target_core_alua.c 65 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416
  1. /*******************************************************************************
  2. * Filename: target_core_alua.c
  3. *
  4. * This file contains SPC-3 compliant asymmetric logical unit assigntment (ALUA)
  5. *
  6. * (c) Copyright 2009-2013 Datera, Inc.
  7. *
  8. * Nicholas A. Bellinger <nab@kernel.org>
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2 of the License, or
  13. * (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software
  22. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  23. *
  24. ******************************************************************************/
  25. #include <linux/slab.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/configfs.h>
  28. #include <linux/export.h>
  29. #include <linux/file.h>
  30. #include <scsi/scsi.h>
  31. #include <scsi/scsi_cmnd.h>
  32. #include <asm/unaligned.h>
  33. #include <target/target_core_base.h>
  34. #include <target/target_core_backend.h>
  35. #include <target/target_core_fabric.h>
  36. #include <target/target_core_configfs.h>
  37. #include "target_core_internal.h"
  38. #include "target_core_alua.h"
  39. #include "target_core_ua.h"
  40. static sense_reason_t core_alua_check_transition(int state, int valid,
  41. int *primary);
  42. static int core_alua_set_tg_pt_secondary_state(
  43. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  44. struct se_port *port, int explicit, int offline);
  45. static char *core_alua_dump_state(int state);
  46. static u16 alua_lu_gps_counter;
  47. static u32 alua_lu_gps_count;
  48. static DEFINE_SPINLOCK(lu_gps_lock);
  49. static LIST_HEAD(lu_gps_list);
  50. struct t10_alua_lu_gp *default_lu_gp;
  51. /*
  52. * REPORT REFERRALS
  53. *
  54. * See sbc3r35 section 5.23
  55. */
  56. sense_reason_t
  57. target_emulate_report_referrals(struct se_cmd *cmd)
  58. {
  59. struct se_device *dev = cmd->se_dev;
  60. struct t10_alua_lba_map *map;
  61. struct t10_alua_lba_map_member *map_mem;
  62. unsigned char *buf;
  63. u32 rd_len = 0, off;
  64. if (cmd->data_length < 4) {
  65. pr_warn("REPORT REFERRALS allocation length %u too"
  66. " small\n", cmd->data_length);
  67. return TCM_INVALID_CDB_FIELD;
  68. }
  69. buf = transport_kmap_data_sg(cmd);
  70. if (!buf)
  71. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  72. off = 4;
  73. spin_lock(&dev->t10_alua.lba_map_lock);
  74. if (list_empty(&dev->t10_alua.lba_map_list)) {
  75. spin_unlock(&dev->t10_alua.lba_map_lock);
  76. transport_kunmap_data_sg(cmd);
  77. return TCM_UNSUPPORTED_SCSI_OPCODE;
  78. }
  79. list_for_each_entry(map, &dev->t10_alua.lba_map_list,
  80. lba_map_list) {
  81. int desc_num = off + 3;
  82. int pg_num;
  83. off += 4;
  84. if (cmd->data_length > off)
  85. put_unaligned_be64(map->lba_map_first_lba, &buf[off]);
  86. off += 8;
  87. if (cmd->data_length > off)
  88. put_unaligned_be64(map->lba_map_last_lba, &buf[off]);
  89. off += 8;
  90. rd_len += 20;
  91. pg_num = 0;
  92. list_for_each_entry(map_mem, &map->lba_map_mem_list,
  93. lba_map_mem_list) {
  94. int alua_state = map_mem->lba_map_mem_alua_state;
  95. int alua_pg_id = map_mem->lba_map_mem_alua_pg_id;
  96. if (cmd->data_length > off)
  97. buf[off] = alua_state & 0x0f;
  98. off += 2;
  99. if (cmd->data_length > off)
  100. buf[off] = (alua_pg_id >> 8) & 0xff;
  101. off++;
  102. if (cmd->data_length > off)
  103. buf[off] = (alua_pg_id & 0xff);
  104. off++;
  105. rd_len += 4;
  106. pg_num++;
  107. }
  108. if (cmd->data_length > desc_num)
  109. buf[desc_num] = pg_num;
  110. }
  111. spin_unlock(&dev->t10_alua.lba_map_lock);
  112. /*
  113. * Set the RETURN DATA LENGTH set in the header of the DataIN Payload
  114. */
  115. put_unaligned_be16(rd_len, &buf[2]);
  116. transport_kunmap_data_sg(cmd);
  117. target_complete_cmd(cmd, GOOD);
  118. return 0;
  119. }
  120. /*
  121. * REPORT_TARGET_PORT_GROUPS
  122. *
  123. * See spc4r17 section 6.27
  124. */
  125. sense_reason_t
  126. target_emulate_report_target_port_groups(struct se_cmd *cmd)
  127. {
  128. struct se_device *dev = cmd->se_dev;
  129. struct se_port *port;
  130. struct t10_alua_tg_pt_gp *tg_pt_gp;
  131. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  132. unsigned char *buf;
  133. u32 rd_len = 0, off;
  134. int ext_hdr = (cmd->t_task_cdb[1] & 0x20);
  135. /*
  136. * Skip over RESERVED area to first Target port group descriptor
  137. * depending on the PARAMETER DATA FORMAT type..
  138. */
  139. if (ext_hdr != 0)
  140. off = 8;
  141. else
  142. off = 4;
  143. if (cmd->data_length < off) {
  144. pr_warn("REPORT TARGET PORT GROUPS allocation length %u too"
  145. " small for %s header\n", cmd->data_length,
  146. (ext_hdr) ? "extended" : "normal");
  147. return TCM_INVALID_CDB_FIELD;
  148. }
  149. buf = transport_kmap_data_sg(cmd);
  150. if (!buf)
  151. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  152. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  153. list_for_each_entry(tg_pt_gp, &dev->t10_alua.tg_pt_gps_list,
  154. tg_pt_gp_list) {
  155. /*
  156. * Check if the Target port group and Target port descriptor list
  157. * based on tg_pt_gp_members count will fit into the response payload.
  158. * Otherwise, bump rd_len to let the initiator know we have exceeded
  159. * the allocation length and the response is truncated.
  160. */
  161. if ((off + 8 + (tg_pt_gp->tg_pt_gp_members * 4)) >
  162. cmd->data_length) {
  163. rd_len += 8 + (tg_pt_gp->tg_pt_gp_members * 4);
  164. continue;
  165. }
  166. /*
  167. * PREF: Preferred target port bit, determine if this
  168. * bit should be set for port group.
  169. */
  170. if (tg_pt_gp->tg_pt_gp_pref)
  171. buf[off] = 0x80;
  172. /*
  173. * Set the ASYMMETRIC ACCESS State
  174. */
  175. buf[off++] |= (atomic_read(
  176. &tg_pt_gp->tg_pt_gp_alua_access_state) & 0xff);
  177. /*
  178. * Set supported ASYMMETRIC ACCESS State bits
  179. */
  180. buf[off++] |= tg_pt_gp->tg_pt_gp_alua_supported_states;
  181. /*
  182. * TARGET PORT GROUP
  183. */
  184. buf[off++] = ((tg_pt_gp->tg_pt_gp_id >> 8) & 0xff);
  185. buf[off++] = (tg_pt_gp->tg_pt_gp_id & 0xff);
  186. off++; /* Skip over Reserved */
  187. /*
  188. * STATUS CODE
  189. */
  190. buf[off++] = (tg_pt_gp->tg_pt_gp_alua_access_status & 0xff);
  191. /*
  192. * Vendor Specific field
  193. */
  194. buf[off++] = 0x00;
  195. /*
  196. * TARGET PORT COUNT
  197. */
  198. buf[off++] = (tg_pt_gp->tg_pt_gp_members & 0xff);
  199. rd_len += 8;
  200. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  201. list_for_each_entry(tg_pt_gp_mem, &tg_pt_gp->tg_pt_gp_mem_list,
  202. tg_pt_gp_mem_list) {
  203. port = tg_pt_gp_mem->tg_pt;
  204. /*
  205. * Start Target Port descriptor format
  206. *
  207. * See spc4r17 section 6.2.7 Table 247
  208. */
  209. off += 2; /* Skip over Obsolete */
  210. /*
  211. * Set RELATIVE TARGET PORT IDENTIFIER
  212. */
  213. buf[off++] = ((port->sep_rtpi >> 8) & 0xff);
  214. buf[off++] = (port->sep_rtpi & 0xff);
  215. rd_len += 4;
  216. }
  217. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  218. }
  219. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  220. /*
  221. * Set the RETURN DATA LENGTH set in the header of the DataIN Payload
  222. */
  223. put_unaligned_be32(rd_len, &buf[0]);
  224. /*
  225. * Fill in the Extended header parameter data format if requested
  226. */
  227. if (ext_hdr != 0) {
  228. buf[4] = 0x10;
  229. /*
  230. * Set the implicit transition time (in seconds) for the application
  231. * client to use as a base for it's transition timeout value.
  232. *
  233. * Use the current tg_pt_gp_mem -> tg_pt_gp membership from the LUN
  234. * this CDB was received upon to determine this value individually
  235. * for ALUA target port group.
  236. */
  237. port = cmd->se_lun->lun_sep;
  238. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  239. if (tg_pt_gp_mem) {
  240. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  241. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  242. if (tg_pt_gp)
  243. buf[5] = tg_pt_gp->tg_pt_gp_implicit_trans_secs;
  244. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  245. }
  246. }
  247. transport_kunmap_data_sg(cmd);
  248. target_complete_cmd(cmd, GOOD);
  249. return 0;
  250. }
  251. /*
  252. * SET_TARGET_PORT_GROUPS for explicit ALUA operation.
  253. *
  254. * See spc4r17 section 6.35
  255. */
  256. sense_reason_t
  257. target_emulate_set_target_port_groups(struct se_cmd *cmd)
  258. {
  259. struct se_device *dev = cmd->se_dev;
  260. struct se_port *port, *l_port = cmd->se_lun->lun_sep;
  261. struct se_node_acl *nacl = cmd->se_sess->se_node_acl;
  262. struct t10_alua_tg_pt_gp *tg_pt_gp = NULL, *l_tg_pt_gp;
  263. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem, *l_tg_pt_gp_mem;
  264. unsigned char *buf;
  265. unsigned char *ptr;
  266. sense_reason_t rc = TCM_NO_SENSE;
  267. u32 len = 4; /* Skip over RESERVED area in header */
  268. int alua_access_state, primary = 0, valid_states;
  269. u16 tg_pt_id, rtpi;
  270. if (!l_port)
  271. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  272. if (cmd->data_length < 4) {
  273. pr_warn("SET TARGET PORT GROUPS parameter list length %u too"
  274. " small\n", cmd->data_length);
  275. return TCM_INVALID_PARAMETER_LIST;
  276. }
  277. buf = transport_kmap_data_sg(cmd);
  278. if (!buf)
  279. return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
  280. /*
  281. * Determine if explicit ALUA via SET_TARGET_PORT_GROUPS is allowed
  282. * for the local tg_pt_gp.
  283. */
  284. l_tg_pt_gp_mem = l_port->sep_alua_tg_pt_gp_mem;
  285. if (!l_tg_pt_gp_mem) {
  286. pr_err("Unable to access l_port->sep_alua_tg_pt_gp_mem\n");
  287. rc = TCM_UNSUPPORTED_SCSI_OPCODE;
  288. goto out;
  289. }
  290. spin_lock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  291. l_tg_pt_gp = l_tg_pt_gp_mem->tg_pt_gp;
  292. if (!l_tg_pt_gp) {
  293. spin_unlock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  294. pr_err("Unable to access *l_tg_pt_gp_mem->tg_pt_gp\n");
  295. rc = TCM_UNSUPPORTED_SCSI_OPCODE;
  296. goto out;
  297. }
  298. spin_unlock(&l_tg_pt_gp_mem->tg_pt_gp_mem_lock);
  299. if (!(l_tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)) {
  300. pr_debug("Unable to process SET_TARGET_PORT_GROUPS"
  301. " while TPGS_EXPLICIT_ALUA is disabled\n");
  302. rc = TCM_UNSUPPORTED_SCSI_OPCODE;
  303. goto out;
  304. }
  305. valid_states = l_tg_pt_gp->tg_pt_gp_alua_supported_states;
  306. ptr = &buf[4]; /* Skip over RESERVED area in header */
  307. while (len < cmd->data_length) {
  308. bool found = false;
  309. alua_access_state = (ptr[0] & 0x0f);
  310. /*
  311. * Check the received ALUA access state, and determine if
  312. * the state is a primary or secondary target port asymmetric
  313. * access state.
