784. goto drop;
  1785. if (!mrt->mroute_do_pim ||
  1786. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1787. goto drop;
  1788. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1789. drop:
  1790. kfree_skb(skb);
  1791. }
  1792. return 0;
  1793. }
  1794. #endif
  1795. #ifdef CONFIG_IP_PIMSM_V2
  1796. static int pim_rcv(struct sk_buff *skb)
  1797. {
  1798. struct pimreghdr *pim;
  1799. struct net *net = dev_net(skb->dev);
  1800. struct mr_table *mrt;
  1801. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1802. goto drop;
  1803. pim = (struct pimreghdr *)skb_transport_header(skb);
  1804. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1805. (pim->flags & PIM_NULL_REGISTER) ||
  1806. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1807. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1808. goto drop;
  1809. mrt = ipmr_rt_fib_lookup(net, skb);
  1810. if (IS_ERR(mrt))
  1811. goto drop;
  1812. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1813. drop:
  1814. kfree_skb(skb);
  1815. }
  1816. return 0;
  1817. }
  1818. #endif
  1819. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1820. struct mfc_cache *c, struct rtmsg *rtm)
  1821. {
  1822. int ct;
  1823. struct rtnexthop *nhp;
  1824. struct nlattr *mp_attr;
  1825. struct rta_mfc_stats mfcs;
  1826. /* If cache is unresolved, don't try to parse IIF and OIF */
  1827. if (c->mfc_parent >= MAXVIFS)
  1828. return -ENOENT;
  1829. if (VIF_EXISTS(mrt, c->mfc_parent) &&
  1830. nla_put_u32(skb, RTA_IIF, mrt->vif_table[c->mfc_parent].dev->ifindex) < 0)
  1831. return -EMSGSIZE;
  1832. if (!(mp_attr = nla_nest_start(skb, RTA_MULTIPATH)))
  1833. return -EMSGSIZE;
  1834. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1835. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1836. if (!(nhp = nla_reserve_nohdr(skb, sizeof(*nhp)))) {
  1837. nla_nest_cancel(skb, mp_attr);
  1838. return -EMSGSIZE;
  1839. }
  1840. nhp->rtnh_flags = 0;
  1841. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1842. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1843. nhp->rtnh_len = sizeof(*nhp);
  1844. }
  1845. }
  1846. nla_nest_end(skb, mp_attr);
  1847. mfcs.mfcs_packets = c->mfc_un.res.pkt;
  1848. mfcs.mfcs_bytes = c->mfc_un.res.bytes;
  1849. mfcs.mfcs_wrong_if = c->mfc_un.res.wrong_if;
  1850. if (nla_put(skb, RTA_MFC_STATS, sizeof(mfcs), &mfcs) < 0)
  1851. return -EMSGSIZE;
  1852. rtm->rtm_type = RTN_MULTICAST;
  1853. return 1;
  1854. }
  1855. int ipmr_get_route(struct net *net, struct sk_buff *skb,
  1856. __be32 saddr, __be32 daddr,
  1857. struct rtmsg *rtm, int nowait)
  1858. {
  1859. struct mfc_cache *cache;
  1860. struct mr_table *mrt;
  1861. int err;
  1862. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1863. if (mrt == NULL)
  1864. return -ENOENT;
  1865. rcu_read_lock();
  1866. cache = ipmr_cache_find(mrt, saddr, daddr);
  1867. if (cache == NULL && skb->dev) {
  1868. int vif = ipmr_find_vif(mrt, skb->dev);
  1869. if (vif >= 0)
  1870. cache = ipmr_cache_find_any(mrt, daddr, vif);
  1871. }
  1872. if (cache == NULL) {
  1873. struct sk_buff *skb2;
