msm_serial.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. /*
  2. * Driver for msm7k serial device and console
  3. *
  4. * Copyright (C) 2007 Google, Inc.
  5. * Author: Robert Love <rlove@google.com>
  6. * Copyright (c) 2011, Code Aurora Forum. All rights reserved.
  7. *
  8. * This software is licensed under the terms of the GNU General Public
  9. * License version 2, as published by the Free Software Foundation, and
  10. * may be copied, distributed, and modified under those terms.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. */
  17. #if defined(CONFIG_SERIAL_MSM_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
  18. # define SUPPORT_SYSRQ
  19. #endif
  20. #include <linux/atomic.h>
  21. #include <linux/hrtimer.h>
  22. #include <linux/module.h>
  23. #include <linux/io.h>
  24. #include <linux/ioport.h>
  25. #include <linux/irq.h>
  26. #include <linux/init.h>
  27. #include <linux/console.h>
  28. #include <linux/tty.h>
  29. #include <linux/tty_flip.h>
  30. #include <linux/serial_core.h>
  31. #include <linux/serial.h>
  32. #include <linux/clk.h>
  33. #include <linux/platform_device.h>
  34. #include <linux/delay.h>
  35. #include <linux/of.h>
  36. #include <linux/of_device.h>
  37. #include "msm_serial.h"
  38. enum {
  39. UARTDM_1P1 = 1,
  40. UARTDM_1P2,
  41. UARTDM_1P3,
  42. UARTDM_1P4,
  43. };
  44. struct msm_port {
  45. struct uart_port uart;
  46. char name[16];
  47. struct clk *clk;
  48. struct clk *pclk;
  49. unsigned int imr;
  50. int is_uartdm;
  51. unsigned int old_snap_state;
  52. };
  53. static inline void wait_for_xmitr(struct uart_port *port)
  54. {
  55. while (!(msm_read(port, UART_SR) & UART_SR_TX_EMPTY)) {
  56. if (msm_read(port, UART_ISR) & UART_ISR_TX_READY)
  57. break;
  58. udelay(1);
  59. }
  60. msm_write(port, UART_CR_CMD_RESET_TX_READY, UART_CR);
  61. }
  62. static void msm_stop_tx(struct uart_port *port)
  63. {
  64. struct msm_port *msm_port = UART_TO_MSM(port);
  65. msm_port->imr &= ~UART_IMR_TXLEV;
  66. msm_write(port, msm_port->imr, UART_IMR);
  67. }
  68. static void msm_start_tx(struct uart_port *port)
  69. {
  70. struct msm_port *msm_port = UART_TO_MSM(port);
  71. msm_port->imr |= UART_IMR_TXLEV;
  72. msm_write(port, msm_port->imr, UART_IMR);
  73. }
  74. static void msm_stop_rx(struct uart_port *port)
  75. {
  76. struct msm_port *msm_port = UART_TO_MSM(port);
  77. msm_port->imr &= ~(UART_IMR_RXLEV | UART_IMR_RXSTALE);
  78. msm_write(port, msm_port->imr, UART_IMR);
  79. }
  80. static void msm_enable_ms(struct uart_port *port)
  81. {
  82. struct msm_port *msm_port = UART_TO_MSM(port);
  83. msm_port->imr |= UART_IMR_DELTA_CTS;
  84. msm_write(port, msm_port->imr, UART_IMR);
  85. }
  86. static void handle_rx_dm(struct uart_port *port, unsigned int misr)
  87. {
  88. struct tty_port *tport = &port->state->port;
  89. unsigned int sr;
  90. int count = 0;
  91. struct msm_port *msm_port = UART_TO_MSM(port);
  92. if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
  93. port->icount.overrun++;
  94. tty_insert_flip_char(tport, 0, TTY_OVERRUN);
  95. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  96. }
  97. if (misr & UART_IMR_RXSTALE) {
  98. count = msm_read(port, UARTDM_RX_TOTAL_SNAP) -
  99. msm_port->old_snap_state;
  100. msm_port->old_snap_state = 0;
  101. } else {
  102. count = 4 * (msm_read(port, UART_RFWR));
  103. msm_port->old_snap_state += count;
  104. }
  105. /* TODO: Precise error reporting */
  106. port->icount.rx += count;
  107. while (count > 0) {
  108. unsigned int c;
  109. sr = msm_read(port, UART_SR);
  110. if ((sr & UART_SR_RX_READY) == 0) {
  111. msm_port->old_snap_state -= count;
  112. break;
  113. }
  114. c = msm_read(port, UARTDM_RF);
  115. if (sr & UART_SR_RX_BREAK) {
  116. port->icount.brk++;
  117. if (uart_handle_break(port))
  118. continue;
  119. } else if (sr & UART_SR_PAR_FRAME_ERR)
  120. port->icount.frame++;
  121. /* TODO: handle sysrq */
  122. tty_insert_flip_string(tport, (char *)&c,
  123. (count > 4) ? 4 : count);
  124. count -= 4;
  125. }
  126. spin_unlock(&port->lock);
  127. tty_flip_buffer_push(tport);
  128. spin_lock(&port->lock);
  129. if (misr & (UART_IMR_RXSTALE))
  130. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  131. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  132. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  133. }
  134. static void handle_rx(struct uart_port *port)
  135. {
  136. struct tty_port *tport = &port->state->port;
  137. unsigned int sr;
  138. /*
  139. * Handle overrun. My understanding of the hardware is that overrun
  140. * is not tied to the RX buffer, so we handle the case out of band.
