mlock.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. * linux/mm/mlock.c
  3. *
  4. * (C) Copyright 1995 Linus Torvalds
  5. * (C) Copyright 2002 Christoph Hellwig
  6. */
  7. #include <linux/capability.h>
  8. #include <linux/mman.h>
  9. #include <linux/mm.h>
  10. #include <linux/swap.h>
  11. #include <linux/swapops.h>
  12. #include <linux/pagemap.h>
  13. #include <linux/pagevec.h>
  14. #include <linux/mempolicy.h>
  15. #include <linux/syscalls.h>
  16. #include <linux/sched.h>
  17. #include <linux/export.h>
  18. #include <linux/rmap.h>
  19. #include <linux/mmzone.h>
  20. #include <linux/hugetlb.h>
  21. #include <linux/memcontrol.h>
  22. #include <linux/mm_inline.h>
  23. #include "internal.h"
  24. int can_do_mlock(void)
  25. {
  26. if (capable(CAP_IPC_LOCK))
  27. return 1;
  28. if (rlimit(RLIMIT_MEMLOCK) != 0)
  29. return 1;
  30. return 0;
  31. }
  32. EXPORT_SYMBOL(can_do_mlock);
  33. /*
  34. * Mlocked pages are marked with PageMlocked() flag for efficient testing
  35. * in vmscan and, possibly, the fault path; and to support semi-accurate
  36. * statistics.
  37. *
  38. * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
  39. * be placed on the LRU "unevictable" list, rather than the [in]active lists.
  40. * The unevictable list is an LRU sibling list to the [in]active lists.
  41. * PageUnevictable is set to indicate the unevictable state.
  42. *
  43. * When lazy mlocking via vmscan, it is important to ensure that the
  44. * vma's VM_LOCKED status is not concurrently being modified, otherwise we
  45. * may have mlocked a page that is being munlocked. So lazy mlock must take
  46. * the mmap_sem for read, and verify that the vma really is locked
  47. * (see mm/rmap.c).
  48. */
  49. /*
  50. * LRU accounting for clear_page_mlock()
  51. */
  52. void clear_page_mlock(struct page *page)
  53. {
  54. if (!TestClearPageMlocked(page))
  55. return;
  56. mod_zone_page_state(page_zone(page), NR_MLOCK,
  57. -hpage_nr_pages(page));
  58. count_vm_event(UNEVICTABLE_PGCLEARED);
  59. if (!isolate_lru_page(page)) {
  60. putback_lru_page(page);
  61. } else {
  62. /*
  63. * We lost the race. the page already moved to evictable list.
  64. */
  65. if (PageUnevictable(page))
  66. count_vm_event(UNEVICTABLE_PGSTRANDED);
  67. }
  68. }
  69. /*
  70. * Mark page as mlocked if not already.
  71. * If page on LRU, isolate and putback to move to unevictable list.
  72. */
  73. void mlock_vma_page(struct page *page)
  74. {
  75. /* Serialize with page migration */
  76. BUG_ON(!PageLocked(page));
  77. if (!TestSetPageMlocked(page)) {
  78. mod_zone_page_state(page_zone(page), NR_MLOCK,
  79. hpage_nr_pages(page));
  80. count_vm_event(UNEVICTABLE_PGMLOCKED);
  81. if (!isolate_lru_page(page))
  82. putback_lru_page(page);
  83. }
  84. }
  85. /*
  86. * Isolate a page from LRU with optional get_page() pin.
  87. * Assumes lru_lock already held and page already pinned.
  88. */
  89. static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
  90. {
  91. if (PageLRU(page)) {
  92. struct lruvec *lruvec;
  93. lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
  94. if (getpage)
  95. get_page(page);
  96. ClearPageLRU(page);
  97. del_page_from_lru_list(page, lruvec, page_lru(page));
  98. return true;
  99. }
  100. return false;
  101. }
  102. /*
  103. * Finish munlock after successful page isolation
  104. *
  105. * Page must be locked. This is a wrapper for try_to_munlock()
  106. * and putback_lru_page() with munlock accounting.
