file.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829
  1. /*
  2. * fs/f2fs/file.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/stat.h>
  14. #include <linux/buffer_head.h>
  15. #include <linux/writeback.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/falloc.h>
  18. #include <linux/types.h>
  19. #include <linux/compat.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/mount.h>
  22. #include <linux/pagevec.h>
  23. #include "f2fs.h"
  24. #include "node.h"
  25. #include "segment.h"
  26. #include "xattr.h"
  27. #include "acl.h"
  28. #include <trace/events/f2fs.h>
  29. static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  30. struct vm_fault *vmf)
  31. {
  32. struct page *page = vmf->page;
  33. struct inode *inode = file_inode(vma->vm_file);
  34. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  35. struct dnode_of_data dn;
  36. int err;
  37. f2fs_balance_fs(sbi);
  38. sb_start_pagefault(inode->i_sb);
  39. /* block allocation */
  40. f2fs_lock_op(sbi);
  41. set_new_dnode(&dn, inode, NULL, NULL, 0);
  42. err = f2fs_reserve_block(&dn, page->index);
  43. f2fs_unlock_op(sbi);
  44. if (err)
  45. goto out;
  46. file_update_time(vma->vm_file);
  47. lock_page(page);
  48. if (unlikely(page->mapping != inode->i_mapping ||
  49. page_offset(page) > i_size_read(inode) ||
  50. !PageUptodate(page))) {
  51. unlock_page(page);
  52. err = -EFAULT;
  53. goto out;
  54. }
  55. /*
  56. * check to see if the page is mapped already (no holes)
  57. */
  58. if (PageMappedToDisk(page))
  59. goto mapped;
  60. /* page is wholly or partially inside EOF */
  61. if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
  62. unsigned offset;
  63. offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
  64. zero_user_segment(page, offset, PAGE_CACHE_SIZE);
  65. }
  66. set_page_dirty(page);
  67. SetPageUptodate(page);
  68. trace_f2fs_vm_page_mkwrite(page, DATA);
  69. mapped:
  70. /* fill the page */
  71. f2fs_wait_on_page_writeback(page, DATA);
  72. out:
  73. sb_end_pagefault(inode->i_sb);
  74. return block_page_mkwrite_return(err);
  75. }
  76. static const struct vm_operations_struct f2fs_file_vm_ops = {
  77. .fault = filemap_fault,
  78. .map_pages = filemap_map_pages,
  79. .page_mkwrite = f2fs_vm_page_mkwrite,
  80. .remap_pages = generic_file_remap_pages,
  81. };
  82. static int get_parent_ino(struct inode *inode, nid_t *pino)
  83. {
  84. struct dentry *dentry;
  85. inode = igrab(inode);
  86. dentry = d_find_any_alias(inode);
  87. iput(inode);
  88. if (!dentry)
  89. return 0;
  90. if (update_dent_inode(inode, &dentry->d_name)) {
  91. dput(dentry);
  92. return 0;
  93. }
  94. *pino = parent_ino(dentry);
  95. dput(dentry);
  96. return 1;
  97. }
  98. int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
  99. {
  100. struct inode *inode = file->f_mapping->host;
  101. struct f2fs_inode_info *fi = F2FS_I(inode);
  102. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  103. int ret = 0;
  104. bool need_cp = false;
  105. struct writeback_control wbc = {
  106. .sync_mode = WB_SYNC_ALL,
  107. .nr_to_write = LONG_MAX,
  108. .for_reclaim = 0,
  109. };
  110. if (unlikely(f2fs_readonly(inode->i_sb)))
  111. return 0;
  112. trace_f2fs_sync_file_enter(inode);
  113. ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
  114. if (ret) {
  115. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  116. return ret;
  117. }
  118. /* guarantee free sections for fsync */
  119. f2fs_balance_fs(sbi);
  120. down_read(&fi->i_sem);
  121. /*
  122. * Both of fdatasync() and fsync() are able to be recovered from
  123. * sudden-power-off.
