slub.c 127 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks or atomic operatios
  6. * and only uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. * (C) 2011 Linux Foundation, Christoph Lameter
  10. */
  11. #include <linux/mm.h>
  12. #include <linux/swap.h> /* struct reclaim_state */
  13. #include <linux/module.h>
  14. #include <linux/bit_spinlock.h>
  15. #include <linux/interrupt.h>
  16. #include <linux/bitops.h>
  17. #include <linux/slab.h>
  18. #include "slab.h"
  19. #include <linux/proc_fs.h>
  20. #include <linux/notifier.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kmemcheck.h>
  23. #include <linux/cpu.h>
  24. #include <linux/cpuset.h>
  25. #include <linux/mempolicy.h>
  26. #include <linux/ctype.h>
  27. #include <linux/debugobjects.h>
  28. #include <linux/kallsyms.h>
  29. #include <linux/memory.h>
  30. #include <linux/math64.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/stacktrace.h>
  33. #include <linux/prefetch.h>
  34. #include <linux/memcontrol.h>
  35. #include <trace/events/kmem.h>
  36. #include "internal.h"
  37. /*
  38. * Lock order:
  39. * 1. slab_mutex (Global Mutex)
  40. * 2. node->list_lock
  41. * 3. slab_lock(page) (Only on some arches and for debugging)
  42. *
  43. * slab_mutex
  44. *
  45. * The role of the slab_mutex is to protect the list of all the slabs
  46. * and to synchronize major metadata changes to slab cache structures.
  47. *
  48. * The slab_lock is only used for debugging and on arches that do not
  49. * have the ability to do a cmpxchg_double. It only protects the second
  50. * double word in the page struct. Meaning
  51. * A. page->freelist -> List of object free in a page
  52. * B. page->counters -> Counters of objects
  53. * C. page->frozen -> frozen state
  54. *
  55. * If a slab is frozen then it is exempt from list management. It is not
  56. * on any list. The processor that froze the slab is the one who can
  57. * perform list operations on the page. Other processors may put objects
  58. * onto the freelist but the processor that froze the slab is the only
  59. * one that can retrieve the objects from the page's freelist.
  60. *
  61. * The list_lock protects the partial and full list on each node and
  62. * the partial slab counter. If taken then no new slabs may be added or
  63. * removed from the lists nor make the number of partial slabs be modified.
  64. * (Note that the total number of slabs is an atomic value that may be
  65. * modified without taking the list lock).
  66. *
  67. * The list_lock is a centralized lock and thus we avoid taking it as
  68. * much as possible. As long as SLUB does not have to handle partial
  69. * slabs, operations can continue without any centralized lock. F.e.
  70. * allocating a long series of objects that fill up slabs does not require
  71. * the list lock.
  72. * Interrupts are disabled during allocation and deallocation in order to
  73. * make the slab allocator safe to use in the context of an irq. In addition
  74. * interrupts are disabled to ensure that the processor does not change
  75. * while handling per_cpu slabs, due to kernel preemption.
  76. *
  77. * SLUB assigns one slab for allocation to each processor.
  78. * Allocations only occur from these slabs called cpu slabs.
  79. *
  80. * Slabs with free elements are kept on a partial list and during regular
  81. * operations no list for full slabs is used. If an object in a full slab is
  82. * freed then the slab will show up again on the partial lists.
  83. * We track full slabs for debugging purposes though because otherwise we
  84. * cannot scan all objects.
  85. *
  86. * Slabs are freed when they become empty. Teardown and setup is
  87. * minimal so we rely on the page allocators per cpu caches for
  88. * fast frees and allocs.
  89. *
  90. * Overloading of page flags that are otherwise used for LRU management.
  91. *
  92. * PageActive The slab is frozen and exempt from list processing.
  93. * This means that the slab is dedicated to a purpose
  94. * such as satisfying allocations for a specific
  95. * processor. Objects may be freed in the slab while
  96. * it is frozen but slab_free will then skip the usual
  97. * list operations. It is up to the processor holding
  98. * the slab to integrate the slab into the slab lists
  99. * when the slab is no longer needed.
  100. *
  101. * One use of this flag is to mark slabs that are
  102. * used for allocations. Then such a slab becomes a cpu
  103. * slab. The cpu slab may be equipped with an additional
  104. * freelist that allows lockless access to
  105. * free objects in addition to the regular freelist
  106. * that requires the slab lock.
  107. *
  108. * PageError Slab requires special handling due to debug
  109. * options set. This moves slab handling out of
  110. * the fast path and disables lockless freelists.
  111. */
  112. static inline int kmem_cache_debug(struct kmem_cache *s)
  113. {
  114. #ifdef CONFIG_SLUB_DEBUG
  115. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  116. #else
  117. return 0;
  118. #endif
  119. }
  120. static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
  121. {
  122. #ifdef CONFIG_SLUB_CPU_PARTIAL
  123. return !kmem_cache_debug(s);
  124. #else
  125. return false;
  126. #endif
  127. }
  128. /*
  129. * Issues still to be resolved:
  130. *
  131. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  132. *
  133. * - Variable sizing of the per node arrays
  134. */
  135. /* Enable to test recovery from slab corruption on boot */
  136. #undef SLUB_RESILIENCY_TEST
  137. /* Enable to log cmpxchg failures */
  138. #undef SLUB_DEBUG_CMPXCHG
  139. /*
  140. * Mininum number of partial slabs. These will be left on the partial
  141. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  142. */
  143. #define MIN_PARTIAL 5
  144. /*
  145. * Maximum number of desirable partial slabs.
  146. * The existence of more partial slabs makes kmem_cache_shrink
  147. * sort the partial list by the number of objects in use.
  148. */
  149. #define MAX_PARTIAL 10
  150. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  151. SLAB_POISON | SLAB_STORE_USER)
  152. /*
  153. * Debugging flags that require metadata to be stored in the slab. These get
  154. * disabled when slub_debug=O is used and a cache's min order increases with
  155. * metadata.
  156. */
  157. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  158. /*
  159. * Set of flags that will prevent slab merging
  160. */
  161. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  162. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  163. SLAB_FAILSLAB)
  164. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  165. SLAB_CACHE_DMA | SLAB_NOTRACK)
  166. #define OO_SHIFT 16
  167. #define OO_MASK ((1 << OO_SHIFT) - 1)
  168. #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
  169. /* Internal SLUB flags */
  170. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  171. #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
  172. #ifdef CONFIG_SMP
  173. static struct notifier_block slab_notifier;
  174. #endif
  175. /*
  176. * Tracking user of a slab.
  177. */
  178. #define TRACK_ADDRS_COUNT 16
  179. struct track {
  180. unsigned long addr; /* Called from address */
  181. #ifdef CONFIG_STACKTRACE
  182. unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
  183. #endif
  184. int cpu; /* Was running on cpu */
  185. int pid; /* Pid context */
  186. unsigned long when; /* When did the operation occur */
  187. };
  188. enum track_item { TRACK_ALLOC, TRACK_FREE };
  189. #ifdef CONFIG_SYSFS
  190. static int sysfs_slab_add(struct kmem_cache *);
  191. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  192. static void memcg_propagate_slab_attrs(struct kmem_cache *s);
  193. #else
  194. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  195. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  196. { return 0; }
  197. static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
  198. #endif
  199. static inline void stat(const struct kmem_cache *s, enum stat_item si)
  200. {
  201. #ifdef CONFIG_SLUB_STATS
  202. /*
  203. * The rmw is racy on a preemptible kernel but this is acceptable, so
  204. * avoid this_cpu_add()'s irq-disable overhead.
  205. */
  206. raw_cpu_inc(s->cpu_slab->stat[si]);
  207. #endif
  208. }
  209. /********************************************************************
  210. * Core slab cache functions
  211. *******************************************************************/
  212. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  213. {
  214. return s->node[node];
  215. }
  216. /* Verify that a pointer has an address that is valid within a slab page */
  217. static inline int check_valid_pointer(struct kmem_cache *s,
  218. struct page *page, const void *object)
  219. {
  220. void *base;
  221. if (!object)
  222. return 1;
  223. base = page_address(page);
  224. if (object < base || object >= base + page->objects * s->size ||
  225. (object - base) % s->size) {
  226. return 0;
  227. }
  228. return 1;
  229. }
  230. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  231. {
  232. return *(void **)(object + s->offset);
  233. }
  234. static void prefetch_freepointer(const struct kmem_cache *s, void *object)
  235. {
  236. prefetch(object + s->offset);
  237. }
  238. static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
  239. {
  240. void *p;
  241. #ifdef CONFIG_DEBUG_PAGEALLOC
  242. probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
  243. #else
  244. p = get_freepointer(s, object);
  245. #endif
  246. return p;
  247. }
  248. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  249. {
  250. *(void **)(object + s->offset) = fp;
  251. }
  252. /* Loop over all objects in a slab */
  253. #define for_each_object(__p, __s, __addr, __objects) \
  254. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  255. __p += (__s)->size)
  256. /* Determine object index from a given position */
  257. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  258. {
  259. return (p - addr) / s->size;
  260. }
  261. static inline size_t slab_ksize(const struct kmem_cache *s)
  262. {
  263. #ifdef CONFIG_SLUB_DEBUG
  264. /*
  265. * Debugging requires use of the padding between object
  266. * and whatever may come after it.
  267. */
  268. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  269. return s->object_size;
  270. #endif
  271. /*
  272. * If we have the need to store the freelist pointer
  273. * back there or track user information then we can
  274. * only use the space before that information.
  275. */
  276. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  277. return s->inuse;
  278. /*
  279. * Else we can use all the padding etc for the allocation
  280. */
  281. return s->size;
  282. }
  283. static inline int order_objects(int order, unsigned long size, int reserved)
  284. {
  285. return ((PAGE_SIZE << order) - reserved) / size;
  286. }
  287. static inline struct kmem_cache_order_objects oo_make(int order,
  288. unsigned long size, int reserved)
  289. {
  290. struct kmem_cache_order_objects x = {
  291. (order << OO_SHIFT) + order_objects(order, size, reserved)
  292. };
  293. return x;
  294. }
  295. static inline int oo_order(struct kmem_cache_order_objects x)
  296. {
  297. return x.x >> OO_SHIFT;
  298. }
  299. static inline int oo_objects(struct kmem_cache_order_objects x)
  300. {
  301. return x.x & OO_MASK;
  302. }
  303. /*
  304. * Per slab locking using the pagelock
  305. */
  306. static __always_inline void slab_lock(struct page *page)
  307. {
  308. bit_spin_lock(PG_locked, &page->flags);
  309. }
  310. static __always_inline void slab_unlock(struct page *page)
  311. {
  312. __bit_spin_unlock(PG_locked, &page->flags);
  313. }
  314. static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
  315. {
  316. struct page tmp;
  317. tmp.counters = counters_new;
  318. /*
  319. * page->counters can cover frozen/inuse/objects as well
  320. * as page->_count. If we assign to ->counters directly
  321. * we run the risk of losing updates to page->_count, so
  322. * be careful and only assign to the fields we need.
  323. */
  324. page->frozen = tmp.frozen;
  325. page->inuse = tmp.inuse;
  326. page->objects = tmp.objects;
  327. }
  328. /* Interrupts must be disabled (for the fallback code to work right) */
  329. static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  330. void *freelist_old, unsigned long counters_old,
  331. void *freelist_new, unsigned long counters_new,
  332. const char *n)
  333. {
  334. VM_BUG_ON(!irqs_disabled());
  335. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  336. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  337. if (s->flags & __CMPXCHG_DOUBLE) {
  338. if (cmpxchg_double(&page->freelist, &page->counters,
  339. freelist_old, counters_old,
  340. freelist_new, counters_new))
  341. return 1;
  342. } else
  343. #endif
  344. {
  345. slab_lock(page);
  346. if (page->freelist == freelist_old &&
  347. page->counters == counters_old) {
  348. page->freelist = freelist_new;
  349. set_page_slub_counters(page, counters_new);
  350. slab_unlock(page);
  351. return 1;
  352. }
  353. slab_unlock(page);
  354. }
  355. cpu_relax();
  356. stat(s, CMPXCHG_DOUBLE_FAIL);
  357. #ifdef SLUB_DEBUG_CMPXCHG
  358. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  359. #endif
  360. return 0;
  361. }
  362. static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
  363. void *freelist_old, unsigned long counters_old,
  364. void *freelist_new, unsigned long counters_new,
  365. const char *n)
  366. {
  367. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  368. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  369. if (s->flags & __CMPXCHG_DOUBLE) {
  370. if (cmpxchg_double(&page->freelist, &page->counters,
  371. freelist_old, counters_old,
  372. freelist_new, counters_new))
  373. return 1;
  374. } else
  375. #endif
  376. {
  377. unsigned long flags;
  378. local_irq_save(flags);
  379. slab_lock(page);
  380. if (page->freelist == freelist_old &&
  381. page->counters == counters_old) {
  382. page->freelist = freelist_new;
  383. set_page_slub_counters(page, counters_new);
  384. slab_unlock(page);
  385. local_irq_restore(flags);
  386. return 1;
  387. }
  388. slab_unlock(page);
  389. local_irq_restore(flags);
  390. }
  391. cpu_relax();
  392. stat(s, CMPXCHG_DOUBLE_FAIL);
  393. #ifdef SLUB_DEBUG_CMPXCHG
  394. pr_info("%s %s: cmpxchg double redo ", n, s->name);
  395. #endif
  396. return 0;
  397. }
  398. #ifdef CONFIG_SLUB_DEBUG
  399. /*
  400. * Determine a map of object in use on a page.
  401. *
  402. * Node listlock must be held to guarantee that the page does
  403. * not vanish from under us.
  404. */
  405. static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
  406. {
  407. void *p;
  408. void *addr = page_address(page);
  409. for (p = page->freelist; p; p = get_freepointer(s, p))
  410. set_bit(slab_index(p, s, addr), map);
  411. }
  412. /*
  413. * Debug settings:
  414. */
  415. #ifdef CONFIG_SLUB_DEBUG_ON
  416. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  417. #else
  418. static int slub_debug;
  419. #endif
  420. static char *slub_debug_slabs;
  421. static int disable_higher_order_debug;
  422. /*
  423. * Object debugging
  424. */
  425. static void print_section(char *text, u8 *addr, unsigned int length)
  426. {
  427. print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
  428. length, 1);
  429. }
  430. static struct track *get_track(struct kmem_cache *s, void *object,
  431. enum track_item alloc)
  432. {
  433. struct track *p;
  434. if (s->offset)
  435. p = object + s->offset + sizeof(void *);
  436. else
  437. p = object + s->inuse;
  438. return p + alloc;
  439. }
  440. static void set_track(struct kmem_cache *s, void *object,
  441. enum track_item alloc, unsigned long addr)
  442. {
  443. struct track *p = get_track(s, object, alloc);
  444. if (addr) {
  445. #ifdef CONFIG_STACKTRACE
  446. struct stack_trace trace;
  447. int i;
  448. trace.nr_entries = 0;
  449. trace.max_entries = TRACK_ADDRS_COUNT;
  450. trace.entries = p->addrs;
  451. trace.skip = 3;
  452. save_stack_trace(&trace);
  453. /* See rant in lockdep.c */
  454. if (trace.nr_entries != 0 &&
  455. trace.entries[trace.nr_entries - 1] == ULONG_MAX)
  456. trace.nr_entries--;
  457. for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
  458. p->addrs[i] = 0;
  459. #endif
  460. p->addr = addr;
  461. p->cpu = smp_processor_id();
  462. p->pid = current->pid;
  463. p->when = jiffies;
  464. } else
  465. memset(p, 0, sizeof(struct track));
  466. }
  467. static void init_tracking(struct kmem_cache *s, void *object)
  468. {
  469. if (!(s->flags & SLAB_STORE_USER))
  470. return;
  471. set_track(s, object, TRACK_FREE, 0UL);
  472. set_track(s, object, TRACK_ALLOC, 0UL);
  473. }
  474. static void print_track(const char *s, struct track *t)
  475. {
  476. if (!t->addr)
  477. return;
  478. pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  479. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  480. #ifdef CONFIG_STACKTRACE
  481. {
  482. int i;
  483. for (i = 0; i < TRACK_ADDRS_COUNT; i++)
  484. if (t->addrs[i])
  485. pr_err("\t%pS\n", (void *)t->addrs[i]);
  486. else
  487. break;
  488. }
  489. #endif
  490. }
  491. static void print_tracking(struct kmem_cache *s, void *object)
  492. {
  493. if (!(s->flags & SLAB_STORE_USER))
  494. return;
  495. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  496. print_track("Freed", get_track(s, object, TRACK_FREE));
  497. }
  498. static void print_page_info(struct page *page)
  499. {
  500. pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  501. page, page->objects, page->inuse, page->freelist, page->flags);
  502. }
  503. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  504. {
  505. struct va_format vaf;
  506. va_list args;
  507. va_start(args, fmt);
  508. vaf.fmt = fmt;
  509. vaf.va = &args;
  510. pr_err("=============================================================================\n");
  511. pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
  512. pr_err("-----------------------------------------------------------------------------\n\n");
  513. add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
  514. va_end(args);
  515. }
  516. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  517. {
  518. struct va_format vaf;
  519. va_list args;
  520. va_start(args, fmt);
  521. vaf.fmt = fmt;
  522. vaf.va = &args;
  523. pr_err("FIX %s: %pV\n", s->name, &vaf);
  524. va_end(args);
  525. }
  526. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  527. {
  528. unsigned int off; /* Offset of last byte */
  529. u8 *addr = page_address(page);
  530. print_tracking(s, p);
  531. print_page_info(page);
  532. pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  533. p, p - addr, get_freepointer(s, p));
  534. if (p > addr + 16)
  535. print_section("Bytes b4 ", p - 16, 16);
  536. print_section("Object ", p, min_t(unsigned long, s->object_size,
  537. PAGE_SIZE));
  538. if (s->flags & SLAB_RED_ZONE)
  539. print_section("Redzone ", p + s->object_size,
  540. s->inuse - s->object_size);
  541. if (s->offset)
  542. off = s->offset + sizeof(void *);
  543. else
  544. off = s->inuse;
  545. if (s->flags & SLAB_STORE_USER)
  546. off += 2 * sizeof(struct track);
  547. if (off != s->size)
  548. /* Beginning of the filler is the free pointer */
  549. print_section("Padding ", p + off, s->size - off);
  550. dump_stack();
  551. }
  552. static void object_err(struct kmem_cache *s, struct page *page,
  553. u8 *object, char *reason)
  554. {
  555. slab_bug(s, "%s", reason);
  556. print_trailer(s, page, object);
  557. }
  558. static void slab_err(struct kmem_cache *s, struct page *page,
  559. const char *fmt, ...)
  560. {
  561. va_list args;
  562. char buf[100];
  563. va_start(args, fmt);
  564. vsnprintf(buf, sizeof(buf), fmt, args);
  565. va_end(args);
  566. slab_bug(s, "%s", buf);
  567. print_page_info(page);
  568. dump_stack();
  569. }
  570. static void init_object(struct kmem_cache *s, void *object, u8 val)
  571. {
  572. u8 *p = object;
  573. if (s->flags & __OBJECT_POISON) {
  574. memset(p, POISON_FREE, s->object_size - 1);
  575. p[s->object_size - 1] = POISON_END;
  576. }
  577. if (s->flags & SLAB_RED_ZONE)
  578. memset(p + s->object_size, val, s->inuse - s->object_size);
  579. }
  580. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  581. void *from, void *to)
  582. {
  583. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  584. memset(from, data, to - from);
  585. }
  586. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  587. u8 *object, char *what,
  588. u8 *start, unsigned int value, unsigned int bytes)
  589. {
  590. u8 *fault;
  591. u8 *end;
  592. fault = memchr_inv(start, value, bytes);
  593. if (!fault)
  594. return 1;
  595. end = start + bytes;
  596. while (end > fault && end[-1] == value)
  597. end--;
  598. slab_bug(s, "%s overwritten", what);
  599. pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  600. fault, end - 1, fault[0], value);
  601. print_trailer(s, page, object);
  602. restore_bytes(s, what, value, fault, end);
  603. return 0;
  604. }
  605. /*
  606. * Object layout:
  607. *
  608. * object address
  609. * Bytes of the object to be managed.
