amd5536udc.c 83 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. */
  12. /*
  13. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  14. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  15. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  16. *
  17. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  18. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  19. * by BIOS init).
  20. *
  21. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  22. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  23. * can be used with gadget ether.
  24. */
  25. /* debug control */
  26. /* #define UDC_VERBOSE */
  27. /* Driver strings */
  28. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  29. #define UDC_DRIVER_VERSION_STRING "01.00.0206"
  30. /* system */
  31. #include <linux/module.h>
  32. #include <linux/pci.h>
  33. #include <linux/kernel.h>
  34. #include <linux/delay.h>
  35. #include <linux/ioport.h>
  36. #include <linux/sched.h>
  37. #include <linux/slab.h>
  38. #include <linux/errno.h>
  39. #include <linux/timer.h>
  40. #include <linux/list.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/fs.h>
  44. #include <linux/dmapool.h>
  45. #include <linux/moduleparam.h>
  46. #include <linux/device.h>
  47. #include <linux/io.h>
  48. #include <linux/irq.h>
  49. #include <linux/prefetch.h>
  50. #include <asm/byteorder.h>
  51. #include <asm/unaligned.h>
  52. /* gadget stack */
  53. #include <linux/usb/ch9.h>
  54. #include <linux/usb/gadget.h>
  55. /* udc specific */
  56. #include "amd5536udc.h"
  57. static void udc_tasklet_disconnect(unsigned long);
  58. static void empty_req_queue(struct udc_ep *);
  59. static int udc_probe(struct udc *dev);
  60. static void udc_basic_init(struct udc *dev);
  61. static void udc_setup_endpoints(struct udc *dev);
  62. static void udc_soft_reset(struct udc *dev);
  63. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  64. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  65. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  66. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  67. unsigned long buf_len, gfp_t gfp_flags);
  68. static int udc_remote_wakeup(struct udc *dev);
  69. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  70. static void udc_pci_remove(struct pci_dev *pdev);
  71. /* description */
  72. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  73. static const char name[] = "amd5536udc";
  74. /* structure to hold endpoint function pointers */
  75. static const struct usb_ep_ops udc_ep_ops;
  76. /* received setup data */
  77. static union udc_setup_data setup_data;
  78. /* pointer to device object */
  79. static struct udc *udc;
  80. /* irq spin lock for soft reset */
  81. static DEFINE_SPINLOCK(udc_irq_spinlock);
  82. /* stall spin lock */
  83. static DEFINE_SPINLOCK(udc_stall_spinlock);
  84. /*
  85. * slave mode: pending bytes in rx fifo after nyet,
  86. * used if EPIN irq came but no req was available
  87. */
  88. static unsigned int udc_rxfifo_pending;
  89. /* count soft resets after suspend to avoid loop */
  90. static int soft_reset_occured;
  91. static int soft_reset_after_usbreset_occured;
  92. /* timer */
  93. static struct timer_list udc_timer;
  94. static int stop_timer;
  95. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  96. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  97. * all OUT endpoints. So we have to handle race conditions like
  98. * when OUT data reaches the fifo but no request was queued yet.
  99. * This cannot be solved by letting the RX DMA disabled until a
  100. * request gets queued because there may be other OUT packets
  101. * in the FIFO (important for not blocking control traffic).
  102. * The value of set_rde controls the correspondig timer.
  103. *
  104. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  105. * set_rde 0 == do not touch RDE, do no start the RDE timer
  106. * set_rde 1 == timer function will look whether FIFO has data
  107. * set_rde 2 == set by timer function to enable RX DMA on next call
  108. */
  109. static int set_rde = -1;
  110. static DECLARE_COMPLETION(on_exit);
  111. static struct timer_list udc_pollstall_timer;
  112. static int stop_pollstall_timer;
  113. static DECLARE_COMPLETION(on_pollstall_exit);
  114. /* tasklet for usb disconnect */
  115. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  116. (unsigned long) &udc);
  117. /* endpoint names used for print */
  118. static const char ep0_string[] = "ep0in";
  119. static const char *const ep_string[] = {
  120. ep0_string,
  121. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  122. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  123. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  124. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  125. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  126. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  127. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  128. };
  129. /* DMA usage flag */
  130. static bool use_dma = 1;
  131. /* packet per buffer dma */
  132. static bool use_dma_ppb = 1;
  133. /* with per descr. update */
  134. static bool use_dma_ppb_du;
  135. /* buffer fill mode */
  136. static int use_dma_bufferfill_mode;
  137. /* full speed only mode */
  138. static bool use_fullspeed;
  139. /* tx buffer size for high speed */
  140. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  141. /* module parameters */
  142. module_param(use_dma, bool, S_IRUGO);
  143. MODULE_PARM_DESC(use_dma, "true for DMA");
  144. module_param(use_dma_ppb, bool, S_IRUGO);
  145. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  146. module_param(use_dma_ppb_du, bool, S_IRUGO);
  147. MODULE_PARM_DESC(use_dma_ppb_du,
  148. "true for DMA in packet per buffer mode with descriptor update");
  149. module_param(use_fullspeed, bool, S_IRUGO);
  150. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  151. /*---------------------------------------------------------------------------*/
  152. /* Prints UDC device registers and endpoint irq registers */
  153. static void print_regs(struct udc *dev)
  154. {
  155. DBG(dev, "------- Device registers -------\n");
  156. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  157. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  158. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  159. DBG(dev, "\n");
  160. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  161. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  162. DBG(dev, "\n");
  163. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  164. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  165. DBG(dev, "\n");
  166. DBG(dev, "USE DMA = %d\n", use_dma);
  167. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  168. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  169. "WITHOUT desc. update)\n");
  170. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  171. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  172. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  173. "WITH desc. update)\n");
  174. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  175. }
  176. if (use_dma && use_dma_bufferfill_mode) {
  177. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  178. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  179. }
  180. if (!use_dma)
  181. dev_info(&dev->pdev->dev, "FIFO mode\n");
  182. DBG(dev, "-------------------------------------------------------\n");
  183. }
  184. /* Masks unused interrupts */
  185. static int udc_mask_unused_interrupts(struct udc *dev)
  186. {
  187. u32 tmp;
  188. /* mask all dev interrupts */
  189. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  190. AMD_BIT(UDC_DEVINT_ENUM) |
  191. AMD_BIT(UDC_DEVINT_US) |
  192. AMD_BIT(UDC_DEVINT_UR) |
  193. AMD_BIT(UDC_DEVINT_ES) |
  194. AMD_BIT(UDC_DEVINT_SI) |
  195. AMD_BIT(UDC_DEVINT_SOF)|
  196. AMD_BIT(UDC_DEVINT_SC);
  197. writel(tmp, &dev->regs->irqmsk);
  198. /* mask all ep interrupts */
  199. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  200. return 0;
  201. }
  202. /* Enables endpoint 0 interrupts */
  203. static int udc_enable_ep0_interrupts(struct udc *dev)
  204. {
  205. u32 tmp;
  206. DBG(dev, "udc_enable_ep0_interrupts()\n");
  207. /* read irq mask */
  208. tmp = readl(&dev->regs->ep_irqmsk);
  209. /* enable ep0 irq's */
  210. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  211. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  212. writel(tmp, &dev->regs->ep_irqmsk);
  213. return 0;
  214. }
  215. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  216. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  217. {
  218. u32 tmp;
  219. DBG(dev, "enable device interrupts for setup data\n");
  220. /* read irq mask */
  221. tmp = readl(&dev->regs->irqmsk);
  222. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  223. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  224. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  225. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  226. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  227. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  228. writel(tmp, &dev->regs->irqmsk);
  229. return 0;
  230. }
  231. /* Calculates fifo start of endpoint based on preceding endpoints */
  232. static int udc_set_txfifo_addr(struct udc_ep *ep)
  233. {
  234. struct udc *dev;
  235. u32 tmp;
  236. int i;
  237. if (!ep || !(ep->in))
  238. return -EINVAL;
  239. dev = ep->dev;
  240. ep->txfifo = dev->txfifo;
  241. /* traverse ep's */
  242. for (i = 0; i < ep->num; i++) {
  243. if (dev->ep[i].regs) {
  244. /* read fifo size */
  245. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  246. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  247. ep->txfifo += tmp;
  248. }
  249. }
  250. return 0;
  251. }
  252. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  253. static u32 cnak_pending;
  254. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  255. {
  256. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  257. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  258. cnak_pending |= 1 << (num);
  259. ep->naking = 1;
  260. } else
  261. cnak_pending = cnak_pending & (~(1 << (num)));
  262. }
  263. /* Enables endpoint, is called by gadget driver */
  264. static int
  265. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  266. {
  267. struct udc_ep *ep;
  268. struct udc *dev;
  269. u32 tmp;
  270. unsigned long iflags;
  271. u8 udc_csr_epix;
  272. unsigned maxpacket;
  273. if (!usbep
  274. || usbep->name == ep0_string
  275. || !desc
  276. || desc->bDescriptorType != USB_DT_ENDPOINT)
  277. return -EINVAL;
  278. ep = container_of(usbep, struct udc_ep, ep);
  279. dev = ep->dev;
  280. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  281. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  282. return -ESHUTDOWN;
  283. spin_lock_irqsave(&dev->lock, iflags);
  284. ep->ep.desc = desc;
  285. ep->halted = 0;
  286. /* set traffic type */
  287. tmp = readl(&dev->ep[ep->num].regs->ctl);
  288. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  289. writel(tmp, &dev->ep[ep->num].regs->ctl);
  290. /* set max packet size */
  291. maxpacket = usb_endpoint_maxp(desc);
  292. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  293. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  294. ep->ep.maxpacket = maxpacket;
  295. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  296. /* IN ep */
  297. if (ep->in) {
  298. /* ep ix in UDC CSR register space */
  299. udc_csr_epix = ep->num;
  300. /* set buffer size (tx fifo entries) */
  301. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  302. /* double buffering: fifo size = 2 x max packet size */
  303. tmp = AMD_ADDBITS(
  304. tmp,
  305. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  306. / UDC_DWORD_BYTES,
  307. UDC_EPIN_BUFF_SIZE);
  308. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  309. /* calc. tx fifo base addr */
  310. udc_set_txfifo_addr(ep);
  311. /* flush fifo */
  312. tmp = readl(&ep->regs->ctl);
  313. tmp |= AMD_BIT(UDC_EPCTL_F);
  314. writel(tmp, &ep->regs->ctl);
  315. /* OUT ep */
  316. } else {
  317. /* ep ix in UDC CSR register space */
  318. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  319. /* set max packet size UDC CSR */
  320. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  321. tmp = AMD_ADDBITS(tmp, maxpacket,
  322. UDC_CSR_NE_MAX_PKT);