  124. */
  125. if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
  126. need_cp = true;
  127. else if (file_wrong_pino(inode))
  128. need_cp = true;
  129. else if (!space_for_roll_forward(sbi))
  130. need_cp = true;
  131. else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
  132. need_cp = true;
  133. else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
  134. need_cp = true;
  135. up_read(&fi->i_sem);
  136. if (need_cp) {
  137. nid_t pino;
  138. /* all the dirty node pages should be flushed for POR */
  139. ret = f2fs_sync_fs(inode->i_sb, 1);
  140. down_write(&fi->i_sem);
  141. F2FS_I(inode)->xattr_ver = 0;
  142. if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
  143. get_parent_ino(inode, &pino)) {
  144. F2FS_I(inode)->i_pino = pino;
  145. file_got_pino(inode);
  146. up_write(&fi->i_sem);
  147. mark_inode_dirty_sync(inode);
  148. ret = f2fs_write_inode(inode, NULL);
  149. if (ret)
  150. goto out;
  151. } else {
  152. up_write(&fi->i_sem);
  153. }
  154. } else {
  155. /* if there is no written node page, write its inode page */
  156. while (!sync_node_pages(sbi, inode->i_ino, &wbc)) {
  157. if (fsync_mark_done(sbi, inode->i_ino))
  158. goto out;
  159. mark_inode_dirty_sync(inode);
  160. ret = f2fs_write_inode(inode, NULL);
  161. if (ret)
  162. goto out;
  163. }
  164. ret = wait_on_node_pages_writeback(sbi, inode->i_ino);
  165. if (ret)
  166. goto out;
  167. ret = f2fs_issue_flush(F2FS_SB(inode->i_sb));
  168. }
  169. out:
  170. trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
  171. return ret;
  172. }
  173. static pgoff_t __get_first_dirty_index(struct address_space *mapping,
  174. pgoff_t pgofs, int whence)
  175. {
  176. struct pagevec pvec;
  177. int nr_pages;
  178. if (whence != SEEK_DATA)
  179. return 0;
  180. /* find first dirty page index */
  181. pagevec_init(&pvec, 0);
  182. nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs, PAGECACHE_TAG_DIRTY, 1);
  183. pgofs = nr_pages ? pvec.pages[0]->index: LONG_MAX;
  184. pagevec_release(&pvec);
  185. return pgofs;
  186. }
  187. static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
  188. int whence)
  189. {
  190. switch (whence) {
  191. case SEEK_DATA:
  192. if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
  193. (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
  194. return true;
  195. break;
  196. case SEEK_HOLE:
  197. if (blkaddr == NULL_ADDR)
  198. return true;
  199. break;
  200. }
  201. return false;
  202. }
  203. static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
  204. {
  205. struct inode *inode = file->f_mapping->host;
  206. loff_t maxbytes = inode->i_sb->s_maxbytes;
  207. struct dnode_of_data dn;
  208. pgoff_t pgofs, end_offset, dirty;
  209. loff_t data_ofs = offset;
  210. loff_t isize;
  211. int err = 0;
  212. mutex_lock(&inode->i_mutex);
  213. isize = i_size_read(inode);
  214. if (offset >= isize)
  215. goto fail;
  216. /* handle inline data case */
  217. if (f2fs_has_inline_data(inode)) {
  218. if (whence == SEEK_HOLE)
  219. data_ofs = isize;
  220. goto found;
  221. }
  222. pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
  223. dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
  224. for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  225. set_new_dnode(&dn, inode, NULL, NULL, 0);
  226. err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
  227. if (err && err != -ENOENT) {
  228. goto fail;
  229. } else if (err == -ENOENT) {
  230. /* direct node is not exist */
  231. if (whence == SEEK_DATA) {
  232. pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
  233. F2FS_I(inode));
  234. continue;
  235. } else {
  236. goto found;
  237. }
  238. }
  239. end_offset = IS_INODE(dn.node_page) ?
