super.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221
  1. /*
  2. * fs/f2fs/super.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/module.h>
  12. #include <linux/init.h>
  13. #include <linux/fs.h>
  14. #include <linux/statfs.h>
  15. #include <linux/buffer_head.h>
  16. #include <linux/backing-dev.h>
  17. #include <linux/kthread.h>
  18. #include <linux/parser.h>
  19. #include <linux/mount.h>
  20. #include <linux/seq_file.h>
  21. #include <linux/proc_fs.h>
  22. #include <linux/random.h>
  23. #include <linux/exportfs.h>
  24. #include <linux/blkdev.h>
  25. #include <linux/f2fs_fs.h>
  26. #include <linux/sysfs.h>
  27. #include "f2fs.h"
  28. #include "node.h"
  29. #include "segment.h"
  30. #include "xattr.h"
  31. #include "gc.h"
  32. #define CREATE_TRACE_POINTS
  33. #include <trace/events/f2fs.h>
  34. static struct proc_dir_entry *f2fs_proc_root;
  35. static struct kmem_cache *f2fs_inode_cachep;
  36. static struct kset *f2fs_kset;
  37. enum {
  38. Opt_gc_background,
  39. Opt_disable_roll_forward,
  40. Opt_discard,
  41. Opt_noheap,
  42. Opt_user_xattr,
  43. Opt_nouser_xattr,
  44. Opt_acl,
  45. Opt_noacl,
  46. Opt_active_logs,
  47. Opt_disable_ext_identify,
  48. Opt_inline_xattr,
  49. Opt_inline_data,
  50. Opt_flush_merge,
  51. Opt_err,
  52. };
  53. static match_table_t f2fs_tokens = {
  54. {Opt_gc_background, "background_gc=%s"},
  55. {Opt_disable_roll_forward, "disable_roll_forward"},
  56. {Opt_discard, "discard"},
  57. {Opt_noheap, "no_heap"},
  58. {Opt_user_xattr, "user_xattr"},
  59. {Opt_nouser_xattr, "nouser_xattr"},
  60. {Opt_acl, "acl"},
  61. {Opt_noacl, "noacl"},
  62. {Opt_active_logs, "active_logs=%u"},
  63. {Opt_disable_ext_identify, "disable_ext_identify"},
  64. {Opt_inline_xattr, "inline_xattr"},
  65. {Opt_inline_data, "inline_data"},
  66. {Opt_flush_merge, "flush_merge"},
  67. {Opt_err, NULL},
  68. };
  69. /* Sysfs support for f2fs */
  70. enum {
  71. GC_THREAD, /* struct f2fs_gc_thread */
  72. SM_INFO, /* struct f2fs_sm_info */
  73. NM_INFO, /* struct f2fs_nm_info */
  74. F2FS_SBI, /* struct f2fs_sb_info */
  75. };
  76. struct f2fs_attr {
  77. struct attribute attr;
  78. ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  79. ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  80. const char *, size_t);
  81. int struct_type;
  82. int offset;
  83. };
  84. static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
  85. {
  86. if (struct_type == GC_THREAD)
  87. return (unsigned char *)sbi->gc_thread;
  88. else if (struct_type == SM_INFO)
  89. return (unsigned char *)SM_I(sbi);
  90. else if (struct_type == NM_INFO)
  91. return (unsigned char *)NM_I(sbi);
  92. else if (struct_type == F2FS_SBI)
  93. return (unsigned char *)sbi;
  94. return NULL;
  95. }
  96. static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
  97. struct f2fs_sb_info *sbi, char *buf)
  98. {
  99. unsigned char *ptr = NULL;
  100. unsigned int *ui;
  101. ptr = __struct_ptr(sbi, a->struct_type);
  102. if (!ptr)
  103. return -EINVAL;
  104. ui = (unsigned int *)(ptr + a->offset);
  105. return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
  106. }
  107. static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
  108. struct f2fs_sb_info *sbi,
  109. const char *buf, size_t count)
  110. {
  111. unsigned char *ptr;
  112. unsigned long t;
  113. unsigned int *ui;
  114. ssize_t ret;
  115. ptr = __struct_ptr(sbi, a->struct_type);
  116. if (!ptr)
  117. return -EINVAL;
  118. ui = (unsigned int *)(ptr + a->offset);
  119. ret = kstrtoul(skip_spaces(buf), 0, &t);
  120. if (ret < 0)
  121. return ret;
  122. *ui = t;
  123. return count;
  124. }
  125. static ssize_t f2fs_attr_show(struct kobject *kobj,
  126. struct attribute *attr, char *buf)
  127. {
  128. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  129. s_kobj);
  130. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  131. return a->show ? a->show(a, sbi, buf) : 0;
  132. }
  133. static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
  134. const char *buf, size_t len)
  135. {
  136. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  137. s_kobj);
  138. struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
  139. return a->store ? a->store(a, sbi, buf, len) : 0;
  140. }
  141. static void f2fs_sb_release(struct kobject *kobj)
  142. {
  143. struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