  323. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  324. if (use_dma && !ep->in) {
  325. /* alloc and init BNA dummy request */
  326. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  327. ep->bna_occurred = 0;
  328. }
  329. if (ep->num != UDC_EP0OUT_IX)
  330. dev->data_ep_enabled = 1;
  331. }
  332. /* set ep values */
  333. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  334. /* max packet */
  335. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  336. /* ep number */
  337. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  338. /* ep direction */
  339. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  340. /* ep type */
  341. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  342. /* ep config */
  343. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  344. /* ep interface */
  345. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  346. /* ep alt */
  347. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  348. /* write reg */
  349. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  350. /* enable ep irq */
  351. tmp = readl(&dev->regs->ep_irqmsk);
  352. tmp &= AMD_UNMASK_BIT(ep->num);
  353. writel(tmp, &dev->regs->ep_irqmsk);
  354. /*
  355. * clear NAK by writing CNAK
  356. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  357. */
  358. if (!use_dma || ep->in) {
  359. tmp = readl(&ep->regs->ctl);
  360. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  361. writel(tmp, &ep->regs->ctl);
  362. ep->naking = 0;
  363. UDC_QUEUE_CNAK(ep, ep->num);
  364. }
  365. tmp = desc->bEndpointAddress;
  366. DBG(dev, "%s enabled\n", usbep->name);
  367. spin_unlock_irqrestore(&dev->lock, iflags);
  368. return 0;
  369. }
  370. /* Resets endpoint */
  371. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  372. {
  373. u32 tmp;
  374. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  375. ep->ep.desc = NULL;
  376. ep->ep.ops = &udc_ep_ops;
  377. INIT_LIST_HEAD(&ep->queue);
  378. usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
  379. /* set NAK */
  380. tmp = readl(&ep->regs->ctl);
  381. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  382. writel(tmp, &ep->regs->ctl);
  383. ep->naking = 1;
  384. /* disable interrupt */
  385. tmp = readl(&regs->ep_irqmsk);
  386. tmp |= AMD_BIT(ep->num);
  387. writel(tmp, &regs->ep_irqmsk);
  388. if (ep->in) {
  389. /* unset P and IN bit of potential former DMA */
  390. tmp = readl(&ep->regs->ctl);
  391. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  392. writel(tmp, &ep->regs->ctl);
  393. tmp = readl(&ep->regs->sts);
  394. tmp |= AMD_BIT(UDC_EPSTS_IN);
  395. writel(tmp, &ep->regs->sts);
  396. /* flush the fifo */
  397. tmp = readl(&ep->regs->ctl);
  398. tmp |= AMD_BIT(UDC_EPCTL_F);
  399. writel(tmp, &ep->regs->ctl);
  400. }
  401. /* reset desc pointer */
  402. writel(0, &ep->regs->desptr);
  403. }
  404. /* Disables endpoint, is called by gadget driver */
  405. static int udc_ep_disable(struct usb_ep *usbep)
  406. {
  407. struct udc_ep *ep = NULL;
  408. unsigned long iflags;
  409. if (!usbep)
  410. return -EINVAL;
  411. ep = container_of(usbep, struct udc_ep, ep);
  412. if (usbep->name == ep0_string || !ep->ep.desc)
  413. return -EINVAL;
  414. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  415. spin_lock_irqsave(&ep->dev->lock, iflags);
  416. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  417. empty_req_queue(ep);
  418. ep_init(ep->dev->regs, ep);
  419. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  420. return 0;
  421. }
  422. /* Allocates request packet, called by gadget driver */
  423. static struct usb_request *
  424. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  425. {
  426. struct udc_request *req;
  427. struct udc_data_dma *dma_desc;
  428. struct udc_ep *ep;
  429. if (!usbep)
  430. return NULL;
  431. ep = container_of(usbep, struct udc_ep, ep);
  432. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  433. req = kzalloc(sizeof(struct udc_request), gfp);
  434. if (!req)
  435. return NULL;
  436. req->req.dma = DMA_DONT_USE;
  437. INIT_LIST_HEAD(&req->queue);
  438. if (ep->dma) {
  439. /* ep0 in requests are allocated from data pool here */
  440. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  441. &req->td_phys);
  442. if (!dma_desc) {
  443. kfree(req);
  444. return NULL;
  445. }
  446. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  447. "td_phys = %lx\n",
  448. req, dma_desc,
  449. (unsigned long)req->td_phys);
  450. /* prevent from using desc. - set HOST BUSY */
  451. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  452. UDC_DMA_STP_STS_BS_HOST_BUSY,
  453. UDC_DMA_STP_STS_BS);
  454. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  455. req->td_data = dma_desc;
  456. req->td_data_last = NULL;
  457. req->chain_len = 1;
  458. }
  459. return &req->req;
  460. }
  461. /* Frees request packet, called by gadget driver */
  462. static void
  463. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  464. {
  465. struct udc_ep *ep;
  466. struct udc_request *req;
  467. if (!usbep || !usbreq)
  468. return;
  469. ep = container_of(usbep, struct udc_ep, ep);
  470. req = container_of(usbreq, struct udc_request, req);
  471. VDBG(ep->dev, "free_req req=%p\n", req);
  472. BUG_ON(!list_empty(&req->queue));
  473. if (req->td_data) {
  474. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  475. /* free dma chain if created */
  476. if (req->chain_len > 1)
  477. udc_free_dma_chain(ep->dev, req);
  478. pci_pool_free(ep->dev->data_requests, req->td_data,
  479. req->td_phys);
  480. }
  481. kfree(req);
  482. }
  483. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  484. static void udc_init_bna_dummy(struct udc_request *req)
  485. {
  486. if (req) {
  487. /* set last bit */
  488. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  489. /* set next pointer to itself */
  490. req->td_data->next = req->td_phys;
  491. /* set HOST BUSY */
  492. req->td_data->status
  493. = AMD_ADDBITS(req->td_data->status,
  494. UDC_DMA_STP_STS_BS_DMA_DONE,
  495. UDC_DMA_STP_STS_BS);
  496. #ifdef UDC_VERBOSE
  497. pr_debug("bna desc = %p, sts = %08x\n",
  498. req->td_data, req->td_data->status);
  499. #endif
  500. }
  501. }
  502. /* Allocate BNA dummy descriptor */
  503. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  504. {
  505. struct udc_request *req = NULL;
  506. struct usb_request *_req = NULL;
  507. /* alloc the dummy request */
  508. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  509. if (_req) {
  510. req = container_of(_req, struct udc_request, req);
  511. ep->bna_dummy_req = req;
  512. udc_init_bna_dummy(req);
  513. }
  514. return req;
  515. }
  516. /* Write data to TX fifo for IN packets */
  517. static void
  518. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  519. {
  520. u8 *req_buf;
  521. u32 *buf;
  522. int i, j;
  523. unsigned bytes = 0;
  524. unsigned remaining = 0;
  525. if (!req || !ep)
  526. return;
  527. req_buf = req->buf + req->actual;
  528. prefetch(req_buf);
  529. remaining = req->length - req->actual;
  530. buf = (u32 *) req_buf;
  531. bytes = ep->ep.maxpacket;
  532. if (bytes > remaining)
  533. bytes = remaining;
  534. /* dwords first */
  535. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  536. writel(*(buf + i), ep->txfifo);
  537. /* remaining bytes must be written by byte access */
  538. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  539. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  540. ep->txfifo);
  541. }
  542. /* dummy write confirm */
  543. writel(0, &ep->regs->confirm);
  544. }
  545. /* Read dwords from RX fifo for OUT transfers */
  546. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  547. {
  548. int i;
  549. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  550. for (i = 0; i < dwords; i++)
  551. *(buf + i) = readl(dev->rxfifo);
  552. return 0;
  553. }
  554. /* Read bytes from RX fifo for OUT transfers */
  555. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  556. {
  557. int i, j;
  558. u32 tmp;
  559. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  560. /* dwords first */
  561. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
  562. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  563. /* remaining bytes must be read by byte access */
  564. if (bytes % UDC_DWORD_BYTES) {
  565. tmp = readl(dev->rxfifo);
  566. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  567. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  568. tmp = tmp >> UDC_BITS_PER_BYTE;
  569. }
  570. }
  571. return 0;
  572. }
  573. /* Read data from RX fifo for OUT transfers */
  574. static int
  575. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  576. {
  577. u8 *buf;
  578. unsigned buf_space;
  579. unsigned bytes = 0;
  580. unsigned finished = 0;
  581. /* received number bytes */
  582. bytes = readl(&ep->regs->sts);
  583. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  584. buf_space = req->req.length - req->req.actual;
  585. buf = req->req.buf + req->req.actual;
  586. if (bytes > buf_space) {
  587. if ((buf_space % ep->ep.maxpacket) != 0) {
  588. DBG(ep->dev,
  589. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  590. ep->ep.name, bytes, buf_space);
  591. req->req.status = -EOVERFLOW;
  592. }
  593. bytes = buf_space;
  594. }
  595. req->req.actual += bytes;
  596. /* last packet ? */
  597. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  598. || ((req->req.actual == req->req.length) && !req->req.zero))
  599. finished = 1;
  600. /* read rx fifo bytes */
  601. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  602. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  603. return finished;
  604. }
  605. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  606. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  607. {
  608. int retval = 0;
  609. u32 tmp;
  610. VDBG(ep->dev, "prep_dma\n");
  611. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  612. ep->num, req->td_data);
  613. /* set buffer pointer */
  614. req->td_data->bufptr = req->req.dma;
  615. /* set last bit */
  616. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  617. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  618. if (use_dma_ppb) {
  619. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  620. if (retval != 0) {
  621. if (retval == -ENOMEM)
  622. DBG(ep->dev, "Out of DMA memory\n");
  623. return retval;
  624. }
  625. if (ep->in) {
  626. if (req->req.length == ep->ep.maxpacket) {
  627. /* write tx bytes */
  628. req->td_data->status =
  629. AMD_ADDBITS(req->td_data->status,
  630. ep->ep.maxpacket,
  631. UDC_DMA_IN_STS_TXBYTES);
  632. }
  633. }
  634. }
  635. if (ep->in) {
  636. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  637. "maxpacket=%d ep%d\n",
  638. use_dma_ppb, req->req.length,
  639. ep->ep.maxpacket, ep->num);
  640. /*
  641. * if bytes < max packet then tx bytes must
  642. * be written in packet per buffer mode
  643. */
  644. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  645. || ep->num == UDC_EP0OUT_IX
  646. || ep->num == UDC_EP0IN_IX) {
  647. /* write tx bytes */
  648. req->td_data->status =
  649. AMD_ADDBITS(req->td_data->status,
  650. req->req.length,
  651. UDC_DMA_IN_STS_TXBYTES);
  652. /* reset frame num */
  653. req->td_data->status =
  654. AMD_ADDBITS(req->td_data->status,
  655. 0,
  656. UDC_DMA_IN_STS_FRAMENUM);
  657. }
  658. /* set HOST BUSY */
  659. req->td_data->status =
  660. AMD_ADDBITS(req->td_data->status,
  661. UDC_DMA_STP_STS_BS_HOST_BUSY,
  662. UDC_DMA_STP_STS_BS);
  663. } else {
  664. VDBG(ep->dev, "OUT set host ready\n");
  665. /* set HOST READY */
  666. req->td_data->status =
  667. AMD_ADDBITS(req->td_data->status,
  668. UDC_DMA_STP_STS_BS_HOST_READY,
  669. UDC_DMA_STP_STS_BS);
  670. /* clear NAK by writing CNAK */
  671. if (ep->naking) {
  672. tmp = readl(&ep->regs->ctl);
  673. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  674. writel(tmp, &ep->regs->ctl);
  675. ep->naking = 0;
  676. UDC_QUEUE_CNAK(ep, ep->num);
  677. }
  678. }
  679. return retval;
  680. }
  681. /* Completes request packet ... caller MUST hold lock */
  682. static void
  683. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  684. __releases(ep->dev->lock)
  685. __acquires(ep->dev->lock)
  686. {
  687. struct udc *dev;
  688. unsigned halted;
  689. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  690. dev = ep->dev;
