tree.c 116 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744
  1. /*
  2. * Read-Copy Update mechanism for mutual exclusion
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, you can access it online at
  16. * http://www.gnu.org/licenses/gpl-2.0.html.
  17. *
  18. * Copyright IBM Corporation, 2008
  19. *
  20. * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21. * Manfred Spraul <manfred@colorfullife.com>
  22. * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23. *
  24. * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25. * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26. *
  27. * For detailed explanation of Read-Copy Update mechanism see -
  28. * Documentation/RCU
  29. */
  30. #include <linux/types.h>
  31. #include <linux/kernel.h>
  32. #include <linux/init.h>
  33. #include <linux/spinlock.h>
  34. #include <linux/smp.h>
  35. #include <linux/rcupdate.h>
  36. #include <linux/interrupt.h>
  37. #include <linux/sched.h>
  38. #include <linux/nmi.h>
  39. #include <linux/atomic.h>
  40. #include <linux/bitops.h>
  41. #include <linux/export.h>
  42. #include <linux/completion.h>
  43. #include <linux/moduleparam.h>
  44. #include <linux/module.h>
  45. #include <linux/percpu.h>
  46. #include <linux/notifier.h>
  47. #include <linux/cpu.h>
  48. #include <linux/mutex.h>
  49. #include <linux/time.h>
  50. #include <linux/kernel_stat.h>
  51. #include <linux/wait.h>
  52. #include <linux/kthread.h>
  53. #include <linux/prefetch.h>
  54. #include <linux/delay.h>
  55. #include <linux/stop_machine.h>
  56. #include <linux/random.h>
  57. #include <linux/ftrace_event.h>
  58. #include <linux/suspend.h>
  59. #include "tree.h"
  60. #include "rcu.h"
  61. MODULE_ALIAS("rcutree");
  62. #ifdef MODULE_PARAM_PREFIX
  63. #undef MODULE_PARAM_PREFIX
  64. #endif
  65. #define MODULE_PARAM_PREFIX "rcutree."
  66. /* Data structures. */
  67. static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  68. static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
  69. /*
  70. * In order to export the rcu_state name to the tracing tools, it
  71. * needs to be added in the __tracepoint_string section.
  72. * This requires defining a separate variable tp_<sname>_varname
  73. * that points to the string being used, and this will allow
  74. * the tracing userspace tools to be able to decipher the string
  75. * address to the matching string.
  76. */
  77. #define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  78. static char sname##_varname[] = #sname; \
  79. static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  80. struct rcu_state sname##_state = { \
  81. .level = { &sname##_state.node[0] }, \
  82. .call = cr, \
  83. .fqs_state = RCU_GP_IDLE, \
  84. .gpnum = 0UL - 300UL, \
  85. .completed = 0UL - 300UL, \
  86. .orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  87. .orphan_nxttail = &sname##_state.orphan_nxtlist, \
  88. .orphan_donetail = &sname##_state.orphan_donelist, \
  89. .barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  90. .onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  91. .name = sname##_varname, \
  92. .abbr = sabbr, \
  93. }; \
  94. DEFINE_PER_CPU(struct rcu_data, sname##_data)
  95. RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
  96. RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
  97. static struct rcu_state *rcu_state_p;
  98. LIST_HEAD(rcu_struct_flavors);
  99. /* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
  100. static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
  101. module_param(rcu_fanout_leaf, int, 0444);
  102. int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
  103. static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
  104. NUM_RCU_LVL_0,
  105. NUM_RCU_LVL_1,
  106. NUM_RCU_LVL_2,
  107. NUM_RCU_LVL_3,
  108. NUM_RCU_LVL_4,
  109. };
  110. int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
  111. /*
  112. * The rcu_scheduler_active variable transitions from zero to one just
  113. * before the first task is spawned. So when this variable is zero, RCU
  114. * can assume that there is but one task, allowing RCU to (for example)
  115. * optimize synchronize_sched() to a simple barrier(). When this variable
  116. * is one, RCU must actually do all the hard work required to detect real
  117. * grace periods. This variable is also used to suppress boot-time false
  118. * positives from lockdep-RCU error checking.
  119. */
  120. int rcu_scheduler_active __read_mostly;
  121. EXPORT_SYMBOL_GPL(rcu_scheduler_active);
  122. /*
  123. * The rcu_scheduler_fully_active variable transitions from zero to one
  124. * during the early_initcall() processing, which is after the scheduler
  125. * is capable of creating new tasks. So RCU processing (for example,
  126. * creating tasks for RCU priority boosting) must be delayed until after
  127. * rcu_scheduler_fully_active transitions from zero to one. We also
  128. * currently delay invocation of any RCU callbacks until after this point.
  129. *
  130. * It might later prove better for people registering RCU callbacks during
  131. * early boot to take responsibility for these callbacks, but one step at
  132. * a time.
  133. */
  134. static int rcu_scheduler_fully_active __read_mostly;
  135. #ifdef CONFIG_RCU_BOOST
  136. /*
  137. * Control variables for per-CPU and per-rcu_node kthreads. These
  138. * handle all flavors of RCU.
  139. */
  140. static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
  141. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
  142. DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
  143. DEFINE_PER_CPU(char, rcu_cpu_has_work);
  144. #endif /* #ifdef CONFIG_RCU_BOOST */
  145. static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
  146. static void invoke_rcu_core(void);
  147. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
  148. /*
  149. * Track the rcutorture test sequence number and the update version
  150. * number within a given test. The rcutorture_testseq is incremented
  151. * on every rcutorture module load and unload, so has an odd value
  152. * when a test is running. The rcutorture_vernum is set to zero
  153. * when rcutorture starts and is incremented on each rcutorture update.
  154. * These variables enable correlating rcutorture output with the
  155. * RCU tracing information.
  156. */
  157. unsigned long rcutorture_testseq;
  158. unsigned long rcutorture_vernum;
  159. /*
  160. * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
  161. * permit this function to be invoked without holding the root rcu_node
  162. * structure's ->lock, but of course results can be subject to change.
  163. */
  164. static int rcu_gp_in_progress(struct rcu_state *rsp)
  165. {
  166. return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
  167. }
  168. /*
  169. * Note a quiescent state. Because we do not need to know
  170. * how many quiescent states passed, just if there was at least
  171. * one since the start of the grace period, this just sets a flag.
  172. * The caller must have disabled preemption.
  173. */
  174. void rcu_sched_qs(int cpu)
  175. {
  176. struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
  177. if (rdp->passed_quiesce == 0)
  178. trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
  179. rdp->passed_quiesce = 1;
  180. }
  181. void rcu_bh_qs(int cpu)
  182. {
  183. struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
  184. if (rdp->passed_quiesce == 0)
  185. trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
  186. rdp->passed_quiesce = 1;
  187. }
  188. static DEFINE_PER_CPU(int, rcu_sched_qs_mask);
  189. static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
  190. .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
  191. .dynticks = ATOMIC_INIT(1),
  192. #ifdef CONFIG_NO_HZ_FULL_SYSIDLE
  193. .dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
  194. .dynticks_idle = ATOMIC_INIT(1),
  195. #endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
  196. };
  197. /*
  198. * Let the RCU core know that this CPU has gone through the scheduler,
  199. * which is a quiescent state. This is called when the need for a
  200. * quiescent state is urgent, so we burn an atomic operation and full
  201. * memory barriers to let the RCU core know about it, regardless of what
  202. * this CPU might (or might not) do in the near future.
  203. *
  204. * We inform the RCU core by emulating a zero-duration dyntick-idle
  205. * period, which we in turn do by incrementing the ->dynticks counter
  206. * by two.
  207. */
  208. static void rcu_momentary_dyntick_idle(void)
  209. {
  210. unsigned long flags;
  211. struct rcu_data *rdp;
  212. struct rcu_dynticks *rdtp;
  213. int resched_mask;
  214. struct rcu_state *rsp;
  215. local_irq_save(flags);
  216. /*
  217. * Yes, we can lose flag-setting operations. This is OK, because
  218. * the flag will be set again after some delay.
  219. */
  220. resched_mask = raw_cpu_read(rcu_sched_qs_mask);
  221. raw_cpu_write(rcu_sched_qs_mask, 0);
  222. /* Find the flavor that needs a quiescent state. */
  223. for_each_rcu_flavor(rsp) {
  224. rdp = raw_cpu_ptr(rsp->rda);
  225. if (!(resched_mask & rsp->flavor_mask))
  226. continue;
  227. smp_mb(); /* rcu_sched_qs_mask before cond_resched_completed. */
  228. if (ACCESS_ONCE(rdp->mynode->completed) !=
  229. ACCESS_ONCE(rdp->cond_resched_completed))
  230. continue;
  231. /*
  232. * Pretend to be momentarily idle for the quiescent state.
  233. * This allows the grace-period kthread to record the
  234. * quiescent state, with no need for this CPU to do anything
  235. * further.
  236. */
  237. rdtp = this_cpu_ptr(&rcu_dynticks);
  238. smp_mb__before_atomic(); /* Earlier stuff before QS. */
  239. atomic_add(2, &rdtp->dynticks); /* QS. */
  240. smp_mb__after_atomic(); /* Later stuff after QS. */
  241. break;
  242. }
  243. local_irq_restore(flags);
  244. }
  245. /*
  246. * Note a context switch. This is a quiescent state for RCU-sched,
  247. * and requires special handling for preemptible RCU.
  248. * The caller must have disabled preemption.
  249. */
  250. void rcu_note_context_switch(int cpu)
  251. {
  252. trace_rcu_utilization(TPS("Start context switch"));
  253. rcu_sched_qs(cpu);
  254. rcu_preempt_note_context_switch(cpu);
  255. if (unlikely(raw_cpu_read(rcu_sched_qs_mask)))
  256. rcu_momentary_dyntick_idle();
  257. trace_rcu_utilization(TPS("End context switch"));
  258. }
  259. EXPORT_SYMBOL_GPL(rcu_note_context_switch);
  260. static long blimit = 10; /* Maximum callbacks per rcu_do_batch. */
  261. static long qhimark = 10000; /* If this many pending, ignore blimit. */
  262. static long qlowmark = 100; /* Once only this many pending, use blimit. */
  263. module_param(blimit, long, 0444);
  264. module_param(qhimark, long, 0444);
  265. module_param(qlowmark, long, 0444);
  266. static ulong jiffies_till_first_fqs = ULONG_MAX;
  267. static ulong jiffies_till_next_fqs = ULONG_MAX;
  268. module_param(jiffies_till_first_fqs, ulong, 0644);
  269. module_param(jiffies_till_next_fqs, ulong, 0644);
  270. /*
  271. * How long the grace period must be before we start recruiting
  272. * quiescent-state help from rcu_note_context_switch().
  273. */
  274. static ulong jiffies_till_sched_qs = HZ / 20;
  275. module_param(jiffies_till_sched_qs, ulong, 0644);
  276. static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  277. struct rcu_data *rdp);
  278. static void force_qs_rnp(struct rcu_state *rsp,
  279. int (*f)(struct rcu_data *rsp, bool *isidle,
  280. unsigned long *maxj),
  281. bool *isidle, unsigned long *maxj);
  282. static void force_quiescent_state(struct rcu_state *rsp);
  283. static int rcu_pending(int cpu);
  284. /*
  285. * Return the number of RCU-sched batches processed thus far for debug & stats.
  286. */
  287. long rcu_batches_completed_sched(void)
  288. {
  289. return rcu_sched_state.completed;
  290. }
  291. EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
  292. /*
  293. * Return the number of RCU BH batches processed thus far for debug & stats.
  294. */
  295. long rcu_batches_completed_bh(void)
  296. {
  297. return rcu_bh_state.completed;
  298. }
  299. EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
  300. /*
  301. * Force a quiescent state.
  302. */
  303. void rcu_force_quiescent_state(void)
  304. {
  305. force_quiescent_state(rcu_state_p);
  306. }
  307. EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
  308. /*
  309. * Force a quiescent state for RCU BH.
  310. */
  311. void rcu_bh_force_quiescent_state(void)
  312. {
  313. force_quiescent_state(&rcu_bh_state);
  314. }
  315. EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
  316. /*
  317. * Show the state of the grace-period kthreads.
  318. */
  319. void show_rcu_gp_kthreads(void)
  320. {
  321. struct rcu_state *rsp;
  322. for_each_rcu_flavor(rsp) {
  323. pr_info("%s: wait state: %d ->state: %#lx\n",
  324. rsp->name, rsp->gp_state, rsp->gp_kthread->state);
  325. /* sched_show_task(rsp->gp_kthread); */
  326. }
  327. }
  328. EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
  329. /*
  330. * Record the number of times rcutorture tests have been initiated and
  331. * terminated. This information allows the debugfs tracing stats to be
  332. * correlated to the rcutorture messages, even when the rcutorture module
  333. * is being repeatedly loaded and unloaded. In other words, we cannot
  334. * store this state in rcutorture itself.
  335. */
  336. void rcutorture_record_test_transition(void)
  337. {
  338. rcutorture_testseq++;
  339. rcutorture_vernum = 0;
  340. }
  341. EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
  342. /*
  343. * Send along grace-period-related data for rcutorture diagnostics.
  344. */
  345. void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
  346. unsigned long *gpnum, unsigned long *completed)
  347. {
  348. struct rcu_state *rsp = NULL;
  349. switch (test_type) {
  350. case RCU_FLAVOR:
  351. rsp = rcu_state_p;
  352. break;
  353. case RCU_BH_FLAVOR:
  354. rsp = &rcu_bh_state;
  355. break;
  356. case RCU_SCHED_FLAVOR:
  357. rsp = &rcu_sched_state;
  358. break;
  359. default:
  360. break;
  361. }
  362. if (rsp != NULL) {
  363. *flags = ACCESS_ONCE(rsp->gp_flags);
  364. *gpnum = ACCESS_ONCE(rsp->gpnum);
  365. *completed = ACCESS_ONCE(rsp->completed);
  366. return;
  367. }
  368. *flags = 0;
  369. *gpnum = 0;
  370. *completed = 0;
  371. }
  372. EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
  373. /*
  374. * Record the number of writer passes through the current rcutorture test.
  375. * This is also used to correlate debugfs tracing stats with the rcutorture
  376. * messages.
  377. */
  378. void rcutorture_record_progress(unsigned long vernum)
  379. {
  380. rcutorture_vernum++;
  381. }
  382. EXPORT_SYMBOL_GPL(rcutorture_record_progress);
  383. /*
  384. * Force a quiescent state for RCU-sched.
  385. */
  386. void rcu_sched_force_quiescent_state(void)
  387. {
  388. force_quiescent_state(&rcu_sched_state);
  389. }
  390. EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
  391. /*
  392. * Does the CPU have callbacks ready to be invoked?
  393. */
  394. static int
  395. cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
  396. {
  397. return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
  398. rdp->nxttail[RCU_DONE_TAIL] != NULL;
  399. }
  400. /*
  401. * Return the root node of the specified rcu_state structure.
  402. */
  403. static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
  404. {
  405. return &rsp->node[0];
  406. }
  407. /*
  408. * Is there any need for future grace periods?
  409. * Interrupts must be disabled. If the caller does not hold the root
  410. * rnp_node structure's ->lock, the results are advisory only.
  411. */
  412. static int rcu_future_needs_gp(struct rcu_state *rsp)
  413. {
  414. struct rcu_node *rnp = rcu_get_root(rsp);
  415. int idx = (ACCESS_ONCE(rnp->completed) + 1) & 0x1;
  416. int *fp = &rnp->need_future_gp[idx];
  417. return ACCESS_ONCE(*fp);
  418. }
  419. /*
  420. * Does the current CPU require a not-yet-started grace period?
  421. * The caller must have disabled interrupts to prevent races with
  422. * normal callback registry.
  423. */
  424. static int
  425. cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
  426. {
  427. int i;
  428. if (rcu_gp_in_progress(rsp))
  429. return 0; /* No, a grace period is already in progress. */
  430. if (rcu_future_needs_gp(rsp))
  431. return 1; /* Yes, a no-CBs CPU needs one. */
  432. if (!rdp->nxttail[RCU_NEXT_TAIL])
  433. return 0; /* No, this is a no-CBs (or offline) CPU. */
  434. if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
  435. return 1; /* Yes, this CPU has newly registered callbacks. */
  436. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
  437. if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
  438. ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
  439. rdp->nxtcompleted[i]))
  440. return 1; /* Yes, CBs for future grace period. */
  441. return 0; /* No grace period needed. */
  442. }
  443. /*
  444. * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
  445. *
  446. * If the new value of the ->dynticks_nesting counter now is zero,
  447. * we really have entered idle, and must do the appropriate accounting.
  448. * The caller must have disabled interrupts.