  314. */
  315. rc = core_alua_check_transition(alua_access_state,
  316. valid_states, &primary);
  317. if (rc) {
  318. /*
  319. * If the SET TARGET PORT GROUPS attempts to establish
  320. * an invalid combination of target port asymmetric
  321. * access states or attempts to establish an
  322. * unsupported target port asymmetric access state,
  323. * then the command shall be terminated with CHECK
  324. * CONDITION status, with the sense key set to ILLEGAL
  325. * REQUEST, and the additional sense code set to INVALID
  326. * FIELD IN PARAMETER LIST.
  327. */
  328. goto out;
  329. }
  330. /*
  331. * If the ASYMMETRIC ACCESS STATE field (see table 267)
  332. * specifies a primary target port asymmetric access state,
  333. * then the TARGET PORT GROUP OR TARGET PORT field specifies
  334. * a primary target port group for which the primary target
  335. * port asymmetric access state shall be changed. If the
  336. * ASYMMETRIC ACCESS STATE field specifies a secondary target
  337. * port asymmetric access state, then the TARGET PORT GROUP OR
  338. * TARGET PORT field specifies the relative target port
  339. * identifier (see 3.1.120) of the target port for which the
  340. * secondary target port asymmetric access state shall be
  341. * changed.
  342. */
  343. if (primary) {
  344. tg_pt_id = get_unaligned_be16(ptr + 2);
  345. /*
  346. * Locate the matching target port group ID from
  347. * the global tg_pt_gp list
  348. */
  349. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  350. list_for_each_entry(tg_pt_gp,
  351. &dev->t10_alua.tg_pt_gps_list,
  352. tg_pt_gp_list) {
  353. if (!tg_pt_gp->tg_pt_gp_valid_id)
  354. continue;
  355. if (tg_pt_id != tg_pt_gp->tg_pt_gp_id)
  356. continue;
  357. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  358. smp_mb__after_atomic();
  359. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  360. if (!core_alua_do_port_transition(tg_pt_gp,
  361. dev, l_port, nacl,
  362. alua_access_state, 1))
  363. found = true;
  364. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  365. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  366. smp_mb__after_atomic();
  367. break;
  368. }
  369. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  370. } else {
  371. /*
  372. * Extract the RELATIVE TARGET PORT IDENTIFIER to identify
  373. * the Target Port in question for the the incoming
  374. * SET_TARGET_PORT_GROUPS op.
  375. */
  376. rtpi = get_unaligned_be16(ptr + 2);
  377. /*
  378. * Locate the matching relative target port identifier
  379. * for the struct se_device storage object.
  380. */
  381. spin_lock(&dev->se_port_lock);
  382. list_for_each_entry(port, &dev->dev_sep_list,
  383. sep_list) {
  384. if (port->sep_rtpi != rtpi)
  385. continue;
  386. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  387. spin_unlock(&dev->se_port_lock);
  388. if (!core_alua_set_tg_pt_secondary_state(
  389. tg_pt_gp_mem, port, 1, 1))
  390. found = true;
  391. spin_lock(&dev->se_port_lock);
  392. break;
  393. }
  394. spin_unlock(&dev->se_port_lock);
  395. }
  396. if (!found) {
  397. rc = TCM_INVALID_PARAMETER_LIST;
  398. goto out;
  399. }
  400. ptr += 4;
  401. len += 4;
  402. }
  403. out:
  404. transport_kunmap_data_sg(cmd);
  405. if (!rc)
  406. target_complete_cmd(cmd, GOOD);
  407. return rc;
  408. }
  409. static inline void set_ascq(struct se_cmd *cmd, u8 alua_ascq)
  410. {
  411. /*
  412. * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
  413. * The ALUA additional sense code qualifier (ASCQ) is determined
  414. * by the ALUA primary or secondary access state..
  415. */
  416. pr_debug("[%s]: ALUA TG Port not available, "
  417. "SenseKey: NOT_READY, ASC/ASCQ: "
  418. "0x04/0x%02x\n",
  419. cmd->se_tfo->get_fabric_name(), alua_ascq);
  420. cmd->scsi_asc = 0x04;
  421. cmd->scsi_ascq = alua_ascq;
  422. }
  423. static inline void core_alua_state_nonoptimized(
  424. struct se_cmd *cmd,
  425. unsigned char *cdb,
  426. int nonop_delay_msecs)
  427. {
  428. /*
  429. * Set SCF_ALUA_NON_OPTIMIZED here, this value will be checked
  430. * later to determine if processing of this cmd needs to be
  431. * temporarily delayed for the Active/NonOptimized primary access state.
  432. */
  433. cmd->se_cmd_flags |= SCF_ALUA_NON_OPTIMIZED;
  434. cmd->alua_nonop_delay = nonop_delay_msecs;
  435. }
  436. static inline int core_alua_state_lba_dependent(
  437. struct se_cmd *cmd,
  438. struct t10_alua_tg_pt_gp *tg_pt_gp)
  439. {
  440. struct se_device *dev = cmd->se_dev;
  441. u64 segment_size, segment_mult, sectors, lba;
  442. /* Only need to check for cdb actually containing LBAs */
  443. if (!(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB))
  444. return 0;
  445. spin_lock(&dev->t10_alua.lba_map_lock);
  446. segment_size = dev->t10_alua.lba_map_segment_size;
  447. segment_mult = dev->t10_alua.lba_map_segment_multiplier;
  448. sectors = cmd->data_length / dev->dev_attrib.block_size;
  449. lba = cmd->t_task_lba;
  450. while (lba < cmd->t_task_lba + sectors) {
  451. struct t10_alua_lba_map *cur_map = NULL, *map;
  452. struct t10_alua_lba_map_member *map_mem;
  453. list_for_each_entry(map, &dev->t10_alua.lba_map_list,
  454. lba_map_list) {
  455. u64 start_lba, last_lba;
  456. u64 first_lba = map->lba_map_first_lba;
  457. if (segment_mult) {
  458. u64 tmp = lba;
  459. start_lba = do_div(tmp, segment_size * segment_mult);
  460. last_lba = first_lba + segment_size - 1;
  461. if (start_lba >= first_lba &&
  462. start_lba <= last_lba) {
  463. lba += segment_size;
  464. cur_map = map;
  465. break;
  466. }
  467. } else {
  468. last_lba = map->lba_map_last_lba;
  469. if (lba >= first_lba && lba <= last_lba) {
  470. lba = last_lba + 1;
  471. cur_map = map;
  472. break;
  473. }
  474. }
  475. }
  476. if (!cur_map) {
  477. spin_unlock(&dev->t10_alua.lba_map_lock);
  478. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_UNAVAILABLE);
  479. return 1;
  480. }
  481. list_for_each_entry(map_mem, &cur_map->lba_map_mem_list,
  482. lba_map_mem_list) {
  483. if (map_mem->lba_map_mem_alua_pg_id !=
  484. tg_pt_gp->tg_pt_gp_id)
  485. continue;
  486. switch(map_mem->lba_map_mem_alua_state) {
  487. case ALUA_ACCESS_STATE_STANDBY:
  488. spin_unlock(&dev->t10_alua.lba_map_lock);
  489. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_STANDBY);
  490. return 1;
  491. case ALUA_ACCESS_STATE_UNAVAILABLE:
  492. spin_unlock(&dev->t10_alua.lba_map_lock);
  493. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_UNAVAILABLE);
  494. return 1;
  495. default:
  496. break;
  497. }
  498. }
  499. }
  500. spin_unlock(&dev->t10_alua.lba_map_lock);
  501. return 0;
  502. }
  503. static inline int core_alua_state_standby(
  504. struct se_cmd *cmd,
  505. unsigned char *cdb)
  506. {
  507. /*
  508. * Allowed CDBs for ALUA_ACCESS_STATE_STANDBY as defined by
  509. * spc4r17 section 5.9.2.4.4
  510. */
  511. switch (cdb[0]) {
  512. case INQUIRY:
  513. case LOG_SELECT:
  514. case LOG_SENSE:
  515. case MODE_SELECT:
  516. case MODE_SENSE:
  517. case REPORT_LUNS:
  518. case RECEIVE_DIAGNOSTIC:
  519. case SEND_DIAGNOSTIC:
  520. case READ_CAPACITY:
  521. return 0;
  522. case SERVICE_ACTION_IN:
  523. switch (cdb[1] & 0x1f) {
  524. case SAI_READ_CAPACITY_16:
  525. return 0;
  526. default:
  527. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_STANDBY);
  528. return 1;
  529. }
  530. case MAINTENANCE_IN:
  531. switch (cdb[1] & 0x1f) {
  532. case MI_REPORT_TARGET_PGS:
  533. return 0;
  534. default:
  535. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_STANDBY);
  536. return 1;
  537. }
  538. case MAINTENANCE_OUT:
  539. switch (cdb[1]) {
  540. case MO_SET_TARGET_PGS:
  541. return 0;
  542. default:
  543. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_STANDBY);
  544. return 1;
  545. }
  546. case REQUEST_SENSE:
  547. case PERSISTENT_RESERVE_IN:
  548. case PERSISTENT_RESERVE_OUT:
  549. case READ_BUFFER:
  550. case WRITE_BUFFER:
  551. return 0;
  552. default:
  553. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_STANDBY);
  554. return 1;
  555. }
  556. return 0;
  557. }
  558. static inline int core_alua_state_unavailable(
  559. struct se_cmd *cmd,
  560. unsigned char *cdb)
  561. {
  562. /*
  563. * Allowed CDBs for ALUA_ACCESS_STATE_UNAVAILABLE as defined by
  564. * spc4r17 section 5.9.2.4.5
  565. */
  566. switch (cdb[0]) {
  567. case INQUIRY:
  568. case REPORT_LUNS:
  569. return 0;
  570. case MAINTENANCE_IN:
  571. switch (cdb[1] & 0x1f) {
  572. case MI_REPORT_TARGET_PGS:
  573. return 0;
  574. default:
  575. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_UNAVAILABLE);
  576. return 1;
  577. }
  578. case MAINTENANCE_OUT:
  579. switch (cdb[1]) {
  580. case MO_SET_TARGET_PGS:
  581. return 0;
  582. default:
  583. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_UNAVAILABLE);
  584. return 1;
  585. }
  586. case REQUEST_SENSE:
  587. case READ_BUFFER:
  588. case WRITE_BUFFER:
  589. return 0;
  590. default:
  591. set_ascq(cmd, ASCQ_04H_ALUA_TG_PT_UNAVAILABLE);
  592. return 1;
  593. }
  594. return 0;
  595. }
  596. static inline int core_alua_state_transition(
  597. struct se_cmd *cmd,
  598. unsigned char *cdb)
  599. {
  600. /*
  601. * Allowed CDBs for ALUA_ACCESS_STATE_TRANSITION as defined by
  602. * spc4r17 section 5.9.2.5
  603. */
  604. switch (cdb[0]) {
  605. case INQUIRY:
  606. case REPORT_LUNS:
  607. return 0;
  608. case MAINTENANCE_IN:
  609. switch (cdb[1] & 0x1f) {
  610. case MI_REPORT_TARGET_PGS:
  611. return 0;
  612. default:
  613. set_ascq(cmd, ASCQ_04H_ALUA_STATE_TRANSITION);
  614. return 1;
  615. }
  616. case REQUEST_SENSE:
  617. case READ_BUFFER:
  618. case WRITE_BUFFER:
  619. return 0;
  620. default:
  621. set_ascq(cmd, ASCQ_04H_ALUA_STATE_TRANSITION);
  622. return 1;
  623. }
  624. return 0;
  625. }
  626. /*
  627. * return 1: Is used to signal LUN not accessible, and check condition/not ready
  628. * return 0: Used to signal success
  629. * return -1: Used to signal failure, and invalid cdb field
  630. */
  631. sense_reason_t
  632. target_alua_state_check(struct se_cmd *cmd)
  633. {
  634. struct se_device *dev = cmd->se_dev;
  635. unsigned char *cdb = cmd->t_task_cdb;
  636. struct se_lun *lun = cmd->se_lun;
  637. struct se_port *port = lun->lun_sep;
  638. struct t10_alua_tg_pt_gp *tg_pt_gp;
  639. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  640. int out_alua_state, nonop_delay_msecs;
  641. if (dev->se_hba->hba_flags & HBA_FLAGS_INTERNAL_USE)
  642. return 0;
  643. if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
  644. return 0;
  645. if (!port)
  646. return 0;
  647. /*
  648. * First, check for a struct se_port specific secondary ALUA target port
  649. * access state: OFFLINE
  650. */
  651. if (atomic_read(&port->sep_tg_pt_secondary_offline)) {
  652. pr_debug("ALUA: Got secondary offline status for local"
  653. " target port\n");
  654. set_ascq(cmd, ASCQ_04H_ALUA_OFFLINE);
  655. return TCM_CHECK_CONDITION_NOT_READY;
  656. }
  657. /*
  658. * Second, obtain the struct t10_alua_tg_pt_gp_member pointer to the
  659. * ALUA target port group, to obtain current ALUA access state.