  691. /* unmap DMA */
  692. if (ep->dma)
  693. usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
  694. halted = ep->halted;
  695. ep->halted = 1;
  696. /* set new status if pending */
  697. if (req->req.status == -EINPROGRESS)
  698. req->req.status = sts;
  699. /* remove from ep queue */
  700. list_del_init(&req->queue);
  701. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  702. &req->req, req->req.length, ep->ep.name, sts);
  703. spin_unlock(&dev->lock);
  704. req->req.complete(&ep->ep, &req->req);
  705. spin_lock(&dev->lock);
  706. ep->halted = halted;
  707. }
  708. /* frees pci pool descriptors of a DMA chain */
  709. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  710. {
  711. int ret_val = 0;
  712. struct udc_data_dma *td;
  713. struct udc_data_dma *td_last = NULL;
  714. unsigned int i;
  715. DBG(dev, "free chain req = %p\n", req);
  716. /* do not free first desc., will be done by free for request */
  717. td_last = req->td_data;
  718. td = phys_to_virt(td_last->next);
  719. for (i = 1; i < req->chain_len; i++) {
  720. pci_pool_free(dev->data_requests, td,
  721. (dma_addr_t) td_last->next);
  722. td_last = td;
  723. td = phys_to_virt(td_last->next);
  724. }
  725. return ret_val;
  726. }
  727. /* Iterates to the end of a DMA chain and returns last descriptor */
  728. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  729. {
  730. struct udc_data_dma *td;
  731. td = req->td_data;
  732. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
  733. td = phys_to_virt(td->next);
  734. return td;
  735. }
  736. /* Iterates to the end of a DMA chain and counts bytes received */
  737. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  738. {
  739. struct udc_data_dma *td;
  740. u32 count;
  741. td = req->td_data;
  742. /* received number bytes */
  743. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  744. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  745. td = phys_to_virt(td->next);
  746. /* received number bytes */
  747. if (td) {
  748. count += AMD_GETBITS(td->status,
  749. UDC_DMA_OUT_STS_RXBYTES);
  750. }
  751. }
  752. return count;
  753. }
  754. /* Creates or re-inits a DMA chain */
  755. static int udc_create_dma_chain(
  756. struct udc_ep *ep,
  757. struct udc_request *req,
  758. unsigned long buf_len, gfp_t gfp_flags
  759. )
  760. {
  761. unsigned long bytes = req->req.length;
  762. unsigned int i;
  763. dma_addr_t dma_addr;
  764. struct udc_data_dma *td = NULL;
  765. struct udc_data_dma *last = NULL;
  766. unsigned long txbytes;
  767. unsigned create_new_chain = 0;
  768. unsigned len;
  769. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  770. bytes, buf_len);
  771. dma_addr = DMA_DONT_USE;
  772. /* unset L bit in first desc for OUT */
  773. if (!ep->in)
  774. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  775. /* alloc only new desc's if not already available */
  776. len = req->req.length / ep->ep.maxpacket;
  777. if (req->req.length % ep->ep.maxpacket)
  778. len++;
  779. if (len > req->chain_len) {
  780. /* shorter chain already allocated before */
  781. if (req->chain_len > 1)
  782. udc_free_dma_chain(ep->dev, req);
  783. req->chain_len = len;
  784. create_new_chain = 1;
  785. }
  786. td = req->td_data;
  787. /* gen. required number of descriptors and buffers */
  788. for (i = buf_len; i < bytes; i += buf_len) {
  789. /* create or determine next desc. */
  790. if (create_new_chain) {
  791. td = pci_pool_alloc(ep->dev->data_requests,
  792. gfp_flags, &dma_addr);
  793. if (!td)
  794. return -ENOMEM;
  795. td->status = 0;
  796. } else if (i == buf_len) {
  797. /* first td */
  798. td = (struct udc_data_dma *) phys_to_virt(
  799. req->td_data->next);
  800. td->status = 0;
  801. } else {
  802. td = (struct udc_data_dma *) phys_to_virt(last->next);
  803. td->status = 0;
  804. }
  805. if (td)
  806. td->bufptr = req->req.dma + i; /* assign buffer */
  807. else
  808. break;
  809. /* short packet ? */
  810. if ((bytes - i) >= buf_len) {
  811. txbytes = buf_len;
  812. } else {
  813. /* short packet */
  814. txbytes = bytes - i;
  815. }
  816. /* link td and assign tx bytes */
  817. if (i == buf_len) {
  818. if (create_new_chain)
  819. req->td_data->next = dma_addr;
  820. /*
  821. else
  822. req->td_data->next = virt_to_phys(td);
  823. */
  824. /* write tx bytes */
  825. if (ep->in) {
  826. /* first desc */
  827. req->td_data->status =
  828. AMD_ADDBITS(req->td_data->status,
  829. ep->ep.maxpacket,
  830. UDC_DMA_IN_STS_TXBYTES);
  831. /* second desc */
  832. td->status = AMD_ADDBITS(td->status,
  833. txbytes,
  834. UDC_DMA_IN_STS_TXBYTES);
  835. }
  836. } else {
  837. if (create_new_chain)
  838. last->next = dma_addr;
  839. /*
  840. else
  841. last->next = virt_to_phys(td);
  842. */
  843. if (ep->in) {
  844. /* write tx bytes */
  845. td->status = AMD_ADDBITS(td->status,
  846. txbytes,
  847. UDC_DMA_IN_STS_TXBYTES);
  848. }
  849. }
  850. last = td;
  851. }
  852. /* set last bit */
  853. if (td) {
  854. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  855. /* last desc. points to itself */
  856. req->td_data_last = td;
  857. }
  858. return 0;
  859. }
  860. /* Enabling RX DMA */
  861. static void udc_set_rde(struct udc *dev)
  862. {
  863. u32 tmp;
  864. VDBG(dev, "udc_set_rde()\n");
  865. /* stop RDE timer */
  866. if (timer_pending(&udc_timer)) {
  867. set_rde = 0;
  868. mod_timer(&udc_timer, jiffies - 1);
  869. }
  870. /* set RDE */
  871. tmp = readl(&dev->regs->ctl);
  872. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  873. writel(tmp, &dev->regs->ctl);
  874. }
  875. /* Queues a request packet, called by gadget driver */
  876. static int
  877. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  878. {
  879. int retval = 0;
  880. u8 open_rxfifo = 0;
  881. unsigned long iflags;
  882. struct udc_ep *ep;
  883. struct udc_request *req;
  884. struct udc *dev;
  885. u32 tmp;
  886. /* check the inputs */
  887. req = container_of(usbreq, struct udc_request, req);
  888. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  889. || !list_empty(&req->queue))
  890. return -EINVAL;
  891. ep = container_of(usbep, struct udc_ep, ep);
  892. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  893. return -EINVAL;
  894. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  895. dev = ep->dev;
  896. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  897. return -ESHUTDOWN;
  898. /* map dma (usually done before) */
  899. if (ep->dma) {
  900. VDBG(dev, "DMA map req %p\n", req);
  901. retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
  902. if (retval)
  903. return retval;
  904. }
  905. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  906. usbep->name, usbreq, usbreq->length,
  907. req->td_data, usbreq->buf);
  908. spin_lock_irqsave(&dev->lock, iflags);
  909. usbreq->actual = 0;
  910. usbreq->status = -EINPROGRESS;
  911. req->dma_done = 0;
  912. /* on empty queue just do first transfer */
  913. if (list_empty(&ep->queue)) {
  914. /* zlp */
  915. if (usbreq->length == 0) {
  916. /* IN zlp's are handled by hardware */
  917. complete_req(ep, req, 0);
  918. VDBG(dev, "%s: zlp\n", ep->ep.name);
  919. /*
  920. * if set_config or set_intf is waiting for ack by zlp
  921. * then set CSR_DONE
  922. */
  923. if (dev->set_cfg_not_acked) {
  924. tmp = readl(&dev->regs->ctl);
  925. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  926. writel(tmp, &dev->regs->ctl);
  927. dev->set_cfg_not_acked = 0;
  928. }
  929. /* setup command is ACK'ed now by zlp */
  930. if (dev->waiting_zlp_ack_ep0in) {
  931. /* clear NAK by writing CNAK in EP0_IN */
  932. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  933. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  934. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  935. dev->ep[UDC_EP0IN_IX].naking = 0;
  936. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  937. UDC_EP0IN_IX);
  938. dev->waiting_zlp_ack_ep0in = 0;
  939. }
  940. goto finished;
  941. }
  942. if (ep->dma) {
  943. retval = prep_dma(ep, req, GFP_ATOMIC);
  944. if (retval != 0)
  945. goto finished;
  946. /* write desc pointer to enable DMA */
  947. if (ep->in) {
  948. /* set HOST READY */
  949. req->td_data->status =
  950. AMD_ADDBITS(req->td_data->status,
  951. UDC_DMA_IN_STS_BS_HOST_READY,
  952. UDC_DMA_IN_STS_BS);
  953. }
  954. /* disabled rx dma while descriptor update */
  955. if (!ep->in) {
  956. /* stop RDE timer */
  957. if (timer_pending(&udc_timer)) {
  958. set_rde = 0;
  959. mod_timer(&udc_timer, jiffies - 1);
  960. }
  961. /* clear RDE */
  962. tmp = readl(&dev->regs->ctl);
  963. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  964. writel(tmp, &dev->regs->ctl);
  965. open_rxfifo = 1;
  966. /*
  967. * if BNA occurred then let BNA dummy desc.
  968. * point to current desc.
  969. */
  970. if (ep->bna_occurred) {
  971. VDBG(dev, "copy to BNA dummy desc.\n");
  972. memcpy(ep->bna_dummy_req->td_data,
  973. req->td_data,
  974. sizeof(struct udc_data_dma));
  975. }
  976. }
  977. /* write desc pointer */
  978. writel(req->td_phys, &ep->regs->desptr);
  979. /* clear NAK by writing CNAK */
  980. if (ep->naking) {
  981. tmp = readl(&ep->regs->ctl);
  982. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  983. writel(tmp, &ep->regs->ctl);
  984. ep->naking = 0;
  985. UDC_QUEUE_CNAK(ep, ep->num);
  986. }
  987. if (ep->in) {
  988. /* enable ep irq */
  989. tmp = readl(&dev->regs->ep_irqmsk);
  990. tmp &= AMD_UNMASK_BIT(ep->num);
  991. writel(tmp, &dev->regs->ep_irqmsk);
  992. }
  993. } else if (ep->in) {
  994. /* enable ep irq */
  995. tmp = readl(&dev->regs->ep_irqmsk);
  996. tmp &= AMD_UNMASK_BIT(ep->num);
  997. writel(tmp, &dev->regs->ep_irqmsk);
  998. }
  999. } else if (ep->dma) {
  1000. /*
  1001. * prep_dma not used for OUT ep's, this is not possible
  1002. * for PPB modes, because of chain creation reasons
  1003. */
  1004. if (ep->in) {
  1005. retval = prep_dma(ep, req, GFP_ATOMIC);
  1006. if (retval != 0)
  1007. goto finished;
  1008. }
  1009. }
  1010. VDBG(dev, "list_add\n");
  1011. /* add request to ep queue */
  1012. if (req) {
  1013. list_add_tail(&req->queue, &ep->queue);
  1014. /* open rxfifo if out data queued */
  1015. if (open_rxfifo) {
  1016. /* enable DMA */
  1017. req->dma_going = 1;
  1018. udc_set_rde(dev);
  1019. if (ep->num != UDC_EP0OUT_IX)
  1020. dev->data_ep_queued = 1;
  1021. }
  1022. /* stop OUT naking */
  1023. if (!ep->in) {
  1024. if (!use_dma && udc_rxfifo_pending) {
  1025. DBG(dev, "udc_queue(): pending bytes in "
  1026. "rxfifo after nyet\n");
  1027. /*
  1028. * read pending bytes afer nyet:
  1029. * referring to isr
  1030. */
  1031. if (udc_rxfifo_read(ep, req)) {
  1032. /* finish */
  1033. complete_req(ep, req, 0);
  1034. }
  1035. udc_rxfifo_pending = 0;
  1036. }
  1037. }
  1038. }
  1039. finished:
  1040. spin_unlock_irqrestore(&dev->lock, iflags);
  1041. return retval;
  1042. }
  1043. /* Empty request queue of an endpoint; caller holds spinlock */
  1044. static void empty_req_queue(struct udc_ep *ep)
  1045. {
  1046. struct udc_request *req;
  1047. ep->halted = 1;
  1048. while (!list_empty(&ep->queue)) {
  1049. req = list_entry(ep->queue.next,
  1050. struct udc_request,
  1051. queue);
  1052. complete_req(ep, req, -ESHUTDOWN);
  1053. }
  1054. }
  1055. /* Dequeues a request packet, called by gadget driver */
  1056. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1057. {
  1058. struct udc_ep *ep;
  1059. struct udc_request *req;
  1060. unsigned halted;
  1061. unsigned long iflags;
  1062. ep = container_of(usbep, struct udc_ep, ep);
  1063. if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
  1064. && ep->num != UDC_EP0OUT_IX)))
  1065. return -EINVAL;
  1066. req = container_of(usbreq, struct udc_request, req);
  1067. spin_lock_irqsave(&ep->dev->lock, iflags);
  1068. halted = ep->halted;
  1069. ep->halted = 1;
  1070. /* request in processing or next one */
  1071. if (ep->queue.next == &req->queue) {
  1072. if (ep->dma && req->dma_going) {
  1073. if (ep->in)
  1074. ep->cancel_transfer = 1;
  1075. else {
  1076. u32 tmp;
  1077. u32 dma_sts;
  1078. /* stop potential receive DMA */
  1079. tmp = readl(&udc->regs->ctl);
  1080. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1081. &udc->regs->ctl);
  1082. /*
  1083. * Cancel transfer later in ISR
  1084. * if descriptor was touched.
