dn_neigh.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Neighbour Functions (Adjacency Database and
  7. * On-Ethernet Cache)
  8. *
  9. * Author: Steve Whitehouse <SteveW@ACM.org>
  10. *
  11. *
  12. * Changes:
  13. * Steve Whitehouse : Fixed router listing routine
  14. * Steve Whitehouse : Added error_report functions
  15. * Steve Whitehouse : Added default router detection
  16. * Steve Whitehouse : Hop counts in outgoing messages
  17. * Steve Whitehouse : Fixed src/dst in outgoing messages so
  18. * forwarding now stands a good chance of
  19. * working.
  20. * Steve Whitehouse : Fixed neighbour states (for now anyway).
  21. * Steve Whitehouse : Made error_report functions dummies. This
  22. * is not the right place to return skbs.
  23. * Steve Whitehouse : Convert to seq_file
  24. *
  25. */
  26. #include <linux/net.h>
  27. #include <linux/module.h>
  28. #include <linux/socket.h>
  29. #include <linux/if_arp.h>
  30. #include <linux/slab.h>
  31. #include <linux/if_ether.h>
  32. #include <linux/init.h>
  33. #include <linux/proc_fs.h>
  34. #include <linux/string.h>
  35. #include <linux/netfilter_decnet.h>
  36. #include <linux/spinlock.h>
  37. #include <linux/seq_file.h>
  38. #include <linux/rcupdate.h>
  39. #include <linux/jhash.h>
  40. #include <linux/atomic.h>
  41. #include <net/net_namespace.h>
  42. #include <net/neighbour.h>
  43. #include <net/dst.h>
  44. #include <net/flow.h>
  45. #include <net/dn.h>
  46. #include <net/dn_dev.h>
  47. #include <net/dn_neigh.h>
  48. #include <net/dn_route.h>
  49. static int dn_neigh_construct(struct neighbour *);
  50. static void dn_long_error_report(struct neighbour *, struct sk_buff *);
  51. static void dn_short_error_report(struct neighbour *, struct sk_buff *);
  52. static int dn_long_output(struct neighbour *, struct sk_buff *);
  53. static int dn_short_output(struct neighbour *, struct sk_buff *);
  54. static int dn_phase3_output(struct neighbour *, struct sk_buff *);
  55. /*
  56. * For talking to broadcast devices: Ethernet & PPP
  57. */
  58. static const struct neigh_ops dn_long_ops = {
  59. .family = AF_DECnet,
  60. .error_report = dn_long_error_report,
  61. .output = dn_long_output,
  62. .connected_output = dn_long_output,
  63. };
  64. /*
  65. * For talking to pointopoint and multidrop devices: DDCMP and X.25
  66. */
  67. static const struct neigh_ops dn_short_ops = {
  68. .family = AF_DECnet,
  69. .error_report = dn_short_error_report,
  70. .output = dn_short_output,
  71. .connected_output = dn_short_output,
  72. };
  73. /*
  74. * For talking to DECnet phase III nodes
  75. */
  76. static const struct neigh_ops dn_phase3_ops = {
  77. .family = AF_DECnet,
  78. .error_report = dn_short_error_report, /* Can use short version here */
  79. .output = dn_phase3_output,
  80. .connected_output = dn_phase3_output,
  81. };
  82. static u32 dn_neigh_hash(const void *pkey,
  83. const struct net_device *dev,
  84. __u32 *hash_rnd)
  85. {
  86. return jhash_2words(*(__u16 *)pkey, 0, hash_rnd[0]);
  87. }
  88. struct neigh_table dn_neigh_table = {
  89. .family = PF_DECnet,
  90. .entry_size = NEIGH_ENTRY_SIZE(sizeof(struct dn_neigh)),
  91. .key_len = sizeof(__le16),
  92. .hash = dn_neigh_hash,
  93. .constructor = dn_neigh_construct,
  94. .id = "dn_neigh_cache",
  95. .parms ={
  96. .tbl = &dn_neigh_table,
  97. .reachable_time = 30 * HZ,
  98. .data = {
  99. [NEIGH_VAR_MCAST_PROBES] = 0,
  100. [NEIGH_VAR_UCAST_PROBES] = 0,
  101. [NEIGH_VAR_APP_PROBES] = 0,
  102. [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
