xfs_buf.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include <linux/stddef.h>
  20. #include <linux/errno.h>
  21. #include <linux/gfp.h>
  22. #include <linux/pagemap.h>
  23. #include <linux/init.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/bio.h>
  26. #include <linux/sysctl.h>
  27. #include <linux/proc_fs.h>
  28. #include <linux/workqueue.h>
  29. #include <linux/percpu.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/hash.h>
  32. #include <linux/kthread.h>
  33. #include <linux/migrate.h>
  34. #include <linux/backing-dev.h>
  35. #include <linux/freezer.h>
  36. #include "xfs_log_format.h"
  37. #include "xfs_trans_resv.h"
  38. #include "xfs_sb.h"
  39. #include "xfs_ag.h"
  40. #include "xfs_mount.h"
  41. #include "xfs_trace.h"
  42. #include "xfs_log.h"
  43. static kmem_zone_t *xfs_buf_zone;
  44. static struct workqueue_struct *xfslogd_workqueue;
  45. #ifdef XFS_BUF_LOCK_TRACKING
  46. # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
  47. # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
  48. # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
  49. #else
  50. # define XB_SET_OWNER(bp) do { } while (0)
  51. # define XB_CLEAR_OWNER(bp) do { } while (0)
  52. # define XB_GET_OWNER(bp) do { } while (0)
  53. #endif
  54. #define xb_to_gfp(flags) \
  55. ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
  56. static inline int
  57. xfs_buf_is_vmapped(
  58. struct xfs_buf *bp)
  59. {
  60. /*
  61. * Return true if the buffer is vmapped.
  62. *
  63. * b_addr is null if the buffer is not mapped, but the code is clever
  64. * enough to know it doesn't have to map a single page, so the check has
  65. * to be both for b_addr and bp->b_page_count > 1.
  66. */
  67. return bp->b_addr && bp->b_page_count > 1;
  68. }
  69. static inline int
  70. xfs_buf_vmap_len(
  71. struct xfs_buf *bp)
  72. {
  73. return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
  74. }
  75. /*
  76. * When we mark a buffer stale, we remove the buffer from the LRU and clear the
  77. * b_lru_ref count so that the buffer is freed immediately when the buffer
  78. * reference count falls to zero. If the buffer is already on the LRU, we need
  79. * to remove the reference that LRU holds on the buffer.
  80. *
  81. * This prevents build-up of stale buffers on the LRU.
  82. */
  83. void
  84. xfs_buf_stale(
  85. struct xfs_buf *bp)
  86. {
  87. ASSERT(xfs_buf_islocked(bp));
  88. bp->b_flags |= XBF_STALE;
  89. /*
  90. * Clear the delwri status so that a delwri queue walker will not
  91. * flush this buffer to disk now that it is stale. The delwri queue has
  92. * a reference to the buffer, so this is safe to do.
  93. */
  94. bp->b_flags &= ~_XBF_DELWRI_Q;
  95. spin_lock(&bp->b_lock);
  96. atomic_set(&bp->b_lru_ref, 0);
  97. if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
  98. (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
  99. atomic_dec(&bp->b_hold);
  100. ASSERT(atomic_read(&bp->b_hold) >= 1);
  101. spin_unlock(&bp->b_lock);
  102. }
  103. static int
  104. xfs_buf_get_maps(
  105. struct xfs_buf *bp,
  106. int map_count)
  107. {
  108. ASSERT(bp->b_maps == NULL);
  109. bp->b_map_count = map_count;
  110. if (map_count == 1) {
  111. bp->b_maps = &bp->__b_map;
  112. return 0;
  113. }
  114. bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
  115. KM_NOFS);
  116. if (!bp->b_maps)
  117. return ENOMEM;
  118. return 0;
  119. }
  120. /*
  121. * Frees b_pages if it was allocated.
  122. */
  123. static void
  124. xfs_buf_free_maps(
  125. struct xfs_buf *bp)
  126. {
  127. if (bp->b_maps != &bp->__b_map) {
  128. kmem_free(bp->b_maps);
  129. bp->b_maps = NULL;
  130. }
  131. }
  132. struct xfs_buf *
  133. _xfs_buf_alloc(
  134. struct xfs_buftarg *target,
  135. struct xfs_buf_map *map,
  136. int nmaps,
  137. xfs_buf_flags_t flags)
  138. {
  139. struct xfs_buf *bp;
  140. int error;
  141. int i;
  142. bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
  143. if (unlikely(!bp))
  144. return NULL;
  145. /*
  146. * We don't want certain flags to appear in b_flags unless they are
  147. * specifically set by later operations on the buffer.
  148. */
  149. flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
  150. atomic_set(&bp->b_hold, 1);
  151. atomic_set(&bp->b_lru_ref, 1);
  152. init_completion(&bp->b_iowait);
  153. INIT_LIST_HEAD(&bp->b_lru);
  154. INIT_LIST_HEAD(&bp->b_list);
  155. RB_CLEAR_NODE(&bp->b_rbnode);
  156. sema_init(&bp->b_sema, 0); /* held, no waiters */
  157. spin_lock_init(&bp->b_lock);
  158. XB_SET_OWNER(bp);
  159. bp->b_target = target;
  160. bp->b_flags = flags;
  161. /*
  162. * Set length and io_length to the same value initially.
  163. * I/O routines should use io_length, which will be the same in
  164. * most cases but may be reset (e.g. XFS recovery).
  165. */
  166. error = xfs_buf_get_maps(bp, nmaps);
  167. if (error) {
  168. kmem_zone_free(xfs_buf_zone, bp);
  169. return NULL;
  170. }
  171. bp->b_bn = map[0].bm_bn;
  172. bp->b_length = 0;
  173. for (i = 0; i < nmaps; i++) {
  174. bp->b_maps[i].bm_bn = map[i].bm_bn;
  175. bp->b_maps[i].bm_len = map[i].bm_len;
  176. bp->b_length += map[i].bm_len;
  177. }
  178. bp->b_io_length = bp->b_length;
  179. atomic_set(&bp->b_pin_count, 0);
  180. init_waitqueue_head(&bp->b_waiters);
  181. XFS_STATS_INC(xb_create);
  182. trace_xfs_buf_init(bp, _RET_IP_);
  183. return bp;
  184. }
  185. /*
  186. * Allocate a page array capable of holding a specified number
  187. * of pages, and point the page buf at it.
  188. */
  189. STATIC int
  190. _xfs_buf_get_pages(
  191. xfs_buf_t *bp,
  192. int page_count)
  193. {
  194. /* Make sure that we have a page list */
  195. if (bp->b_pages == NULL) {
  196. bp->b_page_count = page_count;
  197. if (page_count <= XB_PAGES) {
  198. bp->b_pages = bp->b_page_array;
  199. } else {
  200. bp->b_pages = kmem_alloc(sizeof(struct page *) *
  201. page_count, KM_NOFS);
  202. if (bp->b_pages == NULL)
  203. return -ENOMEM;
  204. }
  205. memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
  206. }
  207. return 0;
  208. }
  209. /*
  210. * Frees b_pages if it was allocated.
  211. */
  212. STATIC void
  213. _xfs_buf_free_pages(
  214. xfs_buf_t *bp)
  215. {
  216. if (bp->b_pages != bp->b_page_array) {
  217. kmem_free(bp->b_pages);
  218. bp->b_pages = NULL;
  219. }
  220. }
  221. /*
  222. * Releases the specified buffer.
  223. *
  224. * The modification state of any associated pages is left unchanged.