  141. */
  142. if ((msm_read(port, UART_SR) & UART_SR_OVERRUN)) {
  143. port->icount.overrun++;
  144. tty_insert_flip_char(tport, 0, TTY_OVERRUN);
  145. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  146. }
  147. /* and now the main RX loop */
  148. while ((sr = msm_read(port, UART_SR)) & UART_SR_RX_READY) {
  149. unsigned int c;
  150. char flag = TTY_NORMAL;
  151. c = msm_read(port, UART_RF);
  152. if (sr & UART_SR_RX_BREAK) {
  153. port->icount.brk++;
  154. if (uart_handle_break(port))
  155. continue;
  156. } else if (sr & UART_SR_PAR_FRAME_ERR) {
  157. port->icount.frame++;
  158. } else {
  159. port->icount.rx++;
  160. }
  161. /* Mask conditions we're ignorning. */
  162. sr &= port->read_status_mask;
  163. if (sr & UART_SR_RX_BREAK) {
  164. flag = TTY_BREAK;
  165. } else if (sr & UART_SR_PAR_FRAME_ERR) {
  166. flag = TTY_FRAME;
  167. }
  168. if (!uart_handle_sysrq_char(port, c))
  169. tty_insert_flip_char(tport, c, flag);
  170. }
  171. spin_unlock(&port->lock);
  172. tty_flip_buffer_push(tport);
  173. spin_lock(&port->lock);
  174. }
  175. static void reset_dm_count(struct uart_port *port, int count)
  176. {
  177. wait_for_xmitr(port);
  178. msm_write(port, count, UARTDM_NCF_TX);
  179. msm_read(port, UARTDM_NCF_TX);
  180. }
  181. static void handle_tx(struct uart_port *port)
  182. {
  183. struct circ_buf *xmit = &port->state->xmit;
  184. struct msm_port *msm_port = UART_TO_MSM(port);
  185. unsigned int tx_count, num_chars;
  186. unsigned int tf_pointer = 0;
  187. tx_count = uart_circ_chars_pending(xmit);
  188. tx_count = min3(tx_count, (unsigned int)UART_XMIT_SIZE - xmit->tail,
  189. port->fifosize);
  190. if (port->x_char) {
  191. if (msm_port->is_uartdm)
  192. reset_dm_count(port, tx_count + 1);
  193. msm_write(port, port->x_char,
  194. msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  195. port->icount.tx++;
  196. port->x_char = 0;
  197. } else if (tx_count && msm_port->is_uartdm) {
  198. reset_dm_count(port, tx_count);
  199. }
  200. while (tf_pointer < tx_count) {
  201. int i;
  202. char buf[4] = { 0 };
  203. unsigned int *bf = (unsigned int *)&buf;
  204. if (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  205. break;
  206. if (msm_port->is_uartdm)
  207. num_chars = min(tx_count - tf_pointer,
  208. (unsigned int)sizeof(buf));
  209. else
  210. num_chars = 1;
  211. for (i = 0; i < num_chars; i++) {
  212. buf[i] = xmit->buf[xmit->tail + i];
  213. port->icount.tx++;
  214. }
  215. msm_write(port, *bf, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  216. xmit->tail = (xmit->tail + num_chars) & (UART_XMIT_SIZE - 1);
  217. tf_pointer += num_chars;
  218. }
  219. /* disable tx interrupts if nothing more to send */
  220. if (uart_circ_empty(xmit))
  221. msm_stop_tx(port);
  222. if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
  223. uart_write_wakeup(port);
  224. }
  225. static void handle_delta_cts(struct uart_port *port)
  226. {
  227. msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
  228. port->icount.cts++;
  229. wake_up_interruptible(&port->state->port.delta_msr_wait);
  230. }
  231. static irqreturn_t msm_irq(int irq, void *dev_id)
  232. {
  233. struct uart_port *port = dev_id;
  234. struct msm_port *msm_port = UART_TO_MSM(port);
  235. unsigned int misr;
  236. spin_lock(&port->lock);
  237. misr = msm_read(port, UART_MISR);
  238. msm_write(port, 0, UART_IMR); /* disable interrupt */
  239. if (misr & (UART_IMR_RXLEV | UART_IMR_RXSTALE)) {
  240. if (msm_port->is_uartdm)
  241. handle_rx_dm(port, misr);
  242. else
  243. handle_rx(port);
  244. }
  245. if (misr & UART_IMR_TXLEV)
  246. handle_tx(port);
  247. if (misr & UART_IMR_DELTA_CTS)
