spi-topcliff-pch.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759
  1. /*
  2. * SPI bus driver for the Topcliff PCH used by Intel SoCs
  3. *
  4. * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; version 2 of the License.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/pci.h>
  21. #include <linux/wait.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/sched.h>
  25. #include <linux/spi/spidev.h>
  26. #include <linux/module.h>
  27. #include <linux/device.h>
  28. #include <linux/platform_device.h>
  29. #include <linux/dmaengine.h>
  30. #include <linux/pch_dma.h>
  31. /* Register offsets */
  32. #define PCH_SPCR 0x00 /* SPI control register */
  33. #define PCH_SPBRR 0x04 /* SPI baud rate register */
  34. #define PCH_SPSR 0x08 /* SPI status register */
  35. #define PCH_SPDWR 0x0C /* SPI write data register */
  36. #define PCH_SPDRR 0x10 /* SPI read data register */
  37. #define PCH_SSNXCR 0x18 /* SSN Expand Control Register */
  38. #define PCH_SRST 0x1C /* SPI reset register */
  39. #define PCH_ADDRESS_SIZE 0x20
  40. #define PCH_SPSR_TFD 0x000007C0
  41. #define PCH_SPSR_RFD 0x0000F800
  42. #define PCH_READABLE(x) (((x) & PCH_SPSR_RFD)>>11)
  43. #define PCH_WRITABLE(x) (((x) & PCH_SPSR_TFD)>>6)
  44. #define PCH_RX_THOLD 7
  45. #define PCH_RX_THOLD_MAX 15
  46. #define PCH_TX_THOLD 2
  47. #define PCH_MAX_BAUDRATE 5000000
  48. #define PCH_MAX_FIFO_DEPTH 16
  49. #define STATUS_RUNNING 1
  50. #define STATUS_EXITING 2
  51. #define PCH_SLEEP_TIME 10
  52. #define SSN_LOW 0x02U
  53. #define SSN_HIGH 0x03U
  54. #define SSN_NO_CONTROL 0x00U
  55. #define PCH_MAX_CS 0xFF
  56. #define PCI_DEVICE_ID_GE_SPI 0x8816
  57. #define SPCR_SPE_BIT (1 << 0)
  58. #define SPCR_MSTR_BIT (1 << 1)
  59. #define SPCR_LSBF_BIT (1 << 4)
  60. #define SPCR_CPHA_BIT (1 << 5)
  61. #define SPCR_CPOL_BIT (1 << 6)
  62. #define SPCR_TFIE_BIT (1 << 8)
  63. #define SPCR_RFIE_BIT (1 << 9)
  64. #define SPCR_FIE_BIT (1 << 10)
  65. #define SPCR_ORIE_BIT (1 << 11)
  66. #define SPCR_MDFIE_BIT (1 << 12)
  67. #define SPCR_FICLR_BIT (1 << 24)
  68. #define SPSR_TFI_BIT (1 << 0)
  69. #define SPSR_RFI_BIT (1 << 1)
  70. #define SPSR_FI_BIT (1 << 2)
  71. #define SPSR_ORF_BIT (1 << 3)
  72. #define SPBRR_SIZE_BIT (1 << 10)
  73. #define PCH_ALL (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
  74. SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
  75. #define SPCR_RFIC_FIELD 20
  76. #define SPCR_TFIC_FIELD 16
  77. #define MASK_SPBRR_SPBR_BITS ((1 << 10) - 1)
  78. #define MASK_RFIC_SPCR_BITS (0xf << SPCR_RFIC_FIELD)
  79. #define MASK_TFIC_SPCR_BITS (0xf << SPCR_TFIC_FIELD)
  80. #define PCH_CLOCK_HZ 50000000
  81. #define PCH_MAX_SPBR 1023
  82. /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
  83. #define PCI_VENDOR_ID_ROHM 0x10DB
  84. #define PCI_DEVICE_ID_ML7213_SPI 0x802c
  85. #define PCI_DEVICE_ID_ML7223_SPI 0x800F
  86. #define PCI_DEVICE_ID_ML7831_SPI 0x8816
  87. /*
  88. * Set the number of SPI instance max
  89. * Intel EG20T PCH : 1ch
  90. * LAPIS Semiconductor ML7213 IOH : 2ch
  91. * LAPIS Semiconductor ML7223 IOH : 1ch
  92. * LAPIS Semiconductor ML7831 IOH : 1ch
  93. */
  94. #define PCH_SPI_MAX_DEV 2
  95. #define PCH_BUF_SIZE 4096
  96. #define PCH_DMA_TRANS_SIZE 12
  97. static int use_dma = 1;
  98. struct pch_spi_dma_ctrl {
  99. struct dma_async_tx_descriptor *desc_tx;
  100. struct dma_async_tx_descriptor *desc_rx;
  101. struct pch_dma_slave param_tx;
  102. struct pch_dma_slave param_rx;
  103. struct dma_chan *chan_tx;
  104. struct dma_chan *chan_rx;
  105. struct scatterlist *sg_tx_p;
  106. struct scatterlist *sg_rx_p;
  107. struct scatterlist sg_tx;
  108. struct scatterlist sg_rx;
  109. int nent;
  110. void *tx_buf_virt;
  111. void *rx_buf_virt;
  112. dma_addr_t tx_buf_dma;
  113. dma_addr_t rx_buf_dma;
  114. };
  115. /**
  116. * struct pch_spi_data - Holds the SPI channel specific details
  117. * @io_remap_addr: The remapped PCI base address
  118. * @master: Pointer to the SPI master structure
  119. * @work: Reference to work queue handler
  120. * @wk: Workqueue for carrying out execution of the
  121. * requests
  122. * @wait: Wait queue for waking up upon receiving an
  123. * interrupt.
