recovery.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. /*
  2. * fs/f2fs/recovery.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include "f2fs.h"
  14. #include "node.h"
  15. #include "segment.h"
  16. static struct kmem_cache *fsync_entry_slab;
  17. bool space_for_roll_forward(struct f2fs_sb_info *sbi)
  18. {
  19. if (sbi->last_valid_block_count + sbi->alloc_valid_block_count
  20. > sbi->user_block_count)
  21. return false;
  22. return true;
  23. }
  24. static struct fsync_inode_entry *get_fsync_inode(struct list_head *head,
  25. nid_t ino)
  26. {
  27. struct fsync_inode_entry *entry;
  28. list_for_each_entry(entry, head, list)
  29. if (entry->inode->i_ino == ino)
  30. return entry;
  31. return NULL;
  32. }
  33. static int recover_dentry(struct page *ipage, struct inode *inode)
  34. {
  35. struct f2fs_inode *raw_inode = F2FS_INODE(ipage);
  36. nid_t pino = le32_to_cpu(raw_inode->i_pino);
  37. struct f2fs_dir_entry *de;
  38. struct qstr name;
  39. struct page *page;
  40. struct inode *dir, *einode;
  41. int err = 0;
  42. dir = f2fs_iget(inode->i_sb, pino);
  43. if (IS_ERR(dir)) {
  44. err = PTR_ERR(dir);
  45. goto out;
  46. }
  47. name.len = le32_to_cpu(raw_inode->i_namelen);
  48. name.name = raw_inode->i_name;
  49. if (unlikely(name.len > F2FS_NAME_LEN)) {
  50. WARN_ON(1);
  51. err = -ENAMETOOLONG;
  52. goto out_err;
  53. }
  54. retry:
  55. de = f2fs_find_entry(dir, &name, &page);
  56. if (de && inode->i_ino == le32_to_cpu(de->ino))
  57. goto out_unmap_put;
  58. if (de) {
  59. einode = f2fs_iget(inode->i_sb, le32_to_cpu(de->ino));
  60. if (IS_ERR(einode)) {
  61. WARN_ON(1);
  62. err = PTR_ERR(einode);
  63. if (err == -ENOENT)
  64. err = -EEXIST;
  65. goto out_unmap_put;
  66. }
  67. err = acquire_orphan_inode(F2FS_SB(inode->i_sb));
  68. if (err) {
  69. iput(einode);
  70. goto out_unmap_put;
  71. }
  72. f2fs_delete_entry(de, page, einode);
  73. iput(einode);
  74. goto retry;
  75. }
  76. err = __f2fs_add_link(dir, &name, inode);
  77. if (err)
  78. goto out_err;
  79. if (is_inode_flag_set(F2FS_I(dir), FI_DELAY_IPUT)) {
  80. iput(dir);
  81. } else {
  82. add_dirty_dir_inode(dir);
  83. set_inode_flag(F2FS_I(dir), FI_DELAY_IPUT);
  84. }
  85. goto out;
  86. out_unmap_put:
  87. kunmap(page);
  88. f2fs_put_page(page, 0);
  89. out_err:
  90. iput(dir);
  91. out:
  92. f2fs_msg(inode->i_sb, KERN_NOTICE,
  93. "%s: ino = %x, name = %s, dir = %lx, err = %d",
  94. __func__, ino_of_node(ipage), raw_inode->i_name,
  95. IS_ERR(dir) ? 0 : dir->i_ino, err);
  96. return err;
  97. }
  98. static int recover_inode(struct inode *inode, struct page *node_page)
  99. {
  100. struct f2fs_inode *raw_inode = F2FS_INODE(node_page);
  101. if (!IS_INODE(node_page))
  102. return 0;
  103. inode->i_mode = le16_to_cpu(raw_inode->i_mode);
  104. i_size_write(inode, le64_to_cpu(raw_inode->i_size));
  105. inode->i_atime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  106. inode->i_ctime.tv_sec = le64_to_cpu(raw_inode->i_ctime);
  107. inode->i_mtime.tv_sec = le64_to_cpu(raw_inode->i_mtime);
  108. inode->i_atime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  109. inode->i_ctime.tv_nsec = le32_to_cpu(raw_inode->i_ctime_nsec);