  248. handle_delta_cts(port);
  249. msm_write(port, msm_port->imr, UART_IMR); /* restore interrupt */
  250. spin_unlock(&port->lock);
  251. return IRQ_HANDLED;
  252. }
  253. static unsigned int msm_tx_empty(struct uart_port *port)
  254. {
  255. return (msm_read(port, UART_SR) & UART_SR_TX_EMPTY) ? TIOCSER_TEMT : 0;
  256. }
  257. static unsigned int msm_get_mctrl(struct uart_port *port)
  258. {
  259. return TIOCM_CAR | TIOCM_CTS | TIOCM_DSR | TIOCM_RTS;
  260. }
  261. static void msm_reset(struct uart_port *port)
  262. {
  263. struct msm_port *msm_port = UART_TO_MSM(port);
  264. /* reset everything */
  265. msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
  266. msm_write(port, UART_CR_CMD_RESET_TX, UART_CR);
  267. msm_write(port, UART_CR_CMD_RESET_ERR, UART_CR);
  268. msm_write(port, UART_CR_CMD_RESET_BREAK_INT, UART_CR);
  269. msm_write(port, UART_CR_CMD_RESET_CTS, UART_CR);
  270. msm_write(port, UART_CR_CMD_SET_RFR, UART_CR);
  271. /* Disable DM modes */
  272. if (msm_port->is_uartdm)
  273. msm_write(port, 0, UARTDM_DMEN);
  274. }
  275. static void msm_set_mctrl(struct uart_port *port, unsigned int mctrl)
  276. {
  277. unsigned int mr;
  278. mr = msm_read(port, UART_MR1);
  279. if (!(mctrl & TIOCM_RTS)) {
  280. mr &= ~UART_MR1_RX_RDY_CTL;
  281. msm_write(port, mr, UART_MR1);
  282. msm_write(port, UART_CR_CMD_RESET_RFR, UART_CR);
  283. } else {
  284. mr |= UART_MR1_RX_RDY_CTL;
  285. msm_write(port, mr, UART_MR1);
  286. }
  287. }
  288. static void msm_break_ctl(struct uart_port *port, int break_ctl)
  289. {
  290. if (break_ctl)
  291. msm_write(port, UART_CR_CMD_START_BREAK, UART_CR);
  292. else
  293. msm_write(port, UART_CR_CMD_STOP_BREAK, UART_CR);
  294. }
  295. struct msm_baud_map {
  296. u16 divisor;
  297. u8 code;
  298. u8 rxstale;
  299. };
  300. static const struct msm_baud_map *
  301. msm_find_best_baud(struct uart_port *port, unsigned int baud)
  302. {
  303. unsigned int i, divisor;
  304. const struct msm_baud_map *entry;
  305. static const struct msm_baud_map table[] = {
  306. { 1536, 0x00, 1 },
  307. { 768, 0x11, 1 },
  308. { 384, 0x22, 1 },
  309. { 192, 0x33, 1 },
  310. { 96, 0x44, 1 },
  311. { 48, 0x55, 1 },
  312. { 32, 0x66, 1 },
  313. { 24, 0x77, 1 },
  314. { 16, 0x88, 1 },
  315. { 12, 0x99, 6 },
  316. { 8, 0xaa, 6 },
  317. { 6, 0xbb, 6 },
  318. { 4, 0xcc, 6 },
  319. { 3, 0xdd, 8 },
  320. { 2, 0xee, 16 },
  321. { 1, 0xff, 31 },
  322. };
  323. divisor = uart_get_divisor(port, baud);
  324. for (i = 0, entry = table; i < ARRAY_SIZE(table); i++, entry++)
  325. if (entry->divisor <= divisor)
  326. break;
  327. return entry; /* Default to smallest divider */
  328. }
  329. static int msm_set_baud_rate(struct uart_port *port, unsigned int baud)
  330. {
  331. unsigned int rxstale, watermark;
  332. struct msm_port *msm_port = UART_TO_MSM(port);
  333. const struct msm_baud_map *entry;
  334. entry = msm_find_best_baud(port, baud);
  335. if (msm_port->is_uartdm)
  336. msm_write(port, UART_CR_CMD_RESET_RX, UART_CR);
  337. msm_write(port, entry->code, UART_CSR);
  338. /* RX stale watermark */
  339. rxstale = entry->rxstale;
  340. watermark = UART_IPR_STALE_LSB & rxstale;
  341. watermark |= UART_IPR_RXSTALE_LAST;
  342. watermark |= UART_IPR_STALE_TIMEOUT_MSB & (rxstale << 2);
  343. msm_write(port, watermark, UART_IPR);
  344. /* set RX watermark */
  345. watermark = (port->fifosize * 3) / 4;
  346. msm_write(port, watermark, UART_RFWR);
  347. /* set TX watermark */
  348. msm_write(port, 10, UART_TFWR);
  349. if (msm_port->is_uartdm) {
  350. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  351. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  352. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  353. }