  1874. struct iphdr *iph;
  1875. struct net_device *dev;
  1876. int vif = -1;
  1877. if (nowait) {
  1878. rcu_read_unlock();
  1879. return -EAGAIN;
  1880. }
  1881. dev = skb->dev;
  1882. read_lock(&mrt_lock);
  1883. if (dev)
  1884. vif = ipmr_find_vif(mrt, dev);
  1885. if (vif < 0) {
  1886. read_unlock(&mrt_lock);
  1887. rcu_read_unlock();
  1888. return -ENODEV;
  1889. }
  1890. skb2 = skb_clone(skb, GFP_ATOMIC);
  1891. if (!skb2) {
  1892. read_unlock(&mrt_lock);
  1893. rcu_read_unlock();
  1894. return -ENOMEM;
  1895. }
  1896. skb_push(skb2, sizeof(struct iphdr));
  1897. skb_reset_network_header(skb2);
  1898. iph = ip_hdr(skb2);
  1899. iph->ihl = sizeof(struct iphdr) >> 2;
  1900. iph->saddr = saddr;
  1901. iph->daddr = daddr;
  1902. iph->version = 0;
  1903. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1904. read_unlock(&mrt_lock);
  1905. rcu_read_unlock();
  1906. return err;
  1907. }
  1908. read_lock(&mrt_lock);
  1909. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1910. cache->mfc_flags |= MFC_NOTIFY;
  1911. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1912. read_unlock(&mrt_lock);
  1913. rcu_read_unlock();
  1914. return err;
  1915. }
  1916. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1917. u32 portid, u32 seq, struct mfc_cache *c, int cmd,
  1918. int flags)
  1919. {
  1920. struct nlmsghdr *nlh;
  1921. struct rtmsg *rtm;
  1922. int err;
  1923. nlh = nlmsg_put(skb, portid, seq, cmd, sizeof(*rtm), flags);
  1924. if (nlh == NULL)
  1925. return -EMSGSIZE;
  1926. rtm = nlmsg_data(nlh);
  1927. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1928. rtm->rtm_dst_len = 32;
  1929. rtm->rtm_src_len = 32;
  1930. rtm->rtm_tos = 0;
  1931. rtm->rtm_table = mrt->id;
  1932. if (nla_put_u32(skb, RTA_TABLE, mrt->id))
  1933. goto nla_put_failure;
  1934. rtm->rtm_type = RTN_MULTICAST;
  1935. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1936. if (c->mfc_flags & MFC_STATIC)
  1937. rtm->rtm_protocol = RTPROT_STATIC;
  1938. else
  1939. rtm->rtm_protocol = RTPROT_MROUTED;
  1940. rtm->rtm_flags = 0;
  1941. if (nla_put_be32(skb, RTA_SRC, c->mfc_origin) ||
  1942. nla_put_be32(skb, RTA_DST, c->mfc_mcastgrp))
  1943. goto nla_put_failure;
  1944. err = __ipmr_fill_mroute(mrt, skb, c, rtm);
  1945. /* do not break the dump if cache is unresolved */
  1946. if (err < 0 && err != -ENOENT)
  1947. goto nla_put_failure;
  1948. return nlmsg_end(skb, nlh);
  1949. nla_put_failure:
  1950. nlmsg_cancel(skb, nlh);
  1951. return -EMSGSIZE;
  1952. }
  1953. static size_t mroute_msgsize(bool unresolved, int maxvif)
  1954. {
  1955. size_t len =
  1956. NLMSG_ALIGN(sizeof(struct rtmsg))
  1957. + nla_total_size(4) /* RTA_TABLE */
  1958. + nla_total_size(4) /* RTA_SRC */
  1959. + nla_total_size(4) /* RTA_DST */
  1960. ;
  1961. if (!unresolved)
  1962. len = len
  1963. + nla_total_size(4) /* RTA_IIF */
  1964. + nla_total_size(0) /* RTA_MULTIPATH */
  1965. + maxvif * NLA_ALIGN(sizeof(struct rtnexthop))
  1966. /* RTA_MFC_STATS */
  1967. + nla_total_size(sizeof(struct rta_mfc_stats))
  1968. ;
  1969. return len;
  1970. }
