core.c 191 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096
  1. /*
  2. * kernel/sched/core.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. * 2007-04-15 Work begun on replacing all interactivity tuning with a
  20. * fair scheduling design by Con Kolivas.
  21. * 2007-05-05 Load balancing (smp-nice) and other improvements
  22. * by Peter Williams
  23. * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
  24. * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
  25. * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
  26. * Thomas Gleixner, Mike Kravetz
  27. */
  28. #include <linux/mm.h>
  29. #include <linux/module.h>
  30. #include <linux/nmi.h>
  31. #include <linux/init.h>
  32. #include <linux/uaccess.h>
  33. #include <linux/highmem.h>
  34. #include <asm/mmu_context.h>
  35. #include <linux/interrupt.h>
  36. #include <linux/capability.h>
  37. #include <linux/completion.h>
  38. #include <linux/kernel_stat.h>
  39. #include <linux/debug_locks.h>
  40. #include <linux/perf_event.h>
  41. #include <linux/security.h>
  42. #include <linux/notifier.h>
  43. #include <linux/profile.h>
  44. #include <linux/freezer.h>
  45. #include <linux/vmalloc.h>
  46. #include <linux/blkdev.h>
  47. #include <linux/delay.h>
  48. #include <linux/pid_namespace.h>
  49. #include <linux/smp.h>
  50. #include <linux/threads.h>
  51. #include <linux/timer.h>
  52. #include <linux/rcupdate.h>
  53. #include <linux/cpu.h>
  54. #include <linux/cpuset.h>
  55. #include <linux/percpu.h>
  56. #include <linux/proc_fs.h>
  57. #include <linux/seq_file.h>
  58. #include <linux/sysctl.h>
  59. #include <linux/syscalls.h>
  60. #include <linux/times.h>
  61. #include <linux/tsacct_kern.h>
  62. #include <linux/kprobes.h>
  63. #include <linux/delayacct.h>
  64. #include <linux/unistd.h>
  65. #include <linux/pagemap.h>
  66. #include <linux/hrtimer.h>
  67. #include <linux/tick.h>
  68. #include <linux/debugfs.h>
  69. #include <linux/ctype.h>
  70. #include <linux/ftrace.h>
  71. #include <linux/slab.h>
  72. #include <linux/init_task.h>
  73. #include <linux/binfmts.h>
  74. #include <linux/context_tracking.h>
  75. #include <linux/compiler.h>
  76. #include <asm/switch_to.h>
  77. #include <asm/tlb.h>
  78. #include <asm/irq_regs.h>
  79. #include <asm/mutex.h>
  80. #ifdef CONFIG_PARAVIRT
  81. #include <asm/paravirt.h>
  82. #endif
  83. #include "sched.h"
  84. #include "../workqueue_internal.h"
  85. #include "../smpboot.h"
  86. #define CREATE_TRACE_POINTS
  87. #include <trace/events/sched.h>
  88. #ifdef smp_mb__before_atomic
  89. void __smp_mb__before_atomic(void)
  90. {
  91. smp_mb__before_atomic();
  92. }
  93. EXPORT_SYMBOL(__smp_mb__before_atomic);
  94. #endif
  95. #ifdef smp_mb__after_atomic
  96. void __smp_mb__after_atomic(void)
  97. {
  98. smp_mb__after_atomic();
  99. }
  100. EXPORT_SYMBOL(__smp_mb__after_atomic);
  101. #endif
  102. void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
  103. {
  104. unsigned long delta;
  105. ktime_t soft, hard, now;
  106. for (;;) {
  107. if (hrtimer_active(period_timer))
  108. break;
  109. now = hrtimer_cb_get_time(period_timer);
  110. hrtimer_forward(period_timer, now, period);
  111. soft = hrtimer_get_softexpires(period_timer);
  112. hard = hrtimer_get_expires(period_timer);
  113. delta = ktime_to_ns(ktime_sub(hard, soft));
  114. __hrtimer_start_range_ns(period_timer, soft, delta,
  115. HRTIMER_MODE_ABS_PINNED, 0);
  116. }
  117. }
  118. DEFINE_MUTEX(sched_domains_mutex);
  119. DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
  120. static void update_rq_clock_task(struct rq *rq, s64 delta);
  121. void update_rq_clock(struct rq *rq)
  122. {
  123. s64 delta;
  124. if (rq->skip_clock_update > 0)
  125. return;
  126. delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
  127. rq->clock += delta;
  128. update_rq_clock_task(rq, delta);
  129. }
  130. /*
  131. * Debugging: various feature bits
  132. */
  133. #define SCHED_FEAT(name, enabled) \
  134. (1UL << __SCHED_FEAT_##name) * enabled |
  135. const_debug unsigned int sysctl_sched_features =
  136. #include "features.h"
  137. 0;
  138. #undef SCHED_FEAT
  139. #ifdef CONFIG_SCHED_DEBUG
  140. #define SCHED_FEAT(name, enabled) \
  141. #name ,
  142. static const char * const sched_feat_names[] = {
  143. #include "features.h"
  144. };
  145. #undef SCHED_FEAT
  146. static int sched_feat_show(struct seq_file *m, void *v)
  147. {
  148. int i;
  149. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  150. if (!(sysctl_sched_features & (1UL << i)))
  151. seq_puts(m, "NO_");
  152. seq_printf(m, "%s ", sched_feat_names[i]);
  153. }
  154. seq_puts(m, "\n");
  155. return 0;
  156. }
  157. #ifdef HAVE_JUMP_LABEL
  158. #define jump_label_key__true STATIC_KEY_INIT_TRUE
  159. #define jump_label_key__false STATIC_KEY_INIT_FALSE
  160. #define SCHED_FEAT(name, enabled) \
  161. jump_label_key__##enabled ,
  162. struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
  163. #include "features.h"
  164. };
  165. #undef SCHED_FEAT
  166. static void sched_feat_disable(int i)
  167. {
  168. if (static_key_enabled(&sched_feat_keys[i]))
  169. static_key_slow_dec(&sched_feat_keys[i]);
  170. }
  171. static void sched_feat_enable(int i)
  172. {
  173. if (!static_key_enabled(&sched_feat_keys[i]))
  174. static_key_slow_inc(&sched_feat_keys[i]);
  175. }
  176. #else
  177. static void sched_feat_disable(int i) { };
  178. static void sched_feat_enable(int i) { };
  179. #endif /* HAVE_JUMP_LABEL */
  180. static int sched_feat_set(char *cmp)
  181. {
  182. int i;
  183. int neg = 0;
  184. if (strncmp(cmp, "NO_", 3) == 0) {
  185. neg = 1;
  186. cmp += 3;
  187. }
  188. for (i = 0; i < __SCHED_FEAT_NR; i++) {
  189. if (strcmp(cmp, sched_feat_names[i]) == 0) {
  190. if (neg) {
  191. sysctl_sched_features &= ~(1UL << i);
  192. sched_feat_disable(i);
  193. } else {
  194. sysctl_sched_features |= (1UL << i);
  195. sched_feat_enable(i);
  196. }
  197. break;
  198. }
  199. }
  200. return i;
  201. }
  202. static ssize_t
  203. sched_feat_write(struct file *filp, const char __user *ubuf,
  204. size_t cnt, loff_t *ppos)
  205. {
  206. char buf[64];
  207. char *cmp;
  208. int i;
  209. if (cnt > 63)
  210. cnt = 63;
  211. if (copy_from_user(&buf, ubuf, cnt))
  212. return -EFAULT;
  213. buf[cnt] = 0;
  214. cmp = strstrip(buf);
  215. i = sched_feat_set(cmp);
  216. if (i == __SCHED_FEAT_NR)
  217. return -EINVAL;
  218. *ppos += cnt;
  219. return cnt;
  220. }
  221. static int sched_feat_open(struct inode *inode, struct file *filp)
  222. {
  223. return single_open(filp, sched_feat_show, NULL);
  224. }
  225. static const struct file_operations sched_feat_fops = {
  226. .open = sched_feat_open,
  227. .write = sched_feat_write,
  228. .read = seq_read,
  229. .llseek = seq_lseek,
  230. .release = single_release,
  231. };
  232. static __init int sched_init_debug(void)
  233. {
  234. debugfs_create_file("sched_features", 0644, NULL, NULL,
  235. &sched_feat_fops);
  236. return 0;
  237. }
  238. late_initcall(sched_init_debug);
  239. #endif /* CONFIG_SCHED_DEBUG */
  240. /*
  241. * Number of tasks to iterate in a single balance run.
  242. * Limited because this is done with IRQs disabled.
  243. */
  244. const_debug unsigned int sysctl_sched_nr_migrate = 32;
  245. /*
  246. * period over which we average the RT time consumption, measured
  247. * in ms.
  248. *
  249. * default: 1s
  250. */
  251. const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
  252. /*
  253. * period over which we measure -rt task cpu usage in us.
  254. * default: 1s
  255. */
  256. unsigned int sysctl_sched_rt_period = 1000000;
  257. __read_mostly int scheduler_running;
  258. /*
  259. * part of the period that we allow rt tasks to run in us.
  260. * default: 0.95s
  261. */
  262. int sysctl_sched_rt_runtime = 950000;
  263. /*
  264. * __task_rq_lock - lock the rq @p resides on.
  265. */
  266. static inline struct rq *__task_rq_lock(struct task_struct *p)
  267. __acquires(rq->lock)
  268. {
  269. struct rq *rq;
  270. lockdep_assert_held(&p->pi_lock);
  271. for (;;) {
  272. rq = task_rq(p);
  273. raw_spin_lock(&rq->lock);
  274. if (likely(rq == task_rq(p)))
  275. return rq;
  276. raw_spin_unlock(&rq->lock);
  277. }
  278. }
  279. /*
  280. * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
  281. */
  282. static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
  283. __acquires(p->pi_lock)
  284. __acquires(rq->lock)
  285. {
  286. struct rq *rq;
  287. for (;;) {
  288. raw_spin_lock_irqsave(&p->pi_lock, *flags);
  289. rq = task_rq(p);
  290. raw_spin_lock(&rq->lock);
  291. if (likely(rq == task_rq(p)))
  292. return rq;
  293. raw_spin_unlock(&rq->lock);
  294. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  295. }
  296. }
  297. static void __task_rq_unlock(struct rq *rq)
  298. __releases(rq->lock)
  299. {
  300. raw_spin_unlock(&rq->lock);
  301. }
  302. static inline void
  303. task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
  304. __releases(rq->lock)
  305. __releases(p->pi_lock)
  306. {
  307. raw_spin_unlock(&rq->lock);
  308. raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
  309. }
  310. /*
  311. * this_rq_lock - lock this runqueue and disable interrupts.
  312. */
  313. static struct rq *this_rq_lock(void)
  314. __acquires(rq->lock)
  315. {
  316. struct rq *rq;
  317. local_irq_disable();
  318. rq = this_rq();
  319. raw_spin_lock(&rq->lock);
  320. return rq;
  321. }
  322. #ifdef CONFIG_SCHED_HRTICK
  323. /*
  324. * Use HR-timers to deliver accurate preemption points.
  325. */
  326. static void hrtick_clear(struct rq *rq)
  327. {
  328. if (hrtimer_active(&rq->hrtick_timer))
  329. hrtimer_cancel(&rq->hrtick_timer);
  330. }
  331. /*
  332. * High-resolution timer tick.
  333. * Runs from hardirq context with interrupts disabled.
  334. */
  335. static enum hrtimer_restart hrtick(struct hrtimer *timer)
  336. {
  337. struct rq *rq = container_of(timer, struct rq, hrtick_timer);
  338. WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
  339. raw_spin_lock(&rq->lock);
  340. update_rq_clock(rq);
  341. rq->curr->sched_class->task_tick(rq, rq->curr, 1);
  342. raw_spin_unlock(&rq->lock);
  343. return HRTIMER_NORESTART;
  344. }
  345. #ifdef CONFIG_SMP
  346. static int __hrtick_restart(struct rq *rq)
  347. {
  348. struct hrtimer *timer = &rq->hrtick_timer;
  349. ktime_t time = hrtimer_get_softexpires(timer);
  350. return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
  351. }
  352. /*
  353. * called from hardirq (IPI) context
  354. */
  355. static void __hrtick_start(void *arg)
  356. {
  357. struct rq *rq = arg;
  358. raw_spin_lock(&rq->lock);
  359. __hrtick_restart(rq);
  360. rq->hrtick_csd_pending = 0;
  361. raw_spin_unlock(&rq->lock);
  362. }
  363. /*
  364. * Called to set the hrtick timer state.
  365. *
  366. * called with rq->lock held and irqs disabled
  367. */
  368. void hrtick_start(struct rq *rq, u64 delay)
  369. {
  370. struct hrtimer *timer = &rq->hrtick_timer;
  371. ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
  372. hrtimer_set_expires(timer, time);
  373. if (rq == this_rq()) {
  374. __hrtick_restart(rq);
  375. } else if (!rq->hrtick_csd_pending) {
  376. smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
  377. rq->hrtick_csd_pending = 1;
  378. }
  379. }
  380. static int
  381. hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
  382. {
  383. int cpu = (int)(long)hcpu;
  384. switch (action) {
  385. case CPU_UP_CANCELED:
  386. case CPU_UP_CANCELED_FROZEN:
  387. case CPU_DOWN_PREPARE:
  388. case CPU_DOWN_PREPARE_FROZEN:
  389. case CPU_DEAD:
  390. case CPU_DEAD_FROZEN:
  391. hrtick_clear(cpu_rq(cpu));
  392. return NOTIFY_OK;
  393. }
  394. return NOTIFY_DONE;
  395. }
  396. static __init void init_hrtick(void)
  397. {
  398. hotcpu_notifier(hotplug_hrtick, 0);
  399. }
  400. #else
  401. /*
  402. * Called to set the hrtick timer state.
  403. *
  404. * called with rq->lock held and irqs disabled
  405. */
  406. void hrtick_start(struct rq *rq, u64 delay)
  407. {
  408. __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
  409. HRTIMER_MODE_REL_PINNED, 0);
  410. }
  411. static inline void init_hrtick(void)
  412. {
  413. }
  414. #endif /* CONFIG_SMP */
  415. static void init_rq_hrtick(struct rq *rq)
  416. {
  417. #ifdef CONFIG_SMP
  418. rq->hrtick_csd_pending = 0;
  419. rq->hrtick_csd.flags = 0;
  420. rq->hrtick_csd.func = __hrtick_start;
  421. rq->hrtick_csd.info = rq;
  422. #endif
  423. hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  424. rq->hrtick_timer.function = hrtick;
  425. }
  426. #else /* CONFIG_SCHED_HRTICK */
  427. static inline void hrtick_clear(struct rq *rq)
  428. {
  429. }
  430. static inline void init_rq_hrtick(struct rq *rq)
  431. {
  432. }
  433. static inline void init_hrtick(void)
  434. {
  435. }
  436. #endif /* CONFIG_SCHED_HRTICK */
  437. /*
  438. * cmpxchg based fetch_or, macro so it works for different integer types
  439. */
  440. #define fetch_or(ptr, val) \
  441. ({ typeof(*(ptr)) __old, __val = *(ptr); \
  442. for (;;) { \
  443. __old = cmpxchg((ptr), __val, __val | (val)); \
  444. if (__old == __val) \
  445. break; \
  446. __val = __old; \
  447. } \
  448. __old; \
  449. })
  450. #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
  451. /*
  452. * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
  453. * this avoids any races wrt polling state changes and thereby avoids
  454. * spurious IPIs.
  455. */
  456. static bool set_nr_and_not_polling(struct task_struct *p)
  457. {
  458. struct thread_info *ti = task_thread_info(p);
  459. return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
  460. }
  461. /*
  462. * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
  463. *
  464. * If this returns true, then the idle task promises to call
  465. * sched_ttwu_pending() and reschedule soon.
  466. */
  467. static bool set_nr_if_polling(struct task_struct *p)
  468. {
  469. struct thread_info *ti = task_thread_info(p);
  470. typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
  471. for (;;) {
  472. if (!(val & _TIF_POLLING_NRFLAG))
  473. return false;
  474. if (val & _TIF_NEED_RESCHED)
  475. return true;
  476. old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
  477. if (old == val)
  478. break;
  479. val = old;
  480. }
  481. return true;
  482. }
  483. #else
  484. static bool set_nr_and_not_polling(struct task_struct *p)
  485. {
  486. set_tsk_need_resched(p);
  487. return true;
  488. }
  489. #ifdef CONFIG_SMP
  490. static bool set_nr_if_polling(struct task_struct *p)
  491. {
  492. return false;
  493. }
  494. #endif
  495. #endif
  496. /*
  497. * resched_task - mark a task 'to be rescheduled now'.
  498. *
  499. * On UP this means the setting of the need_resched flag, on SMP it
  500. * might also involve a cross-CPU call to trigger the scheduler on
  501. * the target CPU.
  502. */
  503. void resched_task(struct task_struct *p)
  504. {
  505. int cpu;
  506. lockdep_assert_held(&task_rq(p)->lock);
  507. if (test_tsk_need_resched(p))
  508. return;
  509. cpu = task_cpu(p);
  510. if (cpu == smp_processor_id()) {
  511. set_tsk_need_resched(p);
  512. set_preempt_need_resched();
  513. return;
  514. }
  515. if (set_nr_and_not_polling(p))
  516. smp_send_reschedule(cpu);
  517. else
  518. trace_sched_wake_idle_without_ipi(cpu);
  519. }
  520. void resched_cpu(int cpu)
  521. {
  522. struct rq *rq = cpu_rq(cpu);
  523. unsigned long flags;
  524. if (!raw_spin_trylock_irqsave(&rq->lock, flags))
  525. return;
  526. resched_task(cpu_curr(cpu));
  527. raw_spin_unlock_irqrestore(&rq->lock, flags);
  528. }
  529. #ifdef CONFIG_SMP
  530. #ifdef CONFIG_NO_HZ_COMMON
  531. /*
  532. * In the semi idle case, use the nearest busy cpu for migrating timers
  533. * from an idle cpu. This is good for power-savings.
  534. *
  535. * We don't do similar optimization for completely idle system, as
  536. * selecting an idle cpu will add more delays to the timers than intended
  537. * (as that cpu's timer base may not be uptodate wrt jiffies etc).
  538. */
  539. int get_nohz_timer_target(int pinned)
  540. {
  541. int cpu = smp_processor_id();
  542. int i;
  543. struct sched_domain *sd;
  544. if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
  545. return cpu;
  546. rcu_read_lock();
  547. for_each_domain(cpu, sd) {
  548. for_each_cpu(i, sched_domain_span(sd)) {
  549. if (!idle_cpu(i)) {
  550. cpu = i;
  551. goto unlock;
  552. }
  553. }
  554. }
  555. unlock:
  556. rcu_read_unlock();
  557. return cpu;
  558. }
  559. /*
  560. * When add_timer_on() enqueues a timer into the timer wheel of an
  561. * idle CPU then this timer might expire before the next timer event
  562. * which is scheduled to wake up that CPU. In case of a completely
  563. * idle system the next event might even be infinite time into the
  564. * future. wake_up_idle_cpu() ensures that the CPU is woken up and
  565. * leaves the inner idle loop so the newly added timer is taken into
  566. * account when the CPU goes back to idle and evaluates the timer
  567. * wheel for the next timer event.
  568. */
  569. static void wake_up_idle_cpu(int cpu)
  570. {
  571. struct rq *rq = cpu_rq(cpu);
  572. if (cpu == smp_processor_id())
  573. return;
  574. if (set_nr_and_not_polling(rq->idle))
  575. smp_send_reschedule(cpu);
  576. else
  577. trace_sched_wake_idle_without_ipi(cpu);
  578. }
  579. static bool wake_up_full_nohz_cpu(int cpu)
  580. {
  581. if (tick_nohz_full_cpu(cpu)) {
  582. if (cpu != smp_processor_id() ||
  583. tick_nohz_tick_stopped())
  584. smp_send_reschedule(cpu);
  585. return true;
  586. }
  587. return false;
  588. }
  589. void wake_up_nohz_cpu(int cpu)
  590. {
  591. if (!wake_up_full_nohz_cpu(cpu))
  592. wake_up_idle_cpu(cpu);
  593. }
  594. static inline bool got_nohz_idle_kick(void)
  595. {
  596. int cpu = smp_processor_id();
  597. if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
  598. return false;
  599. if (idle_cpu(cpu) && !need_resched())
  600. return true;
  601. /*
  602. * We can't run Idle Load Balance on this CPU for this time so we
  603. * cancel it and clear NOHZ_BALANCE_KICK
  604. */
  605. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
  606. return false;
  607. }
  608. #else /* CONFIG_NO_HZ_COMMON */
  609. static inline bool got_nohz_idle_kick(void)
  610. {
  611. return false;
  612. }
  613. #endif /* CONFIG_NO_HZ_COMMON */
  614. #ifdef CONFIG_NO_HZ_FULL
  615. bool sched_can_stop_tick(void)
  616. {
  617. struct rq *rq;
  618. rq = this_rq();
  619. /* Make sure rq->nr_running update is visible after the IPI */
  620. smp_rmb();
  621. /* More than one running task need preemption */
  622. if (rq->nr_running > 1)
  623. return false;
  624. return true;
  625. }
  626. #endif /* CONFIG_NO_HZ_FULL */
  627. void sched_avg_update(struct rq *rq)
  628. {
  629. s64 period = sched_avg_period();
  630. while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
  631. /*
  632. * Inline assembly required to prevent the compiler
  633. * optimising this loop into a divmod call.
  634. * See __iter_div_u64_rem() for another example of this.
  635. */
  636. asm("" : "+rm" (rq->age_stamp));
  637. rq->age_stamp += period;
  638. rq->rt_avg /= 2;
  639. }
  640. }
  641. #endif /* CONFIG_SMP */
  642. #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
  643. (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
  644. /*
  645. * Iterate task_group tree rooted at *from, calling @down when first entering a
  646. * node and @up when leaving it for the final time.
  647. *
  648. * Caller must hold rcu_lock or sufficient equivalent.
  649. */
  650. int walk_tg_tree_from(struct task_group *from,
  651. tg_visitor down, tg_visitor up, void *data)
  652. {
  653. struct task_group *parent, *child;
  654. int ret;
  655. parent = from;
  656. down:
  657. ret = (*down)(parent, data);
  658. if (ret)
  659. goto out;
  660. list_for_each_entry_rcu(child, &parent->children, siblings) {
  661. parent = child;
  662. goto down;
  663. up:
  664. continue;
  665. }
  666. ret = (*up)(parent, data);
  667. if (ret || parent == from)
  668. goto out;
  669. child = parent;
  670. parent = parent->parent;
  671. if (parent)
  672. goto up;
  673. out:
  674. return ret;
  675. }
  676. int tg_nop(struct task_group *tg, void *data)
  677. {
  678. return 0;
  679. }
  680. #endif
  681. static void set_load_weight(struct task_struct *p)
  682. {
  683. int prio = p->static_prio - MAX_RT_PRIO;
  684. struct load_weight *load = &p->se.load;
  685. /*
  686. * SCHED_IDLE tasks get minimal weight:
  687. */
  688. if (p->policy == SCHED_IDLE) {
  689. load->weight = scale_load(WEIGHT_IDLEPRIO);
  690. load->inv_weight = WMULT_IDLEPRIO;
  691. return;
  692. }
  693. load->weight = scale_load(prio_to_weight[prio]);
  694. load->inv_weight = prio_to_wmult[prio];
  695. }
  696. static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
  697. {
  698. update_rq_clock(rq);
  699. sched_info_queued(rq, p);
  700. p->sched_class->enqueue_task(rq, p, flags);
  701. }
  702. static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
  703. {
  704. update_rq_clock(rq);
  705. sched_info_dequeued(rq, p);
  706. p->sched_class->dequeue_task(rq, p, flags);
  707. }
  708. void activate_task(struct rq *rq, struct task_struct *p, int flags)
  709. {
  710. if (task_contributes_to_load(p))
  711. rq->nr_uninterruptible--;
  712. enqueue_task(rq, p, flags);
  713. }
  714. void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
  715. {
  716. if (task_contributes_to_load(p))
  717. rq->nr_uninterruptible++;
  718. dequeue_task(rq, p, flags);
  719. }
  720. static void update_rq_clock_task(struct rq *rq, s64 delta)
  721. {
  722. /*
  723. * In theory, the compile should just see 0 here, and optimize out the call
  724. * to sched_rt_avg_update. But I don't trust it...
  725. */
  726. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  727. s64 steal = 0, irq_delta = 0;
  728. #endif
  729. #ifdef CONFIG_IRQ_TIME_ACCOUNTING
  730. irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
  731. /*
  732. * Since irq_time is only updated on {soft,}irq_exit, we might run into
  733. * this case when a previous update_rq_clock() happened inside a
  734. * {soft,}irq region.
  735. *
  736. * When this happens, we stop ->clock_task and only update the
  737. * prev_irq_time stamp to account for the part that fit, so that a next
  738. * update will consume the rest. This ensures ->clock_task is
  739. * monotonic.
  740. *
  741. * It does however cause some slight miss-attribution of {soft,}irq
  742. * time, a more accurate solution would be to update the irq_time using
  743. * the current rq->clock timestamp, except that would require using
  744. * atomic ops.
  745. */
  746. if (irq_delta > delta)
  747. irq_delta = delta;
  748. rq->prev_irq_time += irq_delta;
  749. delta -= irq_delta;
  750. #endif
  751. #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
  752. if (static_key_false((&paravirt_steal_rq_enabled))) {
  753. steal = paravirt_steal_clock(cpu_of(rq));
  754. steal -= rq->prev_steal_time_rq;
  755. if (unlikely(steal > delta))
  756. steal = delta;
  757. rq->prev_steal_time_rq += steal;
  758. delta -= steal;
  759. }
  760. #endif
  761. rq->clock_task += delta;
  762. #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
  763. if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
  764. sched_rt_avg_update(rq, irq_delta + steal);
  765. #endif
  766. }
  767. void sched_set_stop_task(int cpu, struct task_struct *stop)
  768. {
  769. struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
  770. struct task_struct *old_stop = cpu_rq(cpu)->stop;
  771. if (stop) {
  772. /*
  773. * Make it appear like a SCHED_FIFO task, its something
  774. * userspace knows about and won't get confused about.
  775. *
  776. * Also, it will make PI more or less work without too
  777. * much confusion -- but then, stop work should not
  778. * rely on PI working anyway.
  779. */
  780. sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
  781. stop->sched_class = &stop_sched_class;
  782. }
  783. cpu_rq(cpu)->stop = stop;
  784. if (old_stop) {
  785. /*
  786. * Reset it back to a normal scheduling class so that
  787. * it can die in pieces.
  788. */
  789. old_stop->sched_class = &rt_sched_class;
  790. }
  791. }
  792. /*
  793. * __normal_prio - return the priority that is based on the static prio
  794. */
  795. static inline int __normal_prio(struct task_struct *p)
  796. {
  797. return p->static_prio;
  798. }
  799. /*
  800. * Calculate the expected normal priority: i.e. priority
  801. * without taking RT-inheritance into account. Might be
  802. * boosted by interactivity modifiers. Changes upon fork,
  803. * setprio syscalls, and whenever the interactivity
  804. * estimator recalculates.
  805. */
  806. static inline int normal_prio(struct task_struct *p)
  807. {
  808. int prio;
  809. if (task_has_dl_policy(p))
  810. prio = MAX_DL_PRIO-1;
  811. else if (task_has_rt_policy(p))
  812. prio = MAX_RT_PRIO-1 - p->rt_priority;
  813. else
  814. prio = __normal_prio(p);
  815. return prio;
  816. }
  817. /*
  818. * Calculate the current priority, i.e. the priority
  819. * taken into account by the scheduler. This value might
  820. * be boosted by RT tasks, or might be boosted by
  821. * interactivity modifiers. Will be RT if the task got
  822. * RT-boosted. If not then it returns p->normal_prio.
  823. */
  824. static int effective_prio(struct task_struct *p)
  825. {
  826. p->normal_prio = normal_prio(p);
  827. /*
  828. * If we are RT tasks or we were boosted to RT priority,
  829. * keep the priority unchanged. Otherwise, update priority
  830. * to the normal priority:
  831. */
  832. if (!rt_prio(p->prio))
  833. return p->normal_prio;
  834. return p->prio;
  835. }
  836. /**
  837. * task_curr - is this task currently executing on a CPU?
  838. * @p: the task in question.
  839. *
  840. * Return: 1 if the task is currently executing. 0 otherwise.
  841. */
  842. inline int task_curr(const struct task_struct *p)
  843. {
  844. return cpu_curr(task_cpu(p)) == p;
  845. }
  846. static inline void check_class_changed(struct rq *rq, struct task_struct *p,
  847. const struct sched_class *prev_class,
  848. int oldprio)
  849. {
  850. if (prev_class != p->sched_class) {
  851. if (prev_class->switched_from)
  852. prev_class->switched_from(rq, p);
  853. p->sched_class->switched_to(rq, p);
  854. } else if (oldprio != p->prio || dl_task(p))
  855. p->sched_class->prio_changed(rq, p, oldprio);
  856. }
  857. void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
  858. {
  859. const struct sched_class *class;
  860. if (p->sched_class == rq->curr->sched_class) {
  861. rq->curr->sched_class->check_preempt_curr(rq, p, flags);
  862. } else {
  863. for_each_class(class) {
  864. if (class == rq->curr->sched_class)
  865. break;
  866. if (class == p->sched_class) {
  867. resched_task(rq->curr);
  868. break;
  869. }
  870. }
  871. }
  872. /*
  873. * A queue event has occurred, and we're going to schedule. In
  874. * this case, we can save a useless back to back clock update.
  875. */
  876. if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
  877. rq->skip_clock_update = 1;
  878. }
  879. #ifdef CONFIG_SMP
  880. void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
  881. {
  882. #ifdef CONFIG_SCHED_DEBUG
  883. /*
  884. * We should never call set_task_cpu() on a blocked task,
  885. * ttwu() will sort out the placement.
  886. */
  887. WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
  888. !(task_preempt_count(p) & PREEMPT_ACTIVE));
  889. #ifdef CONFIG_LOCKDEP
  890. /*
  891. * The caller should hold either p->pi_lock or rq->lock, when changing
  892. * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
  893. *
  894. * sched_move_task() holds both and thus holding either pins the cgroup,
  895. * see task_group().
  896. *
  897. * Furthermore, all task_rq users should acquire both locks, see
  898. * task_rq_lock().
  899. */
  900. WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
  901. lockdep_is_held(&task_rq(p)->lock)));
  902. #endif
  903. #endif
  904. trace_sched_migrate_task(p, new_cpu);
  905. if (task_cpu(p) != new_cpu) {
  906. if (p->sched_class->migrate_task_rq)
  907. p->sched_class->migrate_task_rq(p, new_cpu);
  908. p->se.nr_migrations++;
  909. perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
  910. }
  911. __set_task_cpu(p, new_cpu);
  912. }
  913. static void __migrate_swap_task(struct task_struct *p, int cpu)
  914. {
  915. if (p->on_rq) {
  916. struct rq *src_rq, *dst_rq;
  917. src_rq = task_rq(p);
  918. dst_rq = cpu_rq(cpu);
  919. deactivate_task(src_rq, p, 0);
  920. set_task_cpu(p, cpu);
  921. activate_task(dst_rq, p, 0);
  922. check_preempt_curr(dst_rq, p, 0);
  923. } else {
  924. /*
  925. * Task isn't running anymore; make it appear like we migrated
  926. * it before it went to sleep. This means on wakeup we make the
  927. * previous cpu our targer instead of where it really is.