  144. s_kobj);
  145. complete(&sbi->s_kobj_unregister);
  146. }
  147. #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
  148. static struct f2fs_attr f2fs_attr_##_name = { \
  149. .attr = {.name = __stringify(_name), .mode = _mode }, \
  150. .show = _show, \
  151. .store = _store, \
  152. .struct_type = _struct_type, \
  153. .offset = _offset \
  154. }
  155. #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \
  156. F2FS_ATTR_OFFSET(struct_type, name, 0644, \
  157. f2fs_sbi_show, f2fs_sbi_store, \
  158. offsetof(struct struct_name, elname))
  159. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
  160. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
  161. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
  162. F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
  163. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
  164. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
  165. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
  166. F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
  167. F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
  168. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
  169. F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
  170. #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
  171. static struct attribute *f2fs_attrs[] = {
  172. ATTR_LIST(gc_min_sleep_time),
  173. ATTR_LIST(gc_max_sleep_time),
  174. ATTR_LIST(gc_no_gc_sleep_time),
  175. ATTR_LIST(gc_idle),
  176. ATTR_LIST(reclaim_segments),
  177. ATTR_LIST(max_small_discards),
  178. ATTR_LIST(ipu_policy),
  179. ATTR_LIST(min_ipu_util),
  180. ATTR_LIST(max_victim_search),
  181. ATTR_LIST(dir_level),
  182. ATTR_LIST(ram_thresh),
  183. NULL,
  184. };
  185. static const struct sysfs_ops f2fs_attr_ops = {
  186. .show = f2fs_attr_show,
  187. .store = f2fs_attr_store,
  188. };
  189. static struct kobj_type f2fs_ktype = {
  190. .default_attrs = f2fs_attrs,
  191. .sysfs_ops = &f2fs_attr_ops,
  192. .release = f2fs_sb_release,
  193. };
  194. void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
  195. {
  196. struct va_format vaf;
  197. va_list args;
  198. va_start(args, fmt);
  199. vaf.fmt = fmt;
  200. vaf.va = &args;
  201. printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
  202. va_end(args);
  203. }
  204. static void init_once(void *foo)
  205. {
  206. struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
  207. inode_init_once(&fi->vfs_inode);
  208. }
  209. static int parse_options(struct super_block *sb, char *options)
  210. {
  211. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  212. substring_t args[MAX_OPT_ARGS];
  213. char *p, *name;
  214. int arg = 0;
  215. if (!options)
  216. return 0;
  217. while ((p = strsep(&options, ",")) != NULL) {
  218. int token;
  219. if (!*p)
  220. continue;
  221. /*
  222. * Initialize args struct so we know whether arg was
  223. * found; some options take optional arguments.
  224. */
  225. args[0].to = args[0].from = NULL;
  226. token = match_token(p, f2fs_tokens, args);
  227. switch (token) {
  228. case Opt_gc_background:
  229. name = match_strdup(&args[0]);
  230. if (!name)
  231. return -ENOMEM;
  232. if (strlen(name) == 2 && !strncmp(name, "on", 2))
  233. set_opt(sbi, BG_GC);
  234. else if (strlen(name) == 3 && !strncmp(name, "off", 3))
  235. clear_opt(sbi, BG_GC);
  236. else {
  237. kfree(name);
  238. return -EINVAL;
  239. }
  240. kfree(name);
  241. break;
  242. case Opt_disable_roll_forward:
  243. set_opt(sbi, DISABLE_ROLL_FORWARD);
  244. break;
  245. case Opt_discard:
  246. set_opt(sbi, DISCARD);
  247. break;
  248. case Opt_noheap:
  249. set_opt(sbi, NOHEAP);
  250. break;
  251. #ifdef CONFIG_F2FS_FS_XATTR
  252. case Opt_user_xattr:
  253. set_opt(sbi, XATTR_USER);
  254. break;
  255. case Opt_nouser_xattr:
  256. clear_opt(sbi, XATTR_USER);
  257. break;
  258. case Opt_inline_xattr:
  259. set_opt(sbi, INLINE_XATTR);
  260. break;
  261. #else
  262. case Opt_user_xattr:
  263. f2fs_msg(sb, KERN_INFO,
  264. "user_xattr options not supported");
  265. break;
  266. case Opt_nouser_xattr:
  267. f2fs_msg(sb, KERN_INFO,
  268. "nouser_xattr options not supported");
  269. break;
  270. case Opt_inline_xattr:
  271. f2fs_msg(sb, KERN_INFO,
  272. "inline_xattr options not supported");
  273. break;
  274. #endif
  275. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  276. case Opt_acl:
  277. set_opt(sbi, POSIX_ACL);
  278. break;
  279. case Opt_noacl:
  280. clear_opt(sbi, POSIX_ACL);
  281. break;
  282. #else
  283. case Opt_acl:
  284. f2fs_msg(sb, KERN_INFO, "acl options not supported");
  285. break;
  286. case Opt_noacl:
  287. f2fs_msg(sb, KERN_INFO, "noacl options not supported");
  288. break;
  289. #endif
  290. case Opt_active_logs:
  291. if (args->from && match_int(args, &arg))
  292. return -EINVAL;
  293. if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
  294. return -EINVAL;
  295. sbi->active_logs = arg;
  296. break;
  297. case Opt_disable_ext_identify:
  298. set_opt(sbi, DISABLE_EXT_IDENTIFY);
  299. break;
  300. case Opt_inline_data:
  301. set_opt(sbi, INLINE_DATA);
  302. break;
  303. case Opt_flush_merge:
  304. set_opt(sbi, FLUSH_MERGE);
  305. break;
  306. default:
  307. f2fs_msg(sb, KERN_ERR,
  308. "Unrecognized mount option \"%s\" or missing value",
  309. p);
  310. return -EINVAL;
  311. }
  312. }
  313. return 0;
  314. }
  315. static struct inode *f2fs_alloc_inode(struct super_block *sb)
  316. {
  317. struct f2fs_inode_info *fi;
  318. fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
  319. if (!fi)
  320. return NULL;
  321. init_once((void *) fi);
  322. /* Initialize f2fs-specific inode info */
  323. fi->vfs_inode.i_version = 1;
  324. atomic_set(&fi->dirty_dents, 0);
  325. fi->i_current_depth = 1;
  326. fi->i_advise = 0;
  327. rwlock_init(&fi->ext.ext_lock);
  328. init_rwsem(&fi->i_sem);
  329. set_inode_flag(fi, FI_NEW_INODE);
  330. if (test_opt(F2FS_SB(sb), INLINE_XATTR))
  331. set_inode_flag(fi, FI_INLINE_XATTR);
  332. /* Will be used by directory only */
  333. fi->i_dir_level = F2FS_SB(sb)->dir_level;
  334. return &fi->vfs_inode;
  335. }
  336. static int f2fs_drop_inode(struct inode *inode)
  337. {
  338. /*
  339. * This is to avoid a deadlock condition like below.
  340. * writeback_single_inode(inode)
  341. * - f2fs_write_data_page
  342. * - f2fs_gc -> iput -> evict
  343. * - inode_wait_for_writeback(inode)
  344. */
  345. if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
  346. return 0;
  347. return generic_drop_inode(inode);
  348. }
  349. /*
  350. * f2fs_dirty_inode() is called from __mark_inode_dirty()
  351. *
  352. * We should call set_dirty_inode to write the dirty inode through write_inode.
  353. */
  354. static void f2fs_dirty_inode(struct inode *inode, int flags)
  355. {
  356. set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
  357. }
  358. static void f2fs_i_callback(struct rcu_head *head)
  359. {
  360. struct inode *inode = container_of(head, struct inode, i_rcu);
  361. kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
  362. }
  363. static void f2fs_destroy_inode(struct inode *inode)
  364. {
  365. call_rcu(&inode->i_rcu, f2fs_i_callback);
  366. }
  367. static void f2fs_put_super(struct super_block *sb)
  368. {
  369. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  370. if (sbi->s_proc) {
  371. remove_proc_entry("segment_info", sbi->s_proc);
  372. remove_proc_entry(sb->s_id, f2fs_proc_root);
  373. }
  374. kobject_del(&sbi->s_kobj);
  375. f2fs_destroy_stats(sbi);
  376. stop_gc_thread(sbi);
  377. /* We don't need to do checkpoint when it's clean */
  378. if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
  379. write_checkpoint(sbi, true);
  380. iput(sbi->node_inode);
  381. iput(sbi->meta_inode);
  382. /* destroy f2fs internal modules */
  383. destroy_node_manager(sbi);
  384. destroy_segment_manager(sbi);
  385. kfree(sbi->ckpt);
  386. kobject_put(&sbi->s_kobj);
  387. wait_for_completion(&sbi->s_kobj_unregister);
  388. sb->s_fs_info = NULL;
  389. brelse(sbi->raw_super_buf);
  390. kfree(sbi);
  391. }
  392. int f2fs_sync_fs(struct super_block *sb, int sync)
  393. {
  394. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  395. trace_f2fs_sync_fs(sb, sync);
  396. if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
  397. return 0;
  398. if (sync) {
  399. mutex_lock(&sbi->gc_mutex);
  400. write_checkpoint(sbi, false);
  401. mutex_unlock(&sbi->gc_mutex);
  402. } else {
  403. f2fs_balance_fs(sbi);
  404. }
  405. return 0;
  406. }
  407. static int f2fs_freeze(struct super_block *sb)
  408. {
  409. int err;
  410. if (f2fs_readonly(sb))
  411. return 0;
  412. err = f2fs_sync_fs(sb, 1);
  413. return err;
  414. }