  660. * Otherwise look for the underlying struct se_device association with
  661. * a ALUA logical unit group.
  662. */
  663. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  664. if (!tg_pt_gp_mem)
  665. return 0;
  666. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  667. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  668. out_alua_state = atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state);
  669. nonop_delay_msecs = tg_pt_gp->tg_pt_gp_nonop_delay_msecs;
  670. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  671. /*
  672. * Process ALUA_ACCESS_STATE_ACTIVE_OPTIMIZED in a separate conditional
  673. * statement so the compiler knows explicitly to check this case first.
  674. * For the Optimized ALUA access state case, we want to process the
  675. * incoming fabric cmd ASAP..
  676. */
  677. if (out_alua_state == ALUA_ACCESS_STATE_ACTIVE_OPTIMIZED)
  678. return 0;
  679. switch (out_alua_state) {
  680. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  681. core_alua_state_nonoptimized(cmd, cdb, nonop_delay_msecs);
  682. break;
  683. case ALUA_ACCESS_STATE_STANDBY:
  684. if (core_alua_state_standby(cmd, cdb))
  685. return TCM_CHECK_CONDITION_NOT_READY;
  686. break;
  687. case ALUA_ACCESS_STATE_UNAVAILABLE:
  688. if (core_alua_state_unavailable(cmd, cdb))
  689. return TCM_CHECK_CONDITION_NOT_READY;
  690. break;
  691. case ALUA_ACCESS_STATE_TRANSITION:
  692. if (core_alua_state_transition(cmd, cdb))
  693. return TCM_CHECK_CONDITION_NOT_READY;
  694. break;
  695. case ALUA_ACCESS_STATE_LBA_DEPENDENT:
  696. if (core_alua_state_lba_dependent(cmd, tg_pt_gp))
  697. return TCM_CHECK_CONDITION_NOT_READY;
  698. break;
  699. /*
  700. * OFFLINE is a secondary ALUA target port group access state, that is
  701. * handled above with struct se_port->sep_tg_pt_secondary_offline=1
  702. */
  703. case ALUA_ACCESS_STATE_OFFLINE:
  704. default:
  705. pr_err("Unknown ALUA access state: 0x%02x\n",
  706. out_alua_state);
  707. return TCM_INVALID_CDB_FIELD;
  708. }
  709. return 0;
  710. }
  711. /*
  712. * Check implicit and explicit ALUA state change request.
  713. */
  714. static sense_reason_t
  715. core_alua_check_transition(int state, int valid, int *primary)
  716. {
  717. /*
  718. * OPTIMIZED, NON-OPTIMIZED, STANDBY and UNAVAILABLE are
  719. * defined as primary target port asymmetric access states.
  720. */
  721. switch (state) {
  722. case ALUA_ACCESS_STATE_ACTIVE_OPTIMIZED:
  723. if (!(valid & ALUA_AO_SUP))
  724. goto not_supported;
  725. *primary = 1;
  726. break;
  727. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  728. if (!(valid & ALUA_AN_SUP))
  729. goto not_supported;
  730. *primary = 1;
  731. break;
  732. case ALUA_ACCESS_STATE_STANDBY:
  733. if (!(valid & ALUA_S_SUP))
  734. goto not_supported;
  735. *primary = 1;
  736. break;
  737. case ALUA_ACCESS_STATE_UNAVAILABLE:
  738. if (!(valid & ALUA_U_SUP))
  739. goto not_supported;
  740. *primary = 1;
  741. break;
  742. case ALUA_ACCESS_STATE_LBA_DEPENDENT:
  743. if (!(valid & ALUA_LBD_SUP))
  744. goto not_supported;
  745. *primary = 1;
  746. break;
  747. case ALUA_ACCESS_STATE_OFFLINE:
  748. /*
  749. * OFFLINE state is defined as a secondary target port
  750. * asymmetric access state.
  751. */
  752. if (!(valid & ALUA_O_SUP))
  753. goto not_supported;
  754. *primary = 0;
  755. break;
  756. case ALUA_ACCESS_STATE_TRANSITION:
  757. /*
  758. * Transitioning is set internally, and
  759. * cannot be selected manually.
  760. */
  761. goto not_supported;
  762. default:
  763. pr_err("Unknown ALUA access state: 0x%02x\n", state);
  764. return TCM_INVALID_PARAMETER_LIST;
  765. }
  766. return 0;
  767. not_supported:
  768. pr_err("ALUA access state %s not supported",
  769. core_alua_dump_state(state));
  770. return TCM_INVALID_PARAMETER_LIST;
  771. }
  772. static char *core_alua_dump_state(int state)
  773. {
  774. switch (state) {
  775. case ALUA_ACCESS_STATE_ACTIVE_OPTIMIZED:
  776. return "Active/Optimized";
  777. case ALUA_ACCESS_STATE_ACTIVE_NON_OPTIMIZED:
  778. return "Active/NonOptimized";
  779. case ALUA_ACCESS_STATE_LBA_DEPENDENT:
  780. return "LBA Dependent";
  781. case ALUA_ACCESS_STATE_STANDBY:
  782. return "Standby";
  783. case ALUA_ACCESS_STATE_UNAVAILABLE:
  784. return "Unavailable";
  785. case ALUA_ACCESS_STATE_OFFLINE:
  786. return "Offline";
  787. case ALUA_ACCESS_STATE_TRANSITION:
  788. return "Transitioning";
  789. default:
  790. return "Unknown";
  791. }
  792. return NULL;
  793. }
  794. char *core_alua_dump_status(int status)
  795. {
  796. switch (status) {
  797. case ALUA_STATUS_NONE:
  798. return "None";
  799. case ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG:
  800. return "Altered by Explicit STPG";
  801. case ALUA_STATUS_ALTERED_BY_IMPLICIT_ALUA:
  802. return "Altered by Implicit ALUA";
  803. default:
  804. return "Unknown";
  805. }
  806. return NULL;
  807. }
  808. /*
  809. * Used by fabric modules to determine when we need to delay processing
  810. * for the Active/NonOptimized paths..
  811. */
  812. int core_alua_check_nonop_delay(
  813. struct se_cmd *cmd)
  814. {
  815. if (!(cmd->se_cmd_flags & SCF_ALUA_NON_OPTIMIZED))
  816. return 0;
  817. if (in_interrupt())
  818. return 0;
  819. /*
  820. * The ALUA Active/NonOptimized access state delay can be disabled
  821. * in via configfs with a value of zero
  822. */
  823. if (!cmd->alua_nonop_delay)
  824. return 0;
  825. /*
  826. * struct se_cmd->alua_nonop_delay gets set by a target port group
  827. * defined interval in core_alua_state_nonoptimized()
  828. */
  829. msleep_interruptible(cmd->alua_nonop_delay);
  830. return 0;
  831. }
  832. EXPORT_SYMBOL(core_alua_check_nonop_delay);
  833. /*
  834. * Called with tg_pt_gp->tg_pt_gp_md_mutex or tg_pt_gp_mem->sep_tg_pt_md_mutex
  835. *
  836. */
  837. static int core_alua_write_tpg_metadata(
  838. const char *path,
  839. unsigned char *md_buf,
  840. u32 md_buf_len)
  841. {
  842. struct file *file = filp_open(path, O_RDWR | O_CREAT | O_TRUNC, 0600);
  843. int ret;
  844. if (IS_ERR(file)) {
  845. pr_err("filp_open(%s) for ALUA metadata failed\n", path);
  846. return -ENODEV;
  847. }
  848. ret = kernel_write(file, md_buf, md_buf_len, 0);
  849. if (ret < 0)
  850. pr_err("Error writing ALUA metadata file: %s\n", path);
  851. fput(file);
  852. return (ret < 0) ? -EIO : 0;
  853. }
  854. /*
  855. * Called with tg_pt_gp->tg_pt_gp_md_mutex held
  856. */
  857. static int core_alua_update_tpg_primary_metadata(
  858. struct t10_alua_tg_pt_gp *tg_pt_gp)
  859. {
  860. unsigned char *md_buf;
  861. struct t10_wwn *wwn = &tg_pt_gp->tg_pt_gp_dev->t10_wwn;
  862. char path[ALUA_METADATA_PATH_LEN];
  863. int len, rc;
  864. md_buf = kzalloc(ALUA_MD_BUF_LEN, GFP_KERNEL);
  865. if (!md_buf) {
  866. pr_err("Unable to allocate buf for ALUA metadata\n");
  867. return -ENOMEM;
  868. }
  869. memset(path, 0, ALUA_METADATA_PATH_LEN);
  870. len = snprintf(md_buf, ALUA_MD_BUF_LEN,
  871. "tg_pt_gp_id=%hu\n"
  872. "alua_access_state=0x%02x\n"
  873. "alua_access_status=0x%02x\n",
  874. tg_pt_gp->tg_pt_gp_id,
  875. tg_pt_gp->tg_pt_gp_alua_pending_state,
  876. tg_pt_gp->tg_pt_gp_alua_access_status);
  877. snprintf(path, ALUA_METADATA_PATH_LEN,
  878. "/var/target/alua/tpgs_%s/%s", &wwn->unit_serial[0],
  879. config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item));
  880. rc = core_alua_write_tpg_metadata(path, md_buf, len);
  881. kfree(md_buf);
  882. return rc;
  883. }
  884. static void core_alua_do_transition_tg_pt_work(struct work_struct *work)
  885. {
  886. struct t10_alua_tg_pt_gp *tg_pt_gp = container_of(work,
  887. struct t10_alua_tg_pt_gp, tg_pt_gp_transition_work.work);
  888. struct se_device *dev = tg_pt_gp->tg_pt_gp_dev;
  889. struct se_dev_entry *se_deve;
  890. struct se_lun_acl *lacl;
  891. struct se_port *port;
  892. struct t10_alua_tg_pt_gp_member *mem;
  893. bool explicit = (tg_pt_gp->tg_pt_gp_alua_access_status ==
  894. ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG);
  895. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  896. list_for_each_entry(mem, &tg_pt_gp->tg_pt_gp_mem_list,
  897. tg_pt_gp_mem_list) {
  898. port = mem->tg_pt;
  899. /*
  900. * After an implicit target port asymmetric access state
  901. * change, a device server shall establish a unit attention
  902. * condition for the initiator port associated with every I_T
  903. * nexus with the additional sense code set to ASYMMETRIC
  904. * ACCESS STATE CHANGED.
