node.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  23. static struct kmem_cache *nat_entry_slab;
  24. static struct kmem_cache *free_nid_slab;
  25. bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  26. {
  27. struct f2fs_nm_info *nm_i = NM_I(sbi);
  28. struct sysinfo val;
  29. unsigned long mem_size = 0;
  30. bool res = false;
  31. si_meminfo(&val);
  32. /* give 25%, 25%, 50% memory for each components respectively */
  33. if (type == FREE_NIDS) {
  34. mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >> 12;
  35. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  36. } else if (type == NAT_ENTRIES) {
  37. mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> 12;
  38. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 2);
  39. } else if (type == DIRTY_DENTS) {
  40. if (sbi->sb->s_bdi->dirty_exceeded)
  41. return false;
  42. mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  43. res = mem_size < ((val.totalram * nm_i->ram_thresh / 100) >> 1);
  44. }
  45. return res;
  46. }
  47. static void clear_node_page_dirty(struct page *page)
  48. {
  49. struct address_space *mapping = page->mapping;
  50. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  51. unsigned int long flags;
  52. if (PageDirty(page)) {
  53. spin_lock_irqsave(&mapping->tree_lock, flags);
  54. radix_tree_tag_clear(&mapping->page_tree,
  55. page_index(page),
  56. PAGECACHE_TAG_DIRTY);
  57. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  58. clear_page_dirty_for_io(page);
  59. dec_page_count(sbi, F2FS_DIRTY_NODES);
  60. }
  61. ClearPageUptodate(page);
  62. }
  63. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  64. {
  65. pgoff_t index = current_nat_addr(sbi, nid);
  66. return get_meta_page(sbi, index);
  67. }
  68. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  69. {
  70. struct page *src_page;
  71. struct page *dst_page;
  72. pgoff_t src_off;
  73. pgoff_t dst_off;
  74. void *src_addr;
  75. void *dst_addr;
  76. struct f2fs_nm_info *nm_i = NM_I(sbi);
  77. src_off = current_nat_addr(sbi, nid);
  78. dst_off = next_nat_addr(sbi, src_off);
  79. /* get current nat block page with lock */
  80. src_page = get_meta_page(sbi, src_off);
  81. /* Dirty src_page means that it is already the new target NAT page. */
  82. if (PageDirty(src_page))
  83. return src_page;
  84. dst_page = grab_meta_page(sbi, dst_off);
  85. src_addr = page_address(src_page);
  86. dst_addr = page_address(dst_page);
  87. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  88. set_page_dirty(dst_page);
  89. f2fs_put_page(src_page, 1);
  90. set_to_next_nat(nm_i, nid);
  91. return dst_page;
  92. }
  93. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  94. {
  95. return radix_tree_lookup(&nm_i->nat_root, n);
  96. }
  97. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  98. nid_t start, unsigned int nr, struct nat_entry **ep)
  99. {
  100. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  101. }
  102. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  103. {
  104. list_del(&e->list);
  105. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  106. nm_i->nat_cnt--;
  107. kmem_cache_free(nat_entry_slab, e);
  108. }
  109. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  110. {
  111. struct f2fs_nm_info *nm_i = NM_I(sbi);
  112. struct nat_entry *e;
  113. int is_cp = 1;
  114. read_lock(&nm_i->nat_tree_lock);
  115. e = __lookup_nat_cache(nm_i, nid);
  116. if (e && !e->checkpointed)
  117. is_cp = 0;
  118. read_unlock(&nm_i->nat_tree_lock);
  119. return is_cp;
  120. }
  121. bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
  122. {
  123. struct f2fs_nm_info *nm_i = NM_I(sbi);
  124. struct nat_entry *e;
  125. bool fsync_done = false;
  126. read_lock(&nm_i->nat_tree_lock);
  127. e = __lookup_nat_cache(nm_i, nid);
  128. if (e)
  129. fsync_done = e->fsync_done;
  130. read_unlock(&nm_i->nat_tree_lock);
  131. return fsync_done;
  132. }
  133. void fsync_mark_clear(struct f2fs_sb_info *sbi, nid_t nid)
  134. {
  135. struct f2fs_nm_info *nm_i = NM_I(sbi);
  136. struct nat_entry *e;
  137. write_lock(&nm_i->nat_tree_lock);
  138. e = __lookup_nat_cache(nm_i, nid);
  139. if (e)
  140. e->fsync_done = false;
  141. write_unlock(&nm_i->nat_tree_lock);
  142. }
  143. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  144. {
  145. struct nat_entry *new;
  146. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  147. if (!new)
  148. return NULL;
  149. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  150. kmem_cache_free(nat_entry_slab, new);
  151. return NULL;
  152. }
  153. memset(new, 0, sizeof(struct nat_entry));
  154. nat_set_nid(new, nid);
  155. new->checkpointed = true;
  156. list_add_tail(&new->list, &nm_i->nat_entries);
  157. nm_i->nat_cnt++;
  158. return new;
  159. }
  160. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  161. struct f2fs_nat_entry *ne)
  162. {
  163. struct nat_entry *e;
  164. retry:
  165. write_lock(&nm_i->nat_tree_lock);
  166. e = __lookup_nat_cache(nm_i, nid);
  167. if (!e) {
  168. e = grab_nat_entry(nm_i, nid);
  169. if (!e) {
  170. write_unlock(&nm_i->nat_tree_lock);
  171. goto retry;
  172. }
  173. node_info_from_raw_nat(&e->ni, ne);
  174. }
  175. write_unlock(&nm_i->nat_tree_lock);
  176. }
  177. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  178. block_t new_blkaddr, bool fsync_done)
  179. {
  180. struct f2fs_nm_info *nm_i = NM_I(sbi);
  181. struct nat_entry *e;
  182. retry:
  183. write_lock(&nm_i->nat_tree_lock);
  184. e = __lookup_nat_cache(nm_i, ni->nid);
  185. if (!e) {
  186. e = grab_nat_entry(nm_i, ni->nid);
  187. if (!e) {
  188. write_unlock(&nm_i->nat_tree_lock);
  189. goto retry;
  190. }
  191. e->ni = *ni;
  192. f2fs_bug_on(ni->blk_addr == NEW_ADDR);
  193. } else if (new_blkaddr == NEW_ADDR) {
  194. /*
  195. * when nid is reallocated,
  196. * previous nat entry can be remained in nat cache.
  197. * So, reinitialize it with new information.