  124. * @transfer_complete: Status of SPI Transfer
  125. * @bcurrent_msg_processing: Status flag for message processing
  126. * @lock: Lock for protecting this structure
  127. * @queue: SPI Message queue
  128. * @status: Status of the SPI driver
  129. * @bpw_len: Length of data to be transferred in bits per
  130. * word
  131. * @transfer_active: Flag showing active transfer
  132. * @tx_index: Transmit data count; for bookkeeping during
  133. * transfer
  134. * @rx_index: Receive data count; for bookkeeping during
  135. * transfer
  136. * @tx_buff: Buffer for data to be transmitted
  137. * @rx_index: Buffer for Received data
  138. * @n_curnt_chip: The chip number that this SPI driver currently
  139. * operates on
  140. * @current_chip: Reference to the current chip that this SPI
  141. * driver currently operates on
  142. * @current_msg: The current message that this SPI driver is
  143. * handling
  144. * @cur_trans: The current transfer that this SPI driver is
  145. * handling
  146. * @board_dat: Reference to the SPI device data structure
  147. * @plat_dev: platform_device structure
  148. * @ch: SPI channel number
  149. * @irq_reg_sts: Status of IRQ registration
  150. */
  151. struct pch_spi_data {
  152. void __iomem *io_remap_addr;
  153. unsigned long io_base_addr;
  154. struct spi_master *master;
  155. struct work_struct work;
  156. struct workqueue_struct *wk;
  157. wait_queue_head_t wait;
  158. u8 transfer_complete;
  159. u8 bcurrent_msg_processing;
  160. spinlock_t lock;
  161. struct list_head queue;
  162. u8 status;
  163. u32 bpw_len;
  164. u8 transfer_active;
  165. u32 tx_index;
  166. u32 rx_index;
  167. u16 *pkt_tx_buff;
  168. u16 *pkt_rx_buff;
  169. u8 n_curnt_chip;
  170. struct spi_device *current_chip;
  171. struct spi_message *current_msg;
  172. struct spi_transfer *cur_trans;
  173. struct pch_spi_board_data *board_dat;
  174. struct platform_device *plat_dev;
  175. int ch;
  176. struct pch_spi_dma_ctrl dma;
  177. int use_dma;
  178. u8 irq_reg_sts;
  179. int save_total_len;
  180. };
  181. /**
  182. * struct pch_spi_board_data - Holds the SPI device specific details
  183. * @pdev: Pointer to the PCI device
  184. * @suspend_sts: Status of suspend
  185. * @num: The number of SPI device instance
  186. */
  187. struct pch_spi_board_data {
  188. struct pci_dev *pdev;
  189. u8 suspend_sts;
  190. int num;
  191. };
  192. struct pch_pd_dev_save {
  193. int num;
  194. struct platform_device *pd_save[PCH_SPI_MAX_DEV];
  195. struct pch_spi_board_data *board_dat;
  196. };
  197. static const struct pci_device_id pch_spi_pcidev_id[] = {
  198. { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI), 1, },
  199. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
  200. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
  201. { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
  202. { }
  203. };
  204. /**
  205. * pch_spi_writereg() - Performs register writes
  206. * @master: Pointer to struct spi_master.
  207. * @idx: Register offset.
  208. * @val: Value to be written to register.
  209. */
  210. static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
  211. {
  212. struct pch_spi_data *data = spi_master_get_devdata(master);
  213. iowrite32(val, (data->io_remap_addr + idx));
  214. }
  215. /**
  216. * pch_spi_readreg() - Performs register reads
  217. * @master: Pointer to struct spi_master.
  218. * @idx: Register offset.
  219. */
  220. static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
  221. {
  222. struct pch_spi_data *data = spi_master_get_devdata(master);
  223. return ioread32(data->io_remap_addr + idx);
  224. }
  225. static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
  226. u32 set, u32 clr)
  227. {
  228. u32 tmp = pch_spi_readreg(master, idx);
  229. tmp = (tmp & ~clr) | set;
  230. pch_spi_writereg(master, idx, tmp);
  231. }
  232. static void pch_spi_set_master_mode(struct spi_master *master)
  233. {
  234. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
  235. }
  236. /**
  237. * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
  238. * @master: Pointer to struct spi_master.
  239. */
  240. static void pch_spi_clear_fifo(struct spi_master *master)
  241. {
  242. pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
  243. pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
  244. }
  245. static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
  246. void __iomem *io_remap_addr)
  247. {
  248. u32 n_read, tx_index, rx_index, bpw_len;
  249. u16 *pkt_rx_buffer, *pkt_tx_buff;
  250. int read_cnt;
  251. u32 reg_spcr_val;
  252. void __iomem *spsr;
  253. void __iomem *spdrr;
  254. void __iomem *spdwr;
  255. spsr = io_remap_addr + PCH_SPSR;
  256. iowrite32(reg_spsr_val, spsr);
  257. if (data->transfer_active) {
  258. rx_index = data->rx_index;
  259. tx_index = data->tx_index;
  260. bpw_len = data->bpw_len;
  261. pkt_rx_buffer = data->pkt_rx_buff;
  262. pkt_tx_buff = data->pkt_tx_buff;
  263. spdrr = io_remap_addr + PCH_SPDRR;
  264. spdwr = io_remap_addr + PCH_SPDWR;
  265. n_read = PCH_READABLE(reg_spsr_val);
  266. for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
  267. pkt_rx_buffer[rx_index++] = ioread32(spdrr);
  268. if (tx_index < bpw_len)
  269. iowrite32(pkt_tx_buff[tx_index++], spdwr);
  270. }
  271. /* disable RFI if not needed */
  272. if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
  273. reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
  274. reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
  275. /* reset rx threshold */
  276. reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
  277. reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
  278. iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
  279. }
  280. /* update counts */
  281. data->tx_index = tx_index;
  282. data->rx_index = rx_index;
  283. /* if transfer complete interrupt */
  284. if (reg_spsr_val & SPSR_FI_BIT) {
  285. if ((tx_index == bpw_len) && (rx_index == tx_index)) {
  286. /* disable interrupts */
  287. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  288. PCH_ALL);
  289. /* transfer is completed;
  290. inform pch_spi_process_messages */
  291. data->transfer_complete = true;
  292. data->transfer_active = false;
  293. wake_up(&data->wait);
  294. } else {
  295. dev_vdbg(&data->master->dev,
  296. "%s : Transfer is not completed",
  297. __func__);
  298. }
  299. }
  300. }
  301. }
  302. /**
  303. * pch_spi_handler() - Interrupt handler
  304. * @irq: The interrupt number.
  305. * @dev_id: Pointer to struct pch_spi_board_data.
  306. */
  307. static irqreturn_t pch_spi_handler(int irq, void *dev_id)
  308. {
  309. u32 reg_spsr_val;
  310. void __iomem *spsr;
  311. void __iomem *io_remap_addr;
  312. irqreturn_t ret = IRQ_NONE;
  313. struct pch_spi_data *data = dev_id;
  314. struct pch_spi_board_data *board_dat = data->board_dat;
  315. if (board_dat->suspend_sts) {
  316. dev_dbg(&board_dat->pdev->dev,
  317. "%s returning due to suspend\n", __func__);
  318. return IRQ_NONE;
  319. }
  320. io_remap_addr = data->io_remap_addr;
  321. spsr = io_remap_addr + PCH_SPSR;
  322. reg_spsr_val = ioread32(spsr);
  323. if (reg_spsr_val & SPSR_ORF_BIT) {
  324. dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
  325. if (data->current_msg->complete) {
  326. data->transfer_complete = true;
  327. data->current_msg->status = -EIO;
  328. data->current_msg->complete(data->current_msg->context);
  329. data->bcurrent_msg_processing = false;
  330. data->current_msg = NULL;
  331. data->cur_trans = NULL;
  332. }
  333. }
  334. if (data->use_dma)
  335. return IRQ_NONE;
  336. /* Check if the interrupt is for SPI device */
  337. if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
  338. pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
  339. ret = IRQ_HANDLED;
  340. }
  341. dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
  342. __func__, ret);
  343. return ret;
  344. }
  345. /**
  346. * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
  347. * @master: Pointer to struct spi_master.
  348. * @speed_hz: Baud rate.