  103. [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
  104. [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
  105. [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
  106. [NEIGH_VAR_QUEUE_LEN_BYTES] = 64*1024,
  107. [NEIGH_VAR_PROXY_QLEN] = 0,
  108. [NEIGH_VAR_ANYCAST_DELAY] = 0,
  109. [NEIGH_VAR_PROXY_DELAY] = 0,
  110. [NEIGH_VAR_LOCKTIME] = 1 * HZ,
  111. },
  112. },
  113. .gc_interval = 30 * HZ,
  114. .gc_thresh1 = 128,
  115. .gc_thresh2 = 512,
  116. .gc_thresh3 = 1024,
  117. };
  118. static int dn_neigh_construct(struct neighbour *neigh)
  119. {
  120. struct net_device *dev = neigh->dev;
  121. struct dn_neigh *dn = (struct dn_neigh *)neigh;
  122. struct dn_dev *dn_db;
  123. struct neigh_parms *parms;
  124. rcu_read_lock();
  125. dn_db = rcu_dereference(dev->dn_ptr);
  126. if (dn_db == NULL) {
  127. rcu_read_unlock();
  128. return -EINVAL;
  129. }
  130. parms = dn_db->neigh_parms;
  131. if (!parms) {
  132. rcu_read_unlock();
  133. return -EINVAL;
  134. }
  135. __neigh_parms_put(neigh->parms);
  136. neigh->parms = neigh_parms_clone(parms);
  137. if (dn_db->use_long)
  138. neigh->ops = &dn_long_ops;
  139. else
  140. neigh->ops = &dn_short_ops;
  141. rcu_read_unlock();
  142. if (dn->flags & DN_NDFLAG_P3)
  143. neigh->ops = &dn_phase3_ops;
  144. neigh->nud_state = NUD_NOARP;
  145. neigh->output = neigh->ops->connected_output;
  146. if ((dev->type == ARPHRD_IPGRE) || (dev->flags & IFF_POINTOPOINT))
  147. memcpy(neigh->ha, dev->broadcast, dev->addr_len);
  148. else if ((dev->type == ARPHRD_ETHER) || (dev->type == ARPHRD_LOOPBACK))
  149. dn_dn2eth(neigh->ha, dn->addr);
  150. else {
  151. net_dbg_ratelimited("Trying to create neigh for hw %d\n",
  152. dev->type);
  153. return -EINVAL;
  154. }
  155. /*
  156. * Make an estimate of the remote block size by assuming that its
  157. * two less then the device mtu, which it true for ethernet (and
  158. * other things which support long format headers) since there is
  159. * an extra length field (of 16 bits) which isn't part of the
  160. * ethernet headers and which the DECnet specs won't admit is part
  161. * of the DECnet routing headers either.
  162. *
  163. * If we over estimate here its no big deal, the NSP negotiations
  164. * will prevent us from sending packets which are too large for the
  165. * remote node to handle. In any case this figure is normally updated
  166. * by a hello message in most cases.
  167. */
  168. dn->blksize = dev->mtu - 2;
  169. return 0;
  170. }
  171. static void dn_long_error_report(struct neighbour *neigh, struct sk_buff *skb)
  172. {
  173. printk(KERN_DEBUG "dn_long_error_report: called\n");
  174. kfree_skb(skb);
  175. }
  176. static void dn_short_error_report(struct neighbour *neigh, struct sk_buff *skb)
  177. {
  178. printk(KERN_DEBUG "dn_short_error_report: called\n");
  179. kfree_skb(skb);
  180. }
  181. static int dn_neigh_output_packet(struct sk_buff *skb)
  182. {
  183. struct dst_entry *dst = skb_dst(skb);
  184. struct dn_route *rt = (struct dn_route *)dst;
  185. struct neighbour *neigh = rt->n;
  186. struct net_device *dev = neigh->dev;
  187. char mac_addr[ETH_ALEN];
  188. unsigned int seq;
  189. int err;
  190. dn_dn2eth(mac_addr, rt->rt_local_src);
  191. do {
  192. seq = read_seqbegin(&neigh->ha_lock);
  193. err = dev_hard_header(skb, dev, ntohs(skb->protocol),
  194. neigh->ha, mac_addr, skb->len);
  195. } while (read_seqretry(&neigh->ha_lock, seq));
  196. if (err >= 0)