  610. * If the freepointer may overlay the object then the free
  611. * pointer is the first word of the object.
  612. *
  613. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  614. * 0xa5 (POISON_END)
  615. *
  616. * object + s->object_size
  617. * Padding to reach word boundary. This is also used for Redzoning.
  618. * Padding is extended by another word if Redzoning is enabled and
  619. * object_size == inuse.
  620. *
  621. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  622. * 0xcc (RED_ACTIVE) for objects in use.
  623. *
  624. * object + s->inuse
  625. * Meta data starts here.
  626. *
  627. * A. Free pointer (if we cannot overwrite object on free)
  628. * B. Tracking data for SLAB_STORE_USER
  629. * C. Padding to reach required alignment boundary or at mininum
  630. * one word if debugging is on to be able to detect writes
  631. * before the word boundary.
  632. *
  633. * Padding is done using 0x5a (POISON_INUSE)
  634. *
  635. * object + s->size
  636. * Nothing is used beyond s->size.
  637. *
  638. * If slabcaches are merged then the object_size and inuse boundaries are mostly
  639. * ignored. And therefore no slab options that rely on these boundaries
  640. * may be used with merged slabcaches.
  641. */
  642. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  643. {
  644. unsigned long off = s->inuse; /* The end of info */
  645. if (s->offset)
  646. /* Freepointer is placed after the object. */
  647. off += sizeof(void *);
  648. if (s->flags & SLAB_STORE_USER)
  649. /* We also have user information there */
  650. off += 2 * sizeof(struct track);
  651. if (s->size == off)
  652. return 1;
  653. return check_bytes_and_report(s, page, p, "Object padding",
  654. p + off, POISON_INUSE, s->size - off);
  655. }
  656. /* Check the pad bytes at the end of a slab page */
  657. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  658. {
  659. u8 *start;
  660. u8 *fault;
  661. u8 *end;
  662. int length;
  663. int remainder;
  664. if (!(s->flags & SLAB_POISON))
  665. return 1;
  666. start = page_address(page);
  667. length = (PAGE_SIZE << compound_order(page)) - s->reserved;
  668. end = start + length;
  669. remainder = length % s->size;
  670. if (!remainder)
  671. return 1;
  672. fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
  673. if (!fault)
  674. return 1;
  675. while (end > fault && end[-1] == POISON_INUSE)
  676. end--;
  677. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  678. print_section("Padding ", end - remainder, remainder);
  679. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  680. return 0;
  681. }
  682. static int check_object(struct kmem_cache *s, struct page *page,
  683. void *object, u8 val)
  684. {
  685. u8 *p = object;
  686. u8 *endobject = object + s->object_size;
  687. if (s->flags & SLAB_RED_ZONE) {
  688. if (!check_bytes_and_report(s, page, object, "Redzone",
  689. endobject, val, s->inuse - s->object_size))
  690. return 0;
  691. } else {
  692. if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
  693. check_bytes_and_report(s, page, p, "Alignment padding",
  694. endobject, POISON_INUSE,
  695. s->inuse - s->object_size);
  696. }
  697. }
  698. if (s->flags & SLAB_POISON) {
  699. if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
  700. (!check_bytes_and_report(s, page, p, "Poison", p,
  701. POISON_FREE, s->object_size - 1) ||
  702. !check_bytes_and_report(s, page, p, "Poison",
  703. p + s->object_size - 1, POISON_END, 1)))
  704. return 0;
  705. /*
  706. * check_pad_bytes cleans up on its own.
  707. */
  708. check_pad_bytes(s, page, p);
  709. }
  710. if (!s->offset && val == SLUB_RED_ACTIVE)
  711. /*
  712. * Object and freepointer overlap. Cannot check
  713. * freepointer while object is allocated.
  714. */
  715. return 1;
  716. /* Check free pointer validity */
  717. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  718. object_err(s, page, p, "Freepointer corrupt");
  719. /*
  720. * No choice but to zap it and thus lose the remainder
  721. * of the free objects in this slab. May cause
  722. * another error because the object count is now wrong.
  723. */
  724. set_freepointer(s, p, NULL);
  725. return 0;
  726. }
  727. return 1;
  728. }
  729. static int check_slab(struct kmem_cache *s, struct page *page)
  730. {
  731. int maxobj;
  732. VM_BUG_ON(!irqs_disabled());
  733. if (!PageSlab(page)) {
  734. slab_err(s, page, "Not a valid slab page");
  735. return 0;
  736. }
  737. maxobj = order_objects(compound_order(page), s->size, s->reserved);
  738. if (page->objects > maxobj) {
  739. slab_err(s, page, "objects %u > max %u",
  740. s->name, page->objects, maxobj);
  741. return 0;
  742. }
  743. if (page->inuse > page->objects) {
  744. slab_err(s, page, "inuse %u > max %u",
  745. s->name, page->inuse, page->objects);
  746. return 0;
  747. }
  748. /* Slab_pad_check fixes things up after itself */
  749. slab_pad_check(s, page);
  750. return 1;
  751. }
  752. /*
  753. * Determine if a certain object on a page is on the freelist. Must hold the
  754. * slab lock to guarantee that the chains are in a consistent state.
  755. */
  756. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  757. {
  758. int nr = 0;
  759. void *fp;
  760. void *object = NULL;
  761. unsigned long max_objects;
  762. fp = page->freelist;
  763. while (fp && nr <= page->objects) {
  764. if (fp == search)
  765. return 1;
  766. if (!check_valid_pointer(s, page, fp)) {
  767. if (object) {
  768. object_err(s, page, object,
  769. "Freechain corrupt");
  770. set_freepointer(s, object, NULL);
  771. } else {
  772. slab_err(s, page, "Freepointer corrupt");
  773. page->freelist = NULL;
  774. page->inuse = page->objects;
  775. slab_fix(s, "Freelist cleared");
  776. return 0;
  777. }
  778. break;
  779. }
  780. object = fp;
  781. fp = get_freepointer(s, object);
  782. nr++;
  783. }
  784. max_objects = order_objects(compound_order(page), s->size, s->reserved);
  785. if (max_objects > MAX_OBJS_PER_PAGE)
  786. max_objects = MAX_OBJS_PER_PAGE;
  787. if (page->objects != max_objects) {
  788. slab_err(s, page, "Wrong number of objects. Found %d but "
  789. "should be %d", page->objects, max_objects);
  790. page->objects = max_objects;
  791. slab_fix(s, "Number of objects adjusted.");
  792. }
  793. if (page->inuse != page->objects - nr) {
  794. slab_err(s, page, "Wrong object count. Counter is %d but "
  795. "counted were %d", page->inuse, page->objects - nr);
  796. page->inuse = page->objects - nr;
  797. slab_fix(s, "Object count adjusted.");
  798. }
  799. return search == NULL;
  800. }
  801. static void trace(struct kmem_cache *s, struct page *page, void *object,
  802. int alloc)
  803. {
  804. if (s->flags & SLAB_TRACE) {
  805. pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  806. s->name,
  807. alloc ? "alloc" : "free",
  808. object, page->inuse,
  809. page->freelist);
  810. if (!alloc)
  811. print_section("Object ", (void *)object,
  812. s->object_size);
  813. dump_stack();
  814. }
  815. }
  816. /*
  817. * Hooks for other subsystems that check memory allocations. In a typical
  818. * production configuration these hooks all should produce no code at all.
  819. */
  820. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  821. {
  822. kmemleak_alloc(ptr, size, 1, flags);
  823. }
  824. static inline void kfree_hook(const void *x)
  825. {
  826. kmemleak_free(x);
  827. }
  828. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  829. {
  830. flags &= gfp_allowed_mask;
  831. lockdep_trace_alloc(flags);
  832. might_sleep_if(flags & __GFP_WAIT);
  833. return should_failslab(s->object_size, flags, s->flags);
  834. }
  835. static inline void slab_post_alloc_hook(struct kmem_cache *s,
  836. gfp_t flags, void *object)
  837. {
  838. flags &= gfp_allowed_mask;
  839. kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
  840. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
  841. }
  842. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  843. {
  844. kmemleak_free_recursive(x, s->flags);
  845. /*
  846. * Trouble is that we may no longer disable interrupts in the fast path
  847. * So in order to make the debug calls that expect irqs to be
  848. * disabled we need to disable interrupts temporarily.
  849. */
  850. #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
  851. {
  852. unsigned long flags;
  853. local_irq_save(flags);
  854. kmemcheck_slab_free(s, x, s->object_size);
  855. debug_check_no_locks_freed(x, s->object_size);
  856. local_irq_restore(flags);
  857. }
  858. #endif
  859. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  860. debug_check_no_obj_freed(x, s->object_size);
  861. }
  862. /*
  863. * Tracking of fully allocated slabs for debugging purposes.
  864. */
  865. static void add_full(struct kmem_cache *s,
  866. struct kmem_cache_node *n, struct page *page)
  867. {
  868. if (!(s->flags & SLAB_STORE_USER))
  869. return;
  870. lockdep_assert_held(&n->list_lock);
  871. list_add(&page->lru, &n->full);
  872. }
  873. static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
  874. {
  875. if (!(s->flags & SLAB_STORE_USER))
  876. return;
  877. lockdep_assert_held(&n->list_lock);
  878. list_del(&page->lru);
  879. }
  880. /* Tracking of the number of slabs for debugging purposes */
  881. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  882. {
  883. struct kmem_cache_node *n = get_node(s, node);
  884. return atomic_long_read(&n->nr_slabs);
  885. }
  886. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  887. {
  888. return atomic_long_read(&n->nr_slabs);
  889. }
  890. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  891. {
  892. struct kmem_cache_node *n = get_node(s, node);
  893. /*
  894. * May be called early in order to allocate a slab for the
  895. * kmem_cache_node structure. Solve the chicken-egg
  896. * dilemma by deferring the increment of the count during
  897. * bootstrap (see early_kmem_cache_node_alloc).
  898. */
  899. if (likely(n)) {
  900. atomic_long_inc(&n->nr_slabs);
  901. atomic_long_add(objects, &n->total_objects);
  902. }
  903. }
  904. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  905. {
  906. struct kmem_cache_node *n = get_node(s, node);
  907. atomic_long_dec(&n->nr_slabs);
  908. atomic_long_sub(objects, &n->total_objects);
  909. }
  910. /* Object debug checks for alloc/free paths */
  911. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  912. void *object)
  913. {
  914. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  915. return;
  916. init_object(s, object, SLUB_RED_INACTIVE);
  917. init_tracking(s, object);
  918. }
  919. static noinline int alloc_debug_processing(struct kmem_cache *s,
  920. struct page *page,
  921. void *object, unsigned long addr)
  922. {
  923. if (!check_slab(s, page))
  924. goto bad;
  925. if (!check_valid_pointer(s, page, object)) {
  926. object_err(s, page, object, "Freelist Pointer check fails");
  927. goto bad;
  928. }
  929. if (!check_object(s, page, object, SLUB_RED_INACTIVE))
  930. goto bad;
  931. /* Success perform special debug activities for allocs */
  932. if (s->flags & SLAB_STORE_USER)
  933. set_track(s, object, TRACK_ALLOC, addr);
  934. trace(s, page, object, 1);
  935. init_object(s, object, SLUB_RED_ACTIVE);
  936. return 1;
  937. bad:
  938. if (PageSlab(page)) {
  939. /*
  940. * If this is a slab page then lets do the best we can
  941. * to avoid issues in the future. Marking all objects
  942. * as used avoids touching the remaining objects.
  943. */
  944. slab_fix(s, "Marking all objects used");
  945. page->inuse = page->objects;
  946. page->freelist = NULL;
  947. }
  948. return 0;
  949. }
  950. static noinline struct kmem_cache_node *free_debug_processing(
  951. struct kmem_cache *s, struct page *page, void *object,
  952. unsigned long addr, unsigned long *flags)
  953. {
  954. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  955. spin_lock_irqsave(&n->list_lock, *flags);
  956. slab_lock(page);
  957. if (!check_slab(s, page))
  958. goto fail;
  959. if (!check_valid_pointer(s, page, object)) {
  960. slab_err(s, page, "Invalid object pointer 0x%p", object);
  961. goto fail;
  962. }
  963. if (on_freelist(s, page, object)) {
  964. object_err(s, page, object, "Object already free");
  965. goto fail;
  966. }
  967. if (!check_object(s, page, object, SLUB_RED_ACTIVE))
  968. goto out;
  969. if (unlikely(s != page->slab_cache)) {
  970. if (!PageSlab(page)) {
  971. slab_err(s, page, "Attempt to free object(0x%p) "
  972. "outside of slab", object);
  973. } else if (!page->slab_cache) {
  974. pr_err("SLUB <none>: no slab for object 0x%p.\n",
  975. object);
  976. dump_stack();
  977. } else
  978. object_err(s, page, object,
  979. "page slab pointer corrupt.");
  980. goto fail;
  981. }
  982. if (s->flags & SLAB_STORE_USER)
  983. set_track(s, object, TRACK_FREE, addr);
  984. trace(s, page, object, 0);
  985. init_object(s, object, SLUB_RED_INACTIVE);
  986. out:
  987. slab_unlock(page);
  988. /*
  989. * Keep node_lock to preserve integrity
  990. * until the object is actually freed
  991. */
  992. return n;
  993. fail:
  994. slab_unlock(page);
  995. spin_unlock_irqrestore(&n->list_lock, *flags);
  996. slab_fix(s, "Object at 0x%p not freed", object);
  997. return NULL;
  998. }
  999. static int __init setup_slub_debug(char *str)
  1000. {
  1001. slub_debug = DEBUG_DEFAULT_FLAGS;
  1002. if (*str++ != '=' || !*str)
  1003. /*
  1004. * No options specified. Switch on full debugging.
  1005. */
  1006. goto out;
  1007. if (*str == ',')
  1008. /*
  1009. * No options but restriction on slabs. This means full
  1010. * debugging for slabs matching a pattern.
  1011. */
  1012. goto check_slabs;
  1013. if (tolower(*str) == 'o') {
  1014. /*
  1015. * Avoid enabling debugging on caches if its minimum order
  1016. * would increase as a result.
  1017. */
  1018. disable_higher_order_debug = 1;
  1019. goto out;
  1020. }
  1021. slub_debug = 0;
  1022. if (*str == '-')
  1023. /*
  1024. * Switch off all debugging measures.
  1025. */
  1026. goto out;
  1027. /*
  1028. * Determine which debug features should be switched on
  1029. */
  1030. for (; *str && *str != ','; str++) {
  1031. switch (tolower(*str)) {
  1032. case 'f':
  1033. slub_debug |= SLAB_DEBUG_FREE;
  1034. break;
  1035. case 'z':
  1036. slub_debug |= SLAB_RED_ZONE;
  1037. break;
  1038. case 'p':
  1039. slub_debug |= SLAB_POISON;
  1040. break;
  1041. case 'u':
  1042. slub_debug |= SLAB_STORE_USER;
  1043. break;
  1044. case 't':
  1045. slub_debug |= SLAB_TRACE;
  1046. break;
  1047. case 'a':
  1048. slub_debug |= SLAB_FAILSLAB;
  1049. break;
  1050. default:
  1051. pr_err("slub_debug option '%c' unknown. skipped\n",
  1052. *str);
  1053. }
  1054. }
  1055. check_slabs:
  1056. if (*str == ',')
  1057. slub_debug_slabs = str + 1;
  1058. out:
  1059. return 1;
  1060. }
  1061. __setup("slub_debug", setup_slub_debug);
  1062. static unsigned long kmem_cache_flags(unsigned long object_size,
  1063. unsigned long flags, const char *name,
  1064. void (*ctor)(void *))
  1065. {
  1066. /*
  1067. * Enable debugging if selected on the kernel commandline.
  1068. */
  1069. if (slub_debug && (!slub_debug_slabs || (name &&
  1070. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
  1071. flags |= slub_debug;
  1072. return flags;
  1073. }
  1074. #else
  1075. static inline void setup_object_debug(struct kmem_cache *s,
  1076. struct page *page, void *object) {}
  1077. static inline int alloc_debug_processing(struct kmem_cache *s,
  1078. struct page *page, void *object, unsigned long addr) { return 0; }
  1079. static inline struct kmem_cache_node *free_debug_processing(
  1080. struct kmem_cache *s, struct page *page, void *object,
  1081. unsigned long addr, unsigned long *flags) { return NULL; }
  1082. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  1083. { return 1; }
  1084. static inline int check_object(struct kmem_cache *s, struct page *page,
  1085. void *object, u8 val) { return 1; }
  1086. static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1087. struct page *page) {}
  1088. static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
  1089. struct page *page) {}
  1090. static inline unsigned long kmem_cache_flags(unsigned long object_size,
  1091. unsigned long flags, const char *name,
  1092. void (*ctor)(void *))
  1093. {
  1094. return flags;
  1095. }
  1096. #define slub_debug 0
  1097. #define disable_higher_order_debug 0
  1098. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  1099. { return 0; }
  1100. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  1101. { return 0; }
  1102. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  1103. int objects) {}
  1104. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  1105. int objects) {}
  1106. static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
  1107. {
  1108. kmemleak_alloc(ptr, size, 1, flags);
  1109. }
  1110. static inline void kfree_hook(const void *x)
  1111. {
  1112. kmemleak_free(x);
  1113. }
  1114. static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
  1115. { return 0; }
  1116. static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
  1117. void *object)
  1118. {
  1119. kmemleak_alloc_recursive(object, s->object_size, 1, s->flags,
  1120. flags & gfp_allowed_mask);
  1121. }
  1122. static inline void slab_free_hook(struct kmem_cache *s, void *x)
  1123. {
  1124. kmemleak_free_recursive(x, s->flags);
  1125. }
  1126. #endif /* CONFIG_SLUB_DEBUG */
  1127. /*
  1128. * Slab allocation and freeing
  1129. */
  1130. static inline struct page *alloc_slab_page(struct kmem_cache *s,
  1131. gfp_t flags, int node, struct kmem_cache_order_objects oo)
  1132. {
  1133. struct page *page;
  1134. int order = oo_order(oo);
  1135. flags |= __GFP_NOTRACK;
  1136. if (memcg_charge_slab(s, flags, order))
  1137. return NULL;
  1138. if (node == NUMA_NO_NODE)
  1139. page = alloc_pages(flags, order);
  1140. else
  1141. page = alloc_pages_exact_node(node, flags, order);
  1142. if (!page)
  1143. memcg_uncharge_slab(s, order);
  1144. return page;
  1145. }
  1146. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  1147. {
  1148. struct page *page;
  1149. struct kmem_cache_order_objects oo = s->oo;
  1150. gfp_t alloc_gfp;
  1151. flags &= gfp_allowed_mask;
  1152. if (flags & __GFP_WAIT)
  1153. local_irq_enable();
  1154. flags |= s->allocflags;
  1155. /*
  1156. * Let the initial higher-order allocation fail under memory pressure
  1157. * so we fall-back to the minimum order allocation.
  1158. */
  1159. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  1160. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1161. if (unlikely(!page)) {
  1162. oo = s->min;
  1163. alloc_gfp = flags;
  1164. /*
  1165. * Allocation may have failed due to fragmentation.
  1166. * Try a lower order alloc if possible
  1167. */
  1168. page = alloc_slab_page(s, alloc_gfp, node, oo);
  1169. if (page)
  1170. stat(s, ORDER_FALLBACK);
  1171. }
  1172. if (kmemcheck_enabled && page
  1173. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  1174. int pages = 1 << oo_order(oo);
  1175. kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
  1176. /*
  1177. * Objects from caches that have a constructor don't get
  1178. * cleared when they're allocated, so we need to do it here.
