rmap.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * mm->mmap_sem
  24. * page->flags PG_locked (lock_page)
  25. * mapping->i_mmap_mutex
  26. * anon_vma->rwsem
  27. * mm->page_table_lock or pte_lock
  28. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  29. * swap_lock (in swap_duplicate, swap_info_get)
  30. * mmlist_lock (in mmput, drain_mmlist and others)
  31. * mapping->private_lock (in __set_page_dirty_buffers)
  32. * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  33. * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within bdi.wb->list_lock in __sync_single_inode)
  38. *
  39. * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
  40. * ->tasklist_lock
  41. * pte map lock
  42. */
  43. #include <linux/mm.h>
  44. #include <linux/pagemap.h>
  45. #include <linux/swap.h>
  46. #include <linux/swapops.h>
  47. #include <linux/slab.h>
  48. #include <linux/init.h>
  49. #include <linux/ksm.h>
  50. #include <linux/rmap.h>
  51. #include <linux/rcupdate.h>
  52. #include <linux/export.h>
  53. #include <linux/memcontrol.h>
  54. #include <linux/mmu_notifier.h>
  55. #include <linux/migrate.h>
  56. #include <linux/hugetlb.h>
  57. #include <linux/backing-dev.h>
  58. #include <asm/tlbflush.h>
  59. #include "internal.h"
  60. static struct kmem_cache *anon_vma_cachep;
  61. static struct kmem_cache *anon_vma_chain_cachep;
  62. static inline struct anon_vma *anon_vma_alloc(void)
  63. {
  64. struct anon_vma *anon_vma;
  65. anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  66. if (anon_vma) {
  67. atomic_set(&anon_vma->refcount, 1);
  68. /*
  69. * Initialise the anon_vma root to point to itself. If called
  70. * from fork, the root will be reset to the parents anon_vma.
  71. */
  72. anon_vma->root = anon_vma;
  73. }
  74. return anon_vma;
  75. }
  76. static inline void anon_vma_free(struct anon_vma *anon_vma)
  77. {
  78. VM_BUG_ON(atomic_read(&anon_vma->refcount));
  79. /*
  80. * Synchronize against page_lock_anon_vma_read() such that
  81. * we can safely hold the lock without the anon_vma getting
  82. * freed.
  83. *
  84. * Relies on the full mb implied by the atomic_dec_and_test() from
  85. * put_anon_vma() against the acquire barrier implied by
  86. * down_read_trylock() from page_lock_anon_vma_read(). This orders:
  87. *
  88. * page_lock_anon_vma_read() VS put_anon_vma()
  89. * down_read_trylock() atomic_dec_and_test()
  90. * LOCK MB
  91. * atomic_read() rwsem_is_locked()
  92. *
  93. * LOCK should suffice since the actual taking of the lock must
  94. * happen _before_ what follows.
  95. */
  96. might_sleep();
  97. if (rwsem_is_locked(&anon_vma->root->rwsem)) {
  98. anon_vma_lock_write(anon_vma);
  99. anon_vma_unlock_write(anon_vma);
  100. }
  101. kmem_cache_free(anon_vma_cachep, anon_vma);
  102. }
  103. static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
  104. {
  105. return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
  106. }
  107. static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
  108. {
  109. kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
  110. }
  111. static void anon_vma_chain_link(struct vm_area_struct *vma,
  112. struct anon_vma_chain *avc,
  113. struct anon_vma *anon_vma)
  114. {
  115. avc->vma = vma;
  116. avc->anon_vma = anon_vma;
  117. list_add(&avc->same_vma, &vma->anon_vma_chain);
  118. anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
  119. }
  120. /**
  121. * anon_vma_prepare - attach an anon_vma to a memory region
  122. * @vma: the memory region in question
  123. *
  124. * This makes sure the memory mapping described by 'vma' has
  125. * an 'anon_vma' attached to it, so that we can associate the
  126. * anonymous pages mapped into it with that anon_vma.
  127. *
  128. * The common case will be that we already have one, but if
  129. * not we either need to find an adjacent mapping that we
  130. * can re-use the anon_vma from (very common when the only
  131. * reason for splitting a vma has been mprotect()), or we
  132. * allocate a new one.
  133. *
  134. * Anon-vma allocations are very subtle, because we may have
  135. * optimistically looked up an anon_vma in page_lock_anon_vma_read()
  136. * and that may actually touch the spinlock even in the newly
  137. * allocated vma (it depends on RCU to make sure that the
  138. * anon_vma isn't actually destroyed).
  139. *
  140. * As a result, we need to do proper anon_vma locking even
  141. * for the new allocation. At the same time, we do not want
  142. * to do any locking for the common case of already having
  143. * an anon_vma.
  144. *
  145. * This must be called with the mmap_sem held for reading.
  146. */
  147. int anon_vma_prepare(struct vm_area_struct *vma)
  148. {
  149. struct anon_vma *anon_vma = vma->anon_vma;
  150. struct anon_vma_chain *avc;
  151. might_sleep();
  152. if (unlikely(!anon_vma)) {
  153. struct mm_struct *mm = vma->vm_mm;
  154. struct anon_vma *allocated;
  155. avc = anon_vma_chain_alloc(GFP_KERNEL);
  156. if (!avc)
  157. goto out_enomem;
  158. anon_vma = find_mergeable_anon_vma(vma);
  159. allocated = NULL;
  160. if (!anon_vma) {
  161. anon_vma = anon_vma_alloc();
  162. if (unlikely(!anon_vma))
  163. goto out_enomem_free_avc;
  164. allocated = anon_vma;
  165. }
  166. anon_vma_lock_write(anon_vma);
  167. /* page_table_lock to protect against threads */
  168. spin_lock(&mm->page_table_lock);
  169. if (likely(!vma->anon_vma)) {
  170. vma->anon_vma = anon_vma;
  171. anon_vma_chain_link(vma, avc, anon_vma);
  172. allocated = NULL;
  173. avc = NULL;
  174. }
  175. spin_unlock(&mm->page_table_lock);
  176. anon_vma_unlock_write(anon_vma);
  177. if (unlikely(allocated))
  178. put_anon_vma(allocated);
  179. if (unlikely(avc))
  180. anon_vma_chain_free(avc);
  181. }
  182. return 0;
  183. out_enomem_free_avc:
  184. anon_vma_chain_free(avc);
  185. out_enomem:
  186. return -ENOMEM;
  187. }
  188. /*
  189. * This is a useful helper function for locking the anon_vma root as
  190. * we traverse the vma->anon_vma_chain, looping over anon_vma's that
  191. * have the same vma.
  192. *
  193. * Such anon_vma's should have the same root, so you'd expect to see
  194. * just a single mutex_lock for the whole traversal.
  195. */
  196. static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
  197. {
  198. struct anon_vma *new_root = anon_vma->root;
  199. if (new_root != root) {
  200. if (WARN_ON_ONCE(root))
  201. up_write(&root->rwsem);
  202. root = new_root;
  203. down_write(&root->rwsem);
  204. }
  205. return root;
  206. }
  207. static inline void unlock_anon_vma_root(struct anon_vma *root)
  208. {
  209. if (root)
  210. up_write(&root->rwsem);
  211. }
  212. /*
  213. * Attach the anon_vmas from src to dst.
  214. * Returns 0 on success, -ENOMEM on failure.