  240. ADDRS_PER_INODE(F2FS_I(inode)) : ADDRS_PER_BLOCK;
  241. /* find data/hole in dnode block */
  242. for (; dn.ofs_in_node < end_offset;
  243. dn.ofs_in_node++, pgofs++,
  244. data_ofs = pgofs << PAGE_CACHE_SHIFT) {
  245. block_t blkaddr;
  246. blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
  247. if (__found_offset(blkaddr, dirty, pgofs, whence)) {
  248. f2fs_put_dnode(&dn);
  249. goto found;
  250. }
  251. }
  252. f2fs_put_dnode(&dn);
  253. }
  254. if (whence == SEEK_DATA)
  255. goto fail;
  256. found:
  257. if (whence == SEEK_HOLE && data_ofs > isize)
  258. data_ofs = isize;
  259. mutex_unlock(&inode->i_mutex);
  260. return vfs_setpos(file, data_ofs, maxbytes);
  261. fail:
  262. mutex_unlock(&inode->i_mutex);
  263. return -ENXIO;
  264. }
  265. static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
  266. {
  267. struct inode *inode = file->f_mapping->host;
  268. loff_t maxbytes = inode->i_sb->s_maxbytes;
  269. switch (whence) {
  270. case SEEK_SET:
  271. case SEEK_CUR:
  272. case SEEK_END:
  273. return generic_file_llseek_size(file, offset, whence,
  274. maxbytes, i_size_read(inode));
  275. case SEEK_DATA:
  276. case SEEK_HOLE:
  277. return f2fs_seek_block(file, offset, whence);
  278. }
  279. return -EINVAL;
  280. }
  281. static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
  282. {
  283. file_accessed(file);
  284. vma->vm_ops = &f2fs_file_vm_ops;
  285. return 0;
  286. }
  287. int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
  288. {
  289. int nr_free = 0, ofs = dn->ofs_in_node;
  290. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  291. struct f2fs_node *raw_node;
  292. __le32 *addr;
  293. raw_node = F2FS_NODE(dn->node_page);
  294. addr = blkaddr_in_node(raw_node) + ofs;
  295. for (; count > 0; count--, addr++, dn->ofs_in_node++) {
  296. block_t blkaddr = le32_to_cpu(*addr);
  297. if (blkaddr == NULL_ADDR)
  298. continue;
  299. update_extent_cache(NULL_ADDR, dn);
  300. invalidate_blocks(sbi, blkaddr);
  301. nr_free++;
  302. }
  303. if (nr_free) {
  304. dec_valid_block_count(sbi, dn->inode, nr_free);
  305. set_page_dirty(dn->node_page);
  306. sync_inode_page(dn);
  307. }
  308. dn->ofs_in_node = ofs;
  309. trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
  310. dn->ofs_in_node, nr_free);
  311. return nr_free;
  312. }
  313. void truncate_data_blocks(struct dnode_of_data *dn)
  314. {
  315. truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
  316. }
  317. static void truncate_partial_data_page(struct inode *inode, u64 from)
  318. {
  319. unsigned offset = from & (PAGE_CACHE_SIZE - 1);
  320. struct page *page;
  321. if (f2fs_has_inline_data(inode))
  322. return truncate_inline_data(inode, from);
  323. if (!offset)
  324. return;
  325. page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
  326. if (IS_ERR(page))
  327. return;
  328. lock_page(page);
  329. if (unlikely(page->mapping != inode->i_mapping)) {
  330. f2fs_put_page(page, 1);
  331. return;
  332. }
  333. f2fs_wait_on_page_writeback(page, DATA);
  334. zero_user(page, offset, PAGE_CACHE_SIZE - offset);
  335. set_page_dirty(page);
  336. f2fs_put_page(page, 1);
  337. }
  338. int truncate_blocks(struct inode *inode, u64 from)
  339. {
  340. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  341. unsigned int blocksize = inode->i_sb->s_blocksize;
  342. struct dnode_of_data dn;
  343. pgoff_t free_from;
  344. int count = 0, err = 0;
  345. trace_f2fs_truncate_blocks_enter(inode, from);
  346. if (f2fs_has_inline_data(inode))
  347. goto done;
  348. free_from = (pgoff_t)
  349. ((from + blocksize - 1) >> (sbi->log_blocksize));
  350. f2fs_lock_op(sbi);
  351. set_new_dnode(&dn, inode, NULL, NULL, 0);