  349. */
  350. static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
  351. {
  352. u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
  353. /* if baud rate is less than we can support limit it */
  354. if (n_spbr > PCH_MAX_SPBR)
  355. n_spbr = PCH_MAX_SPBR;
  356. pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
  357. }
  358. /**
  359. * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
  360. * @master: Pointer to struct spi_master.
  361. * @bits_per_word: Bits per word for SPI transfer.
  362. */
  363. static void pch_spi_set_bits_per_word(struct spi_master *master,
  364. u8 bits_per_word)
  365. {
  366. if (bits_per_word == 8)
  367. pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
  368. else
  369. pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
  370. }
  371. /**
  372. * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
  373. * @spi: Pointer to struct spi_device.
  374. */
  375. static void pch_spi_setup_transfer(struct spi_device *spi)
  376. {
  377. u32 flags = 0;
  378. dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
  379. __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
  380. spi->max_speed_hz);
  381. pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
  382. /* set bits per word */
  383. pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
  384. if (!(spi->mode & SPI_LSB_FIRST))
  385. flags |= SPCR_LSBF_BIT;
  386. if (spi->mode & SPI_CPOL)
  387. flags |= SPCR_CPOL_BIT;
  388. if (spi->mode & SPI_CPHA)
  389. flags |= SPCR_CPHA_BIT;
  390. pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
  391. (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
  392. /* Clear the FIFO by toggling FICLR to 1 and back to 0 */
  393. pch_spi_clear_fifo(spi->master);
  394. }
  395. /**
  396. * pch_spi_reset() - Clears SPI registers
  397. * @master: Pointer to struct spi_master.
  398. */
  399. static void pch_spi_reset(struct spi_master *master)
  400. {
  401. /* write 1 to reset SPI */
  402. pch_spi_writereg(master, PCH_SRST, 0x1);
  403. /* clear reset */
  404. pch_spi_writereg(master, PCH_SRST, 0x0);
  405. }
  406. static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
  407. {
  408. struct spi_transfer *transfer;
  409. struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
  410. int retval;
  411. unsigned long flags;
  412. spin_lock_irqsave(&data->lock, flags);
  413. /* validate Tx/Rx buffers and Transfer length */
  414. list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
  415. if (!transfer->tx_buf && !transfer->rx_buf) {
  416. dev_err(&pspi->dev,
  417. "%s Tx and Rx buffer NULL\n", __func__);
  418. retval = -EINVAL;
  419. goto err_return_spinlock;
  420. }
  421. if (!transfer->len) {
  422. dev_err(&pspi->dev, "%s Transfer length invalid\n",
  423. __func__);
  424. retval = -EINVAL;
  425. goto err_return_spinlock;
  426. }
  427. dev_dbg(&pspi->dev,
  428. "%s Tx/Rx buffer valid. Transfer length valid\n",
  429. __func__);
  430. }
  431. spin_unlock_irqrestore(&data->lock, flags);
  432. /* We won't process any messages if we have been asked to terminate */
  433. if (data->status == STATUS_EXITING) {
  434. dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
  435. retval = -ESHUTDOWN;
  436. goto err_out;
  437. }
  438. /* If suspended ,return -EINVAL */
  439. if (data->board_dat->suspend_sts) {
  440. dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
  441. retval = -EINVAL;
  442. goto err_out;
  443. }
  444. /* set status of message */
  445. pmsg->actual_length = 0;
  446. dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
  447. pmsg->status = -EINPROGRESS;
  448. spin_lock_irqsave(&data->lock, flags);
  449. /* add message to queue */
  450. list_add_tail(&pmsg->queue, &data->queue);
  451. spin_unlock_irqrestore(&data->lock, flags);
  452. dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
  453. /* schedule work queue to run */
  454. queue_work(data->wk, &data->work);
  455. dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
  456. retval = 0;
  457. err_out:
  458. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  459. return retval;
  460. err_return_spinlock:
  461. dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
  462. spin_unlock_irqrestore(&data->lock, flags);
  463. return retval;
  464. }
  465. static inline void pch_spi_select_chip(struct pch_spi_data *data,
  466. struct spi_device *pspi)
  467. {
  468. if (data->current_chip != NULL) {
  469. if (pspi->chip_select != data->n_curnt_chip) {
  470. dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
  471. data->current_chip = NULL;
  472. }
  473. }
  474. data->current_chip = pspi;
  475. data->n_curnt_chip = data->current_chip->chip_select;
  476. dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
  477. pch_spi_setup_transfer(pspi);
  478. }
  479. static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
  480. {
  481. int size;
  482. u32 n_writes;
  483. int j;
  484. struct spi_message *pmsg, *tmp;
  485. const u8 *tx_buf;
  486. const u16 *tx_sbuf;
  487. /* set baud rate if needed */
  488. if (data->cur_trans->speed_hz) {
  489. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  490. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  491. }
  492. /* set bits per word if needed */
  493. if (data->cur_trans->bits_per_word &&
  494. (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
  495. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  496. pch_spi_set_bits_per_word(data->master,
  497. data->cur_trans->bits_per_word);
  498. *bpw = data->cur_trans->bits_per_word;
  499. } else {
  500. *bpw = data->current_msg->spi->bits_per_word;
  501. }
  502. /* reset Tx/Rx index */
  503. data->tx_index = 0;
  504. data->rx_index = 0;
  505. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  506. /* find alloc size */
  507. size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
  508. /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
  509. data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
  510. if (data->pkt_tx_buff != NULL) {
  511. data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
  512. if (!data->pkt_rx_buff)
  513. kfree(data->pkt_tx_buff);
  514. }
  515. if (!data->pkt_rx_buff) {
  516. /* flush queue and set status of all transfers to -ENOMEM */
  517. dev_err(&data->master->dev, "%s :kzalloc failed\n", __func__);
  518. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  519. pmsg->status = -ENOMEM;
  520. if (pmsg->complete)
  521. pmsg->complete(pmsg->context);
  522. /* delete from queue */
  523. list_del_init(&pmsg->queue);
  524. }
  525. return;
  526. }
  527. /* copy Tx Data */
  528. if (data->cur_trans->tx_buf != NULL) {