  928. */
  929. p->wake_cpu = cpu;
  930. }
  931. }
  932. struct migration_swap_arg {
  933. struct task_struct *src_task, *dst_task;
  934. int src_cpu, dst_cpu;
  935. };
  936. static int migrate_swap_stop(void *data)
  937. {
  938. struct migration_swap_arg *arg = data;
  939. struct rq *src_rq, *dst_rq;
  940. int ret = -EAGAIN;
  941. src_rq = cpu_rq(arg->src_cpu);
  942. dst_rq = cpu_rq(arg->dst_cpu);
  943. double_raw_lock(&arg->src_task->pi_lock,
  944. &arg->dst_task->pi_lock);
  945. double_rq_lock(src_rq, dst_rq);
  946. if (task_cpu(arg->dst_task) != arg->dst_cpu)
  947. goto unlock;
  948. if (task_cpu(arg->src_task) != arg->src_cpu)
  949. goto unlock;
  950. if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
  951. goto unlock;
  952. if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
  953. goto unlock;
  954. __migrate_swap_task(arg->src_task, arg->dst_cpu);
  955. __migrate_swap_task(arg->dst_task, arg->src_cpu);
  956. ret = 0;
  957. unlock:
  958. double_rq_unlock(src_rq, dst_rq);
  959. raw_spin_unlock(&arg->dst_task->pi_lock);
  960. raw_spin_unlock(&arg->src_task->pi_lock);
  961. return ret;
  962. }
  963. /*
  964. * Cross migrate two tasks
  965. */
  966. int migrate_swap(struct task_struct *cur, struct task_struct *p)
  967. {
  968. struct migration_swap_arg arg;
  969. int ret = -EINVAL;
  970. arg = (struct migration_swap_arg){
  971. .src_task = cur,
  972. .src_cpu = task_cpu(cur),
  973. .dst_task = p,
  974. .dst_cpu = task_cpu(p),
  975. };
  976. if (arg.src_cpu == arg.dst_cpu)
  977. goto out;
  978. /*
  979. * These three tests are all lockless; this is OK since all of them
  980. * will be re-checked with proper locks held further down the line.
  981. */
  982. if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
  983. goto out;
  984. if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
  985. goto out;
  986. if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
  987. goto out;
  988. trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
  989. ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
  990. out:
  991. return ret;
  992. }
  993. struct migration_arg {
  994. struct task_struct *task;
  995. int dest_cpu;
  996. };
  997. static int migration_cpu_stop(void *data);
  998. /*
  999. * wait_task_inactive - wait for a thread to unschedule.
  1000. *
  1001. * If @match_state is nonzero, it's the @p->state value just checked and
  1002. * not expected to change. If it changes, i.e. @p might have woken up,
  1003. * then return zero. When we succeed in waiting for @p to be off its CPU,
  1004. * we return a positive number (its total switch count). If a second call
  1005. * a short while later returns the same number, the caller can be sure that
  1006. * @p has remained unscheduled the whole time.
  1007. *
  1008. * The caller must ensure that the task *will* unschedule sometime soon,
  1009. * else this function might spin for a *long* time. This function can't
  1010. * be called with interrupts off, or it may introduce deadlock with
  1011. * smp_call_function() if an IPI is sent by the same process we are
  1012. * waiting to become inactive.
  1013. */
  1014. unsigned long wait_task_inactive(struct task_struct *p, long match_state)
  1015. {
  1016. unsigned long flags;
  1017. int running, on_rq;
  1018. unsigned long ncsw;
  1019. struct rq *rq;
  1020. for (;;) {
  1021. /*
  1022. * We do the initial early heuristics without holding
  1023. * any task-queue locks at all. We'll only try to get
  1024. * the runqueue lock when things look like they will
  1025. * work out!
  1026. */
  1027. rq = task_rq(p);
  1028. /*
  1029. * If the task is actively running on another CPU
  1030. * still, just relax and busy-wait without holding
  1031. * any locks.
  1032. *
  1033. * NOTE! Since we don't hold any locks, it's not
  1034. * even sure that "rq" stays as the right runqueue!
  1035. * But we don't care, since "task_running()" will
  1036. * return false if the runqueue has changed and p
  1037. * is actually now running somewhere else!
  1038. */
  1039. while (task_running(rq, p)) {
  1040. if (match_state && unlikely(p->state != match_state))
  1041. return 0;
  1042. cpu_relax();
  1043. }
  1044. /*
  1045. * Ok, time to look more closely! We need the rq
  1046. * lock now, to be *sure*. If we're wrong, we'll
  1047. * just go back and repeat.
  1048. */
  1049. rq = task_rq_lock(p, &flags);
  1050. trace_sched_wait_task(p);
  1051. running = task_running(rq, p);
  1052. on_rq = p->on_rq;
  1053. ncsw = 0;
  1054. if (!match_state || p->state == match_state)
  1055. ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
  1056. task_rq_unlock(rq, p, &flags);
  1057. /*
  1058. * If it changed from the expected state, bail out now.
  1059. */
  1060. if (unlikely(!ncsw))
  1061. break;
  1062. /*
  1063. * Was it really running after all now that we
  1064. * checked with the proper locks actually held?
  1065. *
  1066. * Oops. Go back and try again..
  1067. */
  1068. if (unlikely(running)) {
  1069. cpu_relax();
  1070. continue;
  1071. }
  1072. /*
  1073. * It's not enough that it's not actively running,
  1074. * it must be off the runqueue _entirely_, and not
  1075. * preempted!
  1076. *
  1077. * So if it was still runnable (but just not actively
  1078. * running right now), it's preempted, and we should
  1079. * yield - it could be a while.
  1080. */
  1081. if (unlikely(on_rq)) {
  1082. ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
  1083. set_current_state(TASK_UNINTERRUPTIBLE);
  1084. schedule_hrtimeout(&to, HRTIMER_MODE_REL);
  1085. continue;
  1086. }
  1087. /*
  1088. * Ahh, all good. It wasn't running, and it wasn't
  1089. * runnable, which means that it will never become
  1090. * running in the future either. We're all done!
  1091. */
  1092. break;
  1093. }
  1094. return ncsw;
  1095. }
  1096. /***
  1097. * kick_process - kick a running thread to enter/exit the kernel
  1098. * @p: the to-be-kicked thread
  1099. *
  1100. * Cause a process which is running on another CPU to enter
  1101. * kernel-mode, without any delay. (to get signals handled.)
  1102. *
  1103. * NOTE: this function doesn't have to take the runqueue lock,
  1104. * because all it wants to ensure is that the remote task enters
  1105. * the kernel. If the IPI races and the task has been migrated
  1106. * to another CPU then no harm is done and the purpose has been
  1107. * achieved as well.
  1108. */
  1109. void kick_process(struct task_struct *p)
  1110. {
  1111. int cpu;
  1112. preempt_disable();
  1113. cpu = task_cpu(p);
  1114. if ((cpu != smp_processor_id()) && task_curr(p))
  1115. smp_send_reschedule(cpu);
  1116. preempt_enable();
  1117. }
  1118. EXPORT_SYMBOL_GPL(kick_process);
  1119. #endif /* CONFIG_SMP */
  1120. #ifdef CONFIG_SMP
  1121. /*
  1122. * ->cpus_allowed is protected by both rq->lock and p->pi_lock
  1123. */
  1124. static int select_fallback_rq(int cpu, struct task_struct *p)
  1125. {
  1126. int nid = cpu_to_node(cpu);
  1127. const struct cpumask *nodemask = NULL;
  1128. enum { cpuset, possible, fail } state = cpuset;
  1129. int dest_cpu;
  1130. /*
  1131. * If the node that the cpu is on has been offlined, cpu_to_node()
  1132. * will return -1. There is no cpu on the node, and we should
  1133. * select the cpu on the other node.
  1134. */
  1135. if (nid != -1) {
  1136. nodemask = cpumask_of_node(nid);
  1137. /* Look for allowed, online CPU in same node. */
  1138. for_each_cpu(dest_cpu, nodemask) {
  1139. if (!cpu_online(dest_cpu))
  1140. continue;
  1141. if (!cpu_active(dest_cpu))
  1142. continue;
  1143. if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  1144. return dest_cpu;
  1145. }
  1146. }
  1147. for (;;) {
  1148. /* Any allowed, online CPU? */
  1149. for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
  1150. if (!cpu_online(dest_cpu))
  1151. continue;
  1152. if (!cpu_active(dest_cpu))
  1153. continue;
  1154. goto out;
  1155. }
  1156. switch (state) {
  1157. case cpuset:
  1158. /* No more Mr. Nice Guy. */
  1159. cpuset_cpus_allowed_fallback(p);
  1160. state = possible;
  1161. break;
  1162. case possible:
  1163. do_set_cpus_allowed(p, cpu_possible_mask);
  1164. state = fail;
  1165. break;
  1166. case fail:
  1167. BUG();
  1168. break;
  1169. }
  1170. }
  1171. out:
  1172. if (state != cpuset) {
  1173. /*
  1174. * Don't tell them about moving exiting tasks or
  1175. * kernel threads (both mm NULL), since they never
  1176. * leave kernel.
  1177. */
  1178. if (p->mm && printk_ratelimit()) {
  1179. printk_deferred("process %d (%s) no longer affine to cpu%d\n",
  1180. task_pid_nr(p), p->comm, cpu);
  1181. }
  1182. }
  1183. return dest_cpu;
  1184. }
  1185. /*
  1186. * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
  1187. */
  1188. static inline
  1189. int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
  1190. {
  1191. cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
  1192. /*
  1193. * In order not to call set_task_cpu() on a blocking task we need
  1194. * to rely on ttwu() to place the task on a valid ->cpus_allowed
  1195. * cpu.
  1196. *
  1197. * Since this is common to all placement strategies, this lives here.
  1198. *
  1199. * [ this allows ->select_task() to simply return task_cpu(p) and
  1200. * not worry about this generic constraint ]
  1201. */
  1202. if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
  1203. !cpu_online(cpu)))
  1204. cpu = select_fallback_rq(task_cpu(p), p);
  1205. return cpu;
  1206. }
  1207. static void update_avg(u64 *avg, u64 sample)
  1208. {
  1209. s64 diff = sample - *avg;
  1210. *avg += diff >> 3;
  1211. }
  1212. #endif
  1213. static void
  1214. ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
  1215. {
  1216. #ifdef CONFIG_SCHEDSTATS
  1217. struct rq *rq = this_rq();
  1218. #ifdef CONFIG_SMP
  1219. int this_cpu = smp_processor_id();
  1220. if (cpu == this_cpu) {
  1221. schedstat_inc(rq, ttwu_local);
  1222. schedstat_inc(p, se.statistics.nr_wakeups_local);
  1223. } else {
  1224. struct sched_domain *sd;
  1225. schedstat_inc(p, se.statistics.nr_wakeups_remote);
  1226. rcu_read_lock();
  1227. for_each_domain(this_cpu, sd) {
  1228. if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  1229. schedstat_inc(sd, ttwu_wake_remote);
  1230. break;
  1231. }
  1232. }
  1233. rcu_read_unlock();
  1234. }
  1235. if (wake_flags & WF_MIGRATED)
  1236. schedstat_inc(p, se.statistics.nr_wakeups_migrate);
  1237. #endif /* CONFIG_SMP */
  1238. schedstat_inc(rq, ttwu_count);
  1239. schedstat_inc(p, se.statistics.nr_wakeups);
  1240. if (wake_flags & WF_SYNC)
  1241. schedstat_inc(p, se.statistics.nr_wakeups_sync);
  1242. #endif /* CONFIG_SCHEDSTATS */
  1243. }
  1244. static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
  1245. {
  1246. activate_task(rq, p, en_flags);
  1247. p->on_rq = 1;
  1248. /* if a worker is waking up, notify workqueue */
  1249. if (p->flags & PF_WQ_WORKER)
  1250. wq_worker_waking_up(p, cpu_of(rq));
  1251. }
  1252. /*
  1253. * Mark the task runnable and perform wakeup-preemption.
  1254. */
  1255. static void
  1256. ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  1257. {
  1258. check_preempt_curr(rq, p, wake_flags);
  1259. trace_sched_wakeup(p, true);
  1260. p->state = TASK_RUNNING;
  1261. #ifdef CONFIG_SMP
  1262. if (p->sched_class->task_woken)
  1263. p->sched_class->task_woken(rq, p);
  1264. if (rq->idle_stamp) {
  1265. u64 delta = rq_clock(rq) - rq->idle_stamp;
  1266. u64 max = 2*rq->max_idle_balance_cost;
  1267. update_avg(&rq->avg_idle, delta);
  1268. if (rq->avg_idle > max)
  1269. rq->avg_idle = max;
  1270. rq->idle_stamp = 0;
  1271. }
  1272. #endif
  1273. }
  1274. static void
  1275. ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
  1276. {
  1277. #ifdef CONFIG_SMP
  1278. if (p->sched_contributes_to_load)
  1279. rq->nr_uninterruptible--;
  1280. #endif
  1281. ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
  1282. ttwu_do_wakeup(rq, p, wake_flags);
  1283. }
  1284. /*
  1285. * Called in case the task @p isn't fully descheduled from its runqueue,
  1286. * in this case we must do a remote wakeup. Its a 'light' wakeup though,
  1287. * since all we need to do is flip p->state to TASK_RUNNING, since
  1288. * the task is still ->on_rq.
  1289. */
  1290. static int ttwu_remote(struct task_struct *p, int wake_flags)
  1291. {
  1292. struct rq *rq;
  1293. int ret = 0;
  1294. rq = __task_rq_lock(p);
  1295. if (p->on_rq) {
  1296. /* check_preempt_curr() may use rq clock */
  1297. update_rq_clock(rq);
  1298. ttwu_do_wakeup(rq, p, wake_flags);
  1299. ret = 1;
  1300. }
  1301. __task_rq_unlock(rq);
  1302. return ret;
  1303. }
  1304. #ifdef CONFIG_SMP
  1305. void sched_ttwu_pending(void)
  1306. {
  1307. struct rq *rq = this_rq();
  1308. struct llist_node *llist = llist_del_all(&rq->wake_list);
  1309. struct task_struct *p;
  1310. unsigned long flags;
  1311. if (!llist)
  1312. return;
  1313. raw_spin_lock_irqsave(&rq->lock, flags);
  1314. while (llist) {
  1315. p = llist_entry(llist, struct task_struct, wake_entry);
  1316. llist = llist_next(llist);
  1317. ttwu_do_activate(rq, p, 0);
  1318. }
  1319. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1320. }
  1321. void scheduler_ipi(void)
  1322. {
  1323. /*
  1324. * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
  1325. * TIF_NEED_RESCHED remotely (for the first time) will also send
  1326. * this IPI.
  1327. */
  1328. preempt_fold_need_resched();
  1329. if (llist_empty(&this_rq()->wake_list)
  1330. && !tick_nohz_full_cpu(smp_processor_id())
  1331. && !got_nohz_idle_kick())
  1332. return;
  1333. /*
  1334. * Not all reschedule IPI handlers call irq_enter/irq_exit, since
  1335. * traditionally all their work was done from the interrupt return
  1336. * path. Now that we actually do some work, we need to make sure
  1337. * we do call them.
  1338. *
  1339. * Some archs already do call them, luckily irq_enter/exit nest
  1340. * properly.
  1341. *
  1342. * Arguably we should visit all archs and update all handlers,
  1343. * however a fair share of IPIs are still resched only so this would
  1344. * somewhat pessimize the simple resched case.
  1345. */
  1346. irq_enter();
  1347. tick_nohz_full_check();
  1348. sched_ttwu_pending();
  1349. /*
  1350. * Check if someone kicked us for doing the nohz idle load balance.
  1351. */
  1352. if (unlikely(got_nohz_idle_kick())) {
  1353. this_rq()->idle_balance = 1;
  1354. raise_softirq_irqoff(SCHED_SOFTIRQ);
  1355. }
  1356. irq_exit();
  1357. }
  1358. static void ttwu_queue_remote(struct task_struct *p, int cpu)
  1359. {
  1360. struct rq *rq = cpu_rq(cpu);
  1361. if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
  1362. if (!set_nr_if_polling(rq->idle))
  1363. smp_send_reschedule(cpu);
  1364. else
  1365. trace_sched_wake_idle_without_ipi(cpu);
  1366. }
  1367. }
  1368. bool cpus_share_cache(int this_cpu, int that_cpu)
  1369. {
  1370. return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
  1371. }
  1372. #endif /* CONFIG_SMP */
  1373. static void ttwu_queue(struct task_struct *p, int cpu)
  1374. {
  1375. struct rq *rq = cpu_rq(cpu);
  1376. #if defined(CONFIG_SMP)
  1377. if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
  1378. sched_clock_cpu(cpu); /* sync clocks x-cpu */
  1379. ttwu_queue_remote(p, cpu);
  1380. return;
  1381. }
  1382. #endif
  1383. raw_spin_lock(&rq->lock);
  1384. ttwu_do_activate(rq, p, 0);
  1385. raw_spin_unlock(&rq->lock);
  1386. }
  1387. /**
  1388. * try_to_wake_up - wake up a thread
  1389. * @p: the thread to be awakened
  1390. * @state: the mask of task states that can be woken
  1391. * @wake_flags: wake modifier flags (WF_*)
  1392. *
  1393. * Put it on the run-queue if it's not already there. The "current"
  1394. * thread is always on the run-queue (except when the actual
  1395. * re-schedule is in progress), and as such you're allowed to do
  1396. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1397. * runnable without the overhead of this.
  1398. *
  1399. * Return: %true if @p was woken up, %false if it was already running.
  1400. * or @state didn't match @p's state.
  1401. */
  1402. static int
  1403. try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
  1404. {
  1405. unsigned long flags;
  1406. int cpu, success = 0;
  1407. /*
  1408. * If we are going to wake up a thread waiting for CONDITION we
  1409. * need to ensure that CONDITION=1 done by the caller can not be
  1410. * reordered with p->state check below. This pairs with mb() in
  1411. * set_current_state() the waiting thread does.
  1412. */
  1413. smp_mb__before_spinlock();
  1414. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1415. if (!(p->state & state))
  1416. goto out;
  1417. success = 1; /* we're going to change ->state */
  1418. cpu = task_cpu(p);
  1419. if (p->on_rq && ttwu_remote(p, wake_flags))
  1420. goto stat;
  1421. #ifdef CONFIG_SMP
  1422. /*
  1423. * If the owning (remote) cpu is still in the middle of schedule() with
  1424. * this task as prev, wait until its done referencing the task.
  1425. */
  1426. while (p->on_cpu)
  1427. cpu_relax();
  1428. /*
  1429. * Pairs with the smp_wmb() in finish_lock_switch().
  1430. */
  1431. smp_rmb();
  1432. p->sched_contributes_to_load = !!task_contributes_to_load(p);
  1433. p->state = TASK_WAKING;
  1434. if (p->sched_class->task_waking)
  1435. p->sched_class->task_waking(p);
  1436. cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
  1437. if (task_cpu(p) != cpu) {
  1438. wake_flags |= WF_MIGRATED;
  1439. set_task_cpu(p, cpu);
  1440. }
  1441. #endif /* CONFIG_SMP */
  1442. ttwu_queue(p, cpu);
  1443. stat:
  1444. ttwu_stat(p, cpu, wake_flags);
  1445. out:
  1446. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1447. return success;
  1448. }
  1449. /**
  1450. * try_to_wake_up_local - try to wake up a local task with rq lock held
  1451. * @p: the thread to be awakened
  1452. *
  1453. * Put @p on the run-queue if it's not already there. The caller must
  1454. * ensure that this_rq() is locked, @p is bound to this_rq() and not
  1455. * the current task.
  1456. */
  1457. static void try_to_wake_up_local(struct task_struct *p)
  1458. {
  1459. struct rq *rq = task_rq(p);
  1460. if (WARN_ON_ONCE(rq != this_rq()) ||
  1461. WARN_ON_ONCE(p == current))
  1462. return;
  1463. lockdep_assert_held(&rq->lock);
  1464. if (!raw_spin_trylock(&p->pi_lock)) {
  1465. raw_spin_unlock(&rq->lock);
  1466. raw_spin_lock(&p->pi_lock);
  1467. raw_spin_lock(&rq->lock);
  1468. }
  1469. if (!(p->state & TASK_NORMAL))
  1470. goto out;
  1471. if (!p->on_rq)
  1472. ttwu_activate(rq, p, ENQUEUE_WAKEUP);
  1473. ttwu_do_wakeup(rq, p, 0);
  1474. ttwu_stat(p, smp_processor_id(), 0);
  1475. out:
  1476. raw_spin_unlock(&p->pi_lock);
  1477. }
  1478. /**
  1479. * wake_up_process - Wake up a specific process
  1480. * @p: The process to be woken up.
  1481. *
  1482. * Attempt to wake up the nominated process and move it to the set of runnable
  1483. * processes.
  1484. *
  1485. * Return: 1 if the process was woken up, 0 if it was already running.
  1486. *
  1487. * It may be assumed that this function implies a write memory barrier before
  1488. * changing the task state if and only if any tasks are woken up.
  1489. */
  1490. int wake_up_process(struct task_struct *p)
  1491. {
  1492. WARN_ON(task_is_stopped_or_traced(p));
  1493. return try_to_wake_up(p, TASK_NORMAL, 0);
  1494. }
  1495. EXPORT_SYMBOL(wake_up_process);
  1496. int wake_up_state(struct task_struct *p, unsigned int state)
  1497. {
  1498. return try_to_wake_up(p, state, 0);
  1499. }
  1500. /*
  1501. * Perform scheduler related setup for a newly forked process p.
  1502. * p is forked by current.
  1503. *
  1504. * __sched_fork() is basic setup used by init_idle() too:
  1505. */
  1506. static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
  1507. {
  1508. p->on_rq = 0;
  1509. p->se.on_rq = 0;
  1510. p->se.exec_start = 0;
  1511. p->se.sum_exec_runtime = 0;
  1512. p->se.prev_sum_exec_runtime = 0;
  1513. p->se.nr_migrations = 0;
  1514. p->se.vruntime = 0;
  1515. INIT_LIST_HEAD(&p->se.group_node);
  1516. #ifdef CONFIG_SCHEDSTATS
  1517. memset(&p->se.statistics, 0, sizeof(p->se.statistics));
  1518. #endif
  1519. RB_CLEAR_NODE(&p->dl.rb_node);
  1520. hrtimer_init(&p->dl.dl_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1521. p->dl.dl_runtime = p->dl.runtime = 0;
  1522. p->dl.dl_deadline = p->dl.deadline = 0;
  1523. p->dl.dl_period = 0;
  1524. p->dl.flags = 0;
  1525. INIT_LIST_HEAD(&p->rt.run_list);
  1526. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1527. INIT_HLIST_HEAD(&p->preempt_notifiers);
  1528. #endif
  1529. #ifdef CONFIG_NUMA_BALANCING
  1530. if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
  1531. p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
  1532. p->mm->numa_scan_seq = 0;
  1533. }
  1534. if (clone_flags & CLONE_VM)
  1535. p->numa_preferred_nid = current->numa_preferred_nid;
  1536. else
  1537. p->numa_preferred_nid = -1;
  1538. p->node_stamp = 0ULL;
  1539. p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
  1540. p->numa_scan_period = sysctl_numa_balancing_scan_delay;
  1541. p->numa_work.next = &p->numa_work;
  1542. p->numa_faults_memory = NULL;
  1543. p->numa_faults_buffer_memory = NULL;
  1544. p->last_task_numa_placement = 0;
  1545. p->last_sum_exec_runtime = 0;
  1546. INIT_LIST_HEAD(&p->numa_entry);
  1547. p->numa_group = NULL;
  1548. #endif /* CONFIG_NUMA_BALANCING */
  1549. }
  1550. #ifdef CONFIG_NUMA_BALANCING
  1551. #ifdef CONFIG_SCHED_DEBUG
  1552. void set_numabalancing_state(bool enabled)
  1553. {
  1554. if (enabled)
  1555. sched_feat_set("NUMA");
  1556. else
  1557. sched_feat_set("NO_NUMA");
  1558. }
  1559. #else
  1560. __read_mostly bool numabalancing_enabled;
  1561. void set_numabalancing_state(bool enabled)
  1562. {
  1563. numabalancing_enabled = enabled;
  1564. }
  1565. #endif /* CONFIG_SCHED_DEBUG */
  1566. #ifdef CONFIG_PROC_SYSCTL
  1567. int sysctl_numa_balancing(struct ctl_table *table, int write,
  1568. void __user *buffer, size_t *lenp, loff_t *ppos)
  1569. {
  1570. struct ctl_table t;
  1571. int err;
  1572. int state = numabalancing_enabled;
  1573. if (write && !capable(CAP_SYS_ADMIN))
  1574. return -EPERM;
  1575. t = *table;
  1576. t.data = &state;
  1577. err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
  1578. if (err < 0)
  1579. return err;
  1580. if (write)
  1581. set_numabalancing_state(state);
  1582. return err;
  1583. }
  1584. #endif
  1585. #endif
  1586. /*
  1587. * fork()/clone()-time setup:
  1588. */
  1589. int sched_fork(unsigned long clone_flags, struct task_struct *p)
  1590. {
  1591. unsigned long flags;
  1592. int cpu = get_cpu();
  1593. __sched_fork(clone_flags, p);
  1594. /*
  1595. * We mark the process as running here. This guarantees that
  1596. * nobody will actually run it, and a signal or other external
  1597. * event cannot wake it up and insert it on the runqueue either.
  1598. */
  1599. p->state = TASK_RUNNING;
  1600. /*
  1601. * Make sure we do not leak PI boosting priority to the child.
  1602. */
  1603. p->prio = current->normal_prio;
  1604. /*
  1605. * Revert to default priority/policy on fork if requested.
  1606. */
  1607. if (unlikely(p->sched_reset_on_fork)) {
  1608. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  1609. p->policy = SCHED_NORMAL;
  1610. p->static_prio = NICE_TO_PRIO(0);
  1611. p->rt_priority = 0;
  1612. } else if (PRIO_TO_NICE(p->static_prio) < 0)
  1613. p->static_prio = NICE_TO_PRIO(0);
  1614. p->prio = p->normal_prio = __normal_prio(p);
  1615. set_load_weight(p);
  1616. /*
  1617. * We don't need the reset flag anymore after the fork. It has
  1618. * fulfilled its duty:
  1619. */
  1620. p->sched_reset_on_fork = 0;
  1621. }
  1622. if (dl_prio(p->prio)) {
  1623. put_cpu();
  1624. return -EAGAIN;
  1625. } else if (rt_prio(p->prio)) {
  1626. p->sched_class = &rt_sched_class;
  1627. } else {
  1628. p->sched_class = &fair_sched_class;
  1629. }
  1630. if (p->sched_class->task_fork)
  1631. p->sched_class->task_fork(p);
  1632. /*
  1633. * The child is not yet in the pid-hash so no cgroup attach races,
  1634. * and the cgroup is pinned to this child due to cgroup_fork()
  1635. * is ran before sched_fork().
  1636. *
  1637. * Silence PROVE_RCU.
  1638. */
  1639. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1640. set_task_cpu(p, cpu);
  1641. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  1642. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  1643. if (likely(sched_info_on()))
  1644. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1645. #endif
  1646. #if defined(CONFIG_SMP)
  1647. p->on_cpu = 0;
  1648. #endif
  1649. init_task_preempt_count(p);
  1650. #ifdef CONFIG_SMP
  1651. plist_node_init(&p->pushable_tasks, MAX_PRIO);
  1652. RB_CLEAR_NODE(&p->pushable_dl_tasks);
  1653. #endif
  1654. put_cpu();
  1655. return 0;
  1656. }
  1657. unsigned long to_ratio(u64 period, u64 runtime)
  1658. {
  1659. if (runtime == RUNTIME_INF)
  1660. return 1ULL << 20;
  1661. /*
  1662. * Doing this here saves a lot of checks in all
  1663. * the calling paths, and returning zero seems
  1664. * safe for them anyway.
  1665. */
  1666. if (period == 0)
  1667. return 0;
  1668. return div64_u64(runtime << 20, period);
  1669. }
  1670. #ifdef CONFIG_SMP
  1671. inline struct dl_bw *dl_bw_of(int i)
  1672. {
  1673. return &cpu_rq(i)->rd->dl_bw;
  1674. }
  1675. static inline int dl_bw_cpus(int i)
  1676. {
  1677. struct root_domain *rd = cpu_rq(i)->rd;
  1678. int cpus = 0;
  1679. for_each_cpu_and(i, rd->span, cpu_active_mask)
  1680. cpus++;
  1681. return cpus;
  1682. }
  1683. #else
  1684. inline struct dl_bw *dl_bw_of(int i)
  1685. {
  1686. return &cpu_rq(i)->dl.dl_bw;
  1687. }
  1688. static inline int dl_bw_cpus(int i)
  1689. {
  1690. return 1;
  1691. }
  1692. #endif
  1693. static inline
  1694. void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
  1695. {
  1696. dl_b->total_bw -= tsk_bw;
  1697. }
  1698. static inline
  1699. void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
  1700. {
  1701. dl_b->total_bw += tsk_bw;
  1702. }
  1703. static inline
  1704. bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
  1705. {
  1706. return dl_b->bw != -1 &&
  1707. dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
  1708. }
  1709. /*
  1710. * We must be sure that accepting a new task (or allowing changing the
  1711. * parameters of an existing one) is consistent with the bandwidth
  1712. * constraints. If yes, this function also accordingly updates the currently
  1713. * allocated bandwidth to reflect the new situation.
  1714. *
  1715. * This function is called while holding p's rq->lock.
  1716. */
  1717. static int dl_overflow(struct task_struct *p, int policy,
  1718. const struct sched_attr *attr)
  1719. {
  1720. struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
  1721. u64 period = attr->sched_period ?: attr->sched_deadline;
  1722. u64 runtime = attr->sched_runtime;
  1723. u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
  1724. int cpus, err = -1;
  1725. if (new_bw == p->dl.dl_bw)
  1726. return 0;
  1727. /*
  1728. * Either if a task, enters, leave, or stays -deadline but changes
  1729. * its parameters, we may need to update accordingly the total
  1730. * allocated bandwidth of the container.
  1731. */
  1732. raw_spin_lock(&dl_b->lock);
  1733. cpus = dl_bw_cpus(task_cpu(p));
  1734. if (dl_policy(policy) && !task_has_dl_policy(p) &&
  1735. !__dl_overflow(dl_b, cpus, 0, new_bw)) {
  1736. __dl_add(dl_b, new_bw);
  1737. err = 0;
  1738. } else if (dl_policy(policy) && task_has_dl_policy(p) &&
  1739. !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
  1740. __dl_clear(dl_b, p->dl.dl_bw);
  1741. __dl_add(dl_b, new_bw);
  1742. err = 0;
  1743. } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
  1744. __dl_clear(dl_b, p->dl.dl_bw);
  1745. err = 0;
  1746. }
  1747. raw_spin_unlock(&dl_b->lock);
  1748. return err;
  1749. }
  1750. extern void init_dl_bw(struct dl_bw *dl_b);
  1751. /*
  1752. * wake_up_new_task - wake up a newly created task for the first time.
  1753. *
  1754. * This function will do some initial scheduler statistics housekeeping
  1755. * that must be done for every newly created context, then puts the task
  1756. * on the runqueue and wakes it.
  1757. */
  1758. void wake_up_new_task(struct task_struct *p)
  1759. {
  1760. unsigned long flags;
  1761. struct rq *rq;
  1762. raw_spin_lock_irqsave(&p->pi_lock, flags);
  1763. #ifdef CONFIG_SMP
  1764. /*
  1765. * Fork balancing, do it here and not earlier because:
  1766. * - cpus_allowed can change in the fork path
  1767. * - any previously selected cpu might disappear through hotplug
  1768. */
  1769. set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
  1770. #endif
  1771. /* Initialize new task's runnable average */
  1772. init_task_runnable_average(p);
  1773. rq = __task_rq_lock(p);
  1774. activate_task(rq, p, 0);
  1775. p->on_rq = 1;
  1776. trace_sched_wakeup_new(p, true);
  1777. check_preempt_curr(rq, p, WF_FORK);
  1778. #ifdef CONFIG_SMP
  1779. if (p->sched_class->task_woken)
  1780. p->sched_class->task_woken(rq, p);
  1781. #endif
  1782. task_rq_unlock(rq, p, &flags);
  1783. }
  1784. #ifdef CONFIG_PREEMPT_NOTIFIERS
  1785. /**
  1786. * preempt_notifier_register - tell me when current is being preempted & rescheduled
  1787. * @notifier: notifier struct to register
  1788. */
  1789. void preempt_notifier_register(struct preempt_notifier *notifier)
  1790. {
  1791. hlist_add_head(&notifier->link, &current->preempt_notifiers);
  1792. }
  1793. EXPORT_SYMBOL_GPL(preempt_notifier_register);
  1794. /**
  1795. * preempt_notifier_unregister - no longer interested in preemption notifications
  1796. * @notifier: notifier struct to unregister
  1797. *
  1798. * This is safe to call from within a preemption notifier.