  107. */
  108. static void __munlock_isolated_page(struct page *page)
  109. {
  110. int ret = SWAP_AGAIN;
  111. /*
  112. * Optimization: if the page was mapped just once, that's our mapping
  113. * and we don't need to check all the other vmas.
  114. */
  115. if (page_mapcount(page) > 1)
  116. ret = try_to_munlock(page);
  117. /* Did try_to_unlock() succeed or punt? */
  118. if (ret != SWAP_MLOCK)
  119. count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  120. putback_lru_page(page);
  121. }
  122. /*
  123. * Accounting for page isolation fail during munlock
  124. *
  125. * Performs accounting when page isolation fails in munlock. There is nothing
  126. * else to do because it means some other task has already removed the page
  127. * from the LRU. putback_lru_page() will take care of removing the page from
  128. * the unevictable list, if necessary. vmscan [page_referenced()] will move
  129. * the page back to the unevictable list if some other vma has it mlocked.
  130. */
  131. static void __munlock_isolation_failed(struct page *page)
  132. {
  133. if (PageUnevictable(page))
  134. __count_vm_event(UNEVICTABLE_PGSTRANDED);
  135. else
  136. __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
  137. }
  138. /**
  139. * munlock_vma_page - munlock a vma page
  140. * @page - page to be unlocked, either a normal page or THP page head
  141. *
  142. * returns the size of the page as a page mask (0 for normal page,
  143. * HPAGE_PMD_NR - 1 for THP head page)
  144. *
  145. * called from munlock()/munmap() path with page supposedly on the LRU.
  146. * When we munlock a page, because the vma where we found the page is being
  147. * munlock()ed or munmap()ed, we want to check whether other vmas hold the
  148. * page locked so that we can leave it on the unevictable lru list and not
  149. * bother vmscan with it. However, to walk the page's rmap list in
  150. * try_to_munlock() we must isolate the page from the LRU. If some other
  151. * task has removed the page from the LRU, we won't be able to do that.
  152. * So we clear the PageMlocked as we might not get another chance. If we
  153. * can't isolate the page, we leave it for putback_lru_page() and vmscan
  154. * [page_referenced()/try_to_unmap()] to deal with.
  155. */
  156. unsigned int munlock_vma_page(struct page *page)
  157. {
  158. unsigned int nr_pages;
  159. struct zone *zone = page_zone(page);
  160. /* For try_to_munlock() and to serialize with page migration */
  161. BUG_ON(!PageLocked(page));
  162. /*
  163. * Serialize with any parallel __split_huge_page_refcount() which
  164. * might otherwise copy PageMlocked to part of the tail pages before
  165. * we clear it in the head page. It also stabilizes hpage_nr_pages().
  166. */
  167. spin_lock_irq(&zone->lru_lock);
  168. nr_pages = hpage_nr_pages(page);
  169. if (!TestClearPageMlocked(page))
  170. goto unlock_out;
  171. __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
  172. if (__munlock_isolate_lru_page(page, true)) {
  173. spin_unlock_irq(&zone->lru_lock);
  174. __munlock_isolated_page(page);
  175. goto out;
  176. }
  177. __munlock_isolation_failed(page);
  178. unlock_out:
  179. spin_unlock_irq(&zone->lru_lock);
  180. out:
  181. return nr_pages - 1;
  182. }
  183. /**
  184. * __mlock_vma_pages_range() - mlock a range of pages in the vma.
  185. * @vma: target vma
  186. * @start: start address
  187. * @end: end address
  188. *
  189. * This takes care of making the pages present too.
  190. *
  191. * return 0 on success, negative error code on error.
  192. *
  193. * vma->vm_mm->mmap_sem must be held for at least read.