  354. return baud;
  355. }
  356. static void msm_init_clock(struct uart_port *port)
  357. {
  358. struct msm_port *msm_port = UART_TO_MSM(port);
  359. clk_prepare_enable(msm_port->clk);
  360. clk_prepare_enable(msm_port->pclk);
  361. msm_serial_set_mnd_regs(port);
  362. }
  363. static int msm_startup(struct uart_port *port)
  364. {
  365. struct msm_port *msm_port = UART_TO_MSM(port);
  366. unsigned int data, rfr_level;
  367. int ret;
  368. snprintf(msm_port->name, sizeof(msm_port->name),
  369. "msm_serial%d", port->line);
  370. ret = request_irq(port->irq, msm_irq, IRQF_TRIGGER_HIGH,
  371. msm_port->name, port);
  372. if (unlikely(ret))
  373. return ret;
  374. msm_init_clock(port);
  375. if (likely(port->fifosize > 12))
  376. rfr_level = port->fifosize - 12;
  377. else
  378. rfr_level = port->fifosize;
  379. /* set automatic RFR level */
  380. data = msm_read(port, UART_MR1);
  381. data &= ~UART_MR1_AUTO_RFR_LEVEL1;
  382. data &= ~UART_MR1_AUTO_RFR_LEVEL0;
  383. data |= UART_MR1_AUTO_RFR_LEVEL1 & (rfr_level << 2);
  384. data |= UART_MR1_AUTO_RFR_LEVEL0 & rfr_level;
  385. msm_write(port, data, UART_MR1);
  386. /* make sure that RXSTALE count is non-zero */
  387. data = msm_read(port, UART_IPR);
  388. if (unlikely(!data)) {
  389. data |= UART_IPR_RXSTALE_LAST;
  390. data |= UART_IPR_STALE_LSB;
  391. msm_write(port, data, UART_IPR);
  392. }
  393. data = 0;
  394. if (!port->cons || (port->cons && !(port->cons->flags & CON_ENABLED))) {
  395. msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR);
  396. msm_reset(port);
  397. data = UART_CR_TX_ENABLE;
  398. }
  399. data |= UART_CR_RX_ENABLE;
  400. msm_write(port, data, UART_CR); /* enable TX & RX */
  401. /* Make sure IPR is not 0 to start with*/
  402. if (msm_port->is_uartdm)
  403. msm_write(port, UART_IPR_STALE_LSB, UART_IPR);
  404. /* turn on RX and CTS interrupts */
  405. msm_port->imr = UART_IMR_RXLEV | UART_IMR_RXSTALE |
  406. UART_IMR_CURRENT_CTS;
  407. if (msm_port->is_uartdm) {
  408. msm_write(port, 0xFFFFFF, UARTDM_DMRX);
  409. msm_write(port, UART_CR_CMD_RESET_STALE_INT, UART_CR);
  410. msm_write(port, UART_CR_CMD_STALE_EVENT_ENABLE, UART_CR);
  411. }
  412. msm_write(port, msm_port->imr, UART_IMR);
  413. return 0;
  414. }
  415. static void msm_shutdown(struct uart_port *port)
  416. {
  417. struct msm_port *msm_port = UART_TO_MSM(port);
  418. msm_port->imr = 0;
  419. msm_write(port, 0, UART_IMR); /* disable interrupts */
  420. clk_disable_unprepare(msm_port->clk);
  421. free_irq(port->irq, port);
  422. }
  423. static void msm_set_termios(struct uart_port *port, struct ktermios *termios,
  424. struct ktermios *old)
  425. {
  426. unsigned long flags;
  427. unsigned int baud, mr;
  428. spin_lock_irqsave(&port->lock, flags);
  429. /* calculate and set baud rate */
  430. baud = uart_get_baud_rate(port, termios, old, 300, 115200);
  431. baud = msm_set_baud_rate(port, baud);
  432. if (tty_termios_baud_rate(termios))
  433. tty_termios_encode_baud_rate(termios, baud, baud);
  434. /* calculate parity */
  435. mr = msm_read(port, UART_MR2);
  436. mr &= ~UART_MR2_PARITY_MODE;
  437. if (termios->c_cflag & PARENB) {
  438. if (termios->c_cflag & PARODD)
  439. mr |= UART_MR2_PARITY_MODE_ODD;
  440. else if (termios->c_cflag & CMSPAR)
  441. mr |= UART_MR2_PARITY_MODE_SPACE;
  442. else
  443. mr |= UART_MR2_PARITY_MODE_EVEN;
  444. }
  445. /* calculate bits per char */
  446. mr &= ~UART_MR2_BITS_PER_CHAR;
  447. switch (termios->c_cflag & CSIZE) {
  448. case CS5:
  449. mr |= UART_MR2_BITS_PER_CHAR_5;
  450. break;
  451. case CS6:
  452. mr |= UART_MR2_BITS_PER_CHAR_6;
  453. break;
  454. case CS7:
  455. mr |= UART_MR2_BITS_PER_CHAR_7;