  905. *
  906. * After an explicit target port asymmetric access state
  907. * change, a device server shall establish a unit attention
  908. * condition with the additional sense code set to ASYMMETRIC
  909. * ACCESS STATE CHANGED for the initiator port associated with
  910. * every I_T nexus other than the I_T nexus on which the SET
  911. * TARGET PORT GROUPS command
  912. */
  913. atomic_inc(&mem->tg_pt_gp_mem_ref_cnt);
  914. smp_mb__after_atomic();
  915. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  916. spin_lock_bh(&port->sep_alua_lock);
  917. list_for_each_entry(se_deve, &port->sep_alua_list,
  918. alua_port_list) {
  919. lacl = se_deve->se_lun_acl;
  920. /*
  921. * se_deve->se_lun_acl pointer may be NULL for a
  922. * entry created without explicit Node+MappedLUN ACLs
  923. */
  924. if (!lacl)
  925. continue;
  926. if ((tg_pt_gp->tg_pt_gp_alua_access_status ==
  927. ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG) &&
  928. (tg_pt_gp->tg_pt_gp_alua_nacl != NULL) &&
  929. (tg_pt_gp->tg_pt_gp_alua_nacl == lacl->se_lun_nacl) &&
  930. (tg_pt_gp->tg_pt_gp_alua_port != NULL) &&
  931. (tg_pt_gp->tg_pt_gp_alua_port == port))
  932. continue;
  933. core_scsi3_ua_allocate(lacl->se_lun_nacl,
  934. se_deve->mapped_lun, 0x2A,
  935. ASCQ_2AH_ASYMMETRIC_ACCESS_STATE_CHANGED);
  936. }
  937. spin_unlock_bh(&port->sep_alua_lock);
  938. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  939. atomic_dec(&mem->tg_pt_gp_mem_ref_cnt);
  940. smp_mb__after_atomic();
  941. }
  942. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  943. /*
  944. * Update the ALUA metadata buf that has been allocated in
  945. * core_alua_do_port_transition(), this metadata will be written
  946. * to struct file.
  947. *
  948. * Note that there is the case where we do not want to update the
  949. * metadata when the saved metadata is being parsed in userspace
  950. * when setting the existing port access state and access status.
  951. *
  952. * Also note that the failure to write out the ALUA metadata to
  953. * struct file does NOT affect the actual ALUA transition.
  954. */
  955. if (tg_pt_gp->tg_pt_gp_write_metadata) {
  956. mutex_lock(&tg_pt_gp->tg_pt_gp_md_mutex);
  957. core_alua_update_tpg_primary_metadata(tg_pt_gp);
  958. mutex_unlock(&tg_pt_gp->tg_pt_gp_md_mutex);
  959. }
  960. /*
  961. * Set the current primary ALUA access state to the requested new state
  962. */
  963. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state,
  964. tg_pt_gp->tg_pt_gp_alua_pending_state);
  965. pr_debug("Successful %s ALUA transition TG PT Group: %s ID: %hu"
  966. " from primary access state %s to %s\n", (explicit) ? "explicit" :
  967. "implicit", config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item),
  968. tg_pt_gp->tg_pt_gp_id,
  969. core_alua_dump_state(tg_pt_gp->tg_pt_gp_alua_previous_state),
  970. core_alua_dump_state(tg_pt_gp->tg_pt_gp_alua_pending_state));
  971. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  972. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  973. smp_mb__after_atomic();
  974. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  975. if (tg_pt_gp->tg_pt_gp_transition_complete)
  976. complete(tg_pt_gp->tg_pt_gp_transition_complete);
  977. }
  978. static int core_alua_do_transition_tg_pt(
  979. struct t10_alua_tg_pt_gp *tg_pt_gp,
  980. int new_state,
  981. int explicit)
  982. {
  983. struct se_device *dev = tg_pt_gp->tg_pt_gp_dev;
  984. DECLARE_COMPLETION_ONSTACK(wait);
  985. /* Nothing to be done here */
  986. if (atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state) == new_state)
  987. return 0;
  988. if (new_state == ALUA_ACCESS_STATE_TRANSITION)
  989. return -EAGAIN;
  990. /*
  991. * Flush any pending transitions
  992. */
  993. if (!explicit && tg_pt_gp->tg_pt_gp_implicit_trans_secs &&
  994. atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state) ==
  995. ALUA_ACCESS_STATE_TRANSITION) {
  996. /* Just in case */
  997. tg_pt_gp->tg_pt_gp_alua_pending_state = new_state;
  998. tg_pt_gp->tg_pt_gp_transition_complete = &wait;
  999. flush_delayed_work(&tg_pt_gp->tg_pt_gp_transition_work);
  1000. wait_for_completion(&wait);
  1001. tg_pt_gp->tg_pt_gp_transition_complete = NULL;
  1002. return 0;
  1003. }
  1004. /*
  1005. * Save the old primary ALUA access state, and set the current state
  1006. * to ALUA_ACCESS_STATE_TRANSITION.
  1007. */
  1008. tg_pt_gp->tg_pt_gp_alua_previous_state =
  1009. atomic_read(&tg_pt_gp->tg_pt_gp_alua_access_state);
  1010. tg_pt_gp->tg_pt_gp_alua_pending_state = new_state;
  1011. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state,
  1012. ALUA_ACCESS_STATE_TRANSITION);
  1013. tg_pt_gp->tg_pt_gp_alua_access_status = (explicit) ?
  1014. ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG :
  1015. ALUA_STATUS_ALTERED_BY_IMPLICIT_ALUA;
  1016. /*
  1017. * Check for the optional ALUA primary state transition delay
  1018. */
  1019. if (tg_pt_gp->tg_pt_gp_trans_delay_msecs != 0)
  1020. msleep_interruptible(tg_pt_gp->tg_pt_gp_trans_delay_msecs);
  1021. /*
  1022. * Take a reference for workqueue item
  1023. */
  1024. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1025. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1026. smp_mb__after_atomic();
  1027. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1028. if (!explicit && tg_pt_gp->tg_pt_gp_implicit_trans_secs) {
  1029. unsigned long transition_tmo;
  1030. transition_tmo = tg_pt_gp->tg_pt_gp_implicit_trans_secs * HZ;
  1031. queue_delayed_work(tg_pt_gp->tg_pt_gp_dev->tmr_wq,
  1032. &tg_pt_gp->tg_pt_gp_transition_work,
  1033. transition_tmo);
  1034. } else {
  1035. tg_pt_gp->tg_pt_gp_transition_complete = &wait;
  1036. queue_delayed_work(tg_pt_gp->tg_pt_gp_dev->tmr_wq,
  1037. &tg_pt_gp->tg_pt_gp_transition_work, 0);
  1038. wait_for_completion(&wait);
  1039. tg_pt_gp->tg_pt_gp_transition_complete = NULL;
  1040. }
  1041. return 0;
  1042. }
  1043. int core_alua_do_port_transition(
  1044. struct t10_alua_tg_pt_gp *l_tg_pt_gp,
  1045. struct se_device *l_dev,
  1046. struct se_port *l_port,
  1047. struct se_node_acl *l_nacl,
  1048. int new_state,
  1049. int explicit)
  1050. {
  1051. struct se_device *dev;
  1052. struct t10_alua_lu_gp *lu_gp;
  1053. struct t10_alua_lu_gp_member *lu_gp_mem, *local_lu_gp_mem;
  1054. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1055. int primary, valid_states, rc = 0;
  1056. valid_states = l_tg_pt_gp->tg_pt_gp_alua_supported_states;
  1057. if (core_alua_check_transition(new_state, valid_states, &primary) != 0)
  1058. return -EINVAL;
  1059. local_lu_gp_mem = l_dev->dev_alua_lu_gp_mem;
  1060. spin_lock(&local_lu_gp_mem->lu_gp_mem_lock);
  1061. lu_gp = local_lu_gp_mem->lu_gp;
  1062. atomic_inc(&lu_gp->lu_gp_ref_cnt);
  1063. smp_mb__after_atomic();
  1064. spin_unlock(&local_lu_gp_mem->lu_gp_mem_lock);
  1065. /*
  1066. * For storage objects that are members of the 'default_lu_gp',
  1067. * we only do transition on the passed *l_tp_pt_gp, and not
  1068. * on all of the matching target port groups IDs in default_lu_gp.
  1069. */
  1070. if (!lu_gp->lu_gp_id) {
  1071. /*
  1072. * core_alua_do_transition_tg_pt() will always return
  1073. * success.
  1074. */
  1075. l_tg_pt_gp->tg_pt_gp_alua_port = l_port;
  1076. l_tg_pt_gp->tg_pt_gp_alua_nacl = l_nacl;
  1077. rc = core_alua_do_transition_tg_pt(l_tg_pt_gp,
  1078. new_state, explicit);
  1079. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  1080. smp_mb__after_atomic();
  1081. return rc;
  1082. }
  1083. /*
  1084. * For all other LU groups aside from 'default_lu_gp', walk all of
  1085. * the associated storage objects looking for a matching target port
  1086. * group ID from the local target port group.
  1087. */
  1088. spin_lock(&lu_gp->lu_gp_lock);
  1089. list_for_each_entry(lu_gp_mem, &lu_gp->lu_gp_mem_list,
  1090. lu_gp_mem_list) {
  1091. dev = lu_gp_mem->lu_gp_mem_dev;
  1092. atomic_inc(&lu_gp_mem->lu_gp_mem_ref_cnt);
  1093. smp_mb__after_atomic();
  1094. spin_unlock(&lu_gp->lu_gp_lock);
  1095. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1096. list_for_each_entry(tg_pt_gp,
  1097. &dev->t10_alua.tg_pt_gps_list,
  1098. tg_pt_gp_list) {
  1099. if (!tg_pt_gp->tg_pt_gp_valid_id)
  1100. continue;
  1101. /*
  1102. * If the target behavior port asymmetric access state
  1103. * is changed for any target port group accessible via
  1104. * a logical unit within a LU group, the target port
  1105. * behavior group asymmetric access states for the same
  1106. * target port group accessible via other logical units
  1107. * in that LU group will also change.
  1108. */
  1109. if (l_tg_pt_gp->tg_pt_gp_id != tg_pt_gp->tg_pt_gp_id)
  1110. continue;
  1111. if (l_tg_pt_gp == tg_pt_gp) {
  1112. tg_pt_gp->tg_pt_gp_alua_port = l_port;
  1113. tg_pt_gp->tg_pt_gp_alua_nacl = l_nacl;
  1114. } else {
  1115. tg_pt_gp->tg_pt_gp_alua_port = NULL;
  1116. tg_pt_gp->tg_pt_gp_alua_nacl = NULL;
  1117. }
  1118. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1119. smp_mb__after_atomic();
  1120. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1121. /*
  1122. * core_alua_do_transition_tg_pt() will always return
  1123. * success.
