futex.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080
  1. /*
  2. * Fast Userspace Mutexes (which I call "Futexes!").
  3. * (C) Rusty Russell, IBM 2002
  4. *
  5. * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
  6. * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
  7. *
  8. * Removed page pinning, fix privately mapped COW pages and other cleanups
  9. * (C) Copyright 2003, 2004 Jamie Lokier
  10. *
  11. * Robust futex support started by Ingo Molnar
  12. * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13. * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14. *
  15. * PI-futex support started by Ingo Molnar and Thomas Gleixner
  16. * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17. * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18. *
  19. * PRIVATE futexes by Eric Dumazet
  20. * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21. *
  22. * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23. * Copyright (C) IBM Corporation, 2009
  24. * Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25. *
  26. * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27. * enough at me, Linus for the original (flawed) idea, Matthew
  28. * Kirkwood for proof-of-concept implementation.
  29. *
  30. * "The futexes are also cursed."
  31. * "But they come in a choice of three flavours!"
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  46. */
  47. #include <linux/slab.h>
  48. #include <linux/poll.h>
  49. #include <linux/fs.h>
  50. #include <linux/file.h>
  51. #include <linux/jhash.h>
  52. #include <linux/init.h>
  53. #include <linux/futex.h>
  54. #include <linux/mount.h>
  55. #include <linux/pagemap.h>
  56. #include <linux/syscalls.h>
  57. #include <linux/signal.h>
  58. #include <linux/export.h>
  59. #include <linux/magic.h>
  60. #include <linux/pid.h>
  61. #include <linux/nsproxy.h>
  62. #include <linux/ptrace.h>
  63. #include <linux/sched/rt.h>
  64. #include <linux/hugetlb.h>
  65. #include <linux/freezer.h>
  66. #include <linux/bootmem.h>
  67. #include <asm/futex.h>
  68. #include "locking/rtmutex_common.h"
  69. /*
  70. * READ this before attempting to hack on futexes!
  71. *
  72. * Basic futex operation and ordering guarantees
  73. * =============================================
  74. *
  75. * The waiter reads the futex value in user space and calls
  76. * futex_wait(). This function computes the hash bucket and acquires
  77. * the hash bucket lock. After that it reads the futex user space value
  78. * again and verifies that the data has not changed. If it has not changed
  79. * it enqueues itself into the hash bucket, releases the hash bucket lock
  80. * and schedules.
  81. *
  82. * The waker side modifies the user space value of the futex and calls
  83. * futex_wake(). This function computes the hash bucket and acquires the
  84. * hash bucket lock. Then it looks for waiters on that futex in the hash
  85. * bucket and wakes them.
  86. *
  87. * In futex wake up scenarios where no tasks are blocked on a futex, taking
  88. * the hb spinlock can be avoided and simply return. In order for this
  89. * optimization to work, ordering guarantees must exist so that the waiter
  90. * being added to the list is acknowledged when the list is concurrently being
  91. * checked by the waker, avoiding scenarios like the following:
  92. *
  93. * CPU 0 CPU 1
  94. * val = *futex;
  95. * sys_futex(WAIT, futex, val);
  96. * futex_wait(futex, val);
  97. * uval = *futex;
  98. * *futex = newval;
  99. * sys_futex(WAKE, futex);
  100. * futex_wake(futex);
  101. * if (queue_empty())
  102. * return;
  103. * if (uval == val)
  104. * lock(hash_bucket(futex));
  105. * queue();
  106. * unlock(hash_bucket(futex));
  107. * schedule();
  108. *
  109. * This would cause the waiter on CPU 0 to wait forever because it
  110. * missed the transition of the user space value from val to newval
  111. * and the waker did not find the waiter in the hash bucket queue.
  112. *
  113. * The correct serialization ensures that a waiter either observes
  114. * the changed user space value before blocking or is woken by a
  115. * concurrent waker:
  116. *
  117. * CPU 0 CPU 1
  118. * val = *futex;
  119. * sys_futex(WAIT, futex, val);
  120. * futex_wait(futex, val);
  121. *
  122. * waiters++; (a)
  123. * mb(); (A) <-- paired with -.
  124. * |
  125. * lock(hash_bucket(futex)); |
  126. * |
  127. * uval = *futex; |
  128. * | *futex = newval;
  129. * | sys_futex(WAKE, futex);
  130. * | futex_wake(futex);
  131. * |
  132. * `-------> mb(); (B)
  133. * if (uval == val)
  134. * queue();
  135. * unlock(hash_bucket(futex));
  136. * schedule(); if (waiters)
  137. * lock(hash_bucket(futex));
  138. * else wake_waiters(futex);
  139. * waiters--; (b) unlock(hash_bucket(futex));
  140. *
  141. * Where (A) orders the waiters increment and the futex value read through
  142. * atomic operations (see hb_waiters_inc) and where (B) orders the write
  143. * to futex and the waiters read -- this is done by the barriers in
  144. * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
  145. * futex type.
  146. *
  147. * This yields the following case (where X:=waiters, Y:=futex):
  148. *
  149. * X = Y = 0
  150. *
  151. * w[X]=1 w[Y]=1
  152. * MB MB
  153. * r[Y]=y r[X]=x
  154. *
  155. * Which guarantees that x==0 && y==0 is impossible; which translates back into
  156. * the guarantee that we cannot both miss the futex variable change and the
  157. * enqueue.
  158. *
  159. * Note that a new waiter is accounted for in (a) even when it is possible that
  160. * the wait call can return error, in which case we backtrack from it in (b).
  161. * Refer to the comment in queue_lock().
  162. *
  163. * Similarly, in order to account for waiters being requeued on another
  164. * address we always increment the waiters for the destination bucket before
  165. * acquiring the lock. It then decrements them again after releasing it -
  166. * the code that actually moves the futex(es) between hash buckets (requeue_futex)
  167. * will do the additional required waiter count housekeeping. This is done for
  168. * double_lock_hb() and double_unlock_hb(), respectively.
  169. */
  170. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  171. int __read_mostly futex_cmpxchg_enabled;
  172. #endif
  173. /*
  174. * Futex flags used to encode options to functions and preserve them across
  175. * restarts.
  176. */
  177. #define FLAGS_SHARED 0x01
  178. #define FLAGS_CLOCKRT 0x02
  179. #define FLAGS_HAS_TIMEOUT 0x04
  180. /*
  181. * Priority Inheritance state:
  182. */
  183. struct futex_pi_state {
  184. /*
  185. * list of 'owned' pi_state instances - these have to be
  186. * cleaned up in do_exit() if the task exits prematurely:
  187. */
  188. struct list_head list;
  189. /*
  190. * The PI object:
  191. */
  192. struct rt_mutex pi_mutex;
  193. struct task_struct *owner;
  194. atomic_t refcount;
  195. union futex_key key;
  196. };
  197. /**
  198. * struct futex_q - The hashed futex queue entry, one per waiting task
  199. * @list: priority-sorted list of tasks waiting on this futex
  200. * @task: the task waiting on the futex
  201. * @lock_ptr: the hash bucket lock
  202. * @key: the key the futex is hashed on
  203. * @pi_state: optional priority inheritance state
  204. * @rt_waiter: rt_waiter storage for use with requeue_pi
  205. * @requeue_pi_key: the requeue_pi target futex key
  206. * @bitset: bitset for the optional bitmasked wakeup
  207. *
  208. * We use this hashed waitqueue, instead of a normal wait_queue_t, so
  209. * we can wake only the relevant ones (hashed queues may be shared).
  210. *
  211. * A futex_q has a woken state, just like tasks have TASK_RUNNING.
  212. * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
  213. * The order of wakeup is always to make the first condition true, then
  214. * the second.
  215. *
  216. * PI futexes are typically woken before they are removed from the hash list via
  217. * the rt_mutex code. See unqueue_me_pi().
  218. */
  219. struct futex_q {
  220. struct plist_node list;
  221. struct task_struct *task;
  222. spinlock_t *lock_ptr;
  223. union futex_key key;
  224. struct futex_pi_state *pi_state;
  225. struct rt_mutex_waiter *rt_waiter;
  226. union futex_key *requeue_pi_key;
  227. u32 bitset;
  228. };
  229. static const struct futex_q futex_q_init = {
  230. /* list gets initialized in queue_me()*/
  231. .key = FUTEX_KEY_INIT,
  232. .bitset = FUTEX_BITSET_MATCH_ANY
  233. };
  234. /*
  235. * Hash buckets are shared by all the futex_keys that hash to the same
  236. * location. Each key may have multiple futex_q structures, one for each task
  237. * waiting on a futex.
  238. */
  239. struct futex_hash_bucket {
  240. atomic_t waiters;
  241. spinlock_t lock;
  242. struct plist_head chain;
  243. } ____cacheline_aligned_in_smp;
  244. static unsigned long __read_mostly futex_hashsize;
  245. static struct futex_hash_bucket *futex_queues;
  246. static inline void futex_get_mm(union futex_key *key)
  247. {
  248. atomic_inc(&key->private.mm->mm_count);
  249. /*
  250. * Ensure futex_get_mm() implies a full barrier such that
  251. * get_futex_key() implies a full barrier. This is relied upon
  252. * as full barrier (B), see the ordering comment above.
  253. */
  254. smp_mb__after_atomic();
  255. }
  256. /*
  257. * Reflects a new waiter being added to the waitqueue.
  258. */
  259. static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
  260. {
  261. #ifdef CONFIG_SMP
  262. atomic_inc(&hb->waiters);
  263. /*
  264. * Full barrier (A), see the ordering comment above.
  265. */
  266. smp_mb__after_atomic();
  267. #endif
  268. }
  269. /*
  270. * Reflects a waiter being removed from the waitqueue by wakeup
  271. * paths.
  272. */
  273. static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
  274. {
  275. #ifdef CONFIG_SMP
  276. atomic_dec(&hb->waiters);
  277. #endif
  278. }
  279. static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
  280. {
  281. #ifdef CONFIG_SMP
  282. return atomic_read(&hb->waiters);
  283. #else
  284. return 1;
  285. #endif
  286. }
  287. /*
  288. * We hash on the keys returned from get_futex_key (see below).
  289. */
  290. static struct futex_hash_bucket *hash_futex(union futex_key *key)
  291. {
  292. u32 hash = jhash2((u32*)&key->both.word,
  293. (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
  294. key->both.offset);
  295. return &futex_queues[hash & (futex_hashsize - 1)];
  296. }
  297. /*
  298. * Return 1 if two futex_keys are equal, 0 otherwise.
  299. */
  300. static inline int match_futex(union futex_key *key1, union futex_key *key2)
  301. {
  302. return (key1 && key2
  303. && key1->both.word == key2->both.word
  304. && key1->both.ptr == key2->both.ptr
  305. && key1->both.offset == key2->both.offset);
  306. }
  307. /*
  308. * Take a reference to the resource addressed by a key.
  309. * Can be called while holding spinlocks.
  310. *
  311. */
  312. static void get_futex_key_refs(union futex_key *key)
  313. {
  314. if (!key->both.ptr)
  315. return;
  316. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  317. case FUT_OFF_INODE:
  318. ihold(key->shared.inode); /* implies MB (B) */
  319. break;
  320. case FUT_OFF_MMSHARED:
  321. futex_get_mm(key); /* implies MB (B) */
  322. break;
  323. }
  324. }
  325. /*
  326. * Drop a reference to the resource addressed by a key.
  327. * The hash bucket spinlock must not be held.
  328. */
  329. static void drop_futex_key_refs(union futex_key *key)
  330. {
  331. if (!key->both.ptr) {
  332. /* If we're here then we tried to put a key we failed to get */
  333. WARN_ON_ONCE(1);
  334. return;
  335. }
  336. switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
  337. case FUT_OFF_INODE:
  338. iput(key->shared.inode);
  339. break;
  340. case FUT_OFF_MMSHARED:
  341. mmdrop(key->private.mm);
  342. break;
  343. }
  344. }
  345. /**
  346. * get_futex_key() - Get parameters which are the keys for a futex
  347. * @uaddr: virtual address of the futex
  348. * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
  349. * @key: address where result is stored.
  350. * @rw: mapping needs to be read/write (values: VERIFY_READ,
  351. * VERIFY_WRITE)
  352. *
  353. * Return: a negative error code or 0
  354. *
  355. * The key words are stored in *key on success.
  356. *
  357. * For shared mappings, it's (page->index, file_inode(vma->vm_file),
  358. * offset_within_page). For private mappings, it's (uaddr, current->mm).
  359. * We can usually work out the index without swapping in the page.