  456. break;
  457. case CS8:
  458. default:
  459. mr |= UART_MR2_BITS_PER_CHAR_8;
  460. break;
  461. }
  462. /* calculate stop bits */
  463. mr &= ~(UART_MR2_STOP_BIT_LEN_ONE | UART_MR2_STOP_BIT_LEN_TWO);
  464. if (termios->c_cflag & CSTOPB)
  465. mr |= UART_MR2_STOP_BIT_LEN_TWO;
  466. else
  467. mr |= UART_MR2_STOP_BIT_LEN_ONE;
  468. /* set parity, bits per char, and stop bit */
  469. msm_write(port, mr, UART_MR2);
  470. /* calculate and set hardware flow control */
  471. mr = msm_read(port, UART_MR1);
  472. mr &= ~(UART_MR1_CTS_CTL | UART_MR1_RX_RDY_CTL);
  473. if (termios->c_cflag & CRTSCTS) {
  474. mr |= UART_MR1_CTS_CTL;
  475. mr |= UART_MR1_RX_RDY_CTL;
  476. }
  477. msm_write(port, mr, UART_MR1);
  478. /* Configure status bits to ignore based on termio flags. */
  479. port->read_status_mask = 0;
  480. if (termios->c_iflag & INPCK)
  481. port->read_status_mask |= UART_SR_PAR_FRAME_ERR;
  482. if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
  483. port->read_status_mask |= UART_SR_RX_BREAK;
  484. uart_update_timeout(port, termios->c_cflag, baud);
  485. spin_unlock_irqrestore(&port->lock, flags);
  486. }
  487. static const char *msm_type(struct uart_port *port)
  488. {
  489. return "MSM";
  490. }
  491. static void msm_release_port(struct uart_port *port)
  492. {
  493. struct platform_device *pdev = to_platform_device(port->dev);
  494. struct resource *uart_resource;
  495. resource_size_t size;
  496. uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  497. if (unlikely(!uart_resource))
  498. return;
  499. size = resource_size(uart_resource);
  500. release_mem_region(port->mapbase, size);
  501. iounmap(port->membase);
  502. port->membase = NULL;
  503. }
  504. static int msm_request_port(struct uart_port *port)
  505. {
  506. struct platform_device *pdev = to_platform_device(port->dev);
  507. struct resource *uart_resource;
  508. resource_size_t size;
  509. int ret;
  510. uart_resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  511. if (unlikely(!uart_resource))
  512. return -ENXIO;
  513. size = resource_size(uart_resource);
  514. if (!request_mem_region(port->mapbase, size, "msm_serial"))
  515. return -EBUSY;
  516. port->membase = ioremap(port->mapbase, size);
  517. if (!port->membase) {
  518. ret = -EBUSY;
  519. goto fail_release_port;
  520. }
  521. return 0;
  522. fail_release_port:
  523. release_mem_region(port->mapbase, size);
  524. return ret;
  525. }
  526. static void msm_config_port(struct uart_port *port, int flags)
  527. {
  528. int ret;
  529. if (flags & UART_CONFIG_TYPE) {
  530. port->type = PORT_MSM;
  531. ret = msm_request_port(port);
  532. if (ret)
  533. return;
  534. }
  535. }
  536. static int msm_verify_port(struct uart_port *port, struct serial_struct *ser)
  537. {
  538. if (unlikely(ser->type != PORT_UNKNOWN && ser->type != PORT_MSM))
  539. return -EINVAL;
  540. if (unlikely(port->irq != ser->irq))
  541. return -EINVAL;
  542. return 0;
  543. }
  544. static void msm_power(struct uart_port *port, unsigned int state,
  545. unsigned int oldstate)
  546. {
  547. struct msm_port *msm_port = UART_TO_MSM(port);
  548. switch (state) {
  549. case 0:
  550. clk_prepare_enable(msm_port->clk);
  551. clk_prepare_enable(msm_port->pclk);
  552. break;
  553. case 3:
  554. clk_disable_unprepare(msm_port->clk);
  555. clk_disable_unprepare(msm_port->pclk);
  556. break;
  557. default:
  558. printk(KERN_ERR "msm_serial: Unknown PM state %d\n", state);
  559. }
  560. }
  561. #ifdef CONFIG_CONSOLE_POLL
  562. static int msm_poll_init(struct uart_port *port)
  563. {
  564. struct msm_port *msm_port = UART_TO_MSM(port);
  565. /* Enable single character mode on RX FIFO */