  1124. */
  1125. rc = core_alua_do_transition_tg_pt(tg_pt_gp,
  1126. new_state, explicit);
  1127. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1128. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1129. smp_mb__after_atomic();
  1130. if (rc)
  1131. break;
  1132. }
  1133. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1134. spin_lock(&lu_gp->lu_gp_lock);
  1135. atomic_dec(&lu_gp_mem->lu_gp_mem_ref_cnt);
  1136. smp_mb__after_atomic();
  1137. }
  1138. spin_unlock(&lu_gp->lu_gp_lock);
  1139. if (!rc) {
  1140. pr_debug("Successfully processed LU Group: %s all ALUA TG PT"
  1141. " Group IDs: %hu %s transition to primary state: %s\n",
  1142. config_item_name(&lu_gp->lu_gp_group.cg_item),
  1143. l_tg_pt_gp->tg_pt_gp_id,
  1144. (explicit) ? "explicit" : "implicit",
  1145. core_alua_dump_state(new_state));
  1146. }
  1147. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  1148. smp_mb__after_atomic();
  1149. return rc;
  1150. }
  1151. /*
  1152. * Called with tg_pt_gp_mem->sep_tg_pt_md_mutex held
  1153. */
  1154. static int core_alua_update_tpg_secondary_metadata(
  1155. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1156. struct se_port *port)
  1157. {
  1158. unsigned char *md_buf;
  1159. struct se_portal_group *se_tpg = port->sep_tpg;
  1160. char path[ALUA_METADATA_PATH_LEN], wwn[ALUA_SECONDARY_METADATA_WWN_LEN];
  1161. int len, rc;
  1162. md_buf = kzalloc(ALUA_MD_BUF_LEN, GFP_KERNEL);
  1163. if (!md_buf) {
  1164. pr_err("Unable to allocate buf for ALUA metadata\n");
  1165. return -ENOMEM;
  1166. }
  1167. memset(path, 0, ALUA_METADATA_PATH_LEN);
  1168. memset(wwn, 0, ALUA_SECONDARY_METADATA_WWN_LEN);
  1169. len = snprintf(wwn, ALUA_SECONDARY_METADATA_WWN_LEN, "%s",
  1170. se_tpg->se_tpg_tfo->tpg_get_wwn(se_tpg));
  1171. if (se_tpg->se_tpg_tfo->tpg_get_tag != NULL)
  1172. snprintf(wwn+len, ALUA_SECONDARY_METADATA_WWN_LEN-len, "+%hu",
  1173. se_tpg->se_tpg_tfo->tpg_get_tag(se_tpg));
  1174. len = snprintf(md_buf, ALUA_MD_BUF_LEN, "alua_tg_pt_offline=%d\n"
  1175. "alua_tg_pt_status=0x%02x\n",
  1176. atomic_read(&port->sep_tg_pt_secondary_offline),
  1177. port->sep_tg_pt_secondary_stat);
  1178. snprintf(path, ALUA_METADATA_PATH_LEN, "/var/target/alua/%s/%s/lun_%u",
  1179. se_tpg->se_tpg_tfo->get_fabric_name(), wwn,
  1180. port->sep_lun->unpacked_lun);
  1181. rc = core_alua_write_tpg_metadata(path, md_buf, len);
  1182. kfree(md_buf);
  1183. return rc;
  1184. }
  1185. static int core_alua_set_tg_pt_secondary_state(
  1186. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1187. struct se_port *port,
  1188. int explicit,
  1189. int offline)
  1190. {
  1191. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1192. int trans_delay_msecs;
  1193. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1194. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1195. if (!tg_pt_gp) {
  1196. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1197. pr_err("Unable to complete secondary state"
  1198. " transition\n");
  1199. return -EINVAL;
  1200. }
  1201. trans_delay_msecs = tg_pt_gp->tg_pt_gp_trans_delay_msecs;
  1202. /*
  1203. * Set the secondary ALUA target port access state to OFFLINE
  1204. * or release the previously secondary state for struct se_port
  1205. */
  1206. if (offline)
  1207. atomic_set(&port->sep_tg_pt_secondary_offline, 1);
  1208. else
  1209. atomic_set(&port->sep_tg_pt_secondary_offline, 0);
  1210. port->sep_tg_pt_secondary_stat = (explicit) ?
  1211. ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG :
  1212. ALUA_STATUS_ALTERED_BY_IMPLICIT_ALUA;
  1213. pr_debug("Successful %s ALUA transition TG PT Group: %s ID: %hu"
  1214. " to secondary access state: %s\n", (explicit) ? "explicit" :
  1215. "implicit", config_item_name(&tg_pt_gp->tg_pt_gp_group.cg_item),
  1216. tg_pt_gp->tg_pt_gp_id, (offline) ? "OFFLINE" : "ONLINE");
  1217. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1218. /*
  1219. * Do the optional transition delay after we set the secondary
  1220. * ALUA access state.
  1221. */
  1222. if (trans_delay_msecs != 0)
  1223. msleep_interruptible(trans_delay_msecs);
  1224. /*
  1225. * See if we need to update the ALUA fabric port metadata for
  1226. * secondary state and status
  1227. */
  1228. if (port->sep_tg_pt_secondary_write_md) {
  1229. mutex_lock(&port->sep_tg_pt_md_mutex);
  1230. core_alua_update_tpg_secondary_metadata(tg_pt_gp_mem, port);
  1231. mutex_unlock(&port->sep_tg_pt_md_mutex);
  1232. }
  1233. return 0;
  1234. }
  1235. struct t10_alua_lba_map *
  1236. core_alua_allocate_lba_map(struct list_head *list,
  1237. u64 first_lba, u64 last_lba)
  1238. {
  1239. struct t10_alua_lba_map *lba_map;
  1240. lba_map = kmem_cache_zalloc(t10_alua_lba_map_cache, GFP_KERNEL);
  1241. if (!lba_map) {
  1242. pr_err("Unable to allocate struct t10_alua_lba_map\n");
  1243. return ERR_PTR(-ENOMEM);
  1244. }
  1245. INIT_LIST_HEAD(&lba_map->lba_map_mem_list);
  1246. lba_map->lba_map_first_lba = first_lba;
  1247. lba_map->lba_map_last_lba = last_lba;
  1248. list_add_tail(&lba_map->lba_map_list, list);
  1249. return lba_map;
  1250. }
  1251. int
  1252. core_alua_allocate_lba_map_mem(struct t10_alua_lba_map *lba_map,
  1253. int pg_id, int state)
  1254. {
  1255. struct t10_alua_lba_map_member *lba_map_mem;
  1256. list_for_each_entry(lba_map_mem, &lba_map->lba_map_mem_list,
  1257. lba_map_mem_list) {
  1258. if (lba_map_mem->lba_map_mem_alua_pg_id == pg_id) {
  1259. pr_err("Duplicate pg_id %d in lba_map\n", pg_id);
  1260. return -EINVAL;
  1261. }
  1262. }
  1263. lba_map_mem = kmem_cache_zalloc(t10_alua_lba_map_mem_cache, GFP_KERNEL);
  1264. if (!lba_map_mem) {
  1265. pr_err("Unable to allocate struct t10_alua_lba_map_mem\n");
  1266. return -ENOMEM;
  1267. }
  1268. lba_map_mem->lba_map_mem_alua_state = state;
  1269. lba_map_mem->lba_map_mem_alua_pg_id = pg_id;
  1270. list_add_tail(&lba_map_mem->lba_map_mem_list,
  1271. &lba_map->lba_map_mem_list);
  1272. return 0;
  1273. }
  1274. void
  1275. core_alua_free_lba_map(struct list_head *lba_list)
  1276. {
  1277. struct t10_alua_lba_map *lba_map, *lba_map_tmp;
  1278. struct t10_alua_lba_map_member *lba_map_mem, *lba_map_mem_tmp;
  1279. list_for_each_entry_safe(lba_map, lba_map_tmp, lba_list,
  1280. lba_map_list) {
  1281. list_for_each_entry_safe(lba_map_mem, lba_map_mem_tmp,
  1282. &lba_map->lba_map_mem_list,
  1283. lba_map_mem_list) {
  1284. list_del(&lba_map_mem->lba_map_mem_list);
  1285. kmem_cache_free(t10_alua_lba_map_mem_cache,
  1286. lba_map_mem);
  1287. }
  1288. list_del(&lba_map->lba_map_list);
  1289. kmem_cache_free(t10_alua_lba_map_cache, lba_map);
  1290. }
  1291. }
  1292. void
  1293. core_alua_set_lba_map(struct se_device *dev, struct list_head *lba_map_list,
  1294. int segment_size, int segment_mult)
  1295. {
  1296. struct list_head old_lba_map_list;
  1297. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1298. int activate = 0, supported;
  1299. INIT_LIST_HEAD(&old_lba_map_list);
  1300. spin_lock(&dev->t10_alua.lba_map_lock);
  1301. dev->t10_alua.lba_map_segment_size = segment_size;
  1302. dev->t10_alua.lba_map_segment_multiplier = segment_mult;
  1303. list_splice_init(&dev->t10_alua.lba_map_list, &old_lba_map_list);
  1304. if (lba_map_list) {
  1305. list_splice_init(lba_map_list, &dev->t10_alua.lba_map_list);
  1306. activate = 1;
  1307. }
  1308. spin_unlock(&dev->t10_alua.lba_map_lock);
  1309. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1310. list_for_each_entry(tg_pt_gp, &dev->t10_alua.tg_pt_gps_list,
  1311. tg_pt_gp_list) {
  1312. if (!tg_pt_gp->tg_pt_gp_valid_id)
  1313. continue;
  1314. supported = tg_pt_gp->tg_pt_gp_alua_supported_states;
  1315. if (activate)
  1316. supported |= ALUA_LBD_SUP;
  1317. else
  1318. supported &= ~ALUA_LBD_SUP;
  1319. tg_pt_gp->tg_pt_gp_alua_supported_states = supported;
  1320. }
  1321. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1322. core_alua_free_lba_map(&old_lba_map_list);
  1323. }
  1324. struct t10_alua_lu_gp *
  1325. core_alua_allocate_lu_gp(const char *name, int def_group)
  1326. {
  1327. struct t10_alua_lu_gp *lu_gp;
  1328. lu_gp = kmem_cache_zalloc(t10_alua_lu_gp_cache, GFP_KERNEL);
  1329. if (!lu_gp) {
  1330. pr_err("Unable to allocate struct t10_alua_lu_gp\n");
  1331. return ERR_PTR(-ENOMEM);
  1332. }
  1333. INIT_LIST_HEAD(&lu_gp->lu_gp_node);
  1334. INIT_LIST_HEAD(&lu_gp->lu_gp_mem_list);
  1335. spin_lock_init(&lu_gp->lu_gp_lock);
  1336. atomic_set(&lu_gp->lu_gp_ref_cnt, 0);
  1337. if (def_group) {
  1338. lu_gp->lu_gp_id = alua_lu_gps_counter++;
  1339. lu_gp->lu_gp_valid_id = 1;
  1340. alua_lu_gps_count++;
  1341. }
  1342. return lu_gp;
  1343. }
  1344. int core_alua_set_lu_gp_id(struct t10_alua_lu_gp *lu_gp, u16 lu_gp_id)
  1345. {
  1346. struct t10_alua_lu_gp *lu_gp_tmp;
  1347. u16 lu_gp_id_tmp;
  1348. /*
  1349. * The lu_gp->lu_gp_id may only be set once..
  1350. */
  1351. if (lu_gp->lu_gp_valid_id) {
  1352. pr_warn("ALUA LU Group already has a valid ID,"
  1353. " ignoring request\n");
  1354. return -EINVAL;
  1355. }
  1356. spin_lock(&lu_gps_lock);
  1357. if (alua_lu_gps_count == 0x0000ffff) {
  1358. pr_err("Maximum ALUA alua_lu_gps_count:"
  1359. " 0x0000ffff reached\n");
  1360. spin_unlock(&lu_gps_lock);
  1361. kmem_cache_free(t10_alua_lu_gp_cache, lu_gp);
  1362. return -ENOSPC;
  1363. }
  1364. again:
  1365. lu_gp_id_tmp = (lu_gp_id != 0) ? lu_gp_id :
  1366. alua_lu_gps_counter++;
  1367. list_for_each_entry(lu_gp_tmp, &lu_gps_list, lu_gp_node) {
  1368. if (lu_gp_tmp->lu_gp_id == lu_gp_id_tmp) {
  1369. if (!lu_gp_id)
  1370. goto again;
  1371. pr_warn("ALUA Logical Unit Group ID: %hu"
  1372. " already exists, ignoring request\n",
  1373. lu_gp_id);
  1374. spin_unlock(&lu_gps_lock);
  1375. return -EINVAL;
  1376. }
  1377. }
  1378. lu_gp->lu_gp_id = lu_gp_id_tmp;
  1379. lu_gp->lu_gp_valid_id = 1;
  1380. list_add_tail(&lu_gp->lu_gp_node, &lu_gps_list);
  1381. alua_lu_gps_count++;
  1382. spin_unlock(&lu_gps_lock);
  1383. return 0;
  1384. }
  1385. static struct t10_alua_lu_gp_member *
  1386. core_alua_allocate_lu_gp_mem(struct se_device *dev)
  1387. {
  1388. struct t10_alua_lu_gp_member *lu_gp_mem;
  1389. lu_gp_mem = kmem_cache_zalloc(t10_alua_lu_gp_mem_cache, GFP_KERNEL);
  1390. if (!lu_gp_mem) {
  1391. pr_err("Unable to allocate struct t10_alua_lu_gp_member\n");
  1392. return ERR_PTR(-ENOMEM);
  1393. }
  1394. INIT_LIST_HEAD(&lu_gp_mem->lu_gp_mem_list);
  1395. spin_lock_init(&lu_gp_mem->lu_gp_mem_lock);
  1396. atomic_set(&lu_gp_mem->lu_gp_mem_ref_cnt, 0);
  1397. lu_gp_mem->lu_gp_mem_dev = dev;
  1398. dev->dev_alua_lu_gp_mem = lu_gp_mem;
  1399. return lu_gp_mem;
  1400. }
  1401. void core_alua_free_lu_gp(struct t10_alua_lu_gp *lu_gp)
  1402. {
  1403. struct t10_alua_lu_gp_member *lu_gp_mem, *lu_gp_mem_tmp;
  1404. /*
  1405. * Once we have reached this point, config_item_put() has
  1406. * already been called from target_core_alua_drop_lu_gp().