  225. * The buffer must not be on any hash - use xfs_buf_rele instead for
  226. * hashed and refcounted buffers
  227. */
  228. void
  229. xfs_buf_free(
  230. xfs_buf_t *bp)
  231. {
  232. trace_xfs_buf_free(bp, _RET_IP_);
  233. ASSERT(list_empty(&bp->b_lru));
  234. if (bp->b_flags & _XBF_PAGES) {
  235. uint i;
  236. if (xfs_buf_is_vmapped(bp))
  237. vm_unmap_ram(bp->b_addr - bp->b_offset,
  238. bp->b_page_count);
  239. for (i = 0; i < bp->b_page_count; i++) {
  240. struct page *page = bp->b_pages[i];
  241. __free_page(page);
  242. }
  243. } else if (bp->b_flags & _XBF_KMEM)
  244. kmem_free(bp->b_addr);
  245. _xfs_buf_free_pages(bp);
  246. xfs_buf_free_maps(bp);
  247. kmem_zone_free(xfs_buf_zone, bp);
  248. }
  249. /*
  250. * Allocates all the pages for buffer in question and builds it's page list.
  251. */
  252. STATIC int
  253. xfs_buf_allocate_memory(
  254. xfs_buf_t *bp,
  255. uint flags)
  256. {
  257. size_t size;
  258. size_t nbytes, offset;
  259. gfp_t gfp_mask = xb_to_gfp(flags);
  260. unsigned short page_count, i;
  261. xfs_off_t start, end;
  262. int error;
  263. /*
  264. * for buffers that are contained within a single page, just allocate
  265. * the memory from the heap - there's no need for the complexity of
  266. * page arrays to keep allocation down to order 0.
  267. */
  268. size = BBTOB(bp->b_length);
  269. if (size < PAGE_SIZE) {
  270. bp->b_addr = kmem_alloc(size, KM_NOFS);
  271. if (!bp->b_addr) {
  272. /* low memory - use alloc_page loop instead */
  273. goto use_alloc_page;
  274. }
  275. if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
  276. ((unsigned long)bp->b_addr & PAGE_MASK)) {
  277. /* b_addr spans two pages - use alloc_page instead */
  278. kmem_free(bp->b_addr);
  279. bp->b_addr = NULL;
  280. goto use_alloc_page;
  281. }
  282. bp->b_offset = offset_in_page(bp->b_addr);
  283. bp->b_pages = bp->b_page_array;
  284. bp->b_pages[0] = virt_to_page(bp->b_addr);
  285. bp->b_page_count = 1;
  286. bp->b_flags |= _XBF_KMEM;
  287. return 0;
  288. }
  289. use_alloc_page:
  290. start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
  291. end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
  292. >> PAGE_SHIFT;
  293. page_count = end - start;
  294. error = _xfs_buf_get_pages(bp, page_count);
  295. if (unlikely(error))
  296. return error;
  297. offset = bp->b_offset;
  298. bp->b_flags |= _XBF_PAGES;
  299. for (i = 0; i < bp->b_page_count; i++) {
  300. struct page *page;
  301. uint retries = 0;
  302. retry:
  303. page = alloc_page(gfp_mask);
  304. if (unlikely(page == NULL)) {
  305. if (flags & XBF_READ_AHEAD) {
  306. bp->b_page_count = i;
  307. error = ENOMEM;
  308. goto out_free_pages;
  309. }
  310. /*
  311. * This could deadlock.
  312. *
  313. * But until all the XFS lowlevel code is revamped to
  314. * handle buffer allocation failures we can't do much.
  315. */
  316. if (!(++retries % 100))
  317. xfs_err(NULL,
  318. "possible memory allocation deadlock in %s (mode:0x%x)",
  319. __func__, gfp_mask);
  320. XFS_STATS_INC(xb_page_retries);
  321. congestion_wait(BLK_RW_ASYNC, HZ/50);
  322. goto retry;
  323. }
  324. XFS_STATS_INC(xb_page_found);
  325. nbytes = min_t(size_t, size, PAGE_SIZE - offset);
  326. size -= nbytes;
  327. bp->b_pages[i] = page;
  328. offset = 0;
  329. }
  330. return 0;
  331. out_free_pages:
  332. for (i = 0; i < bp->b_page_count; i++)
  333. __free_page(bp->b_pages[i]);
  334. return error;
  335. }
  336. /*
  337. * Map buffer into kernel address-space if necessary.
  338. */
  339. STATIC int
  340. _xfs_buf_map_pages(
  341. xfs_buf_t *bp,
  342. uint flags)
  343. {
  344. ASSERT(bp->b_flags & _XBF_PAGES);
  345. if (bp->b_page_count == 1) {
  346. /* A single page buffer is always mappable */
  347. bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
  348. } else if (flags & XBF_UNMAPPED) {
  349. bp->b_addr = NULL;
  350. } else {
  351. int retried = 0;
  352. unsigned noio_flag;
  353. /*
  354. * vm_map_ram() will allocate auxillary structures (e.g.
  355. * pagetables) with GFP_KERNEL, yet we are likely to be under
  356. * GFP_NOFS context here. Hence we need to tell memory reclaim
  357. * that we are in such a context via PF_MEMALLOC_NOIO to prevent
  358. * memory reclaim re-entering the filesystem here and
  359. * potentially deadlocking.
  360. */
  361. noio_flag = memalloc_noio_save();
  362. do {
  363. bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
  364. -1, PAGE_KERNEL);
  365. if (bp->b_addr)
  366. break;
  367. vm_unmap_aliases();
  368. } while (retried++ <= 1);
  369. memalloc_noio_restore(noio_flag);
  370. if (!bp->b_addr)
  371. return -ENOMEM;
  372. bp->b_addr += bp->b_offset;
  373. }
  374. return 0;
  375. }
  376. /*
  377. * Finding and Reading Buffers
  378. */
  379. /*
  380. * Look up, and creates if absent, a lockable buffer for
  381. * a given range of an inode. The buffer is returned
  382. * locked. No I/O is implied by this call.
  383. */
  384. xfs_buf_t *
  385. _xfs_buf_find(
  386. struct xfs_buftarg *btp,
  387. struct xfs_buf_map *map,
  388. int nmaps,
  389. xfs_buf_flags_t flags,
  390. xfs_buf_t *new_bp)
  391. {
  392. size_t numbytes;
  393. struct xfs_perag *pag;
  394. struct rb_node **rbp;
  395. struct rb_node *parent;
  396. xfs_buf_t *bp;
  397. xfs_daddr_t blkno = map[0].bm_bn;
  398. xfs_daddr_t eofs;
  399. int numblks = 0;
  400. int i;
  401. for (i = 0; i < nmaps; i++)
  402. numblks += map[i].bm_len;
  403. numbytes = BBTOB(numblks);
  404. /* Check for IOs smaller than the sector size / not sector aligned */
  405. ASSERT(!(numbytes < btp->bt_meta_sectorsize));
  406. ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
  407. /*
  408. * Corrupted block numbers can get through to here, unfortunately, so we
  409. * have to check that the buffer falls within the filesystem bounds.
  410. */
  411. eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
  412. if (blkno >= eofs) {
  413. /*
  414. * XXX (dgc): we should really be returning EFSCORRUPTED here,
  415. * but none of the higher level infrastructure supports
  416. * returning a specific error on buffer lookup failures.