  360. *
  361. * lock_page() might sleep, the caller should not hold a spinlock.
  362. */
  363. static int
  364. get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
  365. {
  366. unsigned long address = (unsigned long)uaddr;
  367. struct mm_struct *mm = current->mm;
  368. struct page *page, *page_head;
  369. int err, ro = 0;
  370. /*
  371. * The futex address must be "naturally" aligned.
  372. */
  373. key->both.offset = address % PAGE_SIZE;
  374. if (unlikely((address % sizeof(u32)) != 0))
  375. return -EINVAL;
  376. address -= key->both.offset;
  377. if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
  378. return -EFAULT;
  379. /*
  380. * PROCESS_PRIVATE futexes are fast.
  381. * As the mm cannot disappear under us and the 'key' only needs
  382. * virtual address, we dont even have to find the underlying vma.
  383. * Note : We do have to check 'uaddr' is a valid user address,
  384. * but access_ok() should be faster than find_vma()
  385. */
  386. if (!fshared) {
  387. key->private.mm = mm;
  388. key->private.address = address;
  389. get_futex_key_refs(key); /* implies MB (B) */
  390. return 0;
  391. }
  392. again:
  393. err = get_user_pages_fast(address, 1, 1, &page);
  394. /*
  395. * If write access is not required (eg. FUTEX_WAIT), try
  396. * and get read-only access.
  397. */
  398. if (err == -EFAULT && rw == VERIFY_READ) {
  399. err = get_user_pages_fast(address, 1, 0, &page);
  400. ro = 1;
  401. }
  402. if (err < 0)
  403. return err;
  404. else
  405. err = 0;
  406. #ifdef CONFIG_TRANSPARENT_HUGEPAGE
  407. page_head = page;
  408. if (unlikely(PageTail(page))) {
  409. put_page(page);
  410. /* serialize against __split_huge_page_splitting() */
  411. local_irq_disable();
  412. if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
  413. page_head = compound_head(page);
  414. /*
  415. * page_head is valid pointer but we must pin
  416. * it before taking the PG_lock and/or
  417. * PG_compound_lock. The moment we re-enable
  418. * irqs __split_huge_page_splitting() can
  419. * return and the head page can be freed from
  420. * under us. We can't take the PG_lock and/or
  421. * PG_compound_lock on a page that could be
  422. * freed from under us.
  423. */
  424. if (page != page_head) {
  425. get_page(page_head);
  426. put_page(page);
  427. }
  428. local_irq_enable();
  429. } else {
  430. local_irq_enable();
  431. goto again;
  432. }
  433. }
  434. #else
  435. page_head = compound_head(page);
  436. if (page != page_head) {
  437. get_page(page_head);
  438. put_page(page);
  439. }
  440. #endif
  441. lock_page(page_head);
  442. /*
  443. * If page_head->mapping is NULL, then it cannot be a PageAnon
  444. * page; but it might be the ZERO_PAGE or in the gate area or
  445. * in a special mapping (all cases which we are happy to fail);
  446. * or it may have been a good file page when get_user_pages_fast
  447. * found it, but truncated or holepunched or subjected to
  448. * invalidate_complete_page2 before we got the page lock (also
  449. * cases which we are happy to fail). And we hold a reference,
  450. * so refcount care in invalidate_complete_page's remove_mapping
  451. * prevents drop_caches from setting mapping to NULL beneath us.
  452. *
  453. * The case we do have to guard against is when memory pressure made
  454. * shmem_writepage move it from filecache to swapcache beneath us:
  455. * an unlikely race, but we do need to retry for page_head->mapping.
  456. */
  457. if (!page_head->mapping) {
  458. int shmem_swizzled = PageSwapCache(page_head);
  459. unlock_page(page_head);
  460. put_page(page_head);
  461. if (shmem_swizzled)
  462. goto again;
  463. return -EFAULT;
  464. }
  465. /*
  466. * Private mappings are handled in a simple way.
  467. *
  468. * NOTE: When userspace waits on a MAP_SHARED mapping, even if
  469. * it's a read-only handle, it's expected that futexes attach to
  470. * the object not the particular process.
  471. */
  472. if (PageAnon(page_head)) {
  473. /*
  474. * A RO anonymous page will never change and thus doesn't make
  475. * sense for futex operations.
  476. */
  477. if (ro) {
  478. err = -EFAULT;
  479. goto out;
  480. }
  481. key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
  482. key->private.mm = mm;
  483. key->private.address = address;
  484. } else {
  485. key->both.offset |= FUT_OFF_INODE; /* inode-based key */
  486. key->shared.inode = page_head->mapping->host;
  487. key->shared.pgoff = basepage_index(page);
  488. }
  489. get_futex_key_refs(key); /* implies MB (B) */
  490. out:
  491. unlock_page(page_head);
  492. put_page(page_head);
  493. return err;
  494. }
  495. static inline void put_futex_key(union futex_key *key)
  496. {
  497. drop_futex_key_refs(key);
  498. }
  499. /**
  500. * fault_in_user_writeable() - Fault in user address and verify RW access
  501. * @uaddr: pointer to faulting user space address
  502. *
  503. * Slow path to fixup the fault we just took in the atomic write
  504. * access to @uaddr.
  505. *
  506. * We have no generic implementation of a non-destructive write to the
  507. * user address. We know that we faulted in the atomic pagefault
  508. * disabled section so we can as well avoid the #PF overhead by
  509. * calling get_user_pages() right away.
  510. */
  511. static int fault_in_user_writeable(u32 __user *uaddr)
  512. {
  513. struct mm_struct *mm = current->mm;
  514. int ret;
  515. down_read(&mm->mmap_sem);
  516. ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
  517. FAULT_FLAG_WRITE);
  518. up_read(&mm->mmap_sem);
  519. return ret < 0 ? ret : 0;
  520. }
  521. /**
  522. * futex_top_waiter() - Return the highest priority waiter on a futex
  523. * @hb: the hash bucket the futex_q's reside in
  524. * @key: the futex key (to distinguish it from other futex futex_q's)
  525. *
  526. * Must be called with the hb lock held.
  527. */
  528. static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
  529. union futex_key *key)
  530. {
  531. struct futex_q *this;
  532. plist_for_each_entry(this, &hb->chain, list) {
  533. if (match_futex(&this->key, key))
  534. return this;
  535. }
  536. return NULL;
  537. }
  538. static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
  539. u32 uval, u32 newval)
  540. {
  541. int ret;
  542. pagefault_disable();
  543. ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
  544. pagefault_enable();
  545. return ret;
  546. }
  547. static int get_futex_value_locked(u32 *dest, u32 __user *from)
  548. {
  549. int ret;
  550. pagefault_disable();
  551. ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
  552. pagefault_enable();
  553. return ret ? -EFAULT : 0;
  554. }
  555. /*
  556. * PI code:
  557. */
  558. static int refill_pi_state_cache(void)
  559. {
  560. struct futex_pi_state *pi_state;
  561. if (likely(current->pi_state_cache))
  562. return 0;
  563. pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
  564. if (!pi_state)
  565. return -ENOMEM;
  566. INIT_LIST_HEAD(&pi_state->list);
  567. /* pi_mutex gets initialized later */
  568. pi_state->owner = NULL;
  569. atomic_set(&pi_state->refcount, 1);
  570. pi_state->key = FUTEX_KEY_INIT;
  571. current->pi_state_cache = pi_state;
  572. return 0;
  573. }
  574. static struct futex_pi_state * alloc_pi_state(void)
  575. {
  576. struct futex_pi_state *pi_state = current->pi_state_cache;
  577. WARN_ON(!pi_state);
  578. current->pi_state_cache = NULL;
  579. return pi_state;
  580. }
  581. static void free_pi_state(struct futex_pi_state *pi_state)
  582. {
  583. if (!atomic_dec_and_test(&pi_state->refcount))
  584. return;
  585. /*
  586. * If pi_state->owner is NULL, the owner is most probably dying
  587. * and has cleaned up the pi_state already
  588. */
  589. if (pi_state->owner) {
  590. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  591. list_del_init(&pi_state->list);
  592. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  593. rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
  594. }
  595. if (current->pi_state_cache)
  596. kfree(pi_state);
  597. else {
  598. /*
  599. * pi_state->list is already empty.
  600. * clear pi_state->owner.
  601. * refcount is at 0 - put it back to 1.
  602. */
  603. pi_state->owner = NULL;
  604. atomic_set(&pi_state->refcount, 1);
  605. current->pi_state_cache = pi_state;
  606. }
  607. }
  608. /*
  609. * Look up the task based on what TID userspace gave us.
  610. * We dont trust it.
  611. */
  612. static struct task_struct * futex_find_get_task(pid_t pid)
  613. {
  614. struct task_struct *p;
  615. rcu_read_lock();
  616. p = find_task_by_vpid(pid);
  617. if (p)
  618. get_task_struct(p);
  619. rcu_read_unlock();
  620. return p;
  621. }
  622. /*
  623. * This task is holding PI mutexes at exit time => bad.
  624. * Kernel cleans up PI-state, but userspace is likely hosed.
  625. * (Robust-futex cleanup is separate and might save the day for userspace.)
  626. */
  627. void exit_pi_state_list(struct task_struct *curr)
  628. {
  629. struct list_head *next, *head = &curr->pi_state_list;
  630. struct futex_pi_state *pi_state;
  631. struct futex_hash_bucket *hb;
  632. union futex_key key = FUTEX_KEY_INIT;
  633. if (!futex_cmpxchg_enabled)
  634. return;
  635. /*
  636. * We are a ZOMBIE and nobody can enqueue itself on
  637. * pi_state_list anymore, but we have to be careful
  638. * versus waiters unqueueing themselves:
  639. */
  640. raw_spin_lock_irq(&curr->pi_lock);
  641. while (!list_empty(head)) {
  642. next = head->next;
  643. pi_state = list_entry(next, struct futex_pi_state, list);
  644. key = pi_state->key;
  645. hb = hash_futex(&key);
  646. raw_spin_unlock_irq(&curr->pi_lock);
  647. spin_lock(&hb->lock);
  648. raw_spin_lock_irq(&curr->pi_lock);
  649. /*
  650. * We dropped the pi-lock, so re-check whether this
  651. * task still owns the PI-state:
  652. */
  653. if (head->next != next) {
  654. spin_unlock(&hb->lock);
  655. continue;
  656. }
  657. WARN_ON(pi_state->owner != curr);
  658. WARN_ON(list_empty(&pi_state->list));
  659. list_del_init(&pi_state->list);
  660. pi_state->owner = NULL;
  661. raw_spin_unlock_irq(&curr->pi_lock);
  662. rt_mutex_unlock(&pi_state->pi_mutex);
  663. spin_unlock(&hb->lock);
  664. raw_spin_lock_irq(&curr->pi_lock);
  665. }
  666. raw_spin_unlock_irq(&curr->pi_lock);
  667. }
  668. /*
  669. * We need to check the following states:
  670. *
  671. * Waiter | pi_state | pi->owner | uTID | uODIED | ?
  672. *
  673. * [1] NULL | --- | --- | 0 | 0/1 | Valid
  674. * [2] NULL | --- | --- | >0 | 0/1 | Valid
  675. *
  676. * [3] Found | NULL | -- | Any | 0/1 | Invalid
  677. *
  678. * [4] Found | Found | NULL | 0 | 1 | Valid
  679. * [5] Found | Found | NULL | >0 | 1 | Invalid
  680. *
  681. * [6] Found | Found | task | 0 | 1 | Valid
  682. *
  683. * [7] Found | Found | NULL | Any | 0 | Invalid
  684. *
  685. * [8] Found | Found | task | ==taskTID | 0/1 | Valid
  686. * [9] Found | Found | task | 0 | 0 | Invalid
  687. * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
  688. *
  689. * [1] Indicates that the kernel can acquire the futex atomically. We
  690. * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
  691. *
  692. * [2] Valid, if TID does not belong to a kernel thread. If no matching
  693. * thread is found then it indicates that the owner TID has died.
  694. *
  695. * [3] Invalid. The waiter is queued on a non PI futex
  696. *
  697. * [4] Valid state after exit_robust_list(), which sets the user space
  698. * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
  699. *
  700. * [5] The user space value got manipulated between exit_robust_list()
  701. * and exit_pi_state_list()
  702. *
  703. * [6] Valid state after exit_pi_state_list() which sets the new owner in
  704. * the pi_state but cannot access the user space value.