  1971. static void mroute_netlink_event(struct mr_table *mrt, struct mfc_cache *mfc,
  1972. int cmd)
  1973. {
  1974. struct net *net = read_pnet(&mrt->net);
  1975. struct sk_buff *skb;
  1976. int err = -ENOBUFS;
  1977. skb = nlmsg_new(mroute_msgsize(mfc->mfc_parent >= MAXVIFS, mrt->maxvif),
  1978. GFP_ATOMIC);
  1979. if (skb == NULL)
  1980. goto errout;
  1981. err = ipmr_fill_mroute(mrt, skb, 0, 0, mfc, cmd, 0);
  1982. if (err < 0)
  1983. goto errout;
  1984. rtnl_notify(skb, net, 0, RTNLGRP_IPV4_MROUTE, NULL, GFP_ATOMIC);
  1985. return;
  1986. errout:
  1987. kfree_skb(skb);
  1988. if (err < 0)
  1989. rtnl_set_sk_err(net, RTNLGRP_IPV4_MROUTE, err);
  1990. }
  1991. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1992. {
  1993. struct net *net = sock_net(skb->sk);
  1994. struct mr_table *mrt;
  1995. struct mfc_cache *mfc;
  1996. unsigned int t = 0, s_t;
  1997. unsigned int h = 0, s_h;
  1998. unsigned int e = 0, s_e;
  1999. s_t = cb->args[0];
  2000. s_h = cb->args[1];
  2001. s_e = cb->args[2];
  2002. rcu_read_lock();
  2003. ipmr_for_each_table(mrt, net) {
  2004. if (t < s_t)
  2005. goto next_table;
  2006. if (t > s_t)
  2007. s_h = 0;
  2008. for (h = s_h; h < MFC_LINES; h++) {
  2009. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  2010. if (e < s_e)
  2011. goto next_entry;
  2012. if (ipmr_fill_mroute(mrt, skb,
  2013. NETLINK_CB(cb->skb).portid,
  2014. cb->nlh->nlmsg_seq,
  2015. mfc, RTM_NEWROUTE,
  2016. NLM_F_MULTI) < 0)
  2017. goto done;
  2018. next_entry:
  2019. e++;
  2020. }
  2021. e = s_e = 0;
  2022. }
  2023. spin_lock_bh(&mfc_unres_lock);
  2024. list_for_each_entry(mfc, &mrt->mfc_unres_queue, list) {
  2025. if (e < s_e)
  2026. goto next_entry2;
  2027. if (ipmr_fill_mroute(mrt, skb,
  2028. NETLINK_CB(cb->skb).portid,
  2029. cb->nlh->nlmsg_seq,
  2030. mfc, RTM_NEWROUTE,
  2031. NLM_F_MULTI) < 0) {
  2032. spin_unlock_bh(&mfc_unres_lock);
  2033. goto done;
  2034. }
  2035. next_entry2:
  2036. e++;
  2037. }
  2038. spin_unlock_bh(&mfc_unres_lock);
  2039. e = s_e = 0;
  2040. s_h = 0;
  2041. next_table:
  2042. t++;
  2043. }
  2044. done:
  2045. rcu_read_unlock();
  2046. cb->args[2] = e;
  2047. cb->args[1] = h;
  2048. cb->args[0] = t;
  2049. return skb->len;
  2050. }
  2051. #ifdef CONFIG_PROC_FS
  2052. /*
  2053. * The /proc interfaces to multicast routing :
  2054. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  2055. */
  2056. struct ipmr_vif_iter {
  2057. struct seq_net_private p;
  2058. struct mr_table *mrt;
  2059. int ct;
  2060. };
  2061. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  2062. struct ipmr_vif_iter *iter,
  2063. loff_t pos)
  2064. {
  2065. struct mr_table *mrt = iter->mrt;
  2066. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  2067. if (!VIF_EXISTS(mrt, iter->ct))
  2068. continue;
  2069. if (pos-- == 0)
  2070. return &mrt->vif_table[iter->ct];
  2071. }
  2072. return NULL;
  2073. }
  2074. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  2075. __acquires(mrt_lock)
  2076. {
  2077. struct ipmr_vif_iter *iter = seq->private;
  2078. struct net *net = seq_file_net(seq);