  110. inode->i_mtime.tv_nsec = le32_to_cpu(raw_inode->i_mtime_nsec);
  111. if (is_dent_dnode(node_page))
  112. return recover_dentry(node_page, inode);
  113. f2fs_msg(inode->i_sb, KERN_NOTICE, "recover_inode: ino = %x, name = %s",
  114. ino_of_node(node_page), raw_inode->i_name);
  115. return 0;
  116. }
  117. static int find_fsync_dnodes(struct f2fs_sb_info *sbi, struct list_head *head)
  118. {
  119. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  120. struct curseg_info *curseg;
  121. struct page *page;
  122. block_t blkaddr;
  123. int err = 0;
  124. /* get node pages in the current segment */
  125. curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
  126. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  127. /* read node page */
  128. page = alloc_page(GFP_F2FS_ZERO);
  129. if (!page)
  130. return -ENOMEM;
  131. lock_page(page);
  132. while (1) {
  133. struct fsync_inode_entry *entry;
  134. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  135. if (err)
  136. return err;
  137. lock_page(page);
  138. if (cp_ver != cpver_of_node(page))
  139. break;
  140. if (!is_fsync_dnode(page))
  141. goto next;
  142. entry = get_fsync_inode(head, ino_of_node(page));
  143. if (entry) {
  144. if (IS_INODE(page) && is_dent_dnode(page))
  145. set_inode_flag(F2FS_I(entry->inode),
  146. FI_INC_LINK);
  147. } else {
  148. if (IS_INODE(page) && is_dent_dnode(page)) {
  149. err = recover_inode_page(sbi, page);
  150. if (err)
  151. break;
  152. }
  153. /* add this fsync inode to the list */
  154. entry = kmem_cache_alloc(fsync_entry_slab, GFP_NOFS);
  155. if (!entry) {
  156. err = -ENOMEM;
  157. break;
  158. }
  159. entry->inode = f2fs_iget(sbi->sb, ino_of_node(page));
  160. if (IS_ERR(entry->inode)) {
  161. err = PTR_ERR(entry->inode);
  162. kmem_cache_free(fsync_entry_slab, entry);
  163. break;
  164. }
  165. list_add_tail(&entry->list, head);
  166. }
  167. entry->blkaddr = blkaddr;
  168. err = recover_inode(entry->inode, page);
  169. if (err && err != -ENOENT)
  170. break;
  171. next:
  172. /* check next segment */
  173. blkaddr = next_blkaddr_of_node(page);
  174. }
  175. unlock_page(page);
  176. __free_pages(page, 0);
  177. return err;
  178. }
  179. static void destroy_fsync_dnodes(struct list_head *head)
  180. {
  181. struct fsync_inode_entry *entry, *tmp;
  182. list_for_each_entry_safe(entry, tmp, head, list) {
  183. iput(entry->inode);
  184. list_del(&entry->list);
  185. kmem_cache_free(fsync_entry_slab, entry);
  186. }
  187. }
  188. static int check_index_in_prev_nodes(struct f2fs_sb_info *sbi,
  189. block_t blkaddr, struct dnode_of_data *dn)
  190. {
  191. struct seg_entry *sentry;
  192. unsigned int segno = GET_SEGNO(sbi, blkaddr);
  193. unsigned short blkoff = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
  194. struct f2fs_summary_block *sum_node;
  195. struct f2fs_summary sum;
  196. struct page *sum_page, *node_page;
  197. nid_t ino, nid;
  198. struct inode *inode;
  199. unsigned int offset;
  200. block_t bidx;
  201. int i;
  202. sentry = get_seg_entry(sbi, segno);
  203. if (!f2fs_test_bit(blkoff, sentry->cur_valid_map))