  1799. */
  1800. void preempt_notifier_unregister(struct preempt_notifier *notifier)
  1801. {
  1802. hlist_del(&notifier->link);
  1803. }
  1804. EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
  1805. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1806. {
  1807. struct preempt_notifier *notifier;
  1808. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1809. notifier->ops->sched_in(notifier, raw_smp_processor_id());
  1810. }
  1811. static void
  1812. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1813. struct task_struct *next)
  1814. {
  1815. struct preempt_notifier *notifier;
  1816. hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
  1817. notifier->ops->sched_out(notifier, next);
  1818. }
  1819. #else /* !CONFIG_PREEMPT_NOTIFIERS */
  1820. static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
  1821. {
  1822. }
  1823. static void
  1824. fire_sched_out_preempt_notifiers(struct task_struct *curr,
  1825. struct task_struct *next)
  1826. {
  1827. }
  1828. #endif /* CONFIG_PREEMPT_NOTIFIERS */
  1829. /**
  1830. * prepare_task_switch - prepare to switch tasks
  1831. * @rq: the runqueue preparing to switch
  1832. * @prev: the current task that is being switched out
  1833. * @next: the task we are going to switch to.
  1834. *
  1835. * This is called with the rq lock held and interrupts off. It must
  1836. * be paired with a subsequent finish_task_switch after the context
  1837. * switch.
  1838. *
  1839. * prepare_task_switch sets up locking and calls architecture specific
  1840. * hooks.
  1841. */
  1842. static inline void
  1843. prepare_task_switch(struct rq *rq, struct task_struct *prev,
  1844. struct task_struct *next)
  1845. {
  1846. trace_sched_switch(prev, next);
  1847. sched_info_switch(rq, prev, next);
  1848. perf_event_task_sched_out(prev, next);
  1849. fire_sched_out_preempt_notifiers(prev, next);
  1850. prepare_lock_switch(rq, next);
  1851. prepare_arch_switch(next);
  1852. }
  1853. /**
  1854. * finish_task_switch - clean up after a task-switch
  1855. * @rq: runqueue associated with task-switch
  1856. * @prev: the thread we just switched away from.
  1857. *
  1858. * finish_task_switch must be called after the context switch, paired
  1859. * with a prepare_task_switch call before the context switch.
  1860. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1861. * and do any other architecture-specific cleanup actions.
  1862. *
  1863. * Note that we may have delayed dropping an mm in context_switch(). If
  1864. * so, we finish that here outside of the runqueue lock. (Doing it
  1865. * with the lock held can cause deadlocks; see schedule() for
  1866. * details.)
  1867. */
  1868. static void finish_task_switch(struct rq *rq, struct task_struct *prev)
  1869. __releases(rq->lock)
  1870. {
  1871. struct mm_struct *mm = rq->prev_mm;
  1872. long prev_state;
  1873. rq->prev_mm = NULL;
  1874. /*
  1875. * A task struct has one reference for the use as "current".
  1876. * If a task dies, then it sets TASK_DEAD in tsk->state and calls
  1877. * schedule one last time. The schedule call will never return, and
  1878. * the scheduled task must drop that reference.
  1879. * The test for TASK_DEAD must occur while the runqueue locks are
  1880. * still held, otherwise prev could be scheduled on another cpu, die
  1881. * there before we look at prev->state, and then the reference would
  1882. * be dropped twice.
  1883. * Manfred Spraul <manfred@colorfullife.com>
  1884. */
  1885. prev_state = prev->state;
  1886. vtime_task_switch(prev);
  1887. finish_arch_switch(prev);
  1888. perf_event_task_sched_in(prev, current);
  1889. finish_lock_switch(rq, prev);
  1890. finish_arch_post_lock_switch();
  1891. fire_sched_in_preempt_notifiers(current);
  1892. if (mm)
  1893. mmdrop(mm);
  1894. if (unlikely(prev_state == TASK_DEAD)) {
  1895. if (prev->sched_class->task_dead)
  1896. prev->sched_class->task_dead(prev);
  1897. /*
  1898. * Remove function-return probe instances associated with this
  1899. * task and put them back on the free list.
  1900. */
  1901. kprobe_flush_task(prev);
  1902. put_task_struct(prev);
  1903. }
  1904. tick_nohz_task_switch(current);
  1905. }
  1906. #ifdef CONFIG_SMP
  1907. /* rq->lock is NOT held, but preemption is disabled */
  1908. static inline void post_schedule(struct rq *rq)
  1909. {
  1910. if (rq->post_schedule) {
  1911. unsigned long flags;
  1912. raw_spin_lock_irqsave(&rq->lock, flags);
  1913. if (rq->curr->sched_class->post_schedule)
  1914. rq->curr->sched_class->post_schedule(rq);
  1915. raw_spin_unlock_irqrestore(&rq->lock, flags);
  1916. rq->post_schedule = 0;
  1917. }
  1918. }
  1919. #else
  1920. static inline void post_schedule(struct rq *rq)
  1921. {
  1922. }
  1923. #endif
  1924. /**
  1925. * schedule_tail - first thing a freshly forked thread must call.
  1926. * @prev: the thread we just switched away from.
  1927. */
  1928. asmlinkage __visible void schedule_tail(struct task_struct *prev)
  1929. __releases(rq->lock)
  1930. {
  1931. struct rq *rq = this_rq();
  1932. finish_task_switch(rq, prev);
  1933. /*
  1934. * FIXME: do we need to worry about rq being invalidated by the
  1935. * task_switch?
  1936. */
  1937. post_schedule(rq);
  1938. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1939. /* In this case, finish_task_switch does not reenable preemption */
  1940. preempt_enable();
  1941. #endif
  1942. if (current->set_child_tid)
  1943. put_user(task_pid_vnr(current), current->set_child_tid);
  1944. }
  1945. /*
  1946. * context_switch - switch to the new MM and the new
  1947. * thread's register state.
  1948. */
  1949. static inline void
  1950. context_switch(struct rq *rq, struct task_struct *prev,
  1951. struct task_struct *next)
  1952. {
  1953. struct mm_struct *mm, *oldmm;
  1954. prepare_task_switch(rq, prev, next);
  1955. mm = next->mm;
  1956. oldmm = prev->active_mm;
  1957. /*
  1958. * For paravirt, this is coupled with an exit in switch_to to
  1959. * combine the page table reload and the switch backend into
  1960. * one hypercall.
  1961. */
  1962. arch_start_context_switch(prev);
  1963. if (!mm) {
  1964. next->active_mm = oldmm;
  1965. atomic_inc(&oldmm->mm_count);
  1966. enter_lazy_tlb(oldmm, next);
  1967. } else
  1968. switch_mm(oldmm, mm, next);
  1969. if (!prev->mm) {
  1970. prev->active_mm = NULL;
  1971. rq->prev_mm = oldmm;
  1972. }
  1973. /*
  1974. * Since the runqueue lock will be released by the next
  1975. * task (which is an invalid locking op but in the case
  1976. * of the scheduler it's an obvious special-case), so we
  1977. * do an early lockdep release here:
  1978. */
  1979. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  1980. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  1981. #endif
  1982. context_tracking_task_switch(prev, next);
  1983. /* Here we just switch the register state and the stack. */
  1984. switch_to(prev, next, prev);
  1985. barrier();
  1986. /*
  1987. * this_rq must be evaluated again because prev may have moved
  1988. * CPUs since it called schedule(), thus the 'rq' on its stack
  1989. * frame will be invalid.
  1990. */
  1991. finish_task_switch(this_rq(), prev);
  1992. }
  1993. /*
  1994. * nr_running and nr_context_switches:
  1995. *
  1996. * externally visible scheduler statistics: current number of runnable
  1997. * threads, total number of context switches performed since bootup.
  1998. */
  1999. unsigned long nr_running(void)
  2000. {
  2001. unsigned long i, sum = 0;
  2002. for_each_online_cpu(i)
  2003. sum += cpu_rq(i)->nr_running;
  2004. return sum;
  2005. }
  2006. unsigned long long nr_context_switches(void)
  2007. {
  2008. int i;
  2009. unsigned long long sum = 0;
  2010. for_each_possible_cpu(i)
  2011. sum += cpu_rq(i)->nr_switches;
  2012. return sum;
  2013. }
  2014. unsigned long nr_iowait(void)
  2015. {
  2016. unsigned long i, sum = 0;
  2017. for_each_possible_cpu(i)
  2018. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  2019. return sum;
  2020. }
  2021. unsigned long nr_iowait_cpu(int cpu)
  2022. {
  2023. struct rq *this = cpu_rq(cpu);
  2024. return atomic_read(&this->nr_iowait);
  2025. }
  2026. #ifdef CONFIG_SMP
  2027. /*
  2028. * sched_exec - execve() is a valuable balancing opportunity, because at
  2029. * this point the task has the smallest effective memory and cache footprint.
  2030. */
  2031. void sched_exec(void)
  2032. {
  2033. struct task_struct *p = current;
  2034. unsigned long flags;
  2035. int dest_cpu;
  2036. raw_spin_lock_irqsave(&p->pi_lock, flags);
  2037. dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
  2038. if (dest_cpu == smp_processor_id())
  2039. goto unlock;
  2040. if (likely(cpu_active(dest_cpu))) {
  2041. struct migration_arg arg = { p, dest_cpu };
  2042. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2043. stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
  2044. return;
  2045. }
  2046. unlock:
  2047. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  2048. }
  2049. #endif
  2050. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2051. DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
  2052. EXPORT_PER_CPU_SYMBOL(kstat);
  2053. EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
  2054. /*
  2055. * Return any ns on the sched_clock that have not yet been accounted in
  2056. * @p in case that task is currently running.
  2057. *
  2058. * Called with task_rq_lock() held on @rq.
  2059. */
  2060. static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
  2061. {
  2062. u64 ns = 0;
  2063. if (task_current(rq, p)) {
  2064. update_rq_clock(rq);
  2065. ns = rq_clock_task(rq) - p->se.exec_start;
  2066. if ((s64)ns < 0)
  2067. ns = 0;
  2068. }
  2069. return ns;
  2070. }
  2071. unsigned long long task_delta_exec(struct task_struct *p)
  2072. {
  2073. unsigned long flags;
  2074. struct rq *rq;
  2075. u64 ns = 0;
  2076. rq = task_rq_lock(p, &flags);
  2077. ns = do_task_delta_exec(p, rq);
  2078. task_rq_unlock(rq, p, &flags);
  2079. return ns;
  2080. }
  2081. /*
  2082. * Return accounted runtime for the task.
  2083. * In case the task is currently running, return the runtime plus current's
  2084. * pending runtime that have not been accounted yet.
  2085. */
  2086. unsigned long long task_sched_runtime(struct task_struct *p)
  2087. {
  2088. unsigned long flags;
  2089. struct rq *rq;
  2090. u64 ns = 0;
  2091. #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
  2092. /*
  2093. * 64-bit doesn't need locks to atomically read a 64bit value.
  2094. * So we have a optimization chance when the task's delta_exec is 0.
  2095. * Reading ->on_cpu is racy, but this is ok.
  2096. *
  2097. * If we race with it leaving cpu, we'll take a lock. So we're correct.
  2098. * If we race with it entering cpu, unaccounted time is 0. This is
  2099. * indistinguishable from the read occurring a few cycles earlier.
  2100. */
  2101. if (!p->on_cpu)
  2102. return p->se.sum_exec_runtime;
  2103. #endif
  2104. rq = task_rq_lock(p, &flags);
  2105. ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
  2106. task_rq_unlock(rq, p, &flags);
  2107. return ns;
  2108. }
  2109. /*
  2110. * This function gets called by the timer code, with HZ frequency.
  2111. * We call it with interrupts disabled.
  2112. */
  2113. void scheduler_tick(void)
  2114. {
  2115. int cpu = smp_processor_id();
  2116. struct rq *rq = cpu_rq(cpu);
  2117. struct task_struct *curr = rq->curr;
  2118. sched_clock_tick();
  2119. raw_spin_lock(&rq->lock);
  2120. update_rq_clock(rq);
  2121. curr->sched_class->task_tick(rq, curr, 0);
  2122. update_cpu_load_active(rq);
  2123. raw_spin_unlock(&rq->lock);
  2124. perf_event_task_tick();
  2125. #ifdef CONFIG_SMP
  2126. rq->idle_balance = idle_cpu(cpu);
  2127. trigger_load_balance(rq);
  2128. #endif
  2129. rq_last_tick_reset(rq);
  2130. }
  2131. #ifdef CONFIG_NO_HZ_FULL
  2132. /**
  2133. * scheduler_tick_max_deferment
  2134. *
  2135. * Keep at least one tick per second when a single
  2136. * active task is running because the scheduler doesn't
  2137. * yet completely support full dynticks environment.
  2138. *
  2139. * This makes sure that uptime, CFS vruntime, load
  2140. * balancing, etc... continue to move forward, even
  2141. * with a very low granularity.
  2142. *
  2143. * Return: Maximum deferment in nanoseconds.
  2144. */
  2145. u64 scheduler_tick_max_deferment(void)
  2146. {
  2147. struct rq *rq = this_rq();
  2148. unsigned long next, now = ACCESS_ONCE(jiffies);
  2149. next = rq->last_sched_tick + HZ;
  2150. if (time_before_eq(next, now))
  2151. return 0;
  2152. return jiffies_to_nsecs(next - now);
  2153. }
  2154. #endif
  2155. notrace unsigned long get_parent_ip(unsigned long addr)
  2156. {
  2157. if (in_lock_functions(addr)) {
  2158. addr = CALLER_ADDR2;
  2159. if (in_lock_functions(addr))
  2160. addr = CALLER_ADDR3;
  2161. }
  2162. return addr;
  2163. }
  2164. #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
  2165. defined(CONFIG_PREEMPT_TRACER))
  2166. void preempt_count_add(int val)
  2167. {
  2168. #ifdef CONFIG_DEBUG_PREEMPT
  2169. /*
  2170. * Underflow?
  2171. */
  2172. if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
  2173. return;
  2174. #endif
  2175. __preempt_count_add(val);
  2176. #ifdef CONFIG_DEBUG_PREEMPT
  2177. /*
  2178. * Spinlock count overflowing soon?
  2179. */
  2180. DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
  2181. PREEMPT_MASK - 10);
  2182. #endif
  2183. if (preempt_count() == val) {
  2184. unsigned long ip = get_parent_ip(CALLER_ADDR1);
  2185. #ifdef CONFIG_DEBUG_PREEMPT
  2186. current->preempt_disable_ip = ip;
  2187. #endif
  2188. trace_preempt_off(CALLER_ADDR0, ip);
  2189. }
  2190. }
  2191. EXPORT_SYMBOL(preempt_count_add);
  2192. NOKPROBE_SYMBOL(preempt_count_add);
  2193. void preempt_count_sub(int val)
  2194. {
  2195. #ifdef CONFIG_DEBUG_PREEMPT
  2196. /*
  2197. * Underflow?
  2198. */
  2199. if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
  2200. return;
  2201. /*
  2202. * Is the spinlock portion underflowing?
  2203. */
  2204. if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
  2205. !(preempt_count() & PREEMPT_MASK)))
  2206. return;
  2207. #endif
  2208. if (preempt_count() == val)
  2209. trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
  2210. __preempt_count_sub(val);
  2211. }
  2212. EXPORT_SYMBOL(preempt_count_sub);
  2213. NOKPROBE_SYMBOL(preempt_count_sub);
  2214. #endif
  2215. /*
  2216. * Print scheduling while atomic bug:
  2217. */
  2218. static noinline void __schedule_bug(struct task_struct *prev)
  2219. {
  2220. if (oops_in_progress)
  2221. return;
  2222. printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
  2223. prev->comm, prev->pid, preempt_count());
  2224. debug_show_held_locks(prev);
  2225. print_modules();
  2226. if (irqs_disabled())
  2227. print_irqtrace_events(prev);
  2228. #ifdef CONFIG_DEBUG_PREEMPT
  2229. if (in_atomic_preempt_off()) {
  2230. pr_err("Preemption disabled at:");
  2231. print_ip_sym(current->preempt_disable_ip);
  2232. pr_cont("\n");
  2233. }
  2234. #endif
  2235. dump_stack();
  2236. add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
  2237. }
  2238. /*
  2239. * Various schedule()-time debugging checks and statistics:
  2240. */
  2241. static inline void schedule_debug(struct task_struct *prev)
  2242. {
  2243. /*
  2244. * Test if we are atomic. Since do_exit() needs to call into
  2245. * schedule() atomically, we ignore that path. Otherwise whine
  2246. * if we are scheduling when we should not.
  2247. */
  2248. if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
  2249. __schedule_bug(prev);
  2250. rcu_sleep_check();
  2251. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2252. schedstat_inc(this_rq(), sched_count);
  2253. }
  2254. /*
  2255. * Pick up the highest-prio task:
  2256. */
  2257. static inline struct task_struct *
  2258. pick_next_task(struct rq *rq, struct task_struct *prev)
  2259. {
  2260. const struct sched_class *class = &fair_sched_class;
  2261. struct task_struct *p;
  2262. /*
  2263. * Optimization: we know that if all tasks are in
  2264. * the fair class we can call that function directly:
  2265. */
  2266. if (likely(prev->sched_class == class &&
  2267. rq->nr_running == rq->cfs.h_nr_running)) {
  2268. p = fair_sched_class.pick_next_task(rq, prev);
  2269. if (unlikely(p == RETRY_TASK))
  2270. goto again;
  2271. /* assumes fair_sched_class->next == idle_sched_class */
  2272. if (unlikely(!p))
  2273. p = idle_sched_class.pick_next_task(rq, prev);
  2274. return p;
  2275. }
  2276. again:
  2277. for_each_class(class) {
  2278. p = class->pick_next_task(rq, prev);
  2279. if (p) {
  2280. if (unlikely(p == RETRY_TASK))
  2281. goto again;
  2282. return p;
  2283. }
  2284. }
  2285. BUG(); /* the idle class will always have a runnable task */
  2286. }
  2287. /*
  2288. * __schedule() is the main scheduler function.
  2289. *
  2290. * The main means of driving the scheduler and thus entering this function are:
  2291. *
  2292. * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
  2293. *
  2294. * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
  2295. * paths. For example, see arch/x86/entry_64.S.
  2296. *
  2297. * To drive preemption between tasks, the scheduler sets the flag in timer
  2298. * interrupt handler scheduler_tick().
  2299. *
  2300. * 3. Wakeups don't really cause entry into schedule(). They add a
  2301. * task to the run-queue and that's it.
  2302. *
  2303. * Now, if the new task added to the run-queue preempts the current
  2304. * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
  2305. * called on the nearest possible occasion:
  2306. *
  2307. * - If the kernel is preemptible (CONFIG_PREEMPT=y):
  2308. *
  2309. * - in syscall or exception context, at the next outmost
  2310. * preempt_enable(). (this might be as soon as the wake_up()'s
  2311. * spin_unlock()!)
  2312. *
  2313. * - in IRQ context, return from interrupt-handler to
  2314. * preemptible context
  2315. *
  2316. * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
  2317. * then at the next:
  2318. *
  2319. * - cond_resched() call
  2320. * - explicit schedule() call
  2321. * - return from syscall or exception to user-space
  2322. * - return from interrupt-handler to user-space
  2323. */
  2324. static void __sched __schedule(void)
  2325. {
  2326. struct task_struct *prev, *next;
  2327. unsigned long *switch_count;
  2328. struct rq *rq;
  2329. int cpu;
  2330. need_resched:
  2331. preempt_disable();
  2332. cpu = smp_processor_id();
  2333. rq = cpu_rq(cpu);
  2334. rcu_note_context_switch(cpu);
  2335. prev = rq->curr;
  2336. schedule_debug(prev);
  2337. if (sched_feat(HRTICK))
  2338. hrtick_clear(rq);
  2339. /*
  2340. * Make sure that signal_pending_state()->signal_pending() below
  2341. * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
  2342. * done by the caller to avoid the race with signal_wake_up().
  2343. */
  2344. smp_mb__before_spinlock();
  2345. raw_spin_lock_irq(&rq->lock);
  2346. switch_count = &prev->nivcsw;
  2347. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2348. if (unlikely(signal_pending_state(prev->state, prev))) {
  2349. prev->state = TASK_RUNNING;
  2350. } else {
  2351. deactivate_task(rq, prev, DEQUEUE_SLEEP);
  2352. prev->on_rq = 0;
  2353. /*
  2354. * If a worker went to sleep, notify and ask workqueue
  2355. * whether it wants to wake up a task to maintain
  2356. * concurrency.
  2357. */
  2358. if (prev->flags & PF_WQ_WORKER) {
  2359. struct task_struct *to_wakeup;
  2360. to_wakeup = wq_worker_sleeping(prev, cpu);
  2361. if (to_wakeup)
  2362. try_to_wake_up_local(to_wakeup);
  2363. }
  2364. }
  2365. switch_count = &prev->nvcsw;
  2366. }
  2367. if (prev->on_rq || rq->skip_clock_update < 0)
  2368. update_rq_clock(rq);
  2369. next = pick_next_task(rq, prev);
  2370. clear_tsk_need_resched(prev);
  2371. clear_preempt_need_resched();
  2372. rq->skip_clock_update = 0;
  2373. if (likely(prev != next)) {
  2374. rq->nr_switches++;
  2375. rq->curr = next;
  2376. ++*switch_count;
  2377. context_switch(rq, prev, next); /* unlocks the rq */
  2378. /*
  2379. * The context switch have flipped the stack from under us
  2380. * and restored the local variables which were saved when
  2381. * this task called schedule() in the past. prev == current
  2382. * is still correct, but it can be moved to another cpu/rq.
  2383. */
  2384. cpu = smp_processor_id();
  2385. rq = cpu_rq(cpu);
  2386. } else
  2387. raw_spin_unlock_irq(&rq->lock);
  2388. post_schedule(rq);
  2389. sched_preempt_enable_no_resched();
  2390. if (need_resched())
  2391. goto need_resched;
  2392. }
  2393. static inline void sched_submit_work(struct task_struct *tsk)
  2394. {
  2395. if (!tsk->state || tsk_is_pi_blocked(tsk))
  2396. return;
  2397. /*
  2398. * If we are going to sleep and we have plugged IO queued,
  2399. * make sure to submit it to avoid deadlocks.
  2400. */
  2401. if (blk_needs_flush_plug(tsk))
  2402. blk_schedule_flush_plug(tsk);
  2403. }
  2404. asmlinkage __visible void __sched schedule(void)
  2405. {
  2406. struct task_struct *tsk = current;
  2407. sched_submit_work(tsk);
  2408. __schedule();
  2409. }
  2410. EXPORT_SYMBOL(schedule);
  2411. #ifdef CONFIG_CONTEXT_TRACKING
  2412. asmlinkage __visible void __sched schedule_user(void)
  2413. {
  2414. /*
  2415. * If we come here after a random call to set_need_resched(),
  2416. * or we have been woken up remotely but the IPI has not yet arrived,
  2417. * we haven't yet exited the RCU idle mode. Do it here manually until
  2418. * we find a better solution.
  2419. */
  2420. user_exit();
  2421. schedule();
  2422. user_enter();
  2423. }
  2424. #endif
  2425. /**
  2426. * schedule_preempt_disabled - called with preemption disabled
  2427. *
  2428. * Returns with preemption disabled. Note: preempt_count must be 1
  2429. */
  2430. void __sched schedule_preempt_disabled(void)
  2431. {
  2432. sched_preempt_enable_no_resched();
  2433. schedule();
  2434. preempt_disable();
  2435. }
  2436. #ifdef CONFIG_PREEMPT
  2437. /*
  2438. * this is the entry point to schedule() from in-kernel preemption
  2439. * off of preempt_enable. Kernel preemptions off return from interrupt
  2440. * occur there and call schedule directly.
  2441. */
  2442. asmlinkage __visible void __sched notrace preempt_schedule(void)
  2443. {
  2444. /*
  2445. * If there is a non-zero preempt_count or interrupts are disabled,
  2446. * we do not want to preempt the current task. Just return..
  2447. */
  2448. if (likely(!preemptible()))
  2449. return;
  2450. do {
  2451. __preempt_count_add(PREEMPT_ACTIVE);
  2452. __schedule();
  2453. __preempt_count_sub(PREEMPT_ACTIVE);
  2454. /*
  2455. * Check again in case we missed a preemption opportunity
  2456. * between schedule and now.
  2457. */
  2458. barrier();
  2459. } while (need_resched());
  2460. }
  2461. NOKPROBE_SYMBOL(preempt_schedule);
  2462. EXPORT_SYMBOL(preempt_schedule);
  2463. #endif /* CONFIG_PREEMPT */
  2464. /*
  2465. * this is the entry point to schedule() from kernel preemption
  2466. * off of irq context.
  2467. * Note, that this is called and return with irqs disabled. This will
  2468. * protect us against recursive calling from irq.
  2469. */
  2470. asmlinkage __visible void __sched preempt_schedule_irq(void)
  2471. {
  2472. enum ctx_state prev_state;
  2473. /* Catch callers which need to be fixed */
  2474. BUG_ON(preempt_count() || !irqs_disabled());
  2475. prev_state = exception_enter();
  2476. do {
  2477. __preempt_count_add(PREEMPT_ACTIVE);
  2478. local_irq_enable();
  2479. __schedule();
  2480. local_irq_disable();
  2481. __preempt_count_sub(PREEMPT_ACTIVE);
  2482. /*
  2483. * Check again in case we missed a preemption opportunity
  2484. * between schedule and now.
  2485. */
  2486. barrier();
  2487. } while (need_resched());
  2488. exception_exit(prev_state);
  2489. }
  2490. int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
  2491. void *key)
  2492. {
  2493. return try_to_wake_up(curr->private, mode, wake_flags);
  2494. }
  2495. EXPORT_SYMBOL(default_wake_function);
  2496. #ifdef CONFIG_RT_MUTEXES
  2497. /*
  2498. * rt_mutex_setprio - set the current priority of a task
  2499. * @p: task
  2500. * @prio: prio value (kernel-internal form)
  2501. *
  2502. * This function changes the 'effective' priority of a task. It does
  2503. * not touch ->normal_prio like __setscheduler().
  2504. *
  2505. * Used by the rt_mutex code to implement priority inheritance
  2506. * logic. Call site only calls if the priority of the task changed.
  2507. */
  2508. void rt_mutex_setprio(struct task_struct *p, int prio)
  2509. {
  2510. int oldprio, on_rq, running, enqueue_flag = 0;
  2511. struct rq *rq;
  2512. const struct sched_class *prev_class;
  2513. BUG_ON(prio > MAX_PRIO);
  2514. rq = __task_rq_lock(p);
  2515. /*
  2516. * Idle task boosting is a nono in general. There is one
  2517. * exception, when PREEMPT_RT and NOHZ is active:
  2518. *
  2519. * The idle task calls get_next_timer_interrupt() and holds
  2520. * the timer wheel base->lock on the CPU and another CPU wants
  2521. * to access the timer (probably to cancel it). We can safely
  2522. * ignore the boosting request, as the idle CPU runs this code
  2523. * with interrupts disabled and will complete the lock
  2524. * protected section without being interrupted. So there is no
  2525. * real need to boost.
  2526. */
  2527. if (unlikely(p == rq->idle)) {
  2528. WARN_ON(p != rq->curr);
  2529. WARN_ON(p->pi_blocked_on);
  2530. goto out_unlock;
  2531. }
  2532. trace_sched_pi_setprio(p, prio);
  2533. p->pi_top_task = rt_mutex_get_top_task(p);
  2534. oldprio = p->prio;
  2535. prev_class = p->sched_class;
  2536. on_rq = p->on_rq;
  2537. running = task_current(rq, p);
  2538. if (on_rq)
  2539. dequeue_task(rq, p, 0);
  2540. if (running)
  2541. p->sched_class->put_prev_task(rq, p);
  2542. /*
  2543. * Boosting condition are:
  2544. * 1. -rt task is running and holds mutex A
  2545. * --> -dl task blocks on mutex A
  2546. *
  2547. * 2. -dl task is running and holds mutex A
  2548. * --> -dl task blocks on mutex A and could preempt the
  2549. * running task
  2550. */
  2551. if (dl_prio(prio)) {
  2552. if (!dl_prio(p->normal_prio) || (p->pi_top_task &&
  2553. dl_entity_preempt(&p->pi_top_task->dl, &p->dl))) {
  2554. p->dl.dl_boosted = 1;
  2555. p->dl.dl_throttled = 0;
  2556. enqueue_flag = ENQUEUE_REPLENISH;
  2557. } else
  2558. p->dl.dl_boosted = 0;
  2559. p->sched_class = &dl_sched_class;
  2560. } else if (rt_prio(prio)) {
  2561. if (dl_prio(oldprio))
  2562. p->dl.dl_boosted = 0;
  2563. if (oldprio < prio)
  2564. enqueue_flag = ENQUEUE_HEAD;
  2565. p->sched_class = &rt_sched_class;
  2566. } else {
  2567. if (dl_prio(oldprio))
  2568. p->dl.dl_boosted = 0;
  2569. p->sched_class = &fair_sched_class;
  2570. }
  2571. p->prio = prio;
  2572. if (running)
  2573. p->sched_class->set_curr_task(rq);
  2574. if (on_rq)
  2575. enqueue_task(rq, p, enqueue_flag);
  2576. check_class_changed(rq, p, prev_class, oldprio);
  2577. out_unlock:
  2578. __task_rq_unlock(rq);
  2579. }
  2580. #endif
  2581. void set_user_nice(struct task_struct *p, long nice)
  2582. {
  2583. int old_prio, delta, on_rq;
  2584. unsigned long flags;
  2585. struct rq *rq;
  2586. if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
  2587. return;
  2588. /*
  2589. * We have to be careful, if called from sys_setpriority(),
  2590. * the task might be in the middle of scheduling on another CPU.
  2591. */
  2592. rq = task_rq_lock(p, &flags);
  2593. /*
  2594. * The RT priorities are set via sched_setscheduler(), but we still
  2595. * allow the 'normal' nice value to be set - but as expected
  2596. * it wont have any effect on scheduling until the task is
  2597. * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
  2598. */
  2599. if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
  2600. p->static_prio = NICE_TO_PRIO(nice);
  2601. goto out_unlock;
  2602. }
  2603. on_rq = p->on_rq;
  2604. if (on_rq)
  2605. dequeue_task(rq, p, 0);
  2606. p->static_prio = NICE_TO_PRIO(nice);
  2607. set_load_weight(p);
  2608. old_prio = p->prio;
  2609. p->prio = effective_prio(p);
  2610. delta = p->prio - old_prio;
  2611. if (on_rq) {
  2612. enqueue_task(rq, p, 0);
  2613. /*
  2614. * If the task increased its priority or is running and
  2615. * lowered its priority, then reschedule its CPU:
  2616. */
  2617. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  2618. resched_task(rq->curr);
  2619. }
  2620. out_unlock:
  2621. task_rq_unlock(rq, p, &flags);
  2622. }
  2623. EXPORT_SYMBOL(set_user_nice);
  2624. /*
  2625. * can_nice - check if a task can reduce its nice value
  2626. * @p: task
  2627. * @nice: nice value
  2628. */
  2629. int can_nice(const struct task_struct *p, const int nice)
  2630. {
  2631. /* convert nice value [19,-20] to rlimit style value [1,40] */
  2632. int nice_rlim = nice_to_rlimit(nice);
  2633. return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
  2634. capable(CAP_SYS_NICE));
  2635. }
  2636. #ifdef __ARCH_WANT_SYS_NICE
  2637. /*
  2638. * sys_nice - change the priority of the current process.