  1085. */
  1086. dma_sts = AMD_GETBITS(req->td_data->status,
  1087. UDC_DMA_OUT_STS_BS);
  1088. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1089. ep->cancel_transfer = 1;
  1090. else {
  1091. udc_init_bna_dummy(ep->req);
  1092. writel(ep->bna_dummy_req->td_phys,
  1093. &ep->regs->desptr);
  1094. }
  1095. writel(tmp, &udc->regs->ctl);
  1096. }
  1097. }
  1098. }
  1099. complete_req(ep, req, -ECONNRESET);
  1100. ep->halted = halted;
  1101. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1102. return 0;
  1103. }
  1104. /* Halt or clear halt of endpoint */
  1105. static int
  1106. udc_set_halt(struct usb_ep *usbep, int halt)
  1107. {
  1108. struct udc_ep *ep;
  1109. u32 tmp;
  1110. unsigned long iflags;
  1111. int retval = 0;
  1112. if (!usbep)
  1113. return -EINVAL;
  1114. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1115. ep = container_of(usbep, struct udc_ep, ep);
  1116. if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1117. return -EINVAL;
  1118. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1119. return -ESHUTDOWN;
  1120. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1121. /* halt or clear halt */
  1122. if (halt) {
  1123. if (ep->num == 0)
  1124. ep->dev->stall_ep0in = 1;
  1125. else {
  1126. /*
  1127. * set STALL
  1128. * rxfifo empty not taken into acount
  1129. */
  1130. tmp = readl(&ep->regs->ctl);
  1131. tmp |= AMD_BIT(UDC_EPCTL_S);
  1132. writel(tmp, &ep->regs->ctl);
  1133. ep->halted = 1;
  1134. /* setup poll timer */
  1135. if (!timer_pending(&udc_pollstall_timer)) {
  1136. udc_pollstall_timer.expires = jiffies +
  1137. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1138. / (1000 * 1000);
  1139. if (!stop_pollstall_timer) {
  1140. DBG(ep->dev, "start polltimer\n");
  1141. add_timer(&udc_pollstall_timer);
  1142. }
  1143. }
  1144. }
  1145. } else {
  1146. /* ep is halted by set_halt() before */
  1147. if (ep->halted) {
  1148. tmp = readl(&ep->regs->ctl);
  1149. /* clear stall bit */
  1150. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1151. /* clear NAK by writing CNAK */
  1152. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1153. writel(tmp, &ep->regs->ctl);
  1154. ep->halted = 0;
  1155. UDC_QUEUE_CNAK(ep, ep->num);
  1156. }
  1157. }
  1158. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1159. return retval;
  1160. }
  1161. /* gadget interface */
  1162. static const struct usb_ep_ops udc_ep_ops = {
  1163. .enable = udc_ep_enable,
  1164. .disable = udc_ep_disable,
  1165. .alloc_request = udc_alloc_request,
  1166. .free_request = udc_free_request,
  1167. .queue = udc_queue,
  1168. .dequeue = udc_dequeue,
  1169. .set_halt = udc_set_halt,
  1170. /* fifo ops not implemented */
  1171. };
  1172. /*-------------------------------------------------------------------------*/
  1173. /* Get frame counter (not implemented) */
  1174. static int udc_get_frame(struct usb_gadget *gadget)
  1175. {
  1176. return -EOPNOTSUPP;
  1177. }
  1178. /* Remote wakeup gadget interface */
  1179. static int udc_wakeup(struct usb_gadget *gadget)
  1180. {
  1181. struct udc *dev;
  1182. if (!gadget)
  1183. return -EINVAL;
  1184. dev = container_of(gadget, struct udc, gadget);
  1185. udc_remote_wakeup(dev);
  1186. return 0;
  1187. }
  1188. static int amd5536_udc_start(struct usb_gadget *g,
  1189. struct usb_gadget_driver *driver);
  1190. static int amd5536_udc_stop(struct usb_gadget *g,
  1191. struct usb_gadget_driver *driver);
  1192. /* gadget operations */
  1193. static const struct usb_gadget_ops udc_ops = {
  1194. .wakeup = udc_wakeup,
  1195. .get_frame = udc_get_frame,
  1196. .udc_start = amd5536_udc_start,
  1197. .udc_stop = amd5536_udc_stop,
  1198. };
  1199. /* Setups endpoint parameters, adds endpoints to linked list */
  1200. static void make_ep_lists(struct udc *dev)
  1201. {
  1202. /* make gadget ep lists */
  1203. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1204. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1205. &dev->gadget.ep_list);
  1206. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1207. &dev->gadget.ep_list);
  1208. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1209. &dev->gadget.ep_list);
  1210. /* fifo config */
  1211. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1212. if (dev->gadget.speed == USB_SPEED_FULL)
  1213. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1214. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1215. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1216. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1217. }
  1218. /* init registers at driver load time */
  1219. static int startup_registers(struct udc *dev)
  1220. {
  1221. u32 tmp;
  1222. /* init controller by soft reset */
  1223. udc_soft_reset(dev);
  1224. /* mask not needed interrupts */
  1225. udc_mask_unused_interrupts(dev);
  1226. /* put into initial config */
  1227. udc_basic_init(dev);
  1228. /* link up all endpoints */
  1229. udc_setup_endpoints(dev);
  1230. /* program speed */
  1231. tmp = readl(&dev->regs->cfg);
  1232. if (use_fullspeed)
  1233. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1234. else
  1235. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1236. writel(tmp, &dev->regs->cfg);
  1237. return 0;
  1238. }
  1239. /* Inits UDC context */
  1240. static void udc_basic_init(struct udc *dev)
  1241. {
  1242. u32 tmp;
  1243. DBG(dev, "udc_basic_init()\n");
  1244. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1245. /* stop RDE timer */
  1246. if (timer_pending(&udc_timer)) {
  1247. set_rde = 0;
  1248. mod_timer(&udc_timer, jiffies - 1);
  1249. }
  1250. /* stop poll stall timer */
  1251. if (timer_pending(&udc_pollstall_timer))
  1252. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1253. /* disable DMA */
  1254. tmp = readl(&dev->regs->ctl);
  1255. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1256. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1257. writel(tmp, &dev->regs->ctl);
  1258. /* enable dynamic CSR programming */
  1259. tmp = readl(&dev->regs->cfg);
  1260. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1261. /* set self powered */
  1262. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1263. /* set remote wakeupable */
  1264. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1265. writel(tmp, &dev->regs->cfg);
  1266. make_ep_lists(dev);
  1267. dev->data_ep_enabled = 0;
  1268. dev->data_ep_queued = 0;
  1269. }
  1270. /* Sets initial endpoint parameters */
  1271. static void udc_setup_endpoints(struct udc *dev)
  1272. {
  1273. struct udc_ep *ep;
  1274. u32 tmp;
  1275. u32 reg;
  1276. DBG(dev, "udc_setup_endpoints()\n");
  1277. /* read enum speed */
  1278. tmp = readl(&dev->regs->sts);
  1279. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1280. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
  1281. dev->gadget.speed = USB_SPEED_HIGH;
  1282. else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
  1283. dev->gadget.speed = USB_SPEED_FULL;
  1284. /* set basic ep parameters */
  1285. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1286. ep = &dev->ep[tmp];
  1287. ep->dev = dev;
  1288. ep->ep.name = ep_string[tmp];
  1289. ep->num = tmp;
  1290. /* txfifo size is calculated at enable time */
  1291. ep->txfifo = dev->txfifo;
  1292. /* fifo size */
  1293. if (tmp < UDC_EPIN_NUM) {
  1294. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1295. ep->in = 1;
  1296. } else {
  1297. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1298. ep->in = 0;
  1299. }
  1300. ep->regs = &dev->ep_regs[tmp];
  1301. /*
  1302. * ep will be reset only if ep was not enabled before to avoid
  1303. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1304. * not enabled by gadget driver
  1305. */
  1306. if (!ep->ep.desc)
  1307. ep_init(dev->regs, ep);
  1308. if (use_dma) {
  1309. /*
  1310. * ep->dma is not really used, just to indicate that
  1311. * DMA is active: remove this
  1312. * dma regs = dev control regs
  1313. */
  1314. ep->dma = &dev->regs->ctl;
  1315. /* nak OUT endpoints until enable - not for ep0 */
  1316. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1317. && tmp > UDC_EPIN_NUM) {
  1318. /* set NAK */
  1319. reg = readl(&dev->ep[tmp].regs->ctl);
  1320. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1321. writel(reg, &dev->ep[tmp].regs->ctl);
  1322. dev->ep[tmp].naking = 1;
  1323. }
  1324. }
  1325. }
  1326. /* EP0 max packet */
  1327. if (dev->gadget.speed == USB_SPEED_FULL) {
  1328. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1329. UDC_FS_EP0IN_MAX_PKT_SIZE);
  1330. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1331. UDC_FS_EP0OUT_MAX_PKT_SIZE);
  1332. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1333. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
  1334. UDC_EP0IN_MAX_PKT_SIZE);
  1335. usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
  1336. UDC_EP0OUT_MAX_PKT_SIZE);
  1337. }
  1338. /*
  1339. * with suspend bug workaround, ep0 params for gadget driver
  1340. * are set at gadget driver bind() call
  1341. */
  1342. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1343. dev->ep[UDC_EP0IN_IX].halted = 0;
  1344. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1345. /* init cfg/alt/int */
  1346. dev->cur_config = 0;
  1347. dev->cur_intf = 0;
  1348. dev->cur_alt = 0;
  1349. }
  1350. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1351. static void usb_connect(struct udc *dev)
  1352. {
  1353. dev_info(&dev->pdev->dev, "USB Connect\n");
  1354. dev->connected = 1;
  1355. /* put into initial config */
  1356. udc_basic_init(dev);
  1357. /* enable device setup interrupts */
  1358. udc_enable_dev_setup_interrupts(dev);
  1359. }
  1360. /*
  1361. * Calls gadget with disconnect event and resets the UDC and makes
  1362. * initial bringup to be ready for ep0 events
  1363. */
  1364. static void usb_disconnect(struct udc *dev)
  1365. {
  1366. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1367. dev->connected = 0;
  1368. /* mask interrupts */
  1369. udc_mask_unused_interrupts(dev);
  1370. /* REVISIT there doesn't seem to be a point to having this
  1371. * talk to a tasklet ... do it directly, we already hold
  1372. * the spinlock needed to process the disconnect.
  1373. */
  1374. tasklet_schedule(&disconnect_tasklet);
  1375. }
  1376. /* Tasklet for disconnect to be outside of interrupt context */
  1377. static void udc_tasklet_disconnect(unsigned long par)
  1378. {
  1379. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1380. u32 tmp;
  1381. DBG(dev, "Tasklet disconnect\n");
  1382. spin_lock_irq(&dev->lock);
  1383. if (dev->driver) {
  1384. spin_unlock(&dev->lock);
  1385. dev->driver->disconnect(&dev->gadget);
  1386. spin_lock(&dev->lock);
  1387. /* empty queues */
  1388. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1389. empty_req_queue(&dev->ep[tmp]);
  1390. }
  1391. /* disable ep0 */
  1392. ep_init(dev->regs,
  1393. &dev->ep[UDC_EP0IN_IX]);
  1394. if (!soft_reset_occured) {
  1395. /* init controller by soft reset */
  1396. udc_soft_reset(dev);
  1397. soft_reset_occured++;
  1398. }
  1399. /* re-enable dev interrupts */
  1400. udc_enable_dev_setup_interrupts(dev);
  1401. /* back to full speed ? */
  1402. if (use_fullspeed) {
  1403. tmp = readl(&dev->regs->cfg);
  1404. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1405. writel(tmp, &dev->regs->cfg);
  1406. }
  1407. spin_unlock_irq(&dev->lock);
  1408. }
  1409. /* Reset the UDC core */
  1410. static void udc_soft_reset(struct udc *dev)
  1411. {
  1412. unsigned long flags;
  1413. DBG(dev, "Soft reset\n");
  1414. /*
  1415. * reset possible waiting interrupts, because int.
  1416. * status is lost after soft reset,
  1417. * ep int. status reset
  1418. */
  1419. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1420. /* device int. status reset */
  1421. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1422. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1423. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1424. readl(&dev->regs->cfg);
  1425. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1426. }
  1427. /* RDE timer callback to set RDE bit */
  1428. static void udc_timer_function(unsigned long v)
  1429. {
  1430. u32 tmp;
  1431. spin_lock_irq(&udc_irq_spinlock);
  1432. if (set_rde > 0) {
  1433. /*
  1434. * open the fifo if fifo was filled on last timer call
  1435. * conditionally
  1436. */
  1437. if (set_rde > 1) {
  1438. /* set RDE to receive setup data */
  1439. tmp = readl(&udc->regs->ctl);
  1440. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1441. writel(tmp, &udc->regs->ctl);
  1442. set_rde = -1;
  1443. } else if (readl(&udc->regs->sts)
  1444. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1445. /*
  1446. * if fifo empty setup polling, do not just
  1447. * open the fifo
  1448. */
  1449. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1450. if (!stop_timer)
  1451. add_timer(&udc_timer);
  1452. } else {
  1453. /*
  1454. * fifo contains data now, setup timer for opening
  1455. * the fifo when timer expires to be able to receive
  1456. * setup packets, when data packets gets queued by
  1457. * gadget layer then timer will forced to expire with
  1458. * set_rde=0 (RDE is set in udc_queue())
  1459. */
  1460. set_rde++;
  1461. /* debug: lhadmot_timer_start = 221070 */
  1462. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1463. if (!stop_timer)
  1464. add_timer(&udc_timer);
  1465. }
  1466. } else
  1467. set_rde = -1; /* RDE was set by udc_queue() */
  1468. spin_unlock_irq(&udc_irq_spinlock);
  1469. if (stop_timer)
  1470. complete(&on_exit);
  1471. }
  1472. /* Handle halt state, used in stall poll timer */
  1473. static void udc_handle_halt_state(struct udc_ep *ep)
  1474. {
  1475. u32 tmp;
  1476. /* set stall as long not halted */
  1477. if (ep->halted == 1) {
  1478. tmp = readl(&ep->regs->ctl);
  1479. /* STALL cleared ? */
  1480. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1481. /*
  1482. * FIXME: MSC spec requires that stall remains
  1483. * even on receivng of CLEAR_FEATURE HALT. So
  1484. * we would set STALL again here to be compliant.