  449. */
  450. static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
  451. bool user)
  452. {
  453. struct rcu_state *rsp;
  454. struct rcu_data *rdp;
  455. trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
  456. if (!user && !is_idle_task(current)) {
  457. struct task_struct *idle __maybe_unused =
  458. idle_task(smp_processor_id());
  459. trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
  460. ftrace_dump(DUMP_ORIG);
  461. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  462. current->pid, current->comm,
  463. idle->pid, idle->comm); /* must be idle task! */
  464. }
  465. for_each_rcu_flavor(rsp) {
  466. rdp = this_cpu_ptr(rsp->rda);
  467. do_nocb_deferred_wakeup(rdp);
  468. }
  469. rcu_prepare_for_idle(smp_processor_id());
  470. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  471. smp_mb__before_atomic(); /* See above. */
  472. atomic_inc(&rdtp->dynticks);
  473. smp_mb__after_atomic(); /* Force ordering with next sojourn. */
  474. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  475. /*
  476. * It is illegal to enter an extended quiescent state while
  477. * in an RCU read-side critical section.
  478. */
  479. rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
  480. "Illegal idle entry in RCU read-side critical section.");
  481. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
  482. "Illegal idle entry in RCU-bh read-side critical section.");
  483. rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
  484. "Illegal idle entry in RCU-sched read-side critical section.");
  485. }
  486. /*
  487. * Enter an RCU extended quiescent state, which can be either the
  488. * idle loop or adaptive-tickless usermode execution.
  489. */
  490. static void rcu_eqs_enter(bool user)
  491. {
  492. long long oldval;
  493. struct rcu_dynticks *rdtp;
  494. rdtp = this_cpu_ptr(&rcu_dynticks);
  495. oldval = rdtp->dynticks_nesting;
  496. WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
  497. if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
  498. rdtp->dynticks_nesting = 0;
  499. rcu_eqs_enter_common(rdtp, oldval, user);
  500. } else {
  501. rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
  502. }
  503. }
  504. /**
  505. * rcu_idle_enter - inform RCU that current CPU is entering idle
  506. *
  507. * Enter idle mode, in other words, -leave- the mode in which RCU
  508. * read-side critical sections can occur. (Though RCU read-side
  509. * critical sections can occur in irq handlers in idle, a possibility
  510. * handled by irq_enter() and irq_exit().)
  511. *
  512. * We crowbar the ->dynticks_nesting field to zero to allow for
  513. * the possibility of usermode upcalls having messed up our count
  514. * of interrupt nesting level during the prior busy period.
  515. */
  516. void rcu_idle_enter(void)
  517. {
  518. unsigned long flags;
  519. local_irq_save(flags);
  520. rcu_eqs_enter(false);
  521. rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
  522. local_irq_restore(flags);
  523. }
  524. EXPORT_SYMBOL_GPL(rcu_idle_enter);
  525. #ifdef CONFIG_RCU_USER_QS
  526. /**
  527. * rcu_user_enter - inform RCU that we are resuming userspace.
  528. *
  529. * Enter RCU idle mode right before resuming userspace. No use of RCU
  530. * is permitted between this call and rcu_user_exit(). This way the
  531. * CPU doesn't need to maintain the tick for RCU maintenance purposes
  532. * when the CPU runs in userspace.
  533. */
  534. void rcu_user_enter(void)
  535. {
  536. rcu_eqs_enter(1);
  537. }
  538. #endif /* CONFIG_RCU_USER_QS */
  539. /**
  540. * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
  541. *
  542. * Exit from an interrupt handler, which might possibly result in entering
  543. * idle mode, in other words, leaving the mode in which read-side critical
  544. * sections can occur.
  545. *
  546. * This code assumes that the idle loop never does anything that might
  547. * result in unbalanced calls to irq_enter() and irq_exit(). If your
  548. * architecture violates this assumption, RCU will give you what you
  549. * deserve, good and hard. But very infrequently and irreproducibly.
  550. *
  551. * Use things like work queues to work around this limitation.
  552. *
  553. * You have been warned.
  554. */
  555. void rcu_irq_exit(void)
  556. {
  557. unsigned long flags;
  558. long long oldval;
  559. struct rcu_dynticks *rdtp;
  560. local_irq_save(flags);
  561. rdtp = this_cpu_ptr(&rcu_dynticks);
  562. oldval = rdtp->dynticks_nesting;
  563. rdtp->dynticks_nesting--;
  564. WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
  565. if (rdtp->dynticks_nesting)
  566. trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
  567. else
  568. rcu_eqs_enter_common(rdtp, oldval, true);
  569. rcu_sysidle_enter(rdtp, 1);
  570. local_irq_restore(flags);
  571. }
  572. /*
  573. * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
  574. *
  575. * If the new value of the ->dynticks_nesting counter was previously zero,
  576. * we really have exited idle, and must do the appropriate accounting.
  577. * The caller must have disabled interrupts.
  578. */
  579. static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
  580. int user)
  581. {
  582. smp_mb__before_atomic(); /* Force ordering w/previous sojourn. */
  583. atomic_inc(&rdtp->dynticks);
  584. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  585. smp_mb__after_atomic(); /* See above. */
  586. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  587. rcu_cleanup_after_idle(smp_processor_id());
  588. trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
  589. if (!user && !is_idle_task(current)) {
  590. struct task_struct *idle __maybe_unused =
  591. idle_task(smp_processor_id());
  592. trace_rcu_dyntick(TPS("Error on exit: not idle task"),
  593. oldval, rdtp->dynticks_nesting);
  594. ftrace_dump(DUMP_ORIG);
  595. WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
  596. current->pid, current->comm,
  597. idle->pid, idle->comm); /* must be idle task! */
  598. }
  599. }
  600. /*
  601. * Exit an RCU extended quiescent state, which can be either the
  602. * idle loop or adaptive-tickless usermode execution.
  603. */
  604. static void rcu_eqs_exit(bool user)
  605. {
  606. struct rcu_dynticks *rdtp;
  607. long long oldval;
  608. rdtp = this_cpu_ptr(&rcu_dynticks);
  609. oldval = rdtp->dynticks_nesting;
  610. WARN_ON_ONCE(oldval < 0);
  611. if (oldval & DYNTICK_TASK_NEST_MASK) {
  612. rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
  613. } else {
  614. rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  615. rcu_eqs_exit_common(rdtp, oldval, user);
  616. }
  617. }
  618. /**
  619. * rcu_idle_exit - inform RCU that current CPU is leaving idle
  620. *
  621. * Exit idle mode, in other words, -enter- the mode in which RCU
  622. * read-side critical sections can occur.
  623. *
  624. * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
  625. * allow for the possibility of usermode upcalls messing up our count
  626. * of interrupt nesting level during the busy period that is just
  627. * now starting.
  628. */
  629. void rcu_idle_exit(void)
  630. {
  631. unsigned long flags;
  632. local_irq_save(flags);
  633. rcu_eqs_exit(false);
  634. rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
  635. local_irq_restore(flags);
  636. }
  637. EXPORT_SYMBOL_GPL(rcu_idle_exit);
  638. #ifdef CONFIG_RCU_USER_QS
  639. /**
  640. * rcu_user_exit - inform RCU that we are exiting userspace.
  641. *
  642. * Exit RCU idle mode while entering the kernel because it can
  643. * run a RCU read side critical section anytime.
  644. */
  645. void rcu_user_exit(void)
  646. {
  647. rcu_eqs_exit(1);
  648. }
  649. #endif /* CONFIG_RCU_USER_QS */
  650. /**
  651. * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
  652. *
  653. * Enter an interrupt handler, which might possibly result in exiting
  654. * idle mode, in other words, entering the mode in which read-side critical
  655. * sections can occur.
  656. *
  657. * Note that the Linux kernel is fully capable of entering an interrupt
  658. * handler that it never exits, for example when doing upcalls to
  659. * user mode! This code assumes that the idle loop never does upcalls to
  660. * user mode. If your architecture does do upcalls from the idle loop (or
  661. * does anything else that results in unbalanced calls to the irq_enter()
  662. * and irq_exit() functions), RCU will give you what you deserve, good
  663. * and hard. But very infrequently and irreproducibly.
  664. *
  665. * Use things like work queues to work around this limitation.
  666. *
  667. * You have been warned.
  668. */
  669. void rcu_irq_enter(void)
  670. {
  671. unsigned long flags;
  672. struct rcu_dynticks *rdtp;
  673. long long oldval;
  674. local_irq_save(flags);
  675. rdtp = this_cpu_ptr(&rcu_dynticks);
  676. oldval = rdtp->dynticks_nesting;
  677. rdtp->dynticks_nesting++;
  678. WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
  679. if (oldval)
  680. trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
  681. else
  682. rcu_eqs_exit_common(rdtp, oldval, true);
  683. rcu_sysidle_exit(rdtp, 1);
  684. local_irq_restore(flags);
  685. }
  686. /**
  687. * rcu_nmi_enter - inform RCU of entry to NMI context
  688. *
  689. * If the CPU was idle with dynamic ticks active, and there is no
  690. * irq handler running, this updates rdtp->dynticks_nmi to let the
  691. * RCU grace-period handling know that the CPU is active.
  692. */
  693. void rcu_nmi_enter(void)
  694. {
  695. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  696. if (rdtp->dynticks_nmi_nesting == 0 &&
  697. (atomic_read(&rdtp->dynticks) & 0x1))
  698. return;
  699. rdtp->dynticks_nmi_nesting++;
  700. smp_mb__before_atomic(); /* Force delay from prior write. */
  701. atomic_inc(&rdtp->dynticks);
  702. /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
  703. smp_mb__after_atomic(); /* See above. */
  704. WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
  705. }
  706. /**
  707. * rcu_nmi_exit - inform RCU of exit from NMI context
  708. *
  709. * If the CPU was idle with dynamic ticks active, and there is no
  710. * irq handler running, this updates rdtp->dynticks_nmi to let the
  711. * RCU grace-period handling know that the CPU is no longer active.
  712. */
  713. void rcu_nmi_exit(void)
  714. {
  715. struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
  716. if (rdtp->dynticks_nmi_nesting == 0 ||
  717. --rdtp->dynticks_nmi_nesting != 0)
  718. return;
  719. /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
  720. smp_mb__before_atomic(); /* See above. */
  721. atomic_inc(&rdtp->dynticks);
  722. smp_mb__after_atomic(); /* Force delay to next write. */
  723. WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
  724. }
  725. /**
  726. * __rcu_is_watching - are RCU read-side critical sections safe?
  727. *
  728. * Return true if RCU is watching the running CPU, which means that
  729. * this CPU can safely enter RCU read-side critical sections. Unlike
  730. * rcu_is_watching(), the caller of __rcu_is_watching() must have at
  731. * least disabled preemption.
  732. */
  733. bool notrace __rcu_is_watching(void)
  734. {
  735. return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
  736. }
  737. /**
  738. * rcu_is_watching - see if RCU thinks that the current CPU is idle
  739. *
  740. * If the current CPU is in its idle loop and is neither in an interrupt
  741. * or NMI handler, return true.
  742. */
  743. bool notrace rcu_is_watching(void)
  744. {
  745. int ret;
  746. preempt_disable();
  747. ret = __rcu_is_watching();
  748. preempt_enable();
  749. return ret;
  750. }
  751. EXPORT_SYMBOL_GPL(rcu_is_watching);
  752. #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
  753. /*
  754. * Is the current CPU online? Disable preemption to avoid false positives
  755. * that could otherwise happen due to the current CPU number being sampled,
  756. * this task being preempted, its old CPU being taken offline, resuming
  757. * on some other CPU, then determining that its old CPU is now offline.
  758. * It is OK to use RCU on an offline processor during initial boot, hence
  759. * the check for rcu_scheduler_fully_active. Note also that it is OK
  760. * for a CPU coming online to use RCU for one jiffy prior to marking itself
  761. * online in the cpu_online_mask. Similarly, it is OK for a CPU going
  762. * offline to continue to use RCU for one jiffy after marking itself
  763. * offline in the cpu_online_mask. This leniency is necessary given the
  764. * non-atomic nature of the online and offline processing, for example,
  765. * the fact that a CPU enters the scheduler after completing the CPU_DYING
  766. * notifiers.
  767. *
  768. * This is also why RCU internally marks CPUs online during the
  769. * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
  770. *
  771. * Disable checking if in an NMI handler because we cannot safely report
  772. * errors from NMI handlers anyway.
  773. */
  774. bool rcu_lockdep_current_cpu_online(void)
  775. {
  776. struct rcu_data *rdp;
  777. struct rcu_node *rnp;
  778. bool ret;
  779. if (in_nmi())
  780. return true;
  781. preempt_disable();
  782. rdp = this_cpu_ptr(&rcu_sched_data);
  783. rnp = rdp->mynode;
  784. ret = (rdp->grpmask & rnp->qsmaskinit) ||
  785. !rcu_scheduler_fully_active;
  786. preempt_enable();
  787. return ret;
  788. }
  789. EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
  790. #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
  791. /**
  792. * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
  793. *
  794. * If the current CPU is idle or running at a first-level (not nested)
  795. * interrupt from idle, return true. The caller must have at least
  796. * disabled preemption.
  797. */
  798. static int rcu_is_cpu_rrupt_from_idle(void)
  799. {
  800. return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
  801. }
  802. /*
  803. * Snapshot the specified CPU's dynticks counter so that we can later
  804. * credit them with an implicit quiescent state. Return 1 if this CPU
  805. * is in dynticks idle mode, which is an extended quiescent state.
  806. */
  807. static int dyntick_save_progress_counter(struct rcu_data *rdp,
  808. bool *isidle, unsigned long *maxj)
  809. {
  810. rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
  811. rcu_sysidle_check_cpu(rdp, isidle, maxj);
  812. if ((rdp->dynticks_snap & 0x1) == 0) {
  813. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  814. return 1;
  815. } else {
  816. return 0;
  817. }
  818. }
  819. /*
  820. * This function really isn't for public consumption, but RCU is special in
  821. * that context switches can allow the state machine to make progress.
  822. */
  823. extern void resched_cpu(int cpu);
  824. /*
  825. * Return true if the specified CPU has passed through a quiescent
  826. * state by virtue of being in or having passed through an dynticks
  827. * idle state since the last call to dyntick_save_progress_counter()
  828. * for this same CPU, or by virtue of having been offline.
  829. */
  830. static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
  831. bool *isidle, unsigned long *maxj)
  832. {
  833. unsigned int curr;
  834. int *rcrmp;
  835. unsigned int snap;
  836. curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
  837. snap = (unsigned int)rdp->dynticks_snap;
  838. /*
  839. * If the CPU passed through or entered a dynticks idle phase with
  840. * no active irq/NMI handlers, then we can safely pretend that the CPU
  841. * already acknowledged the request to pass through a quiescent
  842. * state. Either way, that CPU cannot possibly be in an RCU
  843. * read-side critical section that started before the beginning
  844. * of the current RCU grace period.
  845. */
  846. if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
  847. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
  848. rdp->dynticks_fqs++;
  849. return 1;
  850. }
  851. /*
  852. * Check for the CPU being offline, but only if the grace period
  853. * is old enough. We don't need to worry about the CPU changing
  854. * state: If we see it offline even once, it has been through a
  855. * quiescent state.
  856. *
  857. * The reason for insisting that the grace period be at least
  858. * one jiffy old is that CPUs that are not quite online and that
  859. * have just gone offline can still execute RCU read-side critical
  860. * sections.
  861. */
  862. if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
  863. return 0; /* Grace period is not old enough. */
  864. barrier();
  865. if (cpu_is_offline(rdp->cpu)) {
  866. trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
  867. rdp->offline_fqs++;
  868. return 1;
  869. }
  870. /*
  871. * A CPU running for an extended time within the kernel can
  872. * delay RCU grace periods. When the CPU is in NO_HZ_FULL mode,
  873. * even context-switching back and forth between a pair of
  874. * in-kernel CPU-bound tasks cannot advance grace periods.
  875. * So if the grace period is old enough, make the CPU pay attention.
  876. * Note that the unsynchronized assignments to the per-CPU
  877. * rcu_sched_qs_mask variable are safe. Yes, setting of
  878. * bits can be lost, but they will be set again on the next
  879. * force-quiescent-state pass. So lost bit sets do not result
  880. * in incorrect behavior, merely in a grace period lasting
  881. * a few jiffies longer than it might otherwise. Because
  882. * there are at most four threads involved, and because the
  883. * updates are only once every few jiffies, the probability of
  884. * lossage (and thus of slight grace-period extension) is
  885. * quite low.
  886. *
  887. * Note that if the jiffies_till_sched_qs boot/sysfs parameter
  888. * is set too high, we override with half of the RCU CPU stall
  889. * warning delay.