  705. *
  706. * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
  707. *
  708. * [8] Owner and user space value match
  709. *
  710. * [9] There is no transient state which sets the user space TID to 0
  711. * except exit_robust_list(), but this is indicated by the
  712. * FUTEX_OWNER_DIED bit. See [4]
  713. *
  714. * [10] There is no transient state which leaves owner and user space
  715. * TID out of sync.
  716. */
  717. static int
  718. lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
  719. union futex_key *key, struct futex_pi_state **ps)
  720. {
  721. struct futex_pi_state *pi_state = NULL;
  722. struct futex_q *this, *next;
  723. struct task_struct *p;
  724. pid_t pid = uval & FUTEX_TID_MASK;
  725. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  726. if (match_futex(&this->key, key)) {
  727. /*
  728. * Sanity check the waiter before increasing
  729. * the refcount and attaching to it.
  730. */
  731. pi_state = this->pi_state;
  732. /*
  733. * Userspace might have messed up non-PI and
  734. * PI futexes [3]
  735. */
  736. if (unlikely(!pi_state))
  737. return -EINVAL;
  738. WARN_ON(!atomic_read(&pi_state->refcount));
  739. /*
  740. * Handle the owner died case:
  741. */
  742. if (uval & FUTEX_OWNER_DIED) {
  743. /*
  744. * exit_pi_state_list sets owner to NULL and
  745. * wakes the topmost waiter. The task which
  746. * acquires the pi_state->rt_mutex will fixup
  747. * owner.
  748. */
  749. if (!pi_state->owner) {
  750. /*
  751. * No pi state owner, but the user
  752. * space TID is not 0. Inconsistent
  753. * state. [5]
  754. */
  755. if (pid)
  756. return -EINVAL;
  757. /*
  758. * Take a ref on the state and
  759. * return. [4]
  760. */
  761. goto out_state;
  762. }
  763. /*
  764. * If TID is 0, then either the dying owner
  765. * has not yet executed exit_pi_state_list()
  766. * or some waiter acquired the rtmutex in the
  767. * pi state, but did not yet fixup the TID in
  768. * user space.
  769. *
  770. * Take a ref on the state and return. [6]
  771. */
  772. if (!pid)
  773. goto out_state;
  774. } else {
  775. /*
  776. * If the owner died bit is not set,
  777. * then the pi_state must have an
  778. * owner. [7]
  779. */
  780. if (!pi_state->owner)
  781. return -EINVAL;
  782. }
  783. /*
  784. * Bail out if user space manipulated the
  785. * futex value. If pi state exists then the
  786. * owner TID must be the same as the user
  787. * space TID. [9/10]
  788. */
  789. if (pid != task_pid_vnr(pi_state->owner))
  790. return -EINVAL;
  791. out_state:
  792. atomic_inc(&pi_state->refcount);
  793. *ps = pi_state;
  794. return 0;
  795. }
  796. }
  797. /*
  798. * We are the first waiter - try to look up the real owner and attach
  799. * the new pi_state to it, but bail out when TID = 0 [1]
  800. */
  801. if (!pid)
  802. return -ESRCH;
  803. p = futex_find_get_task(pid);
  804. if (!p)
  805. return -ESRCH;
  806. if (!p->mm) {
  807. put_task_struct(p);
  808. return -EPERM;
  809. }
  810. /*
  811. * We need to look at the task state flags to figure out,
  812. * whether the task is exiting. To protect against the do_exit
  813. * change of the task flags, we do this protected by
  814. * p->pi_lock:
  815. */
  816. raw_spin_lock_irq(&p->pi_lock);
  817. if (unlikely(p->flags & PF_EXITING)) {
  818. /*
  819. * The task is on the way out. When PF_EXITPIDONE is
  820. * set, we know that the task has finished the
  821. * cleanup:
  822. */
  823. int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
  824. raw_spin_unlock_irq(&p->pi_lock);
  825. put_task_struct(p);
  826. return ret;
  827. }
  828. /*
  829. * No existing pi state. First waiter. [2]
  830. */
  831. pi_state = alloc_pi_state();
  832. /*
  833. * Initialize the pi_mutex in locked state and make 'p'
  834. * the owner of it:
  835. */
  836. rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
  837. /* Store the key for possible exit cleanups: */
  838. pi_state->key = *key;
  839. WARN_ON(!list_empty(&pi_state->list));
  840. list_add(&pi_state->list, &p->pi_state_list);
  841. pi_state->owner = p;
  842. raw_spin_unlock_irq(&p->pi_lock);
  843. put_task_struct(p);
  844. *ps = pi_state;
  845. return 0;
  846. }
  847. /**
  848. * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
  849. * @uaddr: the pi futex user address
  850. * @hb: the pi futex hash bucket
  851. * @key: the futex key associated with uaddr and hb
  852. * @ps: the pi_state pointer where we store the result of the
  853. * lookup
  854. * @task: the task to perform the atomic lock work for. This will
  855. * be "current" except in the case of requeue pi.
  856. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  857. *
  858. * Return:
  859. * 0 - ready to wait;
  860. * 1 - acquired the lock;
  861. * <0 - error
  862. *
  863. * The hb->lock and futex_key refs shall be held by the caller.
  864. */
  865. static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
  866. union futex_key *key,
  867. struct futex_pi_state **ps,
  868. struct task_struct *task, int set_waiters)
  869. {
  870. int lock_taken, ret, force_take = 0;
  871. u32 uval, newval, curval, vpid = task_pid_vnr(task);
  872. retry:
  873. ret = lock_taken = 0;
  874. /*
  875. * To avoid races, we attempt to take the lock here again
  876. * (by doing a 0 -> TID atomic cmpxchg), while holding all
  877. * the locks. It will most likely not succeed.
  878. */
  879. newval = vpid;
  880. if (set_waiters)
  881. newval |= FUTEX_WAITERS;
  882. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
  883. return -EFAULT;
  884. /*
  885. * Detect deadlocks.
  886. */
  887. if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
  888. return -EDEADLK;
  889. /*
  890. * Surprise - we got the lock, but we do not trust user space at all.
  891. */
  892. if (unlikely(!curval)) {
  893. /*
  894. * We verify whether there is kernel state for this
  895. * futex. If not, we can safely assume, that the 0 ->
  896. * TID transition is correct. If state exists, we do
  897. * not bother to fixup the user space state as it was
  898. * corrupted already.
  899. */
  900. return futex_top_waiter(hb, key) ? -EINVAL : 1;
  901. }
  902. uval = curval;
  903. /*
  904. * Set the FUTEX_WAITERS flag, so the owner will know it has someone
  905. * to wake at the next unlock.
  906. */
  907. newval = curval | FUTEX_WAITERS;
  908. /*
  909. * Should we force take the futex? See below.
  910. */
  911. if (unlikely(force_take)) {
  912. /*
  913. * Keep the OWNER_DIED and the WAITERS bit and set the
  914. * new TID value.
  915. */
  916. newval = (curval & ~FUTEX_TID_MASK) | vpid;
  917. force_take = 0;
  918. lock_taken = 1;
  919. }
  920. if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
  921. return -EFAULT;
  922. if (unlikely(curval != uval))
  923. goto retry;
  924. /*
  925. * We took the lock due to forced take over.
  926. */
  927. if (unlikely(lock_taken))
  928. return 1;
  929. /*
  930. * We dont have the lock. Look up the PI state (or create it if
  931. * we are the first waiter):
  932. */
  933. ret = lookup_pi_state(uval, hb, key, ps);
  934. if (unlikely(ret)) {
  935. switch (ret) {
  936. case -ESRCH:
  937. /*
  938. * We failed to find an owner for this
  939. * futex. So we have no pi_state to block
  940. * on. This can happen in two cases:
  941. *
  942. * 1) The owner died
  943. * 2) A stale FUTEX_WAITERS bit
  944. *
  945. * Re-read the futex value.
  946. */
  947. if (get_futex_value_locked(&curval, uaddr))
  948. return -EFAULT;
  949. /*
  950. * If the owner died or we have a stale
  951. * WAITERS bit the owner TID in the user space
  952. * futex is 0.
  953. */
  954. if (!(curval & FUTEX_TID_MASK)) {
  955. force_take = 1;
  956. goto retry;
  957. }
  958. default:
  959. break;
  960. }
  961. }
  962. return ret;
  963. }
  964. /**
  965. * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
  966. * @q: The futex_q to unqueue
  967. *
  968. * The q->lock_ptr must not be NULL and must be held by the caller.
  969. */
  970. static void __unqueue_futex(struct futex_q *q)
  971. {
  972. struct futex_hash_bucket *hb;
  973. if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
  974. || WARN_ON(plist_node_empty(&q->list)))
  975. return;
  976. hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
  977. plist_del(&q->list, &hb->chain);
  978. hb_waiters_dec(hb);
  979. }
  980. /*
  981. * The hash bucket lock must be held when this is called.
  982. * Afterwards, the futex_q must not be accessed.
  983. */
  984. static void wake_futex(struct futex_q *q)
  985. {
  986. struct task_struct *p = q->task;
  987. if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
  988. return;
  989. /*
  990. * We set q->lock_ptr = NULL _before_ we wake up the task. If
  991. * a non-futex wake up happens on another CPU then the task
  992. * might exit and p would dereference a non-existing task
  993. * struct. Prevent this by holding a reference on p across the
  994. * wake up.
  995. */
  996. get_task_struct(p);
  997. __unqueue_futex(q);
  998. /*
  999. * The waiting task can free the futex_q as soon as
  1000. * q->lock_ptr = NULL is written, without taking any locks. A
  1001. * memory barrier is required here to prevent the following
  1002. * store to lock_ptr from getting ahead of the plist_del.
  1003. */
  1004. smp_wmb();
  1005. q->lock_ptr = NULL;
  1006. wake_up_state(p, TASK_NORMAL);
  1007. put_task_struct(p);
  1008. }
  1009. static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
  1010. {
  1011. struct task_struct *new_owner;
  1012. struct futex_pi_state *pi_state = this->pi_state;
  1013. u32 uninitialized_var(curval), newval;
  1014. int ret = 0;
  1015. if (!pi_state)
  1016. return -EINVAL;
  1017. /*
  1018. * If current does not own the pi_state then the futex is
  1019. * inconsistent and user space fiddled with the futex value.
  1020. */
  1021. if (pi_state->owner != current)
  1022. return -EINVAL;
  1023. raw_spin_lock(&pi_state->pi_mutex.wait_lock);
  1024. new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
  1025. /*
  1026. * It is possible that the next waiter (the one that brought
  1027. * this owner to the kernel) timed out and is no longer
  1028. * waiting on the lock.
  1029. */
  1030. if (!new_owner)
  1031. new_owner = this->task;
  1032. /*
  1033. * We pass it to the next owner. The WAITERS bit is always
  1034. * kept enabled while there is PI state around. We cleanup the
  1035. * owner died bit, because we are the owner.
  1036. */
  1037. newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
  1038. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1039. ret = -EFAULT;
  1040. else if (curval != uval)
  1041. ret = -EINVAL;
  1042. if (ret) {
  1043. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1044. return ret;
  1045. }
  1046. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1047. WARN_ON(list_empty(&pi_state->list));
  1048. list_del_init(&pi_state->list);
  1049. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1050. raw_spin_lock_irq(&new_owner->pi_lock);
  1051. WARN_ON(!list_empty(&pi_state->list));
  1052. list_add(&pi_state->list, &new_owner->pi_state_list);
  1053. pi_state->owner = new_owner;
  1054. raw_spin_unlock_irq(&new_owner->pi_lock);
  1055. raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
  1056. rt_mutex_unlock(&pi_state->pi_mutex);
  1057. return 0;
  1058. }
  1059. static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
  1060. {
  1061. u32 uninitialized_var(oldval);
  1062. /*
  1063. * There is no waiter, so we unlock the futex. The owner died
  1064. * bit has not to be preserved here. We are the owner:
  1065. */
  1066. if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
  1067. return -EFAULT;
  1068. if (oldval != uval)
  1069. return -EAGAIN;
  1070. return 0;
  1071. }
  1072. /*
  1073. * Express the locking dependencies for lockdep:
  1074. */
  1075. static inline void
  1076. double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1077. {
  1078. if (hb1 <= hb2) {
  1079. spin_lock(&hb1->lock);
  1080. if (hb1 < hb2)
  1081. spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
  1082. } else { /* hb1 > hb2 */
  1083. spin_lock(&hb2->lock);
  1084. spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
  1085. }
  1086. }
  1087. static inline void
  1088. double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
  1089. {
  1090. spin_unlock(&hb1->lock);
  1091. if (hb1 != hb2)
  1092. spin_unlock(&hb2->lock);
  1093. }
  1094. /*
  1095. * Wake up waiters matching bitset queued on this futex (uaddr).