  1485. * But with current mass storage drivers this does
  1486. * not work (would produce endless host retries).
  1487. * So we clear halt on CLEAR_FEATURE.
  1488. *
  1489. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1490. tmp |= AMD_BIT(UDC_EPCTL_S);
  1491. writel(tmp, &ep->regs->ctl);*/
  1492. /* clear NAK by writing CNAK */
  1493. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1494. writel(tmp, &ep->regs->ctl);
  1495. ep->halted = 0;
  1496. UDC_QUEUE_CNAK(ep, ep->num);
  1497. }
  1498. }
  1499. }
  1500. /* Stall timer callback to poll S bit and set it again after */
  1501. static void udc_pollstall_timer_function(unsigned long v)
  1502. {
  1503. struct udc_ep *ep;
  1504. int halted = 0;
  1505. spin_lock_irq(&udc_stall_spinlock);
  1506. /*
  1507. * only one IN and OUT endpoints are handled
  1508. * IN poll stall
  1509. */
  1510. ep = &udc->ep[UDC_EPIN_IX];
  1511. udc_handle_halt_state(ep);
  1512. if (ep->halted)
  1513. halted = 1;
  1514. /* OUT poll stall */
  1515. ep = &udc->ep[UDC_EPOUT_IX];
  1516. udc_handle_halt_state(ep);
  1517. if (ep->halted)
  1518. halted = 1;
  1519. /* setup timer again when still halted */
  1520. if (!stop_pollstall_timer && halted) {
  1521. udc_pollstall_timer.expires = jiffies +
  1522. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1523. / (1000 * 1000);
  1524. add_timer(&udc_pollstall_timer);
  1525. }
  1526. spin_unlock_irq(&udc_stall_spinlock);
  1527. if (stop_pollstall_timer)
  1528. complete(&on_pollstall_exit);
  1529. }
  1530. /* Inits endpoint 0 so that SETUP packets are processed */
  1531. static void activate_control_endpoints(struct udc *dev)
  1532. {
  1533. u32 tmp;
  1534. DBG(dev, "activate_control_endpoints\n");
  1535. /* flush fifo */
  1536. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1537. tmp |= AMD_BIT(UDC_EPCTL_F);
  1538. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1539. /* set ep0 directions */
  1540. dev->ep[UDC_EP0IN_IX].in = 1;
  1541. dev->ep[UDC_EP0OUT_IX].in = 0;
  1542. /* set buffer size (tx fifo entries) of EP0_IN */
  1543. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1544. if (dev->gadget.speed == USB_SPEED_FULL)
  1545. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1546. UDC_EPIN_BUFF_SIZE);
  1547. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1548. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1549. UDC_EPIN_BUFF_SIZE);
  1550. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1551. /* set max packet size of EP0_IN */
  1552. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1553. if (dev->gadget.speed == USB_SPEED_FULL)
  1554. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1555. UDC_EP_MAX_PKT_SIZE);
  1556. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1557. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1558. UDC_EP_MAX_PKT_SIZE);
  1559. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1560. /* set max packet size of EP0_OUT */
  1561. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1562. if (dev->gadget.speed == USB_SPEED_FULL)
  1563. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1564. UDC_EP_MAX_PKT_SIZE);
  1565. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1566. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1567. UDC_EP_MAX_PKT_SIZE);
  1568. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1569. /* set max packet size of EP0 in UDC CSR */
  1570. tmp = readl(&dev->csr->ne[0]);
  1571. if (dev->gadget.speed == USB_SPEED_FULL)
  1572. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1573. UDC_CSR_NE_MAX_PKT);
  1574. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1575. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1576. UDC_CSR_NE_MAX_PKT);
  1577. writel(tmp, &dev->csr->ne[0]);
  1578. if (use_dma) {
  1579. dev->ep[UDC_EP0OUT_IX].td->status |=
  1580. AMD_BIT(UDC_DMA_OUT_STS_L);
  1581. /* write dma desc address */
  1582. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1583. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1584. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1585. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1586. /* stop RDE timer */
  1587. if (timer_pending(&udc_timer)) {
  1588. set_rde = 0;
  1589. mod_timer(&udc_timer, jiffies - 1);
  1590. }
  1591. /* stop pollstall timer */
  1592. if (timer_pending(&udc_pollstall_timer))
  1593. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1594. /* enable DMA */
  1595. tmp = readl(&dev->regs->ctl);
  1596. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1597. | AMD_BIT(UDC_DEVCTL_RDE)
  1598. | AMD_BIT(UDC_DEVCTL_TDE);
  1599. if (use_dma_bufferfill_mode)
  1600. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1601. else if (use_dma_ppb_du)
  1602. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1603. writel(tmp, &dev->regs->ctl);
  1604. }
  1605. /* clear NAK by writing CNAK for EP0IN */
  1606. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1607. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1608. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1609. dev->ep[UDC_EP0IN_IX].naking = 0;
  1610. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1611. /* clear NAK by writing CNAK for EP0OUT */
  1612. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1613. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1614. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1615. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1616. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1617. }
  1618. /* Make endpoint 0 ready for control traffic */
  1619. static int setup_ep0(struct udc *dev)
  1620. {
  1621. activate_control_endpoints(dev);
  1622. /* enable ep0 interrupts */
  1623. udc_enable_ep0_interrupts(dev);
  1624. /* enable device setup interrupts */
  1625. udc_enable_dev_setup_interrupts(dev);
  1626. return 0;
  1627. }
  1628. /* Called by gadget driver to register itself */
  1629. static int amd5536_udc_start(struct usb_gadget *g,
  1630. struct usb_gadget_driver *driver)
  1631. {
  1632. struct udc *dev = to_amd5536_udc(g);
  1633. u32 tmp;
  1634. driver->driver.bus = NULL;
  1635. dev->driver = driver;
  1636. /* Some gadget drivers use both ep0 directions.
  1637. * NOTE: to gadget driver, ep0 is just one endpoint...
  1638. */
  1639. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1640. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1641. /* get ready for ep0 traffic */
  1642. setup_ep0(dev);
  1643. /* clear SD */
  1644. tmp = readl(&dev->regs->ctl);
  1645. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1646. writel(tmp, &dev->regs->ctl);
  1647. usb_connect(dev);
  1648. return 0;
  1649. }
  1650. /* shutdown requests and disconnect from gadget */
  1651. static void
  1652. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1653. __releases(dev->lock)
  1654. __acquires(dev->lock)
  1655. {
  1656. int tmp;
  1657. /* empty queues and init hardware */
  1658. udc_basic_init(dev);
  1659. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1660. empty_req_queue(&dev->ep[tmp]);
  1661. udc_setup_endpoints(dev);
  1662. }
  1663. /* Called by gadget driver to unregister itself */
  1664. static int amd5536_udc_stop(struct usb_gadget *g,
  1665. struct usb_gadget_driver *driver)
  1666. {
  1667. struct udc *dev = to_amd5536_udc(g);
  1668. unsigned long flags;
  1669. u32 tmp;
  1670. spin_lock_irqsave(&dev->lock, flags);
  1671. udc_mask_unused_interrupts(dev);
  1672. shutdown(dev, driver);
  1673. spin_unlock_irqrestore(&dev->lock, flags);
  1674. dev->driver = NULL;
  1675. /* set SD */
  1676. tmp = readl(&dev->regs->ctl);
  1677. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1678. writel(tmp, &dev->regs->ctl);
  1679. return 0;
  1680. }
  1681. /* Clear pending NAK bits */
  1682. static void udc_process_cnak_queue(struct udc *dev)
  1683. {
  1684. u32 tmp;
  1685. u32 reg;
  1686. /* check epin's */
  1687. DBG(dev, "CNAK pending queue processing\n");
  1688. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1689. if (cnak_pending & (1 << tmp)) {
  1690. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1691. /* clear NAK by writing CNAK */
  1692. reg = readl(&dev->ep[tmp].regs->ctl);
  1693. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1694. writel(reg, &dev->ep[tmp].regs->ctl);
  1695. dev->ep[tmp].naking = 0;
  1696. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1697. }
  1698. }
  1699. /* ... and ep0out */
  1700. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1701. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1702. /* clear NAK by writing CNAK */
  1703. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1704. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1705. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1706. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1707. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1708. dev->ep[UDC_EP0OUT_IX].num);
  1709. }
  1710. }
  1711. /* Enabling RX DMA after setup packet */
  1712. static void udc_ep0_set_rde(struct udc *dev)
  1713. {
  1714. if (use_dma) {
  1715. /*
  1716. * only enable RXDMA when no data endpoint enabled
  1717. * or data is queued
  1718. */
  1719. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1720. udc_set_rde(dev);
  1721. } else {
  1722. /*
  1723. * setup timer for enabling RDE (to not enable
  1724. * RXFIFO DMA for data endpoints to early)
  1725. */
  1726. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1727. udc_timer.expires =
  1728. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1729. set_rde = 1;
  1730. if (!stop_timer)
  1731. add_timer(&udc_timer);
  1732. }
  1733. }
  1734. }
  1735. }
  1736. /* Interrupt handler for data OUT traffic */
  1737. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1738. {
  1739. irqreturn_t ret_val = IRQ_NONE;
  1740. u32 tmp;
  1741. struct udc_ep *ep;
  1742. struct udc_request *req;
  1743. unsigned int count;
  1744. struct udc_data_dma *td = NULL;
  1745. unsigned dma_done;
  1746. VDBG(dev, "ep%d irq\n", ep_ix);
  1747. ep = &dev->ep[ep_ix];
  1748. tmp = readl(&ep->regs->sts);
  1749. if (use_dma) {
  1750. /* BNA event ? */
  1751. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1752. DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
  1753. ep->num, readl(&ep->regs->desptr));
  1754. /* clear BNA */
  1755. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1756. if (!ep->cancel_transfer)
  1757. ep->bna_occurred = 1;
  1758. else
  1759. ep->cancel_transfer = 0;
  1760. ret_val = IRQ_HANDLED;
  1761. goto finished;
  1762. }
  1763. }
  1764. /* HE event ? */
  1765. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1766. dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
  1767. /* clear HE */
  1768. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1769. ret_val = IRQ_HANDLED;
  1770. goto finished;
  1771. }
  1772. if (!list_empty(&ep->queue)) {
  1773. /* next request */
  1774. req = list_entry(ep->queue.next,
  1775. struct udc_request, queue);
  1776. } else {
  1777. req = NULL;
  1778. udc_rxfifo_pending = 1;
  1779. }
  1780. VDBG(dev, "req = %p\n", req);
  1781. /* fifo mode */
  1782. if (!use_dma) {
  1783. /* read fifo */
  1784. if (req && udc_rxfifo_read(ep, req)) {
  1785. ret_val = IRQ_HANDLED;
  1786. /* finish */
  1787. complete_req(ep, req, 0);
  1788. /* next request */
  1789. if (!list_empty(&ep->queue) && !ep->halted) {
  1790. req = list_entry(ep->queue.next,
  1791. struct udc_request, queue);
  1792. } else
  1793. req = NULL;
  1794. }
  1795. /* DMA */
  1796. } else if (!ep->cancel_transfer && req != NULL) {
  1797. ret_val = IRQ_HANDLED;
  1798. /* check for DMA done */
  1799. if (!use_dma_ppb) {
  1800. dma_done = AMD_GETBITS(req->td_data->status,
  1801. UDC_DMA_OUT_STS_BS);
  1802. /* packet per buffer mode - rx bytes */
  1803. } else {
  1804. /*
  1805. * if BNA occurred then recover desc. from
  1806. * BNA dummy desc.