  215. */
  216. int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
  217. {
  218. struct anon_vma_chain *avc, *pavc;
  219. struct anon_vma *root = NULL;
  220. list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
  221. struct anon_vma *anon_vma;
  222. avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
  223. if (unlikely(!avc)) {
  224. unlock_anon_vma_root(root);
  225. root = NULL;
  226. avc = anon_vma_chain_alloc(GFP_KERNEL);
  227. if (!avc)
  228. goto enomem_failure;
  229. }
  230. anon_vma = pavc->anon_vma;
  231. root = lock_anon_vma_root(root, anon_vma);
  232. anon_vma_chain_link(dst, avc, anon_vma);
  233. }
  234. unlock_anon_vma_root(root);
  235. return 0;
  236. enomem_failure:
  237. unlink_anon_vmas(dst);
  238. return -ENOMEM;
  239. }
  240. /*
  241. * Attach vma to its own anon_vma, as well as to the anon_vmas that
  242. * the corresponding VMA in the parent process is attached to.
  243. * Returns 0 on success, non-zero on failure.
  244. */
  245. int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
  246. {
  247. struct anon_vma_chain *avc;
  248. struct anon_vma *anon_vma;
  249. /* Don't bother if the parent process has no anon_vma here. */
  250. if (!pvma->anon_vma)
  251. return 0;
  252. /*
  253. * First, attach the new VMA to the parent VMA's anon_vmas,
  254. * so rmap can find non-COWed pages in child processes.
  255. */
  256. if (anon_vma_clone(vma, pvma))
  257. return -ENOMEM;
  258. /* Then add our own anon_vma. */
  259. anon_vma = anon_vma_alloc();
  260. if (!anon_vma)
  261. goto out_error;
  262. avc = anon_vma_chain_alloc(GFP_KERNEL);
  263. if (!avc)
  264. goto out_error_free_anon_vma;
  265. /*
  266. * The root anon_vma's spinlock is the lock actually used when we
  267. * lock any of the anon_vmas in this anon_vma tree.
  268. */
  269. anon_vma->root = pvma->anon_vma->root;
  270. /*
  271. * With refcounts, an anon_vma can stay around longer than the
  272. * process it belongs to. The root anon_vma needs to be pinned until
  273. * this anon_vma is freed, because the lock lives in the root.
  274. */
  275. get_anon_vma(anon_vma->root);
  276. /* Mark this anon_vma as the one where our new (COWed) pages go. */
  277. vma->anon_vma = anon_vma;
  278. anon_vma_lock_write(anon_vma);
  279. anon_vma_chain_link(vma, avc, anon_vma);
  280. anon_vma_unlock_write(anon_vma);
  281. return 0;
  282. out_error_free_anon_vma:
  283. put_anon_vma(anon_vma);
  284. out_error:
  285. unlink_anon_vmas(vma);
  286. return -ENOMEM;
  287. }
  288. void unlink_anon_vmas(struct vm_area_struct *vma)
  289. {
  290. struct anon_vma_chain *avc, *next;
  291. struct anon_vma *root = NULL;
  292. /*
  293. * Unlink each anon_vma chained to the VMA. This list is ordered
  294. * from newest to oldest, ensuring the root anon_vma gets freed last.
  295. */
  296. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  297. struct anon_vma *anon_vma = avc->anon_vma;
  298. root = lock_anon_vma_root(root, anon_vma);
  299. anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
  300. /*
  301. * Leave empty anon_vmas on the list - we'll need
  302. * to free them outside the lock.
  303. */
  304. if (RB_EMPTY_ROOT(&anon_vma->rb_root))
  305. continue;
  306. list_del(&avc->same_vma);
  307. anon_vma_chain_free(avc);
  308. }
  309. unlock_anon_vma_root(root);
  310. /*
  311. * Iterate the list once more, it now only contains empty and unlinked
  312. * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
  313. * needing to write-acquire the anon_vma->root->rwsem.
  314. */
  315. list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
  316. struct anon_vma *anon_vma = avc->anon_vma;
  317. put_anon_vma(anon_vma);
  318. list_del(&avc->same_vma);
  319. anon_vma_chain_free(avc);
  320. }
  321. }
  322. static void anon_vma_ctor(void *data)
  323. {
  324. struct anon_vma *anon_vma = data;
  325. init_rwsem(&anon_vma->rwsem);
  326. atomic_set(&anon_vma->refcount, 0);
  327. anon_vma->rb_root = RB_ROOT;
  328. }
  329. void __init anon_vma_init(void)
  330. {
  331. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  332. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  333. anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
  334. }
  335. /*
  336. * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
  337. *
  338. * Since there is no serialization what so ever against page_remove_rmap()
  339. * the best this function can do is return a locked anon_vma that might
  340. * have been relevant to this page.
  341. *
  342. * The page might have been remapped to a different anon_vma or the anon_vma
  343. * returned may already be freed (and even reused).
  344. *
  345. * In case it was remapped to a different anon_vma, the new anon_vma will be a
  346. * child of the old anon_vma, and the anon_vma lifetime rules will therefore
  347. * ensure that any anon_vma obtained from the page will still be valid for as
  348. * long as we observe page_mapped() [ hence all those page_mapped() tests ].
  349. *
  350. * All users of this function must be very careful when walking the anon_vma
  351. * chain and verify that the page in question is indeed mapped in it
  352. * [ something equivalent to page_mapped_in_vma() ].
  353. *
  354. * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
  355. * that the anon_vma pointer from page->mapping is valid if there is a
  356. * mapcount, we can dereference the anon_vma after observing those.
  357. */
  358. struct anon_vma *page_get_anon_vma(struct page *page)
  359. {
  360. struct anon_vma *anon_vma = NULL;
  361. unsigned long anon_mapping;
  362. rcu_read_lock();
  363. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  364. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  365. goto out;
  366. if (!page_mapped(page))
  367. goto out;
  368. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  369. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  370. anon_vma = NULL;
  371. goto out;
  372. }
  373. /*
  374. * If this page is still mapped, then its anon_vma cannot have been
  375. * freed. But if it has been unmapped, we have no security against the
  376. * anon_vma structure being freed and reused (for another anon_vma:
  377. * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
  378. * above cannot corrupt).
  379. */
  380. if (!page_mapped(page)) {
  381. rcu_read_unlock();
  382. put_anon_vma(anon_vma);
  383. return NULL;
  384. }
  385. out:
  386. rcu_read_unlock();
  387. return anon_vma;
  388. }
  389. /*
  390. * Similar to page_get_anon_vma() except it locks the anon_vma.
  391. *
  392. * Its a little more complex as it tries to keep the fast path to a single
  393. * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
  394. * reference like with page_get_anon_vma() and then block on the mutex.
  395. */
  396. struct anon_vma *page_lock_anon_vma_read(struct page *page)
  397. {
  398. struct anon_vma *anon_vma = NULL;
  399. struct anon_vma *root_anon_vma;
  400. unsigned long anon_mapping;
  401. rcu_read_lock();
  402. anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
  403. if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
  404. goto out;
  405. if (!page_mapped(page))
  406. goto out;
  407. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  408. root_anon_vma = ACCESS_ONCE(anon_vma->root);
  409. if (down_read_trylock(&root_anon_vma->rwsem)) {
  410. /*
  411. * If the page is still mapped, then this anon_vma is still
  412. * its anon_vma, and holding the mutex ensures that it will
  413. * not go away, see anon_vma_free().