  1096. */
  1097. static int
  1098. futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
  1099. {
  1100. struct futex_hash_bucket *hb;
  1101. struct futex_q *this, *next;
  1102. union futex_key key = FUTEX_KEY_INIT;
  1103. int ret;
  1104. if (!bitset)
  1105. return -EINVAL;
  1106. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
  1107. if (unlikely(ret != 0))
  1108. goto out;
  1109. hb = hash_futex(&key);
  1110. /* Make sure we really have tasks to wakeup */
  1111. if (!hb_waiters_pending(hb))
  1112. goto out_put_key;
  1113. spin_lock(&hb->lock);
  1114. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  1115. if (match_futex (&this->key, &key)) {
  1116. if (this->pi_state || this->rt_waiter) {
  1117. ret = -EINVAL;
  1118. break;
  1119. }
  1120. /* Check if one of the bits is set in both bitsets */
  1121. if (!(this->bitset & bitset))
  1122. continue;
  1123. wake_futex(this);
  1124. if (++ret >= nr_wake)
  1125. break;
  1126. }
  1127. }
  1128. spin_unlock(&hb->lock);
  1129. out_put_key:
  1130. put_futex_key(&key);
  1131. out:
  1132. return ret;
  1133. }
  1134. /*
  1135. * Wake up all waiters hashed on the physical page that is mapped
  1136. * to this virtual address:
  1137. */
  1138. static int
  1139. futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
  1140. int nr_wake, int nr_wake2, int op)
  1141. {
  1142. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1143. struct futex_hash_bucket *hb1, *hb2;
  1144. struct futex_q *this, *next;
  1145. int ret, op_ret;
  1146. retry:
  1147. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1148. if (unlikely(ret != 0))
  1149. goto out;
  1150. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  1151. if (unlikely(ret != 0))
  1152. goto out_put_key1;
  1153. hb1 = hash_futex(&key1);
  1154. hb2 = hash_futex(&key2);
  1155. retry_private:
  1156. double_lock_hb(hb1, hb2);
  1157. op_ret = futex_atomic_op_inuser(op, uaddr2);
  1158. if (unlikely(op_ret < 0)) {
  1159. double_unlock_hb(hb1, hb2);
  1160. #ifndef CONFIG_MMU
  1161. /*
  1162. * we don't get EFAULT from MMU faults if we don't have an MMU,
  1163. * but we might get them from range checking
  1164. */
  1165. ret = op_ret;
  1166. goto out_put_keys;
  1167. #endif
  1168. if (unlikely(op_ret != -EFAULT)) {
  1169. ret = op_ret;
  1170. goto out_put_keys;
  1171. }
  1172. ret = fault_in_user_writeable(uaddr2);
  1173. if (ret)
  1174. goto out_put_keys;
  1175. if (!(flags & FLAGS_SHARED))
  1176. goto retry_private;
  1177. put_futex_key(&key2);
  1178. put_futex_key(&key1);
  1179. goto retry;
  1180. }
  1181. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1182. if (match_futex (&this->key, &key1)) {
  1183. if (this->pi_state || this->rt_waiter) {
  1184. ret = -EINVAL;
  1185. goto out_unlock;
  1186. }
  1187. wake_futex(this);
  1188. if (++ret >= nr_wake)
  1189. break;
  1190. }
  1191. }
  1192. if (op_ret > 0) {
  1193. op_ret = 0;
  1194. plist_for_each_entry_safe(this, next, &hb2->chain, list) {
  1195. if (match_futex (&this->key, &key2)) {
  1196. if (this->pi_state || this->rt_waiter) {
  1197. ret = -EINVAL;
  1198. goto out_unlock;
  1199. }
  1200. wake_futex(this);
  1201. if (++op_ret >= nr_wake2)
  1202. break;
  1203. }
  1204. }
  1205. ret += op_ret;
  1206. }
  1207. out_unlock:
  1208. double_unlock_hb(hb1, hb2);
  1209. out_put_keys:
  1210. put_futex_key(&key2);
  1211. out_put_key1:
  1212. put_futex_key(&key1);
  1213. out:
  1214. return ret;
  1215. }
  1216. /**
  1217. * requeue_futex() - Requeue a futex_q from one hb to another
  1218. * @q: the futex_q to requeue
  1219. * @hb1: the source hash_bucket
  1220. * @hb2: the target hash_bucket
  1221. * @key2: the new key for the requeued futex_q
  1222. */
  1223. static inline
  1224. void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
  1225. struct futex_hash_bucket *hb2, union futex_key *key2)
  1226. {
  1227. /*
  1228. * If key1 and key2 hash to the same bucket, no need to
  1229. * requeue.
  1230. */
  1231. if (likely(&hb1->chain != &hb2->chain)) {
  1232. plist_del(&q->list, &hb1->chain);
  1233. hb_waiters_dec(hb1);
  1234. plist_add(&q->list, &hb2->chain);
  1235. hb_waiters_inc(hb2);
  1236. q->lock_ptr = &hb2->lock;
  1237. }
  1238. get_futex_key_refs(key2);
  1239. q->key = *key2;
  1240. }
  1241. /**
  1242. * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
  1243. * @q: the futex_q
  1244. * @key: the key of the requeue target futex
  1245. * @hb: the hash_bucket of the requeue target futex
  1246. *
  1247. * During futex_requeue, with requeue_pi=1, it is possible to acquire the
  1248. * target futex if it is uncontended or via a lock steal. Set the futex_q key
  1249. * to the requeue target futex so the waiter can detect the wakeup on the right
  1250. * futex, but remove it from the hb and NULL the rt_waiter so it can detect
  1251. * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
  1252. * to protect access to the pi_state to fixup the owner later. Must be called
  1253. * with both q->lock_ptr and hb->lock held.
  1254. */
  1255. static inline
  1256. void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
  1257. struct futex_hash_bucket *hb)
  1258. {
  1259. get_futex_key_refs(key);
  1260. q->key = *key;
  1261. __unqueue_futex(q);
  1262. WARN_ON(!q->rt_waiter);
  1263. q->rt_waiter = NULL;
  1264. q->lock_ptr = &hb->lock;
  1265. wake_up_state(q->task, TASK_NORMAL);
  1266. }
  1267. /**
  1268. * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
  1269. * @pifutex: the user address of the to futex
  1270. * @hb1: the from futex hash bucket, must be locked by the caller
  1271. * @hb2: the to futex hash bucket, must be locked by the caller
  1272. * @key1: the from futex key
  1273. * @key2: the to futex key
  1274. * @ps: address to store the pi_state pointer
  1275. * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
  1276. *
  1277. * Try and get the lock on behalf of the top waiter if we can do it atomically.
  1278. * Wake the top waiter if we succeed. If the caller specified set_waiters,
  1279. * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
  1280. * hb1 and hb2 must be held by the caller.
  1281. *
  1282. * Return:
  1283. * 0 - failed to acquire the lock atomically;
  1284. * >0 - acquired the lock, return value is vpid of the top_waiter
  1285. * <0 - error
  1286. */
  1287. static int futex_proxy_trylock_atomic(u32 __user *pifutex,
  1288. struct futex_hash_bucket *hb1,
  1289. struct futex_hash_bucket *hb2,
  1290. union futex_key *key1, union futex_key *key2,
  1291. struct futex_pi_state **ps, int set_waiters)
  1292. {
  1293. struct futex_q *top_waiter = NULL;
  1294. u32 curval;
  1295. int ret, vpid;
  1296. if (get_futex_value_locked(&curval, pifutex))
  1297. return -EFAULT;
  1298. /*
  1299. * Find the top_waiter and determine if there are additional waiters.
  1300. * If the caller intends to requeue more than 1 waiter to pifutex,
  1301. * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
  1302. * as we have means to handle the possible fault. If not, don't set
  1303. * the bit unecessarily as it will force the subsequent unlock to enter
  1304. * the kernel.
  1305. */
  1306. top_waiter = futex_top_waiter(hb1, key1);
  1307. /* There are no waiters, nothing for us to do. */
  1308. if (!top_waiter)
  1309. return 0;
  1310. /* Ensure we requeue to the expected futex. */
  1311. if (!match_futex(top_waiter->requeue_pi_key, key2))
  1312. return -EINVAL;
  1313. /*
  1314. * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
  1315. * the contended case or if set_waiters is 1. The pi_state is returned
  1316. * in ps in contended cases.
  1317. */
  1318. vpid = task_pid_vnr(top_waiter->task);
  1319. ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
  1320. set_waiters);
  1321. if (ret == 1) {
  1322. requeue_pi_wake_futex(top_waiter, key2, hb2);
  1323. return vpid;
  1324. }
  1325. return ret;
  1326. }
  1327. /**
  1328. * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
  1329. * @uaddr1: source futex user address
  1330. * @flags: futex flags (FLAGS_SHARED, etc.)
  1331. * @uaddr2: target futex user address
  1332. * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
  1333. * @nr_requeue: number of waiters to requeue (0-INT_MAX)
  1334. * @cmpval: @uaddr1 expected value (or %NULL)
  1335. * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
  1336. * pi futex (pi to pi requeue is not supported)
  1337. *
  1338. * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
  1339. * uaddr2 atomically on behalf of the top waiter.
  1340. *
  1341. * Return:
  1342. * >=0 - on success, the number of tasks requeued or woken;
  1343. * <0 - on error
  1344. */
  1345. static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
  1346. u32 __user *uaddr2, int nr_wake, int nr_requeue,
  1347. u32 *cmpval, int requeue_pi)
  1348. {
  1349. union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
  1350. int drop_count = 0, task_count = 0, ret;
  1351. struct futex_pi_state *pi_state = NULL;
  1352. struct futex_hash_bucket *hb1, *hb2;
  1353. struct futex_q *this, *next;
  1354. if (requeue_pi) {
  1355. /*
  1356. * Requeue PI only works on two distinct uaddrs. This
  1357. * check is only valid for private futexes. See below.
  1358. */
  1359. if (uaddr1 == uaddr2)
  1360. return -EINVAL;
  1361. /*
  1362. * requeue_pi requires a pi_state, try to allocate it now
  1363. * without any locks in case it fails.
  1364. */
  1365. if (refill_pi_state_cache())
  1366. return -ENOMEM;
  1367. /*
  1368. * requeue_pi must wake as many tasks as it can, up to nr_wake
  1369. * + nr_requeue, since it acquires the rt_mutex prior to
  1370. * returning to userspace, so as to not leave the rt_mutex with
  1371. * waiters and no owner. However, second and third wake-ups
  1372. * cannot be predicted as they involve race conditions with the
  1373. * first wake and a fault while looking up the pi_state. Both
  1374. * pthread_cond_signal() and pthread_cond_broadcast() should
  1375. * use nr_wake=1.
  1376. */
  1377. if (nr_wake != 1)
  1378. return -EINVAL;
  1379. }
  1380. retry:
  1381. if (pi_state != NULL) {
  1382. /*
  1383. * We will have to lookup the pi_state again, so free this one
  1384. * to keep the accounting correct.
  1385. */
  1386. free_pi_state(pi_state);
  1387. pi_state = NULL;
  1388. }
  1389. ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
  1390. if (unlikely(ret != 0))
  1391. goto out;
  1392. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
  1393. requeue_pi ? VERIFY_WRITE : VERIFY_READ);
  1394. if (unlikely(ret != 0))
  1395. goto out_put_key1;
  1396. /*
  1397. * The check above which compares uaddrs is not sufficient for
  1398. * shared futexes. We need to compare the keys:
  1399. */
  1400. if (requeue_pi && match_futex(&key1, &key2)) {
  1401. ret = -EINVAL;
  1402. goto out_put_keys;
  1403. }
  1404. hb1 = hash_futex(&key1);
  1405. hb2 = hash_futex(&key2);
  1406. retry_private:
  1407. hb_waiters_inc(hb2);
  1408. double_lock_hb(hb1, hb2);
  1409. if (likely(cmpval != NULL)) {
  1410. u32 curval;
  1411. ret = get_futex_value_locked(&curval, uaddr1);
  1412. if (unlikely(ret)) {
  1413. double_unlock_hb(hb1, hb2);
  1414. hb_waiters_dec(hb2);
  1415. ret = get_user(curval, uaddr1);
  1416. if (ret)
  1417. goto out_put_keys;
  1418. if (!(flags & FLAGS_SHARED))
  1419. goto retry_private;
  1420. put_futex_key(&key2);
  1421. put_futex_key(&key1);
  1422. goto retry;
  1423. }
  1424. if (curval != *cmpval) {
  1425. ret = -EAGAIN;
  1426. goto out_unlock;
  1427. }
  1428. }
  1429. if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
  1430. /*
  1431. * Attempt to acquire uaddr2 and wake the top waiter. If we
  1432. * intend to requeue waiters, force setting the FUTEX_WAITERS
  1433. * bit. We force this here where we are able to easily handle
  1434. * faults rather in the requeue loop below.