  417. */
  418. xfs_alert(btp->bt_mount,
  419. "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
  420. __func__, blkno, eofs);
  421. WARN_ON(1);
  422. return NULL;
  423. }
  424. /* get tree root */
  425. pag = xfs_perag_get(btp->bt_mount,
  426. xfs_daddr_to_agno(btp->bt_mount, blkno));
  427. /* walk tree */
  428. spin_lock(&pag->pag_buf_lock);
  429. rbp = &pag->pag_buf_tree.rb_node;
  430. parent = NULL;
  431. bp = NULL;
  432. while (*rbp) {
  433. parent = *rbp;
  434. bp = rb_entry(parent, struct xfs_buf, b_rbnode);
  435. if (blkno < bp->b_bn)
  436. rbp = &(*rbp)->rb_left;
  437. else if (blkno > bp->b_bn)
  438. rbp = &(*rbp)->rb_right;
  439. else {
  440. /*
  441. * found a block number match. If the range doesn't
  442. * match, the only way this is allowed is if the buffer
  443. * in the cache is stale and the transaction that made
  444. * it stale has not yet committed. i.e. we are
  445. * reallocating a busy extent. Skip this buffer and
  446. * continue searching to the right for an exact match.
  447. */
  448. if (bp->b_length != numblks) {
  449. ASSERT(bp->b_flags & XBF_STALE);
  450. rbp = &(*rbp)->rb_right;
  451. continue;
  452. }
  453. atomic_inc(&bp->b_hold);
  454. goto found;
  455. }
  456. }
  457. /* No match found */
  458. if (new_bp) {
  459. rb_link_node(&new_bp->b_rbnode, parent, rbp);
  460. rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
  461. /* the buffer keeps the perag reference until it is freed */
  462. new_bp->b_pag = pag;
  463. spin_unlock(&pag->pag_buf_lock);
  464. } else {
  465. XFS_STATS_INC(xb_miss_locked);
  466. spin_unlock(&pag->pag_buf_lock);
  467. xfs_perag_put(pag);
  468. }
  469. return new_bp;
  470. found:
  471. spin_unlock(&pag->pag_buf_lock);
  472. xfs_perag_put(pag);
  473. if (!xfs_buf_trylock(bp)) {
  474. if (flags & XBF_TRYLOCK) {
  475. xfs_buf_rele(bp);
  476. XFS_STATS_INC(xb_busy_locked);
  477. return NULL;
  478. }
  479. xfs_buf_lock(bp);
  480. XFS_STATS_INC(xb_get_locked_waited);
  481. }
  482. /*
  483. * if the buffer is stale, clear all the external state associated with
  484. * it. We need to keep flags such as how we allocated the buffer memory
  485. * intact here.
  486. */
  487. if (bp->b_flags & XBF_STALE) {
  488. ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
  489. ASSERT(bp->b_iodone == NULL);
  490. bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
  491. bp->b_ops = NULL;
  492. }
  493. trace_xfs_buf_find(bp, flags, _RET_IP_);
  494. XFS_STATS_INC(xb_get_locked);
  495. return bp;
  496. }
  497. /*
  498. * Assembles a buffer covering the specified range. The code is optimised for
  499. * cache hits, as metadata intensive workloads will see 3 orders of magnitude
  500. * more hits than misses.
  501. */
  502. struct xfs_buf *
  503. xfs_buf_get_map(
  504. struct xfs_buftarg *target,
  505. struct xfs_buf_map *map,
  506. int nmaps,
  507. xfs_buf_flags_t flags)
  508. {
  509. struct xfs_buf *bp;
  510. struct xfs_buf *new_bp;
  511. int error = 0;
  512. bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
  513. if (likely(bp))
  514. goto found;
  515. new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
  516. if (unlikely(!new_bp))
  517. return NULL;
  518. error = xfs_buf_allocate_memory(new_bp, flags);
  519. if (error) {
  520. xfs_buf_free(new_bp);
  521. return NULL;
  522. }
  523. bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
  524. if (!bp) {
  525. xfs_buf_free(new_bp);
  526. return NULL;
  527. }
  528. if (bp != new_bp)
  529. xfs_buf_free(new_bp);
  530. found:
  531. if (!bp->b_addr) {
  532. error = _xfs_buf_map_pages(bp, flags);
  533. if (unlikely(error)) {
  534. xfs_warn(target->bt_mount,
  535. "%s: failed to map pagesn", __func__);
  536. xfs_buf_relse(bp);
  537. return NULL;
  538. }
  539. }
  540. XFS_STATS_INC(xb_get);
  541. trace_xfs_buf_get(bp, flags, _RET_IP_);
  542. return bp;
  543. }
  544. STATIC int
  545. _xfs_buf_read(
  546. xfs_buf_t *bp,
  547. xfs_buf_flags_t flags)
  548. {
  549. ASSERT(!(flags & XBF_WRITE));
  550. ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
  551. bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
  552. bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
  553. xfs_buf_iorequest(bp);
  554. if (flags & XBF_ASYNC)
  555. return 0;
  556. return xfs_buf_iowait(bp);
  557. }
  558. xfs_buf_t *
  559. xfs_buf_read_map(
  560. struct xfs_buftarg *target,
  561. struct xfs_buf_map *map,
  562. int nmaps,
  563. xfs_buf_flags_t flags,
  564. const struct xfs_buf_ops *ops)
  565. {
  566. struct xfs_buf *bp;
  567. flags |= XBF_READ;
  568. bp = xfs_buf_get_map(target, map, nmaps, flags);
  569. if (bp) {
  570. trace_xfs_buf_read(bp, flags, _RET_IP_);
  571. if (!XFS_BUF_ISDONE(bp)) {
  572. XFS_STATS_INC(xb_get_read);
  573. bp->b_ops = ops;
  574. _xfs_buf_read(bp, flags);
  575. } else if (flags & XBF_ASYNC) {
  576. /*
  577. * Read ahead call which is already satisfied,
  578. * drop the buffer
  579. */
  580. xfs_buf_relse(bp);
  581. return NULL;
  582. } else {
  583. /* We do not want read in the flags */
  584. bp->b_flags &= ~XBF_READ;
  585. }
  586. }
  587. return bp;
  588. }
  589. /*
  590. * If we are not low on memory then do the readahead in a deadlock
  591. * safe manner.
  592. */
  593. void
  594. xfs_buf_readahead_map(
  595. struct xfs_buftarg *target,
  596. struct xfs_buf_map *map,
  597. int nmaps,
  598. const struct xfs_buf_ops *ops)
  599. {
  600. if (bdi_read_congested(target->bt_bdi))
  601. return;
  602. xfs_buf_read_map(target, map, nmaps,
  603. XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
  604. }
  605. /*
  606. * Read an uncached buffer from disk. Allocates and returns a locked
  607. * buffer containing the disk contents or nothing.
  608. */
  609. struct xfs_buf *
  610. xfs_buf_read_uncached(
  611. struct xfs_buftarg *target,
  612. xfs_daddr_t daddr,
  613. size_t numblks,
  614. int flags,
  615. const struct xfs_buf_ops *ops)
  616. {
  617. struct xfs_buf *bp;
  618. bp = xfs_buf_get_uncached(target, numblks, flags);
  619. if (!bp)
  620. return NULL;
  621. /* set up the buffer for a read IO */
  622. ASSERT(bp->b_map_count == 1);
  623. bp->b_bn = daddr;
  624. bp->b_maps[0].bm_bn = daddr;
  625. bp->b_flags |= XBF_READ;
  626. bp->b_ops = ops;
  627. if (XFS_FORCED_SHUTDOWN(target->bt_mount)) {
  628. xfs_buf_relse(bp);
  629. return NULL;
  630. }
  631. xfs_buf_iorequest(bp);
  632. xfs_buf_iowait(bp);
  633. return bp;
  634. }
  635. /*
  636. * Return a buffer allocated as an empty buffer and associated to external
  637. * memory via xfs_buf_associate_memory() back to it's empty state.