  414. */
  415. if (!page_mapped(page)) {
  416. up_read(&root_anon_vma->rwsem);
  417. anon_vma = NULL;
  418. }
  419. goto out;
  420. }
  421. /* trylock failed, we got to sleep */
  422. if (!atomic_inc_not_zero(&anon_vma->refcount)) {
  423. anon_vma = NULL;
  424. goto out;
  425. }
  426. if (!page_mapped(page)) {
  427. rcu_read_unlock();
  428. put_anon_vma(anon_vma);
  429. return NULL;
  430. }
  431. /* we pinned the anon_vma, its safe to sleep */
  432. rcu_read_unlock();
  433. anon_vma_lock_read(anon_vma);
  434. if (atomic_dec_and_test(&anon_vma->refcount)) {
  435. /*
  436. * Oops, we held the last refcount, release the lock
  437. * and bail -- can't simply use put_anon_vma() because
  438. * we'll deadlock on the anon_vma_lock_write() recursion.
  439. */
  440. anon_vma_unlock_read(anon_vma);
  441. __put_anon_vma(anon_vma);
  442. anon_vma = NULL;
  443. }
  444. return anon_vma;
  445. out:
  446. rcu_read_unlock();
  447. return anon_vma;
  448. }
  449. void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
  450. {
  451. anon_vma_unlock_read(anon_vma);
  452. }
  453. /*
  454. * At what user virtual address is page expected in @vma?
  455. */
  456. static inline unsigned long
  457. __vma_address(struct page *page, struct vm_area_struct *vma)
  458. {
  459. pgoff_t pgoff = page_to_pgoff(page);
  460. return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  461. }
  462. inline unsigned long
  463. vma_address(struct page *page, struct vm_area_struct *vma)
  464. {
  465. unsigned long address = __vma_address(page, vma);
  466. /* page should be within @vma mapping range */
  467. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  468. return address;
  469. }
  470. /*
  471. * At what user virtual address is page expected in vma?
  472. * Caller should check the page is actually part of the vma.
  473. */
  474. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  475. {
  476. unsigned long address;
  477. if (PageAnon(page)) {
  478. struct anon_vma *page__anon_vma = page_anon_vma(page);
  479. /*
  480. * Note: swapoff's unuse_vma() is more efficient with this
  481. * check, and needs it to match anon_vma when KSM is active.
  482. */
  483. if (!vma->anon_vma || !page__anon_vma ||
  484. vma->anon_vma->root != page__anon_vma->root)
  485. return -EFAULT;
  486. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  487. if (!vma->vm_file ||
  488. vma->vm_file->f_mapping != page->mapping)
  489. return -EFAULT;
  490. } else
  491. return -EFAULT;
  492. address = __vma_address(page, vma);
  493. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  494. return -EFAULT;
  495. return address;
  496. }
  497. pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
  498. {
  499. pgd_t *pgd;
  500. pud_t *pud;
  501. pmd_t *pmd = NULL;
  502. pmd_t pmde;
  503. pgd = pgd_offset(mm, address);
  504. if (!pgd_present(*pgd))
  505. goto out;
  506. pud = pud_offset(pgd, address);
  507. if (!pud_present(*pud))
  508. goto out;
  509. pmd = pmd_offset(pud, address);
  510. /*
  511. * Some THP functions use the sequence pmdp_clear_flush(), set_pmd_at()
  512. * without holding anon_vma lock for write. So when looking for a
  513. * genuine pmde (in which to find pte), test present and !THP together.
  514. */
  515. pmde = ACCESS_ONCE(*pmd);
  516. if (!pmd_present(pmde) || pmd_trans_huge(pmde))
  517. pmd = NULL;
  518. out:
  519. return pmd;
  520. }
  521. /*
  522. * Check that @page is mapped at @address into @mm.
  523. *
  524. * If @sync is false, page_check_address may perform a racy check to avoid
  525. * the page table lock when the pte is not present (helpful when reclaiming
  526. * highly shared pages).
  527. *
  528. * On success returns with pte mapped and locked.
  529. */
  530. pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
  531. unsigned long address, spinlock_t **ptlp, int sync)
  532. {
  533. pmd_t *pmd;
  534. pte_t *pte;
  535. spinlock_t *ptl;
  536. if (unlikely(PageHuge(page))) {
  537. /* when pud is not present, pte will be NULL */
  538. pte = huge_pte_offset(mm, address);
  539. if (!pte)
  540. return NULL;
  541. ptl = huge_pte_lockptr(page_hstate(page), mm, pte);
  542. goto check;
  543. }
  544. pmd = mm_find_pmd(mm, address);
  545. if (!pmd)
  546. return NULL;
  547. pte = pte_offset_map(pmd, address);
  548. /* Make a quick check before getting the lock */
  549. if (!sync && !pte_present(*pte)) {
  550. pte_unmap(pte);
  551. return NULL;
  552. }
  553. ptl = pte_lockptr(mm, pmd);
  554. check:
  555. spin_lock(ptl);
  556. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  557. *ptlp = ptl;
  558. return pte;
  559. }
  560. pte_unmap_unlock(pte, ptl);
  561. return NULL;
  562. }
  563. /**
  564. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  565. * @page: the page to test
  566. * @vma: the VMA to test
  567. *
  568. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  569. * if the page is not mapped into the page tables of this VMA. Only
  570. * valid for normal file or anonymous VMAs.
  571. */
  572. int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  573. {
  574. unsigned long address;
  575. pte_t *pte;
  576. spinlock_t *ptl;
  577. address = __vma_address(page, vma);
  578. if (unlikely(address < vma->vm_start || address >= vma->vm_end))
  579. return 0;
  580. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  581. if (!pte) /* the page is not in this mm */
  582. return 0;
  583. pte_unmap_unlock(pte, ptl);
  584. return 1;
  585. }
  586. struct page_referenced_arg {
  587. int mapcount;
  588. int referenced;
  589. unsigned long vm_flags;
  590. struct mem_cgroup *memcg;
  591. };
  592. /*
  593. * arg: page_referenced_arg will be passed
  594. */
  595. static int page_referenced_one(struct page *page, struct vm_area_struct *vma,
  596. unsigned long address, void *arg)
  597. {
  598. struct mm_struct *mm = vma->vm_mm;
  599. spinlock_t *ptl;
  600. int referenced = 0;
  601. struct page_referenced_arg *pra = arg;
  602. if (unlikely(PageTransHuge(page))) {
  603. pmd_t *pmd;
  604. /*
  605. * rmap might return false positives; we must filter
  606. * these out using page_check_address_pmd().
  607. */
  608. pmd = page_check_address_pmd(page, mm, address,
  609. PAGE_CHECK_ADDRESS_PMD_FLAG, &ptl);
  610. if (!pmd)
  611. return SWAP_AGAIN;
  612. if (vma->vm_flags & VM_LOCKED) {
  613. spin_unlock(ptl);
  614. pra->vm_flags |= VM_LOCKED;
  615. return SWAP_FAIL; /* To break the loop */
  616. }
  617. /* go ahead even if the pmd is pmd_trans_splitting() */
  618. if (pmdp_clear_flush_young_notify(vma, address, pmd))
  619. referenced++;
  620. spin_unlock(ptl);
  621. } else {
  622. pte_t *pte;
  623. /*
  624. * rmap might return false positives; we must filter
  625. * these out using page_check_address().