  198. */
  199. e->ni = *ni;
  200. f2fs_bug_on(ni->blk_addr != NULL_ADDR);
  201. }
  202. /* sanity check */
  203. f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
  204. f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
  205. new_blkaddr == NULL_ADDR);
  206. f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
  207. new_blkaddr == NEW_ADDR);
  208. f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
  209. nat_get_blkaddr(e) != NULL_ADDR &&
  210. new_blkaddr == NEW_ADDR);
  211. /* increament version no as node is removed */
  212. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  213. unsigned char version = nat_get_version(e);
  214. nat_set_version(e, inc_node_version(version));
  215. }
  216. /* change address */
  217. nat_set_blkaddr(e, new_blkaddr);
  218. __set_nat_cache_dirty(nm_i, e);
  219. /* update fsync_mark if its inode nat entry is still alive */
  220. e = __lookup_nat_cache(nm_i, ni->ino);
  221. if (e)
  222. e->fsync_done = fsync_done;
  223. write_unlock(&nm_i->nat_tree_lock);
  224. }
  225. int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  226. {
  227. struct f2fs_nm_info *nm_i = NM_I(sbi);
  228. if (available_free_memory(sbi, NAT_ENTRIES))
  229. return 0;
  230. write_lock(&nm_i->nat_tree_lock);
  231. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  232. struct nat_entry *ne;
  233. ne = list_first_entry(&nm_i->nat_entries,
  234. struct nat_entry, list);
  235. __del_from_nat_cache(nm_i, ne);
  236. nr_shrink--;
  237. }
  238. write_unlock(&nm_i->nat_tree_lock);
  239. return nr_shrink;
  240. }
  241. /*
  242. * This function returns always success
  243. */
  244. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  245. {
  246. struct f2fs_nm_info *nm_i = NM_I(sbi);
  247. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  248. struct f2fs_summary_block *sum = curseg->sum_blk;
  249. nid_t start_nid = START_NID(nid);
  250. struct f2fs_nat_block *nat_blk;
  251. struct page *page = NULL;
  252. struct f2fs_nat_entry ne;
  253. struct nat_entry *e;
  254. int i;
  255. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  256. ni->nid = nid;
  257. /* Check nat cache */
  258. read_lock(&nm_i->nat_tree_lock);
  259. e = __lookup_nat_cache(nm_i, nid);
  260. if (e) {
  261. ni->ino = nat_get_ino(e);
  262. ni->blk_addr = nat_get_blkaddr(e);
  263. ni->version = nat_get_version(e);
  264. }
  265. read_unlock(&nm_i->nat_tree_lock);
  266. if (e)
  267. return;
  268. /* Check current segment summary */
  269. mutex_lock(&curseg->curseg_mutex);
  270. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  271. if (i >= 0) {
  272. ne = nat_in_journal(sum, i);
  273. node_info_from_raw_nat(ni, &ne);
  274. }
  275. mutex_unlock(&curseg->curseg_mutex);
  276. if (i >= 0)
  277. goto cache;
  278. /* Fill node_info from nat page */
  279. page = get_current_nat_page(sbi, start_nid);
  280. nat_blk = (struct f2fs_nat_block *)page_address(page);
  281. ne = nat_blk->entries[nid - start_nid];
  282. node_info_from_raw_nat(ni, &ne);
  283. f2fs_put_page(page, 1);
  284. cache:
  285. /* cache nat entry */
  286. cache_nat_entry(NM_I(sbi), nid, &ne);
  287. }
  288. /*
  289. * The maximum depth is four.
  290. * Offset[0] will have raw inode offset.
  291. */
  292. static int get_node_path(struct f2fs_inode_info *fi, long block,
  293. int offset[4], unsigned int noffset[4])
  294. {
  295. const long direct_index = ADDRS_PER_INODE(fi);
  296. const long direct_blks = ADDRS_PER_BLOCK;
  297. const long dptrs_per_blk = NIDS_PER_BLOCK;
  298. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  299. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  300. int n = 0;
  301. int level = 0;
  302. noffset[0] = 0;
  303. if (block < direct_index) {
  304. offset[n] = block;
  305. goto got;
  306. }
  307. block -= direct_index;
  308. if (block < direct_blks) {
  309. offset[n++] = NODE_DIR1_BLOCK;
  310. noffset[n] = 1;
  311. offset[n] = block;
  312. level = 1;
  313. goto got;
  314. }
  315. block -= direct_blks;
  316. if (block < direct_blks) {
  317. offset[n++] = NODE_DIR2_BLOCK;
  318. noffset[n] = 2;
  319. offset[n] = block;
  320. level = 1;
  321. goto got;
  322. }
  323. block -= direct_blks;
  324. if (block < indirect_blks) {
  325. offset[n++] = NODE_IND1_BLOCK;
  326. noffset[n] = 3;
  327. offset[n++] = block / direct_blks;
  328. noffset[n] = 4 + offset[n - 1];
  329. offset[n] = block % direct_blks;
  330. level = 2;
  331. goto got;
  332. }
  333. block -= indirect_blks;
  334. if (block < indirect_blks) {
  335. offset[n++] = NODE_IND2_BLOCK;
  336. noffset[n] = 4 + dptrs_per_blk;
  337. offset[n++] = block / direct_blks;
  338. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  339. offset[n] = block % direct_blks;
  340. level = 2;
  341. goto got;
  342. }
  343. block -= indirect_blks;
  344. if (block < dindirect_blks) {
  345. offset[n++] = NODE_DIND_BLOCK;
  346. noffset[n] = 5 + (dptrs_per_blk * 2);
  347. offset[n++] = block / indirect_blks;
  348. noffset[n] = 6 + (dptrs_per_blk * 2) +
  349. offset[n - 1] * (dptrs_per_blk + 1);
  350. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  351. noffset[n] = 7 + (dptrs_per_blk * 2) +
  352. offset[n - 2] * (dptrs_per_blk + 1) +
  353. offset[n - 1];
  354. offset[n] = block % direct_blks;
  355. level = 3;
  356. goto got;
  357. } else {
  358. BUG();
  359. }
  360. got:
  361. return level;
  362. }
  363. /*
  364. * Caller should call f2fs_put_dnode(dn).
  365. * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
  366. * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
  367. * In the case of RDONLY_NODE, we don't need to care about mutex.
  368. */
  369. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  370. {
  371. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  372. struct page *npage[4];
  373. struct page *parent;
  374. int offset[4];
  375. unsigned int noffset[4];
  376. nid_t nids[4];
  377. int level, i;
  378. int err = 0;
  379. level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
  380. nids[0] = dn->inode->i_ino;
  381. npage[0] = dn->inode_page;
  382. if (!npage[0]) {
  383. npage[0] = get_node_page(sbi, nids[0]);
  384. if (IS_ERR(npage[0]))
  385. return PTR_ERR(npage[0]);
  386. }
  387. parent = npage[0];
  388. if (level != 0)
  389. nids[1] = get_nid(parent, offset[0], true);
  390. dn->inode_page = npage[0];
  391. dn->inode_page_locked = true;
  392. /* get indirect or direct nodes */
  393. for (i = 1; i <= level; i++) {
  394. bool done = false;
  395. if (!nids[i] && mode == ALLOC_NODE) {
  396. /* alloc new node */
  397. if (!alloc_nid(sbi, &(nids[i]))) {
  398. err = -ENOSPC;
  399. goto release_pages;
