ring_buffer.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417
  1. /*
  2. * Performance events ring-buffer code:
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  7. * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  8. *
  9. * For licensing details see kernel-base/COPYING
  10. */
  11. #include <linux/perf_event.h>
  12. #include <linux/vmalloc.h>
  13. #include <linux/slab.h>
  14. #include <linux/circ_buf.h>
  15. #include "internal.h"
  16. static void perf_output_wakeup(struct perf_output_handle *handle)
  17. {
  18. atomic_set(&handle->rb->poll, POLL_IN);
  19. handle->event->pending_wakeup = 1;
  20. irq_work_queue(&handle->event->pending);
  21. }
  22. /*
  23. * We need to ensure a later event_id doesn't publish a head when a former
  24. * event isn't done writing. However since we need to deal with NMIs we
  25. * cannot fully serialize things.
  26. *
  27. * We only publish the head (and generate a wakeup) when the outer-most
  28. * event completes.
  29. */
  30. static void perf_output_get_handle(struct perf_output_handle *handle)
  31. {
  32. struct ring_buffer *rb = handle->rb;
  33. preempt_disable();
  34. local_inc(&rb->nest);
  35. handle->wakeup = local_read(&rb->wakeup);
  36. }
  37. static void perf_output_put_handle(struct perf_output_handle *handle)
  38. {
  39. struct ring_buffer *rb = handle->rb;
  40. unsigned long head;
  41. again:
  42. head = local_read(&rb->head);
  43. /*
  44. * IRQ/NMI can happen here, which means we can miss a head update.
  45. */
  46. if (!local_dec_and_test(&rb->nest))
  47. goto out;
  48. /*
  49. * Since the mmap() consumer (userspace) can run on a different CPU:
  50. *
  51. * kernel user
  52. *
  53. * if (LOAD ->data_tail) { LOAD ->data_head
  54. * (A) smp_rmb() (C)
  55. * STORE $data LOAD $data
  56. * smp_wmb() (B) smp_mb() (D)
  57. * STORE ->data_head STORE ->data_tail
  58. * }
  59. *
  60. * Where A pairs with D, and B pairs with C.
  61. *
  62. * In our case (A) is a control dependency that separates the load of
  63. * the ->data_tail and the stores of $data. In case ->data_tail
  64. * indicates there is no room in the buffer to store $data we do not.
  65. *
  66. * D needs to be a full barrier since it separates the data READ
  67. * from the tail WRITE.
  68. *
  69. * For B a WMB is sufficient since it separates two WRITEs, and for C
  70. * an RMB is sufficient since it separates two READs.
  71. *
  72. * See perf_output_begin().
  73. */
  74. smp_wmb(); /* B, matches C */
  75. rb->user_page->data_head = head;
  76. /*
  77. * Now check if we missed an update -- rely on previous implied
  78. * compiler barriers to force a re-read.
  79. */
  80. if (unlikely(head != local_read(&rb->head))) {
  81. local_inc(&rb->nest);
  82. goto again;
  83. }
  84. if (handle->wakeup != local_read(&rb->wakeup))
  85. perf_output_wakeup(handle);
  86. out:
  87. preempt_enable();
  88. }
  89. int perf_output_begin(struct perf_output_handle *handle,
  90. struct perf_event *event, unsigned int size)
  91. {
  92. struct ring_buffer *rb;
  93. unsigned long tail, offset, head;
  94. int have_lost, page_shift;
  95. struct {
  96. struct perf_event_header header;
  97. u64 id;
  98. u64 lost;
  99. } lost_event;
  100. rcu_read_lock();
  101. /*
  102. * For inherited events we send all the output towards the parent.