  626. */
  627. pte = page_check_address(page, mm, address, &ptl, 0);
  628. if (!pte)
  629. return SWAP_AGAIN;
  630. if (vma->vm_flags & VM_LOCKED) {
  631. pte_unmap_unlock(pte, ptl);
  632. pra->vm_flags |= VM_LOCKED;
  633. return SWAP_FAIL; /* To break the loop */
  634. }
  635. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  636. /*
  637. * Don't treat a reference through a sequentially read
  638. * mapping as such. If the page has been used in
  639. * another mapping, we will catch it; if this other
  640. * mapping is already gone, the unmap path will have
  641. * set PG_referenced or activated the page.
  642. */
  643. if (likely(!(vma->vm_flags & VM_SEQ_READ)))
  644. referenced++;
  645. }
  646. pte_unmap_unlock(pte, ptl);
  647. }
  648. if (referenced) {
  649. pra->referenced++;
  650. pra->vm_flags |= vma->vm_flags;
  651. }
  652. pra->mapcount--;
  653. if (!pra->mapcount)
  654. return SWAP_SUCCESS; /* To break the loop */
  655. return SWAP_AGAIN;
  656. }
  657. static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
  658. {
  659. struct page_referenced_arg *pra = arg;
  660. struct mem_cgroup *memcg = pra->memcg;
  661. if (!mm_match_cgroup(vma->vm_mm, memcg))
  662. return true;
  663. return false;
  664. }
  665. /**
  666. * page_referenced - test if the page was referenced
  667. * @page: the page to test
  668. * @is_locked: caller holds lock on the page
  669. * @memcg: target memory cgroup
  670. * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
  671. *
  672. * Quick test_and_clear_referenced for all mappings to a page,
  673. * returns the number of ptes which referenced the page.
  674. */
  675. int page_referenced(struct page *page,
  676. int is_locked,
  677. struct mem_cgroup *memcg,
  678. unsigned long *vm_flags)
  679. {
  680. int ret;
  681. int we_locked = 0;
  682. struct page_referenced_arg pra = {
  683. .mapcount = page_mapcount(page),
  684. .memcg = memcg,
  685. };
  686. struct rmap_walk_control rwc = {
  687. .rmap_one = page_referenced_one,
  688. .arg = (void *)&pra,
  689. .anon_lock = page_lock_anon_vma_read,
  690. };
  691. *vm_flags = 0;
  692. if (!page_mapped(page))
  693. return 0;
  694. if (!page_rmapping(page))
  695. return 0;
  696. if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
  697. we_locked = trylock_page(page);
  698. if (!we_locked)
  699. return 1;
  700. }
  701. /*
  702. * If we are reclaiming on behalf of a cgroup, skip
  703. * counting on behalf of references from different
  704. * cgroups
  705. */
  706. if (memcg) {
  707. rwc.invalid_vma = invalid_page_referenced_vma;
  708. }
  709. ret = rmap_walk(page, &rwc);
  710. *vm_flags = pra.vm_flags;
  711. if (we_locked)
  712. unlock_page(page);
  713. return pra.referenced;
  714. }
  715. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
  716. unsigned long address, void *arg)
  717. {
  718. struct mm_struct *mm = vma->vm_mm;
  719. pte_t *pte;
  720. spinlock_t *ptl;
  721. int ret = 0;
  722. int *cleaned = arg;
  723. pte = page_check_address(page, mm, address, &ptl, 1);
  724. if (!pte)
  725. goto out;
  726. if (pte_dirty(*pte) || pte_write(*pte)) {
  727. pte_t entry;
  728. flush_cache_page(vma, address, pte_pfn(*pte));
  729. entry = ptep_clear_flush(vma, address, pte);
  730. entry = pte_wrprotect(entry);
  731. entry = pte_mkclean(entry);
  732. set_pte_at(mm, address, pte, entry);
  733. ret = 1;
  734. }
  735. pte_unmap_unlock(pte, ptl);
  736. if (ret) {
  737. mmu_notifier_invalidate_page(mm, address);
  738. (*cleaned)++;
  739. }
  740. out:
  741. return SWAP_AGAIN;
  742. }
  743. static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
  744. {
  745. if (vma->vm_flags & VM_SHARED)
  746. return false;
  747. return true;
  748. }
  749. int page_mkclean(struct page *page)
  750. {
  751. int cleaned = 0;
  752. struct address_space *mapping;
  753. struct rmap_walk_control rwc = {
  754. .arg = (void *)&cleaned,
  755. .rmap_one = page_mkclean_one,
  756. .invalid_vma = invalid_mkclean_vma,
  757. };
  758. BUG_ON(!PageLocked(page));
  759. if (!page_mapped(page))
  760. return 0;
  761. mapping = page_mapping(page);
  762. if (!mapping)
  763. return 0;
  764. rmap_walk(page, &rwc);
  765. return cleaned;
  766. }
  767. EXPORT_SYMBOL_GPL(page_mkclean);
  768. /**
  769. * page_move_anon_rmap - move a page to our anon_vma
  770. * @page: the page to move to our anon_vma
  771. * @vma: the vma the page belongs to
  772. * @address: the user virtual address mapped
  773. *
  774. * When a page belongs exclusively to one process after a COW event,
  775. * that page can be moved into the anon_vma that belongs to just that
  776. * process, so the rmap code will not search the parent or sibling
  777. * processes.
  778. */
  779. void page_move_anon_rmap(struct page *page,
  780. struct vm_area_struct *vma, unsigned long address)
  781. {
  782. struct anon_vma *anon_vma = vma->anon_vma;
  783. VM_BUG_ON_PAGE(!PageLocked(page), page);
  784. VM_BUG_ON(!anon_vma);
  785. VM_BUG_ON_PAGE(page->index != linear_page_index(vma, address), page);
  786. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  787. page->mapping = (struct address_space *) anon_vma;
  788. }
  789. /**
  790. * __page_set_anon_rmap - set up new anonymous rmap
  791. * @page: Page to add to rmap
  792. * @vma: VM area to add page to.
  793. * @address: User virtual address of the mapping
  794. * @exclusive: the page is exclusively owned by the current process
  795. */
  796. static void __page_set_anon_rmap(struct page *page,
  797. struct vm_area_struct *vma, unsigned long address, int exclusive)
  798. {
  799. struct anon_vma *anon_vma = vma->anon_vma;
  800. BUG_ON(!anon_vma);
  801. if (PageAnon(page))
  802. return;
  803. /*
  804. * If the page isn't exclusively mapped into this vma,
  805. * we must use the _oldest_ possible anon_vma for the
  806. * page mapping!
  807. */
  808. if (!exclusive)
  809. anon_vma = anon_vma->root;
  810. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  811. page->mapping = (struct address_space *) anon_vma;
  812. page->index = linear_page_index(vma, address);
  813. }
  814. /**
  815. * __page_check_anon_rmap - sanity check anonymous rmap addition
  816. * @page: the page to add the mapping to
  817. * @vma: the vm area in which the mapping is added
  818. * @address: the user virtual address mapped
  819. */
  820. static void __page_check_anon_rmap(struct page *page,
  821. struct vm_area_struct *vma, unsigned long address)
  822. {
  823. #ifdef CONFIG_DEBUG_VM
  824. /*
  825. * The page's anon-rmap details (mapping and index) are guaranteed to
  826. * be set up correctly at this point.
  827. *
  828. * We have exclusion against page_add_anon_rmap because the caller
  829. * always holds the page locked, except if called from page_dup_rmap,
  830. * in which case the page is already known to be setup.