  197. err = dev_queue_xmit(skb);
  198. else {
  199. kfree_skb(skb);
  200. err = -EINVAL;
  201. }
  202. return err;
  203. }
  204. static int dn_long_output(struct neighbour *neigh, struct sk_buff *skb)
  205. {
  206. struct net_device *dev = neigh->dev;
  207. int headroom = dev->hard_header_len + sizeof(struct dn_long_packet) + 3;
  208. unsigned char *data;
  209. struct dn_long_packet *lp;
  210. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  211. if (skb_headroom(skb) < headroom) {
  212. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  213. if (skb2 == NULL) {
  214. net_crit_ratelimited("dn_long_output: no memory\n");
  215. kfree_skb(skb);
  216. return -ENOBUFS;
  217. }
  218. consume_skb(skb);
  219. skb = skb2;
  220. net_info_ratelimited("dn_long_output: Increasing headroom\n");
  221. }
  222. data = skb_push(skb, sizeof(struct dn_long_packet) + 3);
  223. lp = (struct dn_long_packet *)(data+3);
  224. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  225. *(data + 2) = 1 | DN_RT_F_PF; /* Padding */
  226. lp->msgflg = DN_RT_PKT_LONG|(cb->rt_flags&(DN_RT_F_IE|DN_RT_F_RQR|DN_RT_F_RTS));
  227. lp->d_area = lp->d_subarea = 0;
  228. dn_dn2eth(lp->d_id, cb->dst);
  229. lp->s_area = lp->s_subarea = 0;
  230. dn_dn2eth(lp->s_id, cb->src);
  231. lp->nl2 = 0;
  232. lp->visit_ct = cb->hops & 0x3f;
  233. lp->s_class = 0;
  234. lp->pt = 0;
  235. skb_reset_network_header(skb);
  236. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  237. neigh->dev, dn_neigh_output_packet);
  238. }
  239. static int dn_short_output(struct neighbour *neigh, struct sk_buff *skb)
  240. {
  241. struct net_device *dev = neigh->dev;
  242. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  243. struct dn_short_packet *sp;
  244. unsigned char *data;
  245. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  246. if (skb_headroom(skb) < headroom) {
  247. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  248. if (skb2 == NULL) {
  249. net_crit_ratelimited("dn_short_output: no memory\n");
  250. kfree_skb(skb);
  251. return -ENOBUFS;
  252. }
  253. consume_skb(skb);
  254. skb = skb2;
  255. net_info_ratelimited("dn_short_output: Increasing headroom\n");
  256. }
  257. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  258. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  259. sp = (struct dn_short_packet *)(data+2);
  260. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  261. sp->dstnode = cb->dst;
  262. sp->srcnode = cb->src;
  263. sp->forward = cb->hops & 0x3f;
  264. skb_reset_network_header(skb);
  265. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  266. neigh->dev, dn_neigh_output_packet);
  267. }
  268. /*
  269. * Phase 3 output is the same is short output, execpt that
  270. * it clears the area bits before transmission.
  271. */
  272. static int dn_phase3_output(struct neighbour *neigh, struct sk_buff *skb)
  273. {
  274. struct net_device *dev = neigh->dev;
  275. int headroom = dev->hard_header_len + sizeof(struct dn_short_packet) + 2;
  276. struct dn_short_packet *sp;
  277. unsigned char *data;
  278. struct dn_skb_cb *cb = DN_SKB_CB(skb);
  279. if (skb_headroom(skb) < headroom) {
  280. struct sk_buff *skb2 = skb_realloc_headroom(skb, headroom);
  281. if (skb2 == NULL) {
  282. net_crit_ratelimited("dn_phase3_output: no memory\n");
  283. kfree_skb(skb);
  284. return -ENOBUFS;
  285. }
  286. consume_skb(skb);
  287. skb = skb2;
  288. net_info_ratelimited("dn_phase3_output: Increasing headroom\n");
  289. }
  290. data = skb_push(skb, sizeof(struct dn_short_packet) + 2);