  400. }
  401. dn->nid = nids[i];
  402. npage[i] = new_node_page(dn, noffset[i], NULL);
  403. if (IS_ERR(npage[i])) {
  404. alloc_nid_failed(sbi, nids[i]);
  405. err = PTR_ERR(npage[i]);
  406. goto release_pages;
  407. }
  408. set_nid(parent, offset[i - 1], nids[i], i == 1);
  409. alloc_nid_done(sbi, nids[i]);
  410. done = true;
  411. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  412. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  413. if (IS_ERR(npage[i])) {
  414. err = PTR_ERR(npage[i]);
  415. goto release_pages;
  416. }
  417. done = true;
  418. }
  419. if (i == 1) {
  420. dn->inode_page_locked = false;
  421. unlock_page(parent);
  422. } else {
  423. f2fs_put_page(parent, 1);
  424. }
  425. if (!done) {
  426. npage[i] = get_node_page(sbi, nids[i]);
  427. if (IS_ERR(npage[i])) {
  428. err = PTR_ERR(npage[i]);
  429. f2fs_put_page(npage[0], 0);
  430. goto release_out;
  431. }
  432. }
  433. if (i < level) {
  434. parent = npage[i];
  435. nids[i + 1] = get_nid(parent, offset[i], false);
  436. }
  437. }
  438. dn->nid = nids[level];
  439. dn->ofs_in_node = offset[level];
  440. dn->node_page = npage[level];
  441. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  442. return 0;
  443. release_pages:
  444. f2fs_put_page(parent, 1);
  445. if (i > 1)
  446. f2fs_put_page(npage[0], 0);
  447. release_out:
  448. dn->inode_page = NULL;
  449. dn->node_page = NULL;
  450. return err;
  451. }
  452. static void truncate_node(struct dnode_of_data *dn)
  453. {
  454. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  455. struct node_info ni;
  456. get_node_info(sbi, dn->nid, &ni);
  457. if (dn->inode->i_blocks == 0) {
  458. f2fs_bug_on(ni.blk_addr != NULL_ADDR);
  459. goto invalidate;
  460. }
  461. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  462. /* Deallocate node address */
  463. invalidate_blocks(sbi, ni.blk_addr);
  464. dec_valid_node_count(sbi, dn->inode);
  465. set_node_addr(sbi, &ni, NULL_ADDR, false);
  466. if (dn->nid == dn->inode->i_ino) {
  467. remove_orphan_inode(sbi, dn->nid);
  468. dec_valid_inode_count(sbi);
  469. } else {
  470. sync_inode_page(dn);
  471. }
  472. invalidate:
  473. clear_node_page_dirty(dn->node_page);
  474. F2FS_SET_SB_DIRT(sbi);
  475. f2fs_put_page(dn->node_page, 1);
  476. invalidate_mapping_pages(NODE_MAPPING(sbi),
  477. dn->node_page->index, dn->node_page->index);
  478. dn->node_page = NULL;
  479. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  480. }
  481. static int truncate_dnode(struct dnode_of_data *dn)
  482. {
  483. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  484. struct page *page;
  485. if (dn->nid == 0)
  486. return 1;
  487. /* get direct node */
  488. page = get_node_page(sbi, dn->nid);
  489. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  490. return 1;
  491. else if (IS_ERR(page))
  492. return PTR_ERR(page);
  493. /* Make dnode_of_data for parameter */
  494. dn->node_page = page;
  495. dn->ofs_in_node = 0;
  496. truncate_data_blocks(dn);
  497. truncate_node(dn);
  498. return 1;
  499. }
  500. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  501. int ofs, int depth)
  502. {
  503. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  504. struct dnode_of_data rdn = *dn;
  505. struct page *page;
  506. struct f2fs_node *rn;
  507. nid_t child_nid;
  508. unsigned int child_nofs;
  509. int freed = 0;
  510. int i, ret;
  511. if (dn->nid == 0)
  512. return NIDS_PER_BLOCK + 1;
  513. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  514. page = get_node_page(sbi, dn->nid);
  515. if (IS_ERR(page)) {
  516. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  517. return PTR_ERR(page);
  518. }
  519. rn = F2FS_NODE(page);
  520. if (depth < 3) {
  521. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  522. child_nid = le32_to_cpu(rn->in.nid[i]);
  523. if (child_nid == 0)
  524. continue;
  525. rdn.nid = child_nid;
  526. ret = truncate_dnode(&rdn);
  527. if (ret < 0)
  528. goto out_err;
  529. set_nid(page, i, 0, false);
  530. }
  531. } else {
  532. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  533. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  534. child_nid = le32_to_cpu(rn->in.nid[i]);
  535. if (child_nid == 0) {
  536. child_nofs += NIDS_PER_BLOCK + 1;
  537. continue;
  538. }
  539. rdn.nid = child_nid;
  540. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  541. if (ret == (NIDS_PER_BLOCK + 1)) {
  542. set_nid(page, i, 0, false);
  543. child_nofs += ret;
  544. } else if (ret < 0 && ret != -ENOENT) {
  545. goto out_err;
  546. }
  547. }
  548. freed = child_nofs;
  549. }
  550. if (!ofs) {
  551. /* remove current indirect node */
  552. dn->node_page = page;
  553. truncate_node(dn);
  554. freed++;
  555. } else {
  556. f2fs_put_page(page, 1);
  557. }
  558. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  559. return freed;
  560. out_err:
  561. f2fs_put_page(page, 1);
  562. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  563. return ret;
  564. }
  565. static int truncate_partial_nodes(struct dnode_of_data *dn,
  566. struct f2fs_inode *ri, int *offset, int depth)
  567. {
  568. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  569. struct page *pages[2];
  570. nid_t nid[3];
  571. nid_t child_nid;
  572. int err = 0;
  573. int i;
  574. int idx = depth - 2;
  575. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  576. if (!nid[0])
  577. return 0;
  578. /* get indirect nodes in the path */
  579. for (i = 0; i < idx + 1; i++) {
  580. /* refernece count'll be increased */
  581. pages[i] = get_node_page(sbi, nid[i]);
  582. if (IS_ERR(pages[i])) {
  583. err = PTR_ERR(pages[i]);
  584. idx = i - 1;
  585. goto fail;
  586. }
  587. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  588. }
  589. /* free direct nodes linked to a partial indirect node */
  590. for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
  591. child_nid = get_nid(pages[idx], i, false);
  592. if (!child_nid)
  593. continue;
  594. dn->nid = child_nid;
  595. err = truncate_dnode(dn);
  596. if (err < 0)
  597. goto fail;
  598. set_nid(pages[idx], i, 0, false);
  599. }
  600. if (offset[idx + 1] == 0) {
  601. dn->node_page = pages[idx];
  602. dn->nid = nid[idx];
  603. truncate_node(dn);
  604. } else {
  605. f2fs_put_page(pages[idx], 1);
  606. }
  607. offset[idx]++;
  608. offset[idx + 1] = 0;
  609. idx--;
  610. fail:
  611. for (i = idx; i >= 0; i--)
  612. f2fs_put_page(pages[i], 1);
  613. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  614. return err;
  615. }
  616. /*
  617. * All the block addresses of data and nodes should be nullified.