  2639. * @increment: priority increment
  2640. *
  2641. * sys_setpriority is a more generic, but much slower function that
  2642. * does similar things.
  2643. */
  2644. SYSCALL_DEFINE1(nice, int, increment)
  2645. {
  2646. long nice, retval;
  2647. /*
  2648. * Setpriority might change our priority at the same moment.
  2649. * We don't have to worry. Conceptually one call occurs first
  2650. * and we have a single winner.
  2651. */
  2652. increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
  2653. nice = task_nice(current) + increment;
  2654. nice = clamp_val(nice, MIN_NICE, MAX_NICE);
  2655. if (increment < 0 && !can_nice(current, nice))
  2656. return -EPERM;
  2657. retval = security_task_setnice(current, nice);
  2658. if (retval)
  2659. return retval;
  2660. set_user_nice(current, nice);
  2661. return 0;
  2662. }
  2663. #endif
  2664. /**
  2665. * task_prio - return the priority value of a given task.
  2666. * @p: the task in question.
  2667. *
  2668. * Return: The priority value as seen by users in /proc.
  2669. * RT tasks are offset by -200. Normal tasks are centered
  2670. * around 0, value goes from -16 to +15.
  2671. */
  2672. int task_prio(const struct task_struct *p)
  2673. {
  2674. return p->prio - MAX_RT_PRIO;
  2675. }
  2676. /**
  2677. * idle_cpu - is a given cpu idle currently?
  2678. * @cpu: the processor in question.
  2679. *
  2680. * Return: 1 if the CPU is currently idle. 0 otherwise.
  2681. */
  2682. int idle_cpu(int cpu)
  2683. {
  2684. struct rq *rq = cpu_rq(cpu);
  2685. if (rq->curr != rq->idle)
  2686. return 0;
  2687. if (rq->nr_running)
  2688. return 0;
  2689. #ifdef CONFIG_SMP
  2690. if (!llist_empty(&rq->wake_list))
  2691. return 0;
  2692. #endif
  2693. return 1;
  2694. }
  2695. /**
  2696. * idle_task - return the idle task for a given cpu.
  2697. * @cpu: the processor in question.
  2698. *
  2699. * Return: The idle task for the cpu @cpu.
  2700. */
  2701. struct task_struct *idle_task(int cpu)
  2702. {
  2703. return cpu_rq(cpu)->idle;
  2704. }
  2705. /**
  2706. * find_process_by_pid - find a process with a matching PID value.
  2707. * @pid: the pid in question.
  2708. *
  2709. * The task of @pid, if found. %NULL otherwise.
  2710. */
  2711. static struct task_struct *find_process_by_pid(pid_t pid)
  2712. {
  2713. return pid ? find_task_by_vpid(pid) : current;
  2714. }
  2715. /*
  2716. * This function initializes the sched_dl_entity of a newly becoming
  2717. * SCHED_DEADLINE task.
  2718. *
  2719. * Only the static values are considered here, the actual runtime and the
  2720. * absolute deadline will be properly calculated when the task is enqueued
  2721. * for the first time with its new policy.
  2722. */
  2723. static void
  2724. __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
  2725. {
  2726. struct sched_dl_entity *dl_se = &p->dl;
  2727. init_dl_task_timer(dl_se);
  2728. dl_se->dl_runtime = attr->sched_runtime;
  2729. dl_se->dl_deadline = attr->sched_deadline;
  2730. dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
  2731. dl_se->flags = attr->sched_flags;
  2732. dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
  2733. dl_se->dl_throttled = 0;
  2734. dl_se->dl_new = 1;
  2735. dl_se->dl_yielded = 0;
  2736. }
  2737. static void __setscheduler_params(struct task_struct *p,
  2738. const struct sched_attr *attr)
  2739. {
  2740. int policy = attr->sched_policy;
  2741. if (policy == -1) /* setparam */
  2742. policy = p->policy;
  2743. p->policy = policy;
  2744. if (dl_policy(policy))
  2745. __setparam_dl(p, attr);
  2746. else if (fair_policy(policy))
  2747. p->static_prio = NICE_TO_PRIO(attr->sched_nice);
  2748. /*
  2749. * __sched_setscheduler() ensures attr->sched_priority == 0 when
  2750. * !rt_policy. Always setting this ensures that things like
  2751. * getparam()/getattr() don't report silly values for !rt tasks.
  2752. */
  2753. p->rt_priority = attr->sched_priority;
  2754. p->normal_prio = normal_prio(p);
  2755. set_load_weight(p);
  2756. }
  2757. /* Actually do priority change: must hold pi & rq lock. */
  2758. static void __setscheduler(struct rq *rq, struct task_struct *p,
  2759. const struct sched_attr *attr)
  2760. {
  2761. __setscheduler_params(p, attr);
  2762. /*
  2763. * If we get here, there was no pi waiters boosting the
  2764. * task. It is safe to use the normal prio.
  2765. */
  2766. p->prio = normal_prio(p);
  2767. if (dl_prio(p->prio))
  2768. p->sched_class = &dl_sched_class;
  2769. else if (rt_prio(p->prio))
  2770. p->sched_class = &rt_sched_class;
  2771. else
  2772. p->sched_class = &fair_sched_class;
  2773. }
  2774. static void
  2775. __getparam_dl(struct task_struct *p, struct sched_attr *attr)
  2776. {
  2777. struct sched_dl_entity *dl_se = &p->dl;
  2778. attr->sched_priority = p->rt_priority;
  2779. attr->sched_runtime = dl_se->dl_runtime;
  2780. attr->sched_deadline = dl_se->dl_deadline;
  2781. attr->sched_period = dl_se->dl_period;
  2782. attr->sched_flags = dl_se->flags;
  2783. }
  2784. /*
  2785. * This function validates the new parameters of a -deadline task.
  2786. * We ask for the deadline not being zero, and greater or equal
  2787. * than the runtime, as well as the period of being zero or
  2788. * greater than deadline. Furthermore, we have to be sure that
  2789. * user parameters are above the internal resolution of 1us (we
  2790. * check sched_runtime only since it is always the smaller one) and
  2791. * below 2^63 ns (we have to check both sched_deadline and
  2792. * sched_period, as the latter can be zero).
  2793. */
  2794. static bool
  2795. __checkparam_dl(const struct sched_attr *attr)
  2796. {
  2797. /* deadline != 0 */
  2798. if (attr->sched_deadline == 0)
  2799. return false;
  2800. /*
  2801. * Since we truncate DL_SCALE bits, make sure we're at least
  2802. * that big.
  2803. */
  2804. if (attr->sched_runtime < (1ULL << DL_SCALE))
  2805. return false;
  2806. /*
  2807. * Since we use the MSB for wrap-around and sign issues, make
  2808. * sure it's not set (mind that period can be equal to zero).
  2809. */
  2810. if (attr->sched_deadline & (1ULL << 63) ||
  2811. attr->sched_period & (1ULL << 63))
  2812. return false;
  2813. /* runtime <= deadline <= period (if period != 0) */
  2814. if ((attr->sched_period != 0 &&
  2815. attr->sched_period < attr->sched_deadline) ||
  2816. attr->sched_deadline < attr->sched_runtime)
  2817. return false;
  2818. return true;
  2819. }
  2820. /*
  2821. * check the target process has a UID that matches the current process's
  2822. */
  2823. static bool check_same_owner(struct task_struct *p)
  2824. {
  2825. const struct cred *cred = current_cred(), *pcred;
  2826. bool match;
  2827. rcu_read_lock();
  2828. pcred = __task_cred(p);
  2829. match = (uid_eq(cred->euid, pcred->euid) ||
  2830. uid_eq(cred->euid, pcred->uid));
  2831. rcu_read_unlock();
  2832. return match;
  2833. }
  2834. static int __sched_setscheduler(struct task_struct *p,
  2835. const struct sched_attr *attr,
  2836. bool user)
  2837. {
  2838. int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
  2839. MAX_RT_PRIO - 1 - attr->sched_priority;
  2840. int retval, oldprio, oldpolicy = -1, on_rq, running;
  2841. int policy = attr->sched_policy;
  2842. unsigned long flags;
  2843. const struct sched_class *prev_class;
  2844. struct rq *rq;
  2845. int reset_on_fork;
  2846. /* may grab non-irq protected spin_locks */
  2847. BUG_ON(in_interrupt());
  2848. recheck:
  2849. /* double check policy once rq lock held */
  2850. if (policy < 0) {
  2851. reset_on_fork = p->sched_reset_on_fork;
  2852. policy = oldpolicy = p->policy;
  2853. } else {
  2854. reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
  2855. if (policy != SCHED_DEADLINE &&
  2856. policy != SCHED_FIFO && policy != SCHED_RR &&
  2857. policy != SCHED_NORMAL && policy != SCHED_BATCH &&
  2858. policy != SCHED_IDLE)
  2859. return -EINVAL;
  2860. }
  2861. if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
  2862. return -EINVAL;
  2863. /*
  2864. * Valid priorities for SCHED_FIFO and SCHED_RR are
  2865. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
  2866. * SCHED_BATCH and SCHED_IDLE is 0.
  2867. */
  2868. if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
  2869. (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
  2870. return -EINVAL;
  2871. if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
  2872. (rt_policy(policy) != (attr->sched_priority != 0)))
  2873. return -EINVAL;
  2874. /*
  2875. * Allow unprivileged RT tasks to decrease priority:
  2876. */
  2877. if (user && !capable(CAP_SYS_NICE)) {
  2878. if (fair_policy(policy)) {
  2879. if (attr->sched_nice < task_nice(p) &&
  2880. !can_nice(p, attr->sched_nice))
  2881. return -EPERM;
  2882. }
  2883. if (rt_policy(policy)) {
  2884. unsigned long rlim_rtprio =
  2885. task_rlimit(p, RLIMIT_RTPRIO);
  2886. /* can't set/change the rt policy */
  2887. if (policy != p->policy && !rlim_rtprio)
  2888. return -EPERM;
  2889. /* can't increase priority */
  2890. if (attr->sched_priority > p->rt_priority &&
  2891. attr->sched_priority > rlim_rtprio)
  2892. return -EPERM;
  2893. }
  2894. /*
  2895. * Can't set/change SCHED_DEADLINE policy at all for now
  2896. * (safest behavior); in the future we would like to allow
  2897. * unprivileged DL tasks to increase their relative deadline
  2898. * or reduce their runtime (both ways reducing utilization)
  2899. */
  2900. if (dl_policy(policy))
  2901. return -EPERM;
  2902. /*
  2903. * Treat SCHED_IDLE as nice 20. Only allow a switch to
  2904. * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
  2905. */
  2906. if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
  2907. if (!can_nice(p, task_nice(p)))
  2908. return -EPERM;
  2909. }
  2910. /* can't change other user's priorities */
  2911. if (!check_same_owner(p))
  2912. return -EPERM;
  2913. /* Normal users shall not reset the sched_reset_on_fork flag */
  2914. if (p->sched_reset_on_fork && !reset_on_fork)
  2915. return -EPERM;
  2916. }
  2917. if (user) {
  2918. retval = security_task_setscheduler(p);
  2919. if (retval)
  2920. return retval;
  2921. }
  2922. /*
  2923. * make sure no PI-waiters arrive (or leave) while we are
  2924. * changing the priority of the task:
  2925. *
  2926. * To be able to change p->policy safely, the appropriate
  2927. * runqueue lock must be held.
  2928. */
  2929. rq = task_rq_lock(p, &flags);
  2930. /*
  2931. * Changing the policy of the stop threads its a very bad idea
  2932. */
  2933. if (p == rq->stop) {
  2934. task_rq_unlock(rq, p, &flags);
  2935. return -EINVAL;
  2936. }
  2937. /*
  2938. * If not changing anything there's no need to proceed further,
  2939. * but store a possible modification of reset_on_fork.
  2940. */
  2941. if (unlikely(policy == p->policy)) {
  2942. if (fair_policy(policy) && attr->sched_nice != task_nice(p))
  2943. goto change;
  2944. if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
  2945. goto change;
  2946. if (dl_policy(policy))
  2947. goto change;
  2948. p->sched_reset_on_fork = reset_on_fork;
  2949. task_rq_unlock(rq, p, &flags);
  2950. return 0;
  2951. }
  2952. change:
  2953. if (user) {
  2954. #ifdef CONFIG_RT_GROUP_SCHED
  2955. /*
  2956. * Do not allow realtime tasks into groups that have no runtime
  2957. * assigned.
  2958. */
  2959. if (rt_bandwidth_enabled() && rt_policy(policy) &&
  2960. task_group(p)->rt_bandwidth.rt_runtime == 0 &&
  2961. !task_group_is_autogroup(task_group(p))) {
  2962. task_rq_unlock(rq, p, &flags);
  2963. return -EPERM;
  2964. }
  2965. #endif
  2966. #ifdef CONFIG_SMP
  2967. if (dl_bandwidth_enabled() && dl_policy(policy)) {
  2968. cpumask_t *span = rq->rd->span;
  2969. /*
  2970. * Don't allow tasks with an affinity mask smaller than
  2971. * the entire root_domain to become SCHED_DEADLINE. We
  2972. * will also fail if there's no bandwidth available.
  2973. */
  2974. if (!cpumask_subset(span, &p->cpus_allowed) ||
  2975. rq->rd->dl_bw.bw == 0) {
  2976. task_rq_unlock(rq, p, &flags);
  2977. return -EPERM;
  2978. }
  2979. }
  2980. #endif
  2981. }
  2982. /* recheck policy now with rq lock held */
  2983. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  2984. policy = oldpolicy = -1;
  2985. task_rq_unlock(rq, p, &flags);
  2986. goto recheck;
  2987. }
  2988. /*
  2989. * If setscheduling to SCHED_DEADLINE (or changing the parameters
  2990. * of a SCHED_DEADLINE task) we need to check if enough bandwidth
  2991. * is available.
  2992. */
  2993. if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
  2994. task_rq_unlock(rq, p, &flags);
  2995. return -EBUSY;
  2996. }
  2997. p->sched_reset_on_fork = reset_on_fork;
  2998. oldprio = p->prio;
  2999. /*
  3000. * Special case for priority boosted tasks.
  3001. *
  3002. * If the new priority is lower or equal (user space view)
  3003. * than the current (boosted) priority, we just store the new
  3004. * normal parameters and do not touch the scheduler class and
  3005. * the runqueue. This will be done when the task deboost
  3006. * itself.
  3007. */
  3008. if (rt_mutex_check_prio(p, newprio)) {
  3009. __setscheduler_params(p, attr);
  3010. task_rq_unlock(rq, p, &flags);
  3011. return 0;
  3012. }
  3013. on_rq = p->on_rq;
  3014. running = task_current(rq, p);
  3015. if (on_rq)
  3016. dequeue_task(rq, p, 0);
  3017. if (running)
  3018. p->sched_class->put_prev_task(rq, p);
  3019. prev_class = p->sched_class;
  3020. __setscheduler(rq, p, attr);
  3021. if (running)
  3022. p->sched_class->set_curr_task(rq);
  3023. if (on_rq) {
  3024. /*
  3025. * We enqueue to tail when the priority of a task is
  3026. * increased (user space view).
  3027. */
  3028. enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
  3029. }
  3030. check_class_changed(rq, p, prev_class, oldprio);
  3031. task_rq_unlock(rq, p, &flags);
  3032. rt_mutex_adjust_pi(p);
  3033. return 0;
  3034. }
  3035. static int _sched_setscheduler(struct task_struct *p, int policy,
  3036. const struct sched_param *param, bool check)
  3037. {
  3038. struct sched_attr attr = {
  3039. .sched_policy = policy,
  3040. .sched_priority = param->sched_priority,
  3041. .sched_nice = PRIO_TO_NICE(p->static_prio),
  3042. };
  3043. /*
  3044. * Fixup the legacy SCHED_RESET_ON_FORK hack
  3045. */
  3046. if (policy & SCHED_RESET_ON_FORK) {
  3047. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3048. policy &= ~SCHED_RESET_ON_FORK;
  3049. attr.sched_policy = policy;
  3050. }
  3051. return __sched_setscheduler(p, &attr, check);
  3052. }
  3053. /**
  3054. * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
  3055. * @p: the task in question.
  3056. * @policy: new policy.
  3057. * @param: structure containing the new RT priority.
  3058. *
  3059. * Return: 0 on success. An error code otherwise.
  3060. *
  3061. * NOTE that the task may be already dead.
  3062. */
  3063. int sched_setscheduler(struct task_struct *p, int policy,
  3064. const struct sched_param *param)
  3065. {
  3066. return _sched_setscheduler(p, policy, param, true);
  3067. }
  3068. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3069. int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
  3070. {
  3071. return __sched_setscheduler(p, attr, true);
  3072. }
  3073. EXPORT_SYMBOL_GPL(sched_setattr);
  3074. /**
  3075. * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
  3076. * @p: the task in question.
  3077. * @policy: new policy.
  3078. * @param: structure containing the new RT priority.
  3079. *
  3080. * Just like sched_setscheduler, only don't bother checking if the
  3081. * current context has permission. For example, this is needed in
  3082. * stop_machine(): we create temporary high priority worker threads,
  3083. * but our caller might not have that capability.
  3084. *
  3085. * Return: 0 on success. An error code otherwise.
  3086. */
  3087. int sched_setscheduler_nocheck(struct task_struct *p, int policy,
  3088. const struct sched_param *param)
  3089. {
  3090. return _sched_setscheduler(p, policy, param, false);
  3091. }
  3092. static int
  3093. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3094. {
  3095. struct sched_param lparam;
  3096. struct task_struct *p;
  3097. int retval;
  3098. if (!param || pid < 0)
  3099. return -EINVAL;
  3100. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3101. return -EFAULT;
  3102. rcu_read_lock();
  3103. retval = -ESRCH;
  3104. p = find_process_by_pid(pid);
  3105. if (p != NULL)
  3106. retval = sched_setscheduler(p, policy, &lparam);
  3107. rcu_read_unlock();
  3108. return retval;
  3109. }
  3110. /*
  3111. * Mimics kernel/events/core.c perf_copy_attr().
  3112. */
  3113. static int sched_copy_attr(struct sched_attr __user *uattr,
  3114. struct sched_attr *attr)
  3115. {
  3116. u32 size;
  3117. int ret;
  3118. if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
  3119. return -EFAULT;
  3120. /*
  3121. * zero the full structure, so that a short copy will be nice.
  3122. */
  3123. memset(attr, 0, sizeof(*attr));
  3124. ret = get_user(size, &uattr->size);
  3125. if (ret)
  3126. return ret;
  3127. if (size > PAGE_SIZE) /* silly large */
  3128. goto err_size;
  3129. if (!size) /* abi compat */
  3130. size = SCHED_ATTR_SIZE_VER0;
  3131. if (size < SCHED_ATTR_SIZE_VER0)
  3132. goto err_size;
  3133. /*
  3134. * If we're handed a bigger struct than we know of,
  3135. * ensure all the unknown bits are 0 - i.e. new
  3136. * user-space does not rely on any kernel feature
  3137. * extensions we dont know about yet.
  3138. */
  3139. if (size > sizeof(*attr)) {
  3140. unsigned char __user *addr;
  3141. unsigned char __user *end;
  3142. unsigned char val;
  3143. addr = (void __user *)uattr + sizeof(*attr);
  3144. end = (void __user *)uattr + size;
  3145. for (; addr < end; addr++) {
  3146. ret = get_user(val, addr);
  3147. if (ret)
  3148. return ret;
  3149. if (val)
  3150. goto err_size;
  3151. }
  3152. size = sizeof(*attr);
  3153. }
  3154. ret = copy_from_user(attr, uattr, size);
  3155. if (ret)
  3156. return -EFAULT;
  3157. /*
  3158. * XXX: do we want to be lenient like existing syscalls; or do we want
  3159. * to be strict and return an error on out-of-bounds values?
  3160. */
  3161. attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
  3162. return 0;
  3163. err_size:
  3164. put_user(sizeof(*attr), &uattr->size);
  3165. return -E2BIG;
  3166. }
  3167. /**
  3168. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3169. * @pid: the pid in question.
  3170. * @policy: new policy.
  3171. * @param: structure containing the new RT priority.
  3172. *
  3173. * Return: 0 on success. An error code otherwise.
  3174. */
  3175. SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
  3176. struct sched_param __user *, param)
  3177. {
  3178. /* negative values for policy are not valid */
  3179. if (policy < 0)
  3180. return -EINVAL;
  3181. return do_sched_setscheduler(pid, policy, param);
  3182. }
  3183. /**
  3184. * sys_sched_setparam - set/change the RT priority of a thread
  3185. * @pid: the pid in question.
  3186. * @param: structure containing the new RT priority.
  3187. *
  3188. * Return: 0 on success. An error code otherwise.
  3189. */
  3190. SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
  3191. {
  3192. return do_sched_setscheduler(pid, -1, param);
  3193. }
  3194. /**
  3195. * sys_sched_setattr - same as above, but with extended sched_attr
  3196. * @pid: the pid in question.
  3197. * @uattr: structure containing the extended parameters.
  3198. * @flags: for future extension.
  3199. */
  3200. SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
  3201. unsigned int, flags)
  3202. {
  3203. struct sched_attr attr;
  3204. struct task_struct *p;
  3205. int retval;
  3206. if (!uattr || pid < 0 || flags)
  3207. return -EINVAL;
  3208. retval = sched_copy_attr(uattr, &attr);
  3209. if (retval)
  3210. return retval;
  3211. if ((int)attr.sched_policy < 0)
  3212. return -EINVAL;
  3213. rcu_read_lock();
  3214. retval = -ESRCH;
  3215. p = find_process_by_pid(pid);
  3216. if (p != NULL)
  3217. retval = sched_setattr(p, &attr);
  3218. rcu_read_unlock();
  3219. return retval;
  3220. }
  3221. /**
  3222. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3223. * @pid: the pid in question.
  3224. *
  3225. * Return: On success, the policy of the thread. Otherwise, a negative error
  3226. * code.
  3227. */
  3228. SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
  3229. {
  3230. struct task_struct *p;
  3231. int retval;
  3232. if (pid < 0)
  3233. return -EINVAL;
  3234. retval = -ESRCH;
  3235. rcu_read_lock();
  3236. p = find_process_by_pid(pid);
  3237. if (p) {
  3238. retval = security_task_getscheduler(p);
  3239. if (!retval)
  3240. retval = p->policy
  3241. | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
  3242. }
  3243. rcu_read_unlock();
  3244. return retval;
  3245. }
  3246. /**
  3247. * sys_sched_getparam - get the RT priority of a thread
  3248. * @pid: the pid in question.
  3249. * @param: structure containing the RT priority.
  3250. *
  3251. * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
  3252. * code.
  3253. */
  3254. SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
  3255. {
  3256. struct sched_param lp = { .sched_priority = 0 };
  3257. struct task_struct *p;
  3258. int retval;
  3259. if (!param || pid < 0)
  3260. return -EINVAL;
  3261. rcu_read_lock();
  3262. p = find_process_by_pid(pid);
  3263. retval = -ESRCH;
  3264. if (!p)
  3265. goto out_unlock;
  3266. retval = security_task_getscheduler(p);
  3267. if (retval)
  3268. goto out_unlock;
  3269. if (task_has_rt_policy(p))
  3270. lp.sched_priority = p->rt_priority;
  3271. rcu_read_unlock();
  3272. /*
  3273. * This one might sleep, we cannot do it with a spinlock held ...
  3274. */
  3275. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3276. return retval;
  3277. out_unlock:
  3278. rcu_read_unlock();
  3279. return retval;
  3280. }
  3281. static int sched_read_attr(struct sched_attr __user *uattr,
  3282. struct sched_attr *attr,
  3283. unsigned int usize)
  3284. {
  3285. int ret;
  3286. if (!access_ok(VERIFY_WRITE, uattr, usize))
  3287. return -EFAULT;
  3288. /*
  3289. * If we're handed a smaller struct than we know of,
  3290. * ensure all the unknown bits are 0 - i.e. old
  3291. * user-space does not get uncomplete information.
  3292. */
  3293. if (usize < sizeof(*attr)) {
  3294. unsigned char *addr;
  3295. unsigned char *end;
  3296. addr = (void *)attr + usize;
  3297. end = (void *)attr + sizeof(*attr);
  3298. for (; addr < end; addr++) {
  3299. if (*addr)
  3300. return -EFBIG;
  3301. }
  3302. attr->size = usize;
  3303. }
  3304. ret = copy_to_user(uattr, attr, attr->size);
  3305. if (ret)
  3306. return -EFAULT;
  3307. return 0;
  3308. }
  3309. /**
  3310. * sys_sched_getattr - similar to sched_getparam, but with sched_attr
  3311. * @pid: the pid in question.
  3312. * @uattr: structure containing the extended parameters.
  3313. * @size: sizeof(attr) for fwd/bwd comp.
  3314. * @flags: for future extension.
  3315. */
  3316. SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
  3317. unsigned int, size, unsigned int, flags)
  3318. {
  3319. struct sched_attr attr = {
  3320. .size = sizeof(struct sched_attr),
  3321. };
  3322. struct task_struct *p;
  3323. int retval;
  3324. if (!uattr || pid < 0 || size > PAGE_SIZE ||
  3325. size < SCHED_ATTR_SIZE_VER0 || flags)
  3326. return -EINVAL;
  3327. rcu_read_lock();
  3328. p = find_process_by_pid(pid);
  3329. retval = -ESRCH;
  3330. if (!p)
  3331. goto out_unlock;
  3332. retval = security_task_getscheduler(p);
  3333. if (retval)
  3334. goto out_unlock;
  3335. attr.sched_policy = p->policy;
  3336. if (p->sched_reset_on_fork)
  3337. attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
  3338. if (task_has_dl_policy(p))
  3339. __getparam_dl(p, &attr);
  3340. else if (task_has_rt_policy(p))
  3341. attr.sched_priority = p->rt_priority;
  3342. else
  3343. attr.sched_nice = task_nice(p);
  3344. rcu_read_unlock();
  3345. retval = sched_read_attr(uattr, &attr, size);
  3346. return retval;
  3347. out_unlock:
  3348. rcu_read_unlock();
  3349. return retval;
  3350. }
  3351. long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
  3352. {
  3353. cpumask_var_t cpus_allowed, new_mask;
  3354. struct task_struct *p;
  3355. int retval;
  3356. rcu_read_lock();
  3357. p = find_process_by_pid(pid);
  3358. if (!p) {
  3359. rcu_read_unlock();
  3360. return -ESRCH;
  3361. }
  3362. /* Prevent p going away */
  3363. get_task_struct(p);
  3364. rcu_read_unlock();
  3365. if (p->flags & PF_NO_SETAFFINITY) {
  3366. retval = -EINVAL;
  3367. goto out_put_task;
  3368. }
  3369. if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
  3370. retval = -ENOMEM;
  3371. goto out_put_task;
  3372. }
  3373. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
  3374. retval = -ENOMEM;
  3375. goto out_free_cpus_allowed;
  3376. }
  3377. retval = -EPERM;
  3378. if (!check_same_owner(p)) {
  3379. rcu_read_lock();
  3380. if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
  3381. rcu_read_unlock();
  3382. goto out_unlock;
  3383. }
  3384. rcu_read_unlock();
  3385. }
  3386. retval = security_task_setscheduler(p);
  3387. if (retval)
  3388. goto out_unlock;
  3389. cpuset_cpus_allowed(p, cpus_allowed);
  3390. cpumask_and(new_mask, in_mask, cpus_allowed);
  3391. /*
  3392. * Since bandwidth control happens on root_domain basis,
  3393. * if admission test is enabled, we only admit -deadline
  3394. * tasks allowed to run on all the CPUs in the task's
  3395. * root_domain.
  3396. */
  3397. #ifdef CONFIG_SMP
  3398. if (task_has_dl_policy(p)) {
  3399. const struct cpumask *span = task_rq(p)->rd->span;
  3400. if (dl_bandwidth_enabled() && !cpumask_subset(span, new_mask)) {
  3401. retval = -EBUSY;
  3402. goto out_unlock;
  3403. }
  3404. }
  3405. #endif
  3406. again:
  3407. retval = set_cpus_allowed_ptr(p, new_mask);
  3408. if (!retval) {
  3409. cpuset_cpus_allowed(p, cpus_allowed);
  3410. if (!cpumask_subset(new_mask, cpus_allowed)) {
  3411. /*
  3412. * We must have raced with a concurrent cpuset
  3413. * update. Just reset the cpus_allowed to the
  3414. * cpuset's cpus_allowed
  3415. */
  3416. cpumask_copy(new_mask, cpus_allowed);
  3417. goto again;
  3418. }
  3419. }
  3420. out_unlock:
  3421. free_cpumask_var(new_mask);
  3422. out_free_cpus_allowed:
  3423. free_cpumask_var(cpus_allowed);
  3424. out_put_task:
  3425. put_task_struct(p);
  3426. return retval;
  3427. }
  3428. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3429. struct cpumask *new_mask)
  3430. {
  3431. if (len < cpumask_size())
  3432. cpumask_clear(new_mask);
  3433. else if (len > cpumask_size())
  3434. len = cpumask_size();
  3435. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3436. }
  3437. /**
  3438. * sys_sched_setaffinity - set the cpu affinity of a process
  3439. * @pid: pid of the process
  3440. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3441. * @user_mask_ptr: user-space pointer to the new cpu mask
  3442. *
  3443. * Return: 0 on success. An error code otherwise.
  3444. */
  3445. SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
  3446. unsigned long __user *, user_mask_ptr)
  3447. {
  3448. cpumask_var_t new_mask;
  3449. int retval;
  3450. if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
  3451. return -ENOMEM;
  3452. retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
  3453. if (retval == 0)
  3454. retval = sched_setaffinity(pid, new_mask);
  3455. free_cpumask_var(new_mask);
  3456. return retval;
  3457. }
  3458. long sched_getaffinity(pid_t pid, struct cpumask *mask)
  3459. {
  3460. struct task_struct *p;
  3461. unsigned long flags;
  3462. int retval;
  3463. rcu_read_lock();
  3464. retval = -ESRCH;
  3465. p = find_process_by_pid(pid);
  3466. if (!p)
  3467. goto out_unlock;
  3468. retval = security_task_getscheduler(p);
  3469. if (retval)
  3470. goto out_unlock;
  3471. raw_spin_lock_irqsave(&p->pi_lock, flags);
  3472. cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
  3473. raw_spin_unlock_irqrestore(&p->pi_lock, flags);
  3474. out_unlock:
  3475. rcu_read_unlock();
  3476. return retval;
  3477. }
  3478. /**
  3479. * sys_sched_getaffinity - get the cpu affinity of a process
  3480. * @pid: pid of the process
  3481. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3482. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3483. *
  3484. * Return: 0 on success. An error code otherwise.
  3485. */
  3486. SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
  3487. unsigned long __user *, user_mask_ptr)
  3488. {
  3489. int ret;
  3490. cpumask_var_t mask;
  3491. if ((len * BITS_PER_BYTE) < nr_cpu_ids)
  3492. return -EINVAL;
  3493. if (len & (sizeof(unsigned long)-1))
  3494. return -EINVAL;
  3495. if (!alloc_cpumask_var(&mask, GFP_KERNEL))
  3496. return -ENOMEM;
  3497. ret = sched_getaffinity(pid, mask);
  3498. if (ret == 0) {
  3499. size_t retlen = min_t(size_t, len, cpumask_size());
  3500. if (copy_to_user(user_mask_ptr, mask, retlen))
  3501. ret = -EFAULT;
  3502. else
  3503. ret = retlen;
  3504. }
  3505. free_cpumask_var(mask);
  3506. return ret;
  3507. }
  3508. /**
  3509. * sys_sched_yield - yield the current processor to other threads.