  890. */
  891. rcrmp = &per_cpu(rcu_sched_qs_mask, rdp->cpu);
  892. if (ULONG_CMP_GE(jiffies,
  893. rdp->rsp->gp_start + jiffies_till_sched_qs) ||
  894. ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  895. if (!(ACCESS_ONCE(*rcrmp) & rdp->rsp->flavor_mask)) {
  896. ACCESS_ONCE(rdp->cond_resched_completed) =
  897. ACCESS_ONCE(rdp->mynode->completed);
  898. smp_mb(); /* ->cond_resched_completed before *rcrmp. */
  899. ACCESS_ONCE(*rcrmp) =
  900. ACCESS_ONCE(*rcrmp) + rdp->rsp->flavor_mask;
  901. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  902. rdp->rsp->jiffies_resched += 5; /* Enable beating. */
  903. } else if (ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
  904. /* Time to beat on that CPU again! */
  905. resched_cpu(rdp->cpu); /* Force CPU into scheduler. */
  906. rdp->rsp->jiffies_resched += 5; /* Re-enable beating. */
  907. }
  908. }
  909. return 0;
  910. }
  911. static void record_gp_stall_check_time(struct rcu_state *rsp)
  912. {
  913. unsigned long j = jiffies;
  914. unsigned long j1;
  915. rsp->gp_start = j;
  916. smp_wmb(); /* Record start time before stall time. */
  917. j1 = rcu_jiffies_till_stall_check();
  918. ACCESS_ONCE(rsp->jiffies_stall) = j + j1;
  919. rsp->jiffies_resched = j + j1 / 2;
  920. }
  921. /*
  922. * Dump stacks of all tasks running on stalled CPUs. This is a fallback
  923. * for architectures that do not implement trigger_all_cpu_backtrace().
  924. * The NMI-triggered stack traces are more accurate because they are
  925. * printed by the target CPU.
  926. */
  927. static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
  928. {
  929. int cpu;
  930. unsigned long flags;
  931. struct rcu_node *rnp;
  932. rcu_for_each_leaf_node(rsp, rnp) {
  933. raw_spin_lock_irqsave(&rnp->lock, flags);
  934. if (rnp->qsmask != 0) {
  935. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  936. if (rnp->qsmask & (1UL << cpu))
  937. dump_cpu_task(rnp->grplo + cpu);
  938. }
  939. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  940. }
  941. }
  942. static void print_other_cpu_stall(struct rcu_state *rsp)
  943. {
  944. int cpu;
  945. long delta;
  946. unsigned long flags;
  947. int ndetected = 0;
  948. struct rcu_node *rnp = rcu_get_root(rsp);
  949. long totqlen = 0;
  950. /* Only let one CPU complain about others per time interval. */
  951. raw_spin_lock_irqsave(&rnp->lock, flags);
  952. delta = jiffies - ACCESS_ONCE(rsp->jiffies_stall);
  953. if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
  954. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  955. return;
  956. }
  957. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
  958. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  959. /*
  960. * OK, time to rat on our buddy...
  961. * See Documentation/RCU/stallwarn.txt for info on how to debug
  962. * RCU CPU stall warnings.
  963. */
  964. pr_err("INFO: %s detected stalls on CPUs/tasks:",
  965. rsp->name);
  966. print_cpu_stall_info_begin();
  967. rcu_for_each_leaf_node(rsp, rnp) {
  968. raw_spin_lock_irqsave(&rnp->lock, flags);
  969. ndetected += rcu_print_task_stall(rnp);
  970. if (rnp->qsmask != 0) {
  971. for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
  972. if (rnp->qsmask & (1UL << cpu)) {
  973. print_cpu_stall_info(rsp,
  974. rnp->grplo + cpu);
  975. ndetected++;
  976. }
  977. }
  978. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  979. }
  980. /*
  981. * Now rat on any tasks that got kicked up to the root rcu_node
  982. * due to CPU offlining.
  983. */
  984. rnp = rcu_get_root(rsp);
  985. raw_spin_lock_irqsave(&rnp->lock, flags);
  986. ndetected += rcu_print_task_stall(rnp);
  987. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  988. print_cpu_stall_info_end();
  989. for_each_possible_cpu(cpu)
  990. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  991. pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
  992. smp_processor_id(), (long)(jiffies - rsp->gp_start),
  993. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  994. if (ndetected == 0)
  995. pr_err("INFO: Stall ended before state dump start\n");
  996. else if (!trigger_all_cpu_backtrace())
  997. rcu_dump_cpu_stacks(rsp);
  998. /* Complain about tasks blocking the grace period. */
  999. rcu_print_detail_task_stall(rsp);
  1000. force_quiescent_state(rsp); /* Kick them all. */
  1001. }
  1002. static void print_cpu_stall(struct rcu_state *rsp)
  1003. {
  1004. int cpu;
  1005. unsigned long flags;
  1006. struct rcu_node *rnp = rcu_get_root(rsp);
  1007. long totqlen = 0;
  1008. /*
  1009. * OK, time to rat on ourselves...
  1010. * See Documentation/RCU/stallwarn.txt for info on how to debug
  1011. * RCU CPU stall warnings.
  1012. */
  1013. pr_err("INFO: %s self-detected stall on CPU", rsp->name);
  1014. print_cpu_stall_info_begin();
  1015. print_cpu_stall_info(rsp, smp_processor_id());
  1016. print_cpu_stall_info_end();
  1017. for_each_possible_cpu(cpu)
  1018. totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
  1019. pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
  1020. jiffies - rsp->gp_start,
  1021. (long)rsp->gpnum, (long)rsp->completed, totqlen);
  1022. if (!trigger_all_cpu_backtrace())
  1023. dump_stack();
  1024. raw_spin_lock_irqsave(&rnp->lock, flags);
  1025. if (ULONG_CMP_GE(jiffies, ACCESS_ONCE(rsp->jiffies_stall)))
  1026. ACCESS_ONCE(rsp->jiffies_stall) = jiffies +
  1027. 3 * rcu_jiffies_till_stall_check() + 3;
  1028. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1029. /*
  1030. * Attempt to revive the RCU machinery by forcing a context switch.
  1031. *
  1032. * A context switch would normally allow the RCU state machine to make
  1033. * progress and it could be we're stuck in kernel space without context
  1034. * switches for an entirely unreasonable amount of time.
  1035. */
  1036. resched_cpu(smp_processor_id());
  1037. }
  1038. static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
  1039. {
  1040. unsigned long completed;
  1041. unsigned long gpnum;
  1042. unsigned long gps;
  1043. unsigned long j;
  1044. unsigned long js;
  1045. struct rcu_node *rnp;
  1046. if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
  1047. return;
  1048. j = jiffies;
  1049. /*
  1050. * Lots of memory barriers to reject false positives.
  1051. *
  1052. * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
  1053. * then rsp->gp_start, and finally rsp->completed. These values
  1054. * are updated in the opposite order with memory barriers (or
  1055. * equivalent) during grace-period initialization and cleanup.
  1056. * Now, a false positive can occur if we get an new value of
  1057. * rsp->gp_start and a old value of rsp->jiffies_stall. But given
  1058. * the memory barriers, the only way that this can happen is if one
  1059. * grace period ends and another starts between these two fetches.
  1060. * Detect this by comparing rsp->completed with the previous fetch
  1061. * from rsp->gpnum.
  1062. *
  1063. * Given this check, comparisons of jiffies, rsp->jiffies_stall,
  1064. * and rsp->gp_start suffice to forestall false positives.
  1065. */
  1066. gpnum = ACCESS_ONCE(rsp->gpnum);
  1067. smp_rmb(); /* Pick up ->gpnum first... */
  1068. js = ACCESS_ONCE(rsp->jiffies_stall);
  1069. smp_rmb(); /* ...then ->jiffies_stall before the rest... */
  1070. gps = ACCESS_ONCE(rsp->gp_start);
  1071. smp_rmb(); /* ...and finally ->gp_start before ->completed. */
  1072. completed = ACCESS_ONCE(rsp->completed);
  1073. if (ULONG_CMP_GE(completed, gpnum) ||
  1074. ULONG_CMP_LT(j, js) ||
  1075. ULONG_CMP_GE(gps, js))
  1076. return; /* No stall or GP completed since entering function. */
  1077. rnp = rdp->mynode;
  1078. if (rcu_gp_in_progress(rsp) &&
  1079. (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
  1080. /* We haven't checked in, so go dump stack. */
  1081. print_cpu_stall(rsp);
  1082. } else if (rcu_gp_in_progress(rsp) &&
  1083. ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
  1084. /* They had a few time units to dump stack, so complain. */
  1085. print_other_cpu_stall(rsp);
  1086. }
  1087. }
  1088. /**
  1089. * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
  1090. *
  1091. * Set the stall-warning timeout way off into the future, thus preventing
  1092. * any RCU CPU stall-warning messages from appearing in the current set of
  1093. * RCU grace periods.
  1094. *
  1095. * The caller must disable hard irqs.
  1096. */
  1097. void rcu_cpu_stall_reset(void)
  1098. {
  1099. struct rcu_state *rsp;
  1100. for_each_rcu_flavor(rsp)
  1101. ACCESS_ONCE(rsp->jiffies_stall) = jiffies + ULONG_MAX / 2;
  1102. }
  1103. /*
  1104. * Initialize the specified rcu_data structure's callback list to empty.
  1105. */
  1106. static void init_callback_list(struct rcu_data *rdp)
  1107. {
  1108. int i;
  1109. if (init_nocb_callback_list(rdp))
  1110. return;
  1111. rdp->nxtlist = NULL;
  1112. for (i = 0; i < RCU_NEXT_SIZE; i++)
  1113. rdp->nxttail[i] = &rdp->nxtlist;
  1114. }
  1115. /*
  1116. * Determine the value that ->completed will have at the end of the
  1117. * next subsequent grace period. This is used to tag callbacks so that
  1118. * a CPU can invoke callbacks in a timely fashion even if that CPU has
  1119. * been dyntick-idle for an extended period with callbacks under the
  1120. * influence of RCU_FAST_NO_HZ.
  1121. *
  1122. * The caller must hold rnp->lock with interrupts disabled.
  1123. */
  1124. static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
  1125. struct rcu_node *rnp)
  1126. {
  1127. /*
  1128. * If RCU is idle, we just wait for the next grace period.
  1129. * But we can only be sure that RCU is idle if we are looking
  1130. * at the root rcu_node structure -- otherwise, a new grace
  1131. * period might have started, but just not yet gotten around
  1132. * to initializing the current non-root rcu_node structure.
  1133. */
  1134. if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
  1135. return rnp->completed + 1;
  1136. /*
  1137. * Otherwise, wait for a possible partial grace period and
  1138. * then the subsequent full grace period.
  1139. */
  1140. return rnp->completed + 2;
  1141. }
  1142. /*
  1143. * Trace-event helper function for rcu_start_future_gp() and
  1144. * rcu_nocb_wait_gp().
  1145. */
  1146. static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1147. unsigned long c, const char *s)
  1148. {
  1149. trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
  1150. rnp->completed, c, rnp->level,
  1151. rnp->grplo, rnp->grphi, s);
  1152. }
  1153. /*
  1154. * Start some future grace period, as needed to handle newly arrived
  1155. * callbacks. The required future grace periods are recorded in each
  1156. * rcu_node structure's ->need_future_gp field. Returns true if there
  1157. * is reason to awaken the grace-period kthread.
  1158. *
  1159. * The caller must hold the specified rcu_node structure's ->lock.
  1160. */
  1161. static bool __maybe_unused
  1162. rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
  1163. unsigned long *c_out)
  1164. {
  1165. unsigned long c;
  1166. int i;
  1167. bool ret = false;
  1168. struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
  1169. /*
  1170. * Pick up grace-period number for new callbacks. If this
  1171. * grace period is already marked as needed, return to the caller.
  1172. */
  1173. c = rcu_cbs_completed(rdp->rsp, rnp);
  1174. trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
  1175. if (rnp->need_future_gp[c & 0x1]) {
  1176. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
  1177. goto out;
  1178. }
  1179. /*
  1180. * If either this rcu_node structure or the root rcu_node structure
  1181. * believe that a grace period is in progress, then we must wait
  1182. * for the one following, which is in "c". Because our request
  1183. * will be noticed at the end of the current grace period, we don't
  1184. * need to explicitly start one.
  1185. */
  1186. if (rnp->gpnum != rnp->completed ||
  1187. ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
  1188. rnp->need_future_gp[c & 0x1]++;
  1189. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
  1190. goto out;
  1191. }
  1192. /*
  1193. * There might be no grace period in progress. If we don't already
  1194. * hold it, acquire the root rcu_node structure's lock in order to
  1195. * start one (if needed).
  1196. */
  1197. if (rnp != rnp_root) {
  1198. raw_spin_lock(&rnp_root->lock);
  1199. smp_mb__after_unlock_lock();
  1200. }
  1201. /*
  1202. * Get a new grace-period number. If there really is no grace
  1203. * period in progress, it will be smaller than the one we obtained
  1204. * earlier. Adjust callbacks as needed. Note that even no-CBs
  1205. * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
  1206. */
  1207. c = rcu_cbs_completed(rdp->rsp, rnp_root);
  1208. for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
  1209. if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
  1210. rdp->nxtcompleted[i] = c;
  1211. /*
  1212. * If the needed for the required grace period is already
  1213. * recorded, trace and leave.
  1214. */
  1215. if (rnp_root->need_future_gp[c & 0x1]) {
  1216. trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
  1217. goto unlock_out;
  1218. }
  1219. /* Record the need for the future grace period. */
  1220. rnp_root->need_future_gp[c & 0x1]++;
  1221. /* If a grace period is not already in progress, start one. */
  1222. if (rnp_root->gpnum != rnp_root->completed) {
  1223. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
  1224. } else {
  1225. trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
  1226. ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
  1227. }
  1228. unlock_out:
  1229. if (rnp != rnp_root)
  1230. raw_spin_unlock(&rnp_root->lock);
  1231. out:
  1232. if (c_out != NULL)
  1233. *c_out = c;
  1234. return ret;
  1235. }
  1236. /*
  1237. * Clean up any old requests for the just-ended grace period. Also return
  1238. * whether any additional grace periods have been requested. Also invoke
  1239. * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
  1240. * waiting for this grace period to complete.
  1241. */
  1242. static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
  1243. {
  1244. int c = rnp->completed;
  1245. int needmore;
  1246. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1247. rcu_nocb_gp_cleanup(rsp, rnp);
  1248. rnp->need_future_gp[c & 0x1] = 0;
  1249. needmore = rnp->need_future_gp[(c + 1) & 0x1];
  1250. trace_rcu_future_gp(rnp, rdp, c,
  1251. needmore ? TPS("CleanupMore") : TPS("Cleanup"));
  1252. return needmore;
  1253. }
  1254. /*
  1255. * Awaken the grace-period kthread for the specified flavor of RCU.
  1256. * Don't do a self-awaken, and don't bother awakening when there is
  1257. * nothing for the grace-period kthread to do (as in several CPUs
  1258. * raced to awaken, and we lost), and finally don't try to awaken
  1259. * a kthread that has not yet been created.
  1260. */
  1261. static void rcu_gp_kthread_wake(struct rcu_state *rsp)
  1262. {
  1263. if (current == rsp->gp_kthread ||
  1264. !ACCESS_ONCE(rsp->gp_flags) ||
  1265. !rsp->gp_kthread)
  1266. return;
  1267. wake_up(&rsp->gp_wq);
  1268. }
  1269. /*
  1270. * If there is room, assign a ->completed number to any callbacks on
  1271. * this CPU that have not already been assigned. Also accelerate any
  1272. * callbacks that were previously assigned a ->completed number that has
  1273. * since proven to be too conservative, which can happen if callbacks get
  1274. * assigned a ->completed number while RCU is idle, but with reference to
  1275. * a non-root rcu_node structure. This function is idempotent, so it does
  1276. * not hurt to call it repeatedly. Returns an flag saying that we should
  1277. * awaken the RCU grace-period kthread.
  1278. *
  1279. * The caller must hold rnp->lock with interrupts disabled.
  1280. */
  1281. static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1282. struct rcu_data *rdp)
  1283. {
  1284. unsigned long c;
  1285. int i;
  1286. bool ret;
  1287. /* If the CPU has no callbacks, nothing to do. */
  1288. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1289. return false;
  1290. /*
  1291. * Starting from the sublist containing the callbacks most
  1292. * recently assigned a ->completed number and working down, find the
  1293. * first sublist that is not assignable to an upcoming grace period.
  1294. * Such a sublist has something in it (first two tests) and has
  1295. * a ->completed number assigned that will complete sooner than
  1296. * the ->completed number for newly arrived callbacks (last test).
  1297. *
  1298. * The key point is that any later sublist can be assigned the
  1299. * same ->completed number as the newly arrived callbacks, which
  1300. * means that the callbacks in any of these later sublist can be
  1301. * grouped into a single sublist, whether or not they have already
  1302. * been assigned a ->completed number.
  1303. */
  1304. c = rcu_cbs_completed(rsp, rnp);
  1305. for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
  1306. if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
  1307. !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
  1308. break;
  1309. /*
  1310. * If there are no sublist for unassigned callbacks, leave.
  1311. * At the same time, advance "i" one sublist, so that "i" will
  1312. * index into the sublist where all the remaining callbacks should
  1313. * be grouped into.
  1314. */
  1315. if (++i >= RCU_NEXT_TAIL)
  1316. return false;
  1317. /*
  1318. * Assign all subsequent callbacks' ->completed number to the next
  1319. * full grace period and group them all in the sublist initially
  1320. * indexed by "i".