  352. err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
  353. if (err) {
  354. if (err == -ENOENT)
  355. goto free_next;
  356. f2fs_unlock_op(sbi);
  357. trace_f2fs_truncate_blocks_exit(inode, err);
  358. return err;
  359. }
  360. count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
  361. count -= dn.ofs_in_node;
  362. f2fs_bug_on(count < 0);
  363. if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
  364. truncate_data_blocks_range(&dn, count);
  365. free_from += count;
  366. }
  367. f2fs_put_dnode(&dn);
  368. free_next:
  369. err = truncate_inode_blocks(inode, free_from);
  370. f2fs_unlock_op(sbi);
  371. done:
  372. /* lastly zero out the first data page */
  373. truncate_partial_data_page(inode, from);
  374. trace_f2fs_truncate_blocks_exit(inode, err);
  375. return err;
  376. }
  377. void f2fs_truncate(struct inode *inode)
  378. {
  379. if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
  380. S_ISLNK(inode->i_mode)))
  381. return;
  382. trace_f2fs_truncate(inode);
  383. if (!truncate_blocks(inode, i_size_read(inode))) {
  384. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  385. mark_inode_dirty(inode);
  386. }
  387. }
  388. int f2fs_getattr(struct vfsmount *mnt,
  389. struct dentry *dentry, struct kstat *stat)
  390. {
  391. struct inode *inode = dentry->d_inode;
  392. generic_fillattr(inode, stat);
  393. stat->blocks <<= 3;
  394. return 0;
  395. }
  396. #ifdef CONFIG_F2FS_FS_POSIX_ACL
  397. static void __setattr_copy(struct inode *inode, const struct iattr *attr)
  398. {
  399. struct f2fs_inode_info *fi = F2FS_I(inode);
  400. unsigned int ia_valid = attr->ia_valid;
  401. if (ia_valid & ATTR_UID)
  402. inode->i_uid = attr->ia_uid;
  403. if (ia_valid & ATTR_GID)
  404. inode->i_gid = attr->ia_gid;
  405. if (ia_valid & ATTR_ATIME)
  406. inode->i_atime = timespec_trunc(attr->ia_atime,
  407. inode->i_sb->s_time_gran);
  408. if (ia_valid & ATTR_MTIME)
  409. inode->i_mtime = timespec_trunc(attr->ia_mtime,
  410. inode->i_sb->s_time_gran);
  411. if (ia_valid & ATTR_CTIME)
  412. inode->i_ctime = timespec_trunc(attr->ia_ctime,
  413. inode->i_sb->s_time_gran);
  414. if (ia_valid & ATTR_MODE) {
  415. umode_t mode = attr->ia_mode;
  416. if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
  417. mode &= ~S_ISGID;
  418. set_acl_inode(fi, mode);
  419. }
  420. }
  421. #else
  422. #define __setattr_copy setattr_copy
  423. #endif
  424. int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
  425. {
  426. struct inode *inode = dentry->d_inode;
  427. struct f2fs_inode_info *fi = F2FS_I(inode);
  428. int err;
  429. err = inode_change_ok(inode, attr);
  430. if (err)
  431. return err;
  432. if ((attr->ia_valid & ATTR_SIZE) &&
  433. attr->ia_size != i_size_read(inode)) {
  434. err = f2fs_convert_inline_data(inode, attr->ia_size);
  435. if (err)
  436. return err;
  437. truncate_setsize(inode, attr->ia_size);
  438. f2fs_truncate(inode);
  439. f2fs_balance_fs(F2FS_SB(inode->i_sb));
  440. }
  441. __setattr_copy(inode, attr);
  442. if (attr->ia_valid & ATTR_MODE) {
  443. err = posix_acl_chmod(inode, get_inode_mode(inode));
  444. if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
  445. inode->i_mode = fi->i_acl_mode;
  446. clear_inode_flag(fi, FI_ACL_MODE);
  447. }
  448. }
  449. mark_inode_dirty(inode);
  450. return err;
  451. }
  452. const struct inode_operations f2fs_file_inode_operations = {
  453. .getattr = f2fs_getattr,
  454. .setattr = f2fs_setattr,
  455. .get_acl = f2fs_get_acl,
  456. .set_acl = f2fs_set_acl,
  457. #ifdef CONFIG_F2FS_FS_XATTR
  458. .setxattr = generic_setxattr,
  459. .getxattr = generic_getxattr,
  460. .listxattr = f2fs_listxattr,
  461. .removexattr = generic_removexattr,
  462. #endif
  463. .fiemap = f2fs_fiemap,