  204. return 0;
  205. /* Get the previous summary */
  206. for (i = CURSEG_WARM_DATA; i <= CURSEG_COLD_DATA; i++) {
  207. struct curseg_info *curseg = CURSEG_I(sbi, i);
  208. if (curseg->segno == segno) {
  209. sum = curseg->sum_blk->entries[blkoff];
  210. goto got_it;
  211. }
  212. }
  213. sum_page = get_sum_page(sbi, segno);
  214. sum_node = (struct f2fs_summary_block *)page_address(sum_page);
  215. sum = sum_node->entries[blkoff];
  216. f2fs_put_page(sum_page, 1);
  217. got_it:
  218. /* Use the locked dnode page and inode */
  219. nid = le32_to_cpu(sum.nid);
  220. if (dn->inode->i_ino == nid) {
  221. struct dnode_of_data tdn = *dn;
  222. tdn.nid = nid;
  223. tdn.node_page = dn->inode_page;
  224. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  225. truncate_data_blocks_range(&tdn, 1);
  226. return 0;
  227. } else if (dn->nid == nid) {
  228. struct dnode_of_data tdn = *dn;
  229. tdn.ofs_in_node = le16_to_cpu(sum.ofs_in_node);
  230. truncate_data_blocks_range(&tdn, 1);
  231. return 0;
  232. }
  233. /* Get the node page */
  234. node_page = get_node_page(sbi, nid);
  235. if (IS_ERR(node_page))
  236. return PTR_ERR(node_page);
  237. offset = ofs_of_node(node_page);
  238. ino = ino_of_node(node_page);
  239. f2fs_put_page(node_page, 1);
  240. /* Deallocate previous index in the node page */
  241. inode = f2fs_iget(sbi->sb, ino);
  242. if (IS_ERR(inode))
  243. return PTR_ERR(inode);
  244. bidx = start_bidx_of_node(offset, F2FS_I(inode)) +
  245. le16_to_cpu(sum.ofs_in_node);
  246. truncate_hole(inode, bidx, bidx + 1);
  247. iput(inode);
  248. return 0;
  249. }
  250. static int do_recover_data(struct f2fs_sb_info *sbi, struct inode *inode,
  251. struct page *page, block_t blkaddr)
  252. {
  253. struct f2fs_inode_info *fi = F2FS_I(inode);
  254. unsigned int start, end;
  255. struct dnode_of_data dn;
  256. struct f2fs_summary sum;
  257. struct node_info ni;
  258. int err = 0, recovered = 0;
  259. if (recover_inline_data(inode, page))
  260. goto out;
  261. if (recover_xattr_data(inode, page, blkaddr))
  262. goto out;
  263. start = start_bidx_of_node(ofs_of_node(page), fi);
  264. end = start + ADDRS_PER_PAGE(page, fi);
  265. f2fs_lock_op(sbi);
  266. set_new_dnode(&dn, inode, NULL, NULL, 0);
  267. err = get_dnode_of_data(&dn, start, ALLOC_NODE);
  268. if (err) {
  269. f2fs_unlock_op(sbi);
  270. goto out;
  271. }
  272. f2fs_wait_on_page_writeback(dn.node_page, NODE);
  273. get_node_info(sbi, dn.nid, &ni);
  274. f2fs_bug_on(ni.ino != ino_of_node(page));
  275. f2fs_bug_on(ofs_of_node(dn.node_page) != ofs_of_node(page));
  276. for (; start < end; start++) {
  277. block_t src, dest;
  278. src = datablock_addr(dn.node_page, dn.ofs_in_node);
  279. dest = datablock_addr(page, dn.ofs_in_node);
  280. if (src != dest && dest != NEW_ADDR && dest != NULL_ADDR) {
  281. if (src == NULL_ADDR) {
  282. err = reserve_new_block(&dn);
  283. /* We should not get -ENOSPC */
  284. f2fs_bug_on(err);
  285. }
  286. /* Check the previous node page having this index */
  287. err = check_index_in_prev_nodes(sbi, dest, &dn);
  288. if (err)
  289. goto err;