  1179. */
  1180. if (s->ctor)
  1181. kmemcheck_mark_uninitialized_pages(page, pages);
  1182. else
  1183. kmemcheck_mark_unallocated_pages(page, pages);
  1184. }
  1185. if (flags & __GFP_WAIT)
  1186. local_irq_disable();
  1187. if (!page)
  1188. return NULL;
  1189. page->objects = oo_objects(oo);
  1190. mod_zone_page_state(page_zone(page),
  1191. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1192. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1193. 1 << oo_order(oo));
  1194. return page;
  1195. }
  1196. static void setup_object(struct kmem_cache *s, struct page *page,
  1197. void *object)
  1198. {
  1199. setup_object_debug(s, page, object);
  1200. if (unlikely(s->ctor))
  1201. s->ctor(object);
  1202. }
  1203. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  1204. {
  1205. struct page *page;
  1206. void *start;
  1207. void *last;
  1208. void *p;
  1209. int order;
  1210. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  1211. page = allocate_slab(s,
  1212. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  1213. if (!page)
  1214. goto out;
  1215. order = compound_order(page);
  1216. inc_slabs_node(s, page_to_nid(page), page->objects);
  1217. page->slab_cache = s;
  1218. __SetPageSlab(page);
  1219. if (page->pfmemalloc)
  1220. SetPageSlabPfmemalloc(page);
  1221. start = page_address(page);
  1222. if (unlikely(s->flags & SLAB_POISON))
  1223. memset(start, POISON_INUSE, PAGE_SIZE << order);
  1224. last = start;
  1225. for_each_object(p, s, start, page->objects) {
  1226. setup_object(s, page, last);
  1227. set_freepointer(s, last, p);
  1228. last = p;
  1229. }
  1230. setup_object(s, page, last);
  1231. set_freepointer(s, last, NULL);
  1232. page->freelist = start;
  1233. page->inuse = page->objects;
  1234. page->frozen = 1;
  1235. out:
  1236. return page;
  1237. }
  1238. static void __free_slab(struct kmem_cache *s, struct page *page)
  1239. {
  1240. int order = compound_order(page);
  1241. int pages = 1 << order;
  1242. if (kmem_cache_debug(s)) {
  1243. void *p;
  1244. slab_pad_check(s, page);
  1245. for_each_object(p, s, page_address(page),
  1246. page->objects)
  1247. check_object(s, page, p, SLUB_RED_INACTIVE);
  1248. }
  1249. kmemcheck_free_shadow(page, compound_order(page));
  1250. mod_zone_page_state(page_zone(page),
  1251. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1252. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1253. -pages);
  1254. __ClearPageSlabPfmemalloc(page);
  1255. __ClearPageSlab(page);
  1256. page_mapcount_reset(page);
  1257. if (current->reclaim_state)
  1258. current->reclaim_state->reclaimed_slab += pages;
  1259. __free_pages(page, order);
  1260. memcg_uncharge_slab(s, order);
  1261. }
  1262. #define need_reserve_slab_rcu \
  1263. (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
  1264. static void rcu_free_slab(struct rcu_head *h)
  1265. {
  1266. struct page *page;
  1267. if (need_reserve_slab_rcu)
  1268. page = virt_to_head_page(h);
  1269. else
  1270. page = container_of((struct list_head *)h, struct page, lru);
  1271. __free_slab(page->slab_cache, page);
  1272. }
  1273. static void free_slab(struct kmem_cache *s, struct page *page)
  1274. {
  1275. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1276. struct rcu_head *head;
  1277. if (need_reserve_slab_rcu) {
  1278. int order = compound_order(page);
  1279. int offset = (PAGE_SIZE << order) - s->reserved;
  1280. VM_BUG_ON(s->reserved != sizeof(*head));
  1281. head = page_address(page) + offset;
  1282. } else {
  1283. /*
  1284. * RCU free overloads the RCU head over the LRU
  1285. */
  1286. head = (void *)&page->lru;
  1287. }
  1288. call_rcu(head, rcu_free_slab);
  1289. } else
  1290. __free_slab(s, page);
  1291. }
  1292. static void discard_slab(struct kmem_cache *s, struct page *page)
  1293. {
  1294. dec_slabs_node(s, page_to_nid(page), page->objects);
  1295. free_slab(s, page);
  1296. }
  1297. /*
  1298. * Management of partially allocated slabs.
  1299. */
  1300. static inline void
  1301. __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
  1302. {
  1303. n->nr_partial++;
  1304. if (tail == DEACTIVATE_TO_TAIL)
  1305. list_add_tail(&page->lru, &n->partial);
  1306. else
  1307. list_add(&page->lru, &n->partial);
  1308. }
  1309. static inline void add_partial(struct kmem_cache_node *n,
  1310. struct page *page, int tail)
  1311. {
  1312. lockdep_assert_held(&n->list_lock);
  1313. __add_partial(n, page, tail);
  1314. }
  1315. static inline void
  1316. __remove_partial(struct kmem_cache_node *n, struct page *page)
  1317. {
  1318. list_del(&page->lru);
  1319. n->nr_partial--;
  1320. }
  1321. static inline void remove_partial(struct kmem_cache_node *n,
  1322. struct page *page)
  1323. {
  1324. lockdep_assert_held(&n->list_lock);
  1325. __remove_partial(n, page);
  1326. }
  1327. /*
  1328. * Remove slab from the partial list, freeze it and
  1329. * return the pointer to the freelist.
  1330. *
  1331. * Returns a list of objects or NULL if it fails.
  1332. */
  1333. static inline void *acquire_slab(struct kmem_cache *s,
  1334. struct kmem_cache_node *n, struct page *page,
  1335. int mode, int *objects)
  1336. {
  1337. void *freelist;
  1338. unsigned long counters;
  1339. struct page new;
  1340. lockdep_assert_held(&n->list_lock);
  1341. /*
  1342. * Zap the freelist and set the frozen bit.
  1343. * The old freelist is the list of objects for the
  1344. * per cpu allocation list.
  1345. */
  1346. freelist = page->freelist;
  1347. counters = page->counters;
  1348. new.counters = counters;
  1349. *objects = new.objects - new.inuse;
  1350. if (mode) {
  1351. new.inuse = page->objects;
  1352. new.freelist = NULL;
  1353. } else {
  1354. new.freelist = freelist;
  1355. }
  1356. VM_BUG_ON(new.frozen);
  1357. new.frozen = 1;
  1358. if (!__cmpxchg_double_slab(s, page,
  1359. freelist, counters,
  1360. new.freelist, new.counters,
  1361. "acquire_slab"))
  1362. return NULL;
  1363. remove_partial(n, page);
  1364. WARN_ON(!freelist);
  1365. return freelist;
  1366. }
  1367. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
  1368. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
  1369. /*
  1370. * Try to allocate a partial slab from a specific node.
  1371. */
  1372. static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
  1373. struct kmem_cache_cpu *c, gfp_t flags)
  1374. {
  1375. struct page *page, *page2;
  1376. void *object = NULL;
  1377. int available = 0;
  1378. int objects;
  1379. /*
  1380. * Racy check. If we mistakenly see no partial slabs then we
  1381. * just allocate an empty slab. If we mistakenly try to get a
  1382. * partial slab and there is none available then get_partials()
  1383. * will return NULL.
  1384. */
  1385. if (!n || !n->nr_partial)
  1386. return NULL;
  1387. spin_lock(&n->list_lock);
  1388. list_for_each_entry_safe(page, page2, &n->partial, lru) {
  1389. void *t;
  1390. if (!pfmemalloc_match(page, flags))
  1391. continue;
  1392. t = acquire_slab(s, n, page, object == NULL, &objects);
  1393. if (!t)
  1394. break;
  1395. available += objects;
  1396. if (!object) {
  1397. c->page = page;
  1398. stat(s, ALLOC_FROM_PARTIAL);
  1399. object = t;
  1400. } else {
  1401. put_cpu_partial(s, page, 0);
  1402. stat(s, CPU_PARTIAL_NODE);
  1403. }
  1404. if (!kmem_cache_has_cpu_partial(s)
  1405. || available > s->cpu_partial / 2)
  1406. break;
  1407. }
  1408. spin_unlock(&n->list_lock);
  1409. return object;
  1410. }
  1411. /*
  1412. * Get a page from somewhere. Search in increasing NUMA distances.
  1413. */
  1414. static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
  1415. struct kmem_cache_cpu *c)
  1416. {
  1417. #ifdef CONFIG_NUMA
  1418. struct zonelist *zonelist;
  1419. struct zoneref *z;
  1420. struct zone *zone;
  1421. enum zone_type high_zoneidx = gfp_zone(flags);
  1422. void *object;
  1423. unsigned int cpuset_mems_cookie;
  1424. /*
  1425. * The defrag ratio allows a configuration of the tradeoffs between
  1426. * inter node defragmentation and node local allocations. A lower
  1427. * defrag_ratio increases the tendency to do local allocations
  1428. * instead of attempting to obtain partial slabs from other nodes.
  1429. *
  1430. * If the defrag_ratio is set to 0 then kmalloc() always
  1431. * returns node local objects. If the ratio is higher then kmalloc()
  1432. * may return off node objects because partial slabs are obtained
  1433. * from other nodes and filled up.
  1434. *
  1435. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1436. * defrag_ratio = 1000) then every (well almost) allocation will
  1437. * first attempt to defrag slab caches on other nodes. This means
  1438. * scanning over all nodes to look for partial slabs which may be
  1439. * expensive if we do it every time we are trying to find a slab
  1440. * with available objects.
  1441. */
  1442. if (!s->remote_node_defrag_ratio ||
  1443. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1444. return NULL;
  1445. do {
  1446. cpuset_mems_cookie = read_mems_allowed_begin();
  1447. zonelist = node_zonelist(mempolicy_slab_node(), flags);
  1448. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1449. struct kmem_cache_node *n;
  1450. n = get_node(s, zone_to_nid(zone));
  1451. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1452. n->nr_partial > s->min_partial) {
  1453. object = get_partial_node(s, n, c, flags);
  1454. if (object) {
  1455. /*
  1456. * Don't check read_mems_allowed_retry()
  1457. * here - if mems_allowed was updated in
  1458. * parallel, that was a harmless race
  1459. * between allocation and the cpuset
  1460. * update
  1461. */
  1462. return object;
  1463. }
  1464. }
  1465. }
  1466. } while (read_mems_allowed_retry(cpuset_mems_cookie));
  1467. #endif
  1468. return NULL;
  1469. }
  1470. /*
  1471. * Get a partial page, lock it and return it.
  1472. */
  1473. static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
  1474. struct kmem_cache_cpu *c)
  1475. {
  1476. void *object;
  1477. int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
  1478. object = get_partial_node(s, get_node(s, searchnode), c, flags);
  1479. if (object || node != NUMA_NO_NODE)
  1480. return object;
  1481. return get_any_partial(s, flags, c);
  1482. }
  1483. #ifdef CONFIG_PREEMPT
  1484. /*
  1485. * Calculate the next globally unique transaction for disambiguiation
  1486. * during cmpxchg. The transactions start with the cpu number and are then
  1487. * incremented by CONFIG_NR_CPUS.
  1488. */
  1489. #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
  1490. #else
  1491. /*
  1492. * No preemption supported therefore also no need to check for
  1493. * different cpus.
  1494. */
  1495. #define TID_STEP 1
  1496. #endif
  1497. static inline unsigned long next_tid(unsigned long tid)
  1498. {
  1499. return tid + TID_STEP;
  1500. }
  1501. static inline unsigned int tid_to_cpu(unsigned long tid)
  1502. {
  1503. return tid % TID_STEP;
  1504. }
  1505. static inline unsigned long tid_to_event(unsigned long tid)
  1506. {
  1507. return tid / TID_STEP;
  1508. }
  1509. static inline unsigned int init_tid(int cpu)
  1510. {
  1511. return cpu;
  1512. }
  1513. static inline void note_cmpxchg_failure(const char *n,
  1514. const struct kmem_cache *s, unsigned long tid)
  1515. {
  1516. #ifdef SLUB_DEBUG_CMPXCHG
  1517. unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
  1518. pr_info("%s %s: cmpxchg redo ", n, s->name);
  1519. #ifdef CONFIG_PREEMPT
  1520. if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
  1521. pr_warn("due to cpu change %d -> %d\n",
  1522. tid_to_cpu(tid), tid_to_cpu(actual_tid));
  1523. else
  1524. #endif
  1525. if (tid_to_event(tid) != tid_to_event(actual_tid))
  1526. pr_warn("due to cpu running other code. Event %ld->%ld\n",
  1527. tid_to_event(tid), tid_to_event(actual_tid));
  1528. else
  1529. pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
  1530. actual_tid, tid, next_tid(tid));
  1531. #endif
  1532. stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
  1533. }
  1534. static void init_kmem_cache_cpus(struct kmem_cache *s)
  1535. {
  1536. int cpu;
  1537. for_each_possible_cpu(cpu)
  1538. per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
  1539. }
  1540. /*
  1541. * Remove the cpu slab
  1542. */
  1543. static void deactivate_slab(struct kmem_cache *s, struct page *page,
  1544. void *freelist)
  1545. {
  1546. enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
  1547. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1548. int lock = 0;
  1549. enum slab_modes l = M_NONE, m = M_NONE;
  1550. void *nextfree;
  1551. int tail = DEACTIVATE_TO_HEAD;
  1552. struct page new;
  1553. struct page old;
  1554. if (page->freelist) {
  1555. stat(s, DEACTIVATE_REMOTE_FREES);
  1556. tail = DEACTIVATE_TO_TAIL;
  1557. }
  1558. /*
  1559. * Stage one: Free all available per cpu objects back
  1560. * to the page freelist while it is still frozen. Leave the
  1561. * last one.
  1562. *
  1563. * There is no need to take the list->lock because the page
  1564. * is still frozen.
  1565. */
  1566. while (freelist && (nextfree = get_freepointer(s, freelist))) {
  1567. void *prior;
  1568. unsigned long counters;
  1569. do {
  1570. prior = page->freelist;
  1571. counters = page->counters;
  1572. set_freepointer(s, freelist, prior);
  1573. new.counters = counters;
  1574. new.inuse--;
  1575. VM_BUG_ON(!new.frozen);
  1576. } while (!__cmpxchg_double_slab(s, page,
  1577. prior, counters,
  1578. freelist, new.counters,
  1579. "drain percpu freelist"));
  1580. freelist = nextfree;
  1581. }
  1582. /*
  1583. * Stage two: Ensure that the page is unfrozen while the
  1584. * list presence reflects the actual number of objects
  1585. * during unfreeze.
  1586. *
  1587. * We setup the list membership and then perform a cmpxchg
  1588. * with the count. If there is a mismatch then the page
  1589. * is not unfrozen but the page is on the wrong list.
  1590. *
  1591. * Then we restart the process which may have to remove
  1592. * the page from the list that we just put it on again
  1593. * because the number of objects in the slab may have
  1594. * changed.
  1595. */
  1596. redo:
  1597. old.freelist = page->freelist;
  1598. old.counters = page->counters;
  1599. VM_BUG_ON(!old.frozen);
  1600. /* Determine target state of the slab */
  1601. new.counters = old.counters;
  1602. if (freelist) {
  1603. new.inuse--;
  1604. set_freepointer(s, freelist, old.freelist);
  1605. new.freelist = freelist;
  1606. } else
  1607. new.freelist = old.freelist;
  1608. new.frozen = 0;
  1609. if (!new.inuse && n->nr_partial >= s->min_partial)
  1610. m = M_FREE;
  1611. else if (new.freelist) {
  1612. m = M_PARTIAL;
  1613. if (!lock) {
  1614. lock = 1;
  1615. /*
  1616. * Taking the spinlock removes the possiblity
  1617. * that acquire_slab() will see a slab page that
  1618. * is frozen
  1619. */
  1620. spin_lock(&n->list_lock);
  1621. }
  1622. } else {
  1623. m = M_FULL;
  1624. if (kmem_cache_debug(s) && !lock) {
  1625. lock = 1;
  1626. /*
  1627. * This also ensures that the scanning of full
  1628. * slabs from diagnostic functions will not see
  1629. * any frozen slabs.
  1630. */
  1631. spin_lock(&n->list_lock);
  1632. }
  1633. }
  1634. if (l != m) {
  1635. if (l == M_PARTIAL)
  1636. remove_partial(n, page);
  1637. else if (l == M_FULL)
  1638. remove_full(s, n, page);
  1639. if (m == M_PARTIAL) {
  1640. add_partial(n, page, tail);
  1641. stat(s, tail);
  1642. } else if (m == M_FULL) {
  1643. stat(s, DEACTIVATE_FULL);
  1644. add_full(s, n, page);
  1645. }
  1646. }
  1647. l = m;
  1648. if (!__cmpxchg_double_slab(s, page,
  1649. old.freelist, old.counters,
  1650. new.freelist, new.counters,
  1651. "unfreezing slab"))
  1652. goto redo;
  1653. if (lock)
  1654. spin_unlock(&n->list_lock);
  1655. if (m == M_FREE) {
  1656. stat(s, DEACTIVATE_EMPTY);
  1657. discard_slab(s, page);
  1658. stat(s, FREE_SLAB);
  1659. }
  1660. }
  1661. /*
  1662. * Unfreeze all the cpu partial slabs.
  1663. *
  1664. * This function must be called with interrupts disabled
  1665. * for the cpu using c (or some other guarantee must be there
  1666. * to guarantee no concurrent accesses).
  1667. */
  1668. static void unfreeze_partials(struct kmem_cache *s,
  1669. struct kmem_cache_cpu *c)
  1670. {
  1671. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1672. struct kmem_cache_node *n = NULL, *n2 = NULL;
  1673. struct page *page, *discard_page = NULL;
  1674. while ((page = c->partial)) {
  1675. struct page new;
  1676. struct page old;
  1677. c->partial = page->next;
  1678. n2 = get_node(s, page_to_nid(page));
  1679. if (n != n2) {
  1680. if (n)
  1681. spin_unlock(&n->list_lock);
  1682. n = n2;
  1683. spin_lock(&n->list_lock);
  1684. }
  1685. do {
  1686. old.freelist = page->freelist;
  1687. old.counters = page->counters;
  1688. VM_BUG_ON(!old.frozen);
  1689. new.counters = old.counters;
  1690. new.freelist = old.freelist;
  1691. new.frozen = 0;
  1692. } while (!__cmpxchg_double_slab(s, page,
  1693. old.freelist, old.counters,
  1694. new.freelist, new.counters,
  1695. "unfreezing slab"));
  1696. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
  1697. page->next = discard_page;
  1698. discard_page = page;
  1699. } else {
  1700. add_partial(n, page, DEACTIVATE_TO_TAIL);
  1701. stat(s, FREE_ADD_PARTIAL);
  1702. }
  1703. }
  1704. if (n)
  1705. spin_unlock(&n->list_lock);
  1706. while (discard_page) {
  1707. page = discard_page;
  1708. discard_page = discard_page->next;
  1709. stat(s, DEACTIVATE_EMPTY);
  1710. discard_slab(s, page);
  1711. stat(s, FREE_SLAB);
  1712. }
  1713. #endif
  1714. }
  1715. /*
  1716. * Put a page that was just frozen (in __slab_free) into a partial page
  1717. * slot if available. This is done without interrupts disabled and without
  1718. * preemption disabled. The cmpxchg is racy and may put the partial page
  1719. * onto a random cpus partial slot.
  1720. *
  1721. * If we did not find a slot then simply move all the partials to the
  1722. * per node partial list.
  1723. */
  1724. static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
  1725. {
  1726. #ifdef CONFIG_SLUB_CPU_PARTIAL
  1727. struct page *oldpage;
  1728. int pages;
  1729. int pobjects;
  1730. do {
  1731. pages = 0;
  1732. pobjects = 0;
  1733. oldpage = this_cpu_read(s->cpu_slab->partial);
  1734. if (oldpage) {
  1735. pobjects = oldpage->pobjects;
  1736. pages = oldpage->pages;
  1737. if (drain && pobjects > s->cpu_partial) {
  1738. unsigned long flags;
  1739. /*
  1740. * partial array is full. Move the existing
  1741. * set to the per node partial list.