  529. if (*bpw == 8) {
  530. tx_buf = data->cur_trans->tx_buf;
  531. for (j = 0; j < data->bpw_len; j++)
  532. data->pkt_tx_buff[j] = *tx_buf++;
  533. } else {
  534. tx_sbuf = data->cur_trans->tx_buf;
  535. for (j = 0; j < data->bpw_len; j++)
  536. data->pkt_tx_buff[j] = *tx_sbuf++;
  537. }
  538. }
  539. /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
  540. n_writes = data->bpw_len;
  541. if (n_writes > PCH_MAX_FIFO_DEPTH)
  542. n_writes = PCH_MAX_FIFO_DEPTH;
  543. dev_dbg(&data->master->dev, "\n%s:Pulling down SSN low - writing "
  544. "0x2 to SSNXCR\n", __func__);
  545. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  546. for (j = 0; j < n_writes; j++)
  547. pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
  548. /* update tx_index */
  549. data->tx_index = j;
  550. /* reset transfer complete flag */
  551. data->transfer_complete = false;
  552. data->transfer_active = true;
  553. }
  554. static void pch_spi_nomore_transfer(struct pch_spi_data *data)
  555. {
  556. struct spi_message *pmsg, *tmp;
  557. dev_dbg(&data->master->dev, "%s called\n", __func__);
  558. /* Invoke complete callback
  559. * [To the spi core..indicating end of transfer] */
  560. data->current_msg->status = 0;
  561. if (data->current_msg->complete) {
  562. dev_dbg(&data->master->dev,
  563. "%s:Invoking callback of SPI core\n", __func__);
  564. data->current_msg->complete(data->current_msg->context);
  565. }
  566. /* update status in global variable */
  567. data->bcurrent_msg_processing = false;
  568. dev_dbg(&data->master->dev,
  569. "%s:data->bcurrent_msg_processing = false\n", __func__);
  570. data->current_msg = NULL;
  571. data->cur_trans = NULL;
  572. /* check if we have items in list and not suspending
  573. * return 1 if list empty */
  574. if ((list_empty(&data->queue) == 0) &&
  575. (!data->board_dat->suspend_sts) &&
  576. (data->status != STATUS_EXITING)) {
  577. /* We have some more work to do (either there is more tranint
  578. * bpw;sfer requests in the current message or there are
  579. *more messages)
  580. */
  581. dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
  582. queue_work(data->wk, &data->work);
  583. } else if (data->board_dat->suspend_sts ||
  584. data->status == STATUS_EXITING) {
  585. dev_dbg(&data->master->dev,
  586. "%s suspend/remove initiated, flushing queue\n",
  587. __func__);
  588. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  589. pmsg->status = -EIO;
  590. if (pmsg->complete)
  591. pmsg->complete(pmsg->context);
  592. /* delete from queue */
  593. list_del_init(&pmsg->queue);
  594. }
  595. }
  596. }
  597. static void pch_spi_set_ir(struct pch_spi_data *data)
  598. {
  599. /* enable interrupts, set threshold, enable SPI */
  600. if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
  601. /* set receive threshold to PCH_RX_THOLD */
  602. pch_spi_setclr_reg(data->master, PCH_SPCR,
  603. PCH_RX_THOLD << SPCR_RFIC_FIELD |
  604. SPCR_FIE_BIT | SPCR_RFIE_BIT |
  605. SPCR_ORIE_BIT | SPCR_SPE_BIT,
  606. MASK_RFIC_SPCR_BITS | PCH_ALL);
  607. else
  608. /* set receive threshold to maximum */
  609. pch_spi_setclr_reg(data->master, PCH_SPCR,
  610. PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
  611. SPCR_FIE_BIT | SPCR_ORIE_BIT |
  612. SPCR_SPE_BIT,
  613. MASK_RFIC_SPCR_BITS | PCH_ALL);
  614. /* Wait until the transfer completes; go to sleep after
  615. initiating the transfer. */
  616. dev_dbg(&data->master->dev,
  617. "%s:waiting for transfer to get over\n", __func__);
  618. wait_event_interruptible(data->wait, data->transfer_complete);
  619. /* clear all interrupts */
  620. pch_spi_writereg(data->master, PCH_SPSR,
  621. pch_spi_readreg(data->master, PCH_SPSR));
  622. /* Disable interrupts and SPI transfer */
  623. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
  624. /* clear FIFO */
  625. pch_spi_clear_fifo(data->master);
  626. }
  627. static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
  628. {
  629. int j;
  630. u8 *rx_buf;
  631. u16 *rx_sbuf;
  632. /* copy Rx Data */
  633. if (!data->cur_trans->rx_buf)
  634. return;
  635. if (bpw == 8) {
  636. rx_buf = data->cur_trans->rx_buf;
  637. for (j = 0; j < data->bpw_len; j++)
  638. *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
  639. } else {
  640. rx_sbuf = data->cur_trans->rx_buf;
  641. for (j = 0; j < data->bpw_len; j++)
  642. *rx_sbuf++ = data->pkt_rx_buff[j];
  643. }
  644. }
  645. static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
  646. {
  647. int j;
  648. u8 *rx_buf;
  649. u16 *rx_sbuf;
  650. const u8 *rx_dma_buf;
  651. const u16 *rx_dma_sbuf;
  652. /* copy Rx Data */
  653. if (!data->cur_trans->rx_buf)
  654. return;
  655. if (bpw == 8) {
  656. rx_buf = data->cur_trans->rx_buf;
  657. rx_dma_buf = data->dma.rx_buf_virt;
  658. for (j = 0; j < data->bpw_len; j++)
  659. *rx_buf++ = *rx_dma_buf++ & 0xFF;
  660. data->cur_trans->rx_buf = rx_buf;
  661. } else {
  662. rx_sbuf = data->cur_trans->rx_buf;
  663. rx_dma_sbuf = data->dma.rx_buf_virt;
  664. for (j = 0; j < data->bpw_len; j++)
  665. *rx_sbuf++ = *rx_dma_sbuf++;
  666. data->cur_trans->rx_buf = rx_sbuf;
  667. }
  668. }
  669. static int pch_spi_start_transfer(struct pch_spi_data *data)
  670. {
  671. struct pch_spi_dma_ctrl *dma;
  672. unsigned long flags;
  673. int rtn;
  674. dma = &data->dma;
  675. spin_lock_irqsave(&data->lock, flags);
  676. /* disable interrupts, SPI set enable */
  677. pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
  678. spin_unlock_irqrestore(&data->lock, flags);
  679. /* Wait until the transfer completes; go to sleep after
  680. initiating the transfer. */
  681. dev_dbg(&data->master->dev,
  682. "%s:waiting for transfer to get over\n", __func__);
  683. rtn = wait_event_interruptible_timeout(data->wait,
  684. data->transfer_complete,
  685. msecs_to_jiffies(2 * HZ));
  686. if (!rtn)
  687. dev_err(&data->master->dev,
  688. "%s wait-event timeout\n", __func__);
  689. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
  690. DMA_FROM_DEVICE);
  691. dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
  692. DMA_FROM_DEVICE);
  693. memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
  694. async_tx_ack(dma->desc_rx);
  695. async_tx_ack(dma->desc_tx);
  696. kfree(dma->sg_tx_p);
  697. kfree(dma->sg_rx_p);
  698. spin_lock_irqsave(&data->lock, flags);
  699. /* clear fifo threshold, disable interrupts, disable SPI transfer */
  700. pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
  701. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
  702. SPCR_SPE_BIT);
  703. /* clear all interrupts */
  704. pch_spi_writereg(data->master, PCH_SPSR,