  1321. */
  1322. for (; i <= RCU_NEXT_TAIL; i++) {
  1323. rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
  1324. rdp->nxtcompleted[i] = c;
  1325. }
  1326. /* Record any needed additional grace periods. */
  1327. ret = rcu_start_future_gp(rnp, rdp, NULL);
  1328. /* Trace depending on how much we were able to accelerate. */
  1329. if (!*rdp->nxttail[RCU_WAIT_TAIL])
  1330. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
  1331. else
  1332. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
  1333. return ret;
  1334. }
  1335. /*
  1336. * Move any callbacks whose grace period has completed to the
  1337. * RCU_DONE_TAIL sublist, then compact the remaining sublists and
  1338. * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
  1339. * sublist. This function is idempotent, so it does not hurt to
  1340. * invoke it repeatedly. As long as it is not invoked -too- often...
  1341. * Returns true if the RCU grace-period kthread needs to be awakened.
  1342. *
  1343. * The caller must hold rnp->lock with interrupts disabled.
  1344. */
  1345. static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
  1346. struct rcu_data *rdp)
  1347. {
  1348. int i, j;
  1349. /* If the CPU has no callbacks, nothing to do. */
  1350. if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
  1351. return false;
  1352. /*
  1353. * Find all callbacks whose ->completed numbers indicate that they
  1354. * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
  1355. */
  1356. for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
  1357. if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
  1358. break;
  1359. rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
  1360. }
  1361. /* Clean up any sublist tail pointers that were misordered above. */
  1362. for (j = RCU_WAIT_TAIL; j < i; j++)
  1363. rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
  1364. /* Copy down callbacks to fill in empty sublists. */
  1365. for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
  1366. if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
  1367. break;
  1368. rdp->nxttail[j] = rdp->nxttail[i];
  1369. rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
  1370. }
  1371. /* Classify any remaining callbacks. */
  1372. return rcu_accelerate_cbs(rsp, rnp, rdp);
  1373. }
  1374. /*
  1375. * Update CPU-local rcu_data state to record the beginnings and ends of
  1376. * grace periods. The caller must hold the ->lock of the leaf rcu_node
  1377. * structure corresponding to the current CPU, and must have irqs disabled.
  1378. * Returns true if the grace-period kthread needs to be awakened.
  1379. */
  1380. static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
  1381. struct rcu_data *rdp)
  1382. {
  1383. bool ret;
  1384. /* Handle the ends of any preceding grace periods first. */
  1385. if (rdp->completed == rnp->completed) {
  1386. /* No grace period end, so just accelerate recent callbacks. */
  1387. ret = rcu_accelerate_cbs(rsp, rnp, rdp);
  1388. } else {
  1389. /* Advance callbacks. */
  1390. ret = rcu_advance_cbs(rsp, rnp, rdp);
  1391. /* Remember that we saw this grace-period completion. */
  1392. rdp->completed = rnp->completed;
  1393. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
  1394. }
  1395. if (rdp->gpnum != rnp->gpnum) {
  1396. /*
  1397. * If the current grace period is waiting for this CPU,
  1398. * set up to detect a quiescent state, otherwise don't
  1399. * go looking for one.
  1400. */
  1401. rdp->gpnum = rnp->gpnum;
  1402. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
  1403. rdp->passed_quiesce = 0;
  1404. rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
  1405. zero_cpu_stall_ticks(rdp);
  1406. }
  1407. return ret;
  1408. }
  1409. static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
  1410. {
  1411. unsigned long flags;
  1412. bool needwake;
  1413. struct rcu_node *rnp;
  1414. local_irq_save(flags);
  1415. rnp = rdp->mynode;
  1416. if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
  1417. rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
  1418. !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
  1419. local_irq_restore(flags);
  1420. return;
  1421. }
  1422. smp_mb__after_unlock_lock();
  1423. needwake = __note_gp_changes(rsp, rnp, rdp);
  1424. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1425. if (needwake)
  1426. rcu_gp_kthread_wake(rsp);
  1427. }
  1428. /*
  1429. * Initialize a new grace period. Return 0 if no grace period required.
  1430. */
  1431. static int rcu_gp_init(struct rcu_state *rsp)
  1432. {
  1433. struct rcu_data *rdp;
  1434. struct rcu_node *rnp = rcu_get_root(rsp);
  1435. rcu_bind_gp_kthread();
  1436. raw_spin_lock_irq(&rnp->lock);
  1437. smp_mb__after_unlock_lock();
  1438. if (!ACCESS_ONCE(rsp->gp_flags)) {
  1439. /* Spurious wakeup, tell caller to go back to sleep. */
  1440. raw_spin_unlock_irq(&rnp->lock);
  1441. return 0;
  1442. }
  1443. ACCESS_ONCE(rsp->gp_flags) = 0; /* Clear all flags: New grace period. */
  1444. if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
  1445. /*
  1446. * Grace period already in progress, don't start another.
  1447. * Not supposed to be able to happen.
  1448. */
  1449. raw_spin_unlock_irq(&rnp->lock);
  1450. return 0;
  1451. }
  1452. /* Advance to a new grace period and initialize state. */
  1453. record_gp_stall_check_time(rsp);
  1454. /* Record GP times before starting GP, hence smp_store_release(). */
  1455. smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
  1456. trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
  1457. raw_spin_unlock_irq(&rnp->lock);
  1458. /* Exclude any concurrent CPU-hotplug operations. */
  1459. mutex_lock(&rsp->onoff_mutex);
  1460. smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
  1461. /*
  1462. * Set the quiescent-state-needed bits in all the rcu_node
  1463. * structures for all currently online CPUs in breadth-first order,
  1464. * starting from the root rcu_node structure, relying on the layout
  1465. * of the tree within the rsp->node[] array. Note that other CPUs
  1466. * will access only the leaves of the hierarchy, thus seeing that no
  1467. * grace period is in progress, at least until the corresponding
  1468. * leaf node has been initialized. In addition, we have excluded
  1469. * CPU-hotplug operations.
  1470. *
  1471. * The grace period cannot complete until the initialization
  1472. * process finishes, because this kthread handles both.
  1473. */
  1474. rcu_for_each_node_breadth_first(rsp, rnp) {
  1475. raw_spin_lock_irq(&rnp->lock);
  1476. smp_mb__after_unlock_lock();
  1477. rdp = this_cpu_ptr(rsp->rda);
  1478. rcu_preempt_check_blocked_tasks(rnp);
  1479. rnp->qsmask = rnp->qsmaskinit;
  1480. ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
  1481. WARN_ON_ONCE(rnp->completed != rsp->completed);
  1482. ACCESS_ONCE(rnp->completed) = rsp->completed;
  1483. if (rnp == rdp->mynode)
  1484. (void)__note_gp_changes(rsp, rnp, rdp);
  1485. rcu_preempt_boost_start_gp(rnp);
  1486. trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
  1487. rnp->level, rnp->grplo,
  1488. rnp->grphi, rnp->qsmask);
  1489. raw_spin_unlock_irq(&rnp->lock);
  1490. #ifdef CONFIG_PROVE_RCU_DELAY
  1491. if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
  1492. system_state == SYSTEM_RUNNING)
  1493. udelay(200);
  1494. #endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
  1495. cond_resched();
  1496. }
  1497. mutex_unlock(&rsp->onoff_mutex);
  1498. return 1;
  1499. }
  1500. /*
  1501. * Do one round of quiescent-state forcing.
  1502. */
  1503. static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
  1504. {
  1505. int fqs_state = fqs_state_in;
  1506. bool isidle = false;
  1507. unsigned long maxj;
  1508. struct rcu_node *rnp = rcu_get_root(rsp);
  1509. rsp->n_force_qs++;
  1510. if (fqs_state == RCU_SAVE_DYNTICK) {
  1511. /* Collect dyntick-idle snapshots. */
  1512. if (is_sysidle_rcu_state(rsp)) {
  1513. isidle = 1;
  1514. maxj = jiffies - ULONG_MAX / 4;
  1515. }
  1516. force_qs_rnp(rsp, dyntick_save_progress_counter,
  1517. &isidle, &maxj);
  1518. rcu_sysidle_report_gp(rsp, isidle, maxj);
  1519. fqs_state = RCU_FORCE_QS;
  1520. } else {
  1521. /* Handle dyntick-idle and offline CPUs. */
  1522. isidle = 0;
  1523. force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
  1524. }
  1525. /* Clear flag to prevent immediate re-entry. */
  1526. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  1527. raw_spin_lock_irq(&rnp->lock);
  1528. smp_mb__after_unlock_lock();
  1529. ACCESS_ONCE(rsp->gp_flags) &= ~RCU_GP_FLAG_FQS;
  1530. raw_spin_unlock_irq(&rnp->lock);
  1531. }
  1532. return fqs_state;
  1533. }
  1534. /*
  1535. * Clean up after the old grace period.
  1536. */
  1537. static void rcu_gp_cleanup(struct rcu_state *rsp)
  1538. {
  1539. unsigned long gp_duration;
  1540. bool needgp = false;
  1541. int nocb = 0;
  1542. struct rcu_data *rdp;
  1543. struct rcu_node *rnp = rcu_get_root(rsp);
  1544. raw_spin_lock_irq(&rnp->lock);
  1545. smp_mb__after_unlock_lock();
  1546. gp_duration = jiffies - rsp->gp_start;
  1547. if (gp_duration > rsp->gp_max)
  1548. rsp->gp_max = gp_duration;
  1549. /*
  1550. * We know the grace period is complete, but to everyone else
  1551. * it appears to still be ongoing. But it is also the case
  1552. * that to everyone else it looks like there is nothing that
  1553. * they can do to advance the grace period. It is therefore
  1554. * safe for us to drop the lock in order to mark the grace
  1555. * period as completed in all of the rcu_node structures.
  1556. */
  1557. raw_spin_unlock_irq(&rnp->lock);
  1558. /*
  1559. * Propagate new ->completed value to rcu_node structures so
  1560. * that other CPUs don't have to wait until the start of the next
  1561. * grace period to process their callbacks. This also avoids
  1562. * some nasty RCU grace-period initialization races by forcing
  1563. * the end of the current grace period to be completely recorded in
  1564. * all of the rcu_node structures before the beginning of the next
  1565. * grace period is recorded in any of the rcu_node structures.
  1566. */
  1567. rcu_for_each_node_breadth_first(rsp, rnp) {
  1568. raw_spin_lock_irq(&rnp->lock);
  1569. smp_mb__after_unlock_lock();
  1570. ACCESS_ONCE(rnp->completed) = rsp->gpnum;
  1571. rdp = this_cpu_ptr(rsp->rda);
  1572. if (rnp == rdp->mynode)
  1573. needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
  1574. /* smp_mb() provided by prior unlock-lock pair. */
  1575. nocb += rcu_future_gp_cleanup(rsp, rnp);
  1576. raw_spin_unlock_irq(&rnp->lock);
  1577. cond_resched();
  1578. }
  1579. rnp = rcu_get_root(rsp);
  1580. raw_spin_lock_irq(&rnp->lock);
  1581. smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
  1582. rcu_nocb_gp_set(rnp, nocb);
  1583. /* Declare grace period done. */
  1584. ACCESS_ONCE(rsp->completed) = rsp->gpnum;
  1585. trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
  1586. rsp->fqs_state = RCU_GP_IDLE;
  1587. rdp = this_cpu_ptr(rsp->rda);
  1588. /* Advance CBs to reduce false positives below. */
  1589. needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
  1590. if (needgp || cpu_needs_another_gp(rsp, rdp)) {
  1591. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1592. trace_rcu_grace_period(rsp->name,
  1593. ACCESS_ONCE(rsp->gpnum),
  1594. TPS("newreq"));
  1595. }
  1596. raw_spin_unlock_irq(&rnp->lock);
  1597. }
  1598. /*
  1599. * Body of kthread that handles grace periods.
  1600. */
  1601. static int __noreturn rcu_gp_kthread(void *arg)
  1602. {
  1603. int fqs_state;
  1604. int gf;
  1605. unsigned long j;
  1606. int ret;
  1607. struct rcu_state *rsp = arg;
  1608. struct rcu_node *rnp = rcu_get_root(rsp);
  1609. for (;;) {
  1610. /* Handle grace-period start. */
  1611. for (;;) {
  1612. trace_rcu_grace_period(rsp->name,
  1613. ACCESS_ONCE(rsp->gpnum),
  1614. TPS("reqwait"));
  1615. rsp->gp_state = RCU_GP_WAIT_GPS;
  1616. wait_event_interruptible(rsp->gp_wq,
  1617. ACCESS_ONCE(rsp->gp_flags) &
  1618. RCU_GP_FLAG_INIT);
  1619. /* Locking provides needed memory barrier. */
  1620. if (rcu_gp_init(rsp))
  1621. break;
  1622. cond_resched();
  1623. flush_signals(current);
  1624. trace_rcu_grace_period(rsp->name,
  1625. ACCESS_ONCE(rsp->gpnum),
  1626. TPS("reqwaitsig"));
  1627. }
  1628. /* Handle quiescent-state forcing. */
  1629. fqs_state = RCU_SAVE_DYNTICK;
  1630. j = jiffies_till_first_fqs;
  1631. if (j > HZ) {
  1632. j = HZ;
  1633. jiffies_till_first_fqs = HZ;
  1634. }
  1635. ret = 0;
  1636. for (;;) {
  1637. if (!ret)
  1638. rsp->jiffies_force_qs = jiffies + j;
  1639. trace_rcu_grace_period(rsp->name,
  1640. ACCESS_ONCE(rsp->gpnum),
  1641. TPS("fqswait"));
  1642. rsp->gp_state = RCU_GP_WAIT_FQS;
  1643. ret = wait_event_interruptible_timeout(rsp->gp_wq,
  1644. ((gf = ACCESS_ONCE(rsp->gp_flags)) &
  1645. RCU_GP_FLAG_FQS) ||
  1646. (!ACCESS_ONCE(rnp->qsmask) &&
  1647. !rcu_preempt_blocked_readers_cgp(rnp)),
  1648. j);
  1649. /* Locking provides needed memory barriers. */
  1650. /* If grace period done, leave loop. */
  1651. if (!ACCESS_ONCE(rnp->qsmask) &&
  1652. !rcu_preempt_blocked_readers_cgp(rnp))
  1653. break;
  1654. /* If time for quiescent-state forcing, do it. */
  1655. if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
  1656. (gf & RCU_GP_FLAG_FQS)) {
  1657. trace_rcu_grace_period(rsp->name,
  1658. ACCESS_ONCE(rsp->gpnum),
  1659. TPS("fqsstart"));
  1660. fqs_state = rcu_gp_fqs(rsp, fqs_state);
  1661. trace_rcu_grace_period(rsp->name,
  1662. ACCESS_ONCE(rsp->gpnum),
  1663. TPS("fqsend"));
  1664. cond_resched();
  1665. } else {
  1666. /* Deal with stray signal. */
  1667. cond_resched();
  1668. flush_signals(current);
  1669. trace_rcu_grace_period(rsp->name,
  1670. ACCESS_ONCE(rsp->gpnum),
  1671. TPS("fqswaitsig"));
  1672. }
  1673. j = jiffies_till_next_fqs;
  1674. if (j > HZ) {
  1675. j = HZ;
  1676. jiffies_till_next_fqs = HZ;
  1677. } else if (j < 1) {
  1678. j = 1;
  1679. jiffies_till_next_fqs = 1;
  1680. }
  1681. }
  1682. /* Handle grace-period end. */
  1683. rcu_gp_cleanup(rsp);
  1684. }
  1685. }
  1686. /*
  1687. * Start a new RCU grace period if warranted, re-initializing the hierarchy
  1688. * in preparation for detecting the next grace period. The caller must hold
  1689. * the root node's ->lock and hard irqs must be disabled.
  1690. *
  1691. * Note that it is legal for a dying CPU (which is marked as offline) to
  1692. * invoke this function. This can happen when the dying CPU reports its
  1693. * quiescent state.
  1694. *
  1695. * Returns true if the grace-period kthread must be awakened.
  1696. */
  1697. static bool
  1698. rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
  1699. struct rcu_data *rdp)
  1700. {
  1701. if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
  1702. /*
  1703. * Either we have not yet spawned the grace-period
  1704. * task, this CPU does not need another grace period,
  1705. * or a grace period is already in progress.
  1706. * Either way, don't start a new grace period.
  1707. */
  1708. return false;
  1709. }
  1710. ACCESS_ONCE(rsp->gp_flags) = RCU_GP_FLAG_INIT;
  1711. trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
  1712. TPS("newreq"));
  1713. /*
  1714. * We can't do wakeups while holding the rnp->lock, as that
  1715. * could cause possible deadlocks with the rq->lock. Defer
  1716. * the wakeup to our caller.
  1717. */
  1718. return true;
  1719. }
  1720. /*
  1721. * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
  1722. * callbacks. Note that rcu_start_gp_advanced() cannot do this because it
  1723. * is invoked indirectly from rcu_advance_cbs(), which would result in
  1724. * endless recursion -- or would do so if it wasn't for the self-deadlock
  1725. * that is encountered beforehand.
  1726. *
  1727. * Returns true if the grace-period kthread needs to be awakened.