  415. static int f2fs_unfreeze(struct super_block *sb)
  416. {
  417. return 0;
  418. }
  419. static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
  420. {
  421. struct super_block *sb = dentry->d_sb;
  422. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  423. u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
  424. block_t total_count, user_block_count, start_count, ovp_count;
  425. total_count = le64_to_cpu(sbi->raw_super->block_count);
  426. user_block_count = sbi->user_block_count;
  427. start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
  428. ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
  429. buf->f_type = F2FS_SUPER_MAGIC;
  430. buf->f_bsize = sbi->blocksize;
  431. buf->f_blocks = total_count - start_count;
  432. buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
  433. buf->f_bavail = user_block_count - valid_user_blocks(sbi);
  434. buf->f_files = sbi->total_node_count;
  435. buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
  436. buf->f_namelen = F2FS_NAME_LEN;
  437. buf->f_fsid.val[0] = (u32)id;
  438. buf->f_fsid.val[1] = (u32)(id >> 32);
  439. return 0;
  440. }
  441. static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
  442. {
  443. struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
  444. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
  445. seq_printf(seq, ",background_gc=%s", "on");
  446. else
  447. seq_printf(seq, ",background_gc=%s", "off");
  448. if (test_opt(sbi, DISABLE_ROLL_FORWARD))
  449. seq_puts(seq, ",disable_roll_forward");
  450. if (test_opt(sbi, DISCARD))
  451. seq_puts(seq, ",discard");
  452. if (test_opt(sbi, NOHEAP))
  453. seq_puts(seq, ",no_heap_alloc");
  454. #ifdef CONFIG_F2FS_FS_XATTR
  455. if (test_opt(sbi, XATTR_USER))
  456. seq_puts(seq, ",user_xattr");
  457. else
  458. seq_puts(seq, ",nouser_xattr");
  459. if (test_opt(sbi, INLINE_XATTR))
  460. seq_puts(seq, ",inline_xattr");
  461. #endif
  462. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  463. if (test_opt(sbi, POSIX_ACL))
  464. seq_puts(seq, ",acl");
  465. else
  466. seq_puts(seq, ",noacl");
  467. #endif
  468. if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
  469. seq_puts(seq, ",disable_ext_identify");
  470. if (test_opt(sbi, INLINE_DATA))
  471. seq_puts(seq, ",inline_data");
  472. if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
  473. seq_puts(seq, ",flush_merge");
  474. seq_printf(seq, ",active_logs=%u", sbi->active_logs);
  475. return 0;
  476. }
  477. static int segment_info_seq_show(struct seq_file *seq, void *offset)
  478. {
  479. struct super_block *sb = seq->private;
  480. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  481. unsigned int total_segs =
  482. le32_to_cpu(sbi->raw_super->segment_count_main);
  483. int i;
  484. seq_puts(seq, "format: segment_type|valid_blocks\n"
  485. "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
  486. for (i = 0; i < total_segs; i++) {
  487. struct seg_entry *se = get_seg_entry(sbi, i);
  488. if ((i % 10) == 0)
  489. seq_printf(seq, "%-5d", i);
  490. seq_printf(seq, "%d|%-3u", se->type,
  491. get_valid_blocks(sbi, i, 1));
  492. if ((i % 10) == 9 || i == (total_segs - 1))
  493. seq_putc(seq, '\n');
  494. else
  495. seq_putc(seq, ' ');
  496. }
  497. return 0;
  498. }
  499. static int segment_info_open_fs(struct inode *inode, struct file *file)
  500. {
  501. return single_open(file, segment_info_seq_show, PDE_DATA(inode));
  502. }
  503. static const struct file_operations f2fs_seq_segment_info_fops = {
  504. .owner = THIS_MODULE,
  505. .open = segment_info_open_fs,
  506. .read = seq_read,
  507. .llseek = seq_lseek,
  508. .release = single_release,
  509. };
  510. static int f2fs_remount(struct super_block *sb, int *flags, char *data)
  511. {
  512. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  513. struct f2fs_mount_info org_mount_opt;
  514. int err, active_logs;
  515. bool need_restart_gc = false;
  516. bool need_stop_gc = false;
  517. sync_filesystem(sb);
  518. /*
  519. * Save the old mount options in case we
  520. * need to restore them.
  521. */
  522. org_mount_opt = sbi->mount_opt;
  523. active_logs = sbi->active_logs;
  524. /* parse mount options */
  525. err = parse_options(sb, data);
  526. if (err)
  527. goto restore_opts;
  528. /*
  529. * Previous and new state of filesystem is RO,
  530. * so skip checking GC and FLUSH_MERGE conditions.