  1742. */
  1743. local_irq_save(flags);
  1744. unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
  1745. local_irq_restore(flags);
  1746. oldpage = NULL;
  1747. pobjects = 0;
  1748. pages = 0;
  1749. stat(s, CPU_PARTIAL_DRAIN);
  1750. }
  1751. }
  1752. pages++;
  1753. pobjects += page->objects - page->inuse;
  1754. page->pages = pages;
  1755. page->pobjects = pobjects;
  1756. page->next = oldpage;
  1757. } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
  1758. != oldpage);
  1759. #endif
  1760. }
  1761. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1762. {
  1763. stat(s, CPUSLAB_FLUSH);
  1764. deactivate_slab(s, c->page, c->freelist);
  1765. c->tid = next_tid(c->tid);
  1766. c->page = NULL;
  1767. c->freelist = NULL;
  1768. }
  1769. /*
  1770. * Flush cpu slab.
  1771. *
  1772. * Called from IPI handler with interrupts disabled.
  1773. */
  1774. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1775. {
  1776. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1777. if (likely(c)) {
  1778. if (c->page)
  1779. flush_slab(s, c);
  1780. unfreeze_partials(s, c);
  1781. }
  1782. }
  1783. static void flush_cpu_slab(void *d)
  1784. {
  1785. struct kmem_cache *s = d;
  1786. __flush_cpu_slab(s, smp_processor_id());
  1787. }
  1788. static bool has_cpu_slab(int cpu, void *info)
  1789. {
  1790. struct kmem_cache *s = info;
  1791. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1792. return c->page || c->partial;
  1793. }
  1794. static void flush_all(struct kmem_cache *s)
  1795. {
  1796. on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
  1797. }
  1798. /*
  1799. * Check if the objects in a per cpu structure fit numa
  1800. * locality expectations.
  1801. */
  1802. static inline int node_match(struct page *page, int node)
  1803. {
  1804. #ifdef CONFIG_NUMA
  1805. if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
  1806. return 0;
  1807. #endif
  1808. return 1;
  1809. }
  1810. #ifdef CONFIG_SLUB_DEBUG
  1811. static int count_free(struct page *page)
  1812. {
  1813. return page->objects - page->inuse;
  1814. }
  1815. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1816. {
  1817. return atomic_long_read(&n->total_objects);
  1818. }
  1819. #endif /* CONFIG_SLUB_DEBUG */
  1820. #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
  1821. static unsigned long count_partial(struct kmem_cache_node *n,
  1822. int (*get_count)(struct page *))
  1823. {
  1824. unsigned long flags;
  1825. unsigned long x = 0;
  1826. struct page *page;
  1827. spin_lock_irqsave(&n->list_lock, flags);
  1828. list_for_each_entry(page, &n->partial, lru)
  1829. x += get_count(page);
  1830. spin_unlock_irqrestore(&n->list_lock, flags);
  1831. return x;
  1832. }
  1833. #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
  1834. static noinline void
  1835. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1836. {
  1837. #ifdef CONFIG_SLUB_DEBUG
  1838. static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
  1839. DEFAULT_RATELIMIT_BURST);
  1840. int node;
  1841. if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
  1842. return;
  1843. pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1844. nid, gfpflags);
  1845. pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
  1846. s->name, s->object_size, s->size, oo_order(s->oo),
  1847. oo_order(s->min));
  1848. if (oo_order(s->min) > get_order(s->object_size))
  1849. pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
  1850. s->name);
  1851. for_each_online_node(node) {
  1852. struct kmem_cache_node *n = get_node(s, node);
  1853. unsigned long nr_slabs;
  1854. unsigned long nr_objs;
  1855. unsigned long nr_free;
  1856. if (!n)
  1857. continue;
  1858. nr_free = count_partial(n, count_free);
  1859. nr_slabs = node_nr_slabs(n);
  1860. nr_objs = node_nr_objs(n);
  1861. pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1862. node, nr_slabs, nr_objs, nr_free);
  1863. }
  1864. #endif
  1865. }
  1866. static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
  1867. int node, struct kmem_cache_cpu **pc)
  1868. {
  1869. void *freelist;
  1870. struct kmem_cache_cpu *c = *pc;
  1871. struct page *page;
  1872. freelist = get_partial(s, flags, node, c);
  1873. if (freelist)
  1874. return freelist;
  1875. page = new_slab(s, flags, node);
  1876. if (page) {
  1877. c = raw_cpu_ptr(s->cpu_slab);
  1878. if (c->page)
  1879. flush_slab(s, c);
  1880. /*
  1881. * No other reference to the page yet so we can
  1882. * muck around with it freely without cmpxchg
  1883. */
  1884. freelist = page->freelist;
  1885. page->freelist = NULL;
  1886. stat(s, ALLOC_SLAB);
  1887. c->page = page;
  1888. *pc = c;
  1889. } else
  1890. freelist = NULL;
  1891. return freelist;
  1892. }
  1893. static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
  1894. {
  1895. if (unlikely(PageSlabPfmemalloc(page)))
  1896. return gfp_pfmemalloc_allowed(gfpflags);
  1897. return true;
  1898. }
  1899. /*
  1900. * Check the page->freelist of a page and either transfer the freelist to the
  1901. * per cpu freelist or deactivate the page.
  1902. *
  1903. * The page is still frozen if the return value is not NULL.
  1904. *
  1905. * If this function returns NULL then the page has been unfrozen.
  1906. *
  1907. * This function must be called with interrupt disabled.
  1908. */
  1909. static inline void *get_freelist(struct kmem_cache *s, struct page *page)
  1910. {
  1911. struct page new;
  1912. unsigned long counters;
  1913. void *freelist;
  1914. do {
  1915. freelist = page->freelist;
  1916. counters = page->counters;
  1917. new.counters = counters;
  1918. VM_BUG_ON(!new.frozen);
  1919. new.inuse = page->objects;
  1920. new.frozen = freelist != NULL;
  1921. } while (!__cmpxchg_double_slab(s, page,
  1922. freelist, counters,
  1923. NULL, new.counters,
  1924. "get_freelist"));
  1925. return freelist;
  1926. }
  1927. /*
  1928. * Slow path. The lockless freelist is empty or we need to perform
  1929. * debugging duties.
  1930. *
  1931. * Processing is still very fast if new objects have been freed to the
  1932. * regular freelist. In that case we simply take over the regular freelist
  1933. * as the lockless freelist and zap the regular freelist.
  1934. *
  1935. * If that is not working then we fall back to the partial lists. We take the
  1936. * first element of the freelist as the object to allocate now and move the
  1937. * rest of the freelist to the lockless freelist.
  1938. *
  1939. * And if we were unable to get a new slab from the partial slab lists then
  1940. * we need to allocate a new slab. This is the slowest path since it involves
  1941. * a call to the page allocator and the setup of a new slab.
  1942. */
  1943. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1944. unsigned long addr, struct kmem_cache_cpu *c)
  1945. {
  1946. void *freelist;
  1947. struct page *page;
  1948. unsigned long flags;
  1949. local_irq_save(flags);
  1950. #ifdef CONFIG_PREEMPT
  1951. /*
  1952. * We may have been preempted and rescheduled on a different
  1953. * cpu before disabling interrupts. Need to reload cpu area
  1954. * pointer.
  1955. */
  1956. c = this_cpu_ptr(s->cpu_slab);
  1957. #endif
  1958. page = c->page;
  1959. if (!page)
  1960. goto new_slab;
  1961. redo:
  1962. if (unlikely(!node_match(page, node))) {
  1963. stat(s, ALLOC_NODE_MISMATCH);
  1964. deactivate_slab(s, page, c->freelist);
  1965. c->page = NULL;
  1966. c->freelist = NULL;
  1967. goto new_slab;
  1968. }
  1969. /*
  1970. * By rights, we should be searching for a slab page that was
  1971. * PFMEMALLOC but right now, we are losing the pfmemalloc
  1972. * information when the page leaves the per-cpu allocator
  1973. */
  1974. if (unlikely(!pfmemalloc_match(page, gfpflags))) {
  1975. deactivate_slab(s, page, c->freelist);
  1976. c->page = NULL;
  1977. c->freelist = NULL;
  1978. goto new_slab;
  1979. }
  1980. /* must check again c->freelist in case of cpu migration or IRQ */
  1981. freelist = c->freelist;
  1982. if (freelist)
  1983. goto load_freelist;
  1984. freelist = get_freelist(s, page);
  1985. if (!freelist) {
  1986. c->page = NULL;
  1987. stat(s, DEACTIVATE_BYPASS);
  1988. goto new_slab;
  1989. }
  1990. stat(s, ALLOC_REFILL);
  1991. load_freelist:
  1992. /*
  1993. * freelist is pointing to the list of objects to be used.
  1994. * page is pointing to the page from which the objects are obtained.
  1995. * That page must be frozen for per cpu allocations to work.
  1996. */
  1997. VM_BUG_ON(!c->page->frozen);
  1998. c->freelist = get_freepointer(s, freelist);
  1999. c->tid = next_tid(c->tid);
  2000. local_irq_restore(flags);
  2001. return freelist;
  2002. new_slab:
  2003. if (c->partial) {
  2004. page = c->page = c->partial;
  2005. c->partial = page->next;
  2006. stat(s, CPU_PARTIAL_ALLOC);
  2007. c->freelist = NULL;
  2008. goto redo;
  2009. }
  2010. freelist = new_slab_objects(s, gfpflags, node, &c);
  2011. if (unlikely(!freelist)) {
  2012. slab_out_of_memory(s, gfpflags, node);
  2013. local_irq_restore(flags);
  2014. return NULL;
  2015. }
  2016. page = c->page;
  2017. if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
  2018. goto load_freelist;
  2019. /* Only entered in the debug case */
  2020. if (kmem_cache_debug(s) &&
  2021. !alloc_debug_processing(s, page, freelist, addr))
  2022. goto new_slab; /* Slab failed checks. Next slab needed */
  2023. deactivate_slab(s, page, get_freepointer(s, freelist));
  2024. c->page = NULL;
  2025. c->freelist = NULL;
  2026. local_irq_restore(flags);
  2027. return freelist;
  2028. }
  2029. /*
  2030. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  2031. * have the fastpath folded into their functions. So no function call
  2032. * overhead for requests that can be satisfied on the fastpath.
  2033. *
  2034. * The fastpath works by first checking if the lockless freelist can be used.
  2035. * If not then __slab_alloc is called for slow processing.
  2036. *
  2037. * Otherwise we can simply pick the next object from the lockless free list.
  2038. */
  2039. static __always_inline void *slab_alloc_node(struct kmem_cache *s,
  2040. gfp_t gfpflags, int node, unsigned long addr)
  2041. {
  2042. void **object;
  2043. struct kmem_cache_cpu *c;
  2044. struct page *page;
  2045. unsigned long tid;
  2046. if (slab_pre_alloc_hook(s, gfpflags))
  2047. return NULL;
  2048. s = memcg_kmem_get_cache(s, gfpflags);
  2049. redo:
  2050. /*
  2051. * Must read kmem_cache cpu data via this cpu ptr. Preemption is
  2052. * enabled. We may switch back and forth between cpus while
  2053. * reading from one cpu area. That does not matter as long
  2054. * as we end up on the original cpu again when doing the cmpxchg.
  2055. *
  2056. * Preemption is disabled for the retrieval of the tid because that
  2057. * must occur from the current processor. We cannot allow rescheduling
  2058. * on a different processor between the determination of the pointer
  2059. * and the retrieval of the tid.
  2060. */
  2061. preempt_disable();
  2062. c = this_cpu_ptr(s->cpu_slab);
  2063. /*
  2064. * The transaction ids are globally unique per cpu and per operation on
  2065. * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
  2066. * occurs on the right processor and that there was no operation on the
  2067. * linked list in between.
  2068. */
  2069. tid = c->tid;
  2070. preempt_enable();
  2071. object = c->freelist;
  2072. page = c->page;
  2073. if (unlikely(!object || !node_match(page, node))) {
  2074. object = __slab_alloc(s, gfpflags, node, addr, c);
  2075. stat(s, ALLOC_SLOWPATH);
  2076. } else {
  2077. void *next_object = get_freepointer_safe(s, object);
  2078. /*
  2079. * The cmpxchg will only match if there was no additional
  2080. * operation and if we are on the right processor.
  2081. *
  2082. * The cmpxchg does the following atomically (without lock
  2083. * semantics!)
  2084. * 1. Relocate first pointer to the current per cpu area.
  2085. * 2. Verify that tid and freelist have not been changed
  2086. * 3. If they were not changed replace tid and freelist
  2087. *
  2088. * Since this is without lock semantics the protection is only
  2089. * against code executing on this cpu *not* from access by
  2090. * other cpus.
  2091. */
  2092. if (unlikely(!this_cpu_cmpxchg_double(
  2093. s->cpu_slab->freelist, s->cpu_slab->tid,
  2094. object, tid,
  2095. next_object, next_tid(tid)))) {
  2096. note_cmpxchg_failure("slab_alloc", s, tid);
  2097. goto redo;
  2098. }
  2099. prefetch_freepointer(s, next_object);
  2100. stat(s, ALLOC_FASTPATH);
  2101. }
  2102. if (unlikely(gfpflags & __GFP_ZERO) && object)
  2103. memset(object, 0, s->object_size);
  2104. slab_post_alloc_hook(s, gfpflags, object);
  2105. return object;
  2106. }
  2107. static __always_inline void *slab_alloc(struct kmem_cache *s,
  2108. gfp_t gfpflags, unsigned long addr)
  2109. {
  2110. return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
  2111. }
  2112. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  2113. {
  2114. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2115. trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
  2116. s->size, gfpflags);
  2117. return ret;
  2118. }
  2119. EXPORT_SYMBOL(kmem_cache_alloc);
  2120. #ifdef CONFIG_TRACING
  2121. void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
  2122. {
  2123. void *ret = slab_alloc(s, gfpflags, _RET_IP_);
  2124. trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
  2125. return ret;
  2126. }
  2127. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  2128. #endif
  2129. #ifdef CONFIG_NUMA
  2130. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  2131. {
  2132. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2133. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  2134. s->object_size, s->size, gfpflags, node);
  2135. return ret;
  2136. }
  2137. EXPORT_SYMBOL(kmem_cache_alloc_node);
  2138. #ifdef CONFIG_TRACING
  2139. void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
  2140. gfp_t gfpflags,
  2141. int node, size_t size)
  2142. {
  2143. void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
  2144. trace_kmalloc_node(_RET_IP_, ret,
  2145. size, s->size, gfpflags, node);
  2146. return ret;
  2147. }
  2148. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  2149. #endif
  2150. #endif
  2151. /*
  2152. * Slow patch handling. This may still be called frequently since objects
  2153. * have a longer lifetime than the cpu slabs in most processing loads.
  2154. *
  2155. * So we still attempt to reduce cache line usage. Just take the slab
  2156. * lock and free the item. If there is no additional partial page
  2157. * handling required then we can return immediately.
  2158. */
  2159. static void __slab_free(struct kmem_cache *s, struct page *page,
  2160. void *x, unsigned long addr)
  2161. {
  2162. void *prior;
  2163. void **object = (void *)x;
  2164. int was_frozen;
  2165. struct page new;
  2166. unsigned long counters;
  2167. struct kmem_cache_node *n = NULL;
  2168. unsigned long uninitialized_var(flags);
  2169. stat(s, FREE_SLOWPATH);
  2170. if (kmem_cache_debug(s) &&
  2171. !(n = free_debug_processing(s, page, x, addr, &flags)))
  2172. return;
  2173. do {
  2174. if (unlikely(n)) {
  2175. spin_unlock_irqrestore(&n->list_lock, flags);
  2176. n = NULL;
  2177. }
  2178. prior = page->freelist;
  2179. counters = page->counters;
  2180. set_freepointer(s, object, prior);
  2181. new.counters = counters;
  2182. was_frozen = new.frozen;
  2183. new.inuse--;
  2184. if ((!new.inuse || !prior) && !was_frozen) {
  2185. if (kmem_cache_has_cpu_partial(s) && !prior) {
  2186. /*
  2187. * Slab was on no list before and will be
  2188. * partially empty
  2189. * We can defer the list move and instead
  2190. * freeze it.
  2191. */
  2192. new.frozen = 1;
  2193. } else { /* Needs to be taken off a list */
  2194. n = get_node(s, page_to_nid(page));
  2195. /*
  2196. * Speculatively acquire the list_lock.
  2197. * If the cmpxchg does not succeed then we may
  2198. * drop the list_lock without any processing.
  2199. *
  2200. * Otherwise the list_lock will synchronize with
  2201. * other processors updating the list of slabs.
  2202. */
  2203. spin_lock_irqsave(&n->list_lock, flags);
  2204. }
  2205. }
  2206. } while (!cmpxchg_double_slab(s, page,
  2207. prior, counters,
  2208. object, new.counters,
  2209. "__slab_free"));
  2210. if (likely(!n)) {
  2211. /*
  2212. * If we just froze the page then put it onto the
  2213. * per cpu partial list.
  2214. */
  2215. if (new.frozen && !was_frozen) {
  2216. put_cpu_partial(s, page, 1);
  2217. stat(s, CPU_PARTIAL_FREE);
  2218. }
  2219. /*
  2220. * The list lock was not taken therefore no list
  2221. * activity can be necessary.
  2222. */
  2223. if (was_frozen)
  2224. stat(s, FREE_FROZEN);
  2225. return;
  2226. }
  2227. if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
  2228. goto slab_empty;
  2229. /*
  2230. * Objects left in the slab. If it was not on the partial list before
  2231. * then add it.
  2232. */
  2233. if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
  2234. if (kmem_cache_debug(s))
  2235. remove_full(s, n, page);
  2236. add_partial(n, page, DEACTIVATE_TO_TAIL);
  2237. stat(s, FREE_ADD_PARTIAL);
  2238. }
  2239. spin_unlock_irqrestore(&n->list_lock, flags);
  2240. return;
  2241. slab_empty:
  2242. if (prior) {
  2243. /*
  2244. * Slab on the partial list.
  2245. */
  2246. remove_partial(n, page);
  2247. stat(s, FREE_REMOVE_PARTIAL);
  2248. } else {
  2249. /* Slab must be on the full list */
  2250. remove_full(s, n, page);
  2251. }
  2252. spin_unlock_irqrestore(&n->list_lock, flags);
  2253. stat(s, FREE_SLAB);
  2254. discard_slab(s, page);
  2255. }
  2256. /*
  2257. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  2258. * can perform fastpath freeing without additional function calls.
  2259. *
  2260. * The fastpath is only possible if we are freeing to the current cpu slab
  2261. * of this processor. This typically the case if we have just allocated
  2262. * the item before.
  2263. *
  2264. * If fastpath is not possible then fall back to __slab_free where we deal
  2265. * with all sorts of special processing.
  2266. */
  2267. static __always_inline void slab_free(struct kmem_cache *s,
  2268. struct page *page, void *x, unsigned long addr)
  2269. {
  2270. void **object = (void *)x;
  2271. struct kmem_cache_cpu *c;
  2272. unsigned long tid;
  2273. slab_free_hook(s, x);
  2274. redo:
  2275. /*
  2276. * Determine the currently cpus per cpu slab.
  2277. * The cpu may change afterward. However that does not matter since
  2278. * data is retrieved via this pointer. If we are on the same cpu
  2279. * during the cmpxchg then the free will succedd.