  1728. */
  1729. static bool rcu_start_gp(struct rcu_state *rsp)
  1730. {
  1731. struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
  1732. struct rcu_node *rnp = rcu_get_root(rsp);
  1733. bool ret = false;
  1734. /*
  1735. * If there is no grace period in progress right now, any
  1736. * callbacks we have up to this point will be satisfied by the
  1737. * next grace period. Also, advancing the callbacks reduces the
  1738. * probability of false positives from cpu_needs_another_gp()
  1739. * resulting in pointless grace periods. So, advance callbacks
  1740. * then start the grace period!
  1741. */
  1742. ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
  1743. ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
  1744. return ret;
  1745. }
  1746. /*
  1747. * Report a full set of quiescent states to the specified rcu_state
  1748. * data structure. This involves cleaning up after the prior grace
  1749. * period and letting rcu_start_gp() start up the next grace period
  1750. * if one is needed. Note that the caller must hold rnp->lock, which
  1751. * is released before return.
  1752. */
  1753. static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
  1754. __releases(rcu_get_root(rsp)->lock)
  1755. {
  1756. WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
  1757. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  1758. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  1759. }
  1760. /*
  1761. * Similar to rcu_report_qs_rdp(), for which it is a helper function.
  1762. * Allows quiescent states for a group of CPUs to be reported at one go
  1763. * to the specified rcu_node structure, though all the CPUs in the group
  1764. * must be represented by the same rcu_node structure (which need not be
  1765. * a leaf rcu_node structure, though it often will be). That structure's
  1766. * lock must be held upon entry, and it is released before return.
  1767. */
  1768. static void
  1769. rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
  1770. struct rcu_node *rnp, unsigned long flags)
  1771. __releases(rnp->lock)
  1772. {
  1773. struct rcu_node *rnp_c;
  1774. /* Walk up the rcu_node hierarchy. */
  1775. for (;;) {
  1776. if (!(rnp->qsmask & mask)) {
  1777. /* Our bit has already been cleared, so done. */
  1778. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1779. return;
  1780. }
  1781. rnp->qsmask &= ~mask;
  1782. trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
  1783. mask, rnp->qsmask, rnp->level,
  1784. rnp->grplo, rnp->grphi,
  1785. !!rnp->gp_tasks);
  1786. if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
  1787. /* Other bits still set at this level, so done. */
  1788. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1789. return;
  1790. }
  1791. mask = rnp->grpmask;
  1792. if (rnp->parent == NULL) {
  1793. /* No more levels. Exit loop holding root lock. */
  1794. break;
  1795. }
  1796. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1797. rnp_c = rnp;
  1798. rnp = rnp->parent;
  1799. raw_spin_lock_irqsave(&rnp->lock, flags);
  1800. smp_mb__after_unlock_lock();
  1801. WARN_ON_ONCE(rnp_c->qsmask);
  1802. }
  1803. /*
  1804. * Get here if we are the last CPU to pass through a quiescent
  1805. * state for this grace period. Invoke rcu_report_qs_rsp()
  1806. * to clean up and start the next grace period if one is needed.
  1807. */
  1808. rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
  1809. }
  1810. /*
  1811. * Record a quiescent state for the specified CPU to that CPU's rcu_data
  1812. * structure. This must be either called from the specified CPU, or
  1813. * called when the specified CPU is known to be offline (and when it is
  1814. * also known that no other CPU is concurrently trying to help the offline
  1815. * CPU). The lastcomp argument is used to make sure we are still in the
  1816. * grace period of interest. We don't want to end the current grace period
  1817. * based on quiescent states detected in an earlier grace period!
  1818. */
  1819. static void
  1820. rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
  1821. {
  1822. unsigned long flags;
  1823. unsigned long mask;
  1824. bool needwake;
  1825. struct rcu_node *rnp;
  1826. rnp = rdp->mynode;
  1827. raw_spin_lock_irqsave(&rnp->lock, flags);
  1828. smp_mb__after_unlock_lock();
  1829. if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
  1830. rnp->completed == rnp->gpnum) {
  1831. /*
  1832. * The grace period in which this quiescent state was
  1833. * recorded has ended, so don't report it upwards.
  1834. * We will instead need a new quiescent state that lies
  1835. * within the current grace period.
  1836. */
  1837. rdp->passed_quiesce = 0; /* need qs for new gp. */
  1838. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1839. return;
  1840. }
  1841. mask = rdp->grpmask;
  1842. if ((rnp->qsmask & mask) == 0) {
  1843. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  1844. } else {
  1845. rdp->qs_pending = 0;
  1846. /*
  1847. * This GP can't end until cpu checks in, so all of our
  1848. * callbacks can be processed during the next GP.
  1849. */
  1850. needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
  1851. rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
  1852. if (needwake)
  1853. rcu_gp_kthread_wake(rsp);
  1854. }
  1855. }
  1856. /*
  1857. * Check to see if there is a new grace period of which this CPU
  1858. * is not yet aware, and if so, set up local rcu_data state for it.
  1859. * Otherwise, see if this CPU has just passed through its first
  1860. * quiescent state for this grace period, and record that fact if so.
  1861. */
  1862. static void
  1863. rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
  1864. {
  1865. /* Check for grace-period ends and beginnings. */
  1866. note_gp_changes(rsp, rdp);
  1867. /*
  1868. * Does this CPU still need to do its part for current grace period?
  1869. * If no, return and let the other CPUs do their part as well.
  1870. */
  1871. if (!rdp->qs_pending)
  1872. return;
  1873. /*
  1874. * Was there a quiescent state since the beginning of the grace
  1875. * period? If no, then exit and wait for the next call.
  1876. */
  1877. if (!rdp->passed_quiesce)
  1878. return;
  1879. /*
  1880. * Tell RCU we are done (but rcu_report_qs_rdp() will be the
  1881. * judge of that).
  1882. */
  1883. rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
  1884. }
  1885. #ifdef CONFIG_HOTPLUG_CPU
  1886. /*
  1887. * Send the specified CPU's RCU callbacks to the orphanage. The
  1888. * specified CPU must be offline, and the caller must hold the
  1889. * ->orphan_lock.
  1890. */
  1891. static void
  1892. rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
  1893. struct rcu_node *rnp, struct rcu_data *rdp)
  1894. {
  1895. /* No-CBs CPUs do not have orphanable callbacks. */
  1896. if (rcu_is_nocb_cpu(rdp->cpu))
  1897. return;
  1898. /*
  1899. * Orphan the callbacks. First adjust the counts. This is safe
  1900. * because _rcu_barrier() excludes CPU-hotplug operations, so it
  1901. * cannot be running now. Thus no memory barrier is required.
  1902. */
  1903. if (rdp->nxtlist != NULL) {
  1904. rsp->qlen_lazy += rdp->qlen_lazy;
  1905. rsp->qlen += rdp->qlen;
  1906. rdp->n_cbs_orphaned += rdp->qlen;
  1907. rdp->qlen_lazy = 0;
  1908. ACCESS_ONCE(rdp->qlen) = 0;
  1909. }
  1910. /*
  1911. * Next, move those callbacks still needing a grace period to
  1912. * the orphanage, where some other CPU will pick them up.
  1913. * Some of the callbacks might have gone partway through a grace
  1914. * period, but that is too bad. They get to start over because we
  1915. * cannot assume that grace periods are synchronized across CPUs.
  1916. * We don't bother updating the ->nxttail[] array yet, instead
  1917. * we just reset the whole thing later on.
  1918. */
  1919. if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
  1920. *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
  1921. rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
  1922. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  1923. }
  1924. /*
  1925. * Then move the ready-to-invoke callbacks to the orphanage,
  1926. * where some other CPU will pick them up. These will not be
  1927. * required to pass though another grace period: They are done.
  1928. */
  1929. if (rdp->nxtlist != NULL) {
  1930. *rsp->orphan_donetail = rdp->nxtlist;
  1931. rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
  1932. }
  1933. /* Finally, initialize the rcu_data structure's list to empty. */
  1934. init_callback_list(rdp);
  1935. }
  1936. /*
  1937. * Adopt the RCU callbacks from the specified rcu_state structure's
  1938. * orphanage. The caller must hold the ->orphan_lock.
  1939. */
  1940. static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
  1941. {
  1942. int i;
  1943. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  1944. /* No-CBs CPUs are handled specially. */
  1945. if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
  1946. return;
  1947. /* Do the accounting first. */
  1948. rdp->qlen_lazy += rsp->qlen_lazy;
  1949. rdp->qlen += rsp->qlen;
  1950. rdp->n_cbs_adopted += rsp->qlen;
  1951. if (rsp->qlen_lazy != rsp->qlen)
  1952. rcu_idle_count_callbacks_posted();
  1953. rsp->qlen_lazy = 0;
  1954. rsp->qlen = 0;
  1955. /*
  1956. * We do not need a memory barrier here because the only way we
  1957. * can get here if there is an rcu_barrier() in flight is if
  1958. * we are the task doing the rcu_barrier().
  1959. */
  1960. /* First adopt the ready-to-invoke callbacks. */
  1961. if (rsp->orphan_donelist != NULL) {
  1962. *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
  1963. *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
  1964. for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
  1965. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  1966. rdp->nxttail[i] = rsp->orphan_donetail;
  1967. rsp->orphan_donelist = NULL;
  1968. rsp->orphan_donetail = &rsp->orphan_donelist;
  1969. }
  1970. /* And then adopt the callbacks that still need a grace period. */
  1971. if (rsp->orphan_nxtlist != NULL) {
  1972. *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
  1973. rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
  1974. rsp->orphan_nxtlist = NULL;
  1975. rsp->orphan_nxttail = &rsp->orphan_nxtlist;
  1976. }
  1977. }
  1978. /*
  1979. * Trace the fact that this CPU is going offline.
  1980. */
  1981. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  1982. {
  1983. RCU_TRACE(unsigned long mask);
  1984. RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
  1985. RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
  1986. RCU_TRACE(mask = rdp->grpmask);
  1987. trace_rcu_grace_period(rsp->name,
  1988. rnp->gpnum + 1 - !!(rnp->qsmask & mask),
  1989. TPS("cpuofl"));
  1990. }
  1991. /*
  1992. * The CPU has been completely removed, and some other CPU is reporting
  1993. * this fact from process context. Do the remainder of the cleanup,
  1994. * including orphaning the outgoing CPU's RCU callbacks, and also
  1995. * adopting them. There can only be one CPU hotplug operation at a time,
  1996. * so no other CPU can be attempting to update rcu_cpu_kthread_task.
  1997. */
  1998. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  1999. {
  2000. unsigned long flags;
  2001. unsigned long mask;
  2002. int need_report = 0;
  2003. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  2004. struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
  2005. /* Adjust any no-longer-needed kthreads. */
  2006. rcu_boost_kthread_setaffinity(rnp, -1);
  2007. /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
  2008. /* Exclude any attempts to start a new grace period. */
  2009. mutex_lock(&rsp->onoff_mutex);
  2010. raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
  2011. /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
  2012. rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
  2013. rcu_adopt_orphan_cbs(rsp, flags);
  2014. /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
  2015. mask = rdp->grpmask; /* rnp->grplo is constant. */
  2016. do {
  2017. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  2018. smp_mb__after_unlock_lock();
  2019. rnp->qsmaskinit &= ~mask;
  2020. if (rnp->qsmaskinit != 0) {
  2021. if (rnp != rdp->mynode)
  2022. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2023. break;
  2024. }
  2025. if (rnp == rdp->mynode)
  2026. need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
  2027. else
  2028. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  2029. mask = rnp->grpmask;
  2030. rnp = rnp->parent;
  2031. } while (rnp != NULL);
  2032. /*
  2033. * We still hold the leaf rcu_node structure lock here, and
  2034. * irqs are still disabled. The reason for this subterfuge is
  2035. * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
  2036. * held leads to deadlock.
  2037. */
  2038. raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
  2039. rnp = rdp->mynode;
  2040. if (need_report & RCU_OFL_TASKS_NORM_GP)
  2041. rcu_report_unblock_qs_rnp(rnp, flags);
  2042. else
  2043. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2044. if (need_report & RCU_OFL_TASKS_EXP_GP)
  2045. rcu_report_exp_rnp(rsp, rnp, true);
  2046. WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
  2047. "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
  2048. cpu, rdp->qlen, rdp->nxtlist);
  2049. init_callback_list(rdp);
  2050. /* Disallow further callbacks on this CPU. */
  2051. rdp->nxttail[RCU_NEXT_TAIL] = NULL;
  2052. mutex_unlock(&rsp->onoff_mutex);
  2053. }
  2054. #else /* #ifdef CONFIG_HOTPLUG_CPU */
  2055. static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
  2056. {
  2057. }
  2058. static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
  2059. {
  2060. }
  2061. #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
  2062. /*
  2063. * Invoke any RCU callbacks that have made it to the end of their grace
  2064. * period. Thottle as specified by rdp->blimit.
  2065. */
  2066. static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
  2067. {
  2068. unsigned long flags;
  2069. struct rcu_head *next, *list, **tail;
  2070. long bl, count, count_lazy;
  2071. int i;
  2072. /* If no callbacks are ready, just return. */
  2073. if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
  2074. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
  2075. trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
  2076. need_resched(), is_idle_task(current),
  2077. rcu_is_callbacks_kthread());
  2078. return;
  2079. }
  2080. /*
  2081. * Extract the list of ready callbacks, disabling to prevent
  2082. * races with call_rcu() from interrupt handlers.
  2083. */
  2084. local_irq_save(flags);
  2085. WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
  2086. bl = rdp->blimit;
  2087. trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
  2088. list = rdp->nxtlist;
  2089. rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
  2090. *rdp->nxttail[RCU_DONE_TAIL] = NULL;
  2091. tail = rdp->nxttail[RCU_DONE_TAIL];
  2092. for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
  2093. if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
  2094. rdp->nxttail[i] = &rdp->nxtlist;
  2095. local_irq_restore(flags);
  2096. /* Invoke callbacks. */
  2097. count = count_lazy = 0;
  2098. while (list) {
  2099. next = list->next;
  2100. prefetch(next);
  2101. debug_rcu_head_unqueue(list);
  2102. if (__rcu_reclaim(rsp->name, list))
  2103. count_lazy++;
  2104. list = next;
  2105. /* Stop only if limit reached and CPU has something to do. */
  2106. if (++count >= bl &&
  2107. (need_resched() ||
  2108. (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
  2109. break;
  2110. }
  2111. local_irq_save(flags);
  2112. trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
  2113. is_idle_task(current),
  2114. rcu_is_callbacks_kthread());
  2115. /* Update count, and requeue any remaining callbacks. */
  2116. if (list != NULL) {
  2117. *tail = rdp->nxtlist;
  2118. rdp->nxtlist = list;
  2119. for (i = 0; i < RCU_NEXT_SIZE; i++)
  2120. if (&rdp->nxtlist == rdp->nxttail[i])
  2121. rdp->nxttail[i] = tail;
  2122. else
  2123. break;
  2124. }
  2125. smp_mb(); /* List handling before counting for rcu_barrier(). */
  2126. rdp->qlen_lazy -= count_lazy;
  2127. ACCESS_ONCE(rdp->qlen) -= count;
  2128. rdp->n_cbs_invoked += count;
  2129. /* Reinstate batch limit if we have worked down the excess. */
  2130. if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
  2131. rdp->blimit = blimit;
  2132. /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
  2133. if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
  2134. rdp->qlen_last_fqs_check = 0;
  2135. rdp->n_force_qs_snap = rsp->n_force_qs;
  2136. } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
  2137. rdp->qlen_last_fqs_check = rdp->qlen;
  2138. WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
  2139. local_irq_restore(flags);
  2140. /* Re-invoke RCU core processing if there are callbacks remaining. */
  2141. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2142. invoke_rcu_core();
  2143. }
  2144. /*
  2145. * Check to see if this CPU is in a non-context-switch quiescent state
  2146. * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
  2147. * Also schedule RCU core processing.
  2148. *
  2149. * This function must be called from hardirq context. It is normally
  2150. * invoked from the scheduling-clock interrupt. If rcu_pending returns
  2151. * false, there is no point in invoking rcu_check_callbacks().
  2152. */
  2153. void rcu_check_callbacks(int cpu, int user)
  2154. {
  2155. trace_rcu_utilization(TPS("Start scheduler-tick"));
  2156. increment_cpu_stall_ticks();
  2157. if (user || rcu_is_cpu_rrupt_from_idle()) {
  2158. /*
  2159. * Get here if this CPU took its interrupt from user
  2160. * mode or from the idle loop, and if this is not a
  2161. * nested interrupt. In this case, the CPU is in
  2162. * a quiescent state, so note it.
  2163. *
  2164. * No memory barrier is required here because both
  2165. * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
  2166. * variables that other CPUs neither access nor modify,
  2167. * at least not while the corresponding CPU is online.