  1435. */
  1436. ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
  1437. &key2, &pi_state, nr_requeue);
  1438. /*
  1439. * At this point the top_waiter has either taken uaddr2 or is
  1440. * waiting on it. If the former, then the pi_state will not
  1441. * exist yet, look it up one more time to ensure we have a
  1442. * reference to it. If the lock was taken, ret contains the
  1443. * vpid of the top waiter task.
  1444. */
  1445. if (ret > 0) {
  1446. WARN_ON(pi_state);
  1447. drop_count++;
  1448. task_count++;
  1449. /*
  1450. * If we acquired the lock, then the user
  1451. * space value of uaddr2 should be vpid. It
  1452. * cannot be changed by the top waiter as it
  1453. * is blocked on hb2 lock if it tries to do
  1454. * so. If something fiddled with it behind our
  1455. * back the pi state lookup might unearth
  1456. * it. So we rather use the known value than
  1457. * rereading and handing potential crap to
  1458. * lookup_pi_state.
  1459. */
  1460. ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
  1461. }
  1462. switch (ret) {
  1463. case 0:
  1464. break;
  1465. case -EFAULT:
  1466. double_unlock_hb(hb1, hb2);
  1467. hb_waiters_dec(hb2);
  1468. put_futex_key(&key2);
  1469. put_futex_key(&key1);
  1470. ret = fault_in_user_writeable(uaddr2);
  1471. if (!ret)
  1472. goto retry;
  1473. goto out;
  1474. case -EAGAIN:
  1475. /* The owner was exiting, try again. */
  1476. double_unlock_hb(hb1, hb2);
  1477. hb_waiters_dec(hb2);
  1478. put_futex_key(&key2);
  1479. put_futex_key(&key1);
  1480. cond_resched();
  1481. goto retry;
  1482. default:
  1483. goto out_unlock;
  1484. }
  1485. }
  1486. plist_for_each_entry_safe(this, next, &hb1->chain, list) {
  1487. if (task_count - nr_wake >= nr_requeue)
  1488. break;
  1489. if (!match_futex(&this->key, &key1))
  1490. continue;
  1491. /*
  1492. * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
  1493. * be paired with each other and no other futex ops.
  1494. *
  1495. * We should never be requeueing a futex_q with a pi_state,
  1496. * which is awaiting a futex_unlock_pi().
  1497. */
  1498. if ((requeue_pi && !this->rt_waiter) ||
  1499. (!requeue_pi && this->rt_waiter) ||
  1500. this->pi_state) {
  1501. ret = -EINVAL;
  1502. break;
  1503. }
  1504. /*
  1505. * Wake nr_wake waiters. For requeue_pi, if we acquired the
  1506. * lock, we already woke the top_waiter. If not, it will be
  1507. * woken by futex_unlock_pi().
  1508. */
  1509. if (++task_count <= nr_wake && !requeue_pi) {
  1510. wake_futex(this);
  1511. continue;
  1512. }
  1513. /* Ensure we requeue to the expected futex for requeue_pi. */
  1514. if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
  1515. ret = -EINVAL;
  1516. break;
  1517. }
  1518. /*
  1519. * Requeue nr_requeue waiters and possibly one more in the case
  1520. * of requeue_pi if we couldn't acquire the lock atomically.
  1521. */
  1522. if (requeue_pi) {
  1523. /* Prepare the waiter to take the rt_mutex. */
  1524. atomic_inc(&pi_state->refcount);
  1525. this->pi_state = pi_state;
  1526. ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
  1527. this->rt_waiter,
  1528. this->task, 1);
  1529. if (ret == 1) {
  1530. /* We got the lock. */
  1531. requeue_pi_wake_futex(this, &key2, hb2);
  1532. drop_count++;
  1533. continue;
  1534. } else if (ret) {
  1535. /* -EDEADLK */
  1536. this->pi_state = NULL;
  1537. free_pi_state(pi_state);
  1538. goto out_unlock;
  1539. }
  1540. }
  1541. requeue_futex(this, hb1, hb2, &key2);
  1542. drop_count++;
  1543. }
  1544. out_unlock:
  1545. double_unlock_hb(hb1, hb2);
  1546. hb_waiters_dec(hb2);
  1547. /*
  1548. * drop_futex_key_refs() must be called outside the spinlocks. During
  1549. * the requeue we moved futex_q's from the hash bucket at key1 to the
  1550. * one at key2 and updated their key pointer. We no longer need to
  1551. * hold the references to key1.
  1552. */
  1553. while (--drop_count >= 0)
  1554. drop_futex_key_refs(&key1);
  1555. out_put_keys:
  1556. put_futex_key(&key2);
  1557. out_put_key1:
  1558. put_futex_key(&key1);
  1559. out:
  1560. if (pi_state != NULL)
  1561. free_pi_state(pi_state);
  1562. return ret ? ret : task_count;
  1563. }
  1564. /* The key must be already stored in q->key. */
  1565. static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
  1566. __acquires(&hb->lock)
  1567. {
  1568. struct futex_hash_bucket *hb;
  1569. hb = hash_futex(&q->key);
  1570. /*
  1571. * Increment the counter before taking the lock so that
  1572. * a potential waker won't miss a to-be-slept task that is
  1573. * waiting for the spinlock. This is safe as all queue_lock()
  1574. * users end up calling queue_me(). Similarly, for housekeeping,
  1575. * decrement the counter at queue_unlock() when some error has
  1576. * occurred and we don't end up adding the task to the list.
  1577. */
  1578. hb_waiters_inc(hb);
  1579. q->lock_ptr = &hb->lock;
  1580. spin_lock(&hb->lock); /* implies MB (A) */
  1581. return hb;
  1582. }
  1583. static inline void
  1584. queue_unlock(struct futex_hash_bucket *hb)
  1585. __releases(&hb->lock)
  1586. {
  1587. spin_unlock(&hb->lock);
  1588. hb_waiters_dec(hb);
  1589. }
  1590. /**
  1591. * queue_me() - Enqueue the futex_q on the futex_hash_bucket
  1592. * @q: The futex_q to enqueue
  1593. * @hb: The destination hash bucket
  1594. *
  1595. * The hb->lock must be held by the caller, and is released here. A call to
  1596. * queue_me() is typically paired with exactly one call to unqueue_me(). The
  1597. * exceptions involve the PI related operations, which may use unqueue_me_pi()
  1598. * or nothing if the unqueue is done as part of the wake process and the unqueue
  1599. * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
  1600. * an example).
  1601. */
  1602. static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
  1603. __releases(&hb->lock)
  1604. {
  1605. int prio;
  1606. /*
  1607. * The priority used to register this element is
  1608. * - either the real thread-priority for the real-time threads
  1609. * (i.e. threads with a priority lower than MAX_RT_PRIO)
  1610. * - or MAX_RT_PRIO for non-RT threads.
  1611. * Thus, all RT-threads are woken first in priority order, and
  1612. * the others are woken last, in FIFO order.
  1613. */
  1614. prio = min(current->normal_prio, MAX_RT_PRIO);
  1615. plist_node_init(&q->list, prio);
  1616. plist_add(&q->list, &hb->chain);
  1617. q->task = current;
  1618. spin_unlock(&hb->lock);
  1619. }
  1620. /**
  1621. * unqueue_me() - Remove the futex_q from its futex_hash_bucket
  1622. * @q: The futex_q to unqueue
  1623. *
  1624. * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
  1625. * be paired with exactly one earlier call to queue_me().
  1626. *
  1627. * Return:
  1628. * 1 - if the futex_q was still queued (and we removed unqueued it);
  1629. * 0 - if the futex_q was already removed by the waking thread
  1630. */
  1631. static int unqueue_me(struct futex_q *q)
  1632. {
  1633. spinlock_t *lock_ptr;
  1634. int ret = 0;
  1635. /* In the common case we don't take the spinlock, which is nice. */
  1636. retry:
  1637. lock_ptr = q->lock_ptr;
  1638. barrier();
  1639. if (lock_ptr != NULL) {
  1640. spin_lock(lock_ptr);
  1641. /*
  1642. * q->lock_ptr can change between reading it and
  1643. * spin_lock(), causing us to take the wrong lock. This
  1644. * corrects the race condition.
  1645. *
  1646. * Reasoning goes like this: if we have the wrong lock,
  1647. * q->lock_ptr must have changed (maybe several times)
  1648. * between reading it and the spin_lock(). It can
  1649. * change again after the spin_lock() but only if it was
  1650. * already changed before the spin_lock(). It cannot,
  1651. * however, change back to the original value. Therefore
  1652. * we can detect whether we acquired the correct lock.
  1653. */
  1654. if (unlikely(lock_ptr != q->lock_ptr)) {
  1655. spin_unlock(lock_ptr);
  1656. goto retry;
  1657. }
  1658. __unqueue_futex(q);
  1659. BUG_ON(q->pi_state);
  1660. spin_unlock(lock_ptr);
  1661. ret = 1;
  1662. }
  1663. drop_futex_key_refs(&q->key);
  1664. return ret;
  1665. }
  1666. /*
  1667. * PI futexes can not be requeued and must remove themself from the
  1668. * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
  1669. * and dropped here.
  1670. */
  1671. static void unqueue_me_pi(struct futex_q *q)
  1672. __releases(q->lock_ptr)
  1673. {
  1674. __unqueue_futex(q);
  1675. BUG_ON(!q->pi_state);
  1676. free_pi_state(q->pi_state);
  1677. q->pi_state = NULL;
  1678. spin_unlock(q->lock_ptr);
  1679. }
  1680. /*
  1681. * Fixup the pi_state owner with the new owner.
  1682. *
  1683. * Must be called with hash bucket lock held and mm->sem held for non
  1684. * private futexes.
  1685. */
  1686. static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
  1687. struct task_struct *newowner)
  1688. {
  1689. u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
  1690. struct futex_pi_state *pi_state = q->pi_state;
  1691. struct task_struct *oldowner = pi_state->owner;
  1692. u32 uval, uninitialized_var(curval), newval;
  1693. int ret;
  1694. /* Owner died? */
  1695. if (!pi_state->owner)
  1696. newtid |= FUTEX_OWNER_DIED;
  1697. /*
  1698. * We are here either because we stole the rtmutex from the
  1699. * previous highest priority waiter or we are the highest priority
  1700. * waiter but failed to get the rtmutex the first time.
  1701. * We have to replace the newowner TID in the user space variable.
  1702. * This must be atomic as we have to preserve the owner died bit here.
  1703. *
  1704. * Note: We write the user space value _before_ changing the pi_state
  1705. * because we can fault here. Imagine swapped out pages or a fork
  1706. * that marked all the anonymous memory readonly for cow.
  1707. *
  1708. * Modifying pi_state _before_ the user space value would
  1709. * leave the pi_state in an inconsistent state when we fault
  1710. * here, because we need to drop the hash bucket lock to
  1711. * handle the fault. This might be observed in the PID check
  1712. * in lookup_pi_state.
  1713. */
  1714. retry:
  1715. if (get_futex_value_locked(&uval, uaddr))
  1716. goto handle_fault;
  1717. while (1) {
  1718. newval = (uval & FUTEX_OWNER_DIED) | newtid;
  1719. if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
  1720. goto handle_fault;
  1721. if (curval == uval)
  1722. break;
  1723. uval = curval;
  1724. }
  1725. /*
  1726. * We fixed up user space. Now we need to fix the pi_state
  1727. * itself.