  464. };
  465. static void fill_zero(struct inode *inode, pgoff_t index,
  466. loff_t start, loff_t len)
  467. {
  468. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  469. struct page *page;
  470. if (!len)
  471. return;
  472. f2fs_balance_fs(sbi);
  473. f2fs_lock_op(sbi);
  474. page = get_new_data_page(inode, NULL, index, false);
  475. f2fs_unlock_op(sbi);
  476. if (!IS_ERR(page)) {
  477. f2fs_wait_on_page_writeback(page, DATA);
  478. zero_user(page, start, len);
  479. set_page_dirty(page);
  480. f2fs_put_page(page, 1);
  481. }
  482. }
  483. int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
  484. {
  485. pgoff_t index;
  486. int err;
  487. for (index = pg_start; index < pg_end; index++) {
  488. struct dnode_of_data dn;
  489. set_new_dnode(&dn, inode, NULL, NULL, 0);
  490. err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
  491. if (err) {
  492. if (err == -ENOENT)
  493. continue;
  494. return err;
  495. }
  496. if (dn.data_blkaddr != NULL_ADDR)
  497. truncate_data_blocks_range(&dn, 1);
  498. f2fs_put_dnode(&dn);
  499. }
  500. return 0;
  501. }
  502. static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
  503. {
  504. pgoff_t pg_start, pg_end;
  505. loff_t off_start, off_end;
  506. int ret = 0;
  507. ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1);
  508. if (ret)
  509. return ret;
  510. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  511. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  512. off_start = offset & (PAGE_CACHE_SIZE - 1);
  513. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  514. if (pg_start == pg_end) {
  515. fill_zero(inode, pg_start, off_start,
  516. off_end - off_start);
  517. } else {
  518. if (off_start)
  519. fill_zero(inode, pg_start++, off_start,
  520. PAGE_CACHE_SIZE - off_start);
  521. if (off_end)
  522. fill_zero(inode, pg_end, 0, off_end);
  523. if (pg_start < pg_end) {
  524. struct address_space *mapping = inode->i_mapping;
  525. loff_t blk_start, blk_end;
  526. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  527. f2fs_balance_fs(sbi);
  528. blk_start = pg_start << PAGE_CACHE_SHIFT;
  529. blk_end = pg_end << PAGE_CACHE_SHIFT;
  530. truncate_inode_pages_range(mapping, blk_start,
  531. blk_end - 1);
  532. f2fs_lock_op(sbi);
  533. ret = truncate_hole(inode, pg_start, pg_end);
  534. f2fs_unlock_op(sbi);
  535. }
  536. }
  537. return ret;
  538. }
  539. static int expand_inode_data(struct inode *inode, loff_t offset,
  540. loff_t len, int mode)
  541. {
  542. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  543. pgoff_t index, pg_start, pg_end;
  544. loff_t new_size = i_size_read(inode);
  545. loff_t off_start, off_end;
  546. int ret = 0;
  547. ret = inode_newsize_ok(inode, (len + offset));
  548. if (ret)
  549. return ret;
  550. ret = f2fs_convert_inline_data(inode, offset + len);
  551. if (ret)
  552. return ret;
  553. pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
  554. pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
  555. off_start = offset & (PAGE_CACHE_SIZE - 1);
  556. off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
  557. f2fs_lock_op(sbi);
  558. for (index = pg_start; index <= pg_end; index++) {
  559. struct dnode_of_data dn;
  560. if (index == pg_end && !off_end)
  561. goto noalloc;
  562. set_new_dnode(&dn, inode, NULL, NULL, 0);
  563. ret = f2fs_reserve_block(&dn, index);
  564. if (ret)
  565. break;
  566. noalloc:
  567. if (pg_start == pg_end)
  568. new_size = offset + len;
  569. else if (index == pg_start && off_start)
  570. new_size = (index + 1) << PAGE_CACHE_SHIFT;
  571. else if (index == pg_end)
  572. new_size = (index << PAGE_CACHE_SHIFT) + off_end;
  573. else
  574. new_size += PAGE_CACHE_SIZE;
  575. }