  1807. */
  1808. if (ep->bna_occurred) {
  1809. VDBG(dev, "Recover desc. from BNA dummy\n");
  1810. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1811. sizeof(struct udc_data_dma));
  1812. ep->bna_occurred = 0;
  1813. udc_init_bna_dummy(ep->req);
  1814. }
  1815. td = udc_get_last_dma_desc(req);
  1816. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1817. }
  1818. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1819. /* buffer fill mode - rx bytes */
  1820. if (!use_dma_ppb) {
  1821. /* received number bytes */
  1822. count = AMD_GETBITS(req->td_data->status,
  1823. UDC_DMA_OUT_STS_RXBYTES);
  1824. VDBG(dev, "rx bytes=%u\n", count);
  1825. /* packet per buffer mode - rx bytes */
  1826. } else {
  1827. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1828. VDBG(dev, "last desc = %p\n", td);
  1829. /* received number bytes */
  1830. if (use_dma_ppb_du) {
  1831. /* every desc. counts bytes */
  1832. count = udc_get_ppbdu_rxbytes(req);
  1833. } else {
  1834. /* last desc. counts bytes */
  1835. count = AMD_GETBITS(td->status,
  1836. UDC_DMA_OUT_STS_RXBYTES);
  1837. if (!count && req->req.length
  1838. == UDC_DMA_MAXPACKET) {
  1839. /*
  1840. * on 64k packets the RXBYTES
  1841. * field is zero
  1842. */
  1843. count = UDC_DMA_MAXPACKET;
  1844. }
  1845. }
  1846. VDBG(dev, "last desc rx bytes=%u\n", count);
  1847. }
  1848. tmp = req->req.length - req->req.actual;
  1849. if (count > tmp) {
  1850. if ((tmp % ep->ep.maxpacket) != 0) {
  1851. DBG(dev, "%s: rx %db, space=%db\n",
  1852. ep->ep.name, count, tmp);
  1853. req->req.status = -EOVERFLOW;
  1854. }
  1855. count = tmp;
  1856. }
  1857. req->req.actual += count;
  1858. req->dma_going = 0;
  1859. /* complete request */
  1860. complete_req(ep, req, 0);
  1861. /* next request */
  1862. if (!list_empty(&ep->queue) && !ep->halted) {
  1863. req = list_entry(ep->queue.next,
  1864. struct udc_request,
  1865. queue);
  1866. /*
  1867. * DMA may be already started by udc_queue()
  1868. * called by gadget drivers completion
  1869. * routine. This happens when queue
  1870. * holds one request only.
  1871. */
  1872. if (req->dma_going == 0) {
  1873. /* next dma */
  1874. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1875. goto finished;
  1876. /* write desc pointer */
  1877. writel(req->td_phys,
  1878. &ep->regs->desptr);
  1879. req->dma_going = 1;
  1880. /* enable DMA */
  1881. udc_set_rde(dev);
  1882. }
  1883. } else {
  1884. /*
  1885. * implant BNA dummy descriptor to allow
  1886. * RXFIFO opening by RDE
  1887. */
  1888. if (ep->bna_dummy_req) {
  1889. /* write desc pointer */
  1890. writel(ep->bna_dummy_req->td_phys,
  1891. &ep->regs->desptr);
  1892. ep->bna_occurred = 0;
  1893. }
  1894. /*
  1895. * schedule timer for setting RDE if queue
  1896. * remains empty to allow ep0 packets pass
  1897. * through
  1898. */
  1899. if (set_rde != 0
  1900. && !timer_pending(&udc_timer)) {
  1901. udc_timer.expires =
  1902. jiffies
  1903. + HZ*UDC_RDE_TIMER_SECONDS;
  1904. set_rde = 1;
  1905. if (!stop_timer)
  1906. add_timer(&udc_timer);
  1907. }
  1908. if (ep->num != UDC_EP0OUT_IX)
  1909. dev->data_ep_queued = 0;
  1910. }
  1911. } else {
  1912. /*
  1913. * RX DMA must be reenabled for each desc in PPBDU mode
  1914. * and must be enabled for PPBNDU mode in case of BNA
  1915. */
  1916. udc_set_rde(dev);
  1917. }
  1918. } else if (ep->cancel_transfer) {
  1919. ret_val = IRQ_HANDLED;
  1920. ep->cancel_transfer = 0;
  1921. }
  1922. /* check pending CNAKS */
  1923. if (cnak_pending) {
  1924. /* CNAk processing when rxfifo empty only */
  1925. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  1926. udc_process_cnak_queue(dev);
  1927. }
  1928. /* clear OUT bits in ep status */
  1929. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1930. finished:
  1931. return ret_val;
  1932. }
  1933. /* Interrupt handler for data IN traffic */
  1934. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  1935. {
  1936. irqreturn_t ret_val = IRQ_NONE;
  1937. u32 tmp;
  1938. u32 epsts;
  1939. struct udc_ep *ep;
  1940. struct udc_request *req;
  1941. struct udc_data_dma *td;
  1942. unsigned dma_done;
  1943. unsigned len;
  1944. ep = &dev->ep[ep_ix];
  1945. epsts = readl(&ep->regs->sts);
  1946. if (use_dma) {
  1947. /* BNA ? */
  1948. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  1949. dev_err(&dev->pdev->dev,
  1950. "BNA ep%din occurred - DESPTR = %08lx\n",
  1951. ep->num,
  1952. (unsigned long) readl(&ep->regs->desptr));
  1953. /* clear BNA */
  1954. writel(epsts, &ep->regs->sts);
  1955. ret_val = IRQ_HANDLED;
  1956. goto finished;
  1957. }
  1958. }
  1959. /* HE event ? */
  1960. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  1961. dev_err(&dev->pdev->dev,
  1962. "HE ep%dn occurred - DESPTR = %08lx\n",
  1963. ep->num, (unsigned long) readl(&ep->regs->desptr));
  1964. /* clear HE */
  1965. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1966. ret_val = IRQ_HANDLED;
  1967. goto finished;
  1968. }
  1969. /* DMA completion */
  1970. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  1971. VDBG(dev, "TDC set- completion\n");
  1972. ret_val = IRQ_HANDLED;
  1973. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  1974. req = list_entry(ep->queue.next,
  1975. struct udc_request, queue);
  1976. /*
  1977. * length bytes transferred
  1978. * check dma done of last desc. in PPBDU mode
  1979. */
  1980. if (use_dma_ppb_du) {
  1981. td = udc_get_last_dma_desc(req);
  1982. if (td) {
  1983. dma_done =
  1984. AMD_GETBITS(td->status,
  1985. UDC_DMA_IN_STS_BS);
  1986. /* don't care DMA done */
  1987. req->req.actual = req->req.length;
  1988. }
  1989. } else {
  1990. /* assume all bytes transferred */
  1991. req->req.actual = req->req.length;
  1992. }
  1993. if (req->req.actual == req->req.length) {
  1994. /* complete req */
  1995. complete_req(ep, req, 0);
  1996. req->dma_going = 0;
  1997. /* further request available ? */
  1998. if (list_empty(&ep->queue)) {
  1999. /* disable interrupt */
  2000. tmp = readl(&dev->regs->ep_irqmsk);
  2001. tmp |= AMD_BIT(ep->num);
  2002. writel(tmp, &dev->regs->ep_irqmsk);
  2003. }
  2004. }
  2005. }
  2006. ep->cancel_transfer = 0;
  2007. }
  2008. /*
  2009. * status reg has IN bit set and TDC not set (if TDC was handled,
  2010. * IN must not be handled (UDC defect) ?
  2011. */
  2012. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2013. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2014. ret_val = IRQ_HANDLED;
  2015. if (!list_empty(&ep->queue)) {
  2016. /* next request */
  2017. req = list_entry(ep->queue.next,
  2018. struct udc_request, queue);
  2019. /* FIFO mode */
  2020. if (!use_dma) {
  2021. /* write fifo */
  2022. udc_txfifo_write(ep, &req->req);
  2023. len = req->req.length - req->req.actual;
  2024. if (len > ep->ep.maxpacket)
  2025. len = ep->ep.maxpacket;
  2026. req->req.actual += len;
  2027. if (req->req.actual == req->req.length
  2028. || (len != ep->ep.maxpacket)) {
  2029. /* complete req */
  2030. complete_req(ep, req, 0);
  2031. }
  2032. /* DMA */
  2033. } else if (req && !req->dma_going) {
  2034. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2035. req, req->td_data);
  2036. if (req->td_data) {
  2037. req->dma_going = 1;
  2038. /*
  2039. * unset L bit of first desc.
  2040. * for chain
  2041. */
  2042. if (use_dma_ppb && req->req.length >
  2043. ep->ep.maxpacket) {
  2044. req->td_data->status &=
  2045. AMD_CLEAR_BIT(
  2046. UDC_DMA_IN_STS_L);
  2047. }
  2048. /* write desc pointer */
  2049. writel(req->td_phys, &ep->regs->desptr);
  2050. /* set HOST READY */
  2051. req->td_data->status =
  2052. AMD_ADDBITS(
  2053. req->td_data->status,
  2054. UDC_DMA_IN_STS_BS_HOST_READY,
  2055. UDC_DMA_IN_STS_BS);
  2056. /* set poll demand bit */
  2057. tmp = readl(&ep->regs->ctl);
  2058. tmp |= AMD_BIT(UDC_EPCTL_P);
  2059. writel(tmp, &ep->regs->ctl);
  2060. }
  2061. }
  2062. } else if (!use_dma && ep->in) {
  2063. /* disable interrupt */
  2064. tmp = readl(
  2065. &dev->regs->ep_irqmsk);
  2066. tmp |= AMD_BIT(ep->num);
  2067. writel(tmp,
  2068. &dev->regs->ep_irqmsk);
  2069. }
  2070. }
  2071. /* clear status bits */
  2072. writel(epsts, &ep->regs->sts);
  2073. finished:
  2074. return ret_val;
  2075. }
  2076. /* Interrupt handler for Control OUT traffic */
  2077. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2078. __releases(dev->lock)
  2079. __acquires(dev->lock)
  2080. {
  2081. irqreturn_t ret_val = IRQ_NONE;
  2082. u32 tmp;
  2083. int setup_supported;
  2084. u32 count;
  2085. int set = 0;
  2086. struct udc_ep *ep;
  2087. struct udc_ep *ep_tmp;
  2088. ep = &dev->ep[UDC_EP0OUT_IX];
  2089. /* clear irq */
  2090. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2091. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2092. /* check BNA and clear if set */
  2093. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2094. VDBG(dev, "ep0: BNA set\n");
  2095. writel(AMD_BIT(UDC_EPSTS_BNA),
  2096. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2097. ep->bna_occurred = 1;
  2098. ret_val = IRQ_HANDLED;
  2099. goto finished;
  2100. }
  2101. /* type of data: SETUP or DATA 0 bytes */
  2102. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2103. VDBG(dev, "data_typ = %x\n", tmp);
  2104. /* setup data */
  2105. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2106. ret_val = IRQ_HANDLED;
  2107. ep->dev->stall_ep0in = 0;
  2108. dev->waiting_zlp_ack_ep0in = 0;
  2109. /* set NAK for EP0_IN */
  2110. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2111. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2112. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2113. dev->ep[UDC_EP0IN_IX].naking = 1;
  2114. /* get setup data */
  2115. if (use_dma) {
  2116. /* clear OUT bits in ep status */
  2117. writel(UDC_EPSTS_OUT_CLEAR,
  2118. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2119. setup_data.data[0] =
  2120. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2121. setup_data.data[1] =
  2122. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2123. /* set HOST READY */
  2124. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2125. UDC_DMA_STP_STS_BS_HOST_READY;
  2126. } else {
  2127. /* read fifo */
  2128. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2129. }
  2130. /* determine direction of control data */
  2131. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2132. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2133. /* enable RDE */
  2134. udc_ep0_set_rde(dev);
  2135. set = 0;
  2136. } else {
  2137. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2138. /*
  2139. * implant BNA dummy descriptor to allow RXFIFO opening
  2140. * by RDE
  2141. */
  2142. if (ep->bna_dummy_req) {
  2143. /* write desc pointer */
  2144. writel(ep->bna_dummy_req->td_phys,
  2145. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2146. ep->bna_occurred = 0;
  2147. }
  2148. set = 1;
  2149. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2150. /*
  2151. * setup timer for enabling RDE (to not enable
  2152. * RXFIFO DMA for data to early)
  2153. */
  2154. set_rde = 1;
  2155. if (!timer_pending(&udc_timer)) {
  2156. udc_timer.expires = jiffies +
  2157. HZ/UDC_RDE_TIMER_DIV;
  2158. if (!stop_timer)
  2159. add_timer(&udc_timer);
  2160. }
  2161. }
  2162. /*
  2163. * mass storage reset must be processed here because
  2164. * next packet may be a CLEAR_FEATURE HALT which would not
  2165. * clear the stall bit when no STALL handshake was received
  2166. * before (autostall can cause this)
  2167. */
  2168. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2169. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2170. DBG(dev, "MSC Reset\n");
  2171. /*
  2172. * clear stall bits
  2173. * only one IN and OUT endpoints are handled
  2174. */
  2175. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2176. udc_set_halt(&ep_tmp->ep, 0);
  2177. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2178. udc_set_halt(&ep_tmp->ep, 0);
  2179. }
  2180. /* call gadget with setup data received */