  2280. */
  2281. preempt_disable();
  2282. c = this_cpu_ptr(s->cpu_slab);
  2283. tid = c->tid;
  2284. preempt_enable();
  2285. if (likely(page == c->page)) {
  2286. set_freepointer(s, object, c->freelist);
  2287. if (unlikely(!this_cpu_cmpxchg_double(
  2288. s->cpu_slab->freelist, s->cpu_slab->tid,
  2289. c->freelist, tid,
  2290. object, next_tid(tid)))) {
  2291. note_cmpxchg_failure("slab_free", s, tid);
  2292. goto redo;
  2293. }
  2294. stat(s, FREE_FASTPATH);
  2295. } else
  2296. __slab_free(s, page, x, addr);
  2297. }
  2298. void kmem_cache_free(struct kmem_cache *s, void *x)
  2299. {
  2300. s = cache_from_obj(s, x);
  2301. if (!s)
  2302. return;
  2303. slab_free(s, virt_to_head_page(x), x, _RET_IP_);
  2304. trace_kmem_cache_free(_RET_IP_, x);
  2305. }
  2306. EXPORT_SYMBOL(kmem_cache_free);
  2307. /*
  2308. * Object placement in a slab is made very easy because we always start at
  2309. * offset 0. If we tune the size of the object to the alignment then we can
  2310. * get the required alignment by putting one properly sized object after
  2311. * another.
  2312. *
  2313. * Notice that the allocation order determines the sizes of the per cpu
  2314. * caches. Each processor has always one slab available for allocations.
  2315. * Increasing the allocation order reduces the number of times that slabs
  2316. * must be moved on and off the partial lists and is therefore a factor in
  2317. * locking overhead.
  2318. */
  2319. /*
  2320. * Mininum / Maximum order of slab pages. This influences locking overhead
  2321. * and slab fragmentation. A higher order reduces the number of partial slabs
  2322. * and increases the number of allocations possible without having to
  2323. * take the list_lock.
  2324. */
  2325. static int slub_min_order;
  2326. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  2327. static int slub_min_objects;
  2328. /*
  2329. * Merge control. If this is set then no merging of slab caches will occur.
  2330. * (Could be removed. This was introduced to pacify the merge skeptics.)
  2331. */
  2332. static int slub_nomerge;
  2333. /*
  2334. * Calculate the order of allocation given an slab object size.
  2335. *
  2336. * The order of allocation has significant impact on performance and other
  2337. * system components. Generally order 0 allocations should be preferred since
  2338. * order 0 does not cause fragmentation in the page allocator. Larger objects
  2339. * be problematic to put into order 0 slabs because there may be too much
  2340. * unused space left. We go to a higher order if more than 1/16th of the slab
  2341. * would be wasted.
  2342. *
  2343. * In order to reach satisfactory performance we must ensure that a minimum
  2344. * number of objects is in one slab. Otherwise we may generate too much
  2345. * activity on the partial lists which requires taking the list_lock. This is
  2346. * less a concern for large slabs though which are rarely used.
  2347. *
  2348. * slub_max_order specifies the order where we begin to stop considering the
  2349. * number of objects in a slab as critical. If we reach slub_max_order then
  2350. * we try to keep the page order as low as possible. So we accept more waste
  2351. * of space in favor of a small page order.
  2352. *
  2353. * Higher order allocations also allow the placement of more objects in a
  2354. * slab and thereby reduce object handling overhead. If the user has
  2355. * requested a higher mininum order then we start with that one instead of
  2356. * the smallest order which will fit the object.
  2357. */
  2358. static inline int slab_order(int size, int min_objects,
  2359. int max_order, int fract_leftover, int reserved)
  2360. {
  2361. int order;
  2362. int rem;
  2363. int min_order = slub_min_order;
  2364. if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
  2365. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  2366. for (order = max(min_order,
  2367. fls(min_objects * size - 1) - PAGE_SHIFT);
  2368. order <= max_order; order++) {
  2369. unsigned long slab_size = PAGE_SIZE << order;
  2370. if (slab_size < min_objects * size + reserved)
  2371. continue;
  2372. rem = (slab_size - reserved) % size;
  2373. if (rem <= slab_size / fract_leftover)
  2374. break;
  2375. }
  2376. return order;
  2377. }
  2378. static inline int calculate_order(int size, int reserved)
  2379. {
  2380. int order;
  2381. int min_objects;
  2382. int fraction;
  2383. int max_objects;
  2384. /*
  2385. * Attempt to find best configuration for a slab. This
  2386. * works by first attempting to generate a layout with
  2387. * the best configuration and backing off gradually.
  2388. *
  2389. * First we reduce the acceptable waste in a slab. Then
  2390. * we reduce the minimum objects required in a slab.
  2391. */
  2392. min_objects = slub_min_objects;
  2393. if (!min_objects)
  2394. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  2395. max_objects = order_objects(slub_max_order, size, reserved);
  2396. min_objects = min(min_objects, max_objects);
  2397. while (min_objects > 1) {
  2398. fraction = 16;
  2399. while (fraction >= 4) {
  2400. order = slab_order(size, min_objects,
  2401. slub_max_order, fraction, reserved);
  2402. if (order <= slub_max_order)
  2403. return order;
  2404. fraction /= 2;
  2405. }
  2406. min_objects--;
  2407. }
  2408. /*
  2409. * We were unable to place multiple objects in a slab. Now
  2410. * lets see if we can place a single object there.
  2411. */
  2412. order = slab_order(size, 1, slub_max_order, 1, reserved);
  2413. if (order <= slub_max_order)
  2414. return order;
  2415. /*
  2416. * Doh this slab cannot be placed using slub_max_order.
  2417. */
  2418. order = slab_order(size, 1, MAX_ORDER, 1, reserved);
  2419. if (order < MAX_ORDER)
  2420. return order;
  2421. return -ENOSYS;
  2422. }
  2423. static void
  2424. init_kmem_cache_node(struct kmem_cache_node *n)
  2425. {
  2426. n->nr_partial = 0;
  2427. spin_lock_init(&n->list_lock);
  2428. INIT_LIST_HEAD(&n->partial);
  2429. #ifdef CONFIG_SLUB_DEBUG
  2430. atomic_long_set(&n->nr_slabs, 0);
  2431. atomic_long_set(&n->total_objects, 0);
  2432. INIT_LIST_HEAD(&n->full);
  2433. #endif
  2434. }
  2435. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  2436. {
  2437. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  2438. KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
  2439. /*
  2440. * Must align to double word boundary for the double cmpxchg
  2441. * instructions to work; see __pcpu_double_call_return_bool().
  2442. */
  2443. s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
  2444. 2 * sizeof(void *));
  2445. if (!s->cpu_slab)
  2446. return 0;
  2447. init_kmem_cache_cpus(s);
  2448. return 1;
  2449. }
  2450. static struct kmem_cache *kmem_cache_node;
  2451. /*
  2452. * No kmalloc_node yet so do it by hand. We know that this is the first
  2453. * slab on the node for this slabcache. There are no concurrent accesses
  2454. * possible.
  2455. *
  2456. * Note that this function only works on the kmem_cache_node
  2457. * when allocating for the kmem_cache_node. This is used for bootstrapping
  2458. * memory on a fresh node that has no slab structures yet.
  2459. */
  2460. static void early_kmem_cache_node_alloc(int node)
  2461. {
  2462. struct page *page;
  2463. struct kmem_cache_node *n;
  2464. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  2465. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  2466. BUG_ON(!page);
  2467. if (page_to_nid(page) != node) {
  2468. pr_err("SLUB: Unable to allocate memory from node %d\n", node);
  2469. pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
  2470. }
  2471. n = page->freelist;
  2472. BUG_ON(!n);
  2473. page->freelist = get_freepointer(kmem_cache_node, n);
  2474. page->inuse = 1;
  2475. page->frozen = 0;
  2476. kmem_cache_node->node[node] = n;
  2477. #ifdef CONFIG_SLUB_DEBUG
  2478. init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
  2479. init_tracking(kmem_cache_node, n);
  2480. #endif
  2481. init_kmem_cache_node(n);
  2482. inc_slabs_node(kmem_cache_node, node, page->objects);
  2483. /*
  2484. * No locks need to be taken here as it has just been
  2485. * initialized and there is no concurrent access.
  2486. */
  2487. __add_partial(n, page, DEACTIVATE_TO_HEAD);
  2488. }
  2489. static void free_kmem_cache_nodes(struct kmem_cache *s)
  2490. {
  2491. int node;
  2492. for_each_node_state(node, N_NORMAL_MEMORY) {
  2493. struct kmem_cache_node *n = s->node[node];
  2494. if (n)
  2495. kmem_cache_free(kmem_cache_node, n);
  2496. s->node[node] = NULL;
  2497. }
  2498. }
  2499. static int init_kmem_cache_nodes(struct kmem_cache *s)
  2500. {
  2501. int node;
  2502. for_each_node_state(node, N_NORMAL_MEMORY) {
  2503. struct kmem_cache_node *n;
  2504. if (slab_state == DOWN) {
  2505. early_kmem_cache_node_alloc(node);
  2506. continue;
  2507. }
  2508. n = kmem_cache_alloc_node(kmem_cache_node,
  2509. GFP_KERNEL, node);
  2510. if (!n) {
  2511. free_kmem_cache_nodes(s);
  2512. return 0;
  2513. }
  2514. s->node[node] = n;
  2515. init_kmem_cache_node(n);
  2516. }
  2517. return 1;
  2518. }
  2519. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  2520. {
  2521. if (min < MIN_PARTIAL)
  2522. min = MIN_PARTIAL;
  2523. else if (min > MAX_PARTIAL)
  2524. min = MAX_PARTIAL;
  2525. s->min_partial = min;
  2526. }
  2527. /*
  2528. * calculate_sizes() determines the order and the distribution of data within
  2529. * a slab object.
  2530. */
  2531. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  2532. {
  2533. unsigned long flags = s->flags;
  2534. unsigned long size = s->object_size;
  2535. int order;
  2536. /*
  2537. * Round up object size to the next word boundary. We can only
  2538. * place the free pointer at word boundaries and this determines
  2539. * the possible location of the free pointer.
  2540. */
  2541. size = ALIGN(size, sizeof(void *));
  2542. #ifdef CONFIG_SLUB_DEBUG
  2543. /*
  2544. * Determine if we can poison the object itself. If the user of
  2545. * the slab may touch the object after free or before allocation
  2546. * then we should never poison the object itself.
  2547. */
  2548. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  2549. !s->ctor)
  2550. s->flags |= __OBJECT_POISON;
  2551. else
  2552. s->flags &= ~__OBJECT_POISON;
  2553. /*
  2554. * If we are Redzoning then check if there is some space between the
  2555. * end of the object and the free pointer. If not then add an
  2556. * additional word to have some bytes to store Redzone information.
  2557. */
  2558. if ((flags & SLAB_RED_ZONE) && size == s->object_size)
  2559. size += sizeof(void *);
  2560. #endif
  2561. /*
  2562. * With that we have determined the number of bytes in actual use
  2563. * by the object. This is the potential offset to the free pointer.
  2564. */
  2565. s->inuse = size;
  2566. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  2567. s->ctor)) {
  2568. /*
  2569. * Relocate free pointer after the object if it is not
  2570. * permitted to overwrite the first word of the object on
  2571. * kmem_cache_free.
  2572. *
  2573. * This is the case if we do RCU, have a constructor or
  2574. * destructor or are poisoning the objects.
  2575. */
  2576. s->offset = size;
  2577. size += sizeof(void *);
  2578. }
  2579. #ifdef CONFIG_SLUB_DEBUG
  2580. if (flags & SLAB_STORE_USER)
  2581. /*
  2582. * Need to store information about allocs and frees after
  2583. * the object.
  2584. */
  2585. size += 2 * sizeof(struct track);
  2586. if (flags & SLAB_RED_ZONE)
  2587. /*
  2588. * Add some empty padding so that we can catch
  2589. * overwrites from earlier objects rather than let
  2590. * tracking information or the free pointer be
  2591. * corrupted if a user writes before the start
  2592. * of the object.
  2593. */
  2594. size += sizeof(void *);
  2595. #endif
  2596. /*
  2597. * SLUB stores one object immediately after another beginning from
  2598. * offset 0. In order to align the objects we have to simply size
  2599. * each object to conform to the alignment.
  2600. */
  2601. size = ALIGN(size, s->align);
  2602. s->size = size;
  2603. if (forced_order >= 0)
  2604. order = forced_order;
  2605. else
  2606. order = calculate_order(size, s->reserved);
  2607. if (order < 0)
  2608. return 0;
  2609. s->allocflags = 0;
  2610. if (order)
  2611. s->allocflags |= __GFP_COMP;
  2612. if (s->flags & SLAB_CACHE_DMA)
  2613. s->allocflags |= GFP_DMA;
  2614. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  2615. s->allocflags |= __GFP_RECLAIMABLE;
  2616. /*
  2617. * Determine the number of objects per slab
  2618. */
  2619. s->oo = oo_make(order, size, s->reserved);
  2620. s->min = oo_make(get_order(size), size, s->reserved);
  2621. if (oo_objects(s->oo) > oo_objects(s->max))
  2622. s->max = s->oo;
  2623. return !!oo_objects(s->oo);
  2624. }
  2625. static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
  2626. {
  2627. s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
  2628. s->reserved = 0;
  2629. if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
  2630. s->reserved = sizeof(struct rcu_head);
  2631. if (!calculate_sizes(s, -1))
  2632. goto error;
  2633. if (disable_higher_order_debug) {
  2634. /*
  2635. * Disable debugging flags that store metadata if the min slab
  2636. * order increased.
  2637. */
  2638. if (get_order(s->size) > get_order(s->object_size)) {
  2639. s->flags &= ~DEBUG_METADATA_FLAGS;
  2640. s->offset = 0;
  2641. if (!calculate_sizes(s, -1))
  2642. goto error;
  2643. }
  2644. }
  2645. #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
  2646. defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
  2647. if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
  2648. /* Enable fast mode */
  2649. s->flags |= __CMPXCHG_DOUBLE;
  2650. #endif
  2651. /*
  2652. * The larger the object size is, the more pages we want on the partial
  2653. * list to avoid pounding the page allocator excessively.
  2654. */
  2655. set_min_partial(s, ilog2(s->size) / 2);
  2656. /*
  2657. * cpu_partial determined the maximum number of objects kept in the
  2658. * per cpu partial lists of a processor.
  2659. *
  2660. * Per cpu partial lists mainly contain slabs that just have one
  2661. * object freed. If they are used for allocation then they can be
  2662. * filled up again with minimal effort. The slab will never hit the
  2663. * per node partial lists and therefore no locking will be required.
  2664. *
  2665. * This setting also determines
  2666. *
  2667. * A) The number of objects from per cpu partial slabs dumped to the
  2668. * per node list when we reach the limit.
  2669. * B) The number of objects in cpu partial slabs to extract from the
  2670. * per node list when we run out of per cpu objects. We only fetch
  2671. * 50% to keep some capacity around for frees.
  2672. */
  2673. if (!kmem_cache_has_cpu_partial(s))
  2674. s->cpu_partial = 0;
  2675. else if (s->size >= PAGE_SIZE)
  2676. s->cpu_partial = 2;
  2677. else if (s->size >= 1024)
  2678. s->cpu_partial = 6;
  2679. else if (s->size >= 256)
  2680. s->cpu_partial = 13;
  2681. else
  2682. s->cpu_partial = 30;
  2683. #ifdef CONFIG_NUMA
  2684. s->remote_node_defrag_ratio = 1000;
  2685. #endif
  2686. if (!init_kmem_cache_nodes(s))
  2687. goto error;
  2688. if (alloc_kmem_cache_cpus(s))
  2689. return 0;
  2690. free_kmem_cache_nodes(s);
  2691. error:
  2692. if (flags & SLAB_PANIC)
  2693. panic("Cannot create slab %s size=%lu realsize=%u "
  2694. "order=%u offset=%u flags=%lx\n",
  2695. s->name, (unsigned long)s->size, s->size,
  2696. oo_order(s->oo), s->offset, flags);
  2697. return -EINVAL;
  2698. }
  2699. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2700. const char *text)
  2701. {
  2702. #ifdef CONFIG_SLUB_DEBUG
  2703. void *addr = page_address(page);
  2704. void *p;
  2705. unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
  2706. sizeof(long), GFP_ATOMIC);
  2707. if (!map)
  2708. return;
  2709. slab_err(s, page, text, s->name);
  2710. slab_lock(page);
  2711. get_map(s, page, map);
  2712. for_each_object(p, s, addr, page->objects) {
  2713. if (!test_bit(slab_index(p, s, addr), map)) {
  2714. pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
  2715. print_tracking(s, p);
  2716. }
  2717. }
  2718. slab_unlock(page);
  2719. kfree(map);
  2720. #endif
  2721. }
  2722. /*
  2723. * Attempt to free all partial slabs on a node.
  2724. * This is called from kmem_cache_close(). We must be the last thread
  2725. * using the cache and therefore we do not need to lock anymore.
  2726. */
  2727. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2728. {
  2729. struct page *page, *h;
  2730. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2731. if (!page->inuse) {
  2732. __remove_partial(n, page);
  2733. discard_slab(s, page);
  2734. } else {
  2735. list_slab_objects(s, page,
  2736. "Objects remaining in %s on kmem_cache_close()");
  2737. }
  2738. }
  2739. }
  2740. /*
  2741. * Release all resources used by a slab cache.
  2742. */
  2743. static inline int kmem_cache_close(struct kmem_cache *s)
  2744. {
  2745. int node;
  2746. flush_all(s);
  2747. /* Attempt to free all objects */
  2748. for_each_node_state(node, N_NORMAL_MEMORY) {
  2749. struct kmem_cache_node *n = get_node(s, node);
  2750. free_partial(s, n);
  2751. if (n->nr_partial || slabs_node(s, node))
  2752. return 1;
  2753. }
  2754. free_percpu(s->cpu_slab);
  2755. free_kmem_cache_nodes(s);
  2756. return 0;
  2757. }
  2758. int __kmem_cache_shutdown(struct kmem_cache *s)
  2759. {
  2760. return kmem_cache_close(s);
  2761. }
  2762. /********************************************************************
  2763. * Kmalloc subsystem
  2764. *******************************************************************/
  2765. static int __init setup_slub_min_order(char *str)
  2766. {
  2767. get_option(&str, &slub_min_order);
  2768. return 1;
  2769. }
  2770. __setup("slub_min_order=", setup_slub_min_order);
  2771. static int __init setup_slub_max_order(char *str)
  2772. {
  2773. get_option(&str, &slub_max_order);
  2774. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2775. return 1;
  2776. }
  2777. __setup("slub_max_order=", setup_slub_max_order);
  2778. static int __init setup_slub_min_objects(char *str)
  2779. {
  2780. get_option(&str, &slub_min_objects);
  2781. return 1;
  2782. }
  2783. __setup("slub_min_objects=", setup_slub_min_objects);
  2784. static int __init setup_slub_nomerge(char *str)
  2785. {
  2786. slub_nomerge = 1;
  2787. return 1;
  2788. }
  2789. __setup("slub_nomerge", setup_slub_nomerge);
  2790. void *__kmalloc(size_t size, gfp_t flags)
  2791. {
  2792. struct kmem_cache *s;
  2793. void *ret;
  2794. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  2795. return kmalloc_large(size, flags);
  2796. s = kmalloc_slab(size, flags);
  2797. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2798. return s;
  2799. ret = slab_alloc(s, flags, _RET_IP_);
  2800. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2801. return ret;
  2802. }
  2803. EXPORT_SYMBOL(__kmalloc);
  2804. #ifdef CONFIG_NUMA
  2805. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2806. {
  2807. struct page *page;
  2808. void *ptr = NULL;
  2809. flags |= __GFP_COMP | __GFP_NOTRACK;
  2810. page = alloc_kmem_pages_node(node, flags, get_order(size));
  2811. if (page)
  2812. ptr = page_address(page);
  2813. kmalloc_large_node_hook(ptr, size, flags);
  2814. return ptr;
  2815. }
  2816. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2817. {
  2818. struct kmem_cache *s;
  2819. void *ret;
  2820. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  2821. ret = kmalloc_large_node(size, flags, node);
  2822. trace_kmalloc_node(_RET_IP_, ret,
  2823. size, PAGE_SIZE << get_order(size),
  2824. flags, node);
  2825. return ret;
  2826. }
  2827. s = kmalloc_slab(size, flags);
  2828. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2829. return s;
  2830. ret = slab_alloc_node(s, flags, node, _RET_IP_);
  2831. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2832. return ret;
  2833. }
  2834. EXPORT_SYMBOL(__kmalloc_node);
  2835. #endif
  2836. size_t ksize(const void *object)
  2837. {
  2838. struct page *page;
  2839. if (unlikely(object == ZERO_SIZE_PTR))
  2840. return 0;
  2841. page = virt_to_head_page(object);
  2842. if (unlikely(!PageSlab(page))) {
  2843. WARN_ON(!PageCompound(page));
  2844. return PAGE_SIZE << compound_order(page);
  2845. }
  2846. return slab_ksize(page->slab_cache);
  2847. }
  2848. EXPORT_SYMBOL(ksize);
  2849. void kfree(const void *x)
  2850. {
  2851. struct page *page;
  2852. void *object = (void *)x;
  2853. trace_kfree(_RET_IP_, x);
  2854. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2855. return;
  2856. page = virt_to_head_page(x);
  2857. if (unlikely(!PageSlab(page))) {
  2858. BUG_ON(!PageCompound(page));
  2859. kfree_hook(x);
  2860. __free_kmem_pages(page, compound_order(page));
  2861. return;
  2862. }
  2863. slab_free(page->slab_cache, page, object, _RET_IP_);
  2864. }
  2865. EXPORT_SYMBOL(kfree);
  2866. /*
  2867. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2868. * the remaining slabs by the number of items in use. The slabs with the
  2869. * most items in use come first. New allocations will then fill those up
  2870. * and thus they can be removed from the partial lists.