  2168. */
  2169. rcu_sched_qs(cpu);
  2170. rcu_bh_qs(cpu);
  2171. } else if (!in_softirq()) {
  2172. /*
  2173. * Get here if this CPU did not take its interrupt from
  2174. * softirq, in other words, if it is not interrupting
  2175. * a rcu_bh read-side critical section. This is an _bh
  2176. * critical section, so note it.
  2177. */
  2178. rcu_bh_qs(cpu);
  2179. }
  2180. rcu_preempt_check_callbacks(cpu);
  2181. if (rcu_pending(cpu))
  2182. invoke_rcu_core();
  2183. trace_rcu_utilization(TPS("End scheduler-tick"));
  2184. }
  2185. /*
  2186. * Scan the leaf rcu_node structures, processing dyntick state for any that
  2187. * have not yet encountered a quiescent state, using the function specified.
  2188. * Also initiate boosting for any threads blocked on the root rcu_node.
  2189. *
  2190. * The caller must have suppressed start of new grace periods.
  2191. */
  2192. static void force_qs_rnp(struct rcu_state *rsp,
  2193. int (*f)(struct rcu_data *rsp, bool *isidle,
  2194. unsigned long *maxj),
  2195. bool *isidle, unsigned long *maxj)
  2196. {
  2197. unsigned long bit;
  2198. int cpu;
  2199. unsigned long flags;
  2200. unsigned long mask;
  2201. struct rcu_node *rnp;
  2202. rcu_for_each_leaf_node(rsp, rnp) {
  2203. cond_resched();
  2204. mask = 0;
  2205. raw_spin_lock_irqsave(&rnp->lock, flags);
  2206. smp_mb__after_unlock_lock();
  2207. if (!rcu_gp_in_progress(rsp)) {
  2208. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2209. return;
  2210. }
  2211. if (rnp->qsmask == 0) {
  2212. rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
  2213. continue;
  2214. }
  2215. cpu = rnp->grplo;
  2216. bit = 1;
  2217. for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
  2218. if ((rnp->qsmask & bit) != 0) {
  2219. if ((rnp->qsmaskinit & bit) != 0)
  2220. *isidle = 0;
  2221. if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
  2222. mask |= bit;
  2223. }
  2224. }
  2225. if (mask != 0) {
  2226. /* rcu_report_qs_rnp() releases rnp->lock. */
  2227. rcu_report_qs_rnp(mask, rsp, rnp, flags);
  2228. continue;
  2229. }
  2230. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  2231. }
  2232. rnp = rcu_get_root(rsp);
  2233. if (rnp->qsmask == 0) {
  2234. raw_spin_lock_irqsave(&rnp->lock, flags);
  2235. smp_mb__after_unlock_lock();
  2236. rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
  2237. }
  2238. }
  2239. /*
  2240. * Force quiescent states on reluctant CPUs, and also detect which
  2241. * CPUs are in dyntick-idle mode.
  2242. */
  2243. static void force_quiescent_state(struct rcu_state *rsp)
  2244. {
  2245. unsigned long flags;
  2246. bool ret;
  2247. struct rcu_node *rnp;
  2248. struct rcu_node *rnp_old = NULL;
  2249. /* Funnel through hierarchy to reduce memory contention. */
  2250. rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
  2251. for (; rnp != NULL; rnp = rnp->parent) {
  2252. ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
  2253. !raw_spin_trylock(&rnp->fqslock);
  2254. if (rnp_old != NULL)
  2255. raw_spin_unlock(&rnp_old->fqslock);
  2256. if (ret) {
  2257. ACCESS_ONCE(rsp->n_force_qs_lh)++;
  2258. return;
  2259. }
  2260. rnp_old = rnp;
  2261. }
  2262. /* rnp_old == rcu_get_root(rsp), rnp == NULL. */
  2263. /* Reached the root of the rcu_node tree, acquire lock. */
  2264. raw_spin_lock_irqsave(&rnp_old->lock, flags);
  2265. smp_mb__after_unlock_lock();
  2266. raw_spin_unlock(&rnp_old->fqslock);
  2267. if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
  2268. ACCESS_ONCE(rsp->n_force_qs_lh)++;
  2269. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2270. return; /* Someone beat us to it. */
  2271. }
  2272. ACCESS_ONCE(rsp->gp_flags) |= RCU_GP_FLAG_FQS;
  2273. raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
  2274. wake_up(&rsp->gp_wq); /* Memory barrier implied by wake_up() path. */
  2275. }
  2276. /*
  2277. * This does the RCU core processing work for the specified rcu_state
  2278. * and rcu_data structures. This may be called only from the CPU to
  2279. * whom the rdp belongs.
  2280. */
  2281. static void
  2282. __rcu_process_callbacks(struct rcu_state *rsp)
  2283. {
  2284. unsigned long flags;
  2285. bool needwake;
  2286. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2287. WARN_ON_ONCE(rdp->beenonline == 0);
  2288. /* Update RCU state based on any recent quiescent states. */
  2289. rcu_check_quiescent_state(rsp, rdp);
  2290. /* Does this CPU require a not-yet-started grace period? */
  2291. local_irq_save(flags);
  2292. if (cpu_needs_another_gp(rsp, rdp)) {
  2293. raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
  2294. needwake = rcu_start_gp(rsp);
  2295. raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
  2296. if (needwake)
  2297. rcu_gp_kthread_wake(rsp);
  2298. } else {
  2299. local_irq_restore(flags);
  2300. }
  2301. /* If there are callbacks ready, invoke them. */
  2302. if (cpu_has_callbacks_ready_to_invoke(rdp))
  2303. invoke_rcu_callbacks(rsp, rdp);
  2304. /* Do any needed deferred wakeups of rcuo kthreads. */
  2305. do_nocb_deferred_wakeup(rdp);
  2306. }
  2307. /*
  2308. * Do RCU core processing for the current CPU.
  2309. */
  2310. static void rcu_process_callbacks(struct softirq_action *unused)
  2311. {
  2312. struct rcu_state *rsp;
  2313. if (cpu_is_offline(smp_processor_id()))
  2314. return;
  2315. trace_rcu_utilization(TPS("Start RCU core"));
  2316. for_each_rcu_flavor(rsp)
  2317. __rcu_process_callbacks(rsp);
  2318. trace_rcu_utilization(TPS("End RCU core"));
  2319. }
  2320. /*
  2321. * Schedule RCU callback invocation. If the specified type of RCU
  2322. * does not support RCU priority boosting, just do a direct call,
  2323. * otherwise wake up the per-CPU kernel kthread. Note that because we
  2324. * are running on the current CPU with interrupts disabled, the
  2325. * rcu_cpu_kthread_task cannot disappear out from under us.
  2326. */
  2327. static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
  2328. {
  2329. if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
  2330. return;
  2331. if (likely(!rsp->boost)) {
  2332. rcu_do_batch(rsp, rdp);
  2333. return;
  2334. }
  2335. invoke_rcu_callbacks_kthread();
  2336. }
  2337. static void invoke_rcu_core(void)
  2338. {
  2339. if (cpu_online(smp_processor_id()))
  2340. raise_softirq(RCU_SOFTIRQ);
  2341. }
  2342. /*
  2343. * Handle any core-RCU processing required by a call_rcu() invocation.
  2344. */
  2345. static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
  2346. struct rcu_head *head, unsigned long flags)
  2347. {
  2348. bool needwake;
  2349. /*
  2350. * If called from an extended quiescent state, invoke the RCU
  2351. * core in order to force a re-evaluation of RCU's idleness.
  2352. */
  2353. if (!rcu_is_watching() && cpu_online(smp_processor_id()))
  2354. invoke_rcu_core();
  2355. /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
  2356. if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
  2357. return;
  2358. /*
  2359. * Force the grace period if too many callbacks or too long waiting.
  2360. * Enforce hysteresis, and don't invoke force_quiescent_state()
  2361. * if some other CPU has recently done so. Also, don't bother
  2362. * invoking force_quiescent_state() if the newly enqueued callback
  2363. * is the only one waiting for a grace period to complete.
  2364. */
  2365. if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
  2366. /* Are we ignoring a completed grace period? */
  2367. note_gp_changes(rsp, rdp);
  2368. /* Start a new grace period if one not already started. */
  2369. if (!rcu_gp_in_progress(rsp)) {
  2370. struct rcu_node *rnp_root = rcu_get_root(rsp);
  2371. raw_spin_lock(&rnp_root->lock);
  2372. smp_mb__after_unlock_lock();
  2373. needwake = rcu_start_gp(rsp);
  2374. raw_spin_unlock(&rnp_root->lock);
  2375. if (needwake)
  2376. rcu_gp_kthread_wake(rsp);
  2377. } else {
  2378. /* Give the grace period a kick. */
  2379. rdp->blimit = LONG_MAX;
  2380. if (rsp->n_force_qs == rdp->n_force_qs_snap &&
  2381. *rdp->nxttail[RCU_DONE_TAIL] != head)
  2382. force_quiescent_state(rsp);
  2383. rdp->n_force_qs_snap = rsp->n_force_qs;
  2384. rdp->qlen_last_fqs_check = rdp->qlen;
  2385. }
  2386. }
  2387. }
  2388. /*
  2389. * RCU callback function to leak a callback.
  2390. */
  2391. static void rcu_leak_callback(struct rcu_head *rhp)
  2392. {
  2393. }
  2394. /*
  2395. * Helper function for call_rcu() and friends. The cpu argument will
  2396. * normally be -1, indicating "currently running CPU". It may specify
  2397. * a CPU only if that CPU is a no-CBs CPU. Currently, only _rcu_barrier()
  2398. * is expected to specify a CPU.
  2399. */
  2400. static void
  2401. __call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
  2402. struct rcu_state *rsp, int cpu, bool lazy)
  2403. {
  2404. unsigned long flags;
  2405. struct rcu_data *rdp;
  2406. WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
  2407. if (debug_rcu_head_queue(head)) {
  2408. /* Probable double call_rcu(), so leak the callback. */
  2409. ACCESS_ONCE(head->func) = rcu_leak_callback;
  2410. WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
  2411. return;
  2412. }
  2413. head->func = func;
  2414. head->next = NULL;
  2415. /*
  2416. * Opportunistically note grace-period endings and beginnings.
  2417. * Note that we might see a beginning right after we see an
  2418. * end, but never vice versa, since this CPU has to pass through
  2419. * a quiescent state betweentimes.
  2420. */
  2421. local_irq_save(flags);
  2422. rdp = this_cpu_ptr(rsp->rda);
  2423. /* Add the callback to our list. */
  2424. if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
  2425. int offline;
  2426. if (cpu != -1)
  2427. rdp = per_cpu_ptr(rsp->rda, cpu);
  2428. offline = !__call_rcu_nocb(rdp, head, lazy, flags);
  2429. WARN_ON_ONCE(offline);
  2430. /* _call_rcu() is illegal on offline CPU; leak the callback. */
  2431. local_irq_restore(flags);
  2432. return;
  2433. }
  2434. ACCESS_ONCE(rdp->qlen)++;
  2435. if (lazy)
  2436. rdp->qlen_lazy++;
  2437. else
  2438. rcu_idle_count_callbacks_posted();
  2439. smp_mb(); /* Count before adding callback for rcu_barrier(). */
  2440. *rdp->nxttail[RCU_NEXT_TAIL] = head;
  2441. rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
  2442. if (__is_kfree_rcu_offset((unsigned long)func))
  2443. trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
  2444. rdp->qlen_lazy, rdp->qlen);
  2445. else
  2446. trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
  2447. /* Go handle any RCU core processing required. */
  2448. __call_rcu_core(rsp, rdp, head, flags);
  2449. local_irq_restore(flags);
  2450. }
  2451. /*
  2452. * Queue an RCU-sched callback for invocation after a grace period.
  2453. */
  2454. void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2455. {
  2456. __call_rcu(head, func, &rcu_sched_state, -1, 0);
  2457. }
  2458. EXPORT_SYMBOL_GPL(call_rcu_sched);
  2459. /*
  2460. * Queue an RCU callback for invocation after a quicker grace period.
  2461. */
  2462. void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
  2463. {
  2464. __call_rcu(head, func, &rcu_bh_state, -1, 0);
  2465. }
  2466. EXPORT_SYMBOL_GPL(call_rcu_bh);
  2467. /*
  2468. * Queue an RCU callback for lazy invocation after a grace period.
  2469. * This will likely be later named something like "call_rcu_lazy()",
  2470. * but this change will require some way of tagging the lazy RCU
  2471. * callbacks in the list of pending callbacks. Until then, this
  2472. * function may only be called from __kfree_rcu().
  2473. */
  2474. void kfree_call_rcu(struct rcu_head *head,
  2475. void (*func)(struct rcu_head *rcu))
  2476. {
  2477. __call_rcu(head, func, rcu_state_p, -1, 1);
  2478. }
  2479. EXPORT_SYMBOL_GPL(kfree_call_rcu);
  2480. /*
  2481. * Because a context switch is a grace period for RCU-sched and RCU-bh,
  2482. * any blocking grace-period wait automatically implies a grace period
  2483. * if there is only one CPU online at any point time during execution
  2484. * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
  2485. * occasionally incorrectly indicate that there are multiple CPUs online
  2486. * when there was in fact only one the whole time, as this just adds
  2487. * some overhead: RCU still operates correctly.
  2488. */
  2489. static inline int rcu_blocking_is_gp(void)
  2490. {
  2491. int ret;
  2492. might_sleep(); /* Check for RCU read-side critical section. */
  2493. preempt_disable();
  2494. ret = num_online_cpus() <= 1;
  2495. preempt_enable();
  2496. return ret;
  2497. }
  2498. /**
  2499. * synchronize_sched - wait until an rcu-sched grace period has elapsed.
  2500. *
  2501. * Control will return to the caller some time after a full rcu-sched
  2502. * grace period has elapsed, in other words after all currently executing
  2503. * rcu-sched read-side critical sections have completed. These read-side
  2504. * critical sections are delimited by rcu_read_lock_sched() and
  2505. * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
  2506. * local_irq_disable(), and so on may be used in place of
  2507. * rcu_read_lock_sched().
  2508. *
  2509. * This means that all preempt_disable code sequences, including NMI and
  2510. * non-threaded hardware-interrupt handlers, in progress on entry will
  2511. * have completed before this primitive returns. However, this does not
  2512. * guarantee that softirq handlers will have completed, since in some
  2513. * kernels, these handlers can run in process context, and can block.
  2514. *
  2515. * Note that this guarantee implies further memory-ordering guarantees.
  2516. * On systems with more than one CPU, when synchronize_sched() returns,
  2517. * each CPU is guaranteed to have executed a full memory barrier since the
  2518. * end of its last RCU-sched read-side critical section whose beginning
  2519. * preceded the call to synchronize_sched(). In addition, each CPU having
  2520. * an RCU read-side critical section that extends beyond the return from
  2521. * synchronize_sched() is guaranteed to have executed a full memory barrier
  2522. * after the beginning of synchronize_sched() and before the beginning of
  2523. * that RCU read-side critical section. Note that these guarantees include
  2524. * CPUs that are offline, idle, or executing in user mode, as well as CPUs
  2525. * that are executing in the kernel.
  2526. *
  2527. * Furthermore, if CPU A invoked synchronize_sched(), which returned
  2528. * to its caller on CPU B, then both CPU A and CPU B are guaranteed
  2529. * to have executed a full memory barrier during the execution of
  2530. * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
  2531. * again only if the system has more than one CPU).
  2532. *
  2533. * This primitive provides the guarantees made by the (now removed)
  2534. * synchronize_kernel() API. In contrast, synchronize_rcu() only
  2535. * guarantees that rcu_read_lock() sections will have completed.
  2536. * In "classic RCU", these two guarantees happen to be one and
  2537. * the same, but can differ in realtime RCU implementations.
  2538. */
  2539. void synchronize_sched(void)
  2540. {
  2541. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2542. !lock_is_held(&rcu_lock_map) &&
  2543. !lock_is_held(&rcu_sched_lock_map),
  2544. "Illegal synchronize_sched() in RCU-sched read-side critical section");
  2545. if (rcu_blocking_is_gp())
  2546. return;
  2547. if (rcu_expedited)
  2548. synchronize_sched_expedited();
  2549. else
  2550. wait_rcu_gp(call_rcu_sched);
  2551. }
  2552. EXPORT_SYMBOL_GPL(synchronize_sched);
  2553. /**
  2554. * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
  2555. *
  2556. * Control will return to the caller some time after a full rcu_bh grace
  2557. * period has elapsed, in other words after all currently executing rcu_bh
  2558. * read-side critical sections have completed. RCU read-side critical
  2559. * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
  2560. * and may be nested.
  2561. *
  2562. * See the description of synchronize_sched() for more detailed information
  2563. * on memory ordering guarantees.
  2564. */
  2565. void synchronize_rcu_bh(void)
  2566. {
  2567. rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
  2568. !lock_is_held(&rcu_lock_map) &&
  2569. !lock_is_held(&rcu_sched_lock_map),
  2570. "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
  2571. if (rcu_blocking_is_gp())
  2572. return;
  2573. if (rcu_expedited)
  2574. synchronize_rcu_bh_expedited();
  2575. else
  2576. wait_rcu_gp(call_rcu_bh);
  2577. }
  2578. EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
  2579. /**
  2580. * get_state_synchronize_rcu - Snapshot current RCU state
  2581. *
  2582. * Returns a cookie that is used by a later call to cond_synchronize_rcu()
  2583. * to determine whether or not a full grace period has elapsed in the
  2584. * meantime.