  194. */
  195. long __mlock_vma_pages_range(struct vm_area_struct *vma,
  196. unsigned long start, unsigned long end, int *nonblocking)
  197. {
  198. struct mm_struct *mm = vma->vm_mm;
  199. unsigned long nr_pages = (end - start) / PAGE_SIZE;
  200. int gup_flags;
  201. VM_BUG_ON(start & ~PAGE_MASK);
  202. VM_BUG_ON(end & ~PAGE_MASK);
  203. VM_BUG_ON(start < vma->vm_start);
  204. VM_BUG_ON(end > vma->vm_end);
  205. VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
  206. gup_flags = FOLL_TOUCH | FOLL_MLOCK;
  207. /*
  208. * We want to touch writable mappings with a write fault in order
  209. * to break COW, except for shared mappings because these don't COW
  210. * and we would not want to dirty them for nothing.
  211. */
  212. if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
  213. gup_flags |= FOLL_WRITE;
  214. /*
  215. * We want mlock to succeed for regions that have any permissions
  216. * other than PROT_NONE.
  217. */
  218. if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
  219. gup_flags |= FOLL_FORCE;
  220. /*
  221. * We made sure addr is within a VMA, so the following will
  222. * not result in a stack expansion that recurses back here.
  223. */
  224. return __get_user_pages(current, mm, start, nr_pages, gup_flags,
  225. NULL, NULL, nonblocking);
  226. }
  227. /*
  228. * convert get_user_pages() return value to posix mlock() error
  229. */
  230. static int __mlock_posix_error_return(long retval)
  231. {
  232. if (retval == -EFAULT)
  233. retval = -ENOMEM;
  234. else if (retval == -ENOMEM)
  235. retval = -EAGAIN;
  236. return retval;
  237. }
  238. /*
  239. * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
  240. *
  241. * The fast path is available only for evictable pages with single mapping.
  242. * Then we can bypass the per-cpu pvec and get better performance.
  243. * when mapcount > 1 we need try_to_munlock() which can fail.
  244. * when !page_evictable(), we need the full redo logic of putback_lru_page to
  245. * avoid leaving evictable page in unevictable list.
  246. *
  247. * In case of success, @page is added to @pvec and @pgrescued is incremented
  248. * in case that the page was previously unevictable. @page is also unlocked.
  249. */
  250. static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
  251. int *pgrescued)
  252. {
  253. VM_BUG_ON_PAGE(PageLRU(page), page);
  254. VM_BUG_ON_PAGE(!PageLocked(page), page);
  255. if (page_mapcount(page) <= 1 && page_evictable(page)) {
  256. pagevec_add(pvec, page);
  257. if (TestClearPageUnevictable(page))
  258. (*pgrescued)++;
  259. unlock_page(page);
  260. return true;
  261. }
  262. return false;
  263. }
  264. /*
  265. * Putback multiple evictable pages to the LRU
  266. *
  267. * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
  268. * the pages might have meanwhile become unevictable but that is OK.
  269. */
  270. static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
  271. {
  272. count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
  273. /*
  274. *__pagevec_lru_add() calls release_pages() so we don't call
  275. * put_page() explicitly
  276. */
  277. __pagevec_lru_add(pvec);
  278. count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
  279. }
  280. /*
  281. * Munlock a batch of pages from the same zone
  282. *
  283. * The work is split to two main phases. First phase clears the Mlocked flag
  284. * and attempts to isolate the pages, all under a single zone lru lock.
  285. * The second phase finishes the munlock only for pages where isolation
  286. * succeeded.
  287. *
  288. * Note that the pagevec may be modified during the process.
  289. */
  290. static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
  291. {
  292. int i;
  293. int nr = pagevec_count(pvec);
  294. int delta_munlocked;
  295. struct pagevec pvec_putback;
  296. int pgrescued = 0;
  297. pagevec_init(&pvec_putback, 0);
  298. /* Phase 1: page isolation */
  299. spin_lock_irq(&zone->lru_lock);
  300. for (i = 0; i < nr; i++) {
  301. struct page *page = pvec->pages[i];
  302. if (TestClearPageMlocked(page)) {
  303. /*
  304. * We already have pin from follow_page_mask()
  305. * so we can spare the get_page() here.
  306. */
  307. if (__munlock_isolate_lru_page(page, false))
  308. continue;
  309. else
  310. __munlock_isolation_failed(page);
  311. }
  312. /*
  313. * We won't be munlocking this page in the next phase
  314. * but we still need to release the follow_page_mask()
  315. * pin. We cannot do it under lru_lock however. If it's
  316. * the last pin, __page_cache_release() would deadlock.