  638. */
  639. void
  640. xfs_buf_set_empty(
  641. struct xfs_buf *bp,
  642. size_t numblks)
  643. {
  644. if (bp->b_pages)
  645. _xfs_buf_free_pages(bp);
  646. bp->b_pages = NULL;
  647. bp->b_page_count = 0;
  648. bp->b_addr = NULL;
  649. bp->b_length = numblks;
  650. bp->b_io_length = numblks;
  651. ASSERT(bp->b_map_count == 1);
  652. bp->b_bn = XFS_BUF_DADDR_NULL;
  653. bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
  654. bp->b_maps[0].bm_len = bp->b_length;
  655. }
  656. static inline struct page *
  657. mem_to_page(
  658. void *addr)
  659. {
  660. if ((!is_vmalloc_addr(addr))) {
  661. return virt_to_page(addr);
  662. } else {
  663. return vmalloc_to_page(addr);
  664. }
  665. }
  666. int
  667. xfs_buf_associate_memory(
  668. xfs_buf_t *bp,
  669. void *mem,
  670. size_t len)
  671. {
  672. int rval;
  673. int i = 0;
  674. unsigned long pageaddr;
  675. unsigned long offset;
  676. size_t buflen;
  677. int page_count;
  678. pageaddr = (unsigned long)mem & PAGE_MASK;
  679. offset = (unsigned long)mem - pageaddr;
  680. buflen = PAGE_ALIGN(len + offset);
  681. page_count = buflen >> PAGE_SHIFT;
  682. /* Free any previous set of page pointers */
  683. if (bp->b_pages)
  684. _xfs_buf_free_pages(bp);
  685. bp->b_pages = NULL;
  686. bp->b_addr = mem;
  687. rval = _xfs_buf_get_pages(bp, page_count);
  688. if (rval)
  689. return rval;
  690. bp->b_offset = offset;
  691. for (i = 0; i < bp->b_page_count; i++) {
  692. bp->b_pages[i] = mem_to_page((void *)pageaddr);
  693. pageaddr += PAGE_SIZE;
  694. }
  695. bp->b_io_length = BTOBB(len);
  696. bp->b_length = BTOBB(buflen);
  697. return 0;
  698. }
  699. xfs_buf_t *
  700. xfs_buf_get_uncached(
  701. struct xfs_buftarg *target,
  702. size_t numblks,
  703. int flags)
  704. {
  705. unsigned long page_count;
  706. int error, i;
  707. struct xfs_buf *bp;
  708. DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
  709. bp = _xfs_buf_alloc(target, &map, 1, 0);
  710. if (unlikely(bp == NULL))
  711. goto fail;
  712. page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
  713. error = _xfs_buf_get_pages(bp, page_count);
  714. if (error)
  715. goto fail_free_buf;
  716. for (i = 0; i < page_count; i++) {
  717. bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
  718. if (!bp->b_pages[i])
  719. goto fail_free_mem;
  720. }
  721. bp->b_flags |= _XBF_PAGES;
  722. error = _xfs_buf_map_pages(bp, 0);
  723. if (unlikely(error)) {
  724. xfs_warn(target->bt_mount,
  725. "%s: failed to map pages", __func__);
  726. goto fail_free_mem;
  727. }
  728. trace_xfs_buf_get_uncached(bp, _RET_IP_);
  729. return bp;
  730. fail_free_mem:
  731. while (--i >= 0)
  732. __free_page(bp->b_pages[i]);
  733. _xfs_buf_free_pages(bp);
  734. fail_free_buf:
  735. xfs_buf_free_maps(bp);
  736. kmem_zone_free(xfs_buf_zone, bp);
  737. fail:
  738. return NULL;
  739. }
  740. /*
  741. * Increment reference count on buffer, to hold the buffer concurrently
  742. * with another thread which may release (free) the buffer asynchronously.
  743. * Must hold the buffer already to call this function.
  744. */
  745. void
  746. xfs_buf_hold(
  747. xfs_buf_t *bp)
  748. {
  749. trace_xfs_buf_hold(bp, _RET_IP_);
  750. atomic_inc(&bp->b_hold);
  751. }
  752. /*
  753. * Releases a hold on the specified buffer. If the
  754. * the hold count is 1, calls xfs_buf_free.
  755. */
  756. void
  757. xfs_buf_rele(
  758. xfs_buf_t *bp)
  759. {
  760. struct xfs_perag *pag = bp->b_pag;
  761. trace_xfs_buf_rele(bp, _RET_IP_);
  762. if (!pag) {
  763. ASSERT(list_empty(&bp->b_lru));
  764. ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
  765. if (atomic_dec_and_test(&bp->b_hold))
  766. xfs_buf_free(bp);
  767. return;
  768. }
  769. ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
  770. ASSERT(atomic_read(&bp->b_hold) > 0);
  771. if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
  772. spin_lock(&bp->b_lock);
  773. if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
  774. /*
  775. * If the buffer is added to the LRU take a new
  776. * reference to the buffer for the LRU and clear the
  777. * (now stale) dispose list state flag
  778. */
  779. if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
  780. bp->b_state &= ~XFS_BSTATE_DISPOSE;
  781. atomic_inc(&bp->b_hold);
  782. }
  783. spin_unlock(&bp->b_lock);
  784. spin_unlock(&pag->pag_buf_lock);
  785. } else {
  786. /*
  787. * most of the time buffers will already be removed from
  788. * the LRU, so optimise that case by checking for the
  789. * XFS_BSTATE_DISPOSE flag indicating the last list the
  790. * buffer was on was the disposal list
  791. */
  792. if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
  793. list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
  794. } else {
  795. ASSERT(list_empty(&bp->b_lru));
  796. }
  797. spin_unlock(&bp->b_lock);
  798. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  799. rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
  800. spin_unlock(&pag->pag_buf_lock);
  801. xfs_perag_put(pag);
  802. xfs_buf_free(bp);
  803. }
  804. }
  805. }
  806. /*
  807. * Lock a buffer object, if it is not already locked.
  808. *
  809. * If we come across a stale, pinned, locked buffer, we know that we are
  810. * being asked to lock a buffer that has been reallocated. Because it is
  811. * pinned, we know that the log has not been pushed to disk and hence it
  812. * will still be locked. Rather than continuing to have trylock attempts
  813. * fail until someone else pushes the log, push it ourselves before
  814. * returning. This means that the xfsaild will not get stuck trying
  815. * to push on stale inode buffers.
  816. */
  817. int
  818. xfs_buf_trylock(
  819. struct xfs_buf *bp)
  820. {
  821. int locked;
  822. locked = down_trylock(&bp->b_sema) == 0;
  823. if (locked)
  824. XB_SET_OWNER(bp);
  825. trace_xfs_buf_trylock(bp, _RET_IP_);
  826. return locked;
  827. }
  828. /*
  829. * Lock a buffer object.
  830. *
  831. * If we come across a stale, pinned, locked buffer, we know that we
  832. * are being asked to lock a buffer that has been reallocated. Because
  833. * it is pinned, we know that the log has not been pushed to disk and
  834. * hence it will still be locked. Rather than sleeping until someone
  835. * else pushes the log, push it ourselves before trying to get the lock.