  566. if (msm_port->is_uartdm >= UARTDM_1P4)
  567. msm_write(port, UARTDM_DMEN_RX_SC_ENABLE, UARTDM_DMEN);
  568. return 0;
  569. }
  570. static int msm_poll_get_char_single(struct uart_port *port)
  571. {
  572. struct msm_port *msm_port = UART_TO_MSM(port);
  573. unsigned int rf_reg = msm_port->is_uartdm ? UARTDM_RF : UART_RF;
  574. if (!(msm_read(port, UART_SR) & UART_SR_RX_READY))
  575. return NO_POLL_CHAR;
  576. else
  577. return msm_read(port, rf_reg) & 0xff;
  578. }
  579. static int msm_poll_get_char_dm_1p3(struct uart_port *port)
  580. {
  581. int c;
  582. static u32 slop;
  583. static int count;
  584. unsigned char *sp = (unsigned char *)&slop;
  585. /* Check if a previous read had more than one char */
  586. if (count) {
  587. c = sp[sizeof(slop) - count];
  588. count--;
  589. /* Or if FIFO is empty */
  590. } else if (!(msm_read(port, UART_SR) & UART_SR_RX_READY)) {
  591. /*
  592. * If RX packing buffer has less than a word, force stale to
  593. * push contents into RX FIFO
  594. */
  595. count = msm_read(port, UARTDM_RXFS);
  596. count = (count >> UARTDM_RXFS_BUF_SHIFT) & UARTDM_RXFS_BUF_MASK;
  597. if (count) {
  598. msm_write(port, UART_CR_CMD_FORCE_STALE, UART_CR);
  599. slop = msm_read(port, UARTDM_RF);
  600. c = sp[0];
  601. count--;
  602. } else {
  603. c = NO_POLL_CHAR;
  604. }
  605. /* FIFO has a word */
  606. } else {
  607. slop = msm_read(port, UARTDM_RF);
  608. c = sp[0];
  609. count = sizeof(slop) - 1;
  610. }
  611. return c;
  612. }
  613. static int msm_poll_get_char(struct uart_port *port)
  614. {
  615. u32 imr;
  616. int c;
  617. struct msm_port *msm_port = UART_TO_MSM(port);
  618. /* Disable all interrupts */
  619. imr = msm_read(port, UART_IMR);
  620. msm_write(port, 0, UART_IMR);
  621. if (msm_port->is_uartdm == UARTDM_1P3)
  622. c = msm_poll_get_char_dm_1p3(port);
  623. else
  624. c = msm_poll_get_char_single(port);
  625. /* Enable interrupts */
  626. msm_write(port, imr, UART_IMR);
  627. return c;
  628. }
  629. static void msm_poll_put_char(struct uart_port *port, unsigned char c)
  630. {
  631. u32 imr;
  632. struct msm_port *msm_port = UART_TO_MSM(port);
  633. /* Disable all interrupts */
  634. imr = msm_read(port, UART_IMR);
  635. msm_write(port, 0, UART_IMR);
  636. if (msm_port->is_uartdm)
  637. reset_dm_count(port, 1);
  638. /* Wait until FIFO is empty */
  639. while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  640. cpu_relax();
  641. /* Write a character */
  642. msm_write(port, c, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  643. /* Wait until FIFO is empty */
  644. while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  645. cpu_relax();
  646. /* Enable interrupts */
  647. msm_write(port, imr, UART_IMR);
  648. return;
  649. }
  650. #endif
  651. static struct uart_ops msm_uart_pops = {
  652. .tx_empty = msm_tx_empty,
  653. .set_mctrl = msm_set_mctrl,
  654. .get_mctrl = msm_get_mctrl,
  655. .stop_tx = msm_stop_tx,
  656. .start_tx = msm_start_tx,
  657. .stop_rx = msm_stop_rx,
  658. .enable_ms = msm_enable_ms,
  659. .break_ctl = msm_break_ctl,
  660. .startup = msm_startup,
  661. .shutdown = msm_shutdown,
  662. .set_termios = msm_set_termios,
  663. .type = msm_type,
  664. .release_port = msm_release_port,
  665. .request_port = msm_request_port,
  666. .config_port = msm_config_port,
  667. .verify_port = msm_verify_port,
  668. .pm = msm_power,
  669. #ifdef CONFIG_CONSOLE_POLL
  670. .poll_init = msm_poll_init,
  671. .poll_get_char = msm_poll_get_char,
  672. .poll_put_char = msm_poll_put_char,
  673. #endif
  674. };
  675. static struct msm_port msm_uart_ports[] = {
  676. {
  677. .uart = {
  678. .iotype = UPIO_MEM,