  3510. *
  3511. * This function yields the current CPU to other tasks. If there are no
  3512. * other threads running on this CPU then this function will return.
  3513. *
  3514. * Return: 0.
  3515. */
  3516. SYSCALL_DEFINE0(sched_yield)
  3517. {
  3518. struct rq *rq = this_rq_lock();
  3519. schedstat_inc(rq, yld_count);
  3520. current->sched_class->yield_task(rq);
  3521. /*
  3522. * Since we are going to call schedule() anyway, there's
  3523. * no need to preempt or enable interrupts:
  3524. */
  3525. __release(rq->lock);
  3526. spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
  3527. do_raw_spin_unlock(&rq->lock);
  3528. sched_preempt_enable_no_resched();
  3529. schedule();
  3530. return 0;
  3531. }
  3532. static void __cond_resched(void)
  3533. {
  3534. __preempt_count_add(PREEMPT_ACTIVE);
  3535. __schedule();
  3536. __preempt_count_sub(PREEMPT_ACTIVE);
  3537. }
  3538. int __sched _cond_resched(void)
  3539. {
  3540. if (should_resched()) {
  3541. __cond_resched();
  3542. return 1;
  3543. }
  3544. return 0;
  3545. }
  3546. EXPORT_SYMBOL(_cond_resched);
  3547. /*
  3548. * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3549. * call schedule, and on return reacquire the lock.
  3550. *
  3551. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3552. * operations here to prevent schedule() from being called twice (once via
  3553. * spin_unlock(), once by hand).
  3554. */
  3555. int __cond_resched_lock(spinlock_t *lock)
  3556. {
  3557. int resched = should_resched();
  3558. int ret = 0;
  3559. lockdep_assert_held(lock);
  3560. if (spin_needbreak(lock) || resched) {
  3561. spin_unlock(lock);
  3562. if (resched)
  3563. __cond_resched();
  3564. else
  3565. cpu_relax();
  3566. ret = 1;
  3567. spin_lock(lock);
  3568. }
  3569. return ret;
  3570. }
  3571. EXPORT_SYMBOL(__cond_resched_lock);
  3572. int __sched __cond_resched_softirq(void)
  3573. {
  3574. BUG_ON(!in_softirq());
  3575. if (should_resched()) {
  3576. local_bh_enable();
  3577. __cond_resched();
  3578. local_bh_disable();
  3579. return 1;
  3580. }
  3581. return 0;
  3582. }
  3583. EXPORT_SYMBOL(__cond_resched_softirq);
  3584. /**
  3585. * yield - yield the current processor to other threads.
  3586. *
  3587. * Do not ever use this function, there's a 99% chance you're doing it wrong.
  3588. *
  3589. * The scheduler is at all times free to pick the calling task as the most
  3590. * eligible task to run, if removing the yield() call from your code breaks
  3591. * it, its already broken.
  3592. *
  3593. * Typical broken usage is:
  3594. *
  3595. * while (!event)
  3596. * yield();
  3597. *
  3598. * where one assumes that yield() will let 'the other' process run that will
  3599. * make event true. If the current task is a SCHED_FIFO task that will never
  3600. * happen. Never use yield() as a progress guarantee!!
  3601. *
  3602. * If you want to use yield() to wait for something, use wait_event().
  3603. * If you want to use yield() to be 'nice' for others, use cond_resched().
  3604. * If you still want to use yield(), do not!
  3605. */
  3606. void __sched yield(void)
  3607. {
  3608. set_current_state(TASK_RUNNING);
  3609. sys_sched_yield();
  3610. }
  3611. EXPORT_SYMBOL(yield);
  3612. /**
  3613. * yield_to - yield the current processor to another thread in
  3614. * your thread group, or accelerate that thread toward the
  3615. * processor it's on.
  3616. * @p: target task
  3617. * @preempt: whether task preemption is allowed or not
  3618. *
  3619. * It's the caller's job to ensure that the target task struct
  3620. * can't go away on us before we can do any checks.
  3621. *
  3622. * Return:
  3623. * true (>0) if we indeed boosted the target task.
  3624. * false (0) if we failed to boost the target.
  3625. * -ESRCH if there's no task to yield to.
  3626. */
  3627. int __sched yield_to(struct task_struct *p, bool preempt)
  3628. {
  3629. struct task_struct *curr = current;
  3630. struct rq *rq, *p_rq;
  3631. unsigned long flags;
  3632. int yielded = 0;
  3633. local_irq_save(flags);
  3634. rq = this_rq();
  3635. again:
  3636. p_rq = task_rq(p);
  3637. /*
  3638. * If we're the only runnable task on the rq and target rq also
  3639. * has only one task, there's absolutely no point in yielding.
  3640. */
  3641. if (rq->nr_running == 1 && p_rq->nr_running == 1) {
  3642. yielded = -ESRCH;
  3643. goto out_irq;
  3644. }
  3645. double_rq_lock(rq, p_rq);
  3646. if (task_rq(p) != p_rq) {
  3647. double_rq_unlock(rq, p_rq);
  3648. goto again;
  3649. }
  3650. if (!curr->sched_class->yield_to_task)
  3651. goto out_unlock;
  3652. if (curr->sched_class != p->sched_class)
  3653. goto out_unlock;
  3654. if (task_running(p_rq, p) || p->state)
  3655. goto out_unlock;
  3656. yielded = curr->sched_class->yield_to_task(rq, p, preempt);
  3657. if (yielded) {
  3658. schedstat_inc(rq, yld_count);
  3659. /*
  3660. * Make p's CPU reschedule; pick_next_entity takes care of
  3661. * fairness.
  3662. */
  3663. if (preempt && rq != p_rq)
  3664. resched_task(p_rq->curr);
  3665. }
  3666. out_unlock:
  3667. double_rq_unlock(rq, p_rq);
  3668. out_irq:
  3669. local_irq_restore(flags);
  3670. if (yielded > 0)
  3671. schedule();
  3672. return yielded;
  3673. }
  3674. EXPORT_SYMBOL_GPL(yield_to);
  3675. /*
  3676. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3677. * that process accounting knows that this is a task in IO wait state.
  3678. */
  3679. void __sched io_schedule(void)
  3680. {
  3681. struct rq *rq = raw_rq();
  3682. delayacct_blkio_start();
  3683. atomic_inc(&rq->nr_iowait);
  3684. blk_flush_plug(current);
  3685. current->in_iowait = 1;
  3686. schedule();
  3687. current->in_iowait = 0;
  3688. atomic_dec(&rq->nr_iowait);
  3689. delayacct_blkio_end();
  3690. }
  3691. EXPORT_SYMBOL(io_schedule);
  3692. long __sched io_schedule_timeout(long timeout)
  3693. {
  3694. struct rq *rq = raw_rq();
  3695. long ret;
  3696. delayacct_blkio_start();
  3697. atomic_inc(&rq->nr_iowait);
  3698. blk_flush_plug(current);
  3699. current->in_iowait = 1;
  3700. ret = schedule_timeout(timeout);
  3701. current->in_iowait = 0;
  3702. atomic_dec(&rq->nr_iowait);
  3703. delayacct_blkio_end();
  3704. return ret;
  3705. }
  3706. /**
  3707. * sys_sched_get_priority_max - return maximum RT priority.
  3708. * @policy: scheduling class.
  3709. *
  3710. * Return: On success, this syscall returns the maximum
  3711. * rt_priority that can be used by a given scheduling class.
  3712. * On failure, a negative error code is returned.
  3713. */
  3714. SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
  3715. {
  3716. int ret = -EINVAL;
  3717. switch (policy) {
  3718. case SCHED_FIFO:
  3719. case SCHED_RR:
  3720. ret = MAX_USER_RT_PRIO-1;
  3721. break;
  3722. case SCHED_DEADLINE:
  3723. case SCHED_NORMAL:
  3724. case SCHED_BATCH:
  3725. case SCHED_IDLE:
  3726. ret = 0;
  3727. break;
  3728. }
  3729. return ret;
  3730. }
  3731. /**
  3732. * sys_sched_get_priority_min - return minimum RT priority.
  3733. * @policy: scheduling class.
  3734. *
  3735. * Return: On success, this syscall returns the minimum
  3736. * rt_priority that can be used by a given scheduling class.
  3737. * On failure, a negative error code is returned.
  3738. */
  3739. SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
  3740. {
  3741. int ret = -EINVAL;
  3742. switch (policy) {
  3743. case SCHED_FIFO:
  3744. case SCHED_RR:
  3745. ret = 1;
  3746. break;
  3747. case SCHED_DEADLINE:
  3748. case SCHED_NORMAL:
  3749. case SCHED_BATCH:
  3750. case SCHED_IDLE:
  3751. ret = 0;
  3752. }
  3753. return ret;
  3754. }
  3755. /**
  3756. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3757. * @pid: pid of the process.
  3758. * @interval: userspace pointer to the timeslice value.
  3759. *
  3760. * this syscall writes the default timeslice value of a given process
  3761. * into the user-space timespec buffer. A value of '0' means infinity.
  3762. *
  3763. * Return: On success, 0 and the timeslice is in @interval. Otherwise,
  3764. * an error code.
  3765. */
  3766. SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
  3767. struct timespec __user *, interval)
  3768. {
  3769. struct task_struct *p;
  3770. unsigned int time_slice;
  3771. unsigned long flags;
  3772. struct rq *rq;
  3773. int retval;
  3774. struct timespec t;
  3775. if (pid < 0)
  3776. return -EINVAL;
  3777. retval = -ESRCH;
  3778. rcu_read_lock();
  3779. p = find_process_by_pid(pid);
  3780. if (!p)
  3781. goto out_unlock;
  3782. retval = security_task_getscheduler(p);
  3783. if (retval)
  3784. goto out_unlock;
  3785. rq = task_rq_lock(p, &flags);
  3786. time_slice = 0;
  3787. if (p->sched_class->get_rr_interval)
  3788. time_slice = p->sched_class->get_rr_interval(rq, p);
  3789. task_rq_unlock(rq, p, &flags);
  3790. rcu_read_unlock();
  3791. jiffies_to_timespec(time_slice, &t);
  3792. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3793. return retval;
  3794. out_unlock:
  3795. rcu_read_unlock();
  3796. return retval;
  3797. }
  3798. static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
  3799. void sched_show_task(struct task_struct *p)
  3800. {
  3801. unsigned long free = 0;
  3802. int ppid;
  3803. unsigned state;
  3804. state = p->state ? __ffs(p->state) + 1 : 0;
  3805. printk(KERN_INFO "%-15.15s %c", p->comm,
  3806. state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
  3807. #if BITS_PER_LONG == 32
  3808. if (state == TASK_RUNNING)
  3809. printk(KERN_CONT " running ");
  3810. else
  3811. printk(KERN_CONT " %08lx ", thread_saved_pc(p));
  3812. #else
  3813. if (state == TASK_RUNNING)
  3814. printk(KERN_CONT " running task ");
  3815. else
  3816. printk(KERN_CONT " %016lx ", thread_saved_pc(p));
  3817. #endif
  3818. #ifdef CONFIG_DEBUG_STACK_USAGE
  3819. free = stack_not_used(p);
  3820. #endif
  3821. rcu_read_lock();
  3822. ppid = task_pid_nr(rcu_dereference(p->real_parent));
  3823. rcu_read_unlock();
  3824. printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
  3825. task_pid_nr(p), ppid,
  3826. (unsigned long)task_thread_info(p)->flags);
  3827. print_worker_info(KERN_INFO, p);
  3828. show_stack(p, NULL);
  3829. }
  3830. void show_state_filter(unsigned long state_filter)
  3831. {
  3832. struct task_struct *g, *p;
  3833. #if BITS_PER_LONG == 32
  3834. printk(KERN_INFO
  3835. " task PC stack pid father\n");
  3836. #else
  3837. printk(KERN_INFO
  3838. " task PC stack pid father\n");
  3839. #endif
  3840. rcu_read_lock();
  3841. do_each_thread(g, p) {
  3842. /*
  3843. * reset the NMI-timeout, listing all files on a slow
  3844. * console might take a lot of time:
  3845. */
  3846. touch_nmi_watchdog();
  3847. if (!state_filter || (p->state & state_filter))
  3848. sched_show_task(p);
  3849. } while_each_thread(g, p);
  3850. touch_all_softlockup_watchdogs();
  3851. #ifdef CONFIG_SCHED_DEBUG
  3852. sysrq_sched_debug_show();
  3853. #endif
  3854. rcu_read_unlock();
  3855. /*
  3856. * Only show locks if all tasks are dumped:
  3857. */
  3858. if (!state_filter)
  3859. debug_show_all_locks();
  3860. }
  3861. void init_idle_bootup_task(struct task_struct *idle)
  3862. {
  3863. idle->sched_class = &idle_sched_class;
  3864. }
  3865. /**
  3866. * init_idle - set up an idle thread for a given CPU
  3867. * @idle: task in question
  3868. * @cpu: cpu the idle task belongs to
  3869. *
  3870. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3871. * flag, to make booting more robust.
  3872. */
  3873. void init_idle(struct task_struct *idle, int cpu)
  3874. {
  3875. struct rq *rq = cpu_rq(cpu);
  3876. unsigned long flags;
  3877. raw_spin_lock_irqsave(&rq->lock, flags);
  3878. __sched_fork(0, idle);
  3879. idle->state = TASK_RUNNING;
  3880. idle->se.exec_start = sched_clock();
  3881. do_set_cpus_allowed(idle, cpumask_of(cpu));
  3882. /*
  3883. * We're having a chicken and egg problem, even though we are
  3884. * holding rq->lock, the cpu isn't yet set to this cpu so the
  3885. * lockdep check in task_group() will fail.
  3886. *
  3887. * Similar case to sched_fork(). / Alternatively we could
  3888. * use task_rq_lock() here and obtain the other rq->lock.
  3889. *
  3890. * Silence PROVE_RCU
  3891. */
  3892. rcu_read_lock();
  3893. __set_task_cpu(idle, cpu);
  3894. rcu_read_unlock();
  3895. rq->curr = rq->idle = idle;
  3896. idle->on_rq = 1;
  3897. #if defined(CONFIG_SMP)
  3898. idle->on_cpu = 1;
  3899. #endif
  3900. raw_spin_unlock_irqrestore(&rq->lock, flags);
  3901. /* Set the preempt count _outside_ the spinlocks! */
  3902. init_idle_preempt_count(idle, cpu);
  3903. /*
  3904. * The idle tasks have their own, simple scheduling class:
  3905. */
  3906. idle->sched_class = &idle_sched_class;
  3907. ftrace_graph_init_idle_task(idle, cpu);
  3908. vtime_init_idle(idle, cpu);
  3909. #if defined(CONFIG_SMP)
  3910. sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
  3911. #endif
  3912. }
  3913. #ifdef CONFIG_SMP
  3914. void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
  3915. {
  3916. if (p->sched_class && p->sched_class->set_cpus_allowed)
  3917. p->sched_class->set_cpus_allowed(p, new_mask);
  3918. cpumask_copy(&p->cpus_allowed, new_mask);
  3919. p->nr_cpus_allowed = cpumask_weight(new_mask);
  3920. }
  3921. /*
  3922. * This is how migration works:
  3923. *
  3924. * 1) we invoke migration_cpu_stop() on the target CPU using
  3925. * stop_one_cpu().
  3926. * 2) stopper starts to run (implicitly forcing the migrated thread
  3927. * off the CPU)
  3928. * 3) it checks whether the migrated task is still in the wrong runqueue.
  3929. * 4) if it's in the wrong runqueue then the migration thread removes
  3930. * it and puts it into the right queue.
  3931. * 5) stopper completes and stop_one_cpu() returns and the migration
  3932. * is done.
  3933. */
  3934. /*
  3935. * Change a given task's CPU affinity. Migrate the thread to a
  3936. * proper CPU and schedule it away if the CPU it's executing on
  3937. * is removed from the allowed bitmask.
  3938. *
  3939. * NOTE: the caller must have a valid reference to the task, the
  3940. * task must not exit() & deallocate itself prematurely. The
  3941. * call is not atomic; no spinlocks may be held.
  3942. */
  3943. int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
  3944. {
  3945. unsigned long flags;
  3946. struct rq *rq;
  3947. unsigned int dest_cpu;
  3948. int ret = 0;
  3949. rq = task_rq_lock(p, &flags);
  3950. if (cpumask_equal(&p->cpus_allowed, new_mask))
  3951. goto out;
  3952. if (!cpumask_intersects(new_mask, cpu_active_mask)) {
  3953. ret = -EINVAL;
  3954. goto out;
  3955. }
  3956. do_set_cpus_allowed(p, new_mask);
  3957. /* Can the task run on the task's current CPU? If so, we're done */
  3958. if (cpumask_test_cpu(task_cpu(p), new_mask))
  3959. goto out;
  3960. dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
  3961. if (p->on_rq) {
  3962. struct migration_arg arg = { p, dest_cpu };
  3963. /* Need help from migration thread: drop lock and wait. */
  3964. task_rq_unlock(rq, p, &flags);
  3965. stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
  3966. tlb_migrate_finish(p->mm);
  3967. return 0;
  3968. }
  3969. out:
  3970. task_rq_unlock(rq, p, &flags);
  3971. return ret;
  3972. }
  3973. EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
  3974. /*
  3975. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3976. * this because either it can't run here any more (set_cpus_allowed()
  3977. * away from this CPU, or CPU going down), or because we're
  3978. * attempting to rebalance this task on exec (sched_exec).
  3979. *
  3980. * So we race with normal scheduler movements, but that's OK, as long
  3981. * as the task is no longer on this CPU.
  3982. *
  3983. * Returns non-zero if task was successfully migrated.
  3984. */
  3985. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  3986. {
  3987. struct rq *rq_dest, *rq_src;
  3988. int ret = 0;
  3989. if (unlikely(!cpu_active(dest_cpu)))
  3990. return ret;
  3991. rq_src = cpu_rq(src_cpu);
  3992. rq_dest = cpu_rq(dest_cpu);
  3993. raw_spin_lock(&p->pi_lock);
  3994. double_rq_lock(rq_src, rq_dest);
  3995. /* Already moved. */
  3996. if (task_cpu(p) != src_cpu)
  3997. goto done;
  3998. /* Affinity changed (again). */
  3999. if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
  4000. goto fail;
  4001. /*
  4002. * If we're not on a rq, the next wake-up will ensure we're
  4003. * placed properly.
  4004. */
  4005. if (p->on_rq) {
  4006. dequeue_task(rq_src, p, 0);
  4007. set_task_cpu(p, dest_cpu);
  4008. enqueue_task(rq_dest, p, 0);
  4009. check_preempt_curr(rq_dest, p, 0);
  4010. }
  4011. done:
  4012. ret = 1;
  4013. fail:
  4014. double_rq_unlock(rq_src, rq_dest);
  4015. raw_spin_unlock(&p->pi_lock);
  4016. return ret;
  4017. }
  4018. #ifdef CONFIG_NUMA_BALANCING
  4019. /* Migrate current task p to target_cpu */
  4020. int migrate_task_to(struct task_struct *p, int target_cpu)
  4021. {
  4022. struct migration_arg arg = { p, target_cpu };
  4023. int curr_cpu = task_cpu(p);
  4024. if (curr_cpu == target_cpu)
  4025. return 0;
  4026. if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
  4027. return -EINVAL;
  4028. /* TODO: This is not properly updating schedstats */
  4029. trace_sched_move_numa(p, curr_cpu, target_cpu);
  4030. return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
  4031. }
  4032. /*
  4033. * Requeue a task on a given node and accurately track the number of NUMA
  4034. * tasks on the runqueues
  4035. */
  4036. void sched_setnuma(struct task_struct *p, int nid)
  4037. {
  4038. struct rq *rq;
  4039. unsigned long flags;
  4040. bool on_rq, running;
  4041. rq = task_rq_lock(p, &flags);
  4042. on_rq = p->on_rq;
  4043. running = task_current(rq, p);
  4044. if (on_rq)
  4045. dequeue_task(rq, p, 0);
  4046. if (running)
  4047. p->sched_class->put_prev_task(rq, p);
  4048. p->numa_preferred_nid = nid;
  4049. if (running)
  4050. p->sched_class->set_curr_task(rq);
  4051. if (on_rq)
  4052. enqueue_task(rq, p, 0);
  4053. task_rq_unlock(rq, p, &flags);
  4054. }
  4055. #endif
  4056. /*
  4057. * migration_cpu_stop - this will be executed by a highprio stopper thread
  4058. * and performs thread migration by bumping thread off CPU then
  4059. * 'pushing' onto another runqueue.
  4060. */
  4061. static int migration_cpu_stop(void *data)
  4062. {
  4063. struct migration_arg *arg = data;
  4064. /*
  4065. * The original target cpu might have gone down and we might
  4066. * be on another cpu but it doesn't matter.
  4067. */
  4068. local_irq_disable();
  4069. __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
  4070. local_irq_enable();
  4071. return 0;
  4072. }
  4073. #ifdef CONFIG_HOTPLUG_CPU
  4074. /*
  4075. * Ensures that the idle task is using init_mm right before its cpu goes
  4076. * offline.
  4077. */
  4078. void idle_task_exit(void)
  4079. {
  4080. struct mm_struct *mm = current->active_mm;
  4081. BUG_ON(cpu_online(smp_processor_id()));
  4082. if (mm != &init_mm) {
  4083. switch_mm(mm, &init_mm, current);
  4084. finish_arch_post_lock_switch();
  4085. }
  4086. mmdrop(mm);
  4087. }
  4088. /*
  4089. * Since this CPU is going 'away' for a while, fold any nr_active delta
  4090. * we might have. Assumes we're called after migrate_tasks() so that the
  4091. * nr_active count is stable.
  4092. *
  4093. * Also see the comment "Global load-average calculations".
  4094. */
  4095. static void calc_load_migrate(struct rq *rq)
  4096. {
  4097. long delta = calc_load_fold_active(rq);
  4098. if (delta)
  4099. atomic_long_add(delta, &calc_load_tasks);
  4100. }
  4101. static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
  4102. {
  4103. }
  4104. static const struct sched_class fake_sched_class = {
  4105. .put_prev_task = put_prev_task_fake,
  4106. };
  4107. static struct task_struct fake_task = {
  4108. /*
  4109. * Avoid pull_{rt,dl}_task()
  4110. */
  4111. .prio = MAX_PRIO + 1,
  4112. .sched_class = &fake_sched_class,
  4113. };
  4114. /*
  4115. * Migrate all tasks from the rq, sleeping tasks will be migrated by
  4116. * try_to_wake_up()->select_task_rq().
  4117. *
  4118. * Called with rq->lock held even though we'er in stop_machine() and
  4119. * there's no concurrency possible, we hold the required locks anyway
  4120. * because of lock validation efforts.
  4121. */
  4122. static void migrate_tasks(unsigned int dead_cpu)
  4123. {
  4124. struct rq *rq = cpu_rq(dead_cpu);
  4125. struct task_struct *next, *stop = rq->stop;
  4126. int dest_cpu;
  4127. /*
  4128. * Fudge the rq selection such that the below task selection loop
  4129. * doesn't get stuck on the currently eligible stop task.
  4130. *
  4131. * We're currently inside stop_machine() and the rq is either stuck
  4132. * in the stop_machine_cpu_stop() loop, or we're executing this code,
  4133. * either way we should never end up calling schedule() until we're
  4134. * done here.
  4135. */
  4136. rq->stop = NULL;
  4137. /*
  4138. * put_prev_task() and pick_next_task() sched
  4139. * class method both need to have an up-to-date
  4140. * value of rq->clock[_task]
  4141. */
  4142. update_rq_clock(rq);
  4143. for ( ; ; ) {
  4144. /*
  4145. * There's this thread running, bail when that's the only
  4146. * remaining thread.
  4147. */
  4148. if (rq->nr_running == 1)
  4149. break;
  4150. next = pick_next_task(rq, &fake_task);
  4151. BUG_ON(!next);
  4152. next->sched_class->put_prev_task(rq, next);
  4153. /* Find suitable destination for @next, with force if needed. */
  4154. dest_cpu = select_fallback_rq(dead_cpu, next);
  4155. raw_spin_unlock(&rq->lock);
  4156. __migrate_task(next, dead_cpu, dest_cpu);
  4157. raw_spin_lock(&rq->lock);
  4158. }
  4159. rq->stop = stop;
  4160. }
  4161. #endif /* CONFIG_HOTPLUG_CPU */
  4162. #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
  4163. static struct ctl_table sd_ctl_dir[] = {
  4164. {
  4165. .procname = "sched_domain",
  4166. .mode = 0555,
  4167. },
  4168. {}
  4169. };
  4170. static struct ctl_table sd_ctl_root[] = {
  4171. {
  4172. .procname = "kernel",
  4173. .mode = 0555,
  4174. .child = sd_ctl_dir,
  4175. },
  4176. {}
  4177. };
  4178. static struct ctl_table *sd_alloc_ctl_entry(int n)
  4179. {
  4180. struct ctl_table *entry =
  4181. kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
  4182. return entry;
  4183. }
  4184. static void sd_free_ctl_entry(struct ctl_table **tablep)
  4185. {
  4186. struct ctl_table *entry;
  4187. /*
  4188. * In the intermediate directories, both the child directory and
  4189. * procname are dynamically allocated and could fail but the mode
  4190. * will always be set. In the lowest directory the names are
  4191. * static strings and all have proc handlers.
  4192. */
  4193. for (entry = *tablep; entry->mode; entry++) {
  4194. if (entry->child)
  4195. sd_free_ctl_entry(&entry->child);
  4196. if (entry->proc_handler == NULL)
  4197. kfree(entry->procname);
  4198. }
  4199. kfree(*tablep);
  4200. *tablep = NULL;
  4201. }
  4202. static int min_load_idx = 0;
  4203. static int max_load_idx = CPU_LOAD_IDX_MAX-1;
  4204. static void
  4205. set_table_entry(struct ctl_table *entry,
  4206. const char *procname, void *data, int maxlen,
  4207. umode_t mode, proc_handler *proc_handler,
  4208. bool load_idx)
  4209. {
  4210. entry->procname = procname;
  4211. entry->data = data;
  4212. entry->maxlen = maxlen;
  4213. entry->mode = mode;
  4214. entry->proc_handler = proc_handler;
  4215. if (load_idx) {
  4216. entry->extra1 = &min_load_idx;
  4217. entry->extra2 = &max_load_idx;
  4218. }
  4219. }
  4220. static struct ctl_table *
  4221. sd_alloc_ctl_domain_table(struct sched_domain *sd)
  4222. {
  4223. struct ctl_table *table = sd_alloc_ctl_entry(14);
  4224. if (table == NULL)
  4225. return NULL;
  4226. set_table_entry(&table[0], "min_interval", &sd->min_interval,
  4227. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4228. set_table_entry(&table[1], "max_interval", &sd->max_interval,
  4229. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4230. set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
  4231. sizeof(int), 0644, proc_dointvec_minmax, true);
  4232. set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
  4233. sizeof(int), 0644, proc_dointvec_minmax, true);
  4234. set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
  4235. sizeof(int), 0644, proc_dointvec_minmax, true);
  4236. set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
  4237. sizeof(int), 0644, proc_dointvec_minmax, true);
  4238. set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
  4239. sizeof(int), 0644, proc_dointvec_minmax, true);
  4240. set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
  4241. sizeof(int), 0644, proc_dointvec_minmax, false);
  4242. set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
  4243. sizeof(int), 0644, proc_dointvec_minmax, false);
  4244. set_table_entry(&table[9], "cache_nice_tries",
  4245. &sd->cache_nice_tries,
  4246. sizeof(int), 0644, proc_dointvec_minmax, false);
  4247. set_table_entry(&table[10], "flags", &sd->flags,
  4248. sizeof(int), 0644, proc_dointvec_minmax, false);
  4249. set_table_entry(&table[11], "max_newidle_lb_cost",
  4250. &sd->max_newidle_lb_cost,
  4251. sizeof(long), 0644, proc_doulongvec_minmax, false);
  4252. set_table_entry(&table[12], "name", sd->name,
  4253. CORENAME_MAX_SIZE, 0444, proc_dostring, false);
  4254. /* &table[13] is terminator */
  4255. return table;
  4256. }
  4257. static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
  4258. {
  4259. struct ctl_table *entry, *table;
  4260. struct sched_domain *sd;
  4261. int domain_num = 0, i;
  4262. char buf[32];
  4263. for_each_domain(cpu, sd)
  4264. domain_num++;
  4265. entry = table = sd_alloc_ctl_entry(domain_num + 1);
  4266. if (table == NULL)
  4267. return NULL;
  4268. i = 0;
  4269. for_each_domain(cpu, sd) {
  4270. snprintf(buf, 32, "domain%d", i);
  4271. entry->procname = kstrdup(buf, GFP_KERNEL);
  4272. entry->mode = 0555;
  4273. entry->child = sd_alloc_ctl_domain_table(sd);
  4274. entry++;
  4275. i++;
  4276. }
  4277. return table;
  4278. }
  4279. static struct ctl_table_header *sd_sysctl_header;
  4280. static void register_sched_domain_sysctl(void)
  4281. {
  4282. int i, cpu_num = num_possible_cpus();
  4283. struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
  4284. char buf[32];
  4285. WARN_ON(sd_ctl_dir[0].child);
  4286. sd_ctl_dir[0].child = entry;
  4287. if (entry == NULL)
  4288. return;
  4289. for_each_possible_cpu(i) {
  4290. snprintf(buf, 32, "cpu%d", i);
  4291. entry->procname = kstrdup(buf, GFP_KERNEL);
  4292. entry->mode = 0555;
  4293. entry->child = sd_alloc_ctl_cpu_table(i);
  4294. entry++;
  4295. }
  4296. WARN_ON(sd_sysctl_header);
  4297. sd_sysctl_header = register_sysctl_table(sd_ctl_root);
  4298. }
  4299. /* may be called multiple times per register */
  4300. static void unregister_sched_domain_sysctl(void)
  4301. {
  4302. if (sd_sysctl_header)
  4303. unregister_sysctl_table(sd_sysctl_header);
  4304. sd_sysctl_header = NULL;
  4305. if (sd_ctl_dir[0].child)
  4306. sd_free_ctl_entry(&sd_ctl_dir[0].child);
  4307. }
  4308. #else
  4309. static void register_sched_domain_sysctl(void)
  4310. {
  4311. }
  4312. static void unregister_sched_domain_sysctl(void)
  4313. {
  4314. }
  4315. #endif
  4316. static void set_rq_online(struct rq *rq)
  4317. {
  4318. if (!rq->online) {
  4319. const struct sched_class *class;
  4320. cpumask_set_cpu(rq->cpu, rq->rd->online);
  4321. rq->online = 1;
  4322. for_each_class(class) {
  4323. if (class->rq_online)
  4324. class->rq_online(rq);
  4325. }
  4326. }
  4327. }
  4328. static void set_rq_offline(struct rq *rq)
  4329. {
  4330. if (rq->online) {
  4331. const struct sched_class *class;
  4332. for_each_class(class) {
  4333. if (class->rq_offline)
  4334. class->rq_offline(rq);
  4335. }
  4336. cpumask_clear_cpu(rq->cpu, rq->rd->online);
  4337. rq->online = 0;
  4338. }
  4339. }
  4340. /*
  4341. * migration_call - callback that gets triggered when a CPU is added.
  4342. * Here we can start up the necessary migration thread for the new CPU.