  103. */
  104. if (event->parent)
  105. event = event->parent;
  106. rb = rcu_dereference(event->rb);
  107. if (unlikely(!rb))
  108. goto out;
  109. if (unlikely(!rb->nr_pages))
  110. goto out;
  111. handle->rb = rb;
  112. handle->event = event;
  113. have_lost = local_read(&rb->lost);
  114. if (unlikely(have_lost)) {
  115. size += sizeof(lost_event);
  116. if (event->attr.sample_id_all)
  117. size += event->id_header_size;
  118. }
  119. perf_output_get_handle(handle);
  120. do {
  121. tail = ACCESS_ONCE(rb->user_page->data_tail);
  122. offset = head = local_read(&rb->head);
  123. if (!rb->overwrite &&
  124. unlikely(CIRC_SPACE(head, tail, perf_data_size(rb)) < size))
  125. goto fail;
  126. /*
  127. * The above forms a control dependency barrier separating the
  128. * @tail load above from the data stores below. Since the @tail
  129. * load is required to compute the branch to fail below.
  130. *
  131. * A, matches D; the full memory barrier userspace SHOULD issue
  132. * after reading the data and before storing the new tail
  133. * position.
  134. *
  135. * See perf_output_put_handle().
  136. */
  137. head += size;
  138. } while (local_cmpxchg(&rb->head, offset, head) != offset);
  139. /*
  140. * We rely on the implied barrier() by local_cmpxchg() to ensure
  141. * none of the data stores below can be lifted up by the compiler.
  142. */
  143. if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
  144. local_add(rb->watermark, &rb->wakeup);
  145. page_shift = PAGE_SHIFT + page_order(rb);
  146. handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
  147. offset &= (1UL << page_shift) - 1;
  148. handle->addr = rb->data_pages[handle->page] + offset;
  149. handle->size = (1UL << page_shift) - offset;
  150. if (unlikely(have_lost)) {
  151. struct perf_sample_data sample_data;
  152. lost_event.header.size = sizeof(lost_event);
  153. lost_event.header.type = PERF_RECORD_LOST;
  154. lost_event.header.misc = 0;
  155. lost_event.id = event->id;
  156. lost_event.lost = local_xchg(&rb->lost, 0);
  157. perf_event_header__init_id(&lost_event.header,
  158. &sample_data, event);
  159. perf_output_put(handle, lost_event);
  160. perf_event__output_id_sample(event, handle, &sample_data);
  161. }
  162. return 0;
  163. fail:
  164. local_inc(&rb->lost);
  165. perf_output_put_handle(handle);
  166. out:
  167. rcu_read_unlock();
  168. return -ENOSPC;
  169. }
  170. unsigned int perf_output_copy(struct perf_output_handle *handle,
  171. const void *buf, unsigned int len)
  172. {
  173. return __output_copy(handle, buf, len);
  174. }
  175. unsigned int perf_output_skip(struct perf_output_handle *handle,
  176. unsigned int len)
  177. {
  178. return __output_skip(handle, NULL, len);
  179. }
  180. void perf_output_end(struct perf_output_handle *handle)
  181. {
  182. perf_output_put_handle(handle);
  183. rcu_read_unlock();
  184. }
  185. static void
  186. ring_buffer_init(struct ring_buffer *rb, long watermark, int flags)
  187. {
  188. long max_size = perf_data_size(rb);
  189. if (watermark)
  190. rb->watermark = min(max_size, watermark);
  191. if (!rb->watermark)
  192. rb->watermark = max_size / 2;
  193. if (flags & RING_BUFFER_WRITABLE)
  194. rb->overwrite = 0;
  195. else
  196. rb->overwrite = 1;
  197. atomic_set(&rb->refcount, 1);
  198. INIT_LIST_HEAD(&rb->event_list);
  199. spin_lock_init(&rb->event_lock);
  200. }
  201. #ifndef CONFIG_PERF_USE_VMALLOC
  202. /*
  203. * Back perf_mmap() with regular GFP_KERNEL-0 pages.