  2181. spin_unlock(&dev->lock);
  2182. setup_supported = dev->driver->setup(&dev->gadget,
  2183. &setup_data.request);
  2184. spin_lock(&dev->lock);
  2185. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2186. /* ep0 in returns data (not zlp) on IN phase */
  2187. if (setup_supported >= 0 && setup_supported <
  2188. UDC_EP0IN_MAXPACKET) {
  2189. /* clear NAK by writing CNAK in EP0_IN */
  2190. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2191. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2192. dev->ep[UDC_EP0IN_IX].naking = 0;
  2193. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2194. /* if unsupported request then stall */
  2195. } else if (setup_supported < 0) {
  2196. tmp |= AMD_BIT(UDC_EPCTL_S);
  2197. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2198. } else
  2199. dev->waiting_zlp_ack_ep0in = 1;
  2200. /* clear NAK by writing CNAK in EP0_OUT */
  2201. if (!set) {
  2202. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2203. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2204. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2205. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2206. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2207. }
  2208. if (!use_dma) {
  2209. /* clear OUT bits in ep status */
  2210. writel(UDC_EPSTS_OUT_CLEAR,
  2211. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2212. }
  2213. /* data packet 0 bytes */
  2214. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2215. /* clear OUT bits in ep status */
  2216. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2217. /* get setup data: only 0 packet */
  2218. if (use_dma) {
  2219. /* no req if 0 packet, just reactivate */
  2220. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2221. VDBG(dev, "ZLP\n");
  2222. /* set HOST READY */
  2223. dev->ep[UDC_EP0OUT_IX].td->status =
  2224. AMD_ADDBITS(
  2225. dev->ep[UDC_EP0OUT_IX].td->status,
  2226. UDC_DMA_OUT_STS_BS_HOST_READY,
  2227. UDC_DMA_OUT_STS_BS);
  2228. /* enable RDE */
  2229. udc_ep0_set_rde(dev);
  2230. ret_val = IRQ_HANDLED;
  2231. } else {
  2232. /* control write */
  2233. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2234. /* re-program desc. pointer for possible ZLPs */
  2235. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2236. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2237. /* enable RDE */
  2238. udc_ep0_set_rde(dev);
  2239. }
  2240. } else {
  2241. /* received number bytes */
  2242. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2243. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2244. /* out data for fifo mode not working */
  2245. count = 0;
  2246. /* 0 packet or real data ? */
  2247. if (count != 0) {
  2248. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2249. } else {
  2250. /* dummy read confirm */
  2251. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2252. ret_val = IRQ_HANDLED;
  2253. }
  2254. }
  2255. }
  2256. /* check pending CNAKS */
  2257. if (cnak_pending) {
  2258. /* CNAk processing when rxfifo empty only */
  2259. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2260. udc_process_cnak_queue(dev);
  2261. }
  2262. finished:
  2263. return ret_val;
  2264. }
  2265. /* Interrupt handler for Control IN traffic */
  2266. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2267. {
  2268. irqreturn_t ret_val = IRQ_NONE;
  2269. u32 tmp;
  2270. struct udc_ep *ep;
  2271. struct udc_request *req;
  2272. unsigned len;
  2273. ep = &dev->ep[UDC_EP0IN_IX];
  2274. /* clear irq */
  2275. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2276. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2277. /* DMA completion */
  2278. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2279. VDBG(dev, "isr: TDC clear\n");
  2280. ret_val = IRQ_HANDLED;
  2281. /* clear TDC bit */
  2282. writel(AMD_BIT(UDC_EPSTS_TDC),
  2283. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2284. /* status reg has IN bit set ? */
  2285. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2286. ret_val = IRQ_HANDLED;
  2287. if (ep->dma) {
  2288. /* clear IN bit */
  2289. writel(AMD_BIT(UDC_EPSTS_IN),
  2290. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2291. }
  2292. if (dev->stall_ep0in) {
  2293. DBG(dev, "stall ep0in\n");
  2294. /* halt ep0in */
  2295. tmp = readl(&ep->regs->ctl);
  2296. tmp |= AMD_BIT(UDC_EPCTL_S);
  2297. writel(tmp, &ep->regs->ctl);
  2298. } else {
  2299. if (!list_empty(&ep->queue)) {
  2300. /* next request */
  2301. req = list_entry(ep->queue.next,
  2302. struct udc_request, queue);
  2303. if (ep->dma) {
  2304. /* write desc pointer */
  2305. writel(req->td_phys, &ep->regs->desptr);
  2306. /* set HOST READY */
  2307. req->td_data->status =
  2308. AMD_ADDBITS(
  2309. req->td_data->status,
  2310. UDC_DMA_STP_STS_BS_HOST_READY,
  2311. UDC_DMA_STP_STS_BS);
  2312. /* set poll demand bit */
  2313. tmp =
  2314. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2315. tmp |= AMD_BIT(UDC_EPCTL_P);
  2316. writel(tmp,
  2317. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2318. /* all bytes will be transferred */
  2319. req->req.actual = req->req.length;
  2320. /* complete req */
  2321. complete_req(ep, req, 0);
  2322. } else {
  2323. /* write fifo */
  2324. udc_txfifo_write(ep, &req->req);
  2325. /* lengh bytes transferred */
  2326. len = req->req.length - req->req.actual;
  2327. if (len > ep->ep.maxpacket)
  2328. len = ep->ep.maxpacket;
  2329. req->req.actual += len;
  2330. if (req->req.actual == req->req.length
  2331. || (len != ep->ep.maxpacket)) {
  2332. /* complete req */
  2333. complete_req(ep, req, 0);
  2334. }
  2335. }
  2336. }
  2337. }
  2338. ep->halted = 0;
  2339. dev->stall_ep0in = 0;
  2340. if (!ep->dma) {
  2341. /* clear IN bit */
  2342. writel(AMD_BIT(UDC_EPSTS_IN),
  2343. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2344. }
  2345. }
  2346. return ret_val;
  2347. }
  2348. /* Interrupt handler for global device events */
  2349. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2350. __releases(dev->lock)
  2351. __acquires(dev->lock)
  2352. {
  2353. irqreturn_t ret_val = IRQ_NONE;
  2354. u32 tmp;
  2355. u32 cfg;
  2356. struct udc_ep *ep;
  2357. u16 i;
  2358. u8 udc_csr_epix;
  2359. /* SET_CONFIG irq ? */
  2360. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2361. ret_val = IRQ_HANDLED;
  2362. /* read config value */
  2363. tmp = readl(&dev->regs->sts);
  2364. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2365. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2366. dev->cur_config = cfg;
  2367. dev->set_cfg_not_acked = 1;
  2368. /* make usb request for gadget driver */
  2369. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2370. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2371. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2372. /* programm the NE registers */
  2373. for (i = 0; i < UDC_EP_NUM; i++) {
  2374. ep = &dev->ep[i];
  2375. if (ep->in) {
  2376. /* ep ix in UDC CSR register space */
  2377. udc_csr_epix = ep->num;
  2378. /* OUT ep */
  2379. } else {
  2380. /* ep ix in UDC CSR register space */
  2381. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2382. }
  2383. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2384. /* ep cfg */
  2385. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2386. UDC_CSR_NE_CFG);
  2387. /* write reg */
  2388. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2389. /* clear stall bits */
  2390. ep->halted = 0;
  2391. tmp = readl(&ep->regs->ctl);
  2392. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2393. writel(tmp, &ep->regs->ctl);
  2394. }
  2395. /* call gadget zero with setup data received */
  2396. spin_unlock(&dev->lock);
  2397. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2398. spin_lock(&dev->lock);
  2399. } /* SET_INTERFACE ? */
  2400. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2401. ret_val = IRQ_HANDLED;
  2402. dev->set_cfg_not_acked = 1;
  2403. /* read interface and alt setting values */
  2404. tmp = readl(&dev->regs->sts);
  2405. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2406. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2407. /* make usb request for gadget driver */
  2408. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2409. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2410. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2411. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2412. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2413. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2414. dev->cur_alt, dev->cur_intf);
  2415. /* programm the NE registers */
  2416. for (i = 0; i < UDC_EP_NUM; i++) {
  2417. ep = &dev->ep[i];
  2418. if (ep->in) {
  2419. /* ep ix in UDC CSR register space */
  2420. udc_csr_epix = ep->num;
  2421. /* OUT ep */
  2422. } else {
  2423. /* ep ix in UDC CSR register space */
  2424. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2425. }
  2426. /* UDC CSR reg */
  2427. /* set ep values */
  2428. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2429. /* ep interface */
  2430. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2431. UDC_CSR_NE_INTF);
  2432. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2433. /* ep alt */
  2434. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2435. UDC_CSR_NE_ALT);
  2436. /* write reg */
  2437. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2438. /* clear stall bits */
  2439. ep->halted = 0;
  2440. tmp = readl(&ep->regs->ctl);
  2441. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2442. writel(tmp, &ep->regs->ctl);
  2443. }
  2444. /* call gadget zero with setup data received */
  2445. spin_unlock(&dev->lock);
  2446. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2447. spin_lock(&dev->lock);
  2448. } /* USB reset */
  2449. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2450. DBG(dev, "USB Reset interrupt\n");
  2451. ret_val = IRQ_HANDLED;
  2452. /* allow soft reset when suspend occurs */
  2453. soft_reset_occured = 0;
  2454. dev->waiting_zlp_ack_ep0in = 0;
  2455. dev->set_cfg_not_acked = 0;
  2456. /* mask not needed interrupts */
  2457. udc_mask_unused_interrupts(dev);
  2458. /* call gadget to resume and reset configs etc. */
  2459. spin_unlock(&dev->lock);
  2460. if (dev->sys_suspended && dev->driver->resume) {
  2461. dev->driver->resume(&dev->gadget);
  2462. dev->sys_suspended = 0;
  2463. }
  2464. dev->driver->disconnect(&dev->gadget);
  2465. spin_lock(&dev->lock);
  2466. /* disable ep0 to empty req queue */
  2467. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2468. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2469. /* soft reset when rxfifo not empty */
  2470. tmp = readl(&dev->regs->sts);
  2471. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2472. && !soft_reset_after_usbreset_occured) {
  2473. udc_soft_reset(dev);
  2474. soft_reset_after_usbreset_occured++;
  2475. }
  2476. /*
  2477. * DMA reset to kill potential old DMA hw hang,
  2478. * POLL bit is already reset by ep_init() through
  2479. * disconnect()
  2480. */
  2481. DBG(dev, "DMA machine reset\n");
  2482. tmp = readl(&dev->regs->cfg);
  2483. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2484. writel(tmp, &dev->regs->cfg);
  2485. /* put into initial config */
  2486. udc_basic_init(dev);
  2487. /* enable device setup interrupts */
  2488. udc_enable_dev_setup_interrupts(dev);
  2489. /* enable suspend interrupt */
  2490. tmp = readl(&dev->regs->irqmsk);
  2491. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2492. writel(tmp, &dev->regs->irqmsk);
  2493. } /* USB suspend */
  2494. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2495. DBG(dev, "USB Suspend interrupt\n");
  2496. ret_val = IRQ_HANDLED;
  2497. if (dev->driver->suspend) {
  2498. spin_unlock(&dev->lock);
  2499. dev->sys_suspended = 1;
  2500. dev->driver->suspend(&dev->gadget);
  2501. spin_lock(&dev->lock);
  2502. }
  2503. } /* new speed ? */
  2504. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2505. DBG(dev, "ENUM interrupt\n");
  2506. ret_val = IRQ_HANDLED;