  4343. */
  4344. static int
  4345. migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
  4346. {
  4347. int cpu = (long)hcpu;
  4348. unsigned long flags;
  4349. struct rq *rq = cpu_rq(cpu);
  4350. switch (action & ~CPU_TASKS_FROZEN) {
  4351. case CPU_UP_PREPARE:
  4352. rq->calc_load_update = calc_load_update;
  4353. break;
  4354. case CPU_ONLINE:
  4355. /* Update our root-domain */
  4356. raw_spin_lock_irqsave(&rq->lock, flags);
  4357. if (rq->rd) {
  4358. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4359. set_rq_online(rq);
  4360. }
  4361. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4362. break;
  4363. #ifdef CONFIG_HOTPLUG_CPU
  4364. case CPU_DYING:
  4365. sched_ttwu_pending();
  4366. /* Update our root-domain */
  4367. raw_spin_lock_irqsave(&rq->lock, flags);
  4368. if (rq->rd) {
  4369. BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
  4370. set_rq_offline(rq);
  4371. }
  4372. migrate_tasks(cpu);
  4373. BUG_ON(rq->nr_running != 1); /* the migration thread */
  4374. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4375. break;
  4376. case CPU_DEAD:
  4377. calc_load_migrate(rq);
  4378. break;
  4379. #endif
  4380. }
  4381. update_max_interval();
  4382. return NOTIFY_OK;
  4383. }
  4384. /*
  4385. * Register at high priority so that task migration (migrate_all_tasks)
  4386. * happens before everything else. This has to be lower priority than
  4387. * the notifier in the perf_event subsystem, though.
  4388. */
  4389. static struct notifier_block migration_notifier = {
  4390. .notifier_call = migration_call,
  4391. .priority = CPU_PRI_MIGRATION,
  4392. };
  4393. static void __cpuinit set_cpu_rq_start_time(void)
  4394. {
  4395. int cpu = smp_processor_id();
  4396. struct rq *rq = cpu_rq(cpu);
  4397. rq->age_stamp = sched_clock_cpu(cpu);
  4398. }
  4399. static int sched_cpu_active(struct notifier_block *nfb,
  4400. unsigned long action, void *hcpu)
  4401. {
  4402. switch (action & ~CPU_TASKS_FROZEN) {
  4403. case CPU_STARTING:
  4404. set_cpu_rq_start_time();
  4405. return NOTIFY_OK;
  4406. case CPU_DOWN_FAILED:
  4407. set_cpu_active((long)hcpu, true);
  4408. return NOTIFY_OK;
  4409. default:
  4410. return NOTIFY_DONE;
  4411. }
  4412. }
  4413. static int sched_cpu_inactive(struct notifier_block *nfb,
  4414. unsigned long action, void *hcpu)
  4415. {
  4416. unsigned long flags;
  4417. long cpu = (long)hcpu;
  4418. switch (action & ~CPU_TASKS_FROZEN) {
  4419. case CPU_DOWN_PREPARE:
  4420. set_cpu_active(cpu, false);
  4421. /* explicitly allow suspend */
  4422. if (!(action & CPU_TASKS_FROZEN)) {
  4423. struct dl_bw *dl_b = dl_bw_of(cpu);
  4424. bool overflow;
  4425. int cpus;
  4426. raw_spin_lock_irqsave(&dl_b->lock, flags);
  4427. cpus = dl_bw_cpus(cpu);
  4428. overflow = __dl_overflow(dl_b, cpus, 0, 0);
  4429. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  4430. if (overflow)
  4431. return notifier_from_errno(-EBUSY);
  4432. }
  4433. return NOTIFY_OK;
  4434. }
  4435. return NOTIFY_DONE;
  4436. }
  4437. static int __init migration_init(void)
  4438. {
  4439. void *cpu = (void *)(long)smp_processor_id();
  4440. int err;
  4441. /* Initialize migration for the boot CPU */
  4442. err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4443. BUG_ON(err == NOTIFY_BAD);
  4444. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4445. register_cpu_notifier(&migration_notifier);
  4446. /* Register cpu active notifiers */
  4447. cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
  4448. cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
  4449. return 0;
  4450. }
  4451. early_initcall(migration_init);
  4452. #endif
  4453. #ifdef CONFIG_SMP
  4454. static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
  4455. #ifdef CONFIG_SCHED_DEBUG
  4456. static __read_mostly int sched_debug_enabled;
  4457. static int __init sched_debug_setup(char *str)
  4458. {
  4459. sched_debug_enabled = 1;
  4460. return 0;
  4461. }
  4462. early_param("sched_debug", sched_debug_setup);
  4463. static inline bool sched_debug(void)
  4464. {
  4465. return sched_debug_enabled;
  4466. }
  4467. static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
  4468. struct cpumask *groupmask)
  4469. {
  4470. struct sched_group *group = sd->groups;
  4471. char str[256];
  4472. cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
  4473. cpumask_clear(groupmask);
  4474. printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
  4475. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4476. printk("does not load-balance\n");
  4477. if (sd->parent)
  4478. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
  4479. " has parent");
  4480. return -1;
  4481. }
  4482. printk(KERN_CONT "span %s level %s\n", str, sd->name);
  4483. if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
  4484. printk(KERN_ERR "ERROR: domain->span does not contain "
  4485. "CPU%d\n", cpu);
  4486. }
  4487. if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
  4488. printk(KERN_ERR "ERROR: domain->groups does not contain"
  4489. " CPU%d\n", cpu);
  4490. }
  4491. printk(KERN_DEBUG "%*s groups:", level + 1, "");
  4492. do {
  4493. if (!group) {
  4494. printk("\n");
  4495. printk(KERN_ERR "ERROR: group is NULL\n");
  4496. break;
  4497. }
  4498. /*
  4499. * Even though we initialize ->capacity to something semi-sane,
  4500. * we leave capacity_orig unset. This allows us to detect if
  4501. * domain iteration is still funny without causing /0 traps.
  4502. */
  4503. if (!group->sgc->capacity_orig) {
  4504. printk(KERN_CONT "\n");
  4505. printk(KERN_ERR "ERROR: domain->cpu_capacity not set\n");
  4506. break;
  4507. }
  4508. if (!cpumask_weight(sched_group_cpus(group))) {
  4509. printk(KERN_CONT "\n");
  4510. printk(KERN_ERR "ERROR: empty group\n");
  4511. break;
  4512. }
  4513. if (!(sd->flags & SD_OVERLAP) &&
  4514. cpumask_intersects(groupmask, sched_group_cpus(group))) {
  4515. printk(KERN_CONT "\n");
  4516. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4517. break;
  4518. }
  4519. cpumask_or(groupmask, groupmask, sched_group_cpus(group));
  4520. cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
  4521. printk(KERN_CONT " %s", str);
  4522. if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
  4523. printk(KERN_CONT " (cpu_capacity = %d)",
  4524. group->sgc->capacity);
  4525. }
  4526. group = group->next;
  4527. } while (group != sd->groups);
  4528. printk(KERN_CONT "\n");
  4529. if (!cpumask_equal(sched_domain_span(sd), groupmask))
  4530. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4531. if (sd->parent &&
  4532. !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
  4533. printk(KERN_ERR "ERROR: parent span is not a superset "
  4534. "of domain->span\n");
  4535. return 0;
  4536. }
  4537. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4538. {
  4539. int level = 0;
  4540. if (!sched_debug_enabled)
  4541. return;
  4542. if (!sd) {
  4543. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4544. return;
  4545. }
  4546. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4547. for (;;) {
  4548. if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
  4549. break;
  4550. level++;
  4551. sd = sd->parent;
  4552. if (!sd)
  4553. break;
  4554. }
  4555. }
  4556. #else /* !CONFIG_SCHED_DEBUG */
  4557. # define sched_domain_debug(sd, cpu) do { } while (0)
  4558. static inline bool sched_debug(void)
  4559. {
  4560. return false;
  4561. }
  4562. #endif /* CONFIG_SCHED_DEBUG */
  4563. static int sd_degenerate(struct sched_domain *sd)
  4564. {
  4565. if (cpumask_weight(sched_domain_span(sd)) == 1)
  4566. return 1;
  4567. /* Following flags need at least 2 groups */
  4568. if (sd->flags & (SD_LOAD_BALANCE |
  4569. SD_BALANCE_NEWIDLE |
  4570. SD_BALANCE_FORK |
  4571. SD_BALANCE_EXEC |
  4572. SD_SHARE_CPUCAPACITY |
  4573. SD_SHARE_PKG_RESOURCES |
  4574. SD_SHARE_POWERDOMAIN)) {
  4575. if (sd->groups != sd->groups->next)
  4576. return 0;
  4577. }
  4578. /* Following flags don't use groups */
  4579. if (sd->flags & (SD_WAKE_AFFINE))
  4580. return 0;
  4581. return 1;
  4582. }
  4583. static int
  4584. sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
  4585. {
  4586. unsigned long cflags = sd->flags, pflags = parent->flags;
  4587. if (sd_degenerate(parent))
  4588. return 1;
  4589. if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
  4590. return 0;
  4591. /* Flags needing groups don't count if only 1 group in parent */
  4592. if (parent->groups == parent->groups->next) {
  4593. pflags &= ~(SD_LOAD_BALANCE |
  4594. SD_BALANCE_NEWIDLE |
  4595. SD_BALANCE_FORK |
  4596. SD_BALANCE_EXEC |
  4597. SD_SHARE_CPUCAPACITY |
  4598. SD_SHARE_PKG_RESOURCES |
  4599. SD_PREFER_SIBLING |
  4600. SD_SHARE_POWERDOMAIN);
  4601. if (nr_node_ids == 1)
  4602. pflags &= ~SD_SERIALIZE;
  4603. }
  4604. if (~cflags & pflags)
  4605. return 0;
  4606. return 1;
  4607. }
  4608. static void free_rootdomain(struct rcu_head *rcu)
  4609. {
  4610. struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
  4611. cpupri_cleanup(&rd->cpupri);
  4612. cpudl_cleanup(&rd->cpudl);
  4613. free_cpumask_var(rd->dlo_mask);
  4614. free_cpumask_var(rd->rto_mask);
  4615. free_cpumask_var(rd->online);
  4616. free_cpumask_var(rd->span);
  4617. kfree(rd);
  4618. }
  4619. static void rq_attach_root(struct rq *rq, struct root_domain *rd)
  4620. {
  4621. struct root_domain *old_rd = NULL;
  4622. unsigned long flags;
  4623. raw_spin_lock_irqsave(&rq->lock, flags);
  4624. if (rq->rd) {
  4625. old_rd = rq->rd;
  4626. if (cpumask_test_cpu(rq->cpu, old_rd->online))
  4627. set_rq_offline(rq);
  4628. cpumask_clear_cpu(rq->cpu, old_rd->span);
  4629. /*
  4630. * If we dont want to free the old_rd yet then
  4631. * set old_rd to NULL to skip the freeing later
  4632. * in this function:
  4633. */
  4634. if (!atomic_dec_and_test(&old_rd->refcount))
  4635. old_rd = NULL;
  4636. }
  4637. atomic_inc(&rd->refcount);
  4638. rq->rd = rd;
  4639. cpumask_set_cpu(rq->cpu, rd->span);
  4640. if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
  4641. set_rq_online(rq);
  4642. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4643. if (old_rd)
  4644. call_rcu_sched(&old_rd->rcu, free_rootdomain);
  4645. }
  4646. static int init_rootdomain(struct root_domain *rd)
  4647. {
  4648. memset(rd, 0, sizeof(*rd));
  4649. if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
  4650. goto out;
  4651. if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
  4652. goto free_span;
  4653. if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
  4654. goto free_online;
  4655. if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
  4656. goto free_dlo_mask;
  4657. init_dl_bw(&rd->dl_bw);
  4658. if (cpudl_init(&rd->cpudl) != 0)
  4659. goto free_dlo_mask;
  4660. if (cpupri_init(&rd->cpupri) != 0)
  4661. goto free_rto_mask;
  4662. return 0;
  4663. free_rto_mask:
  4664. free_cpumask_var(rd->rto_mask);
  4665. free_dlo_mask:
  4666. free_cpumask_var(rd->dlo_mask);
  4667. free_online:
  4668. free_cpumask_var(rd->online);
  4669. free_span:
  4670. free_cpumask_var(rd->span);
  4671. out:
  4672. return -ENOMEM;
  4673. }
  4674. /*
  4675. * By default the system creates a single root-domain with all cpus as
  4676. * members (mimicking the global state we have today).
  4677. */
  4678. struct root_domain def_root_domain;
  4679. static void init_defrootdomain(void)
  4680. {
  4681. init_rootdomain(&def_root_domain);
  4682. atomic_set(&def_root_domain.refcount, 1);
  4683. }
  4684. static struct root_domain *alloc_rootdomain(void)
  4685. {
  4686. struct root_domain *rd;
  4687. rd = kmalloc(sizeof(*rd), GFP_KERNEL);
  4688. if (!rd)
  4689. return NULL;
  4690. if (init_rootdomain(rd) != 0) {
  4691. kfree(rd);
  4692. return NULL;
  4693. }
  4694. return rd;
  4695. }
  4696. static void free_sched_groups(struct sched_group *sg, int free_sgc)
  4697. {
  4698. struct sched_group *tmp, *first;
  4699. if (!sg)
  4700. return;
  4701. first = sg;
  4702. do {
  4703. tmp = sg->next;
  4704. if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
  4705. kfree(sg->sgc);
  4706. kfree(sg);
  4707. sg = tmp;
  4708. } while (sg != first);
  4709. }
  4710. static void free_sched_domain(struct rcu_head *rcu)
  4711. {
  4712. struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
  4713. /*
  4714. * If its an overlapping domain it has private groups, iterate and
  4715. * nuke them all.
  4716. */
  4717. if (sd->flags & SD_OVERLAP) {
  4718. free_sched_groups(sd->groups, 1);
  4719. } else if (atomic_dec_and_test(&sd->groups->ref)) {
  4720. kfree(sd->groups->sgc);
  4721. kfree(sd->groups);
  4722. }
  4723. kfree(sd);
  4724. }
  4725. static void destroy_sched_domain(struct sched_domain *sd, int cpu)
  4726. {
  4727. call_rcu(&sd->rcu, free_sched_domain);
  4728. }
  4729. static void destroy_sched_domains(struct sched_domain *sd, int cpu)
  4730. {
  4731. for (; sd; sd = sd->parent)
  4732. destroy_sched_domain(sd, cpu);
  4733. }
  4734. /*
  4735. * Keep a special pointer to the highest sched_domain that has
  4736. * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
  4737. * allows us to avoid some pointer chasing select_idle_sibling().
  4738. *
  4739. * Also keep a unique ID per domain (we use the first cpu number in
  4740. * the cpumask of the domain), this allows us to quickly tell if
  4741. * two cpus are in the same cache domain, see cpus_share_cache().
  4742. */
  4743. DEFINE_PER_CPU(struct sched_domain *, sd_llc);
  4744. DEFINE_PER_CPU(int, sd_llc_size);
  4745. DEFINE_PER_CPU(int, sd_llc_id);
  4746. DEFINE_PER_CPU(struct sched_domain *, sd_numa);
  4747. DEFINE_PER_CPU(struct sched_domain *, sd_busy);
  4748. DEFINE_PER_CPU(struct sched_domain *, sd_asym);
  4749. static void update_top_cache_domain(int cpu)
  4750. {
  4751. struct sched_domain *sd;
  4752. struct sched_domain *busy_sd = NULL;
  4753. int id = cpu;
  4754. int size = 1;
  4755. sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
  4756. if (sd) {
  4757. id = cpumask_first(sched_domain_span(sd));
  4758. size = cpumask_weight(sched_domain_span(sd));
  4759. busy_sd = sd->parent; /* sd_busy */
  4760. }
  4761. rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
  4762. rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
  4763. per_cpu(sd_llc_size, cpu) = size;
  4764. per_cpu(sd_llc_id, cpu) = id;
  4765. sd = lowest_flag_domain(cpu, SD_NUMA);
  4766. rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
  4767. sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
  4768. rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
  4769. }
  4770. /*
  4771. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4772. * hold the hotplug lock.
  4773. */
  4774. static void
  4775. cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
  4776. {
  4777. struct rq *rq = cpu_rq(cpu);
  4778. struct sched_domain *tmp;
  4779. /* Remove the sched domains which do not contribute to scheduling. */
  4780. for (tmp = sd; tmp; ) {
  4781. struct sched_domain *parent = tmp->parent;
  4782. if (!parent)
  4783. break;
  4784. if (sd_parent_degenerate(tmp, parent)) {
  4785. tmp->parent = parent->parent;
  4786. if (parent->parent)
  4787. parent->parent->child = tmp;
  4788. /*
  4789. * Transfer SD_PREFER_SIBLING down in case of a
  4790. * degenerate parent; the spans match for this
  4791. * so the property transfers.
  4792. */
  4793. if (parent->flags & SD_PREFER_SIBLING)
  4794. tmp->flags |= SD_PREFER_SIBLING;
  4795. destroy_sched_domain(parent, cpu);
  4796. } else
  4797. tmp = tmp->parent;
  4798. }
  4799. if (sd && sd_degenerate(sd)) {
  4800. tmp = sd;
  4801. sd = sd->parent;
  4802. destroy_sched_domain(tmp, cpu);
  4803. if (sd)
  4804. sd->child = NULL;
  4805. }
  4806. sched_domain_debug(sd, cpu);
  4807. rq_attach_root(rq, rd);
  4808. tmp = rq->sd;
  4809. rcu_assign_pointer(rq->sd, sd);
  4810. destroy_sched_domains(tmp, cpu);
  4811. update_top_cache_domain(cpu);
  4812. }
  4813. /* cpus with isolated domains */
  4814. static cpumask_var_t cpu_isolated_map;
  4815. /* Setup the mask of cpus configured for isolated domains */
  4816. static int __init isolated_cpu_setup(char *str)
  4817. {
  4818. alloc_bootmem_cpumask_var(&cpu_isolated_map);
  4819. cpulist_parse(str, cpu_isolated_map);
  4820. return 1;
  4821. }
  4822. __setup("isolcpus=", isolated_cpu_setup);
  4823. struct s_data {
  4824. struct sched_domain ** __percpu sd;
  4825. struct root_domain *rd;
  4826. };
  4827. enum s_alloc {
  4828. sa_rootdomain,
  4829. sa_sd,
  4830. sa_sd_storage,
  4831. sa_none,
  4832. };
  4833. /*
  4834. * Build an iteration mask that can exclude certain CPUs from the upwards
  4835. * domain traversal.
  4836. *
  4837. * Asymmetric node setups can result in situations where the domain tree is of
  4838. * unequal depth, make sure to skip domains that already cover the entire
  4839. * range.
  4840. *
  4841. * In that case build_sched_domains() will have terminated the iteration early
  4842. * and our sibling sd spans will be empty. Domains should always include the
  4843. * cpu they're built on, so check that.
  4844. *
  4845. */
  4846. static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
  4847. {
  4848. const struct cpumask *span = sched_domain_span(sd);
  4849. struct sd_data *sdd = sd->private;
  4850. struct sched_domain *sibling;
  4851. int i;
  4852. for_each_cpu(i, span) {
  4853. sibling = *per_cpu_ptr(sdd->sd, i);
  4854. if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
  4855. continue;
  4856. cpumask_set_cpu(i, sched_group_mask(sg));
  4857. }
  4858. }
  4859. /*
  4860. * Return the canonical balance cpu for this group, this is the first cpu
  4861. * of this group that's also in the iteration mask.
  4862. */
  4863. int group_balance_cpu(struct sched_group *sg)
  4864. {
  4865. return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
  4866. }
  4867. static int
  4868. build_overlap_sched_groups(struct sched_domain *sd, int cpu)
  4869. {
  4870. struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
  4871. const struct cpumask *span = sched_domain_span(sd);
  4872. struct cpumask *covered = sched_domains_tmpmask;
  4873. struct sd_data *sdd = sd->private;
  4874. struct sched_domain *child;
  4875. int i;
  4876. cpumask_clear(covered);
  4877. for_each_cpu(i, span) {
  4878. struct cpumask *sg_span;
  4879. if (cpumask_test_cpu(i, covered))
  4880. continue;
  4881. child = *per_cpu_ptr(sdd->sd, i);
  4882. /* See the comment near build_group_mask(). */
  4883. if (!cpumask_test_cpu(i, sched_domain_span(child)))
  4884. continue;
  4885. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  4886. GFP_KERNEL, cpu_to_node(cpu));
  4887. if (!sg)
  4888. goto fail;
  4889. sg_span = sched_group_cpus(sg);
  4890. if (child->child) {
  4891. child = child->child;
  4892. cpumask_copy(sg_span, sched_domain_span(child));
  4893. } else
  4894. cpumask_set_cpu(i, sg_span);
  4895. cpumask_or(covered, covered, sg_span);
  4896. sg->sgc = *per_cpu_ptr(sdd->sgc, i);
  4897. if (atomic_inc_return(&sg->sgc->ref) == 1)
  4898. build_group_mask(sd, sg);
  4899. /*
  4900. * Initialize sgc->capacity such that even if we mess up the
  4901. * domains and no possible iteration will get us here, we won't
  4902. * die on a /0 trap.
  4903. */
  4904. sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
  4905. sg->sgc->capacity_orig = sg->sgc->capacity;
  4906. /*
  4907. * Make sure the first group of this domain contains the
  4908. * canonical balance cpu. Otherwise the sched_domain iteration
  4909. * breaks. See update_sg_lb_stats().
  4910. */
  4911. if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
  4912. group_balance_cpu(sg) == cpu)
  4913. groups = sg;
  4914. if (!first)
  4915. first = sg;
  4916. if (last)
  4917. last->next = sg;
  4918. last = sg;
  4919. last->next = first;
  4920. }
  4921. sd->groups = groups;
  4922. return 0;
  4923. fail:
  4924. free_sched_groups(first, 0);
  4925. return -ENOMEM;
  4926. }
  4927. static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
  4928. {
  4929. struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
  4930. struct sched_domain *child = sd->child;
  4931. if (child)
  4932. cpu = cpumask_first(sched_domain_span(child));
  4933. if (sg) {
  4934. *sg = *per_cpu_ptr(sdd->sg, cpu);
  4935. (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
  4936. atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
  4937. }
  4938. return cpu;
  4939. }
  4940. /*
  4941. * build_sched_groups will build a circular linked list of the groups
  4942. * covered by the given span, and will set each group's ->cpumask correctly,
  4943. * and ->cpu_capacity to 0.
  4944. *
  4945. * Assumes the sched_domain tree is fully constructed
  4946. */
  4947. static int
  4948. build_sched_groups(struct sched_domain *sd, int cpu)
  4949. {
  4950. struct sched_group *first = NULL, *last = NULL;
  4951. struct sd_data *sdd = sd->private;
  4952. const struct cpumask *span = sched_domain_span(sd);
  4953. struct cpumask *covered;
  4954. int i;
  4955. get_group(cpu, sdd, &sd->groups);
  4956. atomic_inc(&sd->groups->ref);
  4957. if (cpu != cpumask_first(span))
  4958. return 0;
  4959. lockdep_assert_held(&sched_domains_mutex);
  4960. covered = sched_domains_tmpmask;
  4961. cpumask_clear(covered);
  4962. for_each_cpu(i, span) {
  4963. struct sched_group *sg;
  4964. int group, j;
  4965. if (cpumask_test_cpu(i, covered))
  4966. continue;
  4967. group = get_group(i, sdd, &sg);
  4968. cpumask_setall(sched_group_mask(sg));
  4969. for_each_cpu(j, span) {
  4970. if (get_group(j, sdd, NULL) != group)
  4971. continue;
  4972. cpumask_set_cpu(j, covered);
  4973. cpumask_set_cpu(j, sched_group_cpus(sg));
  4974. }
  4975. if (!first)
  4976. first = sg;
  4977. if (last)
  4978. last->next = sg;
  4979. last = sg;
  4980. }
  4981. last->next = first;
  4982. return 0;
  4983. }
  4984. /*
  4985. * Initialize sched groups cpu_capacity.
  4986. *
  4987. * cpu_capacity indicates the capacity of sched group, which is used while
  4988. * distributing the load between different sched groups in a sched domain.
  4989. * Typically cpu_capacity for all the groups in a sched domain will be same
  4990. * unless there are asymmetries in the topology. If there are asymmetries,
  4991. * group having more cpu_capacity will pickup more load compared to the
  4992. * group having less cpu_capacity.
  4993. */
  4994. static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
  4995. {
  4996. struct sched_group *sg = sd->groups;
  4997. WARN_ON(!sg);
  4998. do {
  4999. sg->group_weight = cpumask_weight(sched_group_cpus(sg));
  5000. sg = sg->next;
  5001. } while (sg != sd->groups);
  5002. if (cpu != group_balance_cpu(sg))
  5003. return;
  5004. update_group_capacity(sd, cpu);
  5005. atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
  5006. }
  5007. /*
  5008. * Initializers for schedule domains
  5009. * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
  5010. */
  5011. static int default_relax_domain_level = -1;
  5012. int sched_domain_level_max;
  5013. static int __init setup_relax_domain_level(char *str)
  5014. {
  5015. if (kstrtoint(str, 0, &default_relax_domain_level))
  5016. pr_warn("Unable to set relax_domain_level\n");
  5017. return 1;
  5018. }
  5019. __setup("relax_domain_level=", setup_relax_domain_level);
  5020. static void set_domain_attribute(struct sched_domain *sd,
  5021. struct sched_domain_attr *attr)
  5022. {
  5023. int request;
  5024. if (!attr || attr->relax_domain_level < 0) {
  5025. if (default_relax_domain_level < 0)
  5026. return;
  5027. else
  5028. request = default_relax_domain_level;
  5029. } else
  5030. request = attr->relax_domain_level;
  5031. if (request < sd->level) {
  5032. /* turn off idle balance on this domain */
  5033. sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5034. } else {
  5035. /* turn on idle balance on this domain */
  5036. sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
  5037. }
  5038. }
  5039. static void __sdt_free(const struct cpumask *cpu_map);
  5040. static int __sdt_alloc(const struct cpumask *cpu_map);
  5041. static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
  5042. const struct cpumask *cpu_map)
  5043. {
  5044. switch (what) {
  5045. case sa_rootdomain:
  5046. if (!atomic_read(&d->rd->refcount))
  5047. free_rootdomain(&d->rd->rcu); /* fall through */
  5048. case sa_sd:
  5049. free_percpu(d->sd); /* fall through */
  5050. case sa_sd_storage:
  5051. __sdt_free(cpu_map); /* fall through */
  5052. case sa_none:
  5053. break;
  5054. }
  5055. }
  5056. static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
  5057. const struct cpumask *cpu_map)
  5058. {
  5059. memset(d, 0, sizeof(*d));
  5060. if (__sdt_alloc(cpu_map))
  5061. return sa_sd_storage;
  5062. d->sd = alloc_percpu(struct sched_domain *);
  5063. if (!d->sd)
  5064. return sa_sd_storage;
  5065. d->rd = alloc_rootdomain();
  5066. if (!d->rd)
  5067. return sa_sd;
  5068. return sa_rootdomain;
  5069. }
  5070. /*
  5071. * NULL the sd_data elements we've used to build the sched_domain and
  5072. * sched_group structure so that the subsequent __free_domain_allocs()
  5073. * will not free the data we're using.
  5074. */
  5075. static void claim_allocations(int cpu, struct sched_domain *sd)
  5076. {
  5077. struct sd_data *sdd = sd->private;
  5078. WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
  5079. *per_cpu_ptr(sdd->sd, cpu) = NULL;
  5080. if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
  5081. *per_cpu_ptr(sdd->sg, cpu) = NULL;
  5082. if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
  5083. *per_cpu_ptr(sdd->sgc, cpu) = NULL;
  5084. }
  5085. #ifdef CONFIG_NUMA
  5086. static int sched_domains_numa_levels;
  5087. static int *sched_domains_numa_distance;
  5088. static struct cpumask ***sched_domains_numa_masks;
  5089. static int sched_domains_curr_level;
  5090. #endif
  5091. /*
  5092. * SD_flags allowed in topology descriptions.
  5093. *
  5094. * SD_SHARE_CPUCAPACITY - describes SMT topologies
  5095. * SD_SHARE_PKG_RESOURCES - describes shared caches
  5096. * SD_NUMA - describes NUMA topologies
  5097. * SD_SHARE_POWERDOMAIN - describes shared power domain
  5098. *
  5099. * Odd one out:
  5100. * SD_ASYM_PACKING - describes SMT quirks
  5101. */
  5102. #define TOPOLOGY_SD_FLAGS \
  5103. (SD_SHARE_CPUCAPACITY | \
  5104. SD_SHARE_PKG_RESOURCES | \
  5105. SD_NUMA | \
  5106. SD_ASYM_PACKING | \
  5107. SD_SHARE_POWERDOMAIN)
  5108. static struct sched_domain *
  5109. sd_init(struct sched_domain_topology_level *tl, int cpu)
  5110. {
  5111. struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
  5112. int sd_weight, sd_flags = 0;
  5113. #ifdef CONFIG_NUMA
  5114. /*
  5115. * Ugly hack to pass state to sd_numa_mask()...
  5116. */
  5117. sched_domains_curr_level = tl->numa_level;
  5118. #endif
  5119. sd_weight = cpumask_weight(tl->mask(cpu));
  5120. if (tl->sd_flags)
  5121. sd_flags = (*tl->sd_flags)();
  5122. if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
  5123. "wrong sd_flags in topology description\n"))
  5124. sd_flags &= ~TOPOLOGY_SD_FLAGS;
  5125. *sd = (struct sched_domain){
  5126. .min_interval = sd_weight,
  5127. .max_interval = 2*sd_weight,
  5128. .busy_factor = 32,
  5129. .imbalance_pct = 125,
  5130. .cache_nice_tries = 0,
  5131. .busy_idx = 0,
  5132. .idle_idx = 0,
  5133. .newidle_idx = 0,
  5134. .wake_idx = 0,
  5135. .forkexec_idx = 0,
  5136. .flags = 1*SD_LOAD_BALANCE
  5137. | 1*SD_BALANCE_NEWIDLE
  5138. | 1*SD_BALANCE_EXEC
  5139. | 1*SD_BALANCE_FORK
  5140. | 0*SD_BALANCE_WAKE
  5141. | 1*SD_WAKE_AFFINE
  5142. | 0*SD_SHARE_CPUCAPACITY
  5143. | 0*SD_SHARE_PKG_RESOURCES
  5144. | 0*SD_SERIALIZE
  5145. | 0*SD_PREFER_SIBLING
  5146. | 0*SD_NUMA
  5147. | sd_flags
  5148. ,
  5149. .last_balance = jiffies,
  5150. .balance_interval = sd_weight,
  5151. .smt_gain = 0,
  5152. .max_newidle_lb_cost = 0,
  5153. .next_decay_max_lb_cost = jiffies,
  5154. #ifdef CONFIG_SCHED_DEBUG
  5155. .name = tl->name,
  5156. #endif
  5157. };
  5158. /*
  5159. * Convert topological properties into behaviour.
  5160. */
  5161. if (sd->flags & SD_SHARE_CPUCAPACITY) {
  5162. sd->imbalance_pct = 110;
  5163. sd->smt_gain = 1178; /* ~15% */
  5164. } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
  5165. sd->imbalance_pct = 117;
  5166. sd->cache_nice_tries = 1;
  5167. sd->busy_idx = 2;
  5168. #ifdef CONFIG_NUMA
  5169. } else if (sd->flags & SD_NUMA) {
  5170. sd->cache_nice_tries = 2;
  5171. sd->busy_idx = 3;
  5172. sd->idle_idx = 2;
  5173. sd->flags |= SD_SERIALIZE;
  5174. if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
  5175. sd->flags &= ~(SD_BALANCE_EXEC |
  5176. SD_BALANCE_FORK |
  5177. SD_WAKE_AFFINE);
  5178. }
  5179. #endif
  5180. } else {
  5181. sd->flags |= SD_PREFER_SIBLING;
  5182. sd->cache_nice_tries = 1;
  5183. sd->busy_idx = 2;
  5184. sd->idle_idx = 1;
  5185. }
  5186. sd->private = &tl->data;
  5187. return sd;
  5188. }
  5189. /*
  5190. * Topology list, bottom-up.