  317. */
  318. pagevec_add(&pvec_putback, pvec->pages[i]);
  319. pvec->pages[i] = NULL;
  320. }
  321. delta_munlocked = -nr + pagevec_count(&pvec_putback);
  322. __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
  323. spin_unlock_irq(&zone->lru_lock);
  324. /* Now we can release pins of pages that we are not munlocking */
  325. pagevec_release(&pvec_putback);
  326. /* Phase 2: page munlock */
  327. for (i = 0; i < nr; i++) {
  328. struct page *page = pvec->pages[i];
  329. if (page) {
  330. lock_page(page);
  331. if (!__putback_lru_fast_prepare(page, &pvec_putback,
  332. &pgrescued)) {
  333. /*
  334. * Slow path. We don't want to lose the last
  335. * pin before unlock_page()
  336. */
  337. get_page(page); /* for putback_lru_page() */
  338. __munlock_isolated_page(page);
  339. unlock_page(page);
  340. put_page(page); /* from follow_page_mask() */
  341. }
  342. }
  343. }
  344. /*
  345. * Phase 3: page putback for pages that qualified for the fast path
  346. * This will also call put_page() to return pin from follow_page_mask()
  347. */
  348. if (pagevec_count(&pvec_putback))
  349. __putback_lru_fast(&pvec_putback, pgrescued);
  350. }
  351. /*
  352. * Fill up pagevec for __munlock_pagevec using pte walk
  353. *
  354. * The function expects that the struct page corresponding to @start address is
  355. * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
  356. *
  357. * The rest of @pvec is filled by subsequent pages within the same pmd and same
  358. * zone, as long as the pte's are present and vm_normal_page() succeeds. These
  359. * pages also get pinned.
  360. *
  361. * Returns the address of the next page that should be scanned. This equals
  362. * @start + PAGE_SIZE when no page could be added by the pte walk.
  363. */
  364. static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
  365. struct vm_area_struct *vma, int zoneid, unsigned long start,
  366. unsigned long end)
  367. {
  368. pte_t *pte;
  369. spinlock_t *ptl;
  370. /*
  371. * Initialize pte walk starting at the already pinned page where we
  372. * are sure that there is a pte, as it was pinned under the same
  373. * mmap_sem write op.
  374. */
  375. pte = get_locked_pte(vma->vm_mm, start, &ptl);
  376. /* Make sure we do not cross the page table boundary */
  377. end = pgd_addr_end(start, end);
  378. end = pud_addr_end(start, end);
  379. end = pmd_addr_end(start, end);
  380. /* The page next to the pinned page is the first we will try to get */
  381. start += PAGE_SIZE;
  382. while (start < end) {
  383. struct page *page = NULL;
  384. pte++;
  385. if (pte_present(*pte))
  386. page = vm_normal_page(vma, start, *pte);
  387. /*
  388. * Break if page could not be obtained or the page's node+zone does not
  389. * match
  390. */
  391. if (!page || page_zone_id(page) != zoneid)
  392. break;
  393. get_page(page);
  394. /*
  395. * Increase the address that will be returned *before* the
  396. * eventual break due to pvec becoming full by adding the page
  397. */
  398. start += PAGE_SIZE;
  399. if (pagevec_add(pvec, page) == 0)
  400. break;
  401. }
  402. pte_unmap_unlock(pte, ptl);
  403. return start;
  404. }
  405. /*
  406. * munlock_vma_pages_range() - munlock all pages in the vma range.'
  407. * @vma - vma containing range to be munlock()ed.
  408. * @start - start address in @vma of the range
  409. * @end - end of range in @vma.
  410. *
  411. * For mremap(), munmap() and exit().
  412. *
  413. * Called with @vma VM_LOCKED.
  414. *
  415. * Returns with VM_LOCKED cleared. Callers must be prepared to
  416. * deal with this.