  836. */
  837. void
  838. xfs_buf_lock(
  839. struct xfs_buf *bp)
  840. {
  841. trace_xfs_buf_lock(bp, _RET_IP_);
  842. if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
  843. xfs_log_force(bp->b_target->bt_mount, 0);
  844. down(&bp->b_sema);
  845. XB_SET_OWNER(bp);
  846. trace_xfs_buf_lock_done(bp, _RET_IP_);
  847. }
  848. void
  849. xfs_buf_unlock(
  850. struct xfs_buf *bp)
  851. {
  852. XB_CLEAR_OWNER(bp);
  853. up(&bp->b_sema);
  854. trace_xfs_buf_unlock(bp, _RET_IP_);
  855. }
  856. STATIC void
  857. xfs_buf_wait_unpin(
  858. xfs_buf_t *bp)
  859. {
  860. DECLARE_WAITQUEUE (wait, current);
  861. if (atomic_read(&bp->b_pin_count) == 0)
  862. return;
  863. add_wait_queue(&bp->b_waiters, &wait);
  864. for (;;) {
  865. set_current_state(TASK_UNINTERRUPTIBLE);
  866. if (atomic_read(&bp->b_pin_count) == 0)
  867. break;
  868. io_schedule();
  869. }
  870. remove_wait_queue(&bp->b_waiters, &wait);
  871. set_current_state(TASK_RUNNING);
  872. }
  873. /*
  874. * Buffer Utility Routines
  875. */
  876. STATIC void
  877. xfs_buf_iodone_work(
  878. struct work_struct *work)
  879. {
  880. struct xfs_buf *bp =
  881. container_of(work, xfs_buf_t, b_iodone_work);
  882. bool read = !!(bp->b_flags & XBF_READ);
  883. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  884. /* only validate buffers that were read without errors */
  885. if (read && bp->b_ops && !bp->b_error && (bp->b_flags & XBF_DONE))
  886. bp->b_ops->verify_read(bp);
  887. if (bp->b_iodone)
  888. (*(bp->b_iodone))(bp);
  889. else if (bp->b_flags & XBF_ASYNC)
  890. xfs_buf_relse(bp);
  891. else {
  892. ASSERT(read && bp->b_ops);
  893. complete(&bp->b_iowait);
  894. }
  895. }
  896. void
  897. xfs_buf_ioend(
  898. struct xfs_buf *bp,
  899. int schedule)
  900. {
  901. bool read = !!(bp->b_flags & XBF_READ);
  902. trace_xfs_buf_iodone(bp, _RET_IP_);
  903. if (bp->b_error == 0)
  904. bp->b_flags |= XBF_DONE;
  905. if (bp->b_iodone || (read && bp->b_ops) || (bp->b_flags & XBF_ASYNC)) {
  906. if (schedule) {
  907. INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
  908. queue_work(xfslogd_workqueue, &bp->b_iodone_work);
  909. } else {
  910. xfs_buf_iodone_work(&bp->b_iodone_work);
  911. }
  912. } else {
  913. bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
  914. complete(&bp->b_iowait);
  915. }
  916. }
  917. void
  918. xfs_buf_ioerror(
  919. xfs_buf_t *bp,
  920. int error)
  921. {
  922. ASSERT(error >= 0 && error <= 0xffff);
  923. bp->b_error = (unsigned short)error;
  924. trace_xfs_buf_ioerror(bp, error, _RET_IP_);
  925. }
  926. void
  927. xfs_buf_ioerror_alert(
  928. struct xfs_buf *bp,
  929. const char *func)
  930. {
  931. xfs_alert(bp->b_target->bt_mount,
  932. "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
  933. (__uint64_t)XFS_BUF_ADDR(bp), func, bp->b_error, bp->b_length);
  934. }
  935. /*
  936. * Called when we want to stop a buffer from getting written or read.
  937. * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
  938. * so that the proper iodone callbacks get called.
  939. */
  940. STATIC int
  941. xfs_bioerror(
  942. xfs_buf_t *bp)
  943. {
  944. #ifdef XFSERRORDEBUG
  945. ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
  946. #endif
  947. /*
  948. * No need to wait until the buffer is unpinned, we aren't flushing it.
  949. */
  950. xfs_buf_ioerror(bp, EIO);
  951. /*
  952. * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
  953. */
  954. XFS_BUF_UNREAD(bp);
  955. XFS_BUF_UNDONE(bp);
  956. xfs_buf_stale(bp);
  957. xfs_buf_ioend(bp, 0);
  958. return EIO;
  959. }
  960. /*
  961. * Same as xfs_bioerror, except that we are releasing the buffer
  962. * here ourselves, and avoiding the xfs_buf_ioend call.
  963. * This is meant for userdata errors; metadata bufs come with
  964. * iodone functions attached, so that we can track down errors.
  965. */
  966. int
  967. xfs_bioerror_relse(
  968. struct xfs_buf *bp)
  969. {
  970. int64_t fl = bp->b_flags;
  971. /*
  972. * No need to wait until the buffer is unpinned.
  973. * We aren't flushing it.
  974. *
  975. * chunkhold expects B_DONE to be set, whether
  976. * we actually finish the I/O or not. We don't want to
  977. * change that interface.
  978. */
  979. XFS_BUF_UNREAD(bp);
  980. XFS_BUF_DONE(bp);
  981. xfs_buf_stale(bp);
  982. bp->b_iodone = NULL;
  983. if (!(fl & XBF_ASYNC)) {
  984. /*
  985. * Mark b_error and B_ERROR _both_.
  986. * Lot's of chunkcache code assumes that.
  987. * There's no reason to mark error for
  988. * ASYNC buffers.
  989. */
  990. xfs_buf_ioerror(bp, EIO);
  991. complete(&bp->b_iowait);
  992. } else {
  993. xfs_buf_relse(bp);
  994. }
  995. return EIO;
  996. }
  997. STATIC int
  998. xfs_bdstrat_cb(
  999. struct xfs_buf *bp)
  1000. {
  1001. if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
  1002. trace_xfs_bdstrat_shut(bp, _RET_IP_);
  1003. /*
  1004. * Metadata write that didn't get logged but
  1005. * written delayed anyway. These aren't associated
  1006. * with a transaction, and can be ignored.
  1007. */
  1008. if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
  1009. return xfs_bioerror_relse(bp);
  1010. else
  1011. return xfs_bioerror(bp);
  1012. }
  1013. xfs_buf_iorequest(bp);
  1014. return 0;
  1015. }
  1016. int
  1017. xfs_bwrite(
  1018. struct xfs_buf *bp)
  1019. {
  1020. int error;
  1021. ASSERT(xfs_buf_islocked(bp));
  1022. bp->b_flags |= XBF_WRITE;
  1023. bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q | XBF_WRITE_FAIL);
  1024. xfs_bdstrat_cb(bp);
  1025. error = xfs_buf_iowait(bp);
  1026. if (error) {
  1027. xfs_force_shutdown(bp->b_target->bt_mount,
  1028. SHUTDOWN_META_IO_ERROR);
  1029. }
  1030. return error;
  1031. }
  1032. STATIC void
  1033. _xfs_buf_ioend(
  1034. xfs_buf_t *bp,
  1035. int schedule)
  1036. {
  1037. if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
  1038. xfs_buf_ioend(bp, schedule);
  1039. }
  1040. STATIC void
  1041. xfs_buf_bio_end_io(
  1042. struct bio *bio,
  1043. int error)
  1044. {
  1045. xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
  1046. /*
  1047. * don't overwrite existing errors - otherwise we can lose errors on
  1048. * buffers that require multiple bios to complete.