  679. .ops = &msm_uart_pops,
  680. .flags = UPF_BOOT_AUTOCONF,
  681. .fifosize = 64,
  682. .line = 0,
  683. },
  684. },
  685. {
  686. .uart = {
  687. .iotype = UPIO_MEM,
  688. .ops = &msm_uart_pops,
  689. .flags = UPF_BOOT_AUTOCONF,
  690. .fifosize = 64,
  691. .line = 1,
  692. },
  693. },
  694. {
  695. .uart = {
  696. .iotype = UPIO_MEM,
  697. .ops = &msm_uart_pops,
  698. .flags = UPF_BOOT_AUTOCONF,
  699. .fifosize = 64,
  700. .line = 2,
  701. },
  702. },
  703. };
  704. #define UART_NR ARRAY_SIZE(msm_uart_ports)
  705. static inline struct uart_port *get_port_from_line(unsigned int line)
  706. {
  707. return &msm_uart_ports[line].uart;
  708. }
  709. #ifdef CONFIG_SERIAL_MSM_CONSOLE
  710. static void msm_console_write(struct console *co, const char *s,
  711. unsigned int count)
  712. {
  713. int i;
  714. struct uart_port *port;
  715. struct msm_port *msm_port;
  716. int num_newlines = 0;
  717. bool replaced = false;
  718. BUG_ON(co->index < 0 || co->index >= UART_NR);
  719. port = get_port_from_line(co->index);
  720. msm_port = UART_TO_MSM(port);
  721. /* Account for newlines that will get a carriage return added */
  722. for (i = 0; i < count; i++)
  723. if (s[i] == '\n')
  724. num_newlines++;
  725. count += num_newlines;
  726. spin_lock(&port->lock);
  727. if (msm_port->is_uartdm)
  728. reset_dm_count(port, count);
  729. i = 0;
  730. while (i < count) {
  731. int j;
  732. unsigned int num_chars;
  733. char buf[4] = { 0 };
  734. unsigned int *bf = (unsigned int *)&buf;
  735. if (msm_port->is_uartdm)
  736. num_chars = min(count - i, (unsigned int)sizeof(buf));
  737. else
  738. num_chars = 1;
  739. for (j = 0; j < num_chars; j++) {
  740. char c = *s;
  741. if (c == '\n' && !replaced) {
  742. buf[j] = '\r';
  743. j++;
  744. replaced = true;
  745. }
  746. if (j < num_chars) {
  747. buf[j] = c;
  748. s++;
  749. replaced = false;
  750. }
  751. }
  752. while (!(msm_read(port, UART_SR) & UART_SR_TX_READY))
  753. cpu_relax();
  754. msm_write(port, *bf, msm_port->is_uartdm ? UARTDM_TF : UART_TF);
  755. i += num_chars;
  756. }
  757. spin_unlock(&port->lock);
  758. }
  759. static int __init msm_console_setup(struct console *co, char *options)
  760. {
  761. struct uart_port *port;
  762. struct msm_port *msm_port;
  763. int baud, flow, bits, parity;
  764. if (unlikely(co->index >= UART_NR || co->index < 0))
  765. return -ENXIO;
  766. port = get_port_from_line(co->index);
  767. msm_port = UART_TO_MSM(port);
  768. if (unlikely(!port->membase))
  769. return -ENXIO;
  770. msm_init_clock(port);
  771. if (options)
  772. uart_parse_options(options, &baud, &parity, &bits, &flow);
  773. bits = 8;
  774. parity = 'n';
  775. flow = 'n';
  776. msm_write(port, UART_MR2_BITS_PER_CHAR_8 | UART_MR2_STOP_BIT_LEN_ONE,
  777. UART_MR2); /* 8N1 */
  778. if (baud < 300 || baud > 115200)
  779. baud = 115200;
  780. msm_set_baud_rate(port, baud);
  781. msm_reset(port);
  782. if (msm_port->is_uartdm) {
  783. msm_write(port, UART_CR_CMD_PROTECTION_EN, UART_CR);
  784. msm_write(port, UART_CR_TX_ENABLE, UART_CR);
  785. }
  786. printk(KERN_INFO "msm_serial: console setup on port #%d\n", port->line);
  787. return uart_set_options(port, co, baud, parity, bits, flow);
  788. }
  789. static struct uart_driver msm_uart_driver;
  790. static struct console msm_console = {
  791. .name = "ttyMSM",
  792. .write = msm_console_write,
  793. .device = uart_console_device,
  794. .setup = msm_console_setup,
  795. .flags = CON_PRINTBUFFER,
  796. .index = -1,
  797. .data = &msm_uart_driver,
  798. };
  799. #define MSM_CONSOLE (&msm_console)
  800. #else
  801. #define MSM_CONSOLE NULL
  802. #endif