  2079. struct mr_table *mrt;
  2080. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2081. if (mrt == NULL)
  2082. return ERR_PTR(-ENOENT);
  2083. iter->mrt = mrt;
  2084. read_lock(&mrt_lock);
  2085. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  2086. : SEQ_START_TOKEN;
  2087. }
  2088. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2089. {
  2090. struct ipmr_vif_iter *iter = seq->private;
  2091. struct net *net = seq_file_net(seq);
  2092. struct mr_table *mrt = iter->mrt;
  2093. ++*pos;
  2094. if (v == SEQ_START_TOKEN)
  2095. return ipmr_vif_seq_idx(net, iter, 0);
  2096. while (++iter->ct < mrt->maxvif) {
  2097. if (!VIF_EXISTS(mrt, iter->ct))
  2098. continue;
  2099. return &mrt->vif_table[iter->ct];
  2100. }
  2101. return NULL;
  2102. }
  2103. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  2104. __releases(mrt_lock)
  2105. {
  2106. read_unlock(&mrt_lock);
  2107. }
  2108. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  2109. {
  2110. struct ipmr_vif_iter *iter = seq->private;
  2111. struct mr_table *mrt = iter->mrt;
  2112. if (v == SEQ_START_TOKEN) {
  2113. seq_puts(seq,
  2114. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  2115. } else {
  2116. const struct vif_device *vif = v;
  2117. const char *name = vif->dev ? vif->dev->name : "none";
  2118. seq_printf(seq,
  2119. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  2120. vif - mrt->vif_table,
  2121. name, vif->bytes_in, vif->pkt_in,
  2122. vif->bytes_out, vif->pkt_out,
  2123. vif->flags, vif->local, vif->remote);
  2124. }
  2125. return 0;
  2126. }
  2127. static const struct seq_operations ipmr_vif_seq_ops = {
  2128. .start = ipmr_vif_seq_start,
  2129. .next = ipmr_vif_seq_next,
  2130. .stop = ipmr_vif_seq_stop,
  2131. .show = ipmr_vif_seq_show,
  2132. };
  2133. static int ipmr_vif_open(struct inode *inode, struct file *file)
  2134. {
  2135. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  2136. sizeof(struct ipmr_vif_iter));
  2137. }
  2138. static const struct file_operations ipmr_vif_fops = {
  2139. .owner = THIS_MODULE,
  2140. .open = ipmr_vif_open,
  2141. .read = seq_read,
  2142. .llseek = seq_lseek,
  2143. .release = seq_release_net,
  2144. };
  2145. struct ipmr_mfc_iter {
  2146. struct seq_net_private p;
  2147. struct mr_table *mrt;
  2148. struct list_head *cache;
  2149. int ct;
  2150. };
  2151. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  2152. struct ipmr_mfc_iter *it, loff_t pos)
  2153. {
  2154. struct mr_table *mrt = it->mrt;
  2155. struct mfc_cache *mfc;
  2156. rcu_read_lock();
  2157. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  2158. it->cache = &mrt->mfc_cache_array[it->ct];
  2159. list_for_each_entry_rcu(mfc, it->cache, list)
  2160. if (pos-- == 0)
  2161. return mfc;
  2162. }
  2163. rcu_read_unlock();
  2164. spin_lock_bh(&mfc_unres_lock);
  2165. it->cache = &mrt->mfc_unres_queue;
  2166. list_for_each_entry(mfc, it->cache, list)
  2167. if (pos-- == 0)
  2168. return mfc;
  2169. spin_unlock_bh(&mfc_unres_lock);
  2170. it->cache = NULL;
  2171. return NULL;
  2172. }