  1049. */
  1050. if (!bp->b_error)
  1051. xfs_buf_ioerror(bp, -error);
  1052. if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
  1053. invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
  1054. _xfs_buf_ioend(bp, 1);
  1055. bio_put(bio);
  1056. }
  1057. static void
  1058. xfs_buf_ioapply_map(
  1059. struct xfs_buf *bp,
  1060. int map,
  1061. int *buf_offset,
  1062. int *count,
  1063. int rw)
  1064. {
  1065. int page_index;
  1066. int total_nr_pages = bp->b_page_count;
  1067. int nr_pages;
  1068. struct bio *bio;
  1069. sector_t sector = bp->b_maps[map].bm_bn;
  1070. int size;
  1071. int offset;
  1072. total_nr_pages = bp->b_page_count;
  1073. /* skip the pages in the buffer before the start offset */
  1074. page_index = 0;
  1075. offset = *buf_offset;
  1076. while (offset >= PAGE_SIZE) {
  1077. page_index++;
  1078. offset -= PAGE_SIZE;
  1079. }
  1080. /*
  1081. * Limit the IO size to the length of the current vector, and update the
  1082. * remaining IO count for the next time around.
  1083. */
  1084. size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
  1085. *count -= size;
  1086. *buf_offset += size;
  1087. next_chunk:
  1088. atomic_inc(&bp->b_io_remaining);
  1089. nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
  1090. if (nr_pages > total_nr_pages)
  1091. nr_pages = total_nr_pages;
  1092. bio = bio_alloc(GFP_NOIO, nr_pages);
  1093. bio->bi_bdev = bp->b_target->bt_bdev;
  1094. bio->bi_iter.bi_sector = sector;
  1095. bio->bi_end_io = xfs_buf_bio_end_io;
  1096. bio->bi_private = bp;
  1097. for (; size && nr_pages; nr_pages--, page_index++) {
  1098. int rbytes, nbytes = PAGE_SIZE - offset;
  1099. if (nbytes > size)
  1100. nbytes = size;
  1101. rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
  1102. offset);
  1103. if (rbytes < nbytes)
  1104. break;
  1105. offset = 0;
  1106. sector += BTOBB(nbytes);
  1107. size -= nbytes;
  1108. total_nr_pages--;
  1109. }
  1110. if (likely(bio->bi_iter.bi_size)) {
  1111. if (xfs_buf_is_vmapped(bp)) {
  1112. flush_kernel_vmap_range(bp->b_addr,
  1113. xfs_buf_vmap_len(bp));
  1114. }
  1115. submit_bio(rw, bio);
  1116. if (size)
  1117. goto next_chunk;
  1118. } else {
  1119. /*
  1120. * This is guaranteed not to be the last io reference count
  1121. * because the caller (xfs_buf_iorequest) holds a count itself.
  1122. */
  1123. atomic_dec(&bp->b_io_remaining);
  1124. xfs_buf_ioerror(bp, EIO);
  1125. bio_put(bio);
  1126. }
  1127. }
  1128. STATIC void
  1129. _xfs_buf_ioapply(
  1130. struct xfs_buf *bp)
  1131. {
  1132. struct blk_plug plug;
  1133. int rw;
  1134. int offset;
  1135. int size;
  1136. int i;
  1137. /*
  1138. * Make sure we capture only current IO errors rather than stale errors
  1139. * left over from previous use of the buffer (e.g. failed readahead).
  1140. */
  1141. bp->b_error = 0;
  1142. if (bp->b_flags & XBF_WRITE) {
  1143. if (bp->b_flags & XBF_SYNCIO)
  1144. rw = WRITE_SYNC;
  1145. else
  1146. rw = WRITE;
  1147. if (bp->b_flags & XBF_FUA)
  1148. rw |= REQ_FUA;
  1149. if (bp->b_flags & XBF_FLUSH)
  1150. rw |= REQ_FLUSH;
  1151. /*
  1152. * Run the write verifier callback function if it exists. If
  1153. * this function fails it will mark the buffer with an error and
  1154. * the IO should not be dispatched.
  1155. */
  1156. if (bp->b_ops) {
  1157. bp->b_ops->verify_write(bp);
  1158. if (bp->b_error) {
  1159. xfs_force_shutdown(bp->b_target->bt_mount,
  1160. SHUTDOWN_CORRUPT_INCORE);
  1161. return;
  1162. }
  1163. }
  1164. } else if (bp->b_flags & XBF_READ_AHEAD) {
  1165. rw = READA;
  1166. } else {
  1167. rw = READ;
  1168. }
  1169. /* we only use the buffer cache for meta-data */
  1170. rw |= REQ_META;
  1171. /*
  1172. * Walk all the vectors issuing IO on them. Set up the initial offset
  1173. * into the buffer and the desired IO size before we start -
  1174. * _xfs_buf_ioapply_vec() will modify them appropriately for each
  1175. * subsequent call.
  1176. */
  1177. offset = bp->b_offset;
  1178. size = BBTOB(bp->b_io_length);
  1179. blk_start_plug(&plug);
  1180. for (i = 0; i < bp->b_map_count; i++) {
  1181. xfs_buf_ioapply_map(bp, i, &offset, &size, rw);
  1182. if (bp->b_error)
  1183. break;
  1184. if (size <= 0)
  1185. break; /* all done */
  1186. }
  1187. blk_finish_plug(&plug);
  1188. }
  1189. void
  1190. xfs_buf_iorequest(
  1191. xfs_buf_t *bp)
  1192. {
  1193. trace_xfs_buf_iorequest(bp, _RET_IP_);
  1194. ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
  1195. if (bp->b_flags & XBF_WRITE)
  1196. xfs_buf_wait_unpin(bp);
  1197. xfs_buf_hold(bp);
  1198. /*
  1199. * Set the count to 1 initially, this will stop an I/O
  1200. * completion callout which happens before we have started
  1201. * all the I/O from calling xfs_buf_ioend too early.
  1202. */
  1203. atomic_set(&bp->b_io_remaining, 1);
  1204. _xfs_buf_ioapply(bp);
  1205. /*
  1206. * If _xfs_buf_ioapply failed, we'll get back here with
  1207. * only the reference we took above. _xfs_buf_ioend will
  1208. * drop it to zero, so we'd better not queue it for later,
  1209. * or we'll free it before it's done.
  1210. */
  1211. _xfs_buf_ioend(bp, bp->b_error ? 0 : 1);
  1212. xfs_buf_rele(bp);
  1213. }
  1214. /*
  1215. * Waits for I/O to complete on the buffer supplied. It returns immediately if
  1216. * no I/O is pending or there is already a pending error on the buffer, in which
  1217. * case nothing will ever complete. It returns the I/O error code, if any, or
  1218. * 0 if there was no error.
  1219. */
  1220. int
  1221. xfs_buf_iowait(
  1222. xfs_buf_t *bp)
  1223. {
  1224. trace_xfs_buf_iowait(bp, _RET_IP_);
  1225. if (!bp->b_error)
  1226. wait_for_completion(&bp->b_iowait);
  1227. trace_xfs_buf_iowait_done(bp, _RET_IP_);
  1228. return bp->b_error;
  1229. }
  1230. xfs_caddr_t
  1231. xfs_buf_offset(
  1232. xfs_buf_t *bp,
  1233. size_t offset)
  1234. {
  1235. struct page *page;
  1236. if (bp->b_addr)
  1237. return bp->b_addr + offset;
  1238. offset += bp->b_offset;
  1239. page = bp->b_pages[offset >> PAGE_SHIFT];
  1240. return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
  1241. }
  1242. /*
  1243. * Move data into or out of a buffer.