  2871. *
  2872. * The slabs with the least items are placed last. This results in them
  2873. * being allocated from last increasing the chance that the last objects
  2874. * are freed in them.
  2875. */
  2876. int __kmem_cache_shrink(struct kmem_cache *s)
  2877. {
  2878. int node;
  2879. int i;
  2880. struct kmem_cache_node *n;
  2881. struct page *page;
  2882. struct page *t;
  2883. int objects = oo_objects(s->max);
  2884. struct list_head *slabs_by_inuse =
  2885. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2886. unsigned long flags;
  2887. if (!slabs_by_inuse)
  2888. return -ENOMEM;
  2889. flush_all(s);
  2890. for_each_node_state(node, N_NORMAL_MEMORY) {
  2891. n = get_node(s, node);
  2892. if (!n->nr_partial)
  2893. continue;
  2894. for (i = 0; i < objects; i++)
  2895. INIT_LIST_HEAD(slabs_by_inuse + i);
  2896. spin_lock_irqsave(&n->list_lock, flags);
  2897. /*
  2898. * Build lists indexed by the items in use in each slab.
  2899. *
  2900. * Note that concurrent frees may occur while we hold the
  2901. * list_lock. page->inuse here is the upper limit.
  2902. */
  2903. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2904. list_move(&page->lru, slabs_by_inuse + page->inuse);
  2905. if (!page->inuse)
  2906. n->nr_partial--;
  2907. }
  2908. /*
  2909. * Rebuild the partial list with the slabs filled up most
  2910. * first and the least used slabs at the end.
  2911. */
  2912. for (i = objects - 1; i > 0; i--)
  2913. list_splice(slabs_by_inuse + i, n->partial.prev);
  2914. spin_unlock_irqrestore(&n->list_lock, flags);
  2915. /* Release empty slabs */
  2916. list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
  2917. discard_slab(s, page);
  2918. }
  2919. kfree(slabs_by_inuse);
  2920. return 0;
  2921. }
  2922. static int slab_mem_going_offline_callback(void *arg)
  2923. {
  2924. struct kmem_cache *s;
  2925. mutex_lock(&slab_mutex);
  2926. list_for_each_entry(s, &slab_caches, list)
  2927. __kmem_cache_shrink(s);
  2928. mutex_unlock(&slab_mutex);
  2929. return 0;
  2930. }
  2931. static void slab_mem_offline_callback(void *arg)
  2932. {
  2933. struct kmem_cache_node *n;
  2934. struct kmem_cache *s;
  2935. struct memory_notify *marg = arg;
  2936. int offline_node;
  2937. offline_node = marg->status_change_nid_normal;
  2938. /*
  2939. * If the node still has available memory. we need kmem_cache_node
  2940. * for it yet.
  2941. */
  2942. if (offline_node < 0)
  2943. return;
  2944. mutex_lock(&slab_mutex);
  2945. list_for_each_entry(s, &slab_caches, list) {
  2946. n = get_node(s, offline_node);
  2947. if (n) {
  2948. /*
  2949. * if n->nr_slabs > 0, slabs still exist on the node
  2950. * that is going down. We were unable to free them,
  2951. * and offline_pages() function shouldn't call this
  2952. * callback. So, we must fail.
  2953. */
  2954. BUG_ON(slabs_node(s, offline_node));
  2955. s->node[offline_node] = NULL;
  2956. kmem_cache_free(kmem_cache_node, n);
  2957. }
  2958. }
  2959. mutex_unlock(&slab_mutex);
  2960. }
  2961. static int slab_mem_going_online_callback(void *arg)
  2962. {
  2963. struct kmem_cache_node *n;
  2964. struct kmem_cache *s;
  2965. struct memory_notify *marg = arg;
  2966. int nid = marg->status_change_nid_normal;
  2967. int ret = 0;
  2968. /*
  2969. * If the node's memory is already available, then kmem_cache_node is
  2970. * already created. Nothing to do.
  2971. */
  2972. if (nid < 0)
  2973. return 0;
  2974. /*
  2975. * We are bringing a node online. No memory is available yet. We must
  2976. * allocate a kmem_cache_node structure in order to bring the node
  2977. * online.
  2978. */
  2979. mutex_lock(&slab_mutex);
  2980. list_for_each_entry(s, &slab_caches, list) {
  2981. /*
  2982. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2983. * since memory is not yet available from the node that
  2984. * is brought up.
  2985. */
  2986. n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
  2987. if (!n) {
  2988. ret = -ENOMEM;
  2989. goto out;
  2990. }
  2991. init_kmem_cache_node(n);
  2992. s->node[nid] = n;
  2993. }
  2994. out:
  2995. mutex_unlock(&slab_mutex);
  2996. return ret;
  2997. }
  2998. static int slab_memory_callback(struct notifier_block *self,
  2999. unsigned long action, void *arg)
  3000. {
  3001. int ret = 0;
  3002. switch (action) {
  3003. case MEM_GOING_ONLINE:
  3004. ret = slab_mem_going_online_callback(arg);
  3005. break;
  3006. case MEM_GOING_OFFLINE:
  3007. ret = slab_mem_going_offline_callback(arg);
  3008. break;
  3009. case MEM_OFFLINE:
  3010. case MEM_CANCEL_ONLINE:
  3011. slab_mem_offline_callback(arg);
  3012. break;
  3013. case MEM_ONLINE:
  3014. case MEM_CANCEL_OFFLINE:
  3015. break;
  3016. }
  3017. if (ret)
  3018. ret = notifier_from_errno(ret);
  3019. else
  3020. ret = NOTIFY_OK;
  3021. return ret;
  3022. }
  3023. static struct notifier_block slab_memory_callback_nb = {
  3024. .notifier_call = slab_memory_callback,
  3025. .priority = SLAB_CALLBACK_PRI,
  3026. };
  3027. /********************************************************************
  3028. * Basic setup of slabs
  3029. *******************************************************************/
  3030. /*
  3031. * Used for early kmem_cache structures that were allocated using
  3032. * the page allocator. Allocate them properly then fix up the pointers
  3033. * that may be pointing to the wrong kmem_cache structure.
  3034. */
  3035. static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
  3036. {
  3037. int node;
  3038. struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
  3039. memcpy(s, static_cache, kmem_cache->object_size);
  3040. /*
  3041. * This runs very early, and only the boot processor is supposed to be
  3042. * up. Even if it weren't true, IRQs are not up so we couldn't fire
  3043. * IPIs around.
  3044. */
  3045. __flush_cpu_slab(s, smp_processor_id());
  3046. for_each_node_state(node, N_NORMAL_MEMORY) {
  3047. struct kmem_cache_node *n = get_node(s, node);
  3048. struct page *p;
  3049. if (n) {
  3050. list_for_each_entry(p, &n->partial, lru)
  3051. p->slab_cache = s;
  3052. #ifdef CONFIG_SLUB_DEBUG
  3053. list_for_each_entry(p, &n->full, lru)
  3054. p->slab_cache = s;
  3055. #endif
  3056. }
  3057. }
  3058. list_add(&s->list, &slab_caches);
  3059. return s;
  3060. }
  3061. void __init kmem_cache_init(void)
  3062. {
  3063. static __initdata struct kmem_cache boot_kmem_cache,
  3064. boot_kmem_cache_node;
  3065. if (debug_guardpage_minorder())
  3066. slub_max_order = 0;
  3067. kmem_cache_node = &boot_kmem_cache_node;
  3068. kmem_cache = &boot_kmem_cache;
  3069. create_boot_cache(kmem_cache_node, "kmem_cache_node",
  3070. sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
  3071. register_hotmemory_notifier(&slab_memory_callback_nb);
  3072. /* Able to allocate the per node structures */
  3073. slab_state = PARTIAL;
  3074. create_boot_cache(kmem_cache, "kmem_cache",
  3075. offsetof(struct kmem_cache, node) +
  3076. nr_node_ids * sizeof(struct kmem_cache_node *),
  3077. SLAB_HWCACHE_ALIGN);
  3078. kmem_cache = bootstrap(&boot_kmem_cache);
  3079. /*
  3080. * Allocate kmem_cache_node properly from the kmem_cache slab.
  3081. * kmem_cache_node is separately allocated so no need to
  3082. * update any list pointers.
  3083. */
  3084. kmem_cache_node = bootstrap(&boot_kmem_cache_node);
  3085. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  3086. create_kmalloc_caches(0);
  3087. #ifdef CONFIG_SMP
  3088. register_cpu_notifier(&slab_notifier);
  3089. #endif
  3090. pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
  3091. cache_line_size(),
  3092. slub_min_order, slub_max_order, slub_min_objects,
  3093. nr_cpu_ids, nr_node_ids);
  3094. }
  3095. void __init kmem_cache_init_late(void)
  3096. {
  3097. }
  3098. /*
  3099. * Find a mergeable slab cache
  3100. */
  3101. static int slab_unmergeable(struct kmem_cache *s)
  3102. {
  3103. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  3104. return 1;
  3105. if (!is_root_cache(s))
  3106. return 1;
  3107. if (s->ctor)
  3108. return 1;
  3109. /*
  3110. * We may have set a slab to be unmergeable during bootstrap.
  3111. */
  3112. if (s->refcount < 0)
  3113. return 1;
  3114. return 0;
  3115. }
  3116. static struct kmem_cache *find_mergeable(size_t size, size_t align,
  3117. unsigned long flags, const char *name, void (*ctor)(void *))
  3118. {
  3119. struct kmem_cache *s;
  3120. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  3121. return NULL;
  3122. if (ctor)
  3123. return NULL;
  3124. size = ALIGN(size, sizeof(void *));
  3125. align = calculate_alignment(flags, align, size);
  3126. size = ALIGN(size, align);
  3127. flags = kmem_cache_flags(size, flags, name, NULL);
  3128. list_for_each_entry(s, &slab_caches, list) {
  3129. if (slab_unmergeable(s))
  3130. continue;
  3131. if (size > s->size)
  3132. continue;
  3133. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  3134. continue;
  3135. /*
  3136. * Check if alignment is compatible.
  3137. * Courtesy of Adrian Drzewiecki
  3138. */
  3139. if ((s->size & ~(align - 1)) != s->size)
  3140. continue;
  3141. if (s->size - size >= sizeof(void *))
  3142. continue;
  3143. return s;
  3144. }
  3145. return NULL;
  3146. }
  3147. struct kmem_cache *
  3148. __kmem_cache_alias(const char *name, size_t size, size_t align,
  3149. unsigned long flags, void (*ctor)(void *))
  3150. {
  3151. struct kmem_cache *s;
  3152. s = find_mergeable(size, align, flags, name, ctor);
  3153. if (s) {
  3154. int i;
  3155. struct kmem_cache *c;
  3156. s->refcount++;
  3157. /*
  3158. * Adjust the object sizes so that we clear
  3159. * the complete object on kzalloc.
  3160. */
  3161. s->object_size = max(s->object_size, (int)size);
  3162. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  3163. for_each_memcg_cache_index(i) {
  3164. c = cache_from_memcg_idx(s, i);
  3165. if (!c)
  3166. continue;
  3167. c->object_size = s->object_size;
  3168. c->inuse = max_t(int, c->inuse,
  3169. ALIGN(size, sizeof(void *)));
  3170. }
  3171. if (sysfs_slab_alias(s, name)) {
  3172. s->refcount--;
  3173. s = NULL;
  3174. }
  3175. }
  3176. return s;
  3177. }
  3178. int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
  3179. {
  3180. int err;
  3181. err = kmem_cache_open(s, flags);
  3182. if (err)
  3183. return err;
  3184. /* Mutex is not taken during early boot */
  3185. if (slab_state <= UP)
  3186. return 0;
  3187. memcg_propagate_slab_attrs(s);
  3188. err = sysfs_slab_add(s);
  3189. if (err)
  3190. kmem_cache_close(s);
  3191. return err;
  3192. }
  3193. #ifdef CONFIG_SMP
  3194. /*
  3195. * Use the cpu notifier to insure that the cpu slabs are flushed when
  3196. * necessary.
  3197. */
  3198. static int slab_cpuup_callback(struct notifier_block *nfb,
  3199. unsigned long action, void *hcpu)
  3200. {
  3201. long cpu = (long)hcpu;
  3202. struct kmem_cache *s;
  3203. unsigned long flags;
  3204. switch (action) {
  3205. case CPU_UP_CANCELED:
  3206. case CPU_UP_CANCELED_FROZEN:
  3207. case CPU_DEAD:
  3208. case CPU_DEAD_FROZEN:
  3209. mutex_lock(&slab_mutex);
  3210. list_for_each_entry(s, &slab_caches, list) {
  3211. local_irq_save(flags);
  3212. __flush_cpu_slab(s, cpu);
  3213. local_irq_restore(flags);
  3214. }
  3215. mutex_unlock(&slab_mutex);
  3216. break;
  3217. default:
  3218. break;
  3219. }
  3220. return NOTIFY_OK;
  3221. }
  3222. static struct notifier_block slab_notifier = {
  3223. .notifier_call = slab_cpuup_callback
  3224. };
  3225. #endif
  3226. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  3227. {
  3228. struct kmem_cache *s;
  3229. void *ret;
  3230. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
  3231. return kmalloc_large(size, gfpflags);
  3232. s = kmalloc_slab(size, gfpflags);
  3233. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3234. return s;
  3235. ret = slab_alloc(s, gfpflags, caller);
  3236. /* Honor the call site pointer we received. */
  3237. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  3238. return ret;
  3239. }
  3240. #ifdef CONFIG_NUMA
  3241. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  3242. int node, unsigned long caller)
  3243. {
  3244. struct kmem_cache *s;
  3245. void *ret;
  3246. if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
  3247. ret = kmalloc_large_node(size, gfpflags, node);
  3248. trace_kmalloc_node(caller, ret,
  3249. size, PAGE_SIZE << get_order(size),
  3250. gfpflags, node);
  3251. return ret;
  3252. }
  3253. s = kmalloc_slab(size, gfpflags);
  3254. if (unlikely(ZERO_OR_NULL_PTR(s)))
  3255. return s;
  3256. ret = slab_alloc_node(s, gfpflags, node, caller);
  3257. /* Honor the call site pointer we received. */
  3258. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  3259. return ret;
  3260. }
  3261. #endif
  3262. #ifdef CONFIG_SYSFS
  3263. static int count_inuse(struct page *page)
  3264. {
  3265. return page->inuse;
  3266. }
  3267. static int count_total(struct page *page)
  3268. {
  3269. return page->objects;
  3270. }
  3271. #endif
  3272. #ifdef CONFIG_SLUB_DEBUG
  3273. static int validate_slab(struct kmem_cache *s, struct page *page,
  3274. unsigned long *map)
  3275. {
  3276. void *p;
  3277. void *addr = page_address(page);
  3278. if (!check_slab(s, page) ||
  3279. !on_freelist(s, page, NULL))
  3280. return 0;
  3281. /* Now we know that a valid freelist exists */
  3282. bitmap_zero(map, page->objects);
  3283. get_map(s, page, map);
  3284. for_each_object(p, s, addr, page->objects) {
  3285. if (test_bit(slab_index(p, s, addr), map))
  3286. if (!check_object(s, page, p, SLUB_RED_INACTIVE))
  3287. return 0;
  3288. }
  3289. for_each_object(p, s, addr, page->objects)
  3290. if (!test_bit(slab_index(p, s, addr), map))
  3291. if (!check_object(s, page, p, SLUB_RED_ACTIVE))
  3292. return 0;
  3293. return 1;
  3294. }
  3295. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  3296. unsigned long *map)
  3297. {
  3298. slab_lock(page);
  3299. validate_slab(s, page, map);
  3300. slab_unlock(page);
  3301. }
  3302. static int validate_slab_node(struct kmem_cache *s,
  3303. struct kmem_cache_node *n, unsigned long *map)
  3304. {
  3305. unsigned long count = 0;
  3306. struct page *page;
  3307. unsigned long flags;
  3308. spin_lock_irqsave(&n->list_lock, flags);
  3309. list_for_each_entry(page, &n->partial, lru) {
  3310. validate_slab_slab(s, page, map);
  3311. count++;
  3312. }
  3313. if (count != n->nr_partial)
  3314. pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
  3315. s->name, count, n->nr_partial);
  3316. if (!(s->flags & SLAB_STORE_USER))
  3317. goto out;
  3318. list_for_each_entry(page, &n->full, lru) {
  3319. validate_slab_slab(s, page, map);
  3320. count++;
  3321. }
  3322. if (count != atomic_long_read(&n->nr_slabs))
  3323. pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
  3324. s->name, count, atomic_long_read(&n->nr_slabs));
  3325. out:
  3326. spin_unlock_irqrestore(&n->list_lock, flags);
  3327. return count;
  3328. }
  3329. static long validate_slab_cache(struct kmem_cache *s)
  3330. {
  3331. int node;
  3332. unsigned long count = 0;
  3333. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3334. sizeof(unsigned long), GFP_KERNEL);
  3335. if (!map)
  3336. return -ENOMEM;
  3337. flush_all(s);
  3338. for_each_node_state(node, N_NORMAL_MEMORY) {
  3339. struct kmem_cache_node *n = get_node(s, node);
  3340. count += validate_slab_node(s, n, map);
  3341. }
  3342. kfree(map);
  3343. return count;
  3344. }
  3345. /*
  3346. * Generate lists of code addresses where slabcache objects are allocated
  3347. * and freed.