  291. *((__le16 *)data) = cpu_to_le16(skb->len - 2);
  292. sp = (struct dn_short_packet *)(data + 2);
  293. sp->msgflg = DN_RT_PKT_SHORT|(cb->rt_flags&(DN_RT_F_RQR|DN_RT_F_RTS));
  294. sp->dstnode = cb->dst & cpu_to_le16(0x03ff);
  295. sp->srcnode = cb->src & cpu_to_le16(0x03ff);
  296. sp->forward = cb->hops & 0x3f;
  297. skb_reset_network_header(skb);
  298. return NF_HOOK(NFPROTO_DECNET, NF_DN_POST_ROUTING, skb, NULL,
  299. neigh->dev, dn_neigh_output_packet);
  300. }
  301. /*
  302. * Unfortunately, the neighbour code uses the device in its hash
  303. * function, so we don't get any advantage from it. This function
  304. * basically does a neigh_lookup(), but without comparing the device
  305. * field. This is required for the On-Ethernet cache
  306. */
  307. /*
  308. * Pointopoint link receives a hello message
  309. */
  310. void dn_neigh_pointopoint_hello(struct sk_buff *skb)
  311. {
  312. kfree_skb(skb);
  313. }
  314. /*
  315. * Ethernet router hello message received
  316. */
  317. int dn_neigh_router_hello(struct sk_buff *skb)
  318. {
  319. struct rtnode_hello_message *msg = (struct rtnode_hello_message *)skb->data;
  320. struct neighbour *neigh;
  321. struct dn_neigh *dn;
  322. struct dn_dev *dn_db;
  323. __le16 src;
  324. src = dn_eth2dn(msg->id);
  325. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  326. dn = (struct dn_neigh *)neigh;
  327. if (neigh) {
  328. write_lock(&neigh->lock);
  329. neigh->used = jiffies;
  330. dn_db = rcu_dereference(neigh->dev->dn_ptr);
  331. if (!(neigh->nud_state & NUD_PERMANENT)) {
  332. neigh->updated = jiffies;
  333. if (neigh->dev->type == ARPHRD_ETHER)
  334. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  335. dn->blksize = le16_to_cpu(msg->blksize);
  336. dn->priority = msg->priority;
  337. dn->flags &= ~DN_NDFLAG_P3;
  338. switch (msg->iinfo & DN_RT_INFO_TYPE) {
  339. case DN_RT_INFO_L1RT:
  340. dn->flags &=~DN_NDFLAG_R2;
  341. dn->flags |= DN_NDFLAG_R1;
  342. break;
  343. case DN_RT_INFO_L2RT:
  344. dn->flags |= DN_NDFLAG_R2;
  345. }
  346. }
  347. /* Only use routers in our area */
  348. if ((le16_to_cpu(src)>>10) == (le16_to_cpu((decnet_address))>>10)) {
  349. if (!dn_db->router) {
  350. dn_db->router = neigh_clone(neigh);
  351. } else {
  352. if (msg->priority > ((struct dn_neigh *)dn_db->router)->priority)
  353. neigh_release(xchg(&dn_db->router, neigh_clone(neigh)));
  354. }
  355. }
  356. write_unlock(&neigh->lock);
  357. neigh_release(neigh);
  358. }
  359. kfree_skb(skb);
  360. return 0;
  361. }
  362. /*
  363. * Endnode hello message received
  364. */
  365. int dn_neigh_endnode_hello(struct sk_buff *skb)
  366. {
  367. struct endnode_hello_message *msg = (struct endnode_hello_message *)skb->data;
  368. struct neighbour *neigh;
  369. struct dn_neigh *dn;
  370. __le16 src;
  371. src = dn_eth2dn(msg->id);
  372. neigh = __neigh_lookup(&dn_neigh_table, &src, skb->dev, 1);
  373. dn = (struct dn_neigh *)neigh;
  374. if (neigh) {
  375. write_lock(&neigh->lock);
  376. neigh->used = jiffies;
  377. if (!(neigh->nud_state & NUD_PERMANENT)) {
  378. neigh->updated = jiffies;
  379. if (neigh->dev->type == ARPHRD_ETHER)
  380. memcpy(neigh->ha, &eth_hdr(skb)->h_source, ETH_ALEN);
  381. dn->flags &= ~(DN_NDFLAG_R1 | DN_NDFLAG_R2);
  382. dn->blksize = le16_to_cpu(msg->blksize);
  383. dn->priority = 0;
  384. }
  385. write_unlock(&neigh->lock);
  386. neigh_release(neigh);
  387. }
  388. kfree_skb(skb);
  389. return 0;
  390. }