  618. */
  619. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  620. {
  621. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  622. int err = 0, cont = 1;
  623. int level, offset[4], noffset[4];
  624. unsigned int nofs = 0;
  625. struct f2fs_inode *ri;
  626. struct dnode_of_data dn;
  627. struct page *page;
  628. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  629. level = get_node_path(F2FS_I(inode), from, offset, noffset);
  630. restart:
  631. page = get_node_page(sbi, inode->i_ino);
  632. if (IS_ERR(page)) {
  633. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  634. return PTR_ERR(page);
  635. }
  636. set_new_dnode(&dn, inode, page, NULL, 0);
  637. unlock_page(page);
  638. ri = F2FS_INODE(page);
  639. switch (level) {
  640. case 0:
  641. case 1:
  642. nofs = noffset[1];
  643. break;
  644. case 2:
  645. nofs = noffset[1];
  646. if (!offset[level - 1])
  647. goto skip_partial;
  648. err = truncate_partial_nodes(&dn, ri, offset, level);
  649. if (err < 0 && err != -ENOENT)
  650. goto fail;
  651. nofs += 1 + NIDS_PER_BLOCK;
  652. break;
  653. case 3:
  654. nofs = 5 + 2 * NIDS_PER_BLOCK;
  655. if (!offset[level - 1])
  656. goto skip_partial;
  657. err = truncate_partial_nodes(&dn, ri, offset, level);
  658. if (err < 0 && err != -ENOENT)
  659. goto fail;
  660. break;
  661. default:
  662. BUG();
  663. }
  664. skip_partial:
  665. while (cont) {
  666. dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  667. switch (offset[0]) {
  668. case NODE_DIR1_BLOCK:
  669. case NODE_DIR2_BLOCK:
  670. err = truncate_dnode(&dn);
  671. break;
  672. case NODE_IND1_BLOCK:
  673. case NODE_IND2_BLOCK:
  674. err = truncate_nodes(&dn, nofs, offset[1], 2);
  675. break;
  676. case NODE_DIND_BLOCK:
  677. err = truncate_nodes(&dn, nofs, offset[1], 3);
  678. cont = 0;
  679. break;
  680. default:
  681. BUG();
  682. }
  683. if (err < 0 && err != -ENOENT)
  684. goto fail;
  685. if (offset[1] == 0 &&
  686. ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  687. lock_page(page);
  688. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  689. f2fs_put_page(page, 1);
  690. goto restart;
  691. }
  692. f2fs_wait_on_page_writeback(page, NODE);
  693. ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  694. set_page_dirty(page);
  695. unlock_page(page);
  696. }
  697. offset[1] = 0;
  698. offset[0]++;
  699. nofs += err;
  700. }
  701. fail:
  702. f2fs_put_page(page, 0);
  703. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  704. return err > 0 ? 0 : err;
  705. }
  706. int truncate_xattr_node(struct inode *inode, struct page *page)
  707. {
  708. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  709. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  710. struct dnode_of_data dn;
  711. struct page *npage;
  712. if (!nid)
  713. return 0;
  714. npage = get_node_page(sbi, nid);
  715. if (IS_ERR(npage))
  716. return PTR_ERR(npage);
  717. F2FS_I(inode)->i_xattr_nid = 0;
  718. /* need to do checkpoint during fsync */
  719. F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
  720. set_new_dnode(&dn, inode, page, npage, nid);
  721. if (page)
  722. dn.inode_page_locked = true;
  723. truncate_node(&dn);
  724. return 0;
  725. }
  726. /*
  727. * Caller should grab and release a rwsem by calling f2fs_lock_op() and
  728. * f2fs_unlock_op().
  729. */
  730. void remove_inode_page(struct inode *inode)
  731. {
  732. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  733. struct page *page;
  734. nid_t ino = inode->i_ino;
  735. struct dnode_of_data dn;
  736. page = get_node_page(sbi, ino);
  737. if (IS_ERR(page))
  738. return;
  739. if (truncate_xattr_node(inode, page)) {
  740. f2fs_put_page(page, 1);
  741. return;
  742. }
  743. /* 0 is possible, after f2fs_new_inode() is failed */
  744. f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
  745. set_new_dnode(&dn, inode, page, page, ino);
  746. truncate_node(&dn);
  747. }
  748. struct page *new_inode_page(struct inode *inode, const struct qstr *name)
  749. {
  750. struct dnode_of_data dn;
  751. /* allocate inode page for new inode */
  752. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  753. /* caller should f2fs_put_page(page, 1); */
  754. return new_node_page(&dn, 0, NULL);
  755. }
  756. struct page *new_node_page(struct dnode_of_data *dn,
  757. unsigned int ofs, struct page *ipage)
  758. {
  759. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  760. struct node_info old_ni, new_ni;
  761. struct page *page;
  762. int err;
  763. if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
  764. return ERR_PTR(-EPERM);
  765. page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
  766. if (!page)
  767. return ERR_PTR(-ENOMEM);
  768. if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
  769. err = -ENOSPC;
  770. goto fail;
  771. }
  772. get_node_info(sbi, dn->nid, &old_ni);
  773. /* Reinitialize old_ni with new node page */
  774. f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
  775. new_ni = old_ni;
  776. new_ni.ino = dn->inode->i_ino;
  777. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  778. f2fs_wait_on_page_writeback(page, NODE);
  779. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  780. set_cold_node(dn->inode, page);
  781. SetPageUptodate(page);
  782. set_page_dirty(page);
  783. if (f2fs_has_xattr_block(ofs))
  784. F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
  785. dn->node_page = page;
  786. if (ipage)
  787. update_inode(dn->inode, ipage);
  788. else
  789. sync_inode_page(dn);
  790. if (ofs == 0)
  791. inc_valid_inode_count(sbi);
  792. return page;
  793. fail:
  794. clear_node_page_dirty(page);
  795. f2fs_put_page(page, 1);
  796. return ERR_PTR(err);
  797. }
  798. /*
  799. * Caller should do after getting the following values.
  800. * 0: f2fs_put_page(page, 0)
  801. * LOCKED_PAGE: f2fs_put_page(page, 1)
  802. * error: nothing
  803. */
  804. static int read_node_page(struct page *page, int rw)
  805. {
  806. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  807. struct node_info ni;
  808. get_node_info(sbi, page->index, &ni);
  809. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  810. f2fs_put_page(page, 1);
  811. return -ENOENT;
  812. }
  813. if (PageUptodate(page))
  814. return LOCKED_PAGE;
  815. return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
  816. }
  817. /*
  818. * Readahead a node page
  819. */
  820. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  821. {
  822. struct page *apage;
  823. int err;
  824. apage = find_get_page(NODE_MAPPING(sbi), nid);
  825. if (apage && PageUptodate(apage)) {
  826. f2fs_put_page(apage, 0);
  827. return;
  828. }
  829. f2fs_put_page(apage, 0);
  830. apage = grab_cache_page(NODE_MAPPING(sbi), nid);
  831. if (!apage)
  832. return;
  833. err = read_node_page(apage, READA);
  834. if (err == 0)
  835. f2fs_put_page(apage, 0);
  836. else if (err == LOCKED_PAGE)
  837. f2fs_put_page(apage, 1);
  838. }
  839. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  840. {
  841. struct page *page;
  842. int err;
  843. repeat:
  844. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  845. if (!page)
  846. return ERR_PTR(-ENOMEM);
  847. err = read_node_page(page, READ_SYNC);
  848. if (err < 0)
  849. return ERR_PTR(err);
  850. else if (err == LOCKED_PAGE)
  851. goto got_it;
  852. lock_page(page);
  853. if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
  854. f2fs_put_page(page, 1);
  855. return ERR_PTR(-EIO);
  856. }
  857. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  858. f2fs_put_page(page, 1);
  859. goto repeat;
  860. }
  861. got_it:
  862. return page;
  863. }
  864. /*
  865. * Return a locked page for the desired node page.
  866. * And, readahead MAX_RA_NODE number of node pages.