  531. */
  532. if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
  533. goto skip;
  534. /*
  535. * We stop the GC thread if FS is mounted as RO
  536. * or if background_gc = off is passed in mount
  537. * option. Also sync the filesystem.
  538. */
  539. if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
  540. if (sbi->gc_thread) {
  541. stop_gc_thread(sbi);
  542. f2fs_sync_fs(sb, 1);
  543. need_restart_gc = true;
  544. }
  545. } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
  546. err = start_gc_thread(sbi);
  547. if (err)
  548. goto restore_opts;
  549. need_stop_gc = true;
  550. }
  551. /*
  552. * We stop issue flush thread if FS is mounted as RO
  553. * or if flush_merge is not passed in mount option.
  554. */
  555. if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
  556. destroy_flush_cmd_control(sbi);
  557. } else if (test_opt(sbi, FLUSH_MERGE) &&
  558. !sbi->sm_info->cmd_control_info) {
  559. err = create_flush_cmd_control(sbi);
  560. if (err)
  561. goto restore_gc;
  562. }
  563. skip:
  564. /* Update the POSIXACL Flag */
  565. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  566. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  567. return 0;
  568. restore_gc:
  569. if (need_restart_gc) {
  570. if (start_gc_thread(sbi))
  571. f2fs_msg(sbi->sb, KERN_WARNING,
  572. "background gc thread is stop");
  573. } else if (need_stop_gc) {
  574. stop_gc_thread(sbi);
  575. }
  576. restore_opts:
  577. sbi->mount_opt = org_mount_opt;
  578. sbi->active_logs = active_logs;
  579. return err;
  580. }
  581. static struct super_operations f2fs_sops = {
  582. .alloc_inode = f2fs_alloc_inode,
  583. .drop_inode = f2fs_drop_inode,
  584. .destroy_inode = f2fs_destroy_inode,
  585. .write_inode = f2fs_write_inode,
  586. .dirty_inode = f2fs_dirty_inode,
  587. .show_options = f2fs_show_options,
  588. .evict_inode = f2fs_evict_inode,
  589. .put_super = f2fs_put_super,
  590. .sync_fs = f2fs_sync_fs,
  591. .freeze_fs = f2fs_freeze,
  592. .unfreeze_fs = f2fs_unfreeze,
  593. .statfs = f2fs_statfs,
  594. .remount_fs = f2fs_remount,
  595. };
  596. static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
  597. u64 ino, u32 generation)
  598. {
  599. struct f2fs_sb_info *sbi = F2FS_SB(sb);
  600. struct inode *inode;
  601. if (check_nid_range(sbi, ino))
  602. return ERR_PTR(-ESTALE);
  603. /*
  604. * f2fs_iget isn't quite right if the inode is currently unallocated!
  605. * However f2fs_iget currently does appropriate checks to handle stale
  606. * inodes so everything is OK.
  607. */
  608. inode = f2fs_iget(sb, ino);
  609. if (IS_ERR(inode))
  610. return ERR_CAST(inode);
  611. if (unlikely(generation && inode->i_generation != generation)) {
  612. /* we didn't find the right inode.. */
  613. iput(inode);
  614. return ERR_PTR(-ESTALE);
  615. }
  616. return inode;
  617. }
  618. static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
  619. int fh_len, int fh_type)
  620. {
  621. return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
  622. f2fs_nfs_get_inode);
  623. }
  624. static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
  625. int fh_len, int fh_type)
  626. {
  627. return generic_fh_to_parent(sb, fid, fh_len, fh_type,
  628. f2fs_nfs_get_inode);
  629. }
  630. static const struct export_operations f2fs_export_ops = {
  631. .fh_to_dentry = f2fs_fh_to_dentry,
  632. .fh_to_parent = f2fs_fh_to_parent,
  633. .get_parent = f2fs_get_parent,
  634. };
  635. static loff_t max_file_size(unsigned bits)
  636. {
  637. loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
  638. loff_t leaf_count = ADDRS_PER_BLOCK;
  639. /* two direct node blocks */
  640. result += (leaf_count * 2);
  641. /* two indirect node blocks */
  642. leaf_count *= NIDS_PER_BLOCK;
  643. result += (leaf_count * 2);
  644. /* one double indirect node block */
  645. leaf_count *= NIDS_PER_BLOCK;
  646. result += leaf_count;
  647. result <<= bits;
  648. return result;
  649. }
  650. static int sanity_check_raw_super(struct super_block *sb,
  651. struct f2fs_super_block *raw_super)
  652. {
  653. unsigned int blocksize;
  654. if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
  655. f2fs_msg(sb, KERN_INFO,
  656. "Magic Mismatch, valid(0x%x) - read(0x%x)",
  657. F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
  658. return 1;
  659. }
  660. /* Currently, support only 4KB page cache size */
  661. if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
  662. f2fs_msg(sb, KERN_INFO,
  663. "Invalid page_cache_size (%lu), supports only 4KB\n",
  664. PAGE_CACHE_SIZE);
  665. return 1;
  666. }
  667. /* Currently, support only 4KB block size */
  668. blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
  669. if (blocksize != F2FS_BLKSIZE) {
  670. f2fs_msg(sb, KERN_INFO,