  417. *
  418. * We don't save and restore VM_LOCKED here because pages are
  419. * still on lru. In unmap path, pages might be scanned by reclaim
  420. * and re-mlocked by try_to_{munlock|unmap} before we unmap and
  421. * free them. This will result in freeing mlocked pages.
  422. */
  423. void munlock_vma_pages_range(struct vm_area_struct *vma,
  424. unsigned long start, unsigned long end)
  425. {
  426. vma->vm_flags &= ~VM_LOCKED;
  427. while (start < end) {
  428. struct page *page = NULL;
  429. unsigned int page_mask;
  430. unsigned long page_increm;
  431. struct pagevec pvec;
  432. struct zone *zone;
  433. int zoneid;
  434. pagevec_init(&pvec, 0);
  435. /*
  436. * Although FOLL_DUMP is intended for get_dump_page(),
  437. * it just so happens that its special treatment of the
  438. * ZERO_PAGE (returning an error instead of doing get_page)
  439. * suits munlock very well (and if somehow an abnormal page
  440. * has sneaked into the range, we won't oops here: great).
  441. */
  442. page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
  443. &page_mask);
  444. if (page && !IS_ERR(page)) {
  445. if (PageTransHuge(page)) {
  446. lock_page(page);
  447. /*
  448. * Any THP page found by follow_page_mask() may
  449. * have gotten split before reaching
  450. * munlock_vma_page(), so we need to recompute
  451. * the page_mask here.
  452. */
  453. page_mask = munlock_vma_page(page);
  454. unlock_page(page);
  455. put_page(page); /* follow_page_mask() */
  456. } else {
  457. /*
  458. * Non-huge pages are handled in batches via
  459. * pagevec. The pin from follow_page_mask()
  460. * prevents them from collapsing by THP.
  461. */
  462. pagevec_add(&pvec, page);
  463. zone = page_zone(page);
  464. zoneid = page_zone_id(page);
  465. /*
  466. * Try to fill the rest of pagevec using fast
  467. * pte walk. This will also update start to
  468. * the next page to process. Then munlock the
  469. * pagevec.
  470. */
  471. start = __munlock_pagevec_fill(&pvec, vma,
  472. zoneid, start, end);
  473. __munlock_pagevec(&pvec, zone);
  474. goto next;
  475. }
  476. }
  477. /* It's a bug to munlock in the middle of a THP page */
  478. VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
  479. page_increm = 1 + page_mask;
  480. start += page_increm * PAGE_SIZE;
  481. next:
  482. cond_resched();
  483. }
  484. }
  485. /*
  486. * mlock_fixup - handle mlock[all]/munlock[all] requests.
  487. *
  488. * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
  489. * munlock is a no-op. However, for some special vmas, we go ahead and
  490. * populate the ptes.
  491. *
  492. * For vmas that pass the filters, merge/split as appropriate.
  493. */
  494. static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
  495. unsigned long start, unsigned long end, vm_flags_t newflags)
  496. {
  497. struct mm_struct *mm = vma->vm_mm;
  498. pgoff_t pgoff;
  499. int nr_pages;
  500. int ret = 0;
  501. int lock = !!(newflags & VM_LOCKED);
  502. if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
  503. is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
  504. goto out; /* don't set VM_LOCKED, don't count */
  505. pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
  506. *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
  507. vma->vm_file, pgoff, vma_policy(vma));
  508. if (*prev) {
  509. vma = *prev;
  510. goto success;
  511. }
  512. if (start != vma->vm_start) {
  513. ret = split_vma(mm, vma, start, 1);
  514. if (ret)
  515. goto out;
  516. }
  517. if (end != vma->vm_end) {
  518. ret = split_vma(mm, vma, end, 0);
  519. if (ret)
  520. goto out;
  521. }
  522. success:
  523. /*
  524. * Keep track of amount of locked VM.
  525. */
  526. nr_pages = (end - start) >> PAGE_SHIFT;
  527. if (!lock)
  528. nr_pages = -nr_pages;
  529. mm->locked_vm += nr_pages;
  530. /*
  531. * vm_flags is protected by the mmap_sem held in write mode.