  3348. */
  3349. struct location {
  3350. unsigned long count;
  3351. unsigned long addr;
  3352. long long sum_time;
  3353. long min_time;
  3354. long max_time;
  3355. long min_pid;
  3356. long max_pid;
  3357. DECLARE_BITMAP(cpus, NR_CPUS);
  3358. nodemask_t nodes;
  3359. };
  3360. struct loc_track {
  3361. unsigned long max;
  3362. unsigned long count;
  3363. struct location *loc;
  3364. };
  3365. static void free_loc_track(struct loc_track *t)
  3366. {
  3367. if (t->max)
  3368. free_pages((unsigned long)t->loc,
  3369. get_order(sizeof(struct location) * t->max));
  3370. }
  3371. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  3372. {
  3373. struct location *l;
  3374. int order;
  3375. order = get_order(sizeof(struct location) * max);
  3376. l = (void *)__get_free_pages(flags, order);
  3377. if (!l)
  3378. return 0;
  3379. if (t->count) {
  3380. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3381. free_loc_track(t);
  3382. }
  3383. t->max = max;
  3384. t->loc = l;
  3385. return 1;
  3386. }
  3387. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3388. const struct track *track)
  3389. {
  3390. long start, end, pos;
  3391. struct location *l;
  3392. unsigned long caddr;
  3393. unsigned long age = jiffies - track->when;
  3394. start = -1;
  3395. end = t->count;
  3396. for ( ; ; ) {
  3397. pos = start + (end - start + 1) / 2;
  3398. /*
  3399. * There is nothing at "end". If we end up there
  3400. * we need to add something to before end.
  3401. */
  3402. if (pos == end)
  3403. break;
  3404. caddr = t->loc[pos].addr;
  3405. if (track->addr == caddr) {
  3406. l = &t->loc[pos];
  3407. l->count++;
  3408. if (track->when) {
  3409. l->sum_time += age;
  3410. if (age < l->min_time)
  3411. l->min_time = age;
  3412. if (age > l->max_time)
  3413. l->max_time = age;
  3414. if (track->pid < l->min_pid)
  3415. l->min_pid = track->pid;
  3416. if (track->pid > l->max_pid)
  3417. l->max_pid = track->pid;
  3418. cpumask_set_cpu(track->cpu,
  3419. to_cpumask(l->cpus));
  3420. }
  3421. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3422. return 1;
  3423. }
  3424. if (track->addr < caddr)
  3425. end = pos;
  3426. else
  3427. start = pos;
  3428. }
  3429. /*
  3430. * Not found. Insert new tracking element.
  3431. */
  3432. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3433. return 0;
  3434. l = t->loc + pos;
  3435. if (pos < t->count)
  3436. memmove(l + 1, l,
  3437. (t->count - pos) * sizeof(struct location));
  3438. t->count++;
  3439. l->count = 1;
  3440. l->addr = track->addr;
  3441. l->sum_time = age;
  3442. l->min_time = age;
  3443. l->max_time = age;
  3444. l->min_pid = track->pid;
  3445. l->max_pid = track->pid;
  3446. cpumask_clear(to_cpumask(l->cpus));
  3447. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3448. nodes_clear(l->nodes);
  3449. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3450. return 1;
  3451. }
  3452. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3453. struct page *page, enum track_item alloc,
  3454. unsigned long *map)
  3455. {
  3456. void *addr = page_address(page);
  3457. void *p;
  3458. bitmap_zero(map, page->objects);
  3459. get_map(s, page, map);
  3460. for_each_object(p, s, addr, page->objects)
  3461. if (!test_bit(slab_index(p, s, addr), map))
  3462. add_location(t, s, get_track(s, p, alloc));
  3463. }
  3464. static int list_locations(struct kmem_cache *s, char *buf,
  3465. enum track_item alloc)
  3466. {
  3467. int len = 0;
  3468. unsigned long i;
  3469. struct loc_track t = { 0, 0, NULL };
  3470. int node;
  3471. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3472. sizeof(unsigned long), GFP_KERNEL);
  3473. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3474. GFP_TEMPORARY)) {
  3475. kfree(map);
  3476. return sprintf(buf, "Out of memory\n");
  3477. }
  3478. /* Push back cpu slabs */
  3479. flush_all(s);
  3480. for_each_node_state(node, N_NORMAL_MEMORY) {
  3481. struct kmem_cache_node *n = get_node(s, node);
  3482. unsigned long flags;
  3483. struct page *page;
  3484. if (!atomic_long_read(&n->nr_slabs))
  3485. continue;
  3486. spin_lock_irqsave(&n->list_lock, flags);
  3487. list_for_each_entry(page, &n->partial, lru)
  3488. process_slab(&t, s, page, alloc, map);
  3489. list_for_each_entry(page, &n->full, lru)
  3490. process_slab(&t, s, page, alloc, map);
  3491. spin_unlock_irqrestore(&n->list_lock, flags);
  3492. }
  3493. for (i = 0; i < t.count; i++) {
  3494. struct location *l = &t.loc[i];
  3495. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3496. break;
  3497. len += sprintf(buf + len, "%7ld ", l->count);
  3498. if (l->addr)
  3499. len += sprintf(buf + len, "%pS", (void *)l->addr);
  3500. else
  3501. len += sprintf(buf + len, "<not-available>");
  3502. if (l->sum_time != l->min_time) {
  3503. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3504. l->min_time,
  3505. (long)div_u64(l->sum_time, l->count),
  3506. l->max_time);
  3507. } else
  3508. len += sprintf(buf + len, " age=%ld",
  3509. l->min_time);
  3510. if (l->min_pid != l->max_pid)
  3511. len += sprintf(buf + len, " pid=%ld-%ld",
  3512. l->min_pid, l->max_pid);
  3513. else
  3514. len += sprintf(buf + len, " pid=%ld",
  3515. l->min_pid);
  3516. if (num_online_cpus() > 1 &&
  3517. !cpumask_empty(to_cpumask(l->cpus)) &&
  3518. len < PAGE_SIZE - 60) {
  3519. len += sprintf(buf + len, " cpus=");
  3520. len += cpulist_scnprintf(buf + len,
  3521. PAGE_SIZE - len - 50,
  3522. to_cpumask(l->cpus));
  3523. }
  3524. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3525. len < PAGE_SIZE - 60) {
  3526. len += sprintf(buf + len, " nodes=");
  3527. len += nodelist_scnprintf(buf + len,
  3528. PAGE_SIZE - len - 50,
  3529. l->nodes);
  3530. }
  3531. len += sprintf(buf + len, "\n");
  3532. }
  3533. free_loc_track(&t);
  3534. kfree(map);
  3535. if (!t.count)
  3536. len += sprintf(buf, "No data\n");
  3537. return len;
  3538. }
  3539. #endif
  3540. #ifdef SLUB_RESILIENCY_TEST
  3541. static void resiliency_test(void)
  3542. {
  3543. u8 *p;
  3544. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
  3545. pr_err("SLUB resiliency testing\n");
  3546. pr_err("-----------------------\n");
  3547. pr_err("A. Corruption after allocation\n");
  3548. p = kzalloc(16, GFP_KERNEL);
  3549. p[16] = 0x12;
  3550. pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
  3551. p + 16);
  3552. validate_slab_cache(kmalloc_caches[4]);
  3553. /* Hmmm... The next two are dangerous */
  3554. p = kzalloc(32, GFP_KERNEL);
  3555. p[32 + sizeof(void *)] = 0x34;
  3556. pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
  3557. p);
  3558. pr_err("If allocated object is overwritten then not detectable\n\n");
  3559. validate_slab_cache(kmalloc_caches[5]);
  3560. p = kzalloc(64, GFP_KERNEL);
  3561. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  3562. *p = 0x56;
  3563. pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  3564. p);
  3565. pr_err("If allocated object is overwritten then not detectable\n\n");
  3566. validate_slab_cache(kmalloc_caches[6]);
  3567. pr_err("\nB. Corruption after free\n");
  3568. p = kzalloc(128, GFP_KERNEL);
  3569. kfree(p);
  3570. *p = 0x78;
  3571. pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  3572. validate_slab_cache(kmalloc_caches[7]);
  3573. p = kzalloc(256, GFP_KERNEL);
  3574. kfree(p);
  3575. p[50] = 0x9a;
  3576. pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
  3577. validate_slab_cache(kmalloc_caches[8]);
  3578. p = kzalloc(512, GFP_KERNEL);
  3579. kfree(p);
  3580. p[512] = 0xab;
  3581. pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  3582. validate_slab_cache(kmalloc_caches[9]);
  3583. }
  3584. #else
  3585. #ifdef CONFIG_SYSFS
  3586. static void resiliency_test(void) {};
  3587. #endif
  3588. #endif
  3589. #ifdef CONFIG_SYSFS
  3590. enum slab_stat_type {
  3591. SL_ALL, /* All slabs */
  3592. SL_PARTIAL, /* Only partially allocated slabs */
  3593. SL_CPU, /* Only slabs used for cpu caches */
  3594. SL_OBJECTS, /* Determine allocated objects not slabs */
  3595. SL_TOTAL /* Determine object capacity not slabs */
  3596. };
  3597. #define SO_ALL (1 << SL_ALL)
  3598. #define SO_PARTIAL (1 << SL_PARTIAL)
  3599. #define SO_CPU (1 << SL_CPU)
  3600. #define SO_OBJECTS (1 << SL_OBJECTS)
  3601. #define SO_TOTAL (1 << SL_TOTAL)
  3602. static ssize_t show_slab_objects(struct kmem_cache *s,
  3603. char *buf, unsigned long flags)
  3604. {
  3605. unsigned long total = 0;
  3606. int node;
  3607. int x;
  3608. unsigned long *nodes;
  3609. nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3610. if (!nodes)
  3611. return -ENOMEM;
  3612. if (flags & SO_CPU) {
  3613. int cpu;
  3614. for_each_possible_cpu(cpu) {
  3615. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
  3616. cpu);
  3617. int node;
  3618. struct page *page;
  3619. page = ACCESS_ONCE(c->page);
  3620. if (!page)
  3621. continue;
  3622. node = page_to_nid(page);
  3623. if (flags & SO_TOTAL)
  3624. x = page->objects;
  3625. else if (flags & SO_OBJECTS)
  3626. x = page->inuse;
  3627. else
  3628. x = 1;
  3629. total += x;
  3630. nodes[node] += x;
  3631. page = ACCESS_ONCE(c->partial);
  3632. if (page) {
  3633. node = page_to_nid(page);
  3634. if (flags & SO_TOTAL)
  3635. WARN_ON_ONCE(1);
  3636. else if (flags & SO_OBJECTS)
  3637. WARN_ON_ONCE(1);
  3638. else
  3639. x = page->pages;
  3640. total += x;
  3641. nodes[node] += x;
  3642. }
  3643. }
  3644. }
  3645. get_online_mems();
  3646. #ifdef CONFIG_SLUB_DEBUG
  3647. if (flags & SO_ALL) {
  3648. for_each_node_state(node, N_NORMAL_MEMORY) {
  3649. struct kmem_cache_node *n = get_node(s, node);
  3650. if (flags & SO_TOTAL)
  3651. x = atomic_long_read(&n->total_objects);
  3652. else if (flags & SO_OBJECTS)
  3653. x = atomic_long_read(&n->total_objects) -
  3654. count_partial(n, count_free);
  3655. else
  3656. x = atomic_long_read(&n->nr_slabs);
  3657. total += x;
  3658. nodes[node] += x;
  3659. }
  3660. } else
  3661. #endif
  3662. if (flags & SO_PARTIAL) {
  3663. for_each_node_state(node, N_NORMAL_MEMORY) {
  3664. struct kmem_cache_node *n = get_node(s, node);
  3665. if (flags & SO_TOTAL)
  3666. x = count_partial(n, count_total);
  3667. else if (flags & SO_OBJECTS)
  3668. x = count_partial(n, count_inuse);
  3669. else
  3670. x = n->nr_partial;
  3671. total += x;
  3672. nodes[node] += x;
  3673. }
  3674. }
  3675. x = sprintf(buf, "%lu", total);
  3676. #ifdef CONFIG_NUMA
  3677. for_each_node_state(node, N_NORMAL_MEMORY)
  3678. if (nodes[node])
  3679. x += sprintf(buf + x, " N%d=%lu",
  3680. node, nodes[node]);
  3681. #endif
  3682. put_online_mems();
  3683. kfree(nodes);
  3684. return x + sprintf(buf + x, "\n");
  3685. }
  3686. #ifdef CONFIG_SLUB_DEBUG
  3687. static int any_slab_objects(struct kmem_cache *s)
  3688. {
  3689. int node;
  3690. for_each_online_node(node) {
  3691. struct kmem_cache_node *n = get_node(s, node);
  3692. if (!n)
  3693. continue;
  3694. if (atomic_long_read(&n->total_objects))
  3695. return 1;
  3696. }
  3697. return 0;
  3698. }
  3699. #endif
  3700. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3701. #define to_slab(n) container_of(n, struct kmem_cache, kobj)
  3702. struct slab_attribute {
  3703. struct attribute attr;
  3704. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3705. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3706. };
  3707. #define SLAB_ATTR_RO(_name) \
  3708. static struct slab_attribute _name##_attr = \
  3709. __ATTR(_name, 0400, _name##_show, NULL)
  3710. #define SLAB_ATTR(_name) \
  3711. static struct slab_attribute _name##_attr = \
  3712. __ATTR(_name, 0600, _name##_show, _name##_store)
  3713. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3714. {
  3715. return sprintf(buf, "%d\n", s->size);
  3716. }
  3717. SLAB_ATTR_RO(slab_size);
  3718. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3719. {
  3720. return sprintf(buf, "%d\n", s->align);
  3721. }
  3722. SLAB_ATTR_RO(align);
  3723. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3724. {
  3725. return sprintf(buf, "%d\n", s->object_size);
  3726. }
  3727. SLAB_ATTR_RO(object_size);
  3728. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3729. {
  3730. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3731. }
  3732. SLAB_ATTR_RO(objs_per_slab);
  3733. static ssize_t order_store(struct kmem_cache *s,
  3734. const char *buf, size_t length)
  3735. {
  3736. unsigned long order;
  3737. int err;
  3738. err = kstrtoul(buf, 10, &order);
  3739. if (err)
  3740. return err;
  3741. if (order > slub_max_order || order < slub_min_order)
  3742. return -EINVAL;
  3743. calculate_sizes(s, order);
  3744. return length;
  3745. }
  3746. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3747. {
  3748. return sprintf(buf, "%d\n", oo_order(s->oo));
  3749. }
  3750. SLAB_ATTR(order);
  3751. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3752. {
  3753. return sprintf(buf, "%lu\n", s->min_partial);
  3754. }
  3755. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3756. size_t length)
  3757. {
  3758. unsigned long min;
  3759. int err;
  3760. err = kstrtoul(buf, 10, &min);
  3761. if (err)
  3762. return err;
  3763. set_min_partial(s, min);
  3764. return length;
  3765. }
  3766. SLAB_ATTR(min_partial);
  3767. static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
  3768. {
  3769. return sprintf(buf, "%u\n", s->cpu_partial);
  3770. }
  3771. static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
  3772. size_t length)
  3773. {
  3774. unsigned long objects;
  3775. int err;
  3776. err = kstrtoul(buf, 10, &objects);
  3777. if (err)
  3778. return err;
  3779. if (objects && !kmem_cache_has_cpu_partial(s))
  3780. return -EINVAL;
  3781. s->cpu_partial = objects;
  3782. flush_all(s);
  3783. return length;
  3784. }
  3785. SLAB_ATTR(cpu_partial);
  3786. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3787. {
  3788. if (!s->ctor)
  3789. return 0;
  3790. return sprintf(buf, "%pS\n", s->ctor);
  3791. }
  3792. SLAB_ATTR_RO(ctor);
  3793. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3794. {
  3795. return sprintf(buf, "%d\n", s->refcount - 1);
  3796. }
  3797. SLAB_ATTR_RO(aliases);
  3798. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3799. {
  3800. return show_slab_objects(s, buf, SO_PARTIAL);
  3801. }
  3802. SLAB_ATTR_RO(partial);
  3803. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3804. {
  3805. return show_slab_objects(s, buf, SO_CPU);
  3806. }
  3807. SLAB_ATTR_RO(cpu_slabs);
  3808. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3809. {
  3810. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3811. }
  3812. SLAB_ATTR_RO(objects);
  3813. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3814. {
  3815. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3816. }
  3817. SLAB_ATTR_RO(objects_partial);
  3818. static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
  3819. {
  3820. int objects = 0;
  3821. int pages = 0;
  3822. int cpu;
  3823. int len;
  3824. for_each_online_cpu(cpu) {
  3825. struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;
  3826. if (page) {
  3827. pages += page->pages;
  3828. objects += page->pobjects;
  3829. }
  3830. }
  3831. len = sprintf(buf, "%d(%d)", objects, pages);
  3832. #ifdef CONFIG_SMP
  3833. for_each_online_cpu(cpu) {
  3834. struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;
  3835. if (page && len < PAGE_SIZE - 20)
  3836. len += sprintf(buf + len, " C%d=%d(%d)", cpu,
  3837. page->pobjects, page->pages);
  3838. }
  3839. #endif
  3840. return len + sprintf(buf + len, "\n");
  3841. }
  3842. SLAB_ATTR_RO(slabs_cpu_partial);
  3843. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3844. {
  3845. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3846. }
  3847. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3848. const char *buf, size_t length)
  3849. {
  3850. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3851. if (buf[0] == '1')
  3852. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3853. return length;
  3854. }
  3855. SLAB_ATTR(reclaim_account);
  3856. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3857. {
  3858. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3859. }
  3860. SLAB_ATTR_RO(hwcache_align);
  3861. #ifdef CONFIG_ZONE_DMA
  3862. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3863. {
  3864. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3865. }
  3866. SLAB_ATTR_RO(cache_dma);
  3867. #endif
  3868. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3869. {
  3870. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3871. }
  3872. SLAB_ATTR_RO(destroy_by_rcu);
  3873. static ssize_t reserved_show(struct kmem_cache *s, char *buf)
  3874. {
  3875. return sprintf(buf, "%d\n", s->reserved);
  3876. }
  3877. SLAB_ATTR_RO(reserved);
  3878. #ifdef CONFIG_SLUB_DEBUG
  3879. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3880. {
  3881. return show_slab_objects(s, buf, SO_ALL);
  3882. }
  3883. SLAB_ATTR_RO(slabs);
  3884. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3885. {
  3886. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3887. }
  3888. SLAB_ATTR_RO(total_objects);
  3889. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3890. {
  3891. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3892. }
  3893. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3894. const char *buf, size_t length)
  3895. {
  3896. s->flags &= ~SLAB_DEBUG_FREE;
  3897. if (buf[0] == '1') {
  3898. s->flags &= ~__CMPXCHG_DOUBLE;
  3899. s->flags |= SLAB_DEBUG_FREE;
  3900. }
  3901. return length;
  3902. }
  3903. SLAB_ATTR(sanity_checks);
  3904. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3905. {
  3906. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3907. }
  3908. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3909. size_t length)
  3910. {
  3911. s->flags &= ~SLAB_TRACE;
  3912. if (buf[0] == '1') {
  3913. s->flags &= ~__CMPXCHG_DOUBLE;
  3914. s->flags |= SLAB_TRACE;
  3915. }
  3916. return length;
  3917. }
  3918. SLAB_ATTR(trace);
  3919. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3920. {
  3921. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3922. }
  3923. static ssize_t red_zone_store(struct kmem_cache *s,
  3924. const char *buf, size_t length)
  3925. {
  3926. if (any_slab_objects(s))
  3927. return -EBUSY;
  3928. s->flags &= ~SLAB_RED_ZONE;
  3929. if (buf[0] == '1') {
  3930. s->flags &= ~__CMPXCHG_DOUBLE;
  3931. s->flags |= SLAB_RED_ZONE;
  3932. }
  3933. calculate_sizes(s, -1);
  3934. return length;
  3935. }
  3936. SLAB_ATTR(red_zone);
  3937. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3938. {
  3939. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3940. }
  3941. static ssize_t poison_store(struct kmem_cache *s,
  3942. const char *buf, size_t length)
  3943. {
  3944. if (any_slab_objects(s))
  3945. return -EBUSY;
  3946. s->flags &= ~SLAB_POISON;