  391. static char *dn_find_slot(char *base, int max, int priority)
  392. {
  393. int i;
  394. unsigned char *min = NULL;
  395. base += 6; /* skip first id */
  396. for(i = 0; i < max; i++) {
  397. if (!min || (*base < *min))
  398. min = base;
  399. base += 7; /* find next priority */
  400. }
  401. if (!min)
  402. return NULL;
  403. return (*min < priority) ? (min - 6) : NULL;
  404. }
  405. struct elist_cb_state {
  406. struct net_device *dev;
  407. unsigned char *ptr;
  408. unsigned char *rs;
  409. int t, n;
  410. };
  411. static void neigh_elist_cb(struct neighbour *neigh, void *_info)
  412. {
  413. struct elist_cb_state *s = _info;
  414. struct dn_neigh *dn;
  415. if (neigh->dev != s->dev)
  416. return;
  417. dn = (struct dn_neigh *) neigh;
  418. if (!(dn->flags & (DN_NDFLAG_R1|DN_NDFLAG_R2)))
  419. return;
  420. if (s->t == s->n)
  421. s->rs = dn_find_slot(s->ptr, s->n, dn->priority);
  422. else
  423. s->t++;
  424. if (s->rs == NULL)
  425. return;
  426. dn_dn2eth(s->rs, dn->addr);
  427. s->rs += 6;
  428. *(s->rs) = neigh->nud_state & NUD_CONNECTED ? 0x80 : 0x0;
  429. *(s->rs) |= dn->priority;
  430. s->rs++;
  431. }
  432. int dn_neigh_elist(struct net_device *dev, unsigned char *ptr, int n)
  433. {
  434. struct elist_cb_state state;
  435. state.dev = dev;
  436. state.t = 0;
  437. state.n = n;
  438. state.ptr = ptr;
  439. state.rs = ptr;
  440. neigh_for_each(&dn_neigh_table, neigh_elist_cb, &state);
  441. return state.t;
  442. }
  443. #ifdef CONFIG_PROC_FS
  444. static inline void dn_neigh_format_entry(struct seq_file *seq,
  445. struct neighbour *n)
  446. {
  447. struct dn_neigh *dn = (struct dn_neigh *) n;
  448. char buf[DN_ASCBUF_LEN];
  449. read_lock(&n->lock);
  450. seq_printf(seq, "%-7s %s%s%s %02x %02d %07ld %-8s\n",
  451. dn_addr2asc(le16_to_cpu(dn->addr), buf),
  452. (dn->flags&DN_NDFLAG_R1) ? "1" : "-",
  453. (dn->flags&DN_NDFLAG_R2) ? "2" : "-",
  454. (dn->flags&DN_NDFLAG_P3) ? "3" : "-",
  455. dn->n.nud_state,
  456. atomic_read(&dn->n.refcnt),
  457. dn->blksize,
  458. (dn->n.dev) ? dn->n.dev->name : "?");
  459. read_unlock(&n->lock);
  460. }
  461. static int dn_neigh_seq_show(struct seq_file *seq, void *v)
  462. {
  463. if (v == SEQ_START_TOKEN) {
  464. seq_puts(seq, "Addr Flags State Use Blksize Dev\n");
  465. } else {
  466. dn_neigh_format_entry(seq, v);
  467. }
  468. return 0;
  469. }
  470. static void *dn_neigh_seq_start(struct seq_file *seq, loff_t *pos)
  471. {
  472. return neigh_seq_start(seq, pos, &dn_neigh_table,
  473. NEIGH_SEQ_NEIGH_ONLY);
  474. }
  475. static const struct seq_operations dn_neigh_seq_ops = {
  476. .start = dn_neigh_seq_start,
  477. .next = neigh_seq_next,
  478. .stop = neigh_seq_stop,
  479. .show = dn_neigh_seq_show,
  480. };
  481. static int dn_neigh_seq_open(struct inode *inode, struct file *file)
  482. {
  483. return seq_open_net(inode, file, &dn_neigh_seq_ops,
  484. sizeof(struct neigh_seq_state));
  485. }
  486. static const struct file_operations dn_neigh_seq_fops = {
  487. .owner = THIS_MODULE,
  488. .open = dn_neigh_seq_open,
  489. .read = seq_read,
  490. .llseek = seq_lseek,
  491. .release = seq_release_net,
  492. };
  493. #endif
  494. void __init dn_neigh_init(void)
  495. {
  496. neigh_table_init(&dn_neigh_table);
  497. proc_create("decnet_neigh", S_IRUGO, init_net.proc_net,
  498. &dn_neigh_seq_fops);
  499. }
  500. void __exit dn_neigh_cleanup(void)
  501. {
  502. remove_proc_entry("decnet_neigh", init_net.proc_net);
  503. neigh_table_clear(&dn_neigh_table);
  504. }