  290. set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
  291. /* write dummy data page */
  292. recover_data_page(sbi, NULL, &sum, src, dest);
  293. update_extent_cache(dest, &dn);
  294. recovered++;
  295. }
  296. dn.ofs_in_node++;
  297. }
  298. /* write node page in place */
  299. set_summary(&sum, dn.nid, 0, 0);
  300. if (IS_INODE(dn.node_page))
  301. sync_inode_page(&dn);
  302. copy_node_footer(dn.node_page, page);
  303. fill_node_footer(dn.node_page, dn.nid, ni.ino,
  304. ofs_of_node(page), false);
  305. set_page_dirty(dn.node_page);
  306. recover_node_page(sbi, dn.node_page, &sum, &ni, blkaddr);
  307. err:
  308. f2fs_put_dnode(&dn);
  309. f2fs_unlock_op(sbi);
  310. out:
  311. f2fs_msg(sbi->sb, KERN_NOTICE,
  312. "recover_data: ino = %lx, recovered = %d blocks, err = %d",
  313. inode->i_ino, recovered, err);
  314. return err;
  315. }
  316. static int recover_data(struct f2fs_sb_info *sbi,
  317. struct list_head *head, int type)
  318. {
  319. unsigned long long cp_ver = cur_cp_version(F2FS_CKPT(sbi));
  320. struct curseg_info *curseg;
  321. struct page *page;
  322. int err = 0;
  323. block_t blkaddr;
  324. /* get node pages in the current segment */
  325. curseg = CURSEG_I(sbi, type);
  326. blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
  327. /* read node page */
  328. page = alloc_page(GFP_F2FS_ZERO);
  329. if (!page)
  330. return -ENOMEM;
  331. lock_page(page);
  332. while (1) {
  333. struct fsync_inode_entry *entry;
  334. err = f2fs_submit_page_bio(sbi, page, blkaddr, READ_SYNC);
  335. if (err)
  336. return err;
  337. lock_page(page);
  338. if (cp_ver != cpver_of_node(page))
  339. break;
  340. entry = get_fsync_inode(head, ino_of_node(page));
  341. if (!entry)
  342. goto next;
  343. err = do_recover_data(sbi, entry->inode, page, blkaddr);
  344. if (err)
  345. break;
  346. if (entry->blkaddr == blkaddr) {
  347. iput(entry->inode);
  348. list_del(&entry->list);
  349. kmem_cache_free(fsync_entry_slab, entry);
  350. }
  351. next:
  352. /* check next segment */
  353. blkaddr = next_blkaddr_of_node(page);
  354. }
  355. unlock_page(page);
  356. __free_pages(page, 0);
  357. if (!err)
  358. allocate_new_segments(sbi);
  359. return err;
  360. }
  361. int recover_fsync_data(struct f2fs_sb_info *sbi)
  362. {
  363. struct list_head inode_list;
  364. int err;
  365. bool need_writecp = false;
  366. fsync_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
  367. sizeof(struct fsync_inode_entry));
  368. if (!fsync_entry_slab)
  369. return -ENOMEM;
  370. INIT_LIST_HEAD(&inode_list);
  371. /* step #1: find fsynced inode numbers */
  372. sbi->por_doing = true;
  373. err = find_fsync_dnodes(sbi, &inode_list);
  374. if (err)
  375. goto out;
  376. if (list_empty(&inode_list))
  377. goto out;
  378. need_writecp = true;
  379. /* step #2: recover data */
  380. err = recover_data(sbi, &inode_list, CURSEG_WARM_NODE);
  381. f2fs_bug_on(!list_empty(&inode_list));
  382. out:
  383. destroy_fsync_dnodes(&inode_list);
  384. kmem_cache_destroy(fsync_entry_slab);
  385. sbi->por_doing = false;
  386. if (!err && need_writecp)
  387. write_checkpoint(sbi, false);
  388. return err;
  389. }