  1244. */
  1245. void
  1246. xfs_buf_iomove(
  1247. xfs_buf_t *bp, /* buffer to process */
  1248. size_t boff, /* starting buffer offset */
  1249. size_t bsize, /* length to copy */
  1250. void *data, /* data address */
  1251. xfs_buf_rw_t mode) /* read/write/zero flag */
  1252. {
  1253. size_t bend;
  1254. bend = boff + bsize;
  1255. while (boff < bend) {
  1256. struct page *page;
  1257. int page_index, page_offset, csize;
  1258. page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
  1259. page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
  1260. page = bp->b_pages[page_index];
  1261. csize = min_t(size_t, PAGE_SIZE - page_offset,
  1262. BBTOB(bp->b_io_length) - boff);
  1263. ASSERT((csize + page_offset) <= PAGE_SIZE);
  1264. switch (mode) {
  1265. case XBRW_ZERO:
  1266. memset(page_address(page) + page_offset, 0, csize);
  1267. break;
  1268. case XBRW_READ:
  1269. memcpy(data, page_address(page) + page_offset, csize);
  1270. break;
  1271. case XBRW_WRITE:
  1272. memcpy(page_address(page) + page_offset, data, csize);
  1273. }
  1274. boff += csize;
  1275. data += csize;
  1276. }
  1277. }
  1278. /*
  1279. * Handling of buffer targets (buftargs).
  1280. */
  1281. /*
  1282. * Wait for any bufs with callbacks that have been submitted but have not yet
  1283. * returned. These buffers will have an elevated hold count, so wait on those
  1284. * while freeing all the buffers only held by the LRU.
  1285. */
  1286. static enum lru_status
  1287. xfs_buftarg_wait_rele(
  1288. struct list_head *item,
  1289. spinlock_t *lru_lock,
  1290. void *arg)
  1291. {
  1292. struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
  1293. struct list_head *dispose = arg;
  1294. if (atomic_read(&bp->b_hold) > 1) {
  1295. /* need to wait, so skip it this pass */
  1296. trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
  1297. return LRU_SKIP;
  1298. }
  1299. if (!spin_trylock(&bp->b_lock))
  1300. return LRU_SKIP;
  1301. /*
  1302. * clear the LRU reference count so the buffer doesn't get
  1303. * ignored in xfs_buf_rele().
  1304. */
  1305. atomic_set(&bp->b_lru_ref, 0);
  1306. bp->b_state |= XFS_BSTATE_DISPOSE;
  1307. list_move(item, dispose);
  1308. spin_unlock(&bp->b_lock);
  1309. return LRU_REMOVED;
  1310. }
  1311. void
  1312. xfs_wait_buftarg(
  1313. struct xfs_buftarg *btp)
  1314. {
  1315. LIST_HEAD(dispose);
  1316. int loop = 0;
  1317. /* loop until there is nothing left on the lru list. */
  1318. while (list_lru_count(&btp->bt_lru)) {
  1319. list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
  1320. &dispose, LONG_MAX);
  1321. while (!list_empty(&dispose)) {
  1322. struct xfs_buf *bp;
  1323. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1324. list_del_init(&bp->b_lru);
  1325. if (bp->b_flags & XBF_WRITE_FAIL) {
  1326. xfs_alert(btp->bt_mount,
  1327. "Corruption Alert: Buffer at block 0x%llx had permanent write failures!\n"
  1328. "Please run xfs_repair to determine the extent of the problem.",
  1329. (long long)bp->b_bn);
  1330. }
  1331. xfs_buf_rele(bp);
  1332. }
  1333. if (loop++ != 0)
  1334. delay(100);
  1335. }
  1336. }
  1337. static enum lru_status
  1338. xfs_buftarg_isolate(
  1339. struct list_head *item,
  1340. spinlock_t *lru_lock,
  1341. void *arg)
  1342. {
  1343. struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
  1344. struct list_head *dispose = arg;
  1345. /*
  1346. * we are inverting the lru lock/bp->b_lock here, so use a trylock.
  1347. * If we fail to get the lock, just skip it.
  1348. */
  1349. if (!spin_trylock(&bp->b_lock))
  1350. return LRU_SKIP;
  1351. /*
  1352. * Decrement the b_lru_ref count unless the value is already
  1353. * zero. If the value is already zero, we need to reclaim the
  1354. * buffer, otherwise it gets another trip through the LRU.
  1355. */
  1356. if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
  1357. spin_unlock(&bp->b_lock);
  1358. return LRU_ROTATE;
  1359. }
  1360. bp->b_state |= XFS_BSTATE_DISPOSE;
  1361. list_move(item, dispose);
  1362. spin_unlock(&bp->b_lock);
  1363. return LRU_REMOVED;
  1364. }
  1365. static unsigned long
  1366. xfs_buftarg_shrink_scan(
  1367. struct shrinker *shrink,
  1368. struct shrink_control *sc)
  1369. {
  1370. struct xfs_buftarg *btp = container_of(shrink,
  1371. struct xfs_buftarg, bt_shrinker);
  1372. LIST_HEAD(dispose);
  1373. unsigned long freed;
  1374. unsigned long nr_to_scan = sc->nr_to_scan;
  1375. freed = list_lru_walk_node(&btp->bt_lru, sc->nid, xfs_buftarg_isolate,
  1376. &dispose, &nr_to_scan);
  1377. while (!list_empty(&dispose)) {
  1378. struct xfs_buf *bp;
  1379. bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
  1380. list_del_init(&bp->b_lru);
  1381. xfs_buf_rele(bp);
  1382. }
  1383. return freed;
  1384. }
  1385. static unsigned long
  1386. xfs_buftarg_shrink_count(
  1387. struct shrinker *shrink,
  1388. struct shrink_control *sc)
  1389. {
  1390. struct xfs_buftarg *btp = container_of(shrink,
  1391. struct xfs_buftarg, bt_shrinker);
  1392. return list_lru_count_node(&btp->bt_lru, sc->nid);
  1393. }
  1394. void
  1395. xfs_free_buftarg(
  1396. struct xfs_mount *mp,
  1397. struct xfs_buftarg *btp)
  1398. {
  1399. unregister_shrinker(&btp->bt_shrinker);
  1400. list_lru_destroy(&btp->bt_lru);
  1401. if (mp->m_flags & XFS_MOUNT_BARRIER)
  1402. xfs_blkdev_issue_flush(btp);
  1403. kmem_free(btp);
  1404. }
  1405. int
  1406. xfs_setsize_buftarg(
  1407. xfs_buftarg_t *btp,
  1408. unsigned int sectorsize)
  1409. {
  1410. /* Set up metadata sector size info */
  1411. btp->bt_meta_sectorsize = sectorsize;
  1412. btp->bt_meta_sectormask = sectorsize - 1;
  1413. if (set_blocksize(btp->bt_bdev, sectorsize)) {
  1414. char name[BDEVNAME_SIZE];
  1415. bdevname(btp->bt_bdev, name);
  1416. xfs_warn(btp->bt_mount,
  1417. "Cannot set_blocksize to %u on device %s",
  1418. sectorsize, name);
  1419. return EINVAL;
  1420. }
  1421. /* Set up device logical sector size mask */
  1422. btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
  1423. btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
  1424. return 0;
  1425. }
  1426. /*
  1427. * When allocating the initial buffer target we have not yet
  1428. * read in the superblock, so don't know what sized sectors
  1429. * are being used at this early stage. Play safe.