  831. *
  832. * We have exclusion against page_add_new_anon_rmap because those pages
  833. * are initially only visible via the pagetables, and the pte is locked
  834. * over the call to page_add_new_anon_rmap.
  835. */
  836. BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
  837. BUG_ON(page->index != linear_page_index(vma, address));
  838. #endif
  839. }
  840. /**
  841. * page_add_anon_rmap - add pte mapping to an anonymous page
  842. * @page: the page to add the mapping to
  843. * @vma: the vm area in which the mapping is added
  844. * @address: the user virtual address mapped
  845. *
  846. * The caller needs to hold the pte lock, and the page must be locked in
  847. * the anon_vma case: to serialize mapping,index checking after setting,
  848. * and to ensure that PageAnon is not being upgraded racily to PageKsm
  849. * (but PageKsm is never downgraded to PageAnon).
  850. */
  851. void page_add_anon_rmap(struct page *page,
  852. struct vm_area_struct *vma, unsigned long address)
  853. {
  854. do_page_add_anon_rmap(page, vma, address, 0);
  855. }
  856. /*
  857. * Special version of the above for do_swap_page, which often runs
  858. * into pages that are exclusively owned by the current process.
  859. * Everybody else should continue to use page_add_anon_rmap above.
  860. */
  861. void do_page_add_anon_rmap(struct page *page,
  862. struct vm_area_struct *vma, unsigned long address, int exclusive)
  863. {
  864. int first = atomic_inc_and_test(&page->_mapcount);
  865. if (first) {
  866. /*
  867. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  868. * these counters are not modified in interrupt context, and
  869. * pte lock(a spinlock) is held, which implies preemption
  870. * disabled.
  871. */
  872. if (PageTransHuge(page))
  873. __inc_zone_page_state(page,
  874. NR_ANON_TRANSPARENT_HUGEPAGES);
  875. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  876. hpage_nr_pages(page));
  877. }
  878. if (unlikely(PageKsm(page)))
  879. return;
  880. VM_BUG_ON_PAGE(!PageLocked(page), page);
  881. /* address might be in next vma when migration races vma_adjust */
  882. if (first)
  883. __page_set_anon_rmap(page, vma, address, exclusive);
  884. else
  885. __page_check_anon_rmap(page, vma, address);
  886. }
  887. /**
  888. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  889. * @page: the page to add the mapping to
  890. * @vma: the vm area in which the mapping is added
  891. * @address: the user virtual address mapped
  892. *
  893. * Same as page_add_anon_rmap but must only be called on *new* pages.
  894. * This means the inc-and-test can be bypassed.
  895. * Page does not have to be locked.
  896. */
  897. void page_add_new_anon_rmap(struct page *page,
  898. struct vm_area_struct *vma, unsigned long address)
  899. {
  900. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  901. SetPageSwapBacked(page);
  902. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  903. if (PageTransHuge(page))
  904. __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
  905. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  906. hpage_nr_pages(page));
  907. __page_set_anon_rmap(page, vma, address, 1);
  908. VM_BUG_ON_PAGE(PageLRU(page), page);
  909. if (likely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) != VM_LOCKED)) {
  910. SetPageActive(page);
  911. lru_cache_add(page);
  912. return;
  913. }
  914. if (!TestSetPageMlocked(page)) {
  915. /*
  916. * We use the irq-unsafe __mod_zone_page_stat because this
  917. * counter is not modified from interrupt context, and the pte
  918. * lock is held(spinlock), which implies preemption disabled.
  919. */
  920. __mod_zone_page_state(page_zone(page), NR_MLOCK,
  921. hpage_nr_pages(page));
  922. count_vm_event(UNEVICTABLE_PGMLOCKED);
  923. }
  924. add_page_to_unevictable_list(page);
  925. }
  926. /**
  927. * page_add_file_rmap - add pte mapping to a file page
  928. * @page: the page to add the mapping to
  929. *
  930. * The caller needs to hold the pte lock.
  931. */
  932. void page_add_file_rmap(struct page *page)
  933. {
  934. bool locked;
  935. unsigned long flags;
  936. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  937. if (atomic_inc_and_test(&page->_mapcount)) {
  938. __inc_zone_page_state(page, NR_FILE_MAPPED);
  939. mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  940. }
  941. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  942. }
  943. /**
  944. * page_remove_rmap - take down pte mapping from a page
  945. * @page: page to remove mapping from
  946. *
  947. * The caller needs to hold the pte lock.
  948. */
  949. void page_remove_rmap(struct page *page)
  950. {
  951. bool anon = PageAnon(page);
  952. bool locked;
  953. unsigned long flags;
  954. /*
  955. * The anon case has no mem_cgroup page_stat to update; but may
  956. * uncharge_page() below, where the lock ordering can deadlock if
  957. * we hold the lock against page_stat move: so avoid it on anon.
  958. */
  959. if (!anon)
  960. mem_cgroup_begin_update_page_stat(page, &locked, &flags);
  961. /* page still mapped by someone else? */
  962. if (!atomic_add_negative(-1, &page->_mapcount))
  963. goto out;
  964. /*
  965. * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
  966. * and not charged by memcg for now.
  967. *
  968. * We use the irq-unsafe __{inc|mod}_zone_page_stat because
  969. * these counters are not modified in interrupt context, and
  970. * these counters are not modified in interrupt context, and
  971. * pte lock(a spinlock) is held, which implies preemption disabled.
  972. */
  973. if (unlikely(PageHuge(page)))
  974. goto out;
  975. if (anon) {
  976. mem_cgroup_uncharge_page(page);
  977. if (PageTransHuge(page))
  978. __dec_zone_page_state(page,
  979. NR_ANON_TRANSPARENT_HUGEPAGES);
  980. __mod_zone_page_state(page_zone(page), NR_ANON_PAGES,
  981. -hpage_nr_pages(page));
  982. } else {
  983. __dec_zone_page_state(page, NR_FILE_MAPPED);
  984. mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_FILE_MAPPED);
  985. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  986. }
  987. if (unlikely(PageMlocked(page)))
  988. clear_page_mlock(page);
  989. /*
  990. * It would be tidy to reset the PageAnon mapping here,
  991. * but that might overwrite a racing page_add_anon_rmap
  992. * which increments mapcount after us but sets mapping
  993. * before us: so leave the reset to free_hot_cold_page,
  994. * and remember that it's only reliable while mapped.
  995. * Leaving it set also helps swapoff to reinstate ptes
  996. * faster for those pages still in swapcache.
  997. */
  998. return;
  999. out:
  1000. if (!anon)
  1001. mem_cgroup_end_update_page_stat(page, &locked, &flags);
  1002. }
  1003. /*
  1004. * @arg: enum ttu_flags will be passed to this argument
  1005. */
  1006. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  1007. unsigned long address, void *arg)
  1008. {
  1009. struct mm_struct *mm = vma->vm_mm;
  1010. pte_t *pte;
  1011. pte_t pteval;
  1012. spinlock_t *ptl;
  1013. int ret = SWAP_AGAIN;
  1014. enum ttu_flags flags = (enum ttu_flags)arg;
  1015. pte = page_check_address(page, mm, address, &ptl, 0);
  1016. if (!pte)
  1017. goto out;
  1018. /*
  1019. * If the page is mlock()d, we cannot swap it out.
  1020. * If it's recently referenced (perhaps page_referenced
  1021. * skipped over this mm) then we should reactivate it.