  5191. */
  5192. static struct sched_domain_topology_level default_topology[] = {
  5193. #ifdef CONFIG_SCHED_SMT
  5194. { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
  5195. #endif
  5196. #ifdef CONFIG_SCHED_MC
  5197. { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
  5198. #endif
  5199. { cpu_cpu_mask, SD_INIT_NAME(DIE) },
  5200. { NULL, },
  5201. };
  5202. struct sched_domain_topology_level *sched_domain_topology = default_topology;
  5203. #define for_each_sd_topology(tl) \
  5204. for (tl = sched_domain_topology; tl->mask; tl++)
  5205. void set_sched_topology(struct sched_domain_topology_level *tl)
  5206. {
  5207. sched_domain_topology = tl;
  5208. }
  5209. #ifdef CONFIG_NUMA
  5210. static const struct cpumask *sd_numa_mask(int cpu)
  5211. {
  5212. return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
  5213. }
  5214. static void sched_numa_warn(const char *str)
  5215. {
  5216. static int done = false;
  5217. int i,j;
  5218. if (done)
  5219. return;
  5220. done = true;
  5221. printk(KERN_WARNING "ERROR: %s\n\n", str);
  5222. for (i = 0; i < nr_node_ids; i++) {
  5223. printk(KERN_WARNING " ");
  5224. for (j = 0; j < nr_node_ids; j++)
  5225. printk(KERN_CONT "%02d ", node_distance(i,j));
  5226. printk(KERN_CONT "\n");
  5227. }
  5228. printk(KERN_WARNING "\n");
  5229. }
  5230. static bool find_numa_distance(int distance)
  5231. {
  5232. int i;
  5233. if (distance == node_distance(0, 0))
  5234. return true;
  5235. for (i = 0; i < sched_domains_numa_levels; i++) {
  5236. if (sched_domains_numa_distance[i] == distance)
  5237. return true;
  5238. }
  5239. return false;
  5240. }
  5241. static void sched_init_numa(void)
  5242. {
  5243. int next_distance, curr_distance = node_distance(0, 0);
  5244. struct sched_domain_topology_level *tl;
  5245. int level = 0;
  5246. int i, j, k;
  5247. sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
  5248. if (!sched_domains_numa_distance)
  5249. return;
  5250. /*
  5251. * O(nr_nodes^2) deduplicating selection sort -- in order to find the
  5252. * unique distances in the node_distance() table.
  5253. *
  5254. * Assumes node_distance(0,j) includes all distances in
  5255. * node_distance(i,j) in order to avoid cubic time.
  5256. */
  5257. next_distance = curr_distance;
  5258. for (i = 0; i < nr_node_ids; i++) {
  5259. for (j = 0; j < nr_node_ids; j++) {
  5260. for (k = 0; k < nr_node_ids; k++) {
  5261. int distance = node_distance(i, k);
  5262. if (distance > curr_distance &&
  5263. (distance < next_distance ||
  5264. next_distance == curr_distance))
  5265. next_distance = distance;
  5266. /*
  5267. * While not a strong assumption it would be nice to know
  5268. * about cases where if node A is connected to B, B is not
  5269. * equally connected to A.
  5270. */
  5271. if (sched_debug() && node_distance(k, i) != distance)
  5272. sched_numa_warn("Node-distance not symmetric");
  5273. if (sched_debug() && i && !find_numa_distance(distance))
  5274. sched_numa_warn("Node-0 not representative");
  5275. }
  5276. if (next_distance != curr_distance) {
  5277. sched_domains_numa_distance[level++] = next_distance;
  5278. sched_domains_numa_levels = level;
  5279. curr_distance = next_distance;
  5280. } else break;
  5281. }
  5282. /*
  5283. * In case of sched_debug() we verify the above assumption.
  5284. */
  5285. if (!sched_debug())
  5286. break;
  5287. }
  5288. /*
  5289. * 'level' contains the number of unique distances, excluding the
  5290. * identity distance node_distance(i,i).
  5291. *
  5292. * The sched_domains_numa_distance[] array includes the actual distance
  5293. * numbers.
  5294. */
  5295. /*
  5296. * Here, we should temporarily reset sched_domains_numa_levels to 0.
  5297. * If it fails to allocate memory for array sched_domains_numa_masks[][],
  5298. * the array will contain less then 'level' members. This could be
  5299. * dangerous when we use it to iterate array sched_domains_numa_masks[][]
  5300. * in other functions.
  5301. *
  5302. * We reset it to 'level' at the end of this function.
  5303. */
  5304. sched_domains_numa_levels = 0;
  5305. sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
  5306. if (!sched_domains_numa_masks)
  5307. return;
  5308. /*
  5309. * Now for each level, construct a mask per node which contains all
  5310. * cpus of nodes that are that many hops away from us.
  5311. */
  5312. for (i = 0; i < level; i++) {
  5313. sched_domains_numa_masks[i] =
  5314. kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
  5315. if (!sched_domains_numa_masks[i])
  5316. return;
  5317. for (j = 0; j < nr_node_ids; j++) {
  5318. struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
  5319. if (!mask)
  5320. return;
  5321. sched_domains_numa_masks[i][j] = mask;
  5322. for (k = 0; k < nr_node_ids; k++) {
  5323. if (node_distance(j, k) > sched_domains_numa_distance[i])
  5324. continue;
  5325. cpumask_or(mask, mask, cpumask_of_node(k));
  5326. }
  5327. }
  5328. }
  5329. /* Compute default topology size */
  5330. for (i = 0; sched_domain_topology[i].mask; i++);
  5331. tl = kzalloc((i + level + 1) *
  5332. sizeof(struct sched_domain_topology_level), GFP_KERNEL);
  5333. if (!tl)
  5334. return;
  5335. /*
  5336. * Copy the default topology bits..
  5337. */
  5338. for (i = 0; sched_domain_topology[i].mask; i++)
  5339. tl[i] = sched_domain_topology[i];
  5340. /*
  5341. * .. and append 'j' levels of NUMA goodness.
  5342. */
  5343. for (j = 0; j < level; i++, j++) {
  5344. tl[i] = (struct sched_domain_topology_level){
  5345. .mask = sd_numa_mask,
  5346. .sd_flags = cpu_numa_flags,
  5347. .flags = SDTL_OVERLAP,
  5348. .numa_level = j,
  5349. SD_INIT_NAME(NUMA)
  5350. };
  5351. }
  5352. sched_domain_topology = tl;
  5353. sched_domains_numa_levels = level;
  5354. }
  5355. static void sched_domains_numa_masks_set(int cpu)
  5356. {
  5357. int i, j;
  5358. int node = cpu_to_node(cpu);
  5359. for (i = 0; i < sched_domains_numa_levels; i++) {
  5360. for (j = 0; j < nr_node_ids; j++) {
  5361. if (node_distance(j, node) <= sched_domains_numa_distance[i])
  5362. cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
  5363. }
  5364. }
  5365. }
  5366. static void sched_domains_numa_masks_clear(int cpu)
  5367. {
  5368. int i, j;
  5369. for (i = 0; i < sched_domains_numa_levels; i++) {
  5370. for (j = 0; j < nr_node_ids; j++)
  5371. cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
  5372. }
  5373. }
  5374. /*
  5375. * Update sched_domains_numa_masks[level][node] array when new cpus
  5376. * are onlined.
  5377. */
  5378. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5379. unsigned long action,
  5380. void *hcpu)
  5381. {
  5382. int cpu = (long)hcpu;
  5383. switch (action & ~CPU_TASKS_FROZEN) {
  5384. case CPU_ONLINE:
  5385. sched_domains_numa_masks_set(cpu);
  5386. break;
  5387. case CPU_DEAD:
  5388. sched_domains_numa_masks_clear(cpu);
  5389. break;
  5390. default:
  5391. return NOTIFY_DONE;
  5392. }
  5393. return NOTIFY_OK;
  5394. }
  5395. #else
  5396. static inline void sched_init_numa(void)
  5397. {
  5398. }
  5399. static int sched_domains_numa_masks_update(struct notifier_block *nfb,
  5400. unsigned long action,
  5401. void *hcpu)
  5402. {
  5403. return 0;
  5404. }
  5405. #endif /* CONFIG_NUMA */
  5406. static int __sdt_alloc(const struct cpumask *cpu_map)
  5407. {
  5408. struct sched_domain_topology_level *tl;
  5409. int j;
  5410. for_each_sd_topology(tl) {
  5411. struct sd_data *sdd = &tl->data;
  5412. sdd->sd = alloc_percpu(struct sched_domain *);
  5413. if (!sdd->sd)
  5414. return -ENOMEM;
  5415. sdd->sg = alloc_percpu(struct sched_group *);
  5416. if (!sdd->sg)
  5417. return -ENOMEM;
  5418. sdd->sgc = alloc_percpu(struct sched_group_capacity *);
  5419. if (!sdd->sgc)
  5420. return -ENOMEM;
  5421. for_each_cpu(j, cpu_map) {
  5422. struct sched_domain *sd;
  5423. struct sched_group *sg;
  5424. struct sched_group_capacity *sgc;
  5425. sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
  5426. GFP_KERNEL, cpu_to_node(j));
  5427. if (!sd)
  5428. return -ENOMEM;
  5429. *per_cpu_ptr(sdd->sd, j) = sd;
  5430. sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
  5431. GFP_KERNEL, cpu_to_node(j));
  5432. if (!sg)
  5433. return -ENOMEM;
  5434. sg->next = sg;
  5435. *per_cpu_ptr(sdd->sg, j) = sg;
  5436. sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
  5437. GFP_KERNEL, cpu_to_node(j));
  5438. if (!sgc)
  5439. return -ENOMEM;
  5440. *per_cpu_ptr(sdd->sgc, j) = sgc;
  5441. }
  5442. }
  5443. return 0;
  5444. }
  5445. static void __sdt_free(const struct cpumask *cpu_map)
  5446. {
  5447. struct sched_domain_topology_level *tl;
  5448. int j;
  5449. for_each_sd_topology(tl) {
  5450. struct sd_data *sdd = &tl->data;
  5451. for_each_cpu(j, cpu_map) {
  5452. struct sched_domain *sd;
  5453. if (sdd->sd) {
  5454. sd = *per_cpu_ptr(sdd->sd, j);
  5455. if (sd && (sd->flags & SD_OVERLAP))
  5456. free_sched_groups(sd->groups, 0);
  5457. kfree(*per_cpu_ptr(sdd->sd, j));
  5458. }
  5459. if (sdd->sg)
  5460. kfree(*per_cpu_ptr(sdd->sg, j));
  5461. if (sdd->sgc)
  5462. kfree(*per_cpu_ptr(sdd->sgc, j));
  5463. }
  5464. free_percpu(sdd->sd);
  5465. sdd->sd = NULL;
  5466. free_percpu(sdd->sg);
  5467. sdd->sg = NULL;
  5468. free_percpu(sdd->sgc);
  5469. sdd->sgc = NULL;
  5470. }
  5471. }
  5472. struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
  5473. const struct cpumask *cpu_map, struct sched_domain_attr *attr,
  5474. struct sched_domain *child, int cpu)
  5475. {
  5476. struct sched_domain *sd = sd_init(tl, cpu);
  5477. if (!sd)
  5478. return child;
  5479. cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
  5480. if (child) {
  5481. sd->level = child->level + 1;
  5482. sched_domain_level_max = max(sched_domain_level_max, sd->level);
  5483. child->parent = sd;
  5484. sd->child = child;
  5485. }
  5486. set_domain_attribute(sd, attr);
  5487. return sd;
  5488. }
  5489. /*
  5490. * Build sched domains for a given set of cpus and attach the sched domains
  5491. * to the individual cpus
  5492. */
  5493. static int build_sched_domains(const struct cpumask *cpu_map,
  5494. struct sched_domain_attr *attr)
  5495. {
  5496. enum s_alloc alloc_state;
  5497. struct sched_domain *sd;
  5498. struct s_data d;
  5499. int i, ret = -ENOMEM;
  5500. alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
  5501. if (alloc_state != sa_rootdomain)
  5502. goto error;
  5503. /* Set up domains for cpus specified by the cpu_map. */
  5504. for_each_cpu(i, cpu_map) {
  5505. struct sched_domain_topology_level *tl;
  5506. sd = NULL;
  5507. for_each_sd_topology(tl) {
  5508. sd = build_sched_domain(tl, cpu_map, attr, sd, i);
  5509. if (tl == sched_domain_topology)
  5510. *per_cpu_ptr(d.sd, i) = sd;
  5511. if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
  5512. sd->flags |= SD_OVERLAP;
  5513. if (cpumask_equal(cpu_map, sched_domain_span(sd)))
  5514. break;
  5515. }
  5516. }
  5517. /* Build the groups for the domains */
  5518. for_each_cpu(i, cpu_map) {
  5519. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5520. sd->span_weight = cpumask_weight(sched_domain_span(sd));
  5521. if (sd->flags & SD_OVERLAP) {
  5522. if (build_overlap_sched_groups(sd, i))
  5523. goto error;
  5524. } else {
  5525. if (build_sched_groups(sd, i))
  5526. goto error;
  5527. }
  5528. }
  5529. }
  5530. /* Calculate CPU capacity for physical packages and nodes */
  5531. for (i = nr_cpumask_bits-1; i >= 0; i--) {
  5532. if (!cpumask_test_cpu(i, cpu_map))
  5533. continue;
  5534. for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
  5535. claim_allocations(i, sd);
  5536. init_sched_groups_capacity(i, sd);
  5537. }
  5538. }
  5539. /* Attach the domains */
  5540. rcu_read_lock();
  5541. for_each_cpu(i, cpu_map) {
  5542. sd = *per_cpu_ptr(d.sd, i);
  5543. cpu_attach_domain(sd, d.rd, i);
  5544. }
  5545. rcu_read_unlock();
  5546. ret = 0;
  5547. error:
  5548. __free_domain_allocs(&d, alloc_state, cpu_map);
  5549. return ret;
  5550. }
  5551. static cpumask_var_t *doms_cur; /* current sched domains */
  5552. static int ndoms_cur; /* number of sched domains in 'doms_cur' */
  5553. static struct sched_domain_attr *dattr_cur;
  5554. /* attribues of custom domains in 'doms_cur' */
  5555. /*
  5556. * Special case: If a kmalloc of a doms_cur partition (array of
  5557. * cpumask) fails, then fallback to a single sched domain,
  5558. * as determined by the single cpumask fallback_doms.
  5559. */
  5560. static cpumask_var_t fallback_doms;
  5561. /*
  5562. * arch_update_cpu_topology lets virtualized architectures update the
  5563. * cpu core maps. It is supposed to return 1 if the topology changed
  5564. * or 0 if it stayed the same.
  5565. */
  5566. int __weak arch_update_cpu_topology(void)
  5567. {
  5568. return 0;
  5569. }
  5570. cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
  5571. {
  5572. int i;
  5573. cpumask_var_t *doms;
  5574. doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
  5575. if (!doms)
  5576. return NULL;
  5577. for (i = 0; i < ndoms; i++) {
  5578. if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
  5579. free_sched_domains(doms, i);
  5580. return NULL;
  5581. }
  5582. }
  5583. return doms;
  5584. }
  5585. void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
  5586. {
  5587. unsigned int i;
  5588. for (i = 0; i < ndoms; i++)
  5589. free_cpumask_var(doms[i]);
  5590. kfree(doms);
  5591. }
  5592. /*
  5593. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5594. * For now this just excludes isolated cpus, but could be used to
  5595. * exclude other special cases in the future.
  5596. */
  5597. static int init_sched_domains(const struct cpumask *cpu_map)
  5598. {
  5599. int err;
  5600. arch_update_cpu_topology();
  5601. ndoms_cur = 1;
  5602. doms_cur = alloc_sched_domains(ndoms_cur);
  5603. if (!doms_cur)
  5604. doms_cur = &fallback_doms;
  5605. cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
  5606. err = build_sched_domains(doms_cur[0], NULL);
  5607. register_sched_domain_sysctl();
  5608. return err;
  5609. }
  5610. /*
  5611. * Detach sched domains from a group of cpus specified in cpu_map
  5612. * These cpus will now be attached to the NULL domain
  5613. */
  5614. static void detach_destroy_domains(const struct cpumask *cpu_map)
  5615. {
  5616. int i;
  5617. rcu_read_lock();
  5618. for_each_cpu(i, cpu_map)
  5619. cpu_attach_domain(NULL, &def_root_domain, i);
  5620. rcu_read_unlock();
  5621. }
  5622. /* handle null as "default" */
  5623. static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
  5624. struct sched_domain_attr *new, int idx_new)
  5625. {
  5626. struct sched_domain_attr tmp;
  5627. /* fast path */
  5628. if (!new && !cur)
  5629. return 1;
  5630. tmp = SD_ATTR_INIT;
  5631. return !memcmp(cur ? (cur + idx_cur) : &tmp,
  5632. new ? (new + idx_new) : &tmp,
  5633. sizeof(struct sched_domain_attr));
  5634. }
  5635. /*
  5636. * Partition sched domains as specified by the 'ndoms_new'
  5637. * cpumasks in the array doms_new[] of cpumasks. This compares
  5638. * doms_new[] to the current sched domain partitioning, doms_cur[].
  5639. * It destroys each deleted domain and builds each new domain.
  5640. *
  5641. * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
  5642. * The masks don't intersect (don't overlap.) We should setup one
  5643. * sched domain for each mask. CPUs not in any of the cpumasks will
  5644. * not be load balanced. If the same cpumask appears both in the
  5645. * current 'doms_cur' domains and in the new 'doms_new', we can leave
  5646. * it as it is.
  5647. *
  5648. * The passed in 'doms_new' should be allocated using
  5649. * alloc_sched_domains. This routine takes ownership of it and will
  5650. * free_sched_domains it when done with it. If the caller failed the
  5651. * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
  5652. * and partition_sched_domains() will fallback to the single partition
  5653. * 'fallback_doms', it also forces the domains to be rebuilt.
  5654. *
  5655. * If doms_new == NULL it will be replaced with cpu_online_mask.
  5656. * ndoms_new == 0 is a special case for destroying existing domains,
  5657. * and it will not create the default domain.
  5658. *
  5659. * Call with hotplug lock held
  5660. */
  5661. void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
  5662. struct sched_domain_attr *dattr_new)
  5663. {
  5664. int i, j, n;
  5665. int new_topology;
  5666. mutex_lock(&sched_domains_mutex);
  5667. /* always unregister in case we don't destroy any domains */
  5668. unregister_sched_domain_sysctl();
  5669. /* Let architecture update cpu core mappings. */
  5670. new_topology = arch_update_cpu_topology();
  5671. n = doms_new ? ndoms_new : 0;
  5672. /* Destroy deleted domains */
  5673. for (i = 0; i < ndoms_cur; i++) {
  5674. for (j = 0; j < n && !new_topology; j++) {
  5675. if (cpumask_equal(doms_cur[i], doms_new[j])
  5676. && dattrs_equal(dattr_cur, i, dattr_new, j))
  5677. goto match1;
  5678. }
  5679. /* no match - a current sched domain not in new doms_new[] */
  5680. detach_destroy_domains(doms_cur[i]);
  5681. match1:
  5682. ;
  5683. }
  5684. n = ndoms_cur;
  5685. if (doms_new == NULL) {
  5686. n = 0;
  5687. doms_new = &fallback_doms;
  5688. cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
  5689. WARN_ON_ONCE(dattr_new);
  5690. }
  5691. /* Build new domains */
  5692. for (i = 0; i < ndoms_new; i++) {
  5693. for (j = 0; j < n && !new_topology; j++) {
  5694. if (cpumask_equal(doms_new[i], doms_cur[j])
  5695. && dattrs_equal(dattr_new, i, dattr_cur, j))
  5696. goto match2;
  5697. }
  5698. /* no match - add a new doms_new */
  5699. build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
  5700. match2:
  5701. ;
  5702. }
  5703. /* Remember the new sched domains */
  5704. if (doms_cur != &fallback_doms)
  5705. free_sched_domains(doms_cur, ndoms_cur);
  5706. kfree(dattr_cur); /* kfree(NULL) is safe */
  5707. doms_cur = doms_new;
  5708. dattr_cur = dattr_new;
  5709. ndoms_cur = ndoms_new;
  5710. register_sched_domain_sysctl();
  5711. mutex_unlock(&sched_domains_mutex);
  5712. }
  5713. static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
  5714. /*
  5715. * Update cpusets according to cpu_active mask. If cpusets are
  5716. * disabled, cpuset_update_active_cpus() becomes a simple wrapper
  5717. * around partition_sched_domains().
  5718. *
  5719. * If we come here as part of a suspend/resume, don't touch cpusets because we
  5720. * want to restore it back to its original state upon resume anyway.
  5721. */
  5722. static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
  5723. void *hcpu)
  5724. {
  5725. switch (action) {
  5726. case CPU_ONLINE_FROZEN:
  5727. case CPU_DOWN_FAILED_FROZEN:
  5728. /*
  5729. * num_cpus_frozen tracks how many CPUs are involved in suspend
  5730. * resume sequence. As long as this is not the last online
  5731. * operation in the resume sequence, just build a single sched
  5732. * domain, ignoring cpusets.
  5733. */
  5734. num_cpus_frozen--;
  5735. if (likely(num_cpus_frozen)) {
  5736. partition_sched_domains(1, NULL, NULL);
  5737. break;
  5738. }
  5739. /*
  5740. * This is the last CPU online operation. So fall through and
  5741. * restore the original sched domains by considering the
  5742. * cpuset configurations.
  5743. */
  5744. case CPU_ONLINE:
  5745. case CPU_DOWN_FAILED:
  5746. cpuset_update_active_cpus(true);
  5747. break;
  5748. default:
  5749. return NOTIFY_DONE;
  5750. }
  5751. return NOTIFY_OK;
  5752. }
  5753. static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
  5754. void *hcpu)
  5755. {
  5756. switch (action) {
  5757. case CPU_DOWN_PREPARE:
  5758. cpuset_update_active_cpus(false);
  5759. break;
  5760. case CPU_DOWN_PREPARE_FROZEN:
  5761. num_cpus_frozen++;
  5762. partition_sched_domains(1, NULL, NULL);
  5763. break;
  5764. default:
  5765. return NOTIFY_DONE;
  5766. }
  5767. return NOTIFY_OK;
  5768. }
  5769. void __init sched_init_smp(void)
  5770. {
  5771. cpumask_var_t non_isolated_cpus;
  5772. alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
  5773. alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
  5774. sched_init_numa();
  5775. /*
  5776. * There's no userspace yet to cause hotplug operations; hence all the
  5777. * cpu masks are stable and all blatant races in the below code cannot
  5778. * happen.
  5779. */
  5780. mutex_lock(&sched_domains_mutex);
  5781. init_sched_domains(cpu_active_mask);
  5782. cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
  5783. if (cpumask_empty(non_isolated_cpus))
  5784. cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
  5785. mutex_unlock(&sched_domains_mutex);
  5786. hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
  5787. hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
  5788. hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
  5789. init_hrtick();
  5790. /* Move init over to a non-isolated CPU */
  5791. if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
  5792. BUG();
  5793. sched_init_granularity();
  5794. free_cpumask_var(non_isolated_cpus);
  5795. init_sched_rt_class();
  5796. init_sched_dl_class();
  5797. }
  5798. #else
  5799. void __init sched_init_smp(void)
  5800. {
  5801. sched_init_granularity();
  5802. }
  5803. #endif /* CONFIG_SMP */
  5804. const_debug unsigned int sysctl_timer_migration = 1;
  5805. int in_sched_functions(unsigned long addr)
  5806. {
  5807. return in_lock_functions(addr) ||
  5808. (addr >= (unsigned long)__sched_text_start
  5809. && addr < (unsigned long)__sched_text_end);
  5810. }
  5811. #ifdef CONFIG_CGROUP_SCHED
  5812. /*
  5813. * Default task group.
  5814. * Every task in system belongs to this group at bootup.
  5815. */
  5816. struct task_group root_task_group;
  5817. LIST_HEAD(task_groups);
  5818. #endif
  5819. DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
  5820. void __init sched_init(void)
  5821. {
  5822. int i, j;
  5823. unsigned long alloc_size = 0, ptr;
  5824. #ifdef CONFIG_FAIR_GROUP_SCHED
  5825. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5826. #endif
  5827. #ifdef CONFIG_RT_GROUP_SCHED
  5828. alloc_size += 2 * nr_cpu_ids * sizeof(void **);
  5829. #endif
  5830. #ifdef CONFIG_CPUMASK_OFFSTACK
  5831. alloc_size += num_possible_cpus() * cpumask_size();
  5832. #endif
  5833. if (alloc_size) {
  5834. ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
  5835. #ifdef CONFIG_FAIR_GROUP_SCHED
  5836. root_task_group.se = (struct sched_entity **)ptr;
  5837. ptr += nr_cpu_ids * sizeof(void **);
  5838. root_task_group.cfs_rq = (struct cfs_rq **)ptr;
  5839. ptr += nr_cpu_ids * sizeof(void **);
  5840. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5841. #ifdef CONFIG_RT_GROUP_SCHED
  5842. root_task_group.rt_se = (struct sched_rt_entity **)ptr;
  5843. ptr += nr_cpu_ids * sizeof(void **);
  5844. root_task_group.rt_rq = (struct rt_rq **)ptr;
  5845. ptr += nr_cpu_ids * sizeof(void **);
  5846. #endif /* CONFIG_RT_GROUP_SCHED */
  5847. #ifdef CONFIG_CPUMASK_OFFSTACK
  5848. for_each_possible_cpu(i) {
  5849. per_cpu(load_balance_mask, i) = (void *)ptr;
  5850. ptr += cpumask_size();
  5851. }
  5852. #endif /* CONFIG_CPUMASK_OFFSTACK */
  5853. }
  5854. init_rt_bandwidth(&def_rt_bandwidth,
  5855. global_rt_period(), global_rt_runtime());
  5856. init_dl_bandwidth(&def_dl_bandwidth,
  5857. global_rt_period(), global_rt_runtime());
  5858. #ifdef CONFIG_SMP
  5859. init_defrootdomain();
  5860. #endif
  5861. #ifdef CONFIG_RT_GROUP_SCHED
  5862. init_rt_bandwidth(&root_task_group.rt_bandwidth,
  5863. global_rt_period(), global_rt_runtime());
  5864. #endif /* CONFIG_RT_GROUP_SCHED */
  5865. #ifdef CONFIG_CGROUP_SCHED
  5866. list_add(&root_task_group.list, &task_groups);
  5867. INIT_LIST_HEAD(&root_task_group.children);
  5868. INIT_LIST_HEAD(&root_task_group.siblings);
  5869. autogroup_init(&init_task);
  5870. #endif /* CONFIG_CGROUP_SCHED */
  5871. for_each_possible_cpu(i) {
  5872. struct rq *rq;
  5873. rq = cpu_rq(i);
  5874. raw_spin_lock_init(&rq->lock);
  5875. rq->nr_running = 0;
  5876. rq->calc_load_active = 0;
  5877. rq->calc_load_update = jiffies + LOAD_FREQ;
  5878. init_cfs_rq(&rq->cfs);
  5879. init_rt_rq(&rq->rt, rq);
  5880. init_dl_rq(&rq->dl, rq);
  5881. #ifdef CONFIG_FAIR_GROUP_SCHED
  5882. root_task_group.shares = ROOT_TASK_GROUP_LOAD;
  5883. INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
  5884. /*
  5885. * How much cpu bandwidth does root_task_group get?
  5886. *
  5887. * In case of task-groups formed thr' the cgroup filesystem, it
  5888. * gets 100% of the cpu resources in the system. This overall
  5889. * system cpu resource is divided among the tasks of
  5890. * root_task_group and its child task-groups in a fair manner,
  5891. * based on each entity's (task or task-group's) weight
  5892. * (se->load.weight).
  5893. *
  5894. * In other words, if root_task_group has 10 tasks of weight
  5895. * 1024) and two child groups A0 and A1 (of weight 1024 each),
  5896. * then A0's share of the cpu resource is:
  5897. *
  5898. * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
  5899. *
  5900. * We achieve this by letting root_task_group's tasks sit
  5901. * directly in rq->cfs (i.e root_task_group->se[] = NULL).
  5902. */
  5903. init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
  5904. init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
  5905. #endif /* CONFIG_FAIR_GROUP_SCHED */
  5906. rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
  5907. #ifdef CONFIG_RT_GROUP_SCHED
  5908. init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
  5909. #endif
  5910. for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
  5911. rq->cpu_load[j] = 0;
  5912. rq->last_load_update_tick = jiffies;
  5913. #ifdef CONFIG_SMP
  5914. rq->sd = NULL;
  5915. rq->rd = NULL;
  5916. rq->cpu_capacity = SCHED_CAPACITY_SCALE;
  5917. rq->post_schedule = 0;
  5918. rq->active_balance = 0;
  5919. rq->next_balance = jiffies;
  5920. rq->push_cpu = 0;
  5921. rq->cpu = i;
  5922. rq->online = 0;
  5923. rq->idle_stamp = 0;
  5924. rq->avg_idle = 2*sysctl_sched_migration_cost;
  5925. rq->max_idle_balance_cost = sysctl_sched_migration_cost;
  5926. INIT_LIST_HEAD(&rq->cfs_tasks);
  5927. rq_attach_root(rq, &def_root_domain);
  5928. #ifdef CONFIG_NO_HZ_COMMON
  5929. rq->nohz_flags = 0;
  5930. #endif
  5931. #ifdef CONFIG_NO_HZ_FULL
  5932. rq->last_sched_tick = 0;
  5933. #endif
  5934. #endif
  5935. init_rq_hrtick(rq);
  5936. atomic_set(&rq->nr_iowait, 0);
  5937. }
  5938. set_load_weight(&init_task);
  5939. #ifdef CONFIG_PREEMPT_NOTIFIERS
  5940. INIT_HLIST_HEAD(&init_task.preempt_notifiers);
  5941. #endif
  5942. /*
  5943. * The boot idle thread does lazy MMU switching as well:
  5944. */
  5945. atomic_inc(&init_mm.mm_count);
  5946. enter_lazy_tlb(&init_mm, current);
  5947. /*
  5948. * Make us the idle thread. Technically, schedule() should not be
  5949. * called from this thread, however somewhere below it might be,
  5950. * but because we are the idle thread, we just pick up running again
  5951. * when this runqueue becomes "idle".