  532. * It's okay if try_to_unmap_one unmaps a page just after we
  533. * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
  534. */
  535. if (lock)
  536. vma->vm_flags = newflags;
  537. else
  538. munlock_vma_pages_range(vma, start, end);
  539. out:
  540. *prev = vma;
  541. return ret;
  542. }
  543. static int do_mlock(unsigned long start, size_t len, int on)
  544. {
  545. unsigned long nstart, end, tmp;
  546. struct vm_area_struct * vma, * prev;
  547. int error;
  548. VM_BUG_ON(start & ~PAGE_MASK);
  549. VM_BUG_ON(len != PAGE_ALIGN(len));
  550. end = start + len;
  551. if (end < start)
  552. return -EINVAL;
  553. if (end == start)
  554. return 0;
  555. vma = find_vma(current->mm, start);
  556. if (!vma || vma->vm_start > start)
  557. return -ENOMEM;
  558. prev = vma->vm_prev;
  559. if (start > vma->vm_start)
  560. prev = vma;
  561. for (nstart = start ; ; ) {
  562. vm_flags_t newflags;
  563. /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
  564. newflags = vma->vm_flags & ~VM_LOCKED;
  565. if (on)
  566. newflags |= VM_LOCKED;
  567. tmp = vma->vm_end;
  568. if (tmp > end)
  569. tmp = end;
  570. error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
  571. if (error)
  572. break;
  573. nstart = tmp;
  574. if (nstart < prev->vm_end)
  575. nstart = prev->vm_end;
  576. if (nstart >= end)
  577. break;
  578. vma = prev->vm_next;
  579. if (!vma || vma->vm_start != nstart) {
  580. error = -ENOMEM;
  581. break;
  582. }
  583. }
  584. return error;
  585. }
  586. /*
  587. * __mm_populate - populate and/or mlock pages within a range of address space.
  588. *
  589. * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
  590. * flags. VMAs must be already marked with the desired vm_flags, and
  591. * mmap_sem must not be held.
  592. */
  593. int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
  594. {
  595. struct mm_struct *mm = current->mm;
  596. unsigned long end, nstart, nend;
  597. struct vm_area_struct *vma = NULL;
  598. int locked = 0;
  599. long ret = 0;
  600. VM_BUG_ON(start & ~PAGE_MASK);
  601. VM_BUG_ON(len != PAGE_ALIGN(len));
  602. end = start + len;
  603. for (nstart = start; nstart < end; nstart = nend) {
  604. /*
  605. * We want to fault in pages for [nstart; end) address range.
  606. * Find first corresponding VMA.
  607. */
  608. if (!locked) {
  609. locked = 1;
  610. down_read(&mm->mmap_sem);
  611. vma = find_vma(mm, nstart);
  612. } else if (nstart >= vma->vm_end)
  613. vma = vma->vm_next;
  614. if (!vma || vma->vm_start >= end)
  615. break;
  616. /*
  617. * Set [nstart; nend) to intersection of desired address
  618. * range with the first VMA. Also, skip undesirable VMA types.
  619. */
  620. nend = min(end, vma->vm_end);
  621. if (vma->vm_flags & (VM_IO | VM_PFNMAP))
  622. continue;
  623. if (nstart < vma->vm_start)
  624. nstart = vma->vm_start;
  625. /*
  626. * Now fault in a range of pages. __mlock_vma_pages_range()
  627. * double checks the vma flags, so that it won't mlock pages
  628. * if the vma was already munlocked.