  671. "Invalid blocksize (%u), supports only 4KB\n",
  672. blocksize);
  673. return 1;
  674. }
  675. if (le32_to_cpu(raw_super->log_sectorsize) !=
  676. F2FS_LOG_SECTOR_SIZE) {
  677. f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
  678. return 1;
  679. }
  680. if (le32_to_cpu(raw_super->log_sectors_per_block) !=
  681. F2FS_LOG_SECTORS_PER_BLOCK) {
  682. f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
  683. return 1;
  684. }
  685. return 0;
  686. }
  687. static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
  688. {
  689. unsigned int total, fsmeta;
  690. struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
  691. struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
  692. total = le32_to_cpu(raw_super->segment_count);
  693. fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
  694. fsmeta += le32_to_cpu(raw_super->segment_count_sit);
  695. fsmeta += le32_to_cpu(raw_super->segment_count_nat);
  696. fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
  697. fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
  698. if (unlikely(fsmeta >= total))
  699. return 1;
  700. if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
  701. f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
  702. return 1;
  703. }
  704. return 0;
  705. }
  706. static void init_sb_info(struct f2fs_sb_info *sbi)
  707. {
  708. struct f2fs_super_block *raw_super = sbi->raw_super;
  709. int i;
  710. sbi->log_sectors_per_block =
  711. le32_to_cpu(raw_super->log_sectors_per_block);
  712. sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
  713. sbi->blocksize = 1 << sbi->log_blocksize;
  714. sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
  715. sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
  716. sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
  717. sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
  718. sbi->total_sections = le32_to_cpu(raw_super->section_count);
  719. sbi->total_node_count =
  720. (le32_to_cpu(raw_super->segment_count_nat) / 2)
  721. * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
  722. sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
  723. sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
  724. sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
  725. sbi->cur_victim_sec = NULL_SECNO;
  726. sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
  727. for (i = 0; i < NR_COUNT_TYPE; i++)
  728. atomic_set(&sbi->nr_pages[i], 0);
  729. sbi->dir_level = DEF_DIR_LEVEL;
  730. }
  731. /*
  732. * Read f2fs raw super block.
  733. * Because we have two copies of super block, so read the first one at first,
  734. * if the first one is invalid, move to read the second one.
  735. */
  736. static int read_raw_super_block(struct super_block *sb,
  737. struct f2fs_super_block **raw_super,
  738. struct buffer_head **raw_super_buf)
  739. {
  740. int block = 0;
  741. retry:
  742. *raw_super_buf = sb_bread(sb, block);
  743. if (!*raw_super_buf) {
  744. f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
  745. block + 1);
  746. if (block == 0) {
  747. block++;
  748. goto retry;
  749. } else {
  750. return -EIO;
  751. }
  752. }
  753. *raw_super = (struct f2fs_super_block *)
  754. ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
  755. /* sanity checking of raw super */
  756. if (sanity_check_raw_super(sb, *raw_super)) {
  757. brelse(*raw_super_buf);
  758. f2fs_msg(sb, KERN_ERR,
  759. "Can't find valid F2FS filesystem in %dth superblock",
  760. block + 1);
  761. if (block == 0) {
  762. block++;
  763. goto retry;
  764. } else {
  765. return -EINVAL;
  766. }
  767. }
  768. return 0;
  769. }
  770. static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
  771. {
  772. struct f2fs_sb_info *sbi;
  773. struct f2fs_super_block *raw_super;
  774. struct buffer_head *raw_super_buf;
  775. struct inode *root;
  776. long err = -EINVAL;
  777. int i;
  778. /* allocate memory for f2fs-specific super block info */
  779. sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
  780. if (!sbi)
  781. return -ENOMEM;
  782. /* set a block size */
  783. if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
  784. f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
  785. goto free_sbi;
  786. }
  787. err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
  788. if (err)
  789. goto free_sbi;
  790. sb->s_fs_info = sbi;
  791. /* init some FS parameters */
  792. sbi->active_logs = NR_CURSEG_TYPE;
  793. set_opt(sbi, BG_GC);
  794. #ifdef CONFIG_F2FS_FS_XATTR
  795. set_opt(sbi, XATTR_USER);
  796. #endif
  797. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  798. set_opt(sbi, POSIX_ACL);
  799. #endif
  800. /* parse mount options */
  801. err = parse_options(sb, (char *)data);
  802. if (err)
  803. goto free_sb_buf;