  705. pch_spi_readreg(data->master, PCH_SPSR));
  706. /* clear FIFO */
  707. pch_spi_clear_fifo(data->master);
  708. spin_unlock_irqrestore(&data->lock, flags);
  709. return rtn;
  710. }
  711. static void pch_dma_rx_complete(void *arg)
  712. {
  713. struct pch_spi_data *data = arg;
  714. /* transfer is completed;inform pch_spi_process_messages_dma */
  715. data->transfer_complete = true;
  716. wake_up_interruptible(&data->wait);
  717. }
  718. static bool pch_spi_filter(struct dma_chan *chan, void *slave)
  719. {
  720. struct pch_dma_slave *param = slave;
  721. if ((chan->chan_id == param->chan_id) &&
  722. (param->dma_dev == chan->device->dev)) {
  723. chan->private = param;
  724. return true;
  725. } else {
  726. return false;
  727. }
  728. }
  729. static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
  730. {
  731. dma_cap_mask_t mask;
  732. struct dma_chan *chan;
  733. struct pci_dev *dma_dev;
  734. struct pch_dma_slave *param;
  735. struct pch_spi_dma_ctrl *dma;
  736. unsigned int width;
  737. if (bpw == 8)
  738. width = PCH_DMA_WIDTH_1_BYTE;
  739. else
  740. width = PCH_DMA_WIDTH_2_BYTES;
  741. dma = &data->dma;
  742. dma_cap_zero(mask);
  743. dma_cap_set(DMA_SLAVE, mask);
  744. /* Get DMA's dev information */
  745. dma_dev = pci_get_bus_and_slot(data->board_dat->pdev->bus->number,
  746. PCI_DEVFN(12, 0));
  747. /* Set Tx DMA */
  748. param = &dma->param_tx;
  749. param->dma_dev = &dma_dev->dev;
  750. param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
  751. param->tx_reg = data->io_base_addr + PCH_SPDWR;
  752. param->width = width;
  753. chan = dma_request_channel(mask, pch_spi_filter, param);
  754. if (!chan) {
  755. dev_err(&data->master->dev,
  756. "ERROR: dma_request_channel FAILS(Tx)\n");
  757. data->use_dma = 0;
  758. return;
  759. }
  760. dma->chan_tx = chan;
  761. /* Set Rx DMA */
  762. param = &dma->param_rx;
  763. param->dma_dev = &dma_dev->dev;
  764. param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
  765. param->rx_reg = data->io_base_addr + PCH_SPDRR;
  766. param->width = width;
  767. chan = dma_request_channel(mask, pch_spi_filter, param);
  768. if (!chan) {
  769. dev_err(&data->master->dev,
  770. "ERROR: dma_request_channel FAILS(Rx)\n");
  771. dma_release_channel(dma->chan_tx);
  772. dma->chan_tx = NULL;
  773. data->use_dma = 0;
  774. return;
  775. }
  776. dma->chan_rx = chan;
  777. }
  778. static void pch_spi_release_dma(struct pch_spi_data *data)
  779. {
  780. struct pch_spi_dma_ctrl *dma;
  781. dma = &data->dma;
  782. if (dma->chan_tx) {
  783. dma_release_channel(dma->chan_tx);
  784. dma->chan_tx = NULL;
  785. }
  786. if (dma->chan_rx) {
  787. dma_release_channel(dma->chan_rx);
  788. dma->chan_rx = NULL;
  789. }
  790. return;
  791. }
  792. static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
  793. {
  794. const u8 *tx_buf;
  795. const u16 *tx_sbuf;
  796. u8 *tx_dma_buf;
  797. u16 *tx_dma_sbuf;
  798. struct scatterlist *sg;
  799. struct dma_async_tx_descriptor *desc_tx;
  800. struct dma_async_tx_descriptor *desc_rx;
  801. int num;
  802. int i;
  803. int size;
  804. int rem;
  805. int head;
  806. unsigned long flags;
  807. struct pch_spi_dma_ctrl *dma;
  808. dma = &data->dma;
  809. /* set baud rate if needed */
  810. if (data->cur_trans->speed_hz) {
  811. dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
  812. spin_lock_irqsave(&data->lock, flags);
  813. pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
  814. spin_unlock_irqrestore(&data->lock, flags);
  815. }
  816. /* set bits per word if needed */
  817. if (data->cur_trans->bits_per_word &&
  818. (data->current_msg->spi->bits_per_word !=
  819. data->cur_trans->bits_per_word)) {
  820. dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
  821. spin_lock_irqsave(&data->lock, flags);
  822. pch_spi_set_bits_per_word(data->master,
  823. data->cur_trans->bits_per_word);
  824. spin_unlock_irqrestore(&data->lock, flags);
  825. *bpw = data->cur_trans->bits_per_word;
  826. } else {
  827. *bpw = data->current_msg->spi->bits_per_word;
  828. }
  829. data->bpw_len = data->cur_trans->len / (*bpw / 8);
  830. if (data->bpw_len > PCH_BUF_SIZE) {
  831. data->bpw_len = PCH_BUF_SIZE;
  832. data->cur_trans->len -= PCH_BUF_SIZE;
  833. }
  834. /* copy Tx Data */
  835. if (data->cur_trans->tx_buf != NULL) {
  836. if (*bpw == 8) {
  837. tx_buf = data->cur_trans->tx_buf;
  838. tx_dma_buf = dma->tx_buf_virt;
  839. for (i = 0; i < data->bpw_len; i++)
  840. *tx_dma_buf++ = *tx_buf++;
  841. } else {
  842. tx_sbuf = data->cur_trans->tx_buf;
  843. tx_dma_sbuf = dma->tx_buf_virt;
  844. for (i = 0; i < data->bpw_len; i++)
  845. *tx_dma_sbuf++ = *tx_sbuf++;
  846. }
  847. }
  848. /* Calculate Rx parameter for DMA transmitting */
  849. if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
  850. if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
  851. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  852. rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
  853. } else {
  854. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  855. rem = PCH_DMA_TRANS_SIZE;
  856. }
  857. size = PCH_DMA_TRANS_SIZE;
  858. } else {
  859. num = 1;
  860. size = data->bpw_len;
  861. rem = data->bpw_len;
  862. }
  863. dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
  864. __func__, num, size, rem);
  865. spin_lock_irqsave(&data->lock, flags);
  866. /* set receive fifo threshold and transmit fifo threshold */
  867. pch_spi_setclr_reg(data->master, PCH_SPCR,
  868. ((size - 1) << SPCR_RFIC_FIELD) |
  869. (PCH_TX_THOLD << SPCR_TFIC_FIELD),
  870. MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
  871. spin_unlock_irqrestore(&data->lock, flags);
  872. /* RX */
  873. dma->sg_rx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  874. sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
  875. /* offset, length setting */
  876. sg = dma->sg_rx_p;
  877. for (i = 0; i < num; i++, sg++) {
  878. if (i == (num - 2)) {
  879. sg->offset = size * i;
  880. sg->offset = sg->offset * (*bpw / 8);
  881. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
  882. sg->offset);
  883. sg_dma_len(sg) = rem;
  884. } else if (i == (num - 1)) {
  885. sg->offset = size * (i - 1) + rem;
  886. sg->offset = sg->offset * (*bpw / 8);
  887. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  888. sg->offset);
  889. sg_dma_len(sg) = size;
  890. } else {
  891. sg->offset = size * i;
  892. sg->offset = sg->offset * (*bpw / 8);
  893. sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
  894. sg->offset);
  895. sg_dma_len(sg) = size;
  896. }
  897. sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