  867. */
  868. struct page *get_node_page_ra(struct page *parent, int start)
  869. {
  870. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  871. struct blk_plug plug;
  872. struct page *page;
  873. int err, i, end;
  874. nid_t nid;
  875. /* First, try getting the desired direct node. */
  876. nid = get_nid(parent, start, false);
  877. if (!nid)
  878. return ERR_PTR(-ENOENT);
  879. repeat:
  880. page = grab_cache_page(NODE_MAPPING(sbi), nid);
  881. if (!page)
  882. return ERR_PTR(-ENOMEM);
  883. err = read_node_page(page, READ_SYNC);
  884. if (err < 0)
  885. return ERR_PTR(err);
  886. else if (err == LOCKED_PAGE)
  887. goto page_hit;
  888. blk_start_plug(&plug);
  889. /* Then, try readahead for siblings of the desired node */
  890. end = start + MAX_RA_NODE;
  891. end = min(end, NIDS_PER_BLOCK);
  892. for (i = start + 1; i < end; i++) {
  893. nid = get_nid(parent, i, false);
  894. if (!nid)
  895. continue;
  896. ra_node_page(sbi, nid);
  897. }
  898. blk_finish_plug(&plug);
  899. lock_page(page);
  900. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  901. f2fs_put_page(page, 1);
  902. goto repeat;
  903. }
  904. page_hit:
  905. if (unlikely(!PageUptodate(page))) {
  906. f2fs_put_page(page, 1);
  907. return ERR_PTR(-EIO);
  908. }
  909. return page;
  910. }
  911. void sync_inode_page(struct dnode_of_data *dn)
  912. {
  913. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  914. update_inode(dn->inode, dn->node_page);
  915. } else if (dn->inode_page) {
  916. if (!dn->inode_page_locked)
  917. lock_page(dn->inode_page);
  918. update_inode(dn->inode, dn->inode_page);
  919. if (!dn->inode_page_locked)
  920. unlock_page(dn->inode_page);
  921. } else {
  922. update_inode_page(dn->inode);
  923. }
  924. }
  925. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  926. struct writeback_control *wbc)
  927. {
  928. pgoff_t index, end;
  929. struct pagevec pvec;
  930. int step = ino ? 2 : 0;
  931. int nwritten = 0, wrote = 0;
  932. pagevec_init(&pvec, 0);
  933. next_step:
  934. index = 0;
  935. end = LONG_MAX;
  936. while (index <= end) {
  937. int i, nr_pages;
  938. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  939. PAGECACHE_TAG_DIRTY,
  940. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  941. if (nr_pages == 0)
  942. break;
  943. for (i = 0; i < nr_pages; i++) {
  944. struct page *page = pvec.pages[i];
  945. /*
  946. * flushing sequence with step:
  947. * 0. indirect nodes
  948. * 1. dentry dnodes
  949. * 2. file dnodes
  950. */
  951. if (step == 0 && IS_DNODE(page))
  952. continue;
  953. if (step == 1 && (!IS_DNODE(page) ||
  954. is_cold_node(page)))
  955. continue;
  956. if (step == 2 && (!IS_DNODE(page) ||
  957. !is_cold_node(page)))
  958. continue;
  959. /*
  960. * If an fsync mode,
  961. * we should not skip writing node pages.
  962. */
  963. if (ino && ino_of_node(page) == ino)
  964. lock_page(page);
  965. else if (!trylock_page(page))
  966. continue;
  967. if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
  968. continue_unlock:
  969. unlock_page(page);
  970. continue;
  971. }
  972. if (ino && ino_of_node(page) != ino)
  973. goto continue_unlock;
  974. if (!PageDirty(page)) {
  975. /* someone wrote it for us */
  976. goto continue_unlock;
  977. }
  978. if (!clear_page_dirty_for_io(page))
  979. goto continue_unlock;
  980. /* called by fsync() */
  981. if (ino && IS_DNODE(page)) {
  982. int mark = !is_checkpointed_node(sbi, ino);
  983. set_fsync_mark(page, 1);
  984. if (IS_INODE(page))
  985. set_dentry_mark(page, mark);
  986. nwritten++;
  987. } else {
  988. set_fsync_mark(page, 0);
  989. set_dentry_mark(page, 0);
  990. }
  991. NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
  992. wrote++;
  993. if (--wbc->nr_to_write == 0)
  994. break;
  995. }
  996. pagevec_release(&pvec);
  997. cond_resched();
  998. if (wbc->nr_to_write == 0) {
  999. step = 2;
  1000. break;
  1001. }
  1002. }
  1003. if (step < 2) {
  1004. step++;
  1005. goto next_step;
  1006. }
  1007. if (wrote)
  1008. f2fs_submit_merged_bio(sbi, NODE, WRITE);
  1009. return nwritten;
  1010. }
  1011. int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
  1012. {
  1013. pgoff_t index = 0, end = LONG_MAX;
  1014. struct pagevec pvec;
  1015. int ret2 = 0, ret = 0;
  1016. pagevec_init(&pvec, 0);
  1017. while (index <= end) {
  1018. int i, nr_pages;
  1019. nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
  1020. PAGECACHE_TAG_WRITEBACK,
  1021. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  1022. if (nr_pages == 0)
  1023. break;
  1024. for (i = 0; i < nr_pages; i++) {
  1025. struct page *page = pvec.pages[i];
  1026. /* until radix tree lookup accepts end_index */
  1027. if (unlikely(page->index > end))
  1028. continue;
  1029. if (ino && ino_of_node(page) == ino) {
  1030. f2fs_wait_on_page_writeback(page, NODE);
  1031. if (TestClearPageError(page))
  1032. ret = -EIO;
  1033. }
  1034. }
  1035. pagevec_release(&pvec);
  1036. cond_resched();
  1037. }
  1038. if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
  1039. ret2 = -ENOSPC;
  1040. if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
  1041. ret2 = -EIO;
  1042. if (!ret)
  1043. ret = ret2;
  1044. return ret;
  1045. }
  1046. static int f2fs_write_node_page(struct page *page,
  1047. struct writeback_control *wbc)
  1048. {
  1049. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  1050. nid_t nid;
  1051. block_t new_addr;
  1052. struct node_info ni;
  1053. struct f2fs_io_info fio = {
  1054. .type = NODE,
  1055. .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
  1056. };
  1057. trace_f2fs_writepage(page, NODE);
  1058. if (unlikely(sbi->por_doing))
  1059. goto redirty_out;
  1060. f2fs_wait_on_page_writeback(page, NODE);
  1061. /* get old block addr of this node page */
  1062. nid = nid_of_node(page);
  1063. f2fs_bug_on(page->index != nid);
  1064. get_node_info(sbi, nid, &ni);
  1065. /* This page is already truncated */
  1066. if (unlikely(ni.blk_addr == NULL_ADDR)) {
  1067. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1068. unlock_page(page);
  1069. return 0;
  1070. }
  1071. if (wbc->for_reclaim)
  1072. goto redirty_out;
  1073. mutex_lock(&sbi->node_write);
  1074. set_page_writeback(page);
  1075. write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
  1076. set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
  1077. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1078. mutex_unlock(&sbi->node_write);
  1079. unlock_page(page);
  1080. return 0;
  1081. redirty_out:
  1082. redirty_page_for_writepage(wbc, page);
  1083. return AOP_WRITEPAGE_ACTIVATE;
  1084. }
  1085. static int f2fs_write_node_pages(struct address_space *mapping,
  1086. struct writeback_control *wbc)
  1087. {
  1088. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1089. long diff;
  1090. trace_f2fs_writepages(mapping->host, wbc, NODE);
  1091. /* balancing f2fs's metadata in background */
  1092. f2fs_balance_fs_bg(sbi);
  1093. /* collect a number of dirty node pages and write together */
  1094. if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
  1095. goto skip_write;
  1096. diff = nr_pages_to_write(sbi, NODE, wbc);
  1097. wbc->sync_mode = WB_SYNC_NONE;
  1098. sync_node_pages(sbi, 0, wbc);
  1099. wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
  1100. return 0;
  1101. skip_write:
  1102. wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
  1103. return 0;
  1104. }
  1105. static int f2fs_set_node_page_dirty(struct page *page)
  1106. {
  1107. struct address_space *mapping = page->mapping;
  1108. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1109. trace_f2fs_set_page_dirty(page, NODE);
  1110. SetPageUptodate(page);
  1111. if (!PageDirty(page)) {
  1112. __set_page_dirty_nobuffers(page);
  1113. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1114. SetPagePrivate(page);
  1115. return 1;
  1116. }
  1117. return 0;
  1118. }
  1119. static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
  1120. unsigned int length)
  1121. {
  1122. struct inode *inode = page->mapping->host;
  1123. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1124. if (PageDirty(page))
  1125. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1126. ClearPagePrivate(page);
  1127. }
  1128. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1129. {
  1130. ClearPagePrivate(page);
  1131. return 1;
  1132. }
  1133. /*
  1134. * Structure of the f2fs node operations
  1135. */
  1136. const struct address_space_operations f2fs_node_aops = {
  1137. .writepage = f2fs_write_node_page,
  1138. .writepages = f2fs_write_node_pages,
  1139. .set_page_dirty = f2fs_set_node_page_dirty,
  1140. .invalidatepage = f2fs_invalidate_node_page,
  1141. .releasepage = f2fs_release_node_page,
  1142. };
  1143. static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
  1144. nid_t n)
  1145. {
  1146. return radix_tree_lookup(&nm_i->free_nid_root, n);
  1147. }
  1148. static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
  1149. struct free_nid *i)
  1150. {
  1151. list_del(&i->list);
  1152. radix_tree_delete(&nm_i->free_nid_root, i->nid);
  1153. }
  1154. static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
  1155. {
  1156. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1157. struct free_nid *i;
  1158. struct nat_entry *ne;
  1159. bool allocated = false;
  1160. if (!available_free_memory(sbi, FREE_NIDS))
  1161. return -1;
  1162. /* 0 nid should not be used */
  1163. if (unlikely(nid == 0))
  1164. return 0;
  1165. if (build) {
  1166. /* do not add allocated nids */
  1167. read_lock(&nm_i->nat_tree_lock);
  1168. ne = __lookup_nat_cache(nm_i, nid);
  1169. if (ne &&
  1170. (!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
  1171. allocated = true;
  1172. read_unlock(&nm_i->nat_tree_lock);
  1173. if (allocated)
  1174. return 0;
  1175. }
  1176. i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1177. i->nid = nid;
  1178. i->state = NID_NEW;
  1179. spin_lock(&nm_i->free_nid_list_lock);
  1180. if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
  1181. spin_unlock(&nm_i->free_nid_list_lock);
  1182. kmem_cache_free(free_nid_slab, i);
  1183. return 0;
  1184. }
  1185. list_add_tail(&i->list, &nm_i->free_nid_list);
  1186. nm_i->fcnt++;
  1187. spin_unlock(&nm_i->free_nid_list_lock);
  1188. return 1;
  1189. }
  1190. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1191. {
  1192. struct free_nid *i;
  1193. bool need_free = false;
  1194. spin_lock(&nm_i->free_nid_list_lock);
  1195. i = __lookup_free_nid_list(nm_i, nid);
  1196. if (i && i->state == NID_NEW) {
  1197. __del_from_free_nid_list(nm_i, i);
  1198. nm_i->fcnt--;
  1199. need_free = true;
  1200. }
  1201. spin_unlock(&nm_i->free_nid_list_lock);
  1202. if (need_free)
  1203. kmem_cache_free(free_nid_slab, i);
  1204. }
  1205. static void scan_nat_page(struct f2fs_sb_info *sbi,
  1206. struct page *nat_page, nid_t start_nid)
  1207. {
  1208. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1209. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1210. block_t blk_addr;
  1211. int i;
  1212. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1213. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1214. if (unlikely(start_nid >= nm_i->max_nid))
  1215. break;
  1216. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1217. f2fs_bug_on(blk_addr == NEW_ADDR);
  1218. if (blk_addr == NULL_ADDR) {
  1219. if (add_free_nid(sbi, start_nid, true) < 0)
  1220. break;
  1221. }
  1222. }
  1223. }
  1224. static void build_free_nids(struct f2fs_sb_info *sbi)
  1225. {
  1226. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1227. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1228. struct f2fs_summary_block *sum = curseg->sum_blk;
  1229. int i = 0;
  1230. nid_t nid = nm_i->next_scan_nid;
  1231. /* Enough entries */
  1232. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1233. return;
  1234. /* readahead nat pages to be scanned */
  1235. ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
  1236. while (1) {
  1237. struct page *page = get_current_nat_page(sbi, nid);
  1238. scan_nat_page(sbi, page, nid);
  1239. f2fs_put_page(page, 1);
  1240. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1241. if (unlikely(nid >= nm_i->max_nid))
  1242. nid = 0;
  1243. if (i++ == FREE_NID_PAGES)
  1244. break;
  1245. }
  1246. /* go to the next free nat pages to find free nids abundantly */
  1247. nm_i->next_scan_nid = nid;
  1248. /* find free nids from current sum_pages */
  1249. mutex_lock(&curseg->curseg_mutex);
  1250. for (i = 0; i < nats_in_cursum(sum); i++) {
  1251. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1252. nid = le32_to_cpu(nid_in_journal(sum, i));
  1253. if (addr == NULL_ADDR)
  1254. add_free_nid(sbi, nid, true);
  1255. else
  1256. remove_free_nid(nm_i, nid);
  1257. }
  1258. mutex_unlock(&curseg->curseg_mutex);
  1259. }
  1260. /*
  1261. * If this function returns success, caller can obtain a new nid
  1262. * from second parameter of this function.
  1263. * The returned nid could be used ino as well as nid when inode is created.
  1264. */
  1265. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1266. {
  1267. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1268. struct free_nid *i = NULL;
  1269. retry:
  1270. if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
  1271. return false;
  1272. spin_lock(&nm_i->free_nid_list_lock);
  1273. /* We should not use stale free nids created by build_free_nids */
  1274. if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
  1275. f2fs_bug_on(list_empty(&nm_i->free_nid_list));
  1276. list_for_each_entry(i, &nm_i->free_nid_list, list)
  1277. if (i->state == NID_NEW)
  1278. break;
  1279. f2fs_bug_on(i->state != NID_NEW);
  1280. *nid = i->nid;
  1281. i->state = NID_ALLOC;
  1282. nm_i->fcnt--;
  1283. spin_unlock(&nm_i->free_nid_list_lock);
  1284. return true;
  1285. }
  1286. spin_unlock(&nm_i->free_nid_list_lock);
  1287. /* Let's scan nat pages and its caches to get free nids */
  1288. mutex_lock(&nm_i->build_lock);
  1289. build_free_nids(sbi);
  1290. mutex_unlock(&nm_i->build_lock);
  1291. goto retry;
  1292. }
  1293. /*
  1294. * alloc_nid() should be called prior to this function.
  1295. */
  1296. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1297. {
  1298. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1299. struct free_nid *i;
  1300. spin_lock(&nm_i->free_nid_list_lock);
  1301. i = __lookup_free_nid_list(nm_i, nid);
  1302. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1303. __del_from_free_nid_list(nm_i, i);
  1304. spin_unlock(&nm_i->free_nid_list_lock);
  1305. kmem_cache_free(free_nid_slab, i);
  1306. }
  1307. /*
  1308. * alloc_nid() should be called prior to this function.