  1022. */
  1023. if (!(flags & TTU_IGNORE_MLOCK)) {
  1024. if (vma->vm_flags & VM_LOCKED)
  1025. goto out_mlock;
  1026. if (flags & TTU_MUNLOCK)
  1027. goto out_unmap;
  1028. }
  1029. if (!(flags & TTU_IGNORE_ACCESS)) {
  1030. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  1031. ret = SWAP_FAIL;
  1032. goto out_unmap;
  1033. }
  1034. }
  1035. /* Nuke the page table entry. */
  1036. flush_cache_page(vma, address, page_to_pfn(page));
  1037. pteval = ptep_clear_flush(vma, address, pte);
  1038. /* Move the dirty bit to the physical page now the pte is gone. */
  1039. if (pte_dirty(pteval))
  1040. set_page_dirty(page);
  1041. /* Update high watermark before we lower rss */
  1042. update_hiwater_rss(mm);
  1043. if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
  1044. if (!PageHuge(page)) {
  1045. if (PageAnon(page))
  1046. dec_mm_counter(mm, MM_ANONPAGES);
  1047. else
  1048. dec_mm_counter(mm, MM_FILEPAGES);
  1049. }
  1050. set_pte_at(mm, address, pte,
  1051. swp_entry_to_pte(make_hwpoison_entry(page)));
  1052. } else if (pte_unused(pteval)) {
  1053. /*
  1054. * The guest indicated that the page content is of no
  1055. * interest anymore. Simply discard the pte, vmscan
  1056. * will take care of the rest.
  1057. */
  1058. if (PageAnon(page))
  1059. dec_mm_counter(mm, MM_ANONPAGES);
  1060. else
  1061. dec_mm_counter(mm, MM_FILEPAGES);
  1062. } else if (PageAnon(page)) {
  1063. swp_entry_t entry = { .val = page_private(page) };
  1064. pte_t swp_pte;
  1065. if (PageSwapCache(page)) {
  1066. /*
  1067. * Store the swap location in the pte.
  1068. * See handle_pte_fault() ...
  1069. */
  1070. if (swap_duplicate(entry) < 0) {
  1071. set_pte_at(mm, address, pte, pteval);
  1072. ret = SWAP_FAIL;
  1073. goto out_unmap;
  1074. }
  1075. if (list_empty(&mm->mmlist)) {
  1076. spin_lock(&mmlist_lock);
  1077. if (list_empty(&mm->mmlist))
  1078. list_add(&mm->mmlist, &init_mm.mmlist);
  1079. spin_unlock(&mmlist_lock);
  1080. }
  1081. dec_mm_counter(mm, MM_ANONPAGES);
  1082. inc_mm_counter(mm, MM_SWAPENTS);
  1083. } else if (IS_ENABLED(CONFIG_MIGRATION)) {
  1084. /*
  1085. * Store the pfn of the page in a special migration
  1086. * pte. do_swap_page() will wait until the migration
  1087. * pte is removed and then restart fault handling.
  1088. */
  1089. BUG_ON(!(flags & TTU_MIGRATION));
  1090. entry = make_migration_entry(page, pte_write(pteval));
  1091. }
  1092. swp_pte = swp_entry_to_pte(entry);
  1093. if (pte_soft_dirty(pteval))
  1094. swp_pte = pte_swp_mksoft_dirty(swp_pte);
  1095. set_pte_at(mm, address, pte, swp_pte);
  1096. BUG_ON(pte_file(*pte));
  1097. } else if (IS_ENABLED(CONFIG_MIGRATION) &&
  1098. (flags & TTU_MIGRATION)) {
  1099. /* Establish migration entry for a file page */
  1100. swp_entry_t entry;
  1101. entry = make_migration_entry(page, pte_write(pteval));
  1102. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  1103. } else
  1104. dec_mm_counter(mm, MM_FILEPAGES);
  1105. page_remove_rmap(page);
  1106. page_cache_release(page);
  1107. out_unmap:
  1108. pte_unmap_unlock(pte, ptl);
  1109. if (ret != SWAP_FAIL && !(flags & TTU_MUNLOCK))
  1110. mmu_notifier_invalidate_page(mm, address);
  1111. out:
  1112. return ret;
  1113. out_mlock:
  1114. pte_unmap_unlock(pte, ptl);
  1115. /*
  1116. * We need mmap_sem locking, Otherwise VM_LOCKED check makes
  1117. * unstable result and race. Plus, We can't wait here because
  1118. * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
  1119. * if trylock failed, the page remain in evictable lru and later
  1120. * vmscan could retry to move the page to unevictable lru if the
  1121. * page is actually mlocked.
  1122. */
  1123. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1124. if (vma->vm_flags & VM_LOCKED) {
  1125. mlock_vma_page(page);
  1126. ret = SWAP_MLOCK;
  1127. }
  1128. up_read(&vma->vm_mm->mmap_sem);
  1129. }
  1130. return ret;
  1131. }
  1132. /*
  1133. * objrmap doesn't work for nonlinear VMAs because the assumption that
  1134. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  1135. * Consequently, given a particular page and its ->index, we cannot locate the
  1136. * ptes which are mapping that page without an exhaustive linear search.
  1137. *
  1138. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  1139. * maps the file to which the target page belongs. The ->vm_private_data field
  1140. * holds the current cursor into that scan. Successive searches will circulate
  1141. * around the vma's virtual address space.
  1142. *
  1143. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  1144. * more scanning pressure is placed against them as well. Eventually pages
  1145. * will become fully unmapped and are eligible for eviction.
  1146. *
  1147. * For very sparsely populated VMAs this is a little inefficient - chances are
  1148. * there there won't be many ptes located within the scan cluster. In this case
  1149. * maybe we could scan further - to the end of the pte page, perhaps.
  1150. *
  1151. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  1152. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  1153. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  1154. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  1155. */
  1156. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  1157. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  1158. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  1159. struct vm_area_struct *vma, struct page *check_page)
  1160. {
  1161. struct mm_struct *mm = vma->vm_mm;
  1162. pmd_t *pmd;
  1163. pte_t *pte;
  1164. pte_t pteval;
  1165. spinlock_t *ptl;
  1166. struct page *page;
  1167. unsigned long address;
  1168. unsigned long mmun_start; /* For mmu_notifiers */
  1169. unsigned long mmun_end; /* For mmu_notifiers */
  1170. unsigned long end;
  1171. int ret = SWAP_AGAIN;
  1172. int locked_vma = 0;
  1173. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  1174. end = address + CLUSTER_SIZE;
  1175. if (address < vma->vm_start)
  1176. address = vma->vm_start;
  1177. if (end > vma->vm_end)
  1178. end = vma->vm_end;
  1179. pmd = mm_find_pmd(mm, address);
  1180. if (!pmd)
  1181. return ret;
  1182. mmun_start = address;
  1183. mmun_end = end;
  1184. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  1185. /*
  1186. * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  1187. * keep the sem while scanning the cluster for mlocking pages.
  1188. */
  1189. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  1190. locked_vma = (vma->vm_flags & VM_LOCKED);
  1191. if (!locked_vma)
  1192. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  1193. }
  1194. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  1195. /* Update high watermark before we lower rss */
  1196. update_hiwater_rss(mm);
  1197. for (; address < end; pte++, address += PAGE_SIZE) {
  1198. if (!pte_present(*pte))
  1199. continue;
  1200. page = vm_normal_page(vma, address, *pte);
  1201. BUG_ON(!page || PageAnon(page));
  1202. if (locked_vma) {
  1203. if (page == check_page) {
  1204. /* we know we have check_page locked */
  1205. mlock_vma_page(page);
  1206. ret = SWAP_MLOCK;
  1207. } else if (trylock_page(page)) {
  1208. /*
  1209. * If we can lock the page, perform mlock.