  2173. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  2174. {
  2175. struct ipmr_mfc_iter *it = seq->private;
  2176. struct net *net = seq_file_net(seq);
  2177. struct mr_table *mrt;
  2178. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  2179. if (mrt == NULL)
  2180. return ERR_PTR(-ENOENT);
  2181. it->mrt = mrt;
  2182. it->cache = NULL;
  2183. it->ct = 0;
  2184. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  2185. : SEQ_START_TOKEN;
  2186. }
  2187. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  2188. {
  2189. struct mfc_cache *mfc = v;
  2190. struct ipmr_mfc_iter *it = seq->private;
  2191. struct net *net = seq_file_net(seq);
  2192. struct mr_table *mrt = it->mrt;
  2193. ++*pos;
  2194. if (v == SEQ_START_TOKEN)
  2195. return ipmr_mfc_seq_idx(net, seq->private, 0);
  2196. if (mfc->list.next != it->cache)
  2197. return list_entry(mfc->list.next, struct mfc_cache, list);
  2198. if (it->cache == &mrt->mfc_unres_queue)
  2199. goto end_of_list;
  2200. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  2201. while (++it->ct < MFC_LINES) {
  2202. it->cache = &mrt->mfc_cache_array[it->ct];
  2203. if (list_empty(it->cache))
  2204. continue;
  2205. return list_first_entry(it->cache, struct mfc_cache, list);
  2206. }
  2207. /* exhausted cache_array, show unresolved */
  2208. rcu_read_unlock();
  2209. it->cache = &mrt->mfc_unres_queue;
  2210. it->ct = 0;
  2211. spin_lock_bh(&mfc_unres_lock);
  2212. if (!list_empty(it->cache))
  2213. return list_first_entry(it->cache, struct mfc_cache, list);
  2214. end_of_list:
  2215. spin_unlock_bh(&mfc_unres_lock);
  2216. it->cache = NULL;
  2217. return NULL;
  2218. }
  2219. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  2220. {
  2221. struct ipmr_mfc_iter *it = seq->private;
  2222. struct mr_table *mrt = it->mrt;
  2223. if (it->cache == &mrt->mfc_unres_queue)
  2224. spin_unlock_bh(&mfc_unres_lock);
  2225. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  2226. rcu_read_unlock();
  2227. }
  2228. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  2229. {
  2230. int n;
  2231. if (v == SEQ_START_TOKEN) {
  2232. seq_puts(seq,
  2233. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  2234. } else {
  2235. const struct mfc_cache *mfc = v;
  2236. const struct ipmr_mfc_iter *it = seq->private;
  2237. const struct mr_table *mrt = it->mrt;
  2238. seq_printf(seq, "%08X %08X %-3hd",
  2239. (__force u32) mfc->mfc_mcastgrp,
  2240. (__force u32) mfc->mfc_origin,
  2241. mfc->mfc_parent);
  2242. if (it->cache != &mrt->mfc_unres_queue) {
  2243. seq_printf(seq, " %8lu %8lu %8lu",
  2244. mfc->mfc_un.res.pkt,
  2245. mfc->mfc_un.res.bytes,
  2246. mfc->mfc_un.res.wrong_if);
  2247. for (n = mfc->mfc_un.res.minvif;
  2248. n < mfc->mfc_un.res.maxvif; n++) {
  2249. if (VIF_EXISTS(mrt, n) &&
  2250. mfc->mfc_un.res.ttls[n] < 255)
  2251. seq_printf(seq,
  2252. " %2d:%-3d",
  2253. n, mfc->mfc_un.res.ttls[n]);
  2254. }
  2255. } else {
  2256. /* unresolved mfc_caches don't contain
  2257. * pkt, bytes and wrong_if values
  2258. */
  2259. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  2260. }