  1728. */
  1729. if (pi_state->owner != NULL) {
  1730. raw_spin_lock_irq(&pi_state->owner->pi_lock);
  1731. WARN_ON(list_empty(&pi_state->list));
  1732. list_del_init(&pi_state->list);
  1733. raw_spin_unlock_irq(&pi_state->owner->pi_lock);
  1734. }
  1735. pi_state->owner = newowner;
  1736. raw_spin_lock_irq(&newowner->pi_lock);
  1737. WARN_ON(!list_empty(&pi_state->list));
  1738. list_add(&pi_state->list, &newowner->pi_state_list);
  1739. raw_spin_unlock_irq(&newowner->pi_lock);
  1740. return 0;
  1741. /*
  1742. * To handle the page fault we need to drop the hash bucket
  1743. * lock here. That gives the other task (either the highest priority
  1744. * waiter itself or the task which stole the rtmutex) the
  1745. * chance to try the fixup of the pi_state. So once we are
  1746. * back from handling the fault we need to check the pi_state
  1747. * after reacquiring the hash bucket lock and before trying to
  1748. * do another fixup. When the fixup has been done already we
  1749. * simply return.
  1750. */
  1751. handle_fault:
  1752. spin_unlock(q->lock_ptr);
  1753. ret = fault_in_user_writeable(uaddr);
  1754. spin_lock(q->lock_ptr);
  1755. /*
  1756. * Check if someone else fixed it for us:
  1757. */
  1758. if (pi_state->owner != oldowner)
  1759. return 0;
  1760. if (ret)
  1761. return ret;
  1762. goto retry;
  1763. }
  1764. static long futex_wait_restart(struct restart_block *restart);
  1765. /**
  1766. * fixup_owner() - Post lock pi_state and corner case management
  1767. * @uaddr: user address of the futex
  1768. * @q: futex_q (contains pi_state and access to the rt_mutex)
  1769. * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
  1770. *
  1771. * After attempting to lock an rt_mutex, this function is called to cleanup
  1772. * the pi_state owner as well as handle race conditions that may allow us to
  1773. * acquire the lock. Must be called with the hb lock held.
  1774. *
  1775. * Return:
  1776. * 1 - success, lock taken;
  1777. * 0 - success, lock not taken;
  1778. * <0 - on error (-EFAULT)
  1779. */
  1780. static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
  1781. {
  1782. struct task_struct *owner;
  1783. int ret = 0;
  1784. if (locked) {
  1785. /*
  1786. * Got the lock. We might not be the anticipated owner if we
  1787. * did a lock-steal - fix up the PI-state in that case:
  1788. */
  1789. if (q->pi_state->owner != current)
  1790. ret = fixup_pi_state_owner(uaddr, q, current);
  1791. goto out;
  1792. }
  1793. /*
  1794. * Catch the rare case, where the lock was released when we were on the
  1795. * way back before we locked the hash bucket.
  1796. */
  1797. if (q->pi_state->owner == current) {
  1798. /*
  1799. * Try to get the rt_mutex now. This might fail as some other
  1800. * task acquired the rt_mutex after we removed ourself from the
  1801. * rt_mutex waiters list.
  1802. */
  1803. if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
  1804. locked = 1;
  1805. goto out;
  1806. }
  1807. /*
  1808. * pi_state is incorrect, some other task did a lock steal and
  1809. * we returned due to timeout or signal without taking the
  1810. * rt_mutex. Too late.
  1811. */
  1812. raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
  1813. owner = rt_mutex_owner(&q->pi_state->pi_mutex);
  1814. if (!owner)
  1815. owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
  1816. raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
  1817. ret = fixup_pi_state_owner(uaddr, q, owner);
  1818. goto out;
  1819. }
  1820. /*
  1821. * Paranoia check. If we did not take the lock, then we should not be
  1822. * the owner of the rt_mutex.
  1823. */
  1824. if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
  1825. printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
  1826. "pi-state %p\n", ret,
  1827. q->pi_state->pi_mutex.owner,
  1828. q->pi_state->owner);
  1829. out:
  1830. return ret ? ret : locked;
  1831. }
  1832. /**
  1833. * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
  1834. * @hb: the futex hash bucket, must be locked by the caller
  1835. * @q: the futex_q to queue up on
  1836. * @timeout: the prepared hrtimer_sleeper, or null for no timeout
  1837. */
  1838. static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
  1839. struct hrtimer_sleeper *timeout)
  1840. {
  1841. /*
  1842. * The task state is guaranteed to be set before another task can
  1843. * wake it. set_current_state() is implemented using set_mb() and
  1844. * queue_me() calls spin_unlock() upon completion, both serializing
  1845. * access to the hash list and forcing another memory barrier.
  1846. */
  1847. set_current_state(TASK_INTERRUPTIBLE);
  1848. queue_me(q, hb);
  1849. /* Arm the timer */
  1850. if (timeout) {
  1851. hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
  1852. if (!hrtimer_active(&timeout->timer))
  1853. timeout->task = NULL;
  1854. }
  1855. /*
  1856. * If we have been removed from the hash list, then another task
  1857. * has tried to wake us, and we can skip the call to schedule().
  1858. */
  1859. if (likely(!plist_node_empty(&q->list))) {
  1860. /*
  1861. * If the timer has already expired, current will already be
  1862. * flagged for rescheduling. Only call schedule if there
  1863. * is no timeout, or if it has yet to expire.
  1864. */
  1865. if (!timeout || timeout->task)
  1866. freezable_schedule();
  1867. }
  1868. __set_current_state(TASK_RUNNING);
  1869. }
  1870. /**
  1871. * futex_wait_setup() - Prepare to wait on a futex
  1872. * @uaddr: the futex userspace address
  1873. * @val: the expected value
  1874. * @flags: futex flags (FLAGS_SHARED, etc.)
  1875. * @q: the associated futex_q
  1876. * @hb: storage for hash_bucket pointer to be returned to caller
  1877. *
  1878. * Setup the futex_q and locate the hash_bucket. Get the futex value and
  1879. * compare it with the expected value. Handle atomic faults internally.
  1880. * Return with the hb lock held and a q.key reference on success, and unlocked
  1881. * with no q.key reference on failure.
  1882. *
  1883. * Return:
  1884. * 0 - uaddr contains val and hb has been locked;
  1885. * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
  1886. */
  1887. static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
  1888. struct futex_q *q, struct futex_hash_bucket **hb)
  1889. {
  1890. u32 uval;
  1891. int ret;
  1892. /*
  1893. * Access the page AFTER the hash-bucket is locked.
  1894. * Order is important:
  1895. *
  1896. * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
  1897. * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
  1898. *
  1899. * The basic logical guarantee of a futex is that it blocks ONLY
  1900. * if cond(var) is known to be true at the time of blocking, for
  1901. * any cond. If we locked the hash-bucket after testing *uaddr, that
  1902. * would open a race condition where we could block indefinitely with
  1903. * cond(var) false, which would violate the guarantee.
  1904. *
  1905. * On the other hand, we insert q and release the hash-bucket only
  1906. * after testing *uaddr. This guarantees that futex_wait() will NOT
  1907. * absorb a wakeup if *uaddr does not match the desired values
  1908. * while the syscall executes.
  1909. */
  1910. retry:
  1911. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
  1912. if (unlikely(ret != 0))
  1913. return ret;
  1914. retry_private:
  1915. *hb = queue_lock(q);
  1916. ret = get_futex_value_locked(&uval, uaddr);
  1917. if (ret) {
  1918. queue_unlock(*hb);
  1919. ret = get_user(uval, uaddr);
  1920. if (ret)
  1921. goto out;
  1922. if (!(flags & FLAGS_SHARED))
  1923. goto retry_private;
  1924. put_futex_key(&q->key);
  1925. goto retry;
  1926. }
  1927. if (uval != val) {
  1928. queue_unlock(*hb);
  1929. ret = -EWOULDBLOCK;
  1930. }
  1931. out:
  1932. if (ret)
  1933. put_futex_key(&q->key);
  1934. return ret;
  1935. }
  1936. static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
  1937. ktime_t *abs_time, u32 bitset)
  1938. {
  1939. struct hrtimer_sleeper timeout, *to = NULL;
  1940. struct restart_block *restart;
  1941. struct futex_hash_bucket *hb;
  1942. struct futex_q q = futex_q_init;
  1943. int ret;
  1944. if (!bitset)
  1945. return -EINVAL;
  1946. q.bitset = bitset;
  1947. if (abs_time) {
  1948. to = &timeout;
  1949. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  1950. CLOCK_REALTIME : CLOCK_MONOTONIC,
  1951. HRTIMER_MODE_ABS);
  1952. hrtimer_init_sleeper(to, current);
  1953. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  1954. current->timer_slack_ns);
  1955. }
  1956. retry:
  1957. /*
  1958. * Prepare to wait on uaddr. On success, holds hb lock and increments
  1959. * q.key refs.
  1960. */
  1961. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  1962. if (ret)
  1963. goto out;
  1964. /* queue_me and wait for wakeup, timeout, or a signal. */
  1965. futex_wait_queue_me(hb, &q, to);
  1966. /* If we were woken (and unqueued), we succeeded, whatever. */
  1967. ret = 0;
  1968. /* unqueue_me() drops q.key ref */
  1969. if (!unqueue_me(&q))
  1970. goto out;
  1971. ret = -ETIMEDOUT;
  1972. if (to && !to->task)
  1973. goto out;
  1974. /*
  1975. * We expect signal_pending(current), but we might be the
  1976. * victim of a spurious wakeup as well.
  1977. */
  1978. if (!signal_pending(current))
  1979. goto retry;
  1980. ret = -ERESTARTSYS;
  1981. if (!abs_time)
  1982. goto out;
  1983. restart = &current_thread_info()->restart_block;
  1984. restart->fn = futex_wait_restart;
  1985. restart->futex.uaddr = uaddr;
  1986. restart->futex.val = val;
  1987. restart->futex.time = abs_time->tv64;
  1988. restart->futex.bitset = bitset;
  1989. restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
  1990. ret = -ERESTART_RESTARTBLOCK;
  1991. out:
  1992. if (to) {
  1993. hrtimer_cancel(&to->timer);
  1994. destroy_hrtimer_on_stack(&to->timer);
  1995. }
  1996. return ret;
  1997. }
  1998. static long futex_wait_restart(struct restart_block *restart)
  1999. {
  2000. u32 __user *uaddr = restart->futex.uaddr;
  2001. ktime_t t, *tp = NULL;
  2002. if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
  2003. t.tv64 = restart->futex.time;
  2004. tp = &t;
  2005. }
  2006. restart->fn = do_no_restart_syscall;
  2007. return (long)futex_wait(uaddr, restart->futex.flags,
  2008. restart->futex.val, tp, restart->futex.bitset);
  2009. }
  2010. /*
  2011. * Userspace tried a 0 -> TID atomic transition of the futex value
  2012. * and failed. The kernel side here does the whole locking operation:
  2013. * if there are waiters then it will block, it does PI, etc. (Due to
  2014. * races the kernel might see a 0 value of the futex too.)
  2015. */
  2016. static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
  2017. ktime_t *time, int trylock)
  2018. {
  2019. struct hrtimer_sleeper timeout, *to = NULL;
  2020. struct futex_hash_bucket *hb;
  2021. struct futex_q q = futex_q_init;
  2022. int res, ret;
  2023. if (refill_pi_state_cache())
  2024. return -ENOMEM;
  2025. if (time) {
  2026. to = &timeout;
  2027. hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
  2028. HRTIMER_MODE_ABS);
  2029. hrtimer_init_sleeper(to, current);
  2030. hrtimer_set_expires(&to->timer, *time);
  2031. }
  2032. retry:
  2033. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
  2034. if (unlikely(ret != 0))
  2035. goto out;
  2036. retry_private:
  2037. hb = queue_lock(&q);
  2038. ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
  2039. if (unlikely(ret)) {
  2040. switch (ret) {
  2041. case 1:
  2042. /* We got the lock. */
  2043. ret = 0;
  2044. goto out_unlock_put_key;
  2045. case -EFAULT:
  2046. goto uaddr_faulted;
  2047. case -EAGAIN:
  2048. /*
  2049. * Task is exiting and we just wait for the
  2050. * exit to complete.
  2051. */
  2052. queue_unlock(hb);
  2053. put_futex_key(&q.key);
  2054. cond_resched();
  2055. goto retry;
  2056. default:
  2057. goto out_unlock_put_key;
  2058. }
  2059. }
  2060. /*
  2061. * Only actually queue now that the atomic ops are done:
  2062. */
  2063. queue_me(&q, hb);
  2064. WARN_ON(!q.pi_state);
  2065. /*
  2066. * Block on the PI mutex:
  2067. */
  2068. if (!trylock)
  2069. ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
  2070. else {
  2071. ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
  2072. /* Fixup the trylock return value: */
  2073. ret = ret ? 0 : -EWOULDBLOCK;
  2074. }
  2075. spin_lock(q.lock_ptr);
  2076. /*
  2077. * Fixup the pi_state owner and possibly acquire the lock if we
  2078. * haven't already.