  1210. * Otherwise leave the page alone, it will be
  1211. * eventually encountered again later.
  1212. */
  1213. mlock_vma_page(page);
  1214. unlock_page(page);
  1215. }
  1216. continue; /* don't unmap */
  1217. }
  1218. if (ptep_clear_flush_young_notify(vma, address, pte))
  1219. continue;
  1220. /* Nuke the page table entry. */
  1221. flush_cache_page(vma, address, pte_pfn(*pte));
  1222. pteval = ptep_clear_flush(vma, address, pte);
  1223. /* If nonlinear, store the file page offset in the pte. */
  1224. if (page->index != linear_page_index(vma, address)) {
  1225. pte_t ptfile = pgoff_to_pte(page->index);
  1226. if (pte_soft_dirty(pteval))
  1227. ptfile = pte_file_mksoft_dirty(ptfile);
  1228. set_pte_at(mm, address, pte, ptfile);
  1229. }
  1230. /* Move the dirty bit to the physical page now the pte is gone. */
  1231. if (pte_dirty(pteval))
  1232. set_page_dirty(page);
  1233. page_remove_rmap(page);
  1234. page_cache_release(page);
  1235. dec_mm_counter(mm, MM_FILEPAGES);
  1236. (*mapcount)--;
  1237. }
  1238. pte_unmap_unlock(pte - 1, ptl);
  1239. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  1240. if (locked_vma)
  1241. up_read(&vma->vm_mm->mmap_sem);
  1242. return ret;
  1243. }
  1244. static int try_to_unmap_nonlinear(struct page *page,
  1245. struct address_space *mapping, void *arg)
  1246. {
  1247. struct vm_area_struct *vma;
  1248. int ret = SWAP_AGAIN;
  1249. unsigned long cursor;
  1250. unsigned long max_nl_cursor = 0;
  1251. unsigned long max_nl_size = 0;
  1252. unsigned int mapcount;
  1253. list_for_each_entry(vma,
  1254. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1255. cursor = (unsigned long) vma->vm_private_data;
  1256. if (cursor > max_nl_cursor)
  1257. max_nl_cursor = cursor;
  1258. cursor = vma->vm_end - vma->vm_start;
  1259. if (cursor > max_nl_size)
  1260. max_nl_size = cursor;
  1261. }
  1262. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1263. return SWAP_FAIL;
  1264. }
  1265. /*
  1266. * We don't try to search for this page in the nonlinear vmas,
  1267. * and page_referenced wouldn't have found it anyway. Instead
  1268. * just walk the nonlinear vmas trying to age and unmap some.
  1269. * The mapcount of the page we came in with is irrelevant,
  1270. * but even so use it as a guide to how hard we should try?
  1271. */
  1272. mapcount = page_mapcount(page);
  1273. if (!mapcount)
  1274. return ret;
  1275. cond_resched();
  1276. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1277. if (max_nl_cursor == 0)
  1278. max_nl_cursor = CLUSTER_SIZE;
  1279. do {
  1280. list_for_each_entry(vma,
  1281. &mapping->i_mmap_nonlinear, shared.nonlinear) {
  1282. cursor = (unsigned long) vma->vm_private_data;
  1283. while (cursor < max_nl_cursor &&
  1284. cursor < vma->vm_end - vma->vm_start) {
  1285. if (try_to_unmap_cluster(cursor, &mapcount,
  1286. vma, page) == SWAP_MLOCK)
  1287. ret = SWAP_MLOCK;
  1288. cursor += CLUSTER_SIZE;
  1289. vma->vm_private_data = (void *) cursor;
  1290. if ((int)mapcount <= 0)
  1291. return ret;
  1292. }
  1293. vma->vm_private_data = (void *) max_nl_cursor;
  1294. }
  1295. cond_resched();
  1296. max_nl_cursor += CLUSTER_SIZE;
  1297. } while (max_nl_cursor <= max_nl_size);
  1298. /*
  1299. * Don't loop forever (perhaps all the remaining pages are
  1300. * in locked vmas). Reset cursor on all unreserved nonlinear
  1301. * vmas, now forgetting on which ones it had fallen behind.
  1302. */
  1303. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
  1304. vma->vm_private_data = NULL;
  1305. return ret;
  1306. }
  1307. bool is_vma_temporary_stack(struct vm_area_struct *vma)
  1308. {
  1309. int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
  1310. if (!maybe_stack)
  1311. return false;
  1312. if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
  1313. VM_STACK_INCOMPLETE_SETUP)
  1314. return true;
  1315. return false;
  1316. }
  1317. static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
  1318. {
  1319. return is_vma_temporary_stack(vma);
  1320. }
  1321. static int page_not_mapped(struct page *page)
  1322. {
  1323. return !page_mapped(page);
  1324. };
  1325. /**
  1326. * try_to_unmap - try to remove all page table mappings to a page
  1327. * @page: the page to get unmapped
  1328. * @flags: action and flags
  1329. *
  1330. * Tries to remove all the page table entries which are mapping this
  1331. * page, used in the pageout path. Caller must hold the page lock.
  1332. * Return values are:
  1333. *
  1334. * SWAP_SUCCESS - we succeeded in removing all mappings
  1335. * SWAP_AGAIN - we missed a mapping, try again later
  1336. * SWAP_FAIL - the page is unswappable
  1337. * SWAP_MLOCK - page is mlocked.
  1338. */
  1339. int try_to_unmap(struct page *page, enum ttu_flags flags)
  1340. {
  1341. int ret;
  1342. struct rmap_walk_control rwc = {
  1343. .rmap_one = try_to_unmap_one,
  1344. .arg = (void *)flags,
  1345. .done = page_not_mapped,
  1346. .file_nonlinear = try_to_unmap_nonlinear,
  1347. .anon_lock = page_lock_anon_vma_read,
  1348. };
  1349. VM_BUG_ON_PAGE(!PageHuge(page) && PageTransHuge(page), page);
  1350. /*
  1351. * During exec, a temporary VMA is setup and later moved.
  1352. * The VMA is moved under the anon_vma lock but not the
  1353. * page tables leading to a race where migration cannot
  1354. * find the migration ptes. Rather than increasing the
  1355. * locking requirements of exec(), migration skips
  1356. * temporary VMAs until after exec() completes.
  1357. */
  1358. if ((flags & TTU_MIGRATION) && !PageKsm(page) && PageAnon(page))
  1359. rwc.invalid_vma = invalid_migration_vma;
  1360. ret = rmap_walk(page, &rwc);
  1361. if (ret != SWAP_MLOCK && !page_mapped(page))
  1362. ret = SWAP_SUCCESS;
  1363. return ret;
  1364. }
  1365. /**
  1366. * try_to_munlock - try to munlock a page
  1367. * @page: the page to be munlocked
  1368. *
  1369. * Called from munlock code. Checks all of the VMAs mapping the page
  1370. * to make sure nobody else has this page mlocked. The page will be
  1371. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1372. *
  1373. * Return values are:
  1374. *
  1375. * SWAP_AGAIN - no vma is holding page mlocked, or,
  1376. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1377. * SWAP_FAIL - page cannot be located at present
  1378. * SWAP_MLOCK - page is now mlocked.