  1430. */
  1431. STATIC int
  1432. xfs_setsize_buftarg_early(
  1433. xfs_buftarg_t *btp,
  1434. struct block_device *bdev)
  1435. {
  1436. return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
  1437. }
  1438. xfs_buftarg_t *
  1439. xfs_alloc_buftarg(
  1440. struct xfs_mount *mp,
  1441. struct block_device *bdev)
  1442. {
  1443. xfs_buftarg_t *btp;
  1444. btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
  1445. btp->bt_mount = mp;
  1446. btp->bt_dev = bdev->bd_dev;
  1447. btp->bt_bdev = bdev;
  1448. btp->bt_bdi = blk_get_backing_dev_info(bdev);
  1449. if (!btp->bt_bdi)
  1450. goto error;
  1451. if (xfs_setsize_buftarg_early(btp, bdev))
  1452. goto error;
  1453. if (list_lru_init(&btp->bt_lru))
  1454. goto error;
  1455. btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
  1456. btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
  1457. btp->bt_shrinker.seeks = DEFAULT_SEEKS;
  1458. btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
  1459. register_shrinker(&btp->bt_shrinker);
  1460. return btp;
  1461. error:
  1462. kmem_free(btp);
  1463. return NULL;
  1464. }
  1465. /*
  1466. * Add a buffer to the delayed write list.
  1467. *
  1468. * This queues a buffer for writeout if it hasn't already been. Note that
  1469. * neither this routine nor the buffer list submission functions perform
  1470. * any internal synchronization. It is expected that the lists are thread-local
  1471. * to the callers.
  1472. *
  1473. * Returns true if we queued up the buffer, or false if it already had
  1474. * been on the buffer list.
  1475. */
  1476. bool
  1477. xfs_buf_delwri_queue(
  1478. struct xfs_buf *bp,
  1479. struct list_head *list)
  1480. {
  1481. ASSERT(xfs_buf_islocked(bp));
  1482. ASSERT(!(bp->b_flags & XBF_READ));
  1483. /*
  1484. * If the buffer is already marked delwri it already is queued up
  1485. * by someone else for imediate writeout. Just ignore it in that
  1486. * case.
  1487. */
  1488. if (bp->b_flags & _XBF_DELWRI_Q) {
  1489. trace_xfs_buf_delwri_queued(bp, _RET_IP_);
  1490. return false;
  1491. }
  1492. trace_xfs_buf_delwri_queue(bp, _RET_IP_);
  1493. /*
  1494. * If a buffer gets written out synchronously or marked stale while it
  1495. * is on a delwri list we lazily remove it. To do this, the other party
  1496. * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
  1497. * It remains referenced and on the list. In a rare corner case it
  1498. * might get readded to a delwri list after the synchronous writeout, in
  1499. * which case we need just need to re-add the flag here.
  1500. */
  1501. bp->b_flags |= _XBF_DELWRI_Q;
  1502. if (list_empty(&bp->b_list)) {
  1503. atomic_inc(&bp->b_hold);
  1504. list_add_tail(&bp->b_list, list);
  1505. }
  1506. return true;
  1507. }
  1508. /*
  1509. * Compare function is more complex than it needs to be because
  1510. * the return value is only 32 bits and we are doing comparisons
  1511. * on 64 bit values
  1512. */
  1513. static int
  1514. xfs_buf_cmp(
  1515. void *priv,
  1516. struct list_head *a,
  1517. struct list_head *b)
  1518. {
  1519. struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
  1520. struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
  1521. xfs_daddr_t diff;
  1522. diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
  1523. if (diff < 0)
  1524. return -1;
  1525. if (diff > 0)
  1526. return 1;
  1527. return 0;
  1528. }
  1529. static int
  1530. __xfs_buf_delwri_submit(
  1531. struct list_head *buffer_list,
  1532. struct list_head *io_list,
  1533. bool wait)
  1534. {
  1535. struct blk_plug plug;
  1536. struct xfs_buf *bp, *n;
  1537. int pinned = 0;
  1538. list_for_each_entry_safe(bp, n, buffer_list, b_list) {
  1539. if (!wait) {
  1540. if (xfs_buf_ispinned(bp)) {
  1541. pinned++;
  1542. continue;
  1543. }
  1544. if (!xfs_buf_trylock(bp))
  1545. continue;
  1546. } else {
  1547. xfs_buf_lock(bp);
  1548. }
  1549. /*
  1550. * Someone else might have written the buffer synchronously or
  1551. * marked it stale in the meantime. In that case only the
  1552. * _XBF_DELWRI_Q flag got cleared, and we have to drop the
  1553. * reference and remove it from the list here.
  1554. */
  1555. if (!(bp->b_flags & _XBF_DELWRI_Q)) {
  1556. list_del_init(&bp->b_list);
  1557. xfs_buf_relse(bp);
  1558. continue;
  1559. }
  1560. list_move_tail(&bp->b_list, io_list);
  1561. trace_xfs_buf_delwri_split(bp, _RET_IP_);
  1562. }
  1563. list_sort(NULL, io_list, xfs_buf_cmp);
  1564. blk_start_plug(&plug);
  1565. list_for_each_entry_safe(bp, n, io_list, b_list) {
  1566. bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC | XBF_WRITE_FAIL);
  1567. bp->b_flags |= XBF_WRITE;
  1568. if (!wait) {
  1569. bp->b_flags |= XBF_ASYNC;
  1570. list_del_init(&bp->b_list);
  1571. }
  1572. xfs_bdstrat_cb(bp);
  1573. }
  1574. blk_finish_plug(&plug);
  1575. return pinned;
  1576. }
  1577. /*
  1578. * Write out a buffer list asynchronously.
  1579. *
  1580. * This will take the @buffer_list, write all non-locked and non-pinned buffers
  1581. * out and not wait for I/O completion on any of the buffers. This interface
  1582. * is only safely useable for callers that can track I/O completion by higher
  1583. * level means, e.g. AIL pushing as the @buffer_list is consumed in this
  1584. * function.
  1585. */
  1586. int
  1587. xfs_buf_delwri_submit_nowait(
  1588. struct list_head *buffer_list)
  1589. {
  1590. LIST_HEAD (io_list);
  1591. return __xfs_buf_delwri_submit(buffer_list, &io_list, false);
  1592. }
  1593. /*
  1594. * Write out a buffer list synchronously.
  1595. *
  1596. * This will take the @buffer_list, write all buffers out and wait for I/O
  1597. * completion on all of the buffers. @buffer_list is consumed by the function,
  1598. * so callers must have some other way of tracking buffers if they require such
  1599. * functionality.
  1600. */
  1601. int
  1602. xfs_buf_delwri_submit(
  1603. struct list_head *buffer_list)
  1604. {
  1605. LIST_HEAD (io_list);
  1606. int error = 0, error2;
  1607. struct xfs_buf *bp;
  1608. __xfs_buf_delwri_submit(buffer_list, &io_list, true);
  1609. /* Wait for IO to complete. */
  1610. while (!list_empty(&io_list)) {
  1611. bp = list_first_entry(&io_list, struct xfs_buf, b_list);
  1612. list_del_init(&bp->b_list);
  1613. error2 = xfs_buf_iowait(bp);
  1614. xfs_buf_relse(bp);
  1615. if (!error)
  1616. error = error2;
  1617. }
  1618. return error;
  1619. }
  1620. int __init
  1621. xfs_buf_init(void)
  1622. {
  1623. xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
  1624. KM_ZONE_HWALIGN, NULL);
  1625. if (!xfs_buf_zone)
  1626. goto out;
  1627. xfslogd_workqueue = alloc_workqueue("xfslogd",
  1628. WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
  1629. if (!xfslogd_workqueue)
  1630. goto out_free_buf_zone;
  1631. return 0;
  1632. out_free_buf_zone:
  1633. kmem_zone_destroy(xfs_buf_zone);
  1634. out:
  1635. return -ENOMEM;
  1636. }
  1637. void
  1638. xfs_buf_terminate(void)
  1639. {
  1640. destroy_workqueue(xfslogd_workqueue);
  1641. kmem_zone_destroy(xfs_buf_zone);
  1642. }