  2585. */
  2586. unsigned long get_state_synchronize_rcu(void)
  2587. {
  2588. /*
  2589. * Any prior manipulation of RCU-protected data must happen
  2590. * before the load from ->gpnum.
  2591. */
  2592. smp_mb(); /* ^^^ */
  2593. /*
  2594. * Make sure this load happens before the purportedly
  2595. * time-consuming work between get_state_synchronize_rcu()
  2596. * and cond_synchronize_rcu().
  2597. */
  2598. return smp_load_acquire(&rcu_state_p->gpnum);
  2599. }
  2600. EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
  2601. /**
  2602. * cond_synchronize_rcu - Conditionally wait for an RCU grace period
  2603. *
  2604. * @oldstate: return value from earlier call to get_state_synchronize_rcu()
  2605. *
  2606. * If a full RCU grace period has elapsed since the earlier call to
  2607. * get_state_synchronize_rcu(), just return. Otherwise, invoke
  2608. * synchronize_rcu() to wait for a full grace period.
  2609. *
  2610. * Yes, this function does not take counter wrap into account. But
  2611. * counter wrap is harmless. If the counter wraps, we have waited for
  2612. * more than 2 billion grace periods (and way more on a 64-bit system!),
  2613. * so waiting for one additional grace period should be just fine.
  2614. */
  2615. void cond_synchronize_rcu(unsigned long oldstate)
  2616. {
  2617. unsigned long newstate;
  2618. /*
  2619. * Ensure that this load happens before any RCU-destructive
  2620. * actions the caller might carry out after we return.
  2621. */
  2622. newstate = smp_load_acquire(&rcu_state_p->completed);
  2623. if (ULONG_CMP_GE(oldstate, newstate))
  2624. synchronize_rcu();
  2625. }
  2626. EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
  2627. static int synchronize_sched_expedited_cpu_stop(void *data)
  2628. {
  2629. /*
  2630. * There must be a full memory barrier on each affected CPU
  2631. * between the time that try_stop_cpus() is called and the
  2632. * time that it returns.
  2633. *
  2634. * In the current initial implementation of cpu_stop, the
  2635. * above condition is already met when the control reaches
  2636. * this point and the following smp_mb() is not strictly
  2637. * necessary. Do smp_mb() anyway for documentation and
  2638. * robustness against future implementation changes.
  2639. */
  2640. smp_mb(); /* See above comment block. */
  2641. return 0;
  2642. }
  2643. /**
  2644. * synchronize_sched_expedited - Brute-force RCU-sched grace period
  2645. *
  2646. * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
  2647. * approach to force the grace period to end quickly. This consumes
  2648. * significant time on all CPUs and is unfriendly to real-time workloads,
  2649. * so is thus not recommended for any sort of common-case code. In fact,
  2650. * if you are using synchronize_sched_expedited() in a loop, please
  2651. * restructure your code to batch your updates, and then use a single
  2652. * synchronize_sched() instead.
  2653. *
  2654. * Note that it is illegal to call this function while holding any lock
  2655. * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
  2656. * to call this function from a CPU-hotplug notifier. Failing to observe
  2657. * these restriction will result in deadlock.
  2658. *
  2659. * This implementation can be thought of as an application of ticket
  2660. * locking to RCU, with sync_sched_expedited_started and
  2661. * sync_sched_expedited_done taking on the roles of the halves
  2662. * of the ticket-lock word. Each task atomically increments
  2663. * sync_sched_expedited_started upon entry, snapshotting the old value,
  2664. * then attempts to stop all the CPUs. If this succeeds, then each
  2665. * CPU will have executed a context switch, resulting in an RCU-sched
  2666. * grace period. We are then done, so we use atomic_cmpxchg() to
  2667. * update sync_sched_expedited_done to match our snapshot -- but
  2668. * only if someone else has not already advanced past our snapshot.
  2669. *
  2670. * On the other hand, if try_stop_cpus() fails, we check the value
  2671. * of sync_sched_expedited_done. If it has advanced past our
  2672. * initial snapshot, then someone else must have forced a grace period
  2673. * some time after we took our snapshot. In this case, our work is
  2674. * done for us, and we can simply return. Otherwise, we try again,
  2675. * but keep our initial snapshot for purposes of checking for someone
  2676. * doing our work for us.
  2677. *
  2678. * If we fail too many times in a row, we fall back to synchronize_sched().
  2679. */
  2680. void synchronize_sched_expedited(void)
  2681. {
  2682. long firstsnap, s, snap;
  2683. int trycount = 0;
  2684. struct rcu_state *rsp = &rcu_sched_state;
  2685. /*
  2686. * If we are in danger of counter wrap, just do synchronize_sched().
  2687. * By allowing sync_sched_expedited_started to advance no more than
  2688. * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
  2689. * that more than 3.5 billion CPUs would be required to force a
  2690. * counter wrap on a 32-bit system. Quite a few more CPUs would of
  2691. * course be required on a 64-bit system.
  2692. */
  2693. if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
  2694. (ulong)atomic_long_read(&rsp->expedited_done) +
  2695. ULONG_MAX / 8)) {
  2696. synchronize_sched();
  2697. atomic_long_inc(&rsp->expedited_wrap);
  2698. return;
  2699. }
  2700. /*
  2701. * Take a ticket. Note that atomic_inc_return() implies a
  2702. * full memory barrier.
  2703. */
  2704. snap = atomic_long_inc_return(&rsp->expedited_start);
  2705. firstsnap = snap;
  2706. get_online_cpus();
  2707. WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
  2708. /*
  2709. * Each pass through the following loop attempts to force a
  2710. * context switch on each CPU.
  2711. */
  2712. while (try_stop_cpus(cpu_online_mask,
  2713. synchronize_sched_expedited_cpu_stop,
  2714. NULL) == -EAGAIN) {
  2715. put_online_cpus();
  2716. atomic_long_inc(&rsp->expedited_tryfail);
  2717. /* Check to see if someone else did our work for us. */
  2718. s = atomic_long_read(&rsp->expedited_done);
  2719. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2720. /* ensure test happens before caller kfree */
  2721. smp_mb__before_atomic(); /* ^^^ */
  2722. atomic_long_inc(&rsp->expedited_workdone1);
  2723. return;
  2724. }
  2725. /* No joy, try again later. Or just synchronize_sched(). */
  2726. if (trycount++ < 10) {
  2727. udelay(trycount * num_online_cpus());
  2728. } else {
  2729. wait_rcu_gp(call_rcu_sched);
  2730. atomic_long_inc(&rsp->expedited_normal);
  2731. return;
  2732. }
  2733. /* Recheck to see if someone else did our work for us. */
  2734. s = atomic_long_read(&rsp->expedited_done);
  2735. if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
  2736. /* ensure test happens before caller kfree */
  2737. smp_mb__before_atomic(); /* ^^^ */
  2738. atomic_long_inc(&rsp->expedited_workdone2);
  2739. return;
  2740. }
  2741. /*
  2742. * Refetching sync_sched_expedited_started allows later
  2743. * callers to piggyback on our grace period. We retry
  2744. * after they started, so our grace period works for them,
  2745. * and they started after our first try, so their grace
  2746. * period works for us.
  2747. */
  2748. get_online_cpus();
  2749. snap = atomic_long_read(&rsp->expedited_start);
  2750. smp_mb(); /* ensure read is before try_stop_cpus(). */
  2751. }
  2752. atomic_long_inc(&rsp->expedited_stoppedcpus);
  2753. /*
  2754. * Everyone up to our most recent fetch is covered by our grace
  2755. * period. Update the counter, but only if our work is still
  2756. * relevant -- which it won't be if someone who started later
  2757. * than we did already did their update.
  2758. */
  2759. do {
  2760. atomic_long_inc(&rsp->expedited_done_tries);
  2761. s = atomic_long_read(&rsp->expedited_done);
  2762. if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
  2763. /* ensure test happens before caller kfree */
  2764. smp_mb__before_atomic(); /* ^^^ */
  2765. atomic_long_inc(&rsp->expedited_done_lost);
  2766. break;
  2767. }
  2768. } while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
  2769. atomic_long_inc(&rsp->expedited_done_exit);
  2770. put_online_cpus();
  2771. }
  2772. EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
  2773. /*
  2774. * Check to see if there is any immediate RCU-related work to be done
  2775. * by the current CPU, for the specified type of RCU, returning 1 if so.
  2776. * The checks are in order of increasing expense: checks that can be
  2777. * carried out against CPU-local state are performed first. However,
  2778. * we must check for CPU stalls first, else we might not get a chance.
  2779. */
  2780. static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
  2781. {
  2782. struct rcu_node *rnp = rdp->mynode;
  2783. rdp->n_rcu_pending++;
  2784. /* Check for CPU stalls, if enabled. */
  2785. check_cpu_stall(rsp, rdp);
  2786. /* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
  2787. if (rcu_nohz_full_cpu(rsp))
  2788. return 0;
  2789. /* Is the RCU core waiting for a quiescent state from this CPU? */
  2790. if (rcu_scheduler_fully_active &&
  2791. rdp->qs_pending && !rdp->passed_quiesce) {
  2792. rdp->n_rp_qs_pending++;
  2793. } else if (rdp->qs_pending && rdp->passed_quiesce) {
  2794. rdp->n_rp_report_qs++;
  2795. return 1;
  2796. }
  2797. /* Does this CPU have callbacks ready to invoke? */
  2798. if (cpu_has_callbacks_ready_to_invoke(rdp)) {
  2799. rdp->n_rp_cb_ready++;
  2800. return 1;
  2801. }
  2802. /* Has RCU gone idle with this CPU needing another grace period? */
  2803. if (cpu_needs_another_gp(rsp, rdp)) {
  2804. rdp->n_rp_cpu_needs_gp++;
  2805. return 1;
  2806. }
  2807. /* Has another RCU grace period completed? */
  2808. if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
  2809. rdp->n_rp_gp_completed++;
  2810. return 1;
  2811. }
  2812. /* Has a new RCU grace period started? */
  2813. if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
  2814. rdp->n_rp_gp_started++;
  2815. return 1;
  2816. }
  2817. /* Does this CPU need a deferred NOCB wakeup? */
  2818. if (rcu_nocb_need_deferred_wakeup(rdp)) {
  2819. rdp->n_rp_nocb_defer_wakeup++;
  2820. return 1;
  2821. }
  2822. /* nothing to do */
  2823. rdp->n_rp_need_nothing++;
  2824. return 0;
  2825. }
  2826. /*
  2827. * Check to see if there is any immediate RCU-related work to be done
  2828. * by the current CPU, returning 1 if so. This function is part of the
  2829. * RCU implementation; it is -not- an exported member of the RCU API.
  2830. */
  2831. static int rcu_pending(int cpu)
  2832. {
  2833. struct rcu_state *rsp;
  2834. for_each_rcu_flavor(rsp)
  2835. if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
  2836. return 1;
  2837. return 0;
  2838. }
  2839. /*
  2840. * Return true if the specified CPU has any callback. If all_lazy is
  2841. * non-NULL, store an indication of whether all callbacks are lazy.
  2842. * (If there are no callbacks, all of them are deemed to be lazy.)
  2843. */
  2844. static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
  2845. {
  2846. bool al = true;
  2847. bool hc = false;
  2848. struct rcu_data *rdp;
  2849. struct rcu_state *rsp;
  2850. for_each_rcu_flavor(rsp) {
  2851. rdp = per_cpu_ptr(rsp->rda, cpu);
  2852. if (!rdp->nxtlist)
  2853. continue;
  2854. hc = true;
  2855. if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
  2856. al = false;
  2857. break;
  2858. }
  2859. }
  2860. if (all_lazy)
  2861. *all_lazy = al;
  2862. return hc;
  2863. }
  2864. /*
  2865. * Helper function for _rcu_barrier() tracing. If tracing is disabled,
  2866. * the compiler is expected to optimize this away.
  2867. */
  2868. static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
  2869. int cpu, unsigned long done)
  2870. {
  2871. trace_rcu_barrier(rsp->name, s, cpu,
  2872. atomic_read(&rsp->barrier_cpu_count), done);
  2873. }
  2874. /*
  2875. * RCU callback function for _rcu_barrier(). If we are last, wake
  2876. * up the task executing _rcu_barrier().
  2877. */
  2878. static void rcu_barrier_callback(struct rcu_head *rhp)
  2879. {
  2880. struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
  2881. struct rcu_state *rsp = rdp->rsp;
  2882. if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
  2883. _rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
  2884. complete(&rsp->barrier_completion);
  2885. } else {
  2886. _rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
  2887. }
  2888. }
  2889. /*
  2890. * Called with preemption disabled, and from cross-cpu IRQ context.
  2891. */
  2892. static void rcu_barrier_func(void *type)
  2893. {
  2894. struct rcu_state *rsp = type;
  2895. struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
  2896. _rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
  2897. atomic_inc(&rsp->barrier_cpu_count);
  2898. rsp->call(&rdp->barrier_head, rcu_barrier_callback);
  2899. }
  2900. /*
  2901. * Orchestrate the specified type of RCU barrier, waiting for all
  2902. * RCU callbacks of the specified type to complete.
  2903. */
  2904. static void _rcu_barrier(struct rcu_state *rsp)
  2905. {
  2906. int cpu;
  2907. struct rcu_data *rdp;
  2908. unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
  2909. unsigned long snap_done;
  2910. _rcu_barrier_trace(rsp, "Begin", -1, snap);
  2911. /* Take mutex to serialize concurrent rcu_barrier() requests. */
  2912. mutex_lock(&rsp->barrier_mutex);
  2913. /*
  2914. * Ensure that all prior references, including to ->n_barrier_done,
  2915. * are ordered before the _rcu_barrier() machinery.
  2916. */
  2917. smp_mb(); /* See above block comment. */
  2918. /*
  2919. * Recheck ->n_barrier_done to see if others did our work for us.
  2920. * This means checking ->n_barrier_done for an even-to-odd-to-even
  2921. * transition. The "if" expression below therefore rounds the old
  2922. * value up to the next even number and adds two before comparing.
  2923. */
  2924. snap_done = rsp->n_barrier_done;
  2925. _rcu_barrier_trace(rsp, "Check", -1, snap_done);
  2926. /*
  2927. * If the value in snap is odd, we needed to wait for the current
  2928. * rcu_barrier() to complete, then wait for the next one, in other
  2929. * words, we need the value of snap_done to be three larger than
  2930. * the value of snap. On the other hand, if the value in snap is
  2931. * even, we only had to wait for the next rcu_barrier() to complete,
  2932. * in other words, we need the value of snap_done to be only two
  2933. * greater than the value of snap. The "(snap + 3) & ~0x1" computes
  2934. * this for us (thank you, Linus!).
  2935. */
  2936. if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
  2937. _rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
  2938. smp_mb(); /* caller's subsequent code after above check. */
  2939. mutex_unlock(&rsp->barrier_mutex);
  2940. return;
  2941. }
  2942. /*
  2943. * Increment ->n_barrier_done to avoid duplicate work. Use
  2944. * ACCESS_ONCE() to prevent the compiler from speculating
  2945. * the increment to precede the early-exit check.
  2946. */
  2947. ACCESS_ONCE(rsp->n_barrier_done)++;
  2948. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
  2949. _rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
  2950. smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
  2951. /*
  2952. * Initialize the count to one rather than to zero in order to
  2953. * avoid a too-soon return to zero in case of a short grace period
  2954. * (or preemption of this task). Exclude CPU-hotplug operations
  2955. * to ensure that no offline CPU has callbacks queued.
  2956. */
  2957. init_completion(&rsp->barrier_completion);
  2958. atomic_set(&rsp->barrier_cpu_count, 1);
  2959. get_online_cpus();
  2960. /*
  2961. * Force each CPU with callbacks to register a new callback.
  2962. * When that callback is invoked, we will know that all of the
  2963. * corresponding CPU's preceding callbacks have been invoked.
  2964. */
  2965. for_each_possible_cpu(cpu) {
  2966. if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
  2967. continue;
  2968. rdp = per_cpu_ptr(rsp->rda, cpu);
  2969. if (rcu_is_nocb_cpu(cpu)) {
  2970. _rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
  2971. rsp->n_barrier_done);
  2972. atomic_inc(&rsp->barrier_cpu_count);
  2973. __call_rcu(&rdp->barrier_head, rcu_barrier_callback,
  2974. rsp, cpu, 0);
  2975. } else if (ACCESS_ONCE(rdp->qlen)) {
  2976. _rcu_barrier_trace(rsp, "OnlineQ", cpu,
  2977. rsp->n_barrier_done);
  2978. smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
  2979. } else {
  2980. _rcu_barrier_trace(rsp, "OnlineNQ", cpu,
  2981. rsp->n_barrier_done);
  2982. }
  2983. }
  2984. put_online_cpus();
  2985. /*
  2986. * Now that we have an rcu_barrier_callback() callback on each
  2987. * CPU, and thus each counted, remove the initial count.