  804. sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
  805. sb->s_max_links = F2FS_LINK_MAX;
  806. get_random_bytes(&sbi->s_next_generation, sizeof(u32));
  807. sb->s_op = &f2fs_sops;
  808. sb->s_xattr = f2fs_xattr_handlers;
  809. sb->s_export_op = &f2fs_export_ops;
  810. sb->s_magic = F2FS_SUPER_MAGIC;
  811. sb->s_time_gran = 1;
  812. sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
  813. (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
  814. memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
  815. /* init f2fs-specific super block info */
  816. sbi->sb = sb;
  817. sbi->raw_super = raw_super;
  818. sbi->raw_super_buf = raw_super_buf;
  819. mutex_init(&sbi->gc_mutex);
  820. mutex_init(&sbi->writepages);
  821. mutex_init(&sbi->cp_mutex);
  822. mutex_init(&sbi->node_write);
  823. sbi->por_doing = false;
  824. spin_lock_init(&sbi->stat_lock);
  825. init_rwsem(&sbi->read_io.io_rwsem);
  826. sbi->read_io.sbi = sbi;
  827. sbi->read_io.bio = NULL;
  828. for (i = 0; i < NR_PAGE_TYPE; i++) {
  829. init_rwsem(&sbi->write_io[i].io_rwsem);
  830. sbi->write_io[i].sbi = sbi;
  831. sbi->write_io[i].bio = NULL;
  832. }
  833. init_rwsem(&sbi->cp_rwsem);
  834. init_waitqueue_head(&sbi->cp_wait);
  835. init_sb_info(sbi);
  836. /* get an inode for meta space */
  837. sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
  838. if (IS_ERR(sbi->meta_inode)) {
  839. f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
  840. err = PTR_ERR(sbi->meta_inode);
  841. goto free_sb_buf;
  842. }
  843. err = get_valid_checkpoint(sbi);
  844. if (err) {
  845. f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
  846. goto free_meta_inode;
  847. }
  848. /* sanity checking of checkpoint */
  849. err = -EINVAL;
  850. if (sanity_check_ckpt(sbi)) {
  851. f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
  852. goto free_cp;
  853. }
  854. sbi->total_valid_node_count =
  855. le32_to_cpu(sbi->ckpt->valid_node_count);
  856. sbi->total_valid_inode_count =
  857. le32_to_cpu(sbi->ckpt->valid_inode_count);
  858. sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
  859. sbi->total_valid_block_count =
  860. le64_to_cpu(sbi->ckpt->valid_block_count);
  861. sbi->last_valid_block_count = sbi->total_valid_block_count;
  862. sbi->alloc_valid_block_count = 0;
  863. INIT_LIST_HEAD(&sbi->dir_inode_list);
  864. spin_lock_init(&sbi->dir_inode_lock);
  865. init_orphan_info(sbi);
  866. /* setup f2fs internal modules */
  867. err = build_segment_manager(sbi);
  868. if (err) {
  869. f2fs_msg(sb, KERN_ERR,
  870. "Failed to initialize F2FS segment manager");
  871. goto free_sm;
  872. }
  873. err = build_node_manager(sbi);
  874. if (err) {
  875. f2fs_msg(sb, KERN_ERR,
  876. "Failed to initialize F2FS node manager");
  877. goto free_nm;
  878. }
  879. build_gc_manager(sbi);
  880. /* get an inode for node space */
  881. sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
  882. if (IS_ERR(sbi->node_inode)) {
  883. f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
  884. err = PTR_ERR(sbi->node_inode);
  885. goto free_nm;
  886. }
  887. /* if there are nt orphan nodes free them */
  888. recover_orphan_inodes(sbi);
  889. /* read root inode and dentry */
  890. root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
  891. if (IS_ERR(root)) {
  892. f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
  893. err = PTR_ERR(root);
  894. goto free_node_inode;
  895. }
  896. if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
  897. err = -EINVAL;
  898. goto free_root_inode;
  899. }
  900. sb->s_root = d_make_root(root); /* allocate root dentry */
  901. if (!sb->s_root) {
  902. err = -ENOMEM;
  903. goto free_root_inode;
  904. }
  905. err = f2fs_build_stats(sbi);
  906. if (err)
  907. goto free_root_inode;
  908. if (f2fs_proc_root)
  909. sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
  910. if (sbi->s_proc)
  911. proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
  912. &f2fs_seq_segment_info_fops, sb);
  913. if (test_opt(sbi, DISCARD)) {
  914. struct request_queue *q = bdev_get_queue(sb->s_bdev);
  915. if (!blk_queue_discard(q))
  916. f2fs_msg(sb, KERN_WARNING,
  917. "mounting with \"discard\" option, but "
  918. "the device does not support discard");
  919. }
  920. sbi->s_kobj.kset = f2fs_kset;
  921. init_completion(&sbi->s_kobj_unregister);
  922. err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
  923. "%s", sb->s_id);
  924. if (err)
  925. goto free_proc;
  926. /* recover fsynced data */
  927. if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
  928. err = recover_fsync_data(sbi);
  929. if (err)
  930. f2fs_msg(sb, KERN_ERR,
  931. "Cannot recover all fsync data errno=%ld", err);
  932. }
  933. /*
  934. * If filesystem is not mounted as read-only then
  935. * do start the gc_thread.