  2507. soft_reset_after_usbreset_occured = 0;
  2508. /* disable ep0 to empty req queue */
  2509. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2510. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2511. /* link up all endpoints */
  2512. udc_setup_endpoints(dev);
  2513. dev_info(&dev->pdev->dev, "Connect: %s\n",
  2514. usb_speed_string(dev->gadget.speed));
  2515. /* init ep 0 */
  2516. activate_control_endpoints(dev);
  2517. /* enable ep0 interrupts */
  2518. udc_enable_ep0_interrupts(dev);
  2519. }
  2520. /* session valid change interrupt */
  2521. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2522. DBG(dev, "USB SVC interrupt\n");
  2523. ret_val = IRQ_HANDLED;
  2524. /* check that session is not valid to detect disconnect */
  2525. tmp = readl(&dev->regs->sts);
  2526. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2527. /* disable suspend interrupt */
  2528. tmp = readl(&dev->regs->irqmsk);
  2529. tmp |= AMD_BIT(UDC_DEVINT_US);
  2530. writel(tmp, &dev->regs->irqmsk);
  2531. DBG(dev, "USB Disconnect (session valid low)\n");
  2532. /* cleanup on disconnect */
  2533. usb_disconnect(udc);
  2534. }
  2535. }
  2536. return ret_val;
  2537. }
  2538. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2539. static irqreturn_t udc_irq(int irq, void *pdev)
  2540. {
  2541. struct udc *dev = pdev;
  2542. u32 reg;
  2543. u16 i;
  2544. u32 ep_irq;
  2545. irqreturn_t ret_val = IRQ_NONE;
  2546. spin_lock(&dev->lock);
  2547. /* check for ep irq */
  2548. reg = readl(&dev->regs->ep_irqsts);
  2549. if (reg) {
  2550. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2551. ret_val |= udc_control_out_isr(dev);
  2552. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2553. ret_val |= udc_control_in_isr(dev);
  2554. /*
  2555. * data endpoint
  2556. * iterate ep's
  2557. */
  2558. for (i = 1; i < UDC_EP_NUM; i++) {
  2559. ep_irq = 1 << i;
  2560. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2561. continue;
  2562. /* clear irq status */
  2563. writel(ep_irq, &dev->regs->ep_irqsts);
  2564. /* irq for out ep ? */
  2565. if (i > UDC_EPIN_NUM)
  2566. ret_val |= udc_data_out_isr(dev, i);
  2567. else
  2568. ret_val |= udc_data_in_isr(dev, i);
  2569. }
  2570. }
  2571. /* check for dev irq */
  2572. reg = readl(&dev->regs->irqsts);
  2573. if (reg) {
  2574. /* clear irq */
  2575. writel(reg, &dev->regs->irqsts);
  2576. ret_val |= udc_dev_isr(dev, reg);
  2577. }
  2578. spin_unlock(&dev->lock);
  2579. return ret_val;
  2580. }
  2581. /* Tears down device */
  2582. static void gadget_release(struct device *pdev)
  2583. {
  2584. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2585. kfree(dev);
  2586. }
  2587. /* Cleanup on device remove */
  2588. static void udc_remove(struct udc *dev)
  2589. {
  2590. /* remove timer */
  2591. stop_timer++;
  2592. if (timer_pending(&udc_timer))
  2593. wait_for_completion(&on_exit);
  2594. if (udc_timer.data)
  2595. del_timer_sync(&udc_timer);
  2596. /* remove pollstall timer */
  2597. stop_pollstall_timer++;
  2598. if (timer_pending(&udc_pollstall_timer))
  2599. wait_for_completion(&on_pollstall_exit);
  2600. if (udc_pollstall_timer.data)
  2601. del_timer_sync(&udc_pollstall_timer);
  2602. udc = NULL;
  2603. }
  2604. /* Reset all pci context */
  2605. static void udc_pci_remove(struct pci_dev *pdev)
  2606. {
  2607. struct udc *dev;
  2608. dev = pci_get_drvdata(pdev);
  2609. usb_del_gadget_udc(&udc->gadget);
  2610. /* gadget driver must not be registered */
  2611. BUG_ON(dev->driver != NULL);
  2612. /* dma pool cleanup */
  2613. if (dev->data_requests)
  2614. pci_pool_destroy(dev->data_requests);
  2615. if (dev->stp_requests) {
  2616. /* cleanup DMA desc's for ep0in */
  2617. pci_pool_free(dev->stp_requests,
  2618. dev->ep[UDC_EP0OUT_IX].td_stp,
  2619. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2620. pci_pool_free(dev->stp_requests,
  2621. dev->ep[UDC_EP0OUT_IX].td,
  2622. dev->ep[UDC_EP0OUT_IX].td_phys);
  2623. pci_pool_destroy(dev->stp_requests);
  2624. }
  2625. /* reset controller */
  2626. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2627. if (dev->irq_registered)
  2628. free_irq(pdev->irq, dev);
  2629. if (dev->regs)
  2630. iounmap(dev->regs);
  2631. if (dev->mem_region)
  2632. release_mem_region(pci_resource_start(pdev, 0),
  2633. pci_resource_len(pdev, 0));
  2634. if (dev->active)
  2635. pci_disable_device(pdev);
  2636. udc_remove(dev);
  2637. }
  2638. /* create dma pools on init */
  2639. static int init_dma_pools(struct udc *dev)
  2640. {
  2641. struct udc_stp_dma *td_stp;
  2642. struct udc_data_dma *td_data;
  2643. int retval;
  2644. /* consistent DMA mode setting ? */
  2645. if (use_dma_ppb) {
  2646. use_dma_bufferfill_mode = 0;
  2647. } else {
  2648. use_dma_ppb_du = 0;
  2649. use_dma_bufferfill_mode = 1;
  2650. }
  2651. /* DMA setup */
  2652. dev->data_requests = dma_pool_create("data_requests", NULL,
  2653. sizeof(struct udc_data_dma), 0, 0);
  2654. if (!dev->data_requests) {
  2655. DBG(dev, "can't get request data pool\n");
  2656. retval = -ENOMEM;
  2657. goto finished;
  2658. }
  2659. /* EP0 in dma regs = dev control regs */
  2660. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2661. /* dma desc for setup data */
  2662. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2663. sizeof(struct udc_stp_dma), 0, 0);
  2664. if (!dev->stp_requests) {
  2665. DBG(dev, "can't get stp request pool\n");
  2666. retval = -ENOMEM;
  2667. goto finished;
  2668. }
  2669. /* setup */
  2670. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2671. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2672. if (td_stp == NULL) {
  2673. retval = -ENOMEM;
  2674. goto finished;
  2675. }
  2676. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2677. /* data: 0 packets !? */
  2678. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2679. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2680. if (td_data == NULL) {
  2681. retval = -ENOMEM;
  2682. goto finished;
  2683. }
  2684. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2685. return 0;
  2686. finished:
  2687. return retval;
  2688. }
  2689. /* Called by pci bus driver to init pci context */
  2690. static int udc_pci_probe(
  2691. struct pci_dev *pdev,
  2692. const struct pci_device_id *id
  2693. )
  2694. {
  2695. struct udc *dev;
  2696. unsigned long resource;
  2697. unsigned long len;
  2698. int retval = 0;
  2699. /* one udc only */
  2700. if (udc) {
  2701. dev_dbg(&pdev->dev, "already probed\n");
  2702. return -EBUSY;
  2703. }
  2704. /* init */
  2705. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2706. if (!dev) {
  2707. retval = -ENOMEM;
  2708. goto finished;
  2709. }
  2710. /* pci setup */
  2711. if (pci_enable_device(pdev) < 0) {
  2712. kfree(dev);
  2713. dev = NULL;
  2714. retval = -ENODEV;
  2715. goto finished;
  2716. }
  2717. dev->active = 1;
  2718. /* PCI resource allocation */
  2719. resource = pci_resource_start(pdev, 0);
  2720. len = pci_resource_len(pdev, 0);
  2721. if (!request_mem_region(resource, len, name)) {
  2722. dev_dbg(&pdev->dev, "pci device used already\n");
  2723. kfree(dev);
  2724. dev = NULL;
  2725. retval = -EBUSY;
  2726. goto finished;
  2727. }
  2728. dev->mem_region = 1;
  2729. dev->virt_addr = ioremap_nocache(resource, len);
  2730. if (dev->virt_addr == NULL) {
  2731. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2732. kfree(dev);
  2733. dev = NULL;
  2734. retval = -EFAULT;
  2735. goto finished;
  2736. }
  2737. if (!pdev->irq) {
  2738. dev_err(&pdev->dev, "irq not set\n");
  2739. kfree(dev);
  2740. dev = NULL;
  2741. retval = -ENODEV;
  2742. goto finished;
  2743. }
  2744. spin_lock_init(&dev->lock);
  2745. /* udc csr registers base */
  2746. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2747. /* dev registers base */
  2748. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2749. /* ep registers base */
  2750. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2751. /* fifo's base */
  2752. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2753. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2754. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2755. dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2756. kfree(dev);
  2757. dev = NULL;
  2758. retval = -EBUSY;
  2759. goto finished;
  2760. }
  2761. dev->irq_registered = 1;
  2762. pci_set_drvdata(pdev, dev);
  2763. /* chip revision for Hs AMD5536 */
  2764. dev->chiprev = pdev->revision;
  2765. pci_set_master(pdev);
  2766. pci_try_set_mwi(pdev);
  2767. /* init dma pools */
  2768. if (use_dma) {
  2769. retval = init_dma_pools(dev);
  2770. if (retval != 0)
  2771. goto finished;
  2772. }
  2773. dev->phys_addr = resource;
  2774. dev->irq = pdev->irq;
  2775. dev->pdev = pdev;
  2776. /* general probing */
  2777. if (udc_probe(dev) == 0)
  2778. return 0;
  2779. finished:
  2780. if (dev)
  2781. udc_pci_remove(pdev);
  2782. return retval;
  2783. }
  2784. /* general probe */
  2785. static int udc_probe(struct udc *dev)
  2786. {
  2787. char tmp[128];
  2788. u32 reg;
  2789. int retval;
  2790. /* mark timer as not initialized */
  2791. udc_timer.data = 0;
  2792. udc_pollstall_timer.data = 0;
  2793. /* device struct setup */
  2794. dev->gadget.ops = &udc_ops;
  2795. dev_set_name(&dev->gadget.dev, "gadget");
  2796. dev->gadget.name = name;
  2797. dev->gadget.max_speed = USB_SPEED_HIGH;
  2798. /* init registers, interrupts, ... */
  2799. startup_registers(dev);
  2800. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2801. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2802. dev_info(&dev->pdev->dev,
  2803. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2804. tmp, dev->phys_addr, dev->chiprev,
  2805. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2806. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2807. if (dev->chiprev == UDC_HSA0_REV) {
  2808. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2809. retval = -ENODEV;
  2810. goto finished;
  2811. }
  2812. dev_info(&dev->pdev->dev,
  2813. "driver version: %s(for Geode5536 B1)\n", tmp);
  2814. udc = dev;
  2815. retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
  2816. gadget_release);
  2817. if (retval)
  2818. goto finished;
  2819. /* timer init */
  2820. init_timer(&udc_timer);
  2821. udc_timer.function = udc_timer_function;
  2822. udc_timer.data = 1;
  2823. /* timer pollstall init */
  2824. init_timer(&udc_pollstall_timer);
  2825. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2826. udc_pollstall_timer.data = 1;
  2827. /* set SD */
  2828. reg = readl(&dev->regs->ctl);
  2829. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2830. writel(reg, &dev->regs->ctl);
  2831. /* print dev register info */
  2832. print_regs(dev);
  2833. return 0;
  2834. finished:
  2835. return retval;
  2836. }
  2837. /* Initiates a remote wakeup */
  2838. static int udc_remote_wakeup(struct udc *dev)
  2839. {
  2840. unsigned long flags;
  2841. u32 tmp;
  2842. DBG(dev, "UDC initiates remote wakeup\n");
  2843. spin_lock_irqsave(&dev->lock, flags);
  2844. tmp = readl(&dev->regs->ctl);
  2845. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2846. writel(tmp, &dev->regs->ctl);
  2847. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2848. writel(tmp, &dev->regs->ctl);
  2849. spin_unlock_irqrestore(&dev->lock, flags);
  2850. return 0;
  2851. }
  2852. /* PCI device parameters */
  2853. static const struct pci_device_id pci_id[] = {
  2854. {
  2855. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2856. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2857. .class_mask = 0xffffffff,
  2858. },
  2859. {},
  2860. };
  2861. MODULE_DEVICE_TABLE(pci, pci_id);
  2862. /* PCI functions */
  2863. static struct pci_driver udc_pci_driver = {
  2864. .name = (char *) name,
  2865. .id_table = pci_id,
  2866. .probe = udc_pci_probe,
  2867. .remove = udc_pci_remove,
  2868. };
  2869. module_pci_driver(udc_pci_driver);
  2870. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2871. MODULE_AUTHOR("Thomas Dahlmann");
  2872. MODULE_LICENSE("GPL");