  898. }
  899. sg = dma->sg_rx_p;
  900. desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
  901. num, DMA_DEV_TO_MEM,
  902. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  903. if (!desc_rx) {
  904. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  905. __func__);
  906. return;
  907. }
  908. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
  909. desc_rx->callback = pch_dma_rx_complete;
  910. desc_rx->callback_param = data;
  911. dma->nent = num;
  912. dma->desc_rx = desc_rx;
  913. /* Calculate Tx parameter for DMA transmitting */
  914. if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
  915. head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
  916. if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
  917. num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
  918. rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
  919. } else {
  920. num = data->bpw_len / PCH_DMA_TRANS_SIZE;
  921. rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
  922. PCH_DMA_TRANS_SIZE - head;
  923. }
  924. size = PCH_DMA_TRANS_SIZE;
  925. } else {
  926. num = 1;
  927. size = data->bpw_len;
  928. rem = data->bpw_len;
  929. head = 0;
  930. }
  931. dma->sg_tx_p = kzalloc(sizeof(struct scatterlist)*num, GFP_ATOMIC);
  932. sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
  933. /* offset, length setting */
  934. sg = dma->sg_tx_p;
  935. for (i = 0; i < num; i++, sg++) {
  936. if (i == 0) {
  937. sg->offset = 0;
  938. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
  939. sg->offset);
  940. sg_dma_len(sg) = size + head;
  941. } else if (i == (num - 1)) {
  942. sg->offset = head + size * i;
  943. sg->offset = sg->offset * (*bpw / 8);
  944. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
  945. sg->offset);
  946. sg_dma_len(sg) = rem;
  947. } else {
  948. sg->offset = head + size * i;
  949. sg->offset = sg->offset * (*bpw / 8);
  950. sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
  951. sg->offset);
  952. sg_dma_len(sg) = size;
  953. }
  954. sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
  955. }
  956. sg = dma->sg_tx_p;
  957. desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
  958. sg, num, DMA_MEM_TO_DEV,
  959. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  960. if (!desc_tx) {
  961. dev_err(&data->master->dev, "%s:device_prep_slave_sg Failed\n",
  962. __func__);
  963. return;
  964. }
  965. dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
  966. desc_tx->callback = NULL;
  967. desc_tx->callback_param = data;
  968. dma->nent = num;
  969. dma->desc_tx = desc_tx;
  970. dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
  971. spin_lock_irqsave(&data->lock, flags);
  972. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
  973. desc_rx->tx_submit(desc_rx);
  974. desc_tx->tx_submit(desc_tx);
  975. spin_unlock_irqrestore(&data->lock, flags);
  976. /* reset transfer complete flag */
  977. data->transfer_complete = false;
  978. }
  979. static void pch_spi_process_messages(struct work_struct *pwork)
  980. {
  981. struct spi_message *pmsg, *tmp;
  982. struct pch_spi_data *data;
  983. int bpw;
  984. data = container_of(pwork, struct pch_spi_data, work);
  985. dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
  986. spin_lock(&data->lock);
  987. /* check if suspend has been initiated;if yes flush queue */
  988. if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
  989. dev_dbg(&data->master->dev,
  990. "%s suspend/remove initiated, flushing queue\n", __func__);
  991. list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
  992. pmsg->status = -EIO;
  993. if (pmsg->complete) {
  994. spin_unlock(&data->lock);
  995. pmsg->complete(pmsg->context);
  996. spin_lock(&data->lock);
  997. }
  998. /* delete from queue */
  999. list_del_init(&pmsg->queue);
  1000. }
  1001. spin_unlock(&data->lock);
  1002. return;
  1003. }
  1004. data->bcurrent_msg_processing = true;
  1005. dev_dbg(&data->master->dev,
  1006. "%s Set data->bcurrent_msg_processing= true\n", __func__);
  1007. /* Get the message from the queue and delete it from there. */
  1008. data->current_msg = list_entry(data->queue.next, struct spi_message,
  1009. queue);
  1010. list_del_init(&data->current_msg->queue);
  1011. data->current_msg->status = 0;
  1012. pch_spi_select_chip(data, data->current_msg->spi);
  1013. spin_unlock(&data->lock);
  1014. if (data->use_dma)
  1015. pch_spi_request_dma(data,
  1016. data->current_msg->spi->bits_per_word);
  1017. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
  1018. do {
  1019. int cnt;
  1020. /* If we are already processing a message get the next
  1021. transfer structure from the message otherwise retrieve
  1022. the 1st transfer request from the message. */
  1023. spin_lock(&data->lock);
  1024. if (data->cur_trans == NULL) {
  1025. data->cur_trans =
  1026. list_entry(data->current_msg->transfers.next,
  1027. struct spi_transfer, transfer_list);
  1028. dev_dbg(&data->master->dev, "%s "
  1029. ":Getting 1st transfer message\n", __func__);
  1030. } else {
  1031. data->cur_trans =
  1032. list_entry(data->cur_trans->transfer_list.next,
  1033. struct spi_transfer, transfer_list);
  1034. dev_dbg(&data->master->dev, "%s "
  1035. ":Getting next transfer message\n", __func__);
  1036. }
  1037. spin_unlock(&data->lock);
  1038. if (!data->cur_trans->len)
  1039. goto out;
  1040. cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
  1041. data->save_total_len = data->cur_trans->len;
  1042. if (data->use_dma) {
  1043. int i;
  1044. char *save_rx_buf = data->cur_trans->rx_buf;
  1045. for (i = 0; i < cnt; i ++) {
  1046. pch_spi_handle_dma(data, &bpw);
  1047. if (!pch_spi_start_transfer(data)) {
  1048. data->transfer_complete = true;
  1049. data->current_msg->status = -EIO;
  1050. data->current_msg->complete
  1051. (data->current_msg->context);
  1052. data->bcurrent_msg_processing = false;
  1053. data->current_msg = NULL;
  1054. data->cur_trans = NULL;
  1055. goto out;
  1056. }
  1057. pch_spi_copy_rx_data_for_dma(data, bpw);
  1058. }
  1059. data->cur_trans->rx_buf = save_rx_buf;
  1060. } else {
  1061. pch_spi_set_tx(data, &bpw);
  1062. pch_spi_set_ir(data);
  1063. pch_spi_copy_rx_data(data, bpw);
  1064. kfree(data->pkt_rx_buff);
  1065. data->pkt_rx_buff = NULL;
  1066. kfree(data->pkt_tx_buff);
  1067. data->pkt_tx_buff = NULL;
  1068. }
  1069. /* increment message count */
  1070. data->cur_trans->len = data->save_total_len;
  1071. data->current_msg->actual_length += data->cur_trans->len;
  1072. dev_dbg(&data->master->dev,
  1073. "%s:data->current_msg->actual_length=%d\n",
  1074. __func__, data->current_msg->actual_length);