  5952. */
  5953. init_idle(current, smp_processor_id());
  5954. calc_load_update = jiffies + LOAD_FREQ;
  5955. /*
  5956. * During early bootup we pretend to be a normal task:
  5957. */
  5958. current->sched_class = &fair_sched_class;
  5959. #ifdef CONFIG_SMP
  5960. zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
  5961. /* May be allocated at isolcpus cmdline parse time */
  5962. if (cpu_isolated_map == NULL)
  5963. zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
  5964. idle_thread_set_boot_cpu();
  5965. set_cpu_rq_start_time();
  5966. #endif
  5967. init_sched_fair_class();
  5968. scheduler_running = 1;
  5969. }
  5970. #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
  5971. static inline int preempt_count_equals(int preempt_offset)
  5972. {
  5973. int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
  5974. return (nested == preempt_offset);
  5975. }
  5976. void __might_sleep(const char *file, int line, int preempt_offset)
  5977. {
  5978. static unsigned long prev_jiffy; /* ratelimiting */
  5979. rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
  5980. if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
  5981. !is_idle_task(current)) ||
  5982. system_state != SYSTEM_RUNNING || oops_in_progress)
  5983. return;
  5984. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5985. return;
  5986. prev_jiffy = jiffies;
  5987. printk(KERN_ERR
  5988. "BUG: sleeping function called from invalid context at %s:%d\n",
  5989. file, line);
  5990. printk(KERN_ERR
  5991. "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
  5992. in_atomic(), irqs_disabled(),
  5993. current->pid, current->comm);
  5994. debug_show_held_locks(current);
  5995. if (irqs_disabled())
  5996. print_irqtrace_events(current);
  5997. #ifdef CONFIG_DEBUG_PREEMPT
  5998. if (!preempt_count_equals(preempt_offset)) {
  5999. pr_err("Preemption disabled at:");
  6000. print_ip_sym(current->preempt_disable_ip);
  6001. pr_cont("\n");
  6002. }
  6003. #endif
  6004. dump_stack();
  6005. }
  6006. EXPORT_SYMBOL(__might_sleep);
  6007. #endif
  6008. #ifdef CONFIG_MAGIC_SYSRQ
  6009. static void normalize_task(struct rq *rq, struct task_struct *p)
  6010. {
  6011. const struct sched_class *prev_class = p->sched_class;
  6012. struct sched_attr attr = {
  6013. .sched_policy = SCHED_NORMAL,
  6014. };
  6015. int old_prio = p->prio;
  6016. int on_rq;
  6017. on_rq = p->on_rq;
  6018. if (on_rq)
  6019. dequeue_task(rq, p, 0);
  6020. __setscheduler(rq, p, &attr);
  6021. if (on_rq) {
  6022. enqueue_task(rq, p, 0);
  6023. resched_task(rq->curr);
  6024. }
  6025. check_class_changed(rq, p, prev_class, old_prio);
  6026. }
  6027. void normalize_rt_tasks(void)
  6028. {
  6029. struct task_struct *g, *p;
  6030. unsigned long flags;
  6031. struct rq *rq;
  6032. read_lock_irqsave(&tasklist_lock, flags);
  6033. do_each_thread(g, p) {
  6034. /*
  6035. * Only normalize user tasks:
  6036. */
  6037. if (!p->mm)
  6038. continue;
  6039. p->se.exec_start = 0;
  6040. #ifdef CONFIG_SCHEDSTATS
  6041. p->se.statistics.wait_start = 0;
  6042. p->se.statistics.sleep_start = 0;
  6043. p->se.statistics.block_start = 0;
  6044. #endif
  6045. if (!dl_task(p) && !rt_task(p)) {
  6046. /*
  6047. * Renice negative nice level userspace
  6048. * tasks back to 0:
  6049. */
  6050. if (task_nice(p) < 0 && p->mm)
  6051. set_user_nice(p, 0);
  6052. continue;
  6053. }
  6054. raw_spin_lock(&p->pi_lock);
  6055. rq = __task_rq_lock(p);
  6056. normalize_task(rq, p);
  6057. __task_rq_unlock(rq);
  6058. raw_spin_unlock(&p->pi_lock);
  6059. } while_each_thread(g, p);
  6060. read_unlock_irqrestore(&tasklist_lock, flags);
  6061. }
  6062. #endif /* CONFIG_MAGIC_SYSRQ */
  6063. #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
  6064. /*
  6065. * These functions are only useful for the IA64 MCA handling, or kdb.
  6066. *
  6067. * They can only be called when the whole system has been
  6068. * stopped - every CPU needs to be quiescent, and no scheduling
  6069. * activity can take place. Using them for anything else would
  6070. * be a serious bug, and as a result, they aren't even visible
  6071. * under any other configuration.
  6072. */
  6073. /**
  6074. * curr_task - return the current task for a given cpu.
  6075. * @cpu: the processor in question.
  6076. *
  6077. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6078. *
  6079. * Return: The current task for @cpu.
  6080. */
  6081. struct task_struct *curr_task(int cpu)
  6082. {
  6083. return cpu_curr(cpu);
  6084. }
  6085. #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
  6086. #ifdef CONFIG_IA64
  6087. /**
  6088. * set_curr_task - set the current task for a given cpu.
  6089. * @cpu: the processor in question.
  6090. * @p: the task pointer to set.
  6091. *
  6092. * Description: This function must only be used when non-maskable interrupts
  6093. * are serviced on a separate stack. It allows the architecture to switch the
  6094. * notion of the current task on a cpu in a non-blocking manner. This function
  6095. * must be called with all CPU's synchronized, and interrupts disabled, the
  6096. * and caller must save the original value of the current task (see
  6097. * curr_task() above) and restore that value before reenabling interrupts and
  6098. * re-starting the system.
  6099. *
  6100. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  6101. */
  6102. void set_curr_task(int cpu, struct task_struct *p)
  6103. {
  6104. cpu_curr(cpu) = p;
  6105. }
  6106. #endif
  6107. #ifdef CONFIG_CGROUP_SCHED
  6108. /* task_group_lock serializes the addition/removal of task groups */
  6109. static DEFINE_SPINLOCK(task_group_lock);
  6110. static void free_sched_group(struct task_group *tg)
  6111. {
  6112. free_fair_sched_group(tg);
  6113. free_rt_sched_group(tg);
  6114. autogroup_free(tg);
  6115. kfree(tg);
  6116. }
  6117. /* allocate runqueue etc for a new task group */
  6118. struct task_group *sched_create_group(struct task_group *parent)
  6119. {
  6120. struct task_group *tg;
  6121. tg = kzalloc(sizeof(*tg), GFP_KERNEL);
  6122. if (!tg)
  6123. return ERR_PTR(-ENOMEM);
  6124. if (!alloc_fair_sched_group(tg, parent))
  6125. goto err;
  6126. if (!alloc_rt_sched_group(tg, parent))
  6127. goto err;
  6128. return tg;
  6129. err:
  6130. free_sched_group(tg);
  6131. return ERR_PTR(-ENOMEM);
  6132. }
  6133. void sched_online_group(struct task_group *tg, struct task_group *parent)
  6134. {
  6135. unsigned long flags;
  6136. spin_lock_irqsave(&task_group_lock, flags);
  6137. list_add_rcu(&tg->list, &task_groups);
  6138. WARN_ON(!parent); /* root should already exist */
  6139. tg->parent = parent;
  6140. INIT_LIST_HEAD(&tg->children);
  6141. list_add_rcu(&tg->siblings, &parent->children);
  6142. spin_unlock_irqrestore(&task_group_lock, flags);
  6143. }
  6144. /* rcu callback to free various structures associated with a task group */
  6145. static void free_sched_group_rcu(struct rcu_head *rhp)
  6146. {
  6147. /* now it should be safe to free those cfs_rqs */
  6148. free_sched_group(container_of(rhp, struct task_group, rcu));
  6149. }
  6150. /* Destroy runqueue etc associated with a task group */
  6151. void sched_destroy_group(struct task_group *tg)
  6152. {
  6153. /* wait for possible concurrent references to cfs_rqs complete */
  6154. call_rcu(&tg->rcu, free_sched_group_rcu);
  6155. }
  6156. void sched_offline_group(struct task_group *tg)
  6157. {
  6158. unsigned long flags;
  6159. int i;
  6160. /* end participation in shares distribution */
  6161. for_each_possible_cpu(i)
  6162. unregister_fair_sched_group(tg, i);
  6163. spin_lock_irqsave(&task_group_lock, flags);
  6164. list_del_rcu(&tg->list);
  6165. list_del_rcu(&tg->siblings);
  6166. spin_unlock_irqrestore(&task_group_lock, flags);
  6167. }
  6168. /* change task's runqueue when it moves between groups.
  6169. * The caller of this function should have put the task in its new group
  6170. * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
  6171. * reflect its new group.
  6172. */
  6173. void sched_move_task(struct task_struct *tsk)
  6174. {
  6175. struct task_group *tg;
  6176. int on_rq, running;
  6177. unsigned long flags;
  6178. struct rq *rq;
  6179. rq = task_rq_lock(tsk, &flags);
  6180. running = task_current(rq, tsk);
  6181. on_rq = tsk->on_rq;
  6182. if (on_rq)
  6183. dequeue_task(rq, tsk, 0);
  6184. if (unlikely(running))
  6185. tsk->sched_class->put_prev_task(rq, tsk);
  6186. tg = container_of(task_css_check(tsk, cpu_cgrp_id,
  6187. lockdep_is_held(&tsk->sighand->siglock)),
  6188. struct task_group, css);
  6189. tg = autogroup_task_group(tsk, tg);
  6190. tsk->sched_task_group = tg;
  6191. #ifdef CONFIG_FAIR_GROUP_SCHED
  6192. if (tsk->sched_class->task_move_group)
  6193. tsk->sched_class->task_move_group(tsk, on_rq);
  6194. else
  6195. #endif
  6196. set_task_rq(tsk, task_cpu(tsk));
  6197. if (unlikely(running))
  6198. tsk->sched_class->set_curr_task(rq);
  6199. if (on_rq)
  6200. enqueue_task(rq, tsk, 0);
  6201. task_rq_unlock(rq, tsk, &flags);
  6202. }
  6203. #endif /* CONFIG_CGROUP_SCHED */
  6204. #ifdef CONFIG_RT_GROUP_SCHED
  6205. /*
  6206. * Ensure that the real time constraints are schedulable.
  6207. */
  6208. static DEFINE_MUTEX(rt_constraints_mutex);
  6209. /* Must be called with tasklist_lock held */
  6210. static inline int tg_has_rt_tasks(struct task_group *tg)
  6211. {
  6212. struct task_struct *g, *p;
  6213. do_each_thread(g, p) {
  6214. if (rt_task(p) && task_rq(p)->rt.tg == tg)
  6215. return 1;
  6216. } while_each_thread(g, p);
  6217. return 0;
  6218. }
  6219. struct rt_schedulable_data {
  6220. struct task_group *tg;
  6221. u64 rt_period;
  6222. u64 rt_runtime;
  6223. };
  6224. static int tg_rt_schedulable(struct task_group *tg, void *data)
  6225. {
  6226. struct rt_schedulable_data *d = data;
  6227. struct task_group *child;
  6228. unsigned long total, sum = 0;
  6229. u64 period, runtime;
  6230. period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6231. runtime = tg->rt_bandwidth.rt_runtime;
  6232. if (tg == d->tg) {
  6233. period = d->rt_period;
  6234. runtime = d->rt_runtime;
  6235. }
  6236. /*
  6237. * Cannot have more runtime than the period.
  6238. */
  6239. if (runtime > period && runtime != RUNTIME_INF)
  6240. return -EINVAL;
  6241. /*
  6242. * Ensure we don't starve existing RT tasks.
  6243. */
  6244. if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
  6245. return -EBUSY;
  6246. total = to_ratio(period, runtime);
  6247. /*
  6248. * Nobody can have more than the global setting allows.
  6249. */
  6250. if (total > to_ratio(global_rt_period(), global_rt_runtime()))
  6251. return -EINVAL;
  6252. /*
  6253. * The sum of our children's runtime should not exceed our own.
  6254. */
  6255. list_for_each_entry_rcu(child, &tg->children, siblings) {
  6256. period = ktime_to_ns(child->rt_bandwidth.rt_period);
  6257. runtime = child->rt_bandwidth.rt_runtime;
  6258. if (child == d->tg) {
  6259. period = d->rt_period;
  6260. runtime = d->rt_runtime;
  6261. }
  6262. sum += to_ratio(period, runtime);
  6263. }
  6264. if (sum > total)
  6265. return -EINVAL;
  6266. return 0;
  6267. }
  6268. static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
  6269. {
  6270. int ret;
  6271. struct rt_schedulable_data data = {
  6272. .tg = tg,
  6273. .rt_period = period,
  6274. .rt_runtime = runtime,
  6275. };
  6276. rcu_read_lock();
  6277. ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
  6278. rcu_read_unlock();
  6279. return ret;
  6280. }
  6281. static int tg_set_rt_bandwidth(struct task_group *tg,
  6282. u64 rt_period, u64 rt_runtime)
  6283. {
  6284. int i, err = 0;
  6285. mutex_lock(&rt_constraints_mutex);
  6286. read_lock(&tasklist_lock);
  6287. err = __rt_schedulable(tg, rt_period, rt_runtime);
  6288. if (err)
  6289. goto unlock;
  6290. raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6291. tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
  6292. tg->rt_bandwidth.rt_runtime = rt_runtime;
  6293. for_each_possible_cpu(i) {
  6294. struct rt_rq *rt_rq = tg->rt_rq[i];
  6295. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6296. rt_rq->rt_runtime = rt_runtime;
  6297. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6298. }
  6299. raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
  6300. unlock:
  6301. read_unlock(&tasklist_lock);
  6302. mutex_unlock(&rt_constraints_mutex);
  6303. return err;
  6304. }
  6305. static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
  6306. {
  6307. u64 rt_runtime, rt_period;
  6308. rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6309. rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
  6310. if (rt_runtime_us < 0)
  6311. rt_runtime = RUNTIME_INF;
  6312. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6313. }
  6314. static long sched_group_rt_runtime(struct task_group *tg)
  6315. {
  6316. u64 rt_runtime_us;
  6317. if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
  6318. return -1;
  6319. rt_runtime_us = tg->rt_bandwidth.rt_runtime;
  6320. do_div(rt_runtime_us, NSEC_PER_USEC);
  6321. return rt_runtime_us;
  6322. }
  6323. static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
  6324. {
  6325. u64 rt_runtime, rt_period;
  6326. rt_period = (u64)rt_period_us * NSEC_PER_USEC;
  6327. rt_runtime = tg->rt_bandwidth.rt_runtime;
  6328. if (rt_period == 0)
  6329. return -EINVAL;
  6330. return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
  6331. }
  6332. static long sched_group_rt_period(struct task_group *tg)
  6333. {
  6334. u64 rt_period_us;
  6335. rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
  6336. do_div(rt_period_us, NSEC_PER_USEC);
  6337. return rt_period_us;
  6338. }
  6339. #endif /* CONFIG_RT_GROUP_SCHED */
  6340. #ifdef CONFIG_RT_GROUP_SCHED
  6341. static int sched_rt_global_constraints(void)
  6342. {
  6343. int ret = 0;
  6344. mutex_lock(&rt_constraints_mutex);
  6345. read_lock(&tasklist_lock);
  6346. ret = __rt_schedulable(NULL, 0, 0);
  6347. read_unlock(&tasklist_lock);
  6348. mutex_unlock(&rt_constraints_mutex);
  6349. return ret;
  6350. }
  6351. static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
  6352. {
  6353. /* Don't accept realtime tasks when there is no way for them to run */
  6354. if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
  6355. return 0;
  6356. return 1;
  6357. }
  6358. #else /* !CONFIG_RT_GROUP_SCHED */
  6359. static int sched_rt_global_constraints(void)
  6360. {
  6361. unsigned long flags;
  6362. int i, ret = 0;
  6363. raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
  6364. for_each_possible_cpu(i) {
  6365. struct rt_rq *rt_rq = &cpu_rq(i)->rt;
  6366. raw_spin_lock(&rt_rq->rt_runtime_lock);
  6367. rt_rq->rt_runtime = global_rt_runtime();
  6368. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  6369. }
  6370. raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
  6371. return ret;
  6372. }
  6373. #endif /* CONFIG_RT_GROUP_SCHED */
  6374. static int sched_dl_global_constraints(void)
  6375. {
  6376. u64 runtime = global_rt_runtime();
  6377. u64 period = global_rt_period();
  6378. u64 new_bw = to_ratio(period, runtime);
  6379. int cpu, ret = 0;
  6380. unsigned long flags;
  6381. /*
  6382. * Here we want to check the bandwidth not being set to some
  6383. * value smaller than the currently allocated bandwidth in
  6384. * any of the root_domains.
  6385. *
  6386. * FIXME: Cycling on all the CPUs is overdoing, but simpler than
  6387. * cycling on root_domains... Discussion on different/better
  6388. * solutions is welcome!
  6389. */
  6390. for_each_possible_cpu(cpu) {
  6391. struct dl_bw *dl_b = dl_bw_of(cpu);
  6392. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6393. if (new_bw < dl_b->total_bw)
  6394. ret = -EBUSY;
  6395. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6396. if (ret)
  6397. break;
  6398. }
  6399. return ret;
  6400. }
  6401. static void sched_dl_do_global(void)
  6402. {
  6403. u64 new_bw = -1;
  6404. int cpu;
  6405. unsigned long flags;
  6406. def_dl_bandwidth.dl_period = global_rt_period();
  6407. def_dl_bandwidth.dl_runtime = global_rt_runtime();
  6408. if (global_rt_runtime() != RUNTIME_INF)
  6409. new_bw = to_ratio(global_rt_period(), global_rt_runtime());
  6410. /*
  6411. * FIXME: As above...
  6412. */
  6413. for_each_possible_cpu(cpu) {
  6414. struct dl_bw *dl_b = dl_bw_of(cpu);
  6415. raw_spin_lock_irqsave(&dl_b->lock, flags);
  6416. dl_b->bw = new_bw;
  6417. raw_spin_unlock_irqrestore(&dl_b->lock, flags);
  6418. }
  6419. }
  6420. static int sched_rt_global_validate(void)
  6421. {
  6422. if (sysctl_sched_rt_period <= 0)
  6423. return -EINVAL;
  6424. if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
  6425. (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
  6426. return -EINVAL;
  6427. return 0;
  6428. }
  6429. static void sched_rt_do_global(void)
  6430. {
  6431. def_rt_bandwidth.rt_runtime = global_rt_runtime();
  6432. def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
  6433. }
  6434. int sched_rt_handler(struct ctl_table *table, int write,
  6435. void __user *buffer, size_t *lenp,
  6436. loff_t *ppos)
  6437. {
  6438. int old_period, old_runtime;
  6439. static DEFINE_MUTEX(mutex);
  6440. int ret;
  6441. mutex_lock(&mutex);
  6442. old_period = sysctl_sched_rt_period;
  6443. old_runtime = sysctl_sched_rt_runtime;
  6444. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6445. if (!ret && write) {
  6446. ret = sched_rt_global_validate();
  6447. if (ret)
  6448. goto undo;
  6449. ret = sched_rt_global_constraints();
  6450. if (ret)
  6451. goto undo;
  6452. ret = sched_dl_global_constraints();
  6453. if (ret)
  6454. goto undo;
  6455. sched_rt_do_global();
  6456. sched_dl_do_global();
  6457. }
  6458. if (0) {
  6459. undo:
  6460. sysctl_sched_rt_period = old_period;
  6461. sysctl_sched_rt_runtime = old_runtime;
  6462. }
  6463. mutex_unlock(&mutex);
  6464. return ret;
  6465. }
  6466. int sched_rr_handler(struct ctl_table *table, int write,
  6467. void __user *buffer, size_t *lenp,
  6468. loff_t *ppos)
  6469. {
  6470. int ret;
  6471. static DEFINE_MUTEX(mutex);
  6472. mutex_lock(&mutex);
  6473. ret = proc_dointvec(table, write, buffer, lenp, ppos);
  6474. /* make sure that internally we keep jiffies */
  6475. /* also, writing zero resets timeslice to default */
  6476. if (!ret && write) {
  6477. sched_rr_timeslice = sched_rr_timeslice <= 0 ?
  6478. RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
  6479. }
  6480. mutex_unlock(&mutex);
  6481. return ret;
  6482. }
  6483. #ifdef CONFIG_CGROUP_SCHED
  6484. static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
  6485. {
  6486. return css ? container_of(css, struct task_group, css) : NULL;
  6487. }
  6488. static struct cgroup_subsys_state *
  6489. cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
  6490. {
  6491. struct task_group *parent = css_tg(parent_css);
  6492. struct task_group *tg;
  6493. if (!parent) {
  6494. /* This is early initialization for the top cgroup */
  6495. return &root_task_group.css;
  6496. }
  6497. tg = sched_create_group(parent);
  6498. if (IS_ERR(tg))
  6499. return ERR_PTR(-ENOMEM);
  6500. return &tg->css;
  6501. }
  6502. static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
  6503. {
  6504. struct task_group *tg = css_tg(css);
  6505. struct task_group *parent = css_tg(css->parent);
  6506. if (parent)
  6507. sched_online_group(tg, parent);
  6508. return 0;
  6509. }
  6510. static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
  6511. {
  6512. struct task_group *tg = css_tg(css);
  6513. sched_destroy_group(tg);
  6514. }
  6515. static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
  6516. {
  6517. struct task_group *tg = css_tg(css);
  6518. sched_offline_group(tg);
  6519. }
  6520. static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
  6521. struct cgroup_taskset *tset)
  6522. {
  6523. struct task_struct *task;
  6524. cgroup_taskset_for_each(task, tset) {
  6525. #ifdef CONFIG_RT_GROUP_SCHED
  6526. if (!sched_rt_can_attach(css_tg(css), task))
  6527. return -EINVAL;
  6528. #else
  6529. /* We don't support RT-tasks being in separate groups */
  6530. if (task->sched_class != &fair_sched_class)
  6531. return -EINVAL;
  6532. #endif
  6533. }
  6534. return 0;
  6535. }
  6536. static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
  6537. struct cgroup_taskset *tset)
  6538. {
  6539. struct task_struct *task;
  6540. cgroup_taskset_for_each(task, tset)
  6541. sched_move_task(task);
  6542. }
  6543. static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
  6544. struct cgroup_subsys_state *old_css,
  6545. struct task_struct *task)
  6546. {
  6547. /*
  6548. * cgroup_exit() is called in the copy_process() failure path.
  6549. * Ignore this case since the task hasn't ran yet, this avoids
  6550. * trying to poke a half freed task state from generic code.
  6551. */
  6552. if (!(task->flags & PF_EXITING))
  6553. return;
  6554. sched_move_task(task);
  6555. }
  6556. #ifdef CONFIG_FAIR_GROUP_SCHED
  6557. static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
  6558. struct cftype *cftype, u64 shareval)
  6559. {
  6560. return sched_group_set_shares(css_tg(css), scale_load(shareval));
  6561. }
  6562. static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
  6563. struct cftype *cft)
  6564. {
  6565. struct task_group *tg = css_tg(css);
  6566. return (u64) scale_load_down(tg->shares);
  6567. }
  6568. #ifdef CONFIG_CFS_BANDWIDTH
  6569. static DEFINE_MUTEX(cfs_constraints_mutex);
  6570. const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
  6571. const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
  6572. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
  6573. static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
  6574. {
  6575. int i, ret = 0, runtime_enabled, runtime_was_enabled;
  6576. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6577. if (tg == &root_task_group)
  6578. return -EINVAL;
  6579. /*
  6580. * Ensure we have at some amount of bandwidth every period. This is
  6581. * to prevent reaching a state of large arrears when throttled via
  6582. * entity_tick() resulting in prolonged exit starvation.
  6583. */
  6584. if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
  6585. return -EINVAL;
  6586. /*
  6587. * Likewise, bound things on the otherside by preventing insane quota
  6588. * periods. This also allows us to normalize in computing quota
  6589. * feasibility.
  6590. */
  6591. if (period > max_cfs_quota_period)
  6592. return -EINVAL;
  6593. mutex_lock(&cfs_constraints_mutex);
  6594. ret = __cfs_schedulable(tg, period, quota);
  6595. if (ret)
  6596. goto out_unlock;
  6597. runtime_enabled = quota != RUNTIME_INF;
  6598. runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
  6599. /*
  6600. * If we need to toggle cfs_bandwidth_used, off->on must occur
  6601. * before making related changes, and on->off must occur afterwards
  6602. */
  6603. if (runtime_enabled && !runtime_was_enabled)
  6604. cfs_bandwidth_usage_inc();
  6605. raw_spin_lock_irq(&cfs_b->lock);
  6606. cfs_b->period = ns_to_ktime(period);
  6607. cfs_b->quota = quota;
  6608. __refill_cfs_bandwidth_runtime(cfs_b);
  6609. /* restart the period timer (if active) to handle new period expiry */
  6610. if (runtime_enabled && cfs_b->timer_active) {
  6611. /* force a reprogram */
  6612. __start_cfs_bandwidth(cfs_b, true);
  6613. }
  6614. raw_spin_unlock_irq(&cfs_b->lock);
  6615. for_each_possible_cpu(i) {
  6616. struct cfs_rq *cfs_rq = tg->cfs_rq[i];
  6617. struct rq *rq = cfs_rq->rq;
  6618. raw_spin_lock_irq(&rq->lock);
  6619. cfs_rq->runtime_enabled = runtime_enabled;
  6620. cfs_rq->runtime_remaining = 0;
  6621. if (cfs_rq->throttled)
  6622. unthrottle_cfs_rq(cfs_rq);
  6623. raw_spin_unlock_irq(&rq->lock);
  6624. }
  6625. if (runtime_was_enabled && !runtime_enabled)
  6626. cfs_bandwidth_usage_dec();
  6627. out_unlock:
  6628. mutex_unlock(&cfs_constraints_mutex);
  6629. return ret;
  6630. }
  6631. int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
  6632. {
  6633. u64 quota, period;
  6634. period = ktime_to_ns(tg->cfs_bandwidth.period);
  6635. if (cfs_quota_us < 0)
  6636. quota = RUNTIME_INF;
  6637. else
  6638. quota = (u64)cfs_quota_us * NSEC_PER_USEC;
  6639. return tg_set_cfs_bandwidth(tg, period, quota);
  6640. }
  6641. long tg_get_cfs_quota(struct task_group *tg)
  6642. {
  6643. u64 quota_us;
  6644. if (tg->cfs_bandwidth.quota == RUNTIME_INF)
  6645. return -1;
  6646. quota_us = tg->cfs_bandwidth.quota;
  6647. do_div(quota_us, NSEC_PER_USEC);
  6648. return quota_us;
  6649. }
  6650. int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
  6651. {
  6652. u64 quota, period;
  6653. period = (u64)cfs_period_us * NSEC_PER_USEC;
  6654. quota = tg->cfs_bandwidth.quota;
  6655. return tg_set_cfs_bandwidth(tg, period, quota);
  6656. }
  6657. long tg_get_cfs_period(struct task_group *tg)
  6658. {
  6659. u64 cfs_period_us;
  6660. cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
  6661. do_div(cfs_period_us, NSEC_PER_USEC);
  6662. return cfs_period_us;
  6663. }
  6664. static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
  6665. struct cftype *cft)
  6666. {
  6667. return tg_get_cfs_quota(css_tg(css));
  6668. }
  6669. static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
  6670. struct cftype *cftype, s64 cfs_quota_us)
  6671. {
  6672. return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
  6673. }
  6674. static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
  6675. struct cftype *cft)
  6676. {
  6677. return tg_get_cfs_period(css_tg(css));
  6678. }
  6679. static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
  6680. struct cftype *cftype, u64 cfs_period_us)
  6681. {
  6682. return tg_set_cfs_period(css_tg(css), cfs_period_us);
  6683. }
  6684. struct cfs_schedulable_data {
  6685. struct task_group *tg;
  6686. u64 period, quota;
  6687. };
  6688. /*
  6689. * normalize group quota/period to be quota/max_period
  6690. * note: units are usecs
  6691. */
  6692. static u64 normalize_cfs_quota(struct task_group *tg,
  6693. struct cfs_schedulable_data *d)
  6694. {
  6695. u64 quota, period;
  6696. if (tg == d->tg) {
  6697. period = d->period;
  6698. quota = d->quota;
  6699. } else {
  6700. period = tg_get_cfs_period(tg);
  6701. quota = tg_get_cfs_quota(tg);
  6702. }
  6703. /* note: these should typically be equivalent */
  6704. if (quota == RUNTIME_INF || quota == -1)
  6705. return RUNTIME_INF;
  6706. return to_ratio(period, quota);
  6707. }
  6708. static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
  6709. {
  6710. struct cfs_schedulable_data *d = data;
  6711. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6712. s64 quota = 0, parent_quota = -1;
  6713. if (!tg->parent) {
  6714. quota = RUNTIME_INF;
  6715. } else {
  6716. struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
  6717. quota = normalize_cfs_quota(tg, d);
  6718. parent_quota = parent_b->hierarchal_quota;
  6719. /*
  6720. * ensure max(child_quota) <= parent_quota, inherit when no
  6721. * limit is set
  6722. */
  6723. if (quota == RUNTIME_INF)
  6724. quota = parent_quota;
  6725. else if (parent_quota != RUNTIME_INF && quota > parent_quota)
  6726. return -EINVAL;
  6727. }
  6728. cfs_b->hierarchal_quota = quota;
  6729. return 0;
  6730. }
  6731. static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
  6732. {
  6733. int ret;
  6734. struct cfs_schedulable_data data = {
  6735. .tg = tg,
  6736. .period = period,
  6737. .quota = quota,
  6738. };
  6739. if (quota != RUNTIME_INF) {
  6740. do_div(data.period, NSEC_PER_USEC);
  6741. do_div(data.quota, NSEC_PER_USEC);
  6742. }
  6743. rcu_read_lock();
  6744. ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
  6745. rcu_read_unlock();
  6746. return ret;
  6747. }
  6748. static int cpu_stats_show(struct seq_file *sf, void *v)
  6749. {
  6750. struct task_group *tg = css_tg(seq_css(sf));
  6751. struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
  6752. seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
  6753. seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
  6754. seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
  6755. return 0;
  6756. }
  6757. #endif /* CONFIG_CFS_BANDWIDTH */
  6758. #endif /* CONFIG_FAIR_GROUP_SCHED */
  6759. #ifdef CONFIG_RT_GROUP_SCHED
  6760. static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
  6761. struct cftype *cft, s64 val)
  6762. {
  6763. return sched_group_set_rt_runtime(css_tg(css), val);
  6764. }
  6765. static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
  6766. struct cftype *cft)
  6767. {
  6768. return sched_group_rt_runtime(css_tg(css));
  6769. }
  6770. static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
  6771. struct cftype *cftype, u64 rt_period_us)
  6772. {
  6773. return sched_group_set_rt_period(css_tg(css), rt_period_us);
  6774. }
  6775. static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
  6776. struct cftype *cft)
  6777. {
  6778. return sched_group_rt_period(css_tg(css));
  6779. }
  6780. #endif /* CONFIG_RT_GROUP_SCHED */
  6781. static struct cftype cpu_files[] = {
  6782. #ifdef CONFIG_FAIR_GROUP_SCHED
  6783. {
  6784. .name = "shares",
  6785. .read_u64 = cpu_shares_read_u64,
  6786. .write_u64 = cpu_shares_write_u64,
  6787. },
  6788. #endif
  6789. #ifdef CONFIG_CFS_BANDWIDTH
  6790. {
  6791. .name = "cfs_quota_us",
  6792. .read_s64 = cpu_cfs_quota_read_s64,
  6793. .write_s64 = cpu_cfs_quota_write_s64,
  6794. },
  6795. {
  6796. .name = "cfs_period_us",
  6797. .read_u64 = cpu_cfs_period_read_u64,
  6798. .write_u64 = cpu_cfs_period_write_u64,
  6799. },
  6800. {
  6801. .name = "stat",
  6802. .seq_show = cpu_stats_show,
  6803. },
  6804. #endif
  6805. #ifdef CONFIG_RT_GROUP_SCHED
  6806. {
  6807. .name = "rt_runtime_us",
  6808. .read_s64 = cpu_rt_runtime_read,
  6809. .write_s64 = cpu_rt_runtime_write,
  6810. },
  6811. {
  6812. .name = "rt_period_us",
  6813. .read_u64 = cpu_rt_period_read_uint,
  6814. .write_u64 = cpu_rt_period_write_uint,
  6815. },
  6816. #endif
  6817. { } /* terminate */
  6818. };
  6819. struct cgroup_subsys cpu_cgrp_subsys = {
  6820. .css_alloc = cpu_cgroup_css_alloc,
  6821. .css_free = cpu_cgroup_css_free,
  6822. .css_online = cpu_cgroup_css_online,
  6823. .css_offline = cpu_cgroup_css_offline,
  6824. .can_attach = cpu_cgroup_can_attach,
  6825. .attach = cpu_cgroup_attach,
  6826. .exit = cpu_cgroup_exit,
  6827. .base_cftypes = cpu_files,
  6828. .early_init = 1,
  6829. };
  6830. #endif /* CONFIG_CGROUP_SCHED */
  6831. void dump_cpu_task(int cpu)
  6832. {
  6833. pr_info("Task dump for CPU %d:\n", cpu);
  6834. sched_show_task(cpu_curr(cpu));
  6835. }