  204. */
  205. struct page *
  206. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  207. {
  208. if (pgoff > rb->nr_pages)
  209. return NULL;
  210. if (pgoff == 0)
  211. return virt_to_page(rb->user_page);
  212. return virt_to_page(rb->data_pages[pgoff - 1]);
  213. }
  214. static void *perf_mmap_alloc_page(int cpu)
  215. {
  216. struct page *page;
  217. int node;
  218. node = (cpu == -1) ? cpu : cpu_to_node(cpu);
  219. page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
  220. if (!page)
  221. return NULL;
  222. return page_address(page);
  223. }
  224. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  225. {
  226. struct ring_buffer *rb;
  227. unsigned long size;
  228. int i;
  229. size = sizeof(struct ring_buffer);
  230. size += nr_pages * sizeof(void *);
  231. rb = kzalloc(size, GFP_KERNEL);
  232. if (!rb)
  233. goto fail;
  234. rb->user_page = perf_mmap_alloc_page(cpu);
  235. if (!rb->user_page)
  236. goto fail_user_page;
  237. for (i = 0; i < nr_pages; i++) {
  238. rb->data_pages[i] = perf_mmap_alloc_page(cpu);
  239. if (!rb->data_pages[i])
  240. goto fail_data_pages;
  241. }
  242. rb->nr_pages = nr_pages;
  243. ring_buffer_init(rb, watermark, flags);
  244. return rb;
  245. fail_data_pages:
  246. for (i--; i >= 0; i--)
  247. free_page((unsigned long)rb->data_pages[i]);
  248. free_page((unsigned long)rb->user_page);
  249. fail_user_page:
  250. kfree(rb);
  251. fail:
  252. return NULL;
  253. }
  254. static void perf_mmap_free_page(unsigned long addr)
  255. {
  256. struct page *page = virt_to_page((void *)addr);
  257. page->mapping = NULL;
  258. __free_page(page);
  259. }
  260. void rb_free(struct ring_buffer *rb)
  261. {
  262. int i;
  263. perf_mmap_free_page((unsigned long)rb->user_page);
  264. for (i = 0; i < rb->nr_pages; i++)
  265. perf_mmap_free_page((unsigned long)rb->data_pages[i]);
  266. kfree(rb);
  267. }
  268. #else
  269. static int data_page_nr(struct ring_buffer *rb)
  270. {
  271. return rb->nr_pages << page_order(rb);
  272. }
  273. struct page *
  274. perf_mmap_to_page(struct ring_buffer *rb, unsigned long pgoff)
  275. {
  276. /* The '>' counts in the user page. */
  277. if (pgoff > data_page_nr(rb))
  278. return NULL;
  279. return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
  280. }
  281. static void perf_mmap_unmark_page(void *addr)
  282. {
  283. struct page *page = vmalloc_to_page(addr);
  284. page->mapping = NULL;
  285. }
  286. static void rb_free_work(struct work_struct *work)
  287. {
  288. struct ring_buffer *rb;
  289. void *base;
  290. int i, nr;
  291. rb = container_of(work, struct ring_buffer, work);
  292. nr = data_page_nr(rb);
  293. base = rb->user_page;
  294. /* The '<=' counts in the user page. */
  295. for (i = 0; i <= nr; i++)
  296. perf_mmap_unmark_page(base + (i * PAGE_SIZE));
  297. vfree(base);
  298. kfree(rb);
  299. }
  300. void rb_free(struct ring_buffer *rb)
  301. {
  302. schedule_work(&rb->work);
  303. }
  304. struct ring_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
  305. {
  306. struct ring_buffer *rb;
  307. unsigned long size;
  308. void *all_buf;
  309. size = sizeof(struct ring_buffer);
  310. size += sizeof(void *);
  311. rb = kzalloc(size, GFP_KERNEL);
  312. if (!rb)
  313. goto fail;
  314. INIT_WORK(&rb->work, rb_free_work);
  315. all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
  316. if (!all_buf)
  317. goto fail_all_buf;
  318. rb->user_page = all_buf;
  319. rb->data_pages[0] = all_buf + PAGE_SIZE;
  320. rb->page_order = ilog2(nr_pages);
  321. rb->nr_pages = !!nr_pages;
  322. ring_buffer_init(rb, watermark, flags);
  323. return rb;
  324. fail_all_buf:
  325. kfree(rb);
  326. fail:
  327. return NULL;
  328. }
  329. #endif