  1309. */
  1310. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1311. {
  1312. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1313. struct free_nid *i;
  1314. bool need_free = false;
  1315. if (!nid)
  1316. return;
  1317. spin_lock(&nm_i->free_nid_list_lock);
  1318. i = __lookup_free_nid_list(nm_i, nid);
  1319. f2fs_bug_on(!i || i->state != NID_ALLOC);
  1320. if (!available_free_memory(sbi, FREE_NIDS)) {
  1321. __del_from_free_nid_list(nm_i, i);
  1322. need_free = true;
  1323. } else {
  1324. i->state = NID_NEW;
  1325. nm_i->fcnt++;
  1326. }
  1327. spin_unlock(&nm_i->free_nid_list_lock);
  1328. if (need_free)
  1329. kmem_cache_free(free_nid_slab, i);
  1330. }
  1331. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1332. struct f2fs_summary *sum, struct node_info *ni,
  1333. block_t new_blkaddr)
  1334. {
  1335. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1336. set_node_addr(sbi, ni, new_blkaddr, false);
  1337. clear_node_page_dirty(page);
  1338. }
  1339. static void recover_inline_xattr(struct inode *inode, struct page *page)
  1340. {
  1341. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1342. void *src_addr, *dst_addr;
  1343. size_t inline_size;
  1344. struct page *ipage;
  1345. struct f2fs_inode *ri;
  1346. if (!f2fs_has_inline_xattr(inode))
  1347. return;
  1348. if (!IS_INODE(page))
  1349. return;
  1350. ri = F2FS_INODE(page);
  1351. if (!(ri->i_inline & F2FS_INLINE_XATTR))
  1352. return;
  1353. ipage = get_node_page(sbi, inode->i_ino);
  1354. f2fs_bug_on(IS_ERR(ipage));
  1355. dst_addr = inline_xattr_addr(ipage);
  1356. src_addr = inline_xattr_addr(page);
  1357. inline_size = inline_xattr_size(inode);
  1358. f2fs_wait_on_page_writeback(ipage, NODE);
  1359. memcpy(dst_addr, src_addr, inline_size);
  1360. update_inode(inode, ipage);
  1361. f2fs_put_page(ipage, 1);
  1362. }
  1363. bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
  1364. {
  1365. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1366. nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
  1367. nid_t new_xnid = nid_of_node(page);
  1368. struct node_info ni;
  1369. recover_inline_xattr(inode, page);
  1370. if (!f2fs_has_xattr_block(ofs_of_node(page)))
  1371. return false;
  1372. /* 1: invalidate the previous xattr nid */
  1373. if (!prev_xnid)
  1374. goto recover_xnid;
  1375. /* Deallocate node address */
  1376. get_node_info(sbi, prev_xnid, &ni);
  1377. f2fs_bug_on(ni.blk_addr == NULL_ADDR);
  1378. invalidate_blocks(sbi, ni.blk_addr);
  1379. dec_valid_node_count(sbi, inode);
  1380. set_node_addr(sbi, &ni, NULL_ADDR, false);
  1381. recover_xnid:
  1382. /* 2: allocate new xattr nid */
  1383. if (unlikely(!inc_valid_node_count(sbi, inode)))
  1384. f2fs_bug_on(1);
  1385. remove_free_nid(NM_I(sbi), new_xnid);
  1386. get_node_info(sbi, new_xnid, &ni);
  1387. ni.ino = inode->i_ino;
  1388. set_node_addr(sbi, &ni, NEW_ADDR, false);
  1389. F2FS_I(inode)->i_xattr_nid = new_xnid;
  1390. /* 3: update xattr blkaddr */
  1391. refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
  1392. set_node_addr(sbi, &ni, blkaddr, false);
  1393. update_inode_page(inode);
  1394. return true;
  1395. }
  1396. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1397. {
  1398. struct f2fs_inode *src, *dst;
  1399. nid_t ino = ino_of_node(page);
  1400. struct node_info old_ni, new_ni;
  1401. struct page *ipage;
  1402. get_node_info(sbi, ino, &old_ni);
  1403. if (unlikely(old_ni.blk_addr != NULL_ADDR))
  1404. return -EINVAL;
  1405. ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
  1406. if (!ipage)
  1407. return -ENOMEM;
  1408. /* Should not use this inode from free nid list */
  1409. remove_free_nid(NM_I(sbi), ino);
  1410. SetPageUptodate(ipage);
  1411. fill_node_footer(ipage, ino, ino, 0, true);
  1412. src = F2FS_INODE(page);
  1413. dst = F2FS_INODE(ipage);
  1414. memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
  1415. dst->i_size = 0;
  1416. dst->i_blocks = cpu_to_le64(1);
  1417. dst->i_links = cpu_to_le32(1);
  1418. dst->i_xattr_nid = 0;
  1419. new_ni = old_ni;
  1420. new_ni.ino = ino;
  1421. if (unlikely(!inc_valid_node_count(sbi, NULL)))
  1422. WARN_ON(1);
  1423. set_node_addr(sbi, &new_ni, NEW_ADDR, false);
  1424. inc_valid_inode_count(sbi);
  1425. f2fs_put_page(ipage, 1);
  1426. return 0;
  1427. }
  1428. /*
  1429. * ra_sum_pages() merge contiguous pages into one bio and submit.
  1430. * these pre-readed pages are alloced in bd_inode's mapping tree.
  1431. */
  1432. static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
  1433. int start, int nrpages)
  1434. {
  1435. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1436. struct address_space *mapping = inode->i_mapping;
  1437. int i, page_idx = start;
  1438. struct f2fs_io_info fio = {
  1439. .type = META,
  1440. .rw = READ_SYNC | REQ_META | REQ_PRIO
  1441. };
  1442. for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
  1443. /* alloc page in bd_inode for reading node summary info */
  1444. pages[i] = grab_cache_page(mapping, page_idx);
  1445. if (!pages[i])
  1446. break;
  1447. f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
  1448. }
  1449. f2fs_submit_merged_bio(sbi, META, READ);
  1450. return i;
  1451. }
  1452. int restore_node_summary(struct f2fs_sb_info *sbi,
  1453. unsigned int segno, struct f2fs_summary_block *sum)
  1454. {
  1455. struct f2fs_node *rn;
  1456. struct f2fs_summary *sum_entry;
  1457. struct inode *inode = sbi->sb->s_bdev->bd_inode;
  1458. block_t addr;
  1459. int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
  1460. struct page *pages[bio_blocks];
  1461. int i, idx, last_offset, nrpages, err = 0;
  1462. /* scan the node segment */
  1463. last_offset = sbi->blocks_per_seg;
  1464. addr = START_BLOCK(sbi, segno);
  1465. sum_entry = &sum->entries[0];
  1466. for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
  1467. nrpages = min(last_offset - i, bio_blocks);
  1468. /* read ahead node pages */
  1469. nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
  1470. if (!nrpages)
  1471. return -ENOMEM;
  1472. for (idx = 0; idx < nrpages; idx++) {
  1473. if (err)
  1474. goto skip;
  1475. lock_page(pages[idx]);
  1476. if (unlikely(!PageUptodate(pages[idx]))) {
  1477. err = -EIO;
  1478. } else {
  1479. rn = F2FS_NODE(pages[idx]);
  1480. sum_entry->nid = rn->footer.nid;
  1481. sum_entry->version = 0;
  1482. sum_entry->ofs_in_node = 0;
  1483. sum_entry++;
  1484. }
  1485. unlock_page(pages[idx]);
  1486. skip:
  1487. page_cache_release(pages[idx]);
  1488. }
  1489. invalidate_mapping_pages(inode->i_mapping, addr,
  1490. addr + nrpages);
  1491. }
  1492. return err;
  1493. }
  1494. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1495. {
  1496. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1497. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1498. struct f2fs_summary_block *sum = curseg->sum_blk;
  1499. int i;
  1500. mutex_lock(&curseg->curseg_mutex);
  1501. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1502. mutex_unlock(&curseg->curseg_mutex);
  1503. return false;
  1504. }
  1505. for (i = 0; i < nats_in_cursum(sum); i++) {
  1506. struct nat_entry *ne;
  1507. struct f2fs_nat_entry raw_ne;
  1508. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1509. raw_ne = nat_in_journal(sum, i);
  1510. retry:
  1511. write_lock(&nm_i->nat_tree_lock);
  1512. ne = __lookup_nat_cache(nm_i, nid);
  1513. if (ne) {
  1514. __set_nat_cache_dirty(nm_i, ne);
  1515. write_unlock(&nm_i->nat_tree_lock);
  1516. continue;
  1517. }
  1518. ne = grab_nat_entry(nm_i, nid);
  1519. if (!ne) {
  1520. write_unlock(&nm_i->nat_tree_lock);
  1521. goto retry;
  1522. }
  1523. node_info_from_raw_nat(&ne->ni, &raw_ne);
  1524. __set_nat_cache_dirty(nm_i, ne);
  1525. write_unlock(&nm_i->nat_tree_lock);
  1526. }
  1527. update_nats_in_cursum(sum, -i);
  1528. mutex_unlock(&curseg->curseg_mutex);
  1529. return true;
  1530. }
  1531. /*
  1532. * This function is called during the checkpointing process.