  2079. */
  2080. res = fixup_owner(uaddr, &q, !ret);
  2081. /*
  2082. * If fixup_owner() returned an error, proprogate that. If it acquired
  2083. * the lock, clear our -ETIMEDOUT or -EINTR.
  2084. */
  2085. if (res)
  2086. ret = (res < 0) ? res : 0;
  2087. /*
  2088. * If fixup_owner() faulted and was unable to handle the fault, unlock
  2089. * it and return the fault to userspace.
  2090. */
  2091. if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
  2092. rt_mutex_unlock(&q.pi_state->pi_mutex);
  2093. /* Unqueue and drop the lock */
  2094. unqueue_me_pi(&q);
  2095. goto out_put_key;
  2096. out_unlock_put_key:
  2097. queue_unlock(hb);
  2098. out_put_key:
  2099. put_futex_key(&q.key);
  2100. out:
  2101. if (to)
  2102. destroy_hrtimer_on_stack(&to->timer);
  2103. return ret != -EINTR ? ret : -ERESTARTNOINTR;
  2104. uaddr_faulted:
  2105. queue_unlock(hb);
  2106. ret = fault_in_user_writeable(uaddr);
  2107. if (ret)
  2108. goto out_put_key;
  2109. if (!(flags & FLAGS_SHARED))
  2110. goto retry_private;
  2111. put_futex_key(&q.key);
  2112. goto retry;
  2113. }
  2114. /*
  2115. * Userspace attempted a TID -> 0 atomic transition, and failed.
  2116. * This is the in-kernel slowpath: we look up the PI state (if any),
  2117. * and do the rt-mutex unlock.
  2118. */
  2119. static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
  2120. {
  2121. struct futex_hash_bucket *hb;
  2122. struct futex_q *this, *next;
  2123. union futex_key key = FUTEX_KEY_INIT;
  2124. u32 uval, vpid = task_pid_vnr(current);
  2125. int ret;
  2126. retry:
  2127. if (get_user(uval, uaddr))
  2128. return -EFAULT;
  2129. /*
  2130. * We release only a lock we actually own:
  2131. */
  2132. if ((uval & FUTEX_TID_MASK) != vpid)
  2133. return -EPERM;
  2134. ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
  2135. if (unlikely(ret != 0))
  2136. goto out;
  2137. hb = hash_futex(&key);
  2138. spin_lock(&hb->lock);
  2139. /*
  2140. * To avoid races, try to do the TID -> 0 atomic transition
  2141. * again. If it succeeds then we can return without waking
  2142. * anyone else up. We only try this if neither the waiters nor
  2143. * the owner died bit are set.
  2144. */
  2145. if (!(uval & ~FUTEX_TID_MASK) &&
  2146. cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
  2147. goto pi_faulted;
  2148. /*
  2149. * Rare case: we managed to release the lock atomically,
  2150. * no need to wake anyone else up:
  2151. */
  2152. if (unlikely(uval == vpid))
  2153. goto out_unlock;
  2154. /*
  2155. * Ok, other tasks may need to be woken up - check waiters
  2156. * and do the wakeup if necessary:
  2157. */
  2158. plist_for_each_entry_safe(this, next, &hb->chain, list) {
  2159. if (!match_futex (&this->key, &key))
  2160. continue;
  2161. ret = wake_futex_pi(uaddr, uval, this);
  2162. /*
  2163. * The atomic access to the futex value
  2164. * generated a pagefault, so retry the
  2165. * user-access and the wakeup:
  2166. */
  2167. if (ret == -EFAULT)
  2168. goto pi_faulted;
  2169. goto out_unlock;
  2170. }
  2171. /*
  2172. * No waiters - kernel unlocks the futex:
  2173. */
  2174. ret = unlock_futex_pi(uaddr, uval);
  2175. if (ret == -EFAULT)
  2176. goto pi_faulted;
  2177. out_unlock:
  2178. spin_unlock(&hb->lock);
  2179. put_futex_key(&key);
  2180. out:
  2181. return ret;
  2182. pi_faulted:
  2183. spin_unlock(&hb->lock);
  2184. put_futex_key(&key);
  2185. ret = fault_in_user_writeable(uaddr);
  2186. if (!ret)
  2187. goto retry;
  2188. return ret;
  2189. }
  2190. /**
  2191. * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
  2192. * @hb: the hash_bucket futex_q was original enqueued on
  2193. * @q: the futex_q woken while waiting to be requeued
  2194. * @key2: the futex_key of the requeue target futex
  2195. * @timeout: the timeout associated with the wait (NULL if none)
  2196. *
  2197. * Detect if the task was woken on the initial futex as opposed to the requeue
  2198. * target futex. If so, determine if it was a timeout or a signal that caused
  2199. * the wakeup and return the appropriate error code to the caller. Must be
  2200. * called with the hb lock held.
  2201. *
  2202. * Return:
  2203. * 0 = no early wakeup detected;
  2204. * <0 = -ETIMEDOUT or -ERESTARTNOINTR
  2205. */
  2206. static inline
  2207. int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
  2208. struct futex_q *q, union futex_key *key2,
  2209. struct hrtimer_sleeper *timeout)
  2210. {
  2211. int ret = 0;
  2212. /*
  2213. * With the hb lock held, we avoid races while we process the wakeup.
  2214. * We only need to hold hb (and not hb2) to ensure atomicity as the
  2215. * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
  2216. * It can't be requeued from uaddr2 to something else since we don't
  2217. * support a PI aware source futex for requeue.
  2218. */
  2219. if (!match_futex(&q->key, key2)) {
  2220. WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
  2221. /*
  2222. * We were woken prior to requeue by a timeout or a signal.
  2223. * Unqueue the futex_q and determine which it was.
  2224. */
  2225. plist_del(&q->list, &hb->chain);
  2226. hb_waiters_dec(hb);
  2227. /* Handle spurious wakeups gracefully */
  2228. ret = -EWOULDBLOCK;
  2229. if (timeout && !timeout->task)
  2230. ret = -ETIMEDOUT;
  2231. else if (signal_pending(current))
  2232. ret = -ERESTARTNOINTR;
  2233. }
  2234. return ret;
  2235. }
  2236. /**
  2237. * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
  2238. * @uaddr: the futex we initially wait on (non-pi)
  2239. * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
  2240. * the same type, no requeueing from private to shared, etc.
  2241. * @val: the expected value of uaddr
  2242. * @abs_time: absolute timeout
  2243. * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
  2244. * @uaddr2: the pi futex we will take prior to returning to user-space
  2245. *
  2246. * The caller will wait on uaddr and will be requeued by futex_requeue() to
  2247. * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
  2248. * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
  2249. * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
  2250. * without one, the pi logic would not know which task to boost/deboost, if
  2251. * there was a need to.
  2252. *
  2253. * We call schedule in futex_wait_queue_me() when we enqueue and return there
  2254. * via the following--
  2255. * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
  2256. * 2) wakeup on uaddr2 after a requeue
  2257. * 3) signal
  2258. * 4) timeout
  2259. *
  2260. * If 3, cleanup and return -ERESTARTNOINTR.
  2261. *
  2262. * If 2, we may then block on trying to take the rt_mutex and return via:
  2263. * 5) successful lock
  2264. * 6) signal
  2265. * 7) timeout
  2266. * 8) other lock acquisition failure
  2267. *
  2268. * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
  2269. *
  2270. * If 4 or 7, we cleanup and return with -ETIMEDOUT.
  2271. *
  2272. * Return:
  2273. * 0 - On success;
  2274. * <0 - On error
  2275. */
  2276. static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
  2277. u32 val, ktime_t *abs_time, u32 bitset,
  2278. u32 __user *uaddr2)
  2279. {
  2280. struct hrtimer_sleeper timeout, *to = NULL;
  2281. struct rt_mutex_waiter rt_waiter;
  2282. struct rt_mutex *pi_mutex = NULL;
  2283. struct futex_hash_bucket *hb;
  2284. union futex_key key2 = FUTEX_KEY_INIT;
  2285. struct futex_q q = futex_q_init;
  2286. int res, ret;
  2287. if (uaddr == uaddr2)
  2288. return -EINVAL;
  2289. if (!bitset)
  2290. return -EINVAL;
  2291. if (abs_time) {
  2292. to = &timeout;
  2293. hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
  2294. CLOCK_REALTIME : CLOCK_MONOTONIC,
  2295. HRTIMER_MODE_ABS);
  2296. hrtimer_init_sleeper(to, current);
  2297. hrtimer_set_expires_range_ns(&to->timer, *abs_time,
  2298. current->timer_slack_ns);
  2299. }
  2300. /*
  2301. * The waiter is allocated on our stack, manipulated by the requeue
  2302. * code while we sleep on uaddr.
  2303. */
  2304. debug_rt_mutex_init_waiter(&rt_waiter);
  2305. RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
  2306. RB_CLEAR_NODE(&rt_waiter.tree_entry);
  2307. rt_waiter.task = NULL;
  2308. ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
  2309. if (unlikely(ret != 0))
  2310. goto out;
  2311. q.bitset = bitset;
  2312. q.rt_waiter = &rt_waiter;
  2313. q.requeue_pi_key = &key2;
  2314. /*
  2315. * Prepare to wait on uaddr. On success, increments q.key (key1) ref
  2316. * count.
  2317. */
  2318. ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
  2319. if (ret)
  2320. goto out_key2;
  2321. /*
  2322. * The check above which compares uaddrs is not sufficient for
  2323. * shared futexes. We need to compare the keys:
  2324. */
  2325. if (match_futex(&q.key, &key2)) {
  2326. ret = -EINVAL;
  2327. goto out_put_keys;
  2328. }
  2329. /* Queue the futex_q, drop the hb lock, wait for wakeup. */
  2330. futex_wait_queue_me(hb, &q, to);
  2331. spin_lock(&hb->lock);
  2332. ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
  2333. spin_unlock(&hb->lock);
  2334. if (ret)
  2335. goto out_put_keys;
  2336. /*
  2337. * In order for us to be here, we know our q.key == key2, and since
  2338. * we took the hb->lock above, we also know that futex_requeue() has
  2339. * completed and we no longer have to concern ourselves with a wakeup
  2340. * race with the atomic proxy lock acquisition by the requeue code. The
  2341. * futex_requeue dropped our key1 reference and incremented our key2
  2342. * reference count.
  2343. */
  2344. /* Check if the requeue code acquired the second futex for us. */
  2345. if (!q.rt_waiter) {
  2346. /*
  2347. * Got the lock. We might not be the anticipated owner if we
  2348. * did a lock-steal - fix up the PI-state in that case.
  2349. */
  2350. if (q.pi_state && (q.pi_state->owner != current)) {
  2351. spin_lock(q.lock_ptr);
  2352. ret = fixup_pi_state_owner(uaddr2, &q, current);
  2353. spin_unlock(q.lock_ptr);
  2354. }
  2355. } else {
  2356. /*
  2357. * We have been woken up by futex_unlock_pi(), a timeout, or a
  2358. * signal. futex_unlock_pi() will not destroy the lock_ptr nor
  2359. * the pi_state.
  2360. */
  2361. WARN_ON(!q.pi_state);
  2362. pi_mutex = &q.pi_state->pi_mutex;
  2363. ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
  2364. debug_rt_mutex_free_waiter(&rt_waiter);
  2365. spin_lock(q.lock_ptr);
  2366. /*
  2367. * Fixup the pi_state owner and possibly acquire the lock if we
  2368. * haven't already.
  2369. */
  2370. res = fixup_owner(uaddr2, &q, !ret);
  2371. /*
  2372. * If fixup_owner() returned an error, proprogate that. If it
  2373. * acquired the lock, clear -ETIMEDOUT or -EINTR.
  2374. */
  2375. if (res)
  2376. ret = (res < 0) ? res : 0;
  2377. /* Unqueue and drop the lock. */
  2378. unqueue_me_pi(&q);
  2379. }
  2380. /*
  2381. * If fixup_pi_state_owner() faulted and was unable to handle the
  2382. * fault, unlock the rt_mutex and return the fault to userspace.
  2383. */
  2384. if (ret == -EFAULT) {
  2385. if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
  2386. rt_mutex_unlock(pi_mutex);
  2387. } else if (ret == -EINTR) {
  2388. /*
  2389. * We've already been requeued, but cannot restart by calling
  2390. * futex_lock_pi() directly. We could restart this syscall, but
  2391. * it would detect that the user space "val" changed and return
  2392. * -EWOULDBLOCK. Save the overhead of the restart and return
  2393. * -EWOULDBLOCK directly.