  1407. *
  1408. * Here, we remove the *lu_gp from the global list so that
  1409. * no associations can be made while we are releasing
  1410. * struct t10_alua_lu_gp.
  1411. */
  1412. spin_lock(&lu_gps_lock);
  1413. list_del(&lu_gp->lu_gp_node);
  1414. alua_lu_gps_count--;
  1415. spin_unlock(&lu_gps_lock);
  1416. /*
  1417. * Allow struct t10_alua_lu_gp * referenced by core_alua_get_lu_gp_by_name()
  1418. * in target_core_configfs.c:target_core_store_alua_lu_gp() to be
  1419. * released with core_alua_put_lu_gp_from_name()
  1420. */
  1421. while (atomic_read(&lu_gp->lu_gp_ref_cnt))
  1422. cpu_relax();
  1423. /*
  1424. * Release reference to struct t10_alua_lu_gp * from all associated
  1425. * struct se_device.
  1426. */
  1427. spin_lock(&lu_gp->lu_gp_lock);
  1428. list_for_each_entry_safe(lu_gp_mem, lu_gp_mem_tmp,
  1429. &lu_gp->lu_gp_mem_list, lu_gp_mem_list) {
  1430. if (lu_gp_mem->lu_gp_assoc) {
  1431. list_del(&lu_gp_mem->lu_gp_mem_list);
  1432. lu_gp->lu_gp_members--;
  1433. lu_gp_mem->lu_gp_assoc = 0;
  1434. }
  1435. spin_unlock(&lu_gp->lu_gp_lock);
  1436. /*
  1437. *
  1438. * lu_gp_mem is associated with a single
  1439. * struct se_device->dev_alua_lu_gp_mem, and is released when
  1440. * struct se_device is released via core_alua_free_lu_gp_mem().
  1441. *
  1442. * If the passed lu_gp does NOT match the default_lu_gp, assume
  1443. * we want to re-associate a given lu_gp_mem with default_lu_gp.
  1444. */
  1445. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  1446. if (lu_gp != default_lu_gp)
  1447. __core_alua_attach_lu_gp_mem(lu_gp_mem,
  1448. default_lu_gp);
  1449. else
  1450. lu_gp_mem->lu_gp = NULL;
  1451. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  1452. spin_lock(&lu_gp->lu_gp_lock);
  1453. }
  1454. spin_unlock(&lu_gp->lu_gp_lock);
  1455. kmem_cache_free(t10_alua_lu_gp_cache, lu_gp);
  1456. }
  1457. void core_alua_free_lu_gp_mem(struct se_device *dev)
  1458. {
  1459. struct t10_alua_lu_gp *lu_gp;
  1460. struct t10_alua_lu_gp_member *lu_gp_mem;
  1461. lu_gp_mem = dev->dev_alua_lu_gp_mem;
  1462. if (!lu_gp_mem)
  1463. return;
  1464. while (atomic_read(&lu_gp_mem->lu_gp_mem_ref_cnt))
  1465. cpu_relax();
  1466. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  1467. lu_gp = lu_gp_mem->lu_gp;
  1468. if (lu_gp) {
  1469. spin_lock(&lu_gp->lu_gp_lock);
  1470. if (lu_gp_mem->lu_gp_assoc) {
  1471. list_del(&lu_gp_mem->lu_gp_mem_list);
  1472. lu_gp->lu_gp_members--;
  1473. lu_gp_mem->lu_gp_assoc = 0;
  1474. }
  1475. spin_unlock(&lu_gp->lu_gp_lock);
  1476. lu_gp_mem->lu_gp = NULL;
  1477. }
  1478. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  1479. kmem_cache_free(t10_alua_lu_gp_mem_cache, lu_gp_mem);
  1480. }
  1481. struct t10_alua_lu_gp *core_alua_get_lu_gp_by_name(const char *name)
  1482. {
  1483. struct t10_alua_lu_gp *lu_gp;
  1484. struct config_item *ci;
  1485. spin_lock(&lu_gps_lock);
  1486. list_for_each_entry(lu_gp, &lu_gps_list, lu_gp_node) {
  1487. if (!lu_gp->lu_gp_valid_id)
  1488. continue;
  1489. ci = &lu_gp->lu_gp_group.cg_item;
  1490. if (!strcmp(config_item_name(ci), name)) {
  1491. atomic_inc(&lu_gp->lu_gp_ref_cnt);
  1492. spin_unlock(&lu_gps_lock);
  1493. return lu_gp;
  1494. }
  1495. }
  1496. spin_unlock(&lu_gps_lock);
  1497. return NULL;
  1498. }
  1499. void core_alua_put_lu_gp_from_name(struct t10_alua_lu_gp *lu_gp)
  1500. {
  1501. spin_lock(&lu_gps_lock);
  1502. atomic_dec(&lu_gp->lu_gp_ref_cnt);
  1503. spin_unlock(&lu_gps_lock);
  1504. }
  1505. /*
  1506. * Called with struct t10_alua_lu_gp_member->lu_gp_mem_lock
  1507. */
  1508. void __core_alua_attach_lu_gp_mem(
  1509. struct t10_alua_lu_gp_member *lu_gp_mem,
  1510. struct t10_alua_lu_gp *lu_gp)
  1511. {
  1512. spin_lock(&lu_gp->lu_gp_lock);
  1513. lu_gp_mem->lu_gp = lu_gp;
  1514. lu_gp_mem->lu_gp_assoc = 1;
  1515. list_add_tail(&lu_gp_mem->lu_gp_mem_list, &lu_gp->lu_gp_mem_list);
  1516. lu_gp->lu_gp_members++;
  1517. spin_unlock(&lu_gp->lu_gp_lock);
  1518. }
  1519. /*
  1520. * Called with struct t10_alua_lu_gp_member->lu_gp_mem_lock
  1521. */
  1522. void __core_alua_drop_lu_gp_mem(
  1523. struct t10_alua_lu_gp_member *lu_gp_mem,
  1524. struct t10_alua_lu_gp *lu_gp)
  1525. {
  1526. spin_lock(&lu_gp->lu_gp_lock);
  1527. list_del(&lu_gp_mem->lu_gp_mem_list);
  1528. lu_gp_mem->lu_gp = NULL;
  1529. lu_gp_mem->lu_gp_assoc = 0;
  1530. lu_gp->lu_gp_members--;
  1531. spin_unlock(&lu_gp->lu_gp_lock);
  1532. }
  1533. struct t10_alua_tg_pt_gp *core_alua_allocate_tg_pt_gp(struct se_device *dev,
  1534. const char *name, int def_group)
  1535. {
  1536. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1537. tg_pt_gp = kmem_cache_zalloc(t10_alua_tg_pt_gp_cache, GFP_KERNEL);
  1538. if (!tg_pt_gp) {
  1539. pr_err("Unable to allocate struct t10_alua_tg_pt_gp\n");
  1540. return NULL;
  1541. }
  1542. INIT_LIST_HEAD(&tg_pt_gp->tg_pt_gp_list);
  1543. INIT_LIST_HEAD(&tg_pt_gp->tg_pt_gp_mem_list);
  1544. mutex_init(&tg_pt_gp->tg_pt_gp_md_mutex);
  1545. spin_lock_init(&tg_pt_gp->tg_pt_gp_lock);
  1546. atomic_set(&tg_pt_gp->tg_pt_gp_ref_cnt, 0);
  1547. INIT_DELAYED_WORK(&tg_pt_gp->tg_pt_gp_transition_work,
  1548. core_alua_do_transition_tg_pt_work);
  1549. tg_pt_gp->tg_pt_gp_dev = dev;
  1550. atomic_set(&tg_pt_gp->tg_pt_gp_alua_access_state,
  1551. ALUA_ACCESS_STATE_ACTIVE_OPTIMIZED);
  1552. /*
  1553. * Enable both explicit and implicit ALUA support by default
  1554. */
  1555. tg_pt_gp->tg_pt_gp_alua_access_type =
  1556. TPGS_EXPLICIT_ALUA | TPGS_IMPLICIT_ALUA;
  1557. /*
  1558. * Set the default Active/NonOptimized Delay in milliseconds
  1559. */
  1560. tg_pt_gp->tg_pt_gp_nonop_delay_msecs = ALUA_DEFAULT_NONOP_DELAY_MSECS;
  1561. tg_pt_gp->tg_pt_gp_trans_delay_msecs = ALUA_DEFAULT_TRANS_DELAY_MSECS;
  1562. tg_pt_gp->tg_pt_gp_implicit_trans_secs = ALUA_DEFAULT_IMPLICIT_TRANS_SECS;
  1563. /*
  1564. * Enable all supported states
  1565. */
  1566. tg_pt_gp->tg_pt_gp_alua_supported_states =
  1567. ALUA_T_SUP | ALUA_O_SUP |
  1568. ALUA_U_SUP | ALUA_S_SUP | ALUA_AN_SUP | ALUA_AO_SUP;
  1569. if (def_group) {
  1570. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1571. tg_pt_gp->tg_pt_gp_id =
  1572. dev->t10_alua.alua_tg_pt_gps_counter++;
  1573. tg_pt_gp->tg_pt_gp_valid_id = 1;
  1574. dev->t10_alua.alua_tg_pt_gps_count++;
  1575. list_add_tail(&tg_pt_gp->tg_pt_gp_list,
  1576. &dev->t10_alua.tg_pt_gps_list);
  1577. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1578. }
  1579. return tg_pt_gp;
  1580. }
  1581. int core_alua_set_tg_pt_gp_id(
  1582. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1583. u16 tg_pt_gp_id)
  1584. {
  1585. struct se_device *dev = tg_pt_gp->tg_pt_gp_dev;
  1586. struct t10_alua_tg_pt_gp *tg_pt_gp_tmp;
  1587. u16 tg_pt_gp_id_tmp;
  1588. /*
  1589. * The tg_pt_gp->tg_pt_gp_id may only be set once..
  1590. */
  1591. if (tg_pt_gp->tg_pt_gp_valid_id) {
  1592. pr_warn("ALUA TG PT Group already has a valid ID,"
  1593. " ignoring request\n");
  1594. return -EINVAL;
  1595. }
  1596. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1597. if (dev->t10_alua.alua_tg_pt_gps_count == 0x0000ffff) {
  1598. pr_err("Maximum ALUA alua_tg_pt_gps_count:"
  1599. " 0x0000ffff reached\n");
  1600. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1601. kmem_cache_free(t10_alua_tg_pt_gp_cache, tg_pt_gp);
  1602. return -ENOSPC;
  1603. }
  1604. again:
  1605. tg_pt_gp_id_tmp = (tg_pt_gp_id != 0) ? tg_pt_gp_id :
  1606. dev->t10_alua.alua_tg_pt_gps_counter++;
  1607. list_for_each_entry(tg_pt_gp_tmp, &dev->t10_alua.tg_pt_gps_list,
  1608. tg_pt_gp_list) {
  1609. if (tg_pt_gp_tmp->tg_pt_gp_id == tg_pt_gp_id_tmp) {
  1610. if (!tg_pt_gp_id)
  1611. goto again;
  1612. pr_err("ALUA Target Port Group ID: %hu already"
  1613. " exists, ignoring request\n", tg_pt_gp_id);
  1614. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1615. return -EINVAL;
  1616. }
  1617. }
  1618. tg_pt_gp->tg_pt_gp_id = tg_pt_gp_id_tmp;
  1619. tg_pt_gp->tg_pt_gp_valid_id = 1;
  1620. list_add_tail(&tg_pt_gp->tg_pt_gp_list,
  1621. &dev->t10_alua.tg_pt_gps_list);
  1622. dev->t10_alua.alua_tg_pt_gps_count++;
  1623. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1624. return 0;
  1625. }
  1626. struct t10_alua_tg_pt_gp_member *core_alua_allocate_tg_pt_gp_mem(
  1627. struct se_port *port)
  1628. {
  1629. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1630. tg_pt_gp_mem = kmem_cache_zalloc(t10_alua_tg_pt_gp_mem_cache,
  1631. GFP_KERNEL);
  1632. if (!tg_pt_gp_mem) {
  1633. pr_err("Unable to allocate struct t10_alua_tg_pt_gp_member\n");
  1634. return ERR_PTR(-ENOMEM);
  1635. }
  1636. INIT_LIST_HEAD(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1637. spin_lock_init(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1638. atomic_set(&tg_pt_gp_mem->tg_pt_gp_mem_ref_cnt, 0);
  1639. tg_pt_gp_mem->tg_pt = port;
  1640. port->sep_alua_tg_pt_gp_mem = tg_pt_gp_mem;
  1641. return tg_pt_gp_mem;
  1642. }
  1643. void core_alua_free_tg_pt_gp(
  1644. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1645. {
  1646. struct se_device *dev = tg_pt_gp->tg_pt_gp_dev;
  1647. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem, *tg_pt_gp_mem_tmp;
  1648. /*
  1649. * Once we have reached this point, config_item_put() has already
  1650. * been called from target_core_alua_drop_tg_pt_gp().