  936. */
  937. if (!(sb->s_flags & MS_RDONLY)) {
  938. /* After POR, we can run background GC thread.*/
  939. err = start_gc_thread(sbi);
  940. if (err)
  941. goto free_kobj;
  942. }
  943. return 0;
  944. free_kobj:
  945. kobject_del(&sbi->s_kobj);
  946. free_proc:
  947. if (sbi->s_proc) {
  948. remove_proc_entry("segment_info", sbi->s_proc);
  949. remove_proc_entry(sb->s_id, f2fs_proc_root);
  950. }
  951. f2fs_destroy_stats(sbi);
  952. free_root_inode:
  953. dput(sb->s_root);
  954. sb->s_root = NULL;
  955. free_node_inode:
  956. iput(sbi->node_inode);
  957. free_nm:
  958. destroy_node_manager(sbi);
  959. free_sm:
  960. destroy_segment_manager(sbi);
  961. free_cp:
  962. kfree(sbi->ckpt);
  963. free_meta_inode:
  964. make_bad_inode(sbi->meta_inode);
  965. iput(sbi->meta_inode);
  966. free_sb_buf:
  967. brelse(raw_super_buf);
  968. free_sbi:
  969. kfree(sbi);
  970. return err;
  971. }
  972. static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
  973. const char *dev_name, void *data)
  974. {
  975. return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
  976. }
  977. static struct file_system_type f2fs_fs_type = {
  978. .owner = THIS_MODULE,
  979. .name = "f2fs",
  980. .mount = f2fs_mount,
  981. .kill_sb = kill_block_super,
  982. .fs_flags = FS_REQUIRES_DEV,
  983. };
  984. MODULE_ALIAS_FS("f2fs");
  985. static int __init init_inodecache(void)
  986. {
  987. f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
  988. sizeof(struct f2fs_inode_info));
  989. if (!f2fs_inode_cachep)
  990. return -ENOMEM;
  991. return 0;
  992. }
  993. static void destroy_inodecache(void)
  994. {
  995. /*
  996. * Make sure all delayed rcu free inodes are flushed before we
  997. * destroy cache.
  998. */
  999. rcu_barrier();
  1000. kmem_cache_destroy(f2fs_inode_cachep);
  1001. }
  1002. static int __init init_f2fs_fs(void)
  1003. {
  1004. int err;
  1005. err = init_inodecache();
  1006. if (err)
  1007. goto fail;
  1008. err = create_node_manager_caches();
  1009. if (err)
  1010. goto free_inodecache;
  1011. err = create_segment_manager_caches();
  1012. if (err)
  1013. goto free_node_manager_caches;
  1014. err = create_gc_caches();
  1015. if (err)
  1016. goto free_segment_manager_caches;
  1017. err = create_checkpoint_caches();
  1018. if (err)
  1019. goto free_gc_caches;
  1020. f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
  1021. if (!f2fs_kset) {
  1022. err = -ENOMEM;
  1023. goto free_checkpoint_caches;
  1024. }
  1025. err = register_filesystem(&f2fs_fs_type);
  1026. if (err)
  1027. goto free_kset;
  1028. f2fs_create_root_stats();
  1029. f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
  1030. return 0;
  1031. free_kset:
  1032. kset_unregister(f2fs_kset);
  1033. free_checkpoint_caches:
  1034. destroy_checkpoint_caches();
  1035. free_gc_caches:
  1036. destroy_gc_caches();
  1037. free_segment_manager_caches:
  1038. destroy_segment_manager_caches();
  1039. free_node_manager_caches:
  1040. destroy_node_manager_caches();
  1041. free_inodecache:
  1042. destroy_inodecache();
  1043. fail:
  1044. return err;
  1045. }
  1046. static void __exit exit_f2fs_fs(void)
  1047. {
  1048. remove_proc_entry("fs/f2fs", NULL);
  1049. f2fs_destroy_root_stats();
  1050. unregister_filesystem(&f2fs_fs_type);
  1051. destroy_checkpoint_caches();
  1052. destroy_gc_caches();
  1053. destroy_segment_manager_caches();
  1054. destroy_node_manager_caches();
  1055. destroy_inodecache();
  1056. kset_unregister(f2fs_kset);
  1057. }
  1058. module_init(init_f2fs_fs)
  1059. module_exit(exit_f2fs_fs)
  1060. MODULE_AUTHOR("Samsung Electronics's Praesto Team");
  1061. MODULE_DESCRIPTION("Flash Friendly File System");
  1062. MODULE_LICENSE("GPL");