  2394. */
  2395. ret = -EWOULDBLOCK;
  2396. }
  2397. out_put_keys:
  2398. put_futex_key(&q.key);
  2399. out_key2:
  2400. put_futex_key(&key2);
  2401. out:
  2402. if (to) {
  2403. hrtimer_cancel(&to->timer);
  2404. destroy_hrtimer_on_stack(&to->timer);
  2405. }
  2406. return ret;
  2407. }
  2408. /*
  2409. * Support for robust futexes: the kernel cleans up held futexes at
  2410. * thread exit time.
  2411. *
  2412. * Implementation: user-space maintains a per-thread list of locks it
  2413. * is holding. Upon do_exit(), the kernel carefully walks this list,
  2414. * and marks all locks that are owned by this thread with the
  2415. * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
  2416. * always manipulated with the lock held, so the list is private and
  2417. * per-thread. Userspace also maintains a per-thread 'list_op_pending'
  2418. * field, to allow the kernel to clean up if the thread dies after
  2419. * acquiring the lock, but just before it could have added itself to
  2420. * the list. There can only be one such pending lock.
  2421. */
  2422. /**
  2423. * sys_set_robust_list() - Set the robust-futex list head of a task
  2424. * @head: pointer to the list-head
  2425. * @len: length of the list-head, as userspace expects
  2426. */
  2427. SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
  2428. size_t, len)
  2429. {
  2430. if (!futex_cmpxchg_enabled)
  2431. return -ENOSYS;
  2432. /*
  2433. * The kernel knows only one size for now:
  2434. */
  2435. if (unlikely(len != sizeof(*head)))
  2436. return -EINVAL;
  2437. current->robust_list = head;
  2438. return 0;
  2439. }
  2440. /**
  2441. * sys_get_robust_list() - Get the robust-futex list head of a task
  2442. * @pid: pid of the process [zero for current task]
  2443. * @head_ptr: pointer to a list-head pointer, the kernel fills it in
  2444. * @len_ptr: pointer to a length field, the kernel fills in the header size
  2445. */
  2446. SYSCALL_DEFINE3(get_robust_list, int, pid,
  2447. struct robust_list_head __user * __user *, head_ptr,
  2448. size_t __user *, len_ptr)
  2449. {
  2450. struct robust_list_head __user *head;
  2451. unsigned long ret;
  2452. struct task_struct *p;
  2453. if (!futex_cmpxchg_enabled)
  2454. return -ENOSYS;
  2455. rcu_read_lock();
  2456. ret = -ESRCH;
  2457. if (!pid)
  2458. p = current;
  2459. else {
  2460. p = find_task_by_vpid(pid);
  2461. if (!p)
  2462. goto err_unlock;
  2463. }
  2464. ret = -EPERM;
  2465. if (!ptrace_may_access(p, PTRACE_MODE_READ))
  2466. goto err_unlock;
  2467. head = p->robust_list;
  2468. rcu_read_unlock();
  2469. if (put_user(sizeof(*head), len_ptr))
  2470. return -EFAULT;
  2471. return put_user(head, head_ptr);
  2472. err_unlock:
  2473. rcu_read_unlock();
  2474. return ret;
  2475. }
  2476. /*
  2477. * Process a futex-list entry, check whether it's owned by the
  2478. * dying task, and do notification if so:
  2479. */
  2480. int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
  2481. {
  2482. u32 uval, uninitialized_var(nval), mval;
  2483. retry:
  2484. if (get_user(uval, uaddr))
  2485. return -1;
  2486. if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
  2487. /*
  2488. * Ok, this dying thread is truly holding a futex
  2489. * of interest. Set the OWNER_DIED bit atomically
  2490. * via cmpxchg, and if the value had FUTEX_WAITERS
  2491. * set, wake up a waiter (if any). (We have to do a
  2492. * futex_wake() even if OWNER_DIED is already set -
  2493. * to handle the rare but possible case of recursive
  2494. * thread-death.) The rest of the cleanup is done in
  2495. * userspace.
  2496. */
  2497. mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
  2498. /*
  2499. * We are not holding a lock here, but we want to have
  2500. * the pagefault_disable/enable() protection because
  2501. * we want to handle the fault gracefully. If the
  2502. * access fails we try to fault in the futex with R/W
  2503. * verification via get_user_pages. get_user() above
  2504. * does not guarantee R/W access. If that fails we
  2505. * give up and leave the futex locked.
  2506. */
  2507. if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
  2508. if (fault_in_user_writeable(uaddr))
  2509. return -1;
  2510. goto retry;
  2511. }
  2512. if (nval != uval)
  2513. goto retry;
  2514. /*
  2515. * Wake robust non-PI futexes here. The wakeup of
  2516. * PI futexes happens in exit_pi_state():
  2517. */
  2518. if (!pi && (uval & FUTEX_WAITERS))
  2519. futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
  2520. }
  2521. return 0;
  2522. }
  2523. /*
  2524. * Fetch a robust-list pointer. Bit 0 signals PI futexes:
  2525. */
  2526. static inline int fetch_robust_entry(struct robust_list __user **entry,
  2527. struct robust_list __user * __user *head,
  2528. unsigned int *pi)
  2529. {
  2530. unsigned long uentry;
  2531. if (get_user(uentry, (unsigned long __user *)head))
  2532. return -EFAULT;
  2533. *entry = (void __user *)(uentry & ~1UL);
  2534. *pi = uentry & 1;
  2535. return 0;
  2536. }
  2537. /*
  2538. * Walk curr->robust_list (very carefully, it's a userspace list!)
  2539. * and mark any locks found there dead, and notify any waiters.
  2540. *
  2541. * We silently return on any sign of list-walking problem.
  2542. */
  2543. void exit_robust_list(struct task_struct *curr)
  2544. {
  2545. struct robust_list_head __user *head = curr->robust_list;
  2546. struct robust_list __user *entry, *next_entry, *pending;
  2547. unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
  2548. unsigned int uninitialized_var(next_pi);
  2549. unsigned long futex_offset;
  2550. int rc;
  2551. if (!futex_cmpxchg_enabled)
  2552. return;
  2553. /*
  2554. * Fetch the list head (which was registered earlier, via
  2555. * sys_set_robust_list()):
  2556. */
  2557. if (fetch_robust_entry(&entry, &head->list.next, &pi))
  2558. return;
  2559. /*
  2560. * Fetch the relative futex offset:
  2561. */
  2562. if (get_user(futex_offset, &head->futex_offset))
  2563. return;
  2564. /*
  2565. * Fetch any possibly pending lock-add first, and handle it
  2566. * if it exists:
  2567. */
  2568. if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
  2569. return;
  2570. next_entry = NULL; /* avoid warning with gcc */
  2571. while (entry != &head->list) {
  2572. /*
  2573. * Fetch the next entry in the list before calling
  2574. * handle_futex_death:
  2575. */
  2576. rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
  2577. /*
  2578. * A pending lock might already be on the list, so
  2579. * don't process it twice:
  2580. */
  2581. if (entry != pending)
  2582. if (handle_futex_death((void __user *)entry + futex_offset,
  2583. curr, pi))
  2584. return;
  2585. if (rc)
  2586. return;
  2587. entry = next_entry;
  2588. pi = next_pi;
  2589. /*
  2590. * Avoid excessively long or circular lists:
  2591. */
  2592. if (!--limit)
  2593. break;
  2594. cond_resched();
  2595. }
  2596. if (pending)
  2597. handle_futex_death((void __user *)pending + futex_offset,
  2598. curr, pip);
  2599. }
  2600. long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
  2601. u32 __user *uaddr2, u32 val2, u32 val3)
  2602. {
  2603. int cmd = op & FUTEX_CMD_MASK;
  2604. unsigned int flags = 0;
  2605. if (!(op & FUTEX_PRIVATE_FLAG))
  2606. flags |= FLAGS_SHARED;
  2607. if (op & FUTEX_CLOCK_REALTIME) {
  2608. flags |= FLAGS_CLOCKRT;
  2609. if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
  2610. return -ENOSYS;
  2611. }
  2612. switch (cmd) {
  2613. case FUTEX_LOCK_PI:
  2614. case FUTEX_UNLOCK_PI:
  2615. case FUTEX_TRYLOCK_PI:
  2616. case FUTEX_WAIT_REQUEUE_PI:
  2617. case FUTEX_CMP_REQUEUE_PI:
  2618. if (!futex_cmpxchg_enabled)
  2619. return -ENOSYS;
  2620. }
  2621. switch (cmd) {
  2622. case FUTEX_WAIT:
  2623. val3 = FUTEX_BITSET_MATCH_ANY;
  2624. case FUTEX_WAIT_BITSET:
  2625. return futex_wait(uaddr, flags, val, timeout, val3);
  2626. case FUTEX_WAKE:
  2627. val3 = FUTEX_BITSET_MATCH_ANY;
  2628. case FUTEX_WAKE_BITSET:
  2629. return futex_wake(uaddr, flags, val, val3);
  2630. case FUTEX_REQUEUE:
  2631. return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
  2632. case FUTEX_CMP_REQUEUE:
  2633. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
  2634. case FUTEX_WAKE_OP:
  2635. return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
  2636. case FUTEX_LOCK_PI:
  2637. return futex_lock_pi(uaddr, flags, val, timeout, 0);
  2638. case FUTEX_UNLOCK_PI:
  2639. return futex_unlock_pi(uaddr, flags);
  2640. case FUTEX_TRYLOCK_PI:
  2641. return futex_lock_pi(uaddr, flags, 0, timeout, 1);
  2642. case FUTEX_WAIT_REQUEUE_PI:
  2643. val3 = FUTEX_BITSET_MATCH_ANY;
  2644. return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
  2645. uaddr2);
  2646. case FUTEX_CMP_REQUEUE_PI:
  2647. return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
  2648. }
  2649. return -ENOSYS;
  2650. }
  2651. SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
  2652. struct timespec __user *, utime, u32 __user *, uaddr2,
  2653. u32, val3)
  2654. {
  2655. struct timespec ts;
  2656. ktime_t t, *tp = NULL;
  2657. u32 val2 = 0;
  2658. int cmd = op & FUTEX_CMD_MASK;
  2659. if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
  2660. cmd == FUTEX_WAIT_BITSET ||
  2661. cmd == FUTEX_WAIT_REQUEUE_PI)) {
  2662. if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
  2663. return -EFAULT;
  2664. if (!timespec_valid(&ts))
  2665. return -EINVAL;
  2666. t = timespec_to_ktime(ts);
  2667. if (cmd == FUTEX_WAIT)
  2668. t = ktime_add_safe(ktime_get(), t);
  2669. tp = &t;
  2670. }
  2671. /*
  2672. * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
  2673. * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
  2674. */
  2675. if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
  2676. cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
  2677. val2 = (u32) (unsigned long) utime;
  2678. return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
  2679. }
  2680. static void __init futex_detect_cmpxchg(void)
  2681. {
  2682. #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
  2683. u32 curval;
  2684. /*
  2685. * This will fail and we want it. Some arch implementations do
  2686. * runtime detection of the futex_atomic_cmpxchg_inatomic()
  2687. * functionality. We want to know that before we call in any
  2688. * of the complex code paths. Also we want to prevent
  2689. * registration of robust lists in that case. NULL is
  2690. * guaranteed to fault and we get -EFAULT on functional
  2691. * implementation, the non-functional ones will return
  2692. * -ENOSYS.
  2693. */
  2694. if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
  2695. futex_cmpxchg_enabled = 1;
  2696. #endif
  2697. }
  2698. static int __init futex_init(void)
  2699. {
  2700. unsigned int futex_shift;
  2701. unsigned long i;
  2702. #if CONFIG_BASE_SMALL
  2703. futex_hashsize = 16;
  2704. #else
  2705. futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
  2706. #endif
  2707. futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
  2708. futex_hashsize, 0,
  2709. futex_hashsize < 256 ? HASH_SMALL : 0,
  2710. &futex_shift, NULL,
  2711. futex_hashsize, futex_hashsize);
  2712. futex_hashsize = 1UL << futex_shift;
  2713. futex_detect_cmpxchg();
  2714. for (i = 0; i < futex_hashsize; i++) {
  2715. atomic_set(&futex_queues[i].waiters, 0);
  2716. plist_head_init(&futex_queues[i].chain);
  2717. spin_lock_init(&futex_queues[i].lock);
  2718. }
  2719. return 0;
  2720. }
  2721. __initcall(futex_init);