  1651. *
  1652. * Here we remove *tg_pt_gp from the global list so that
  1653. * no associations *OR* explicit ALUA via SET_TARGET_PORT_GROUPS
  1654. * can be made while we are releasing struct t10_alua_tg_pt_gp.
  1655. */
  1656. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1657. list_del(&tg_pt_gp->tg_pt_gp_list);
  1658. dev->t10_alua.alua_tg_pt_gps_counter--;
  1659. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1660. flush_delayed_work(&tg_pt_gp->tg_pt_gp_transition_work);
  1661. /*
  1662. * Allow a struct t10_alua_tg_pt_gp_member * referenced by
  1663. * core_alua_get_tg_pt_gp_by_name() in
  1664. * target_core_configfs.c:target_core_store_alua_tg_pt_gp()
  1665. * to be released with core_alua_put_tg_pt_gp_from_name().
  1666. */
  1667. while (atomic_read(&tg_pt_gp->tg_pt_gp_ref_cnt))
  1668. cpu_relax();
  1669. /*
  1670. * Release reference to struct t10_alua_tg_pt_gp from all associated
  1671. * struct se_port.
  1672. */
  1673. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1674. list_for_each_entry_safe(tg_pt_gp_mem, tg_pt_gp_mem_tmp,
  1675. &tg_pt_gp->tg_pt_gp_mem_list, tg_pt_gp_mem_list) {
  1676. if (tg_pt_gp_mem->tg_pt_gp_assoc) {
  1677. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1678. tg_pt_gp->tg_pt_gp_members--;
  1679. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1680. }
  1681. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1682. /*
  1683. * tg_pt_gp_mem is associated with a single
  1684. * se_port->sep_alua_tg_pt_gp_mem, and is released via
  1685. * core_alua_free_tg_pt_gp_mem().
  1686. *
  1687. * If the passed tg_pt_gp does NOT match the default_tg_pt_gp,
  1688. * assume we want to re-associate a given tg_pt_gp_mem with
  1689. * default_tg_pt_gp.
  1690. */
  1691. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1692. if (tg_pt_gp != dev->t10_alua.default_tg_pt_gp) {
  1693. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  1694. dev->t10_alua.default_tg_pt_gp);
  1695. } else
  1696. tg_pt_gp_mem->tg_pt_gp = NULL;
  1697. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1698. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1699. }
  1700. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1701. kmem_cache_free(t10_alua_tg_pt_gp_cache, tg_pt_gp);
  1702. }
  1703. void core_alua_free_tg_pt_gp_mem(struct se_port *port)
  1704. {
  1705. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1706. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1707. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1708. if (!tg_pt_gp_mem)
  1709. return;
  1710. while (atomic_read(&tg_pt_gp_mem->tg_pt_gp_mem_ref_cnt))
  1711. cpu_relax();
  1712. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1713. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1714. if (tg_pt_gp) {
  1715. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1716. if (tg_pt_gp_mem->tg_pt_gp_assoc) {
  1717. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1718. tg_pt_gp->tg_pt_gp_members--;
  1719. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1720. }
  1721. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1722. tg_pt_gp_mem->tg_pt_gp = NULL;
  1723. }
  1724. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1725. kmem_cache_free(t10_alua_tg_pt_gp_mem_cache, tg_pt_gp_mem);
  1726. }
  1727. static struct t10_alua_tg_pt_gp *core_alua_get_tg_pt_gp_by_name(
  1728. struct se_device *dev, const char *name)
  1729. {
  1730. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1731. struct config_item *ci;
  1732. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1733. list_for_each_entry(tg_pt_gp, &dev->t10_alua.tg_pt_gps_list,
  1734. tg_pt_gp_list) {
  1735. if (!tg_pt_gp->tg_pt_gp_valid_id)
  1736. continue;
  1737. ci = &tg_pt_gp->tg_pt_gp_group.cg_item;
  1738. if (!strcmp(config_item_name(ci), name)) {
  1739. atomic_inc(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1740. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1741. return tg_pt_gp;
  1742. }
  1743. }
  1744. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1745. return NULL;
  1746. }
  1747. static void core_alua_put_tg_pt_gp_from_name(
  1748. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1749. {
  1750. struct se_device *dev = tg_pt_gp->tg_pt_gp_dev;
  1751. spin_lock(&dev->t10_alua.tg_pt_gps_lock);
  1752. atomic_dec(&tg_pt_gp->tg_pt_gp_ref_cnt);
  1753. spin_unlock(&dev->t10_alua.tg_pt_gps_lock);
  1754. }
  1755. /*
  1756. * Called with struct t10_alua_tg_pt_gp_member->tg_pt_gp_mem_lock held
  1757. */
  1758. void __core_alua_attach_tg_pt_gp_mem(
  1759. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1760. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1761. {
  1762. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1763. tg_pt_gp_mem->tg_pt_gp = tg_pt_gp;
  1764. tg_pt_gp_mem->tg_pt_gp_assoc = 1;
  1765. list_add_tail(&tg_pt_gp_mem->tg_pt_gp_mem_list,
  1766. &tg_pt_gp->tg_pt_gp_mem_list);
  1767. tg_pt_gp->tg_pt_gp_members++;
  1768. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1769. }
  1770. /*
  1771. * Called with struct t10_alua_tg_pt_gp_member->tg_pt_gp_mem_lock held
  1772. */
  1773. static void __core_alua_drop_tg_pt_gp_mem(
  1774. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem,
  1775. struct t10_alua_tg_pt_gp *tg_pt_gp)
  1776. {
  1777. spin_lock(&tg_pt_gp->tg_pt_gp_lock);
  1778. list_del(&tg_pt_gp_mem->tg_pt_gp_mem_list);
  1779. tg_pt_gp_mem->tg_pt_gp = NULL;
  1780. tg_pt_gp_mem->tg_pt_gp_assoc = 0;
  1781. tg_pt_gp->tg_pt_gp_members--;
  1782. spin_unlock(&tg_pt_gp->tg_pt_gp_lock);
  1783. }
  1784. ssize_t core_alua_show_tg_pt_gp_info(struct se_port *port, char *page)
  1785. {
  1786. struct config_item *tg_pt_ci;
  1787. struct t10_alua_tg_pt_gp *tg_pt_gp;
  1788. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1789. ssize_t len = 0;
  1790. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1791. if (!tg_pt_gp_mem)
  1792. return len;
  1793. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1794. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1795. if (tg_pt_gp) {
  1796. tg_pt_ci = &tg_pt_gp->tg_pt_gp_group.cg_item;
  1797. len += sprintf(page, "TG Port Alias: %s\nTG Port Group ID:"
  1798. " %hu\nTG Port Primary Access State: %s\nTG Port "
  1799. "Primary Access Status: %s\nTG Port Secondary Access"
  1800. " State: %s\nTG Port Secondary Access Status: %s\n",
  1801. config_item_name(tg_pt_ci), tg_pt_gp->tg_pt_gp_id,
  1802. core_alua_dump_state(atomic_read(
  1803. &tg_pt_gp->tg_pt_gp_alua_access_state)),
  1804. core_alua_dump_status(
  1805. tg_pt_gp->tg_pt_gp_alua_access_status),
  1806. (atomic_read(&port->sep_tg_pt_secondary_offline)) ?
  1807. "Offline" : "None",
  1808. core_alua_dump_status(port->sep_tg_pt_secondary_stat));
  1809. }
  1810. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1811. return len;
  1812. }
  1813. ssize_t core_alua_store_tg_pt_gp_info(
  1814. struct se_port *port,
  1815. const char *page,
  1816. size_t count)
  1817. {
  1818. struct se_portal_group *tpg;
  1819. struct se_lun *lun;
  1820. struct se_device *dev = port->sep_lun->lun_se_dev;
  1821. struct t10_alua_tg_pt_gp *tg_pt_gp = NULL, *tg_pt_gp_new = NULL;
  1822. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  1823. unsigned char buf[TG_PT_GROUP_NAME_BUF];
  1824. int move = 0;
  1825. tpg = port->sep_tpg;
  1826. lun = port->sep_lun;
  1827. tg_pt_gp_mem = port->sep_alua_tg_pt_gp_mem;
  1828. if (!tg_pt_gp_mem)
  1829. return 0;
  1830. if (count > TG_PT_GROUP_NAME_BUF) {
  1831. pr_err("ALUA Target Port Group alias too large!\n");
  1832. return -EINVAL;
  1833. }
  1834. memset(buf, 0, TG_PT_GROUP_NAME_BUF);
  1835. memcpy(buf, page, count);
  1836. /*
  1837. * Any ALUA target port group alias besides "NULL" means we will be
  1838. * making a new group association.
  1839. */
  1840. if (strcmp(strstrip(buf), "NULL")) {
  1841. /*
  1842. * core_alua_get_tg_pt_gp_by_name() will increment reference to
  1843. * struct t10_alua_tg_pt_gp. This reference is released with
  1844. * core_alua_put_tg_pt_gp_from_name() below.
  1845. */
  1846. tg_pt_gp_new = core_alua_get_tg_pt_gp_by_name(dev,
  1847. strstrip(buf));
  1848. if (!tg_pt_gp_new)
  1849. return -ENODEV;
  1850. }
  1851. spin_lock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1852. tg_pt_gp = tg_pt_gp_mem->tg_pt_gp;
  1853. if (tg_pt_gp) {
  1854. /*
  1855. * Clearing an existing tg_pt_gp association, and replacing
  1856. * with the default_tg_pt_gp.
  1857. */
  1858. if (!tg_pt_gp_new) {
  1859. pr_debug("Target_Core_ConfigFS: Moving"
  1860. " %s/tpgt_%hu/%s from ALUA Target Port Group:"
  1861. " alua/%s, ID: %hu back to"
  1862. " default_tg_pt_gp\n",
  1863. tpg->se_tpg_tfo->tpg_get_wwn(tpg),
  1864. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1865. config_item_name(&lun->lun_group.cg_item),
  1866. config_item_name(
  1867. &tg_pt_gp->tg_pt_gp_group.cg_item),
  1868. tg_pt_gp->tg_pt_gp_id);
  1869. __core_alua_drop_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp);
  1870. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem,
  1871. dev->t10_alua.default_tg_pt_gp);
  1872. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1873. return count;
  1874. }
  1875. /*
  1876. * Removing existing association of tg_pt_gp_mem with tg_pt_gp
  1877. */
  1878. __core_alua_drop_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp);
  1879. move = 1;
  1880. }
  1881. /*
  1882. * Associate tg_pt_gp_mem with tg_pt_gp_new.