  629. */
  630. ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
  631. if (ret < 0) {
  632. if (ignore_errors) {
  633. ret = 0;
  634. continue; /* continue at next VMA */
  635. }
  636. ret = __mlock_posix_error_return(ret);
  637. break;
  638. }
  639. nend = nstart + ret * PAGE_SIZE;
  640. ret = 0;
  641. }
  642. if (locked)
  643. up_read(&mm->mmap_sem);
  644. return ret; /* 0 or negative error code */
  645. }
  646. SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
  647. {
  648. unsigned long locked;
  649. unsigned long lock_limit;
  650. int error = -ENOMEM;
  651. if (!can_do_mlock())
  652. return -EPERM;
  653. lru_add_drain_all(); /* flush pagevec */
  654. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  655. start &= PAGE_MASK;
  656. lock_limit = rlimit(RLIMIT_MEMLOCK);
  657. lock_limit >>= PAGE_SHIFT;
  658. locked = len >> PAGE_SHIFT;
  659. down_write(&current->mm->mmap_sem);
  660. locked += current->mm->locked_vm;
  661. /* check against resource limits */
  662. if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
  663. error = do_mlock(start, len, 1);
  664. up_write(&current->mm->mmap_sem);
  665. if (!error)
  666. error = __mm_populate(start, len, 0);
  667. return error;
  668. }
  669. SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
  670. {
  671. int ret;
  672. len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
  673. start &= PAGE_MASK;
  674. down_write(&current->mm->mmap_sem);
  675. ret = do_mlock(start, len, 0);
  676. up_write(&current->mm->mmap_sem);
  677. return ret;
  678. }
  679. static int do_mlockall(int flags)
  680. {
  681. struct vm_area_struct * vma, * prev = NULL;
  682. if (flags & MCL_FUTURE)
  683. current->mm->def_flags |= VM_LOCKED;
  684. else
  685. current->mm->def_flags &= ~VM_LOCKED;
  686. if (flags == MCL_FUTURE)
  687. goto out;
  688. for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
  689. vm_flags_t newflags;
  690. newflags = vma->vm_flags & ~VM_LOCKED;
  691. if (flags & MCL_CURRENT)
  692. newflags |= VM_LOCKED;
  693. /* Ignore errors */
  694. mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
  695. cond_resched();
  696. }
  697. out:
  698. return 0;
  699. }
  700. SYSCALL_DEFINE1(mlockall, int, flags)
  701. {
  702. unsigned long lock_limit;
  703. int ret = -EINVAL;
  704. if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
  705. goto out;
  706. ret = -EPERM;
  707. if (!can_do_mlock())
  708. goto out;
  709. if (flags & MCL_CURRENT)
  710. lru_add_drain_all(); /* flush pagevec */
  711. lock_limit = rlimit(RLIMIT_MEMLOCK);
  712. lock_limit >>= PAGE_SHIFT;
  713. ret = -ENOMEM;
  714. down_write(&current->mm->mmap_sem);
  715. if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
  716. capable(CAP_IPC_LOCK))
  717. ret = do_mlockall(flags);
  718. up_write(&current->mm->mmap_sem);
  719. if (!ret && (flags & MCL_CURRENT))
  720. mm_populate(0, TASK_SIZE);
  721. out:
  722. return ret;
  723. }
  724. SYSCALL_DEFINE0(munlockall)
  725. {
  726. int ret;
  727. down_write(&current->mm->mmap_sem);
  728. ret = do_mlockall(0);
  729. up_write(&current->mm->mmap_sem);
  730. return ret;
  731. }
  732. /*
  733. * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
  734. * shm segments) get accounted against the user_struct instead.
  735. */
  736. static DEFINE_SPINLOCK(shmlock_user_lock);
  737. int user_shm_lock(size_t size, struct user_struct *user)
  738. {
  739. unsigned long lock_limit, locked;
  740. int allowed = 0;
  741. locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  742. lock_limit = rlimit(RLIMIT_MEMLOCK);
  743. if (lock_limit == RLIM_INFINITY)
  744. allowed = 1;
  745. lock_limit >>= PAGE_SHIFT;
  746. spin_lock(&shmlock_user_lock);
  747. if (!allowed &&
  748. locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
  749. goto out;
  750. get_uid(user);
  751. user->locked_shm += locked;
  752. allowed = 1;
  753. out:
  754. spin_unlock(&shmlock_user_lock);
  755. return allowed;
  756. }
  757. void user_shm_unlock(size_t size, struct user_struct *user)
  758. {
  759. spin_lock(&shmlock_user_lock);
  760. user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
  761. spin_unlock(&shmlock_user_lock);
  762. free_uid(user);
  763. }