  3947. if (buf[0] == '1') {
  3948. s->flags &= ~__CMPXCHG_DOUBLE;
  3949. s->flags |= SLAB_POISON;
  3950. }
  3951. calculate_sizes(s, -1);
  3952. return length;
  3953. }
  3954. SLAB_ATTR(poison);
  3955. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3956. {
  3957. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3958. }
  3959. static ssize_t store_user_store(struct kmem_cache *s,
  3960. const char *buf, size_t length)
  3961. {
  3962. if (any_slab_objects(s))
  3963. return -EBUSY;
  3964. s->flags &= ~SLAB_STORE_USER;
  3965. if (buf[0] == '1') {
  3966. s->flags &= ~__CMPXCHG_DOUBLE;
  3967. s->flags |= SLAB_STORE_USER;
  3968. }
  3969. calculate_sizes(s, -1);
  3970. return length;
  3971. }
  3972. SLAB_ATTR(store_user);
  3973. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3974. {
  3975. return 0;
  3976. }
  3977. static ssize_t validate_store(struct kmem_cache *s,
  3978. const char *buf, size_t length)
  3979. {
  3980. int ret = -EINVAL;
  3981. if (buf[0] == '1') {
  3982. ret = validate_slab_cache(s);
  3983. if (ret >= 0)
  3984. ret = length;
  3985. }
  3986. return ret;
  3987. }
  3988. SLAB_ATTR(validate);
  3989. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3990. {
  3991. if (!(s->flags & SLAB_STORE_USER))
  3992. return -ENOSYS;
  3993. return list_locations(s, buf, TRACK_ALLOC);
  3994. }
  3995. SLAB_ATTR_RO(alloc_calls);
  3996. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3997. {
  3998. if (!(s->flags & SLAB_STORE_USER))
  3999. return -ENOSYS;
  4000. return list_locations(s, buf, TRACK_FREE);
  4001. }
  4002. SLAB_ATTR_RO(free_calls);
  4003. #endif /* CONFIG_SLUB_DEBUG */
  4004. #ifdef CONFIG_FAILSLAB
  4005. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  4006. {
  4007. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  4008. }
  4009. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  4010. size_t length)
  4011. {
  4012. s->flags &= ~SLAB_FAILSLAB;
  4013. if (buf[0] == '1')
  4014. s->flags |= SLAB_FAILSLAB;
  4015. return length;
  4016. }
  4017. SLAB_ATTR(failslab);
  4018. #endif
  4019. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  4020. {
  4021. return 0;
  4022. }
  4023. static ssize_t shrink_store(struct kmem_cache *s,
  4024. const char *buf, size_t length)
  4025. {
  4026. if (buf[0] == '1') {
  4027. int rc = kmem_cache_shrink(s);
  4028. if (rc)
  4029. return rc;
  4030. } else
  4031. return -EINVAL;
  4032. return length;
  4033. }
  4034. SLAB_ATTR(shrink);
  4035. #ifdef CONFIG_NUMA
  4036. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  4037. {
  4038. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  4039. }
  4040. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  4041. const char *buf, size_t length)
  4042. {
  4043. unsigned long ratio;
  4044. int err;
  4045. err = kstrtoul(buf, 10, &ratio);
  4046. if (err)
  4047. return err;
  4048. if (ratio <= 100)
  4049. s->remote_node_defrag_ratio = ratio * 10;
  4050. return length;
  4051. }
  4052. SLAB_ATTR(remote_node_defrag_ratio);
  4053. #endif
  4054. #ifdef CONFIG_SLUB_STATS
  4055. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  4056. {
  4057. unsigned long sum = 0;
  4058. int cpu;
  4059. int len;
  4060. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  4061. if (!data)
  4062. return -ENOMEM;
  4063. for_each_online_cpu(cpu) {
  4064. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  4065. data[cpu] = x;
  4066. sum += x;
  4067. }
  4068. len = sprintf(buf, "%lu", sum);
  4069. #ifdef CONFIG_SMP
  4070. for_each_online_cpu(cpu) {
  4071. if (data[cpu] && len < PAGE_SIZE - 20)
  4072. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  4073. }
  4074. #endif
  4075. kfree(data);
  4076. return len + sprintf(buf + len, "\n");
  4077. }
  4078. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  4079. {
  4080. int cpu;
  4081. for_each_online_cpu(cpu)
  4082. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  4083. }
  4084. #define STAT_ATTR(si, text) \
  4085. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  4086. { \
  4087. return show_stat(s, buf, si); \
  4088. } \
  4089. static ssize_t text##_store(struct kmem_cache *s, \
  4090. const char *buf, size_t length) \
  4091. { \
  4092. if (buf[0] != '0') \
  4093. return -EINVAL; \
  4094. clear_stat(s, si); \
  4095. return length; \
  4096. } \
  4097. SLAB_ATTR(text); \
  4098. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  4099. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  4100. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  4101. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  4102. STAT_ATTR(FREE_FROZEN, free_frozen);
  4103. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  4104. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  4105. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  4106. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  4107. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  4108. STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
  4109. STAT_ATTR(FREE_SLAB, free_slab);
  4110. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  4111. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  4112. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  4113. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  4114. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  4115. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  4116. STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
  4117. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  4118. STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
  4119. STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
  4120. STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
  4121. STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
  4122. STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
  4123. STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
  4124. #endif
  4125. static struct attribute *slab_attrs[] = {
  4126. &slab_size_attr.attr,
  4127. &object_size_attr.attr,
  4128. &objs_per_slab_attr.attr,
  4129. &order_attr.attr,
  4130. &min_partial_attr.attr,
  4131. &cpu_partial_attr.attr,
  4132. &objects_attr.attr,
  4133. &objects_partial_attr.attr,
  4134. &partial_attr.attr,
  4135. &cpu_slabs_attr.attr,
  4136. &ctor_attr.attr,
  4137. &aliases_attr.attr,
  4138. &align_attr.attr,
  4139. &hwcache_align_attr.attr,
  4140. &reclaim_account_attr.attr,
  4141. &destroy_by_rcu_attr.attr,
  4142. &shrink_attr.attr,
  4143. &reserved_attr.attr,
  4144. &slabs_cpu_partial_attr.attr,
  4145. #ifdef CONFIG_SLUB_DEBUG
  4146. &total_objects_attr.attr,
  4147. &slabs_attr.attr,
  4148. &sanity_checks_attr.attr,
  4149. &trace_attr.attr,
  4150. &red_zone_attr.attr,
  4151. &poison_attr.attr,
  4152. &store_user_attr.attr,
  4153. &validate_attr.attr,
  4154. &alloc_calls_attr.attr,
  4155. &free_calls_attr.attr,
  4156. #endif
  4157. #ifdef CONFIG_ZONE_DMA
  4158. &cache_dma_attr.attr,
  4159. #endif
  4160. #ifdef CONFIG_NUMA
  4161. &remote_node_defrag_ratio_attr.attr,
  4162. #endif
  4163. #ifdef CONFIG_SLUB_STATS
  4164. &alloc_fastpath_attr.attr,
  4165. &alloc_slowpath_attr.attr,
  4166. &free_fastpath_attr.attr,
  4167. &free_slowpath_attr.attr,
  4168. &free_frozen_attr.attr,
  4169. &free_add_partial_attr.attr,
  4170. &free_remove_partial_attr.attr,
  4171. &alloc_from_partial_attr.attr,
  4172. &alloc_slab_attr.attr,
  4173. &alloc_refill_attr.attr,
  4174. &alloc_node_mismatch_attr.attr,
  4175. &free_slab_attr.attr,
  4176. &cpuslab_flush_attr.attr,
  4177. &deactivate_full_attr.attr,
  4178. &deactivate_empty_attr.attr,
  4179. &deactivate_to_head_attr.attr,
  4180. &deactivate_to_tail_attr.attr,
  4181. &deactivate_remote_frees_attr.attr,
  4182. &deactivate_bypass_attr.attr,
  4183. &order_fallback_attr.attr,
  4184. &cmpxchg_double_fail_attr.attr,
  4185. &cmpxchg_double_cpu_fail_attr.attr,
  4186. &cpu_partial_alloc_attr.attr,
  4187. &cpu_partial_free_attr.attr,
  4188. &cpu_partial_node_attr.attr,
  4189. &cpu_partial_drain_attr.attr,
  4190. #endif
  4191. #ifdef CONFIG_FAILSLAB
  4192. &failslab_attr.attr,
  4193. #endif
  4194. NULL
  4195. };
  4196. static struct attribute_group slab_attr_group = {
  4197. .attrs = slab_attrs,
  4198. };
  4199. static ssize_t slab_attr_show(struct kobject *kobj,
  4200. struct attribute *attr,
  4201. char *buf)
  4202. {
  4203. struct slab_attribute *attribute;
  4204. struct kmem_cache *s;
  4205. int err;
  4206. attribute = to_slab_attr(attr);
  4207. s = to_slab(kobj);
  4208. if (!attribute->show)
  4209. return -EIO;
  4210. err = attribute->show(s, buf);
  4211. return err;
  4212. }
  4213. static ssize_t slab_attr_store(struct kobject *kobj,
  4214. struct attribute *attr,
  4215. const char *buf, size_t len)
  4216. {
  4217. struct slab_attribute *attribute;
  4218. struct kmem_cache *s;
  4219. int err;
  4220. attribute = to_slab_attr(attr);
  4221. s = to_slab(kobj);
  4222. if (!attribute->store)
  4223. return -EIO;
  4224. err = attribute->store(s, buf, len);
  4225. #ifdef CONFIG_MEMCG_KMEM
  4226. if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
  4227. int i;
  4228. mutex_lock(&slab_mutex);
  4229. if (s->max_attr_size < len)
  4230. s->max_attr_size = len;
  4231. /*
  4232. * This is a best effort propagation, so this function's return
  4233. * value will be determined by the parent cache only. This is
  4234. * basically because not all attributes will have a well
  4235. * defined semantics for rollbacks - most of the actions will
  4236. * have permanent effects.
  4237. *
  4238. * Returning the error value of any of the children that fail
  4239. * is not 100 % defined, in the sense that users seeing the
  4240. * error code won't be able to know anything about the state of
  4241. * the cache.
  4242. *
  4243. * Only returning the error code for the parent cache at least
  4244. * has well defined semantics. The cache being written to
  4245. * directly either failed or succeeded, in which case we loop
  4246. * through the descendants with best-effort propagation.
  4247. */
  4248. for_each_memcg_cache_index(i) {
  4249. struct kmem_cache *c = cache_from_memcg_idx(s, i);
  4250. if (c)
  4251. attribute->store(c, buf, len);
  4252. }
  4253. mutex_unlock(&slab_mutex);
  4254. }
  4255. #endif
  4256. return err;
  4257. }
  4258. static void memcg_propagate_slab_attrs(struct kmem_cache *s)
  4259. {
  4260. #ifdef CONFIG_MEMCG_KMEM
  4261. int i;
  4262. char *buffer = NULL;
  4263. struct kmem_cache *root_cache;
  4264. if (is_root_cache(s))
  4265. return;
  4266. root_cache = s->memcg_params->root_cache;
  4267. /*
  4268. * This mean this cache had no attribute written. Therefore, no point
  4269. * in copying default values around
  4270. */
  4271. if (!root_cache->max_attr_size)
  4272. return;
  4273. for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
  4274. char mbuf[64];
  4275. char *buf;
  4276. struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
  4277. if (!attr || !attr->store || !attr->show)
  4278. continue;
  4279. /*
  4280. * It is really bad that we have to allocate here, so we will
  4281. * do it only as a fallback. If we actually allocate, though,
  4282. * we can just use the allocated buffer until the end.
  4283. *
  4284. * Most of the slub attributes will tend to be very small in
  4285. * size, but sysfs allows buffers up to a page, so they can
  4286. * theoretically happen.
  4287. */
  4288. if (buffer)
  4289. buf = buffer;
  4290. else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
  4291. buf = mbuf;
  4292. else {
  4293. buffer = (char *) get_zeroed_page(GFP_KERNEL);
  4294. if (WARN_ON(!buffer))
  4295. continue;
  4296. buf = buffer;
  4297. }
  4298. attr->show(root_cache, buf);
  4299. attr->store(s, buf, strlen(buf));
  4300. }
  4301. if (buffer)
  4302. free_page((unsigned long)buffer);
  4303. #endif
  4304. }
  4305. static void kmem_cache_release(struct kobject *k)
  4306. {
  4307. slab_kmem_cache_release(to_slab(k));
  4308. }
  4309. static const struct sysfs_ops slab_sysfs_ops = {
  4310. .show = slab_attr_show,
  4311. .store = slab_attr_store,
  4312. };
  4313. static struct kobj_type slab_ktype = {
  4314. .sysfs_ops = &slab_sysfs_ops,
  4315. .release = kmem_cache_release,
  4316. };
  4317. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  4318. {
  4319. struct kobj_type *ktype = get_ktype(kobj);
  4320. if (ktype == &slab_ktype)
  4321. return 1;
  4322. return 0;
  4323. }
  4324. static const struct kset_uevent_ops slab_uevent_ops = {
  4325. .filter = uevent_filter,
  4326. };
  4327. static struct kset *slab_kset;
  4328. static inline struct kset *cache_kset(struct kmem_cache *s)
  4329. {
  4330. #ifdef CONFIG_MEMCG_KMEM
  4331. if (!is_root_cache(s))
  4332. return s->memcg_params->root_cache->memcg_kset;
  4333. #endif
  4334. return slab_kset;
  4335. }
  4336. #define ID_STR_LENGTH 64
  4337. /* Create a unique string id for a slab cache:
  4338. *
  4339. * Format :[flags-]size
  4340. */
  4341. static char *create_unique_id(struct kmem_cache *s)
  4342. {
  4343. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  4344. char *p = name;
  4345. BUG_ON(!name);
  4346. *p++ = ':';
  4347. /*
  4348. * First flags affecting slabcache operations. We will only
  4349. * get here for aliasable slabs so we do not need to support
  4350. * too many flags. The flags here must cover all flags that
  4351. * are matched during merging to guarantee that the id is
  4352. * unique.
  4353. */
  4354. if (s->flags & SLAB_CACHE_DMA)
  4355. *p++ = 'd';
  4356. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  4357. *p++ = 'a';
  4358. if (s->flags & SLAB_DEBUG_FREE)
  4359. *p++ = 'F';
  4360. if (!(s->flags & SLAB_NOTRACK))
  4361. *p++ = 't';
  4362. if (p != name + 1)
  4363. *p++ = '-';
  4364. p += sprintf(p, "%07d", s->size);
  4365. #ifdef CONFIG_MEMCG_KMEM
  4366. if (!is_root_cache(s))
  4367. p += sprintf(p, "-%08d",
  4368. memcg_cache_id(s->memcg_params->memcg));
  4369. #endif
  4370. BUG_ON(p > name + ID_STR_LENGTH - 1);
  4371. return name;
  4372. }
  4373. static int sysfs_slab_add(struct kmem_cache *s)
  4374. {
  4375. int err;
  4376. const char *name;
  4377. int unmergeable = slab_unmergeable(s);
  4378. if (unmergeable) {
  4379. /*
  4380. * Slabcache can never be merged so we can use the name proper.
  4381. * This is typically the case for debug situations. In that
  4382. * case we can catch duplicate names easily.
  4383. */
  4384. sysfs_remove_link(&slab_kset->kobj, s->name);
  4385. name = s->name;
  4386. } else {
  4387. /*
  4388. * Create a unique name for the slab as a target
  4389. * for the symlinks.
  4390. */
  4391. name = create_unique_id(s);
  4392. }
  4393. s->kobj.kset = cache_kset(s);
  4394. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
  4395. if (err)
  4396. goto out_put_kobj;
  4397. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  4398. if (err)
  4399. goto out_del_kobj;
  4400. #ifdef CONFIG_MEMCG_KMEM
  4401. if (is_root_cache(s)) {
  4402. s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
  4403. if (!s->memcg_kset) {
  4404. err = -ENOMEM;
  4405. goto out_del_kobj;
  4406. }
  4407. }
  4408. #endif
  4409. kobject_uevent(&s->kobj, KOBJ_ADD);
  4410. if (!unmergeable) {
  4411. /* Setup first alias */
  4412. sysfs_slab_alias(s, s->name);
  4413. }
  4414. out:
  4415. if (!unmergeable)
  4416. kfree(name);
  4417. return err;
  4418. out_del_kobj:
  4419. kobject_del(&s->kobj);
  4420. out_put_kobj:
  4421. kobject_put(&s->kobj);
  4422. goto out;
  4423. }
  4424. void sysfs_slab_remove(struct kmem_cache *s)
  4425. {
  4426. if (slab_state < FULL)
  4427. /*
  4428. * Sysfs has not been setup yet so no need to remove the
  4429. * cache from sysfs.
  4430. */
  4431. return;
  4432. #ifdef CONFIG_MEMCG_KMEM
  4433. kset_unregister(s->memcg_kset);
  4434. #endif
  4435. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  4436. kobject_del(&s->kobj);
  4437. kobject_put(&s->kobj);
  4438. }
  4439. /*
  4440. * Need to buffer aliases during bootup until sysfs becomes
  4441. * available lest we lose that information.
  4442. */
  4443. struct saved_alias {
  4444. struct kmem_cache *s;
  4445. const char *name;
  4446. struct saved_alias *next;
  4447. };
  4448. static struct saved_alias *alias_list;
  4449. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  4450. {
  4451. struct saved_alias *al;
  4452. if (slab_state == FULL) {
  4453. /*
  4454. * If we have a leftover link then remove it.
  4455. */
  4456. sysfs_remove_link(&slab_kset->kobj, name);
  4457. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  4458. }
  4459. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  4460. if (!al)
  4461. return -ENOMEM;
  4462. al->s = s;
  4463. al->name = name;
  4464. al->next = alias_list;
  4465. alias_list = al;
  4466. return 0;
  4467. }
  4468. static int __init slab_sysfs_init(void)
  4469. {
  4470. struct kmem_cache *s;
  4471. int err;
  4472. mutex_lock(&slab_mutex);
  4473. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  4474. if (!slab_kset) {
  4475. mutex_unlock(&slab_mutex);
  4476. pr_err("Cannot register slab subsystem.\n");
  4477. return -ENOSYS;
  4478. }
  4479. slab_state = FULL;
  4480. list_for_each_entry(s, &slab_caches, list) {
  4481. err = sysfs_slab_add(s);
  4482. if (err)
  4483. pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
  4484. s->name);
  4485. }
  4486. while (alias_list) {
  4487. struct saved_alias *al = alias_list;
  4488. alias_list = alias_list->next;
  4489. err = sysfs_slab_alias(al->s, al->name);
  4490. if (err)
  4491. pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
  4492. al->name);
  4493. kfree(al);
  4494. }
  4495. mutex_unlock(&slab_mutex);
  4496. resiliency_test();
  4497. return 0;
  4498. }
  4499. __initcall(slab_sysfs_init);
  4500. #endif /* CONFIG_SYSFS */
  4501. /*
  4502. * The /proc/slabinfo ABI
  4503. */
  4504. #ifdef CONFIG_SLABINFO
  4505. void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
  4506. {
  4507. unsigned long nr_slabs = 0;
  4508. unsigned long nr_objs = 0;
  4509. unsigned long nr_free = 0;
  4510. int node;
  4511. for_each_online_node(node) {
  4512. struct kmem_cache_node *n = get_node(s, node);
  4513. if (!n)
  4514. continue;
  4515. nr_slabs += node_nr_slabs(n);
  4516. nr_objs += node_nr_objs(n);
  4517. nr_free += count_partial(n, count_free);
  4518. }
  4519. sinfo->active_objs = nr_objs - nr_free;
  4520. sinfo->num_objs = nr_objs;
  4521. sinfo->active_slabs = nr_slabs;
  4522. sinfo->num_slabs = nr_slabs;
  4523. sinfo->objects_per_slab = oo_objects(s->oo);
  4524. sinfo->cache_order = oo_order(s->oo);
  4525. }
  4526. void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
  4527. {
  4528. }
  4529. ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  4530. size_t count, loff_t *ppos)
  4531. {
  4532. return -EIO;
  4533. }
  4534. #endif /* CONFIG_SLABINFO */