  1883. */
  1884. __core_alua_attach_tg_pt_gp_mem(tg_pt_gp_mem, tg_pt_gp_new);
  1885. spin_unlock(&tg_pt_gp_mem->tg_pt_gp_mem_lock);
  1886. pr_debug("Target_Core_ConfigFS: %s %s/tpgt_%hu/%s to ALUA"
  1887. " Target Port Group: alua/%s, ID: %hu\n", (move) ?
  1888. "Moving" : "Adding", tpg->se_tpg_tfo->tpg_get_wwn(tpg),
  1889. tpg->se_tpg_tfo->tpg_get_tag(tpg),
  1890. config_item_name(&lun->lun_group.cg_item),
  1891. config_item_name(&tg_pt_gp_new->tg_pt_gp_group.cg_item),
  1892. tg_pt_gp_new->tg_pt_gp_id);
  1893. core_alua_put_tg_pt_gp_from_name(tg_pt_gp_new);
  1894. return count;
  1895. }
  1896. ssize_t core_alua_show_access_type(
  1897. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1898. char *page)
  1899. {
  1900. if ((tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA) &&
  1901. (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_IMPLICIT_ALUA))
  1902. return sprintf(page, "Implicit and Explicit\n");
  1903. else if (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_IMPLICIT_ALUA)
  1904. return sprintf(page, "Implicit\n");
  1905. else if (tg_pt_gp->tg_pt_gp_alua_access_type & TPGS_EXPLICIT_ALUA)
  1906. return sprintf(page, "Explicit\n");
  1907. else
  1908. return sprintf(page, "None\n");
  1909. }
  1910. ssize_t core_alua_store_access_type(
  1911. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1912. const char *page,
  1913. size_t count)
  1914. {
  1915. unsigned long tmp;
  1916. int ret;
  1917. ret = kstrtoul(page, 0, &tmp);
  1918. if (ret < 0) {
  1919. pr_err("Unable to extract alua_access_type\n");
  1920. return ret;
  1921. }
  1922. if ((tmp != 0) && (tmp != 1) && (tmp != 2) && (tmp != 3)) {
  1923. pr_err("Illegal value for alua_access_type:"
  1924. " %lu\n", tmp);
  1925. return -EINVAL;
  1926. }
  1927. if (tmp == 3)
  1928. tg_pt_gp->tg_pt_gp_alua_access_type =
  1929. TPGS_IMPLICIT_ALUA | TPGS_EXPLICIT_ALUA;
  1930. else if (tmp == 2)
  1931. tg_pt_gp->tg_pt_gp_alua_access_type = TPGS_EXPLICIT_ALUA;
  1932. else if (tmp == 1)
  1933. tg_pt_gp->tg_pt_gp_alua_access_type = TPGS_IMPLICIT_ALUA;
  1934. else
  1935. tg_pt_gp->tg_pt_gp_alua_access_type = 0;
  1936. return count;
  1937. }
  1938. ssize_t core_alua_show_nonop_delay_msecs(
  1939. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1940. char *page)
  1941. {
  1942. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_nonop_delay_msecs);
  1943. }
  1944. ssize_t core_alua_store_nonop_delay_msecs(
  1945. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1946. const char *page,
  1947. size_t count)
  1948. {
  1949. unsigned long tmp;
  1950. int ret;
  1951. ret = kstrtoul(page, 0, &tmp);
  1952. if (ret < 0) {
  1953. pr_err("Unable to extract nonop_delay_msecs\n");
  1954. return ret;
  1955. }
  1956. if (tmp > ALUA_MAX_NONOP_DELAY_MSECS) {
  1957. pr_err("Passed nonop_delay_msecs: %lu, exceeds"
  1958. " ALUA_MAX_NONOP_DELAY_MSECS: %d\n", tmp,
  1959. ALUA_MAX_NONOP_DELAY_MSECS);
  1960. return -EINVAL;
  1961. }
  1962. tg_pt_gp->tg_pt_gp_nonop_delay_msecs = (int)tmp;
  1963. return count;
  1964. }
  1965. ssize_t core_alua_show_trans_delay_msecs(
  1966. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1967. char *page)
  1968. {
  1969. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_trans_delay_msecs);
  1970. }
  1971. ssize_t core_alua_store_trans_delay_msecs(
  1972. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1973. const char *page,
  1974. size_t count)
  1975. {
  1976. unsigned long tmp;
  1977. int ret;
  1978. ret = kstrtoul(page, 0, &tmp);
  1979. if (ret < 0) {
  1980. pr_err("Unable to extract trans_delay_msecs\n");
  1981. return ret;
  1982. }
  1983. if (tmp > ALUA_MAX_TRANS_DELAY_MSECS) {
  1984. pr_err("Passed trans_delay_msecs: %lu, exceeds"
  1985. " ALUA_MAX_TRANS_DELAY_MSECS: %d\n", tmp,
  1986. ALUA_MAX_TRANS_DELAY_MSECS);
  1987. return -EINVAL;
  1988. }
  1989. tg_pt_gp->tg_pt_gp_trans_delay_msecs = (int)tmp;
  1990. return count;
  1991. }
  1992. ssize_t core_alua_show_implicit_trans_secs(
  1993. struct t10_alua_tg_pt_gp *tg_pt_gp,
  1994. char *page)
  1995. {
  1996. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_implicit_trans_secs);
  1997. }
  1998. ssize_t core_alua_store_implicit_trans_secs(
  1999. struct t10_alua_tg_pt_gp *tg_pt_gp,
  2000. const char *page,
  2001. size_t count)
  2002. {
  2003. unsigned long tmp;
  2004. int ret;
  2005. ret = kstrtoul(page, 0, &tmp);
  2006. if (ret < 0) {
  2007. pr_err("Unable to extract implicit_trans_secs\n");
  2008. return ret;
  2009. }
  2010. if (tmp > ALUA_MAX_IMPLICIT_TRANS_SECS) {
  2011. pr_err("Passed implicit_trans_secs: %lu, exceeds"
  2012. " ALUA_MAX_IMPLICIT_TRANS_SECS: %d\n", tmp,
  2013. ALUA_MAX_IMPLICIT_TRANS_SECS);
  2014. return -EINVAL;
  2015. }
  2016. tg_pt_gp->tg_pt_gp_implicit_trans_secs = (int)tmp;
  2017. return count;
  2018. }
  2019. ssize_t core_alua_show_preferred_bit(
  2020. struct t10_alua_tg_pt_gp *tg_pt_gp,
  2021. char *page)
  2022. {
  2023. return sprintf(page, "%d\n", tg_pt_gp->tg_pt_gp_pref);
  2024. }
  2025. ssize_t core_alua_store_preferred_bit(
  2026. struct t10_alua_tg_pt_gp *tg_pt_gp,
  2027. const char *page,
  2028. size_t count)
  2029. {
  2030. unsigned long tmp;
  2031. int ret;
  2032. ret = kstrtoul(page, 0, &tmp);
  2033. if (ret < 0) {
  2034. pr_err("Unable to extract preferred ALUA value\n");
  2035. return ret;
  2036. }
  2037. if ((tmp != 0) && (tmp != 1)) {
  2038. pr_err("Illegal value for preferred ALUA: %lu\n", tmp);
  2039. return -EINVAL;
  2040. }
  2041. tg_pt_gp->tg_pt_gp_pref = (int)tmp;
  2042. return count;
  2043. }
  2044. ssize_t core_alua_show_offline_bit(struct se_lun *lun, char *page)
  2045. {
  2046. if (!lun->lun_sep)
  2047. return -ENODEV;
  2048. return sprintf(page, "%d\n",
  2049. atomic_read(&lun->lun_sep->sep_tg_pt_secondary_offline));
  2050. }
  2051. ssize_t core_alua_store_offline_bit(
  2052. struct se_lun *lun,
  2053. const char *page,
  2054. size_t count)
  2055. {
  2056. struct t10_alua_tg_pt_gp_member *tg_pt_gp_mem;
  2057. unsigned long tmp;
  2058. int ret;
  2059. if (!lun->lun_sep)
  2060. return -ENODEV;
  2061. ret = kstrtoul(page, 0, &tmp);
  2062. if (ret < 0) {
  2063. pr_err("Unable to extract alua_tg_pt_offline value\n");
  2064. return ret;
  2065. }
  2066. if ((tmp != 0) && (tmp != 1)) {
  2067. pr_err("Illegal value for alua_tg_pt_offline: %lu\n",
  2068. tmp);
  2069. return -EINVAL;
  2070. }
  2071. tg_pt_gp_mem = lun->lun_sep->sep_alua_tg_pt_gp_mem;
  2072. if (!tg_pt_gp_mem) {
  2073. pr_err("Unable to locate *tg_pt_gp_mem\n");
  2074. return -EINVAL;
  2075. }
  2076. ret = core_alua_set_tg_pt_secondary_state(tg_pt_gp_mem,
  2077. lun->lun_sep, 0, (int)tmp);
  2078. if (ret < 0)
  2079. return -EINVAL;
  2080. return count;
  2081. }
  2082. ssize_t core_alua_show_secondary_status(
  2083. struct se_lun *lun,
  2084. char *page)
  2085. {
  2086. return sprintf(page, "%d\n", lun->lun_sep->sep_tg_pt_secondary_stat);
  2087. }
  2088. ssize_t core_alua_store_secondary_status(
  2089. struct se_lun *lun,
  2090. const char *page,
  2091. size_t count)
  2092. {
  2093. unsigned long tmp;
  2094. int ret;
  2095. ret = kstrtoul(page, 0, &tmp);
  2096. if (ret < 0) {
  2097. pr_err("Unable to extract alua_tg_pt_status\n");
  2098. return ret;
  2099. }
  2100. if ((tmp != ALUA_STATUS_NONE) &&
  2101. (tmp != ALUA_STATUS_ALTERED_BY_EXPLICIT_STPG) &&
  2102. (tmp != ALUA_STATUS_ALTERED_BY_IMPLICIT_ALUA)) {
  2103. pr_err("Illegal value for alua_tg_pt_status: %lu\n",
  2104. tmp);
  2105. return -EINVAL;
  2106. }
  2107. lun->lun_sep->sep_tg_pt_secondary_stat = (int)tmp;
  2108. return count;
  2109. }
  2110. ssize_t core_alua_show_secondary_write_metadata(
  2111. struct se_lun *lun,
  2112. char *page)
  2113. {
  2114. return sprintf(page, "%d\n",
  2115. lun->lun_sep->sep_tg_pt_secondary_write_md);
  2116. }
  2117. ssize_t core_alua_store_secondary_write_metadata(
  2118. struct se_lun *lun,
  2119. const char *page,
  2120. size_t count)
  2121. {
  2122. unsigned long tmp;
  2123. int ret;
  2124. ret = kstrtoul(page, 0, &tmp);
  2125. if (ret < 0) {
  2126. pr_err("Unable to extract alua_tg_pt_write_md\n");
  2127. return ret;
  2128. }
  2129. if ((tmp != 0) && (tmp != 1)) {
  2130. pr_err("Illegal value for alua_tg_pt_write_md:"
  2131. " %lu\n", tmp);
  2132. return -EINVAL;
  2133. }
  2134. lun->lun_sep->sep_tg_pt_secondary_write_md = (int)tmp;
  2135. return count;
  2136. }
  2137. int core_setup_alua(struct se_device *dev)
  2138. {
  2139. if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV &&
  2140. !(dev->se_hba->hba_flags & HBA_FLAGS_INTERNAL_USE)) {
  2141. struct t10_alua_lu_gp_member *lu_gp_mem;
  2142. /*
  2143. * Associate this struct se_device with the default ALUA
  2144. * LUN Group.
  2145. */
  2146. lu_gp_mem = core_alua_allocate_lu_gp_mem(dev);
  2147. if (IS_ERR(lu_gp_mem))
  2148. return PTR_ERR(lu_gp_mem);
  2149. spin_lock(&lu_gp_mem->lu_gp_mem_lock);
  2150. __core_alua_attach_lu_gp_mem(lu_gp_mem,
  2151. default_lu_gp);
  2152. spin_unlock(&lu_gp_mem->lu_gp_mem_lock);
  2153. pr_debug("%s: Adding to default ALUA LU Group:"
  2154. " core/alua/lu_gps/default_lu_gp\n",
  2155. dev->transport->name);
  2156. }
  2157. return 0;
  2158. }