  1075. /* check for delay */
  1076. if (data->cur_trans->delay_usecs) {
  1077. dev_dbg(&data->master->dev, "%s:"
  1078. "delay in usec=%d\n", __func__,
  1079. data->cur_trans->delay_usecs);
  1080. udelay(data->cur_trans->delay_usecs);
  1081. }
  1082. spin_lock(&data->lock);
  1083. /* No more transfer in this message. */
  1084. if ((data->cur_trans->transfer_list.next) ==
  1085. &(data->current_msg->transfers)) {
  1086. pch_spi_nomore_transfer(data);
  1087. }
  1088. spin_unlock(&data->lock);
  1089. } while (data->cur_trans != NULL);
  1090. out:
  1091. pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
  1092. if (data->use_dma)
  1093. pch_spi_release_dma(data);
  1094. }
  1095. static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
  1096. struct pch_spi_data *data)
  1097. {
  1098. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1099. /* free workqueue */
  1100. if (data->wk != NULL) {
  1101. destroy_workqueue(data->wk);
  1102. data->wk = NULL;
  1103. dev_dbg(&board_dat->pdev->dev,
  1104. "%s destroy_workqueue invoked successfully\n",
  1105. __func__);
  1106. }
  1107. }
  1108. static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
  1109. struct pch_spi_data *data)
  1110. {
  1111. int retval = 0;
  1112. dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
  1113. /* create workqueue */
  1114. data->wk = create_singlethread_workqueue(KBUILD_MODNAME);
  1115. if (!data->wk) {
  1116. dev_err(&board_dat->pdev->dev,
  1117. "%s create_singlet hread_workqueue failed\n", __func__);
  1118. retval = -EBUSY;
  1119. goto err_return;
  1120. }
  1121. /* reset PCH SPI h/w */
  1122. pch_spi_reset(data->master);
  1123. dev_dbg(&board_dat->pdev->dev,
  1124. "%s pch_spi_reset invoked successfully\n", __func__);
  1125. dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
  1126. err_return:
  1127. if (retval != 0) {
  1128. dev_err(&board_dat->pdev->dev,
  1129. "%s FAIL:invoking pch_spi_free_resources\n", __func__);
  1130. pch_spi_free_resources(board_dat, data);
  1131. }
  1132. dev_dbg(&board_dat->pdev->dev, "%s Return=%d\n", __func__, retval);
  1133. return retval;
  1134. }
  1135. static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
  1136. struct pch_spi_data *data)
  1137. {
  1138. struct pch_spi_dma_ctrl *dma;
  1139. dma = &data->dma;
  1140. if (dma->tx_buf_dma)
  1141. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1142. dma->tx_buf_virt, dma->tx_buf_dma);
  1143. if (dma->rx_buf_dma)
  1144. dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
  1145. dma->rx_buf_virt, dma->rx_buf_dma);
  1146. return;
  1147. }
  1148. static void pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
  1149. struct pch_spi_data *data)
  1150. {
  1151. struct pch_spi_dma_ctrl *dma;
  1152. dma = &data->dma;
  1153. /* Get Consistent memory for Tx DMA */
  1154. dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1155. PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
  1156. /* Get Consistent memory for Rx DMA */
  1157. dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
  1158. PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
  1159. }
  1160. static int pch_spi_pd_probe(struct platform_device *plat_dev)
  1161. {
  1162. int ret;
  1163. struct spi_master *master;
  1164. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1165. struct pch_spi_data *data;
  1166. dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
  1167. master = spi_alloc_master(&board_dat->pdev->dev,
  1168. sizeof(struct pch_spi_data));
  1169. if (!master) {
  1170. dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
  1171. plat_dev->id);
  1172. return -ENOMEM;
  1173. }
  1174. data = spi_master_get_devdata(master);
  1175. data->master = master;
  1176. platform_set_drvdata(plat_dev, data);
  1177. /* baseaddress + address offset) */
  1178. data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
  1179. PCH_ADDRESS_SIZE * plat_dev->id;
  1180. data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
  1181. if (!data->io_remap_addr) {
  1182. dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
  1183. ret = -ENOMEM;
  1184. goto err_pci_iomap;
  1185. }
  1186. data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
  1187. dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
  1188. plat_dev->id, data->io_remap_addr);
  1189. /* initialize members of SPI master */
  1190. master->num_chipselect = PCH_MAX_CS;
  1191. master->transfer = pch_spi_transfer;
  1192. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1193. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  1194. master->max_speed_hz = PCH_MAX_BAUDRATE;
  1195. data->board_dat = board_dat;
  1196. data->plat_dev = plat_dev;
  1197. data->n_curnt_chip = 255;
  1198. data->status = STATUS_RUNNING;
  1199. data->ch = plat_dev->id;
  1200. data->use_dma = use_dma;
  1201. INIT_LIST_HEAD(&data->queue);
  1202. spin_lock_init(&data->lock);
  1203. INIT_WORK(&data->work, pch_spi_process_messages);
  1204. init_waitqueue_head(&data->wait);
  1205. ret = pch_spi_get_resources(board_dat, data);
  1206. if (ret) {
  1207. dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
  1208. goto err_spi_get_resources;
  1209. }
  1210. ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1211. IRQF_SHARED, KBUILD_MODNAME, data);
  1212. if (ret) {
  1213. dev_err(&plat_dev->dev,
  1214. "%s request_irq failed\n", __func__);
  1215. goto err_request_irq;
  1216. }
  1217. data->irq_reg_sts = true;
  1218. pch_spi_set_master_mode(master);
  1219. if (use_dma) {
  1220. dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
  1221. pch_alloc_dma_buf(board_dat, data);
  1222. }
  1223. ret = spi_register_master(master);
  1224. if (ret != 0) {
  1225. dev_err(&plat_dev->dev,
  1226. "%s spi_register_master FAILED\n", __func__);
  1227. goto err_spi_register_master;
  1228. }
  1229. return 0;
  1230. err_spi_register_master:
  1231. pch_free_dma_buf(board_dat, data);
  1232. free_irq(board_dat->pdev->irq, data);
  1233. err_request_irq:
  1234. pch_spi_free_resources(board_dat, data);
  1235. err_spi_get_resources:
  1236. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1237. err_pci_iomap:
  1238. spi_master_put(master);
  1239. return ret;
  1240. }
  1241. static int pch_spi_pd_remove(struct platform_device *plat_dev)
  1242. {
  1243. struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
  1244. struct pch_spi_data *data = platform_get_drvdata(plat_dev);
  1245. int count;
  1246. unsigned long flags;
  1247. dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
  1248. __func__, plat_dev->id, board_dat->pdev->irq);
  1249. if (use_dma)
  1250. pch_free_dma_buf(board_dat, data);