  2988. */
  2989. if (atomic_dec_and_test(&rsp->barrier_cpu_count))
  2990. complete(&rsp->barrier_completion);
  2991. /* Increment ->n_barrier_done to prevent duplicate work. */
  2992. smp_mb(); /* Keep increment after above mechanism. */
  2993. ACCESS_ONCE(rsp->n_barrier_done)++;
  2994. WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
  2995. _rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
  2996. smp_mb(); /* Keep increment before caller's subsequent code. */
  2997. /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
  2998. wait_for_completion(&rsp->barrier_completion);
  2999. /* Other rcu_barrier() invocations can now safely proceed. */
  3000. mutex_unlock(&rsp->barrier_mutex);
  3001. }
  3002. /**
  3003. * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
  3004. */
  3005. void rcu_barrier_bh(void)
  3006. {
  3007. _rcu_barrier(&rcu_bh_state);
  3008. }
  3009. EXPORT_SYMBOL_GPL(rcu_barrier_bh);
  3010. /**
  3011. * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
  3012. */
  3013. void rcu_barrier_sched(void)
  3014. {
  3015. _rcu_barrier(&rcu_sched_state);
  3016. }
  3017. EXPORT_SYMBOL_GPL(rcu_barrier_sched);
  3018. /*
  3019. * Do boot-time initialization of a CPU's per-CPU RCU data.
  3020. */
  3021. static void __init
  3022. rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
  3023. {
  3024. unsigned long flags;
  3025. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3026. struct rcu_node *rnp = rcu_get_root(rsp);
  3027. /* Set up local state, ensuring consistent view of global state. */
  3028. raw_spin_lock_irqsave(&rnp->lock, flags);
  3029. rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
  3030. init_callback_list(rdp);
  3031. rdp->qlen_lazy = 0;
  3032. ACCESS_ONCE(rdp->qlen) = 0;
  3033. rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
  3034. WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
  3035. WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
  3036. rdp->cpu = cpu;
  3037. rdp->rsp = rsp;
  3038. rcu_boot_init_nocb_percpu_data(rdp);
  3039. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3040. }
  3041. /*
  3042. * Initialize a CPU's per-CPU RCU data. Note that only one online or
  3043. * offline event can be happening at a given time. Note also that we
  3044. * can accept some slop in the rsp->completed access due to the fact
  3045. * that this CPU cannot possibly have any RCU callbacks in flight yet.
  3046. */
  3047. static void
  3048. rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
  3049. {
  3050. unsigned long flags;
  3051. unsigned long mask;
  3052. struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
  3053. struct rcu_node *rnp = rcu_get_root(rsp);
  3054. /* Exclude new grace periods. */
  3055. mutex_lock(&rsp->onoff_mutex);
  3056. /* Set up local state, ensuring consistent view of global state. */
  3057. raw_spin_lock_irqsave(&rnp->lock, flags);
  3058. rdp->beenonline = 1; /* We have now been online. */
  3059. rdp->qlen_last_fqs_check = 0;
  3060. rdp->n_force_qs_snap = rsp->n_force_qs;
  3061. rdp->blimit = blimit;
  3062. init_callback_list(rdp); /* Re-enable callbacks on this CPU. */
  3063. rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
  3064. rcu_sysidle_init_percpu_data(rdp->dynticks);
  3065. atomic_set(&rdp->dynticks->dynticks,
  3066. (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
  3067. raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
  3068. /* Add CPU to rcu_node bitmasks. */
  3069. rnp = rdp->mynode;
  3070. mask = rdp->grpmask;
  3071. do {
  3072. /* Exclude any attempts to start a new GP on small systems. */
  3073. raw_spin_lock(&rnp->lock); /* irqs already disabled. */
  3074. rnp->qsmaskinit |= mask;
  3075. mask = rnp->grpmask;
  3076. if (rnp == rdp->mynode) {
  3077. /*
  3078. * If there is a grace period in progress, we will
  3079. * set up to wait for it next time we run the
  3080. * RCU core code.
  3081. */
  3082. rdp->gpnum = rnp->completed;
  3083. rdp->completed = rnp->completed;
  3084. rdp->passed_quiesce = 0;
  3085. rdp->qs_pending = 0;
  3086. trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
  3087. }
  3088. raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
  3089. rnp = rnp->parent;
  3090. } while (rnp != NULL && !(rnp->qsmaskinit & mask));
  3091. local_irq_restore(flags);
  3092. mutex_unlock(&rsp->onoff_mutex);
  3093. }
  3094. static void rcu_prepare_cpu(int cpu)
  3095. {
  3096. struct rcu_state *rsp;
  3097. for_each_rcu_flavor(rsp)
  3098. rcu_init_percpu_data(cpu, rsp);
  3099. }
  3100. /*
  3101. * Handle CPU online/offline notification events.
  3102. */
  3103. static int rcu_cpu_notify(struct notifier_block *self,
  3104. unsigned long action, void *hcpu)
  3105. {
  3106. long cpu = (long)hcpu;
  3107. struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
  3108. struct rcu_node *rnp = rdp->mynode;
  3109. struct rcu_state *rsp;
  3110. trace_rcu_utilization(TPS("Start CPU hotplug"));
  3111. switch (action) {
  3112. case CPU_UP_PREPARE:
  3113. case CPU_UP_PREPARE_FROZEN:
  3114. rcu_prepare_cpu(cpu);
  3115. rcu_prepare_kthreads(cpu);
  3116. break;
  3117. case CPU_ONLINE:
  3118. case CPU_DOWN_FAILED:
  3119. rcu_boost_kthread_setaffinity(rnp, -1);
  3120. break;
  3121. case CPU_DOWN_PREPARE:
  3122. rcu_boost_kthread_setaffinity(rnp, cpu);
  3123. break;
  3124. case CPU_DYING:
  3125. case CPU_DYING_FROZEN:
  3126. for_each_rcu_flavor(rsp)
  3127. rcu_cleanup_dying_cpu(rsp);
  3128. break;
  3129. case CPU_DEAD:
  3130. case CPU_DEAD_FROZEN:
  3131. case CPU_UP_CANCELED:
  3132. case CPU_UP_CANCELED_FROZEN:
  3133. for_each_rcu_flavor(rsp)
  3134. rcu_cleanup_dead_cpu(cpu, rsp);
  3135. break;
  3136. default:
  3137. break;
  3138. }
  3139. trace_rcu_utilization(TPS("End CPU hotplug"));
  3140. return NOTIFY_OK;
  3141. }
  3142. static int rcu_pm_notify(struct notifier_block *self,
  3143. unsigned long action, void *hcpu)
  3144. {
  3145. switch (action) {
  3146. case PM_HIBERNATION_PREPARE:
  3147. case PM_SUSPEND_PREPARE:
  3148. if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
  3149. rcu_expedited = 1;
  3150. break;
  3151. case PM_POST_HIBERNATION:
  3152. case PM_POST_SUSPEND:
  3153. rcu_expedited = 0;
  3154. break;
  3155. default:
  3156. break;
  3157. }
  3158. return NOTIFY_OK;
  3159. }
  3160. /*
  3161. * Spawn the kthread that handles this RCU flavor's grace periods.
  3162. */
  3163. static int __init rcu_spawn_gp_kthread(void)
  3164. {
  3165. unsigned long flags;
  3166. struct rcu_node *rnp;
  3167. struct rcu_state *rsp;
  3168. struct task_struct *t;
  3169. for_each_rcu_flavor(rsp) {
  3170. t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
  3171. BUG_ON(IS_ERR(t));
  3172. rnp = rcu_get_root(rsp);
  3173. raw_spin_lock_irqsave(&rnp->lock, flags);
  3174. rsp->gp_kthread = t;
  3175. raw_spin_unlock_irqrestore(&rnp->lock, flags);
  3176. rcu_spawn_nocb_kthreads(rsp);
  3177. }
  3178. return 0;
  3179. }
  3180. early_initcall(rcu_spawn_gp_kthread);
  3181. /*
  3182. * This function is invoked towards the end of the scheduler's initialization
  3183. * process. Before this is called, the idle task might contain
  3184. * RCU read-side critical sections (during which time, this idle
  3185. * task is booting the system). After this function is called, the
  3186. * idle tasks are prohibited from containing RCU read-side critical
  3187. * sections. This function also enables RCU lockdep checking.
  3188. */
  3189. void rcu_scheduler_starting(void)
  3190. {
  3191. WARN_ON(num_online_cpus() != 1);
  3192. WARN_ON(nr_context_switches() > 0);
  3193. rcu_scheduler_active = 1;
  3194. }
  3195. /*
  3196. * Compute the per-level fanout, either using the exact fanout specified
  3197. * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
  3198. */
  3199. #ifdef CONFIG_RCU_FANOUT_EXACT
  3200. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3201. {
  3202. int i;
  3203. rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
  3204. for (i = rcu_num_lvls - 2; i >= 0; i--)
  3205. rsp->levelspread[i] = CONFIG_RCU_FANOUT;
  3206. }
  3207. #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
  3208. static void __init rcu_init_levelspread(struct rcu_state *rsp)
  3209. {
  3210. int ccur;
  3211. int cprv;
  3212. int i;
  3213. cprv = nr_cpu_ids;
  3214. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3215. ccur = rsp->levelcnt[i];
  3216. rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
  3217. cprv = ccur;
  3218. }
  3219. }
  3220. #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
  3221. /*
  3222. * Helper function for rcu_init() that initializes one rcu_state structure.
  3223. */
  3224. static void __init rcu_init_one(struct rcu_state *rsp,
  3225. struct rcu_data __percpu *rda)
  3226. {
  3227. static char *buf[] = { "rcu_node_0",
  3228. "rcu_node_1",
  3229. "rcu_node_2",
  3230. "rcu_node_3" }; /* Match MAX_RCU_LVLS */
  3231. static char *fqs[] = { "rcu_node_fqs_0",
  3232. "rcu_node_fqs_1",
  3233. "rcu_node_fqs_2",
  3234. "rcu_node_fqs_3" }; /* Match MAX_RCU_LVLS */
  3235. static u8 fl_mask = 0x1;
  3236. int cpustride = 1;
  3237. int i;
  3238. int j;
  3239. struct rcu_node *rnp;
  3240. BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
  3241. /* Silence gcc 4.8 warning about array index out of range. */
  3242. if (rcu_num_lvls > RCU_NUM_LVLS)
  3243. panic("rcu_init_one: rcu_num_lvls overflow");
  3244. /* Initialize the level-tracking arrays. */
  3245. for (i = 0; i < rcu_num_lvls; i++)
  3246. rsp->levelcnt[i] = num_rcu_lvl[i];
  3247. for (i = 1; i < rcu_num_lvls; i++)
  3248. rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
  3249. rcu_init_levelspread(rsp);
  3250. rsp->flavor_mask = fl_mask;
  3251. fl_mask <<= 1;
  3252. /* Initialize the elements themselves, starting from the leaves. */
  3253. for (i = rcu_num_lvls - 1; i >= 0; i--) {
  3254. cpustride *= rsp->levelspread[i];
  3255. rnp = rsp->level[i];
  3256. for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
  3257. raw_spin_lock_init(&rnp->lock);
  3258. lockdep_set_class_and_name(&rnp->lock,
  3259. &rcu_node_class[i], buf[i]);
  3260. raw_spin_lock_init(&rnp->fqslock);
  3261. lockdep_set_class_and_name(&rnp->fqslock,
  3262. &rcu_fqs_class[i], fqs[i]);
  3263. rnp->gpnum = rsp->gpnum;
  3264. rnp->completed = rsp->completed;
  3265. rnp->qsmask = 0;
  3266. rnp->qsmaskinit = 0;
  3267. rnp->grplo = j * cpustride;
  3268. rnp->grphi = (j + 1) * cpustride - 1;
  3269. if (rnp->grphi >= nr_cpu_ids)
  3270. rnp->grphi = nr_cpu_ids - 1;
  3271. if (i == 0) {
  3272. rnp->grpnum = 0;
  3273. rnp->grpmask = 0;
  3274. rnp->parent = NULL;
  3275. } else {
  3276. rnp->grpnum = j % rsp->levelspread[i - 1];
  3277. rnp->grpmask = 1UL << rnp->grpnum;
  3278. rnp->parent = rsp->level[i - 1] +
  3279. j / rsp->levelspread[i - 1];
  3280. }
  3281. rnp->level = i;
  3282. INIT_LIST_HEAD(&rnp->blkd_tasks);
  3283. rcu_init_one_nocb(rnp);
  3284. }
  3285. }
  3286. rsp->rda = rda;
  3287. init_waitqueue_head(&rsp->gp_wq);
  3288. rnp = rsp->level[rcu_num_lvls - 1];
  3289. for_each_possible_cpu(i) {
  3290. while (i > rnp->grphi)
  3291. rnp++;
  3292. per_cpu_ptr(rsp->rda, i)->mynode = rnp;
  3293. rcu_boot_init_percpu_data(i, rsp);
  3294. }
  3295. list_add(&rsp->flavors, &rcu_struct_flavors);
  3296. }
  3297. /*
  3298. * Compute the rcu_node tree geometry from kernel parameters. This cannot
  3299. * replace the definitions in tree.h because those are needed to size
  3300. * the ->node array in the rcu_state structure.
  3301. */
  3302. static void __init rcu_init_geometry(void)
  3303. {
  3304. ulong d;
  3305. int i;
  3306. int j;
  3307. int n = nr_cpu_ids;
  3308. int rcu_capacity[MAX_RCU_LVLS + 1];
  3309. /*
  3310. * Initialize any unspecified boot parameters.
  3311. * The default values of jiffies_till_first_fqs and
  3312. * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
  3313. * value, which is a function of HZ, then adding one for each
  3314. * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
  3315. */
  3316. d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
  3317. if (jiffies_till_first_fqs == ULONG_MAX)
  3318. jiffies_till_first_fqs = d;
  3319. if (jiffies_till_next_fqs == ULONG_MAX)
  3320. jiffies_till_next_fqs = d;
  3321. /* If the compile-time values are accurate, just leave. */
  3322. if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
  3323. nr_cpu_ids == NR_CPUS)
  3324. return;
  3325. pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
  3326. rcu_fanout_leaf, nr_cpu_ids);
  3327. /*
  3328. * Compute number of nodes that can be handled an rcu_node tree
  3329. * with the given number of levels. Setting rcu_capacity[0] makes
  3330. * some of the arithmetic easier.
  3331. */
  3332. rcu_capacity[0] = 1;
  3333. rcu_capacity[1] = rcu_fanout_leaf;
  3334. for (i = 2; i <= MAX_RCU_LVLS; i++)
  3335. rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
  3336. /*
  3337. * The boot-time rcu_fanout_leaf parameter is only permitted
  3338. * to increase the leaf-level fanout, not decrease it. Of course,
  3339. * the leaf-level fanout cannot exceed the number of bits in
  3340. * the rcu_node masks. Finally, the tree must be able to accommodate
  3341. * the configured number of CPUs. Complain and fall back to the
  3342. * compile-time values if these limits are exceeded.
  3343. */
  3344. if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
  3345. rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
  3346. n > rcu_capacity[MAX_RCU_LVLS]) {
  3347. WARN_ON(1);
  3348. return;
  3349. }
  3350. /* Calculate the number of rcu_nodes at each level of the tree. */
  3351. for (i = 1; i <= MAX_RCU_LVLS; i++)
  3352. if (n <= rcu_capacity[i]) {
  3353. for (j = 0; j <= i; j++)
  3354. num_rcu_lvl[j] =
  3355. DIV_ROUND_UP(n, rcu_capacity[i - j]);
  3356. rcu_num_lvls = i;
  3357. for (j = i + 1; j <= MAX_RCU_LVLS; j++)
  3358. num_rcu_lvl[j] = 0;
  3359. break;
  3360. }
  3361. /* Calculate the total number of rcu_node structures. */
  3362. rcu_num_nodes = 0;
  3363. for (i = 0; i <= MAX_RCU_LVLS; i++)
  3364. rcu_num_nodes += num_rcu_lvl[i];
  3365. rcu_num_nodes -= n;
  3366. }
  3367. void __init rcu_init(void)
  3368. {
  3369. int cpu;
  3370. rcu_bootup_announce();
  3371. rcu_init_geometry();
  3372. rcu_init_one(&rcu_bh_state, &rcu_bh_data);
  3373. rcu_init_one(&rcu_sched_state, &rcu_sched_data);
  3374. __rcu_init_preempt();
  3375. open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
  3376. /*
  3377. * We don't need protection against CPU-hotplug here because
  3378. * this is called early in boot, before either interrupts
  3379. * or the scheduler are operational.
  3380. */
  3381. cpu_notifier(rcu_cpu_notify, 0);
  3382. pm_notifier(rcu_pm_notify, 0);
  3383. for_each_online_cpu(cpu)
  3384. rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
  3385. }
  3386. #include "tree_plugin.h"