  576. if (!(mode & FALLOC_FL_KEEP_SIZE) &&
  577. i_size_read(inode) < new_size) {
  578. i_size_write(inode, new_size);
  579. mark_inode_dirty(inode);
  580. update_inode_page(inode);
  581. }
  582. f2fs_unlock_op(sbi);
  583. return ret;
  584. }
  585. static long f2fs_fallocate(struct file *file, int mode,
  586. loff_t offset, loff_t len)
  587. {
  588. struct inode *inode = file_inode(file);
  589. long ret;
  590. if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
  591. return -EOPNOTSUPP;
  592. mutex_lock(&inode->i_mutex);
  593. if (mode & FALLOC_FL_PUNCH_HOLE)
  594. ret = punch_hole(inode, offset, len);
  595. else
  596. ret = expand_inode_data(inode, offset, len, mode);
  597. if (!ret) {
  598. inode->i_mtime = inode->i_ctime = CURRENT_TIME;
  599. mark_inode_dirty(inode);
  600. }
  601. mutex_unlock(&inode->i_mutex);
  602. trace_f2fs_fallocate(inode, mode, offset, len, ret);
  603. return ret;
  604. }
  605. #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
  606. #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
  607. static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
  608. {
  609. if (S_ISDIR(mode))
  610. return flags;
  611. else if (S_ISREG(mode))
  612. return flags & F2FS_REG_FLMASK;
  613. else
  614. return flags & F2FS_OTHER_FLMASK;
  615. }
  616. long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
  617. {
  618. struct inode *inode = file_inode(filp);
  619. struct f2fs_inode_info *fi = F2FS_I(inode);
  620. unsigned int flags;
  621. int ret;
  622. switch (cmd) {
  623. case F2FS_IOC_GETFLAGS:
  624. flags = fi->i_flags & FS_FL_USER_VISIBLE;
  625. return put_user(flags, (int __user *) arg);
  626. case F2FS_IOC_SETFLAGS:
  627. {
  628. unsigned int oldflags;
  629. ret = mnt_want_write_file(filp);
  630. if (ret)
  631. return ret;
  632. if (!inode_owner_or_capable(inode)) {
  633. ret = -EACCES;
  634. goto out;
  635. }
  636. if (get_user(flags, (int __user *) arg)) {
  637. ret = -EFAULT;
  638. goto out;
  639. }
  640. flags = f2fs_mask_flags(inode->i_mode, flags);
  641. mutex_lock(&inode->i_mutex);
  642. oldflags = fi->i_flags;
  643. if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
  644. if (!capable(CAP_LINUX_IMMUTABLE)) {
  645. mutex_unlock(&inode->i_mutex);
  646. ret = -EPERM;
  647. goto out;
  648. }
  649. }
  650. flags = flags & FS_FL_USER_MODIFIABLE;
  651. flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
  652. fi->i_flags = flags;
  653. mutex_unlock(&inode->i_mutex);
  654. f2fs_set_inode_flags(inode);
  655. inode->i_ctime = CURRENT_TIME;
  656. mark_inode_dirty(inode);
  657. out:
  658. mnt_drop_write_file(filp);
  659. return ret;
  660. }
  661. default:
  662. return -ENOTTY;
  663. }
  664. }
  665. #ifdef CONFIG_COMPAT
  666. long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
  667. {
  668. switch (cmd) {
  669. case F2FS_IOC32_GETFLAGS:
  670. cmd = F2FS_IOC_GETFLAGS;
  671. break;
  672. case F2FS_IOC32_SETFLAGS:
  673. cmd = F2FS_IOC_SETFLAGS;
  674. break;
  675. default:
  676. return -ENOIOCTLCMD;
  677. }
  678. return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
  679. }
  680. #endif
  681. const struct file_operations f2fs_file_operations = {
  682. .llseek = f2fs_llseek,
  683. .read = new_sync_read,
  684. .write = new_sync_write,
  685. .read_iter = generic_file_read_iter,
  686. .write_iter = generic_file_write_iter,
  687. .open = generic_file_open,
  688. .mmap = f2fs_file_mmap,
  689. .fsync = f2fs_sync_file,
  690. .fallocate = f2fs_fallocate,
  691. .unlocked_ioctl = f2fs_ioctl,
  692. #ifdef CONFIG_COMPAT
  693. .compat_ioctl = f2fs_compat_ioctl,
  694. #endif
  695. .splice_read = generic_file_splice_read,
  696. .splice_write = iter_file_splice_write,
  697. };