  1379. */
  1380. int try_to_munlock(struct page *page)
  1381. {
  1382. int ret;
  1383. struct rmap_walk_control rwc = {
  1384. .rmap_one = try_to_unmap_one,
  1385. .arg = (void *)TTU_MUNLOCK,
  1386. .done = page_not_mapped,
  1387. /*
  1388. * We don't bother to try to find the munlocked page in
  1389. * nonlinears. It's costly. Instead, later, page reclaim logic
  1390. * may call try_to_unmap() and recover PG_mlocked lazily.
  1391. */
  1392. .file_nonlinear = NULL,
  1393. .anon_lock = page_lock_anon_vma_read,
  1394. };
  1395. VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
  1396. ret = rmap_walk(page, &rwc);
  1397. return ret;
  1398. }
  1399. void __put_anon_vma(struct anon_vma *anon_vma)
  1400. {
  1401. struct anon_vma *root = anon_vma->root;
  1402. anon_vma_free(anon_vma);
  1403. if (root != anon_vma && atomic_dec_and_test(&root->refcount))
  1404. anon_vma_free(root);
  1405. }
  1406. static struct anon_vma *rmap_walk_anon_lock(struct page *page,
  1407. struct rmap_walk_control *rwc)
  1408. {
  1409. struct anon_vma *anon_vma;
  1410. if (rwc->anon_lock)
  1411. return rwc->anon_lock(page);
  1412. /*
  1413. * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
  1414. * because that depends on page_mapped(); but not all its usages
  1415. * are holding mmap_sem. Users without mmap_sem are required to
  1416. * take a reference count to prevent the anon_vma disappearing
  1417. */
  1418. anon_vma = page_anon_vma(page);
  1419. if (!anon_vma)
  1420. return NULL;
  1421. anon_vma_lock_read(anon_vma);
  1422. return anon_vma;
  1423. }
  1424. /*
  1425. * rmap_walk_anon - do something to anonymous page using the object-based
  1426. * rmap method
  1427. * @page: the page to be handled
  1428. * @rwc: control variable according to each walk type
  1429. *
  1430. * Find all the mappings of a page using the mapping pointer and the vma chains
  1431. * contained in the anon_vma struct it points to.
  1432. *
  1433. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1434. * where the page was found will be held for write. So, we won't recheck
  1435. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1436. * LOCKED.
  1437. */
  1438. static int rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc)
  1439. {
  1440. struct anon_vma *anon_vma;
  1441. pgoff_t pgoff = page_to_pgoff(page);
  1442. struct anon_vma_chain *avc;
  1443. int ret = SWAP_AGAIN;
  1444. anon_vma = rmap_walk_anon_lock(page, rwc);
  1445. if (!anon_vma)
  1446. return ret;
  1447. anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
  1448. struct vm_area_struct *vma = avc->vma;
  1449. unsigned long address = vma_address(page, vma);
  1450. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1451. continue;
  1452. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1453. if (ret != SWAP_AGAIN)
  1454. break;
  1455. if (rwc->done && rwc->done(page))
  1456. break;
  1457. }
  1458. anon_vma_unlock_read(anon_vma);
  1459. return ret;
  1460. }
  1461. /*
  1462. * rmap_walk_file - do something to file page using the object-based rmap method
  1463. * @page: the page to be handled
  1464. * @rwc: control variable according to each walk type
  1465. *
  1466. * Find all the mappings of a page using the mapping pointer and the vma chains
  1467. * contained in the address_space struct it points to.
  1468. *
  1469. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  1470. * where the page was found will be held for write. So, we won't recheck
  1471. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  1472. * LOCKED.
  1473. */
  1474. static int rmap_walk_file(struct page *page, struct rmap_walk_control *rwc)
  1475. {
  1476. struct address_space *mapping = page->mapping;
  1477. pgoff_t pgoff = page_to_pgoff(page);
  1478. struct vm_area_struct *vma;
  1479. int ret = SWAP_AGAIN;
  1480. /*
  1481. * The page lock not only makes sure that page->mapping cannot
  1482. * suddenly be NULLified by truncation, it makes sure that the
  1483. * structure at mapping cannot be freed and reused yet,
  1484. * so we can safely take mapping->i_mmap_mutex.
  1485. */
  1486. VM_BUG_ON(!PageLocked(page));
  1487. if (!mapping)
  1488. return ret;
  1489. mutex_lock(&mapping->i_mmap_mutex);
  1490. vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
  1491. unsigned long address = vma_address(page, vma);
  1492. if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
  1493. continue;
  1494. ret = rwc->rmap_one(page, vma, address, rwc->arg);
  1495. if (ret != SWAP_AGAIN)
  1496. goto done;
  1497. if (rwc->done && rwc->done(page))
  1498. goto done;
  1499. }
  1500. if (!rwc->file_nonlinear)
  1501. goto done;
  1502. if (list_empty(&mapping->i_mmap_nonlinear))
  1503. goto done;
  1504. ret = rwc->file_nonlinear(page, mapping, rwc->arg);
  1505. done:
  1506. mutex_unlock(&mapping->i_mmap_mutex);
  1507. return ret;
  1508. }
  1509. int rmap_walk(struct page *page, struct rmap_walk_control *rwc)
  1510. {
  1511. if (unlikely(PageKsm(page)))
  1512. return rmap_walk_ksm(page, rwc);
  1513. else if (PageAnon(page))
  1514. return rmap_walk_anon(page, rwc);
  1515. else
  1516. return rmap_walk_file(page, rwc);
  1517. }
  1518. #ifdef CONFIG_HUGETLB_PAGE
  1519. /*
  1520. * The following three functions are for anonymous (private mapped) hugepages.
  1521. * Unlike common anonymous pages, anonymous hugepages have no accounting code
  1522. * and no lru code, because we handle hugepages differently from common pages.
  1523. */
  1524. static void __hugepage_set_anon_rmap(struct page *page,
  1525. struct vm_area_struct *vma, unsigned long address, int exclusive)
  1526. {
  1527. struct anon_vma *anon_vma = vma->anon_vma;
  1528. BUG_ON(!anon_vma);
  1529. if (PageAnon(page))
  1530. return;
  1531. if (!exclusive)
  1532. anon_vma = anon_vma->root;
  1533. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  1534. page->mapping = (struct address_space *) anon_vma;
  1535. page->index = linear_page_index(vma, address);
  1536. }
  1537. void hugepage_add_anon_rmap(struct page *page,
  1538. struct vm_area_struct *vma, unsigned long address)
  1539. {
  1540. struct anon_vma *anon_vma = vma->anon_vma;
  1541. int first;
  1542. BUG_ON(!PageLocked(page));
  1543. BUG_ON(!anon_vma);
  1544. /* address might be in next vma when migration races vma_adjust */
  1545. first = atomic_inc_and_test(&page->_mapcount);
  1546. if (first)
  1547. __hugepage_set_anon_rmap(page, vma, address, 0);
  1548. }
  1549. void hugepage_add_new_anon_rmap(struct page *page,
  1550. struct vm_area_struct *vma, unsigned long address)
  1551. {
  1552. BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  1553. atomic_set(&page->_mapcount, 0);
  1554. __hugepage_set_anon_rmap(page, vma, address, 1);
  1555. }
  1556. #endif /* CONFIG_HUGETLB_PAGE */