  803. static struct uart_driver msm_uart_driver = {
  804. .owner = THIS_MODULE,
  805. .driver_name = "msm_serial",
  806. .dev_name = "ttyMSM",
  807. .nr = UART_NR,
  808. .cons = MSM_CONSOLE,
  809. };
  810. static atomic_t msm_uart_next_id = ATOMIC_INIT(0);
  811. static const struct of_device_id msm_uartdm_table[] = {
  812. { .compatible = "qcom,msm-uartdm-v1.1", .data = (void *)UARTDM_1P1 },
  813. { .compatible = "qcom,msm-uartdm-v1.2", .data = (void *)UARTDM_1P2 },
  814. { .compatible = "qcom,msm-uartdm-v1.3", .data = (void *)UARTDM_1P3 },
  815. { .compatible = "qcom,msm-uartdm-v1.4", .data = (void *)UARTDM_1P4 },
  816. { }
  817. };
  818. static int msm_serial_probe(struct platform_device *pdev)
  819. {
  820. struct msm_port *msm_port;
  821. struct resource *resource;
  822. struct uart_port *port;
  823. const struct of_device_id *id;
  824. int irq;
  825. if (pdev->id == -1)
  826. pdev->id = atomic_inc_return(&msm_uart_next_id) - 1;
  827. if (unlikely(pdev->id < 0 || pdev->id >= UART_NR))
  828. return -ENXIO;
  829. printk(KERN_INFO "msm_serial: detected port #%d\n", pdev->id);
  830. port = get_port_from_line(pdev->id);
  831. port->dev = &pdev->dev;
  832. msm_port = UART_TO_MSM(port);
  833. id = of_match_device(msm_uartdm_table, &pdev->dev);
  834. if (id)
  835. msm_port->is_uartdm = (unsigned long)id->data;
  836. else
  837. msm_port->is_uartdm = 0;
  838. msm_port->clk = devm_clk_get(&pdev->dev, "core");
  839. if (IS_ERR(msm_port->clk))
  840. return PTR_ERR(msm_port->clk);
  841. if (msm_port->is_uartdm) {
  842. msm_port->pclk = devm_clk_get(&pdev->dev, "iface");
  843. if (IS_ERR(msm_port->pclk))
  844. return PTR_ERR(msm_port->pclk);
  845. clk_set_rate(msm_port->clk, 1843200);
  846. }
  847. port->uartclk = clk_get_rate(msm_port->clk);
  848. printk(KERN_INFO "uartclk = %d\n", port->uartclk);
  849. resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  850. if (unlikely(!resource))
  851. return -ENXIO;
  852. port->mapbase = resource->start;
  853. irq = platform_get_irq(pdev, 0);
  854. if (unlikely(irq < 0))
  855. return -ENXIO;
  856. port->irq = irq;
  857. platform_set_drvdata(pdev, port);
  858. return uart_add_one_port(&msm_uart_driver, port);
  859. }
  860. static int msm_serial_remove(struct platform_device *pdev)
  861. {
  862. struct uart_port *port = platform_get_drvdata(pdev);
  863. uart_remove_one_port(&msm_uart_driver, port);
  864. return 0;
  865. }
  866. static struct of_device_id msm_match_table[] = {
  867. { .compatible = "qcom,msm-uart" },
  868. { .compatible = "qcom,msm-uartdm" },
  869. {}
  870. };
  871. static struct platform_driver msm_platform_driver = {
  872. .remove = msm_serial_remove,
  873. .probe = msm_serial_probe,
  874. .driver = {
  875. .name = "msm_serial",
  876. .owner = THIS_MODULE,
  877. .of_match_table = msm_match_table,
  878. },
  879. };
  880. static int __init msm_serial_init(void)
  881. {
  882. int ret;
  883. ret = uart_register_driver(&msm_uart_driver);
  884. if (unlikely(ret))
  885. return ret;
  886. ret = platform_driver_register(&msm_platform_driver);
  887. if (unlikely(ret))
  888. uart_unregister_driver(&msm_uart_driver);
  889. printk(KERN_INFO "msm_serial: driver initialized\n");
  890. return ret;
  891. }
  892. static void __exit msm_serial_exit(void)
  893. {
  894. #ifdef CONFIG_SERIAL_MSM_CONSOLE
  895. unregister_console(&msm_console);
  896. #endif
  897. platform_driver_unregister(&msm_platform_driver);
  898. uart_unregister_driver(&msm_uart_driver);
  899. }
  900. module_init(msm_serial_init);
  901. module_exit(msm_serial_exit);
  902. MODULE_AUTHOR("Robert Love <rlove@google.com>");
  903. MODULE_DESCRIPTION("Driver for msm7x serial device");
  904. MODULE_LICENSE("GPL");