  2261. seq_putc(seq, '\n');
  2262. }
  2263. return 0;
  2264. }
  2265. static const struct seq_operations ipmr_mfc_seq_ops = {
  2266. .start = ipmr_mfc_seq_start,
  2267. .next = ipmr_mfc_seq_next,
  2268. .stop = ipmr_mfc_seq_stop,
  2269. .show = ipmr_mfc_seq_show,
  2270. };
  2271. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  2272. {
  2273. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  2274. sizeof(struct ipmr_mfc_iter));
  2275. }
  2276. static const struct file_operations ipmr_mfc_fops = {
  2277. .owner = THIS_MODULE,
  2278. .open = ipmr_mfc_open,
  2279. .read = seq_read,
  2280. .llseek = seq_lseek,
  2281. .release = seq_release_net,
  2282. };
  2283. #endif
  2284. #ifdef CONFIG_IP_PIMSM_V2
  2285. static const struct net_protocol pim_protocol = {
  2286. .handler = pim_rcv,
  2287. .netns_ok = 1,
  2288. };
  2289. #endif
  2290. /*
  2291. * Setup for IP multicast routing
  2292. */
  2293. static int __net_init ipmr_net_init(struct net *net)
  2294. {
  2295. int err;
  2296. err = ipmr_rules_init(net);
  2297. if (err < 0)
  2298. goto fail;
  2299. #ifdef CONFIG_PROC_FS
  2300. err = -ENOMEM;
  2301. if (!proc_create("ip_mr_vif", 0, net->proc_net, &ipmr_vif_fops))
  2302. goto proc_vif_fail;
  2303. if (!proc_create("ip_mr_cache", 0, net->proc_net, &ipmr_mfc_fops))
  2304. goto proc_cache_fail;
  2305. #endif
  2306. return 0;
  2307. #ifdef CONFIG_PROC_FS
  2308. proc_cache_fail:
  2309. remove_proc_entry("ip_mr_vif", net->proc_net);
  2310. proc_vif_fail:
  2311. ipmr_rules_exit(net);
  2312. #endif
  2313. fail:
  2314. return err;
  2315. }
  2316. static void __net_exit ipmr_net_exit(struct net *net)
  2317. {
  2318. #ifdef CONFIG_PROC_FS
  2319. remove_proc_entry("ip_mr_cache", net->proc_net);
  2320. remove_proc_entry("ip_mr_vif", net->proc_net);
  2321. #endif
  2322. ipmr_rules_exit(net);
  2323. }
  2324. static struct pernet_operations ipmr_net_ops = {
  2325. .init = ipmr_net_init,
  2326. .exit = ipmr_net_exit,
  2327. };
  2328. int __init ip_mr_init(void)
  2329. {
  2330. int err;
  2331. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2332. sizeof(struct mfc_cache),
  2333. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2334. NULL);
  2335. if (!mrt_cachep)
  2336. return -ENOMEM;
  2337. err = register_pernet_subsys(&ipmr_net_ops);
  2338. if (err)
  2339. goto reg_pernet_fail;
  2340. err = register_netdevice_notifier(&ip_mr_notifier);
  2341. if (err)
  2342. goto reg_notif_fail;
  2343. #ifdef CONFIG_IP_PIMSM_V2
  2344. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2345. pr_err("%s: can't add PIM protocol\n", __func__);
  2346. err = -EAGAIN;
  2347. goto add_proto_fail;
  2348. }
  2349. #endif
  2350. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE,
  2351. NULL, ipmr_rtm_dumproute, NULL);
  2352. return 0;
  2353. #ifdef CONFIG_IP_PIMSM_V2
  2354. add_proto_fail:
  2355. unregister_netdevice_notifier(&ip_mr_notifier);
  2356. #endif
  2357. reg_notif_fail:
  2358. unregister_pernet_subsys(&ipmr_net_ops);
  2359. reg_pernet_fail:
  2360. kmem_cache_destroy(mrt_cachep);
  2361. return err;
  2362. }