  1533. */
  1534. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1535. {
  1536. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1537. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1538. struct f2fs_summary_block *sum = curseg->sum_blk;
  1539. struct nat_entry *ne, *cur;
  1540. struct page *page = NULL;
  1541. struct f2fs_nat_block *nat_blk = NULL;
  1542. nid_t start_nid = 0, end_nid = 0;
  1543. bool flushed;
  1544. flushed = flush_nats_in_journal(sbi);
  1545. if (!flushed)
  1546. mutex_lock(&curseg->curseg_mutex);
  1547. /* 1) flush dirty nat caches */
  1548. list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
  1549. nid_t nid;
  1550. struct f2fs_nat_entry raw_ne;
  1551. int offset = -1;
  1552. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1553. continue;
  1554. nid = nat_get_nid(ne);
  1555. if (flushed)
  1556. goto to_nat_page;
  1557. /* if there is room for nat enries in curseg->sumpage */
  1558. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1559. if (offset >= 0) {
  1560. raw_ne = nat_in_journal(sum, offset);
  1561. goto flush_now;
  1562. }
  1563. to_nat_page:
  1564. if (!page || (start_nid > nid || nid > end_nid)) {
  1565. if (page) {
  1566. f2fs_put_page(page, 1);
  1567. page = NULL;
  1568. }
  1569. start_nid = START_NID(nid);
  1570. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1571. /*
  1572. * get nat block with dirty flag, increased reference
  1573. * count, mapped and lock
  1574. */
  1575. page = get_next_nat_page(sbi, start_nid);
  1576. nat_blk = page_address(page);
  1577. }
  1578. f2fs_bug_on(!nat_blk);
  1579. raw_ne = nat_blk->entries[nid - start_nid];
  1580. flush_now:
  1581. raw_nat_from_node_info(&raw_ne, &ne->ni);
  1582. if (offset < 0) {
  1583. nat_blk->entries[nid - start_nid] = raw_ne;
  1584. } else {
  1585. nat_in_journal(sum, offset) = raw_ne;
  1586. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1587. }
  1588. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1589. add_free_nid(sbi, nid, false) <= 0) {
  1590. write_lock(&nm_i->nat_tree_lock);
  1591. __del_from_nat_cache(nm_i, ne);
  1592. write_unlock(&nm_i->nat_tree_lock);
  1593. } else {
  1594. write_lock(&nm_i->nat_tree_lock);
  1595. __clear_nat_cache_dirty(nm_i, ne);
  1596. write_unlock(&nm_i->nat_tree_lock);
  1597. }
  1598. }
  1599. if (!flushed)
  1600. mutex_unlock(&curseg->curseg_mutex);
  1601. f2fs_put_page(page, 1);
  1602. }
  1603. static int init_node_manager(struct f2fs_sb_info *sbi)
  1604. {
  1605. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1606. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1607. unsigned char *version_bitmap;
  1608. unsigned int nat_segs, nat_blocks;
  1609. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1610. /* segment_count_nat includes pair segment so divide to 2. */
  1611. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1612. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1613. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1614. /* not used nids: 0, node, meta, (and root counted as valid node) */
  1615. nm_i->available_nids = nm_i->max_nid - 3;
  1616. nm_i->fcnt = 0;
  1617. nm_i->nat_cnt = 0;
  1618. nm_i->ram_thresh = DEF_RAM_THRESHOLD;
  1619. INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
  1620. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1621. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1622. INIT_LIST_HEAD(&nm_i->nat_entries);
  1623. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1624. mutex_init(&nm_i->build_lock);
  1625. spin_lock_init(&nm_i->free_nid_list_lock);
  1626. rwlock_init(&nm_i->nat_tree_lock);
  1627. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1628. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1629. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1630. if (!version_bitmap)
  1631. return -EFAULT;
  1632. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1633. GFP_KERNEL);
  1634. if (!nm_i->nat_bitmap)
  1635. return -ENOMEM;
  1636. return 0;
  1637. }
  1638. int build_node_manager(struct f2fs_sb_info *sbi)
  1639. {
  1640. int err;
  1641. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1642. if (!sbi->nm_info)
  1643. return -ENOMEM;
  1644. err = init_node_manager(sbi);
  1645. if (err)
  1646. return err;
  1647. build_free_nids(sbi);
  1648. return 0;
  1649. }
  1650. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1651. {
  1652. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1653. struct free_nid *i, *next_i;
  1654. struct nat_entry *natvec[NATVEC_SIZE];
  1655. nid_t nid = 0;
  1656. unsigned int found;
  1657. if (!nm_i)
  1658. return;
  1659. /* destroy free nid list */
  1660. spin_lock(&nm_i->free_nid_list_lock);
  1661. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1662. f2fs_bug_on(i->state == NID_ALLOC);
  1663. __del_from_free_nid_list(nm_i, i);
  1664. nm_i->fcnt--;
  1665. spin_unlock(&nm_i->free_nid_list_lock);
  1666. kmem_cache_free(free_nid_slab, i);
  1667. spin_lock(&nm_i->free_nid_list_lock);
  1668. }
  1669. f2fs_bug_on(nm_i->fcnt);
  1670. spin_unlock(&nm_i->free_nid_list_lock);
  1671. /* destroy nat cache */
  1672. write_lock(&nm_i->nat_tree_lock);
  1673. while ((found = __gang_lookup_nat_cache(nm_i,
  1674. nid, NATVEC_SIZE, natvec))) {
  1675. unsigned idx;
  1676. nid = nat_get_nid(natvec[found - 1]) + 1;
  1677. for (idx = 0; idx < found; idx++)
  1678. __del_from_nat_cache(nm_i, natvec[idx]);
  1679. }
  1680. f2fs_bug_on(nm_i->nat_cnt);
  1681. write_unlock(&nm_i->nat_tree_lock);
  1682. kfree(nm_i->nat_bitmap);
  1683. sbi->nm_info = NULL;
  1684. kfree(nm_i);
  1685. }
  1686. int __init create_node_manager_caches(void)
  1687. {
  1688. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1689. sizeof(struct nat_entry));
  1690. if (!nat_entry_slab)
  1691. return -ENOMEM;
  1692. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1693. sizeof(struct free_nid));
  1694. if (!free_nid_slab) {
  1695. kmem_cache_destroy(nat_entry_slab);
  1696. return -ENOMEM;
  1697. }
  1698. return 0;
  1699. }
  1700. void destroy_node_manager_caches(void)
  1701. {
  1702. kmem_cache_destroy(free_nid_slab);
  1703. kmem_cache_destroy(nat_entry_slab);
  1704. }