  1251. /* check for any pending messages; no action is taken if the queue
  1252. * is still full; but at least we tried. Unload anyway */
  1253. count = 500;
  1254. spin_lock_irqsave(&data->lock, flags);
  1255. data->status = STATUS_EXITING;
  1256. while ((list_empty(&data->queue) == 0) && --count) {
  1257. dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
  1258. __func__);
  1259. spin_unlock_irqrestore(&data->lock, flags);
  1260. msleep(PCH_SLEEP_TIME);
  1261. spin_lock_irqsave(&data->lock, flags);
  1262. }
  1263. spin_unlock_irqrestore(&data->lock, flags);
  1264. pch_spi_free_resources(board_dat, data);
  1265. /* disable interrupts & free IRQ */
  1266. if (data->irq_reg_sts) {
  1267. /* disable interrupts */
  1268. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1269. data->irq_reg_sts = false;
  1270. free_irq(board_dat->pdev->irq, data);
  1271. }
  1272. pci_iounmap(board_dat->pdev, data->io_remap_addr);
  1273. spi_unregister_master(data->master);
  1274. return 0;
  1275. }
  1276. #ifdef CONFIG_PM
  1277. static int pch_spi_pd_suspend(struct platform_device *pd_dev,
  1278. pm_message_t state)
  1279. {
  1280. u8 count;
  1281. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1282. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1283. dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
  1284. if (!board_dat) {
  1285. dev_err(&pd_dev->dev,
  1286. "%s pci_get_drvdata returned NULL\n", __func__);
  1287. return -EFAULT;
  1288. }
  1289. /* check if the current message is processed:
  1290. Only after thats done the transfer will be suspended */
  1291. count = 255;
  1292. while ((--count) > 0) {
  1293. if (!(data->bcurrent_msg_processing))
  1294. break;
  1295. msleep(PCH_SLEEP_TIME);
  1296. }
  1297. /* Free IRQ */
  1298. if (data->irq_reg_sts) {
  1299. /* disable all interrupts */
  1300. pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
  1301. pch_spi_reset(data->master);
  1302. free_irq(board_dat->pdev->irq, data);
  1303. data->irq_reg_sts = false;
  1304. dev_dbg(&pd_dev->dev,
  1305. "%s free_irq invoked successfully.\n", __func__);
  1306. }
  1307. return 0;
  1308. }
  1309. static int pch_spi_pd_resume(struct platform_device *pd_dev)
  1310. {
  1311. struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
  1312. struct pch_spi_data *data = platform_get_drvdata(pd_dev);
  1313. int retval;
  1314. if (!board_dat) {
  1315. dev_err(&pd_dev->dev,
  1316. "%s pci_get_drvdata returned NULL\n", __func__);
  1317. return -EFAULT;
  1318. }
  1319. if (!data->irq_reg_sts) {
  1320. /* register IRQ */
  1321. retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
  1322. IRQF_SHARED, KBUILD_MODNAME, data);
  1323. if (retval < 0) {
  1324. dev_err(&pd_dev->dev,
  1325. "%s request_irq failed\n", __func__);
  1326. return retval;
  1327. }
  1328. /* reset PCH SPI h/w */
  1329. pch_spi_reset(data->master);
  1330. pch_spi_set_master_mode(data->master);
  1331. data->irq_reg_sts = true;
  1332. }
  1333. return 0;
  1334. }
  1335. #else
  1336. #define pch_spi_pd_suspend NULL
  1337. #define pch_spi_pd_resume NULL
  1338. #endif
  1339. static struct platform_driver pch_spi_pd_driver = {
  1340. .driver = {
  1341. .name = "pch-spi",
  1342. .owner = THIS_MODULE,
  1343. },
  1344. .probe = pch_spi_pd_probe,
  1345. .remove = pch_spi_pd_remove,
  1346. .suspend = pch_spi_pd_suspend,
  1347. .resume = pch_spi_pd_resume
  1348. };
  1349. static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  1350. {
  1351. struct pch_spi_board_data *board_dat;
  1352. struct platform_device *pd_dev = NULL;
  1353. int retval;
  1354. int i;
  1355. struct pch_pd_dev_save *pd_dev_save;
  1356. pd_dev_save = kzalloc(sizeof(struct pch_pd_dev_save), GFP_KERNEL);
  1357. if (!pd_dev_save)
  1358. return -ENOMEM;
  1359. board_dat = kzalloc(sizeof(struct pch_spi_board_data), GFP_KERNEL);
  1360. if (!board_dat) {
  1361. retval = -ENOMEM;
  1362. goto err_no_mem;
  1363. }
  1364. retval = pci_request_regions(pdev, KBUILD_MODNAME);
  1365. if (retval) {
  1366. dev_err(&pdev->dev, "%s request_region failed\n", __func__);
  1367. goto pci_request_regions;
  1368. }
  1369. board_dat->pdev = pdev;
  1370. board_dat->num = id->driver_data;
  1371. pd_dev_save->num = id->driver_data;
  1372. pd_dev_save->board_dat = board_dat;
  1373. retval = pci_enable_device(pdev);
  1374. if (retval) {
  1375. dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
  1376. goto pci_enable_device;
  1377. }
  1378. for (i = 0; i < board_dat->num; i++) {
  1379. pd_dev = platform_device_alloc("pch-spi", i);
  1380. if (!pd_dev) {
  1381. dev_err(&pdev->dev, "platform_device_alloc failed\n");
  1382. retval = -ENOMEM;
  1383. goto err_platform_device;
  1384. }
  1385. pd_dev_save->pd_save[i] = pd_dev;
  1386. pd_dev->dev.parent = &pdev->dev;
  1387. retval = platform_device_add_data(pd_dev, board_dat,
  1388. sizeof(*board_dat));
  1389. if (retval) {
  1390. dev_err(&pdev->dev,
  1391. "platform_device_add_data failed\n");
  1392. platform_device_put(pd_dev);
  1393. goto err_platform_device;
  1394. }
  1395. retval = platform_device_add(pd_dev);
  1396. if (retval) {
  1397. dev_err(&pdev->dev, "platform_device_add failed\n");
  1398. platform_device_put(pd_dev);
  1399. goto err_platform_device;
  1400. }
  1401. }
  1402. pci_set_drvdata(pdev, pd_dev_save);
  1403. return 0;
  1404. err_platform_device:
  1405. while (--i >= 0)
  1406. platform_device_unregister(pd_dev_save->pd_save[i]);
  1407. pci_disable_device(pdev);
  1408. pci_enable_device:
  1409. pci_release_regions(pdev);
  1410. pci_request_regions:
  1411. kfree(board_dat);
  1412. err_no_mem:
  1413. kfree(pd_dev_save);
  1414. return retval;
  1415. }
  1416. static void pch_spi_remove(struct pci_dev *pdev)
  1417. {
  1418. int i;
  1419. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1420. dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
  1421. for (i = 0; i < pd_dev_save->num; i++)
  1422. platform_device_unregister(pd_dev_save->pd_save[i]);
  1423. pci_disable_device(pdev);
  1424. pci_release_regions(pdev);
  1425. kfree(pd_dev_save->board_dat);
  1426. kfree(pd_dev_save);
  1427. }
  1428. #ifdef CONFIG_PM
  1429. static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
  1430. {
  1431. int retval;
  1432. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1433. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1434. pd_dev_save->board_dat->suspend_sts = true;
  1435. /* save config space */
  1436. retval = pci_save_state(pdev);
  1437. if (retval == 0) {
  1438. pci_enable_wake(pdev, PCI_D3hot, 0);
  1439. pci_disable_device(pdev);
  1440. pci_set_power_state(pdev, PCI_D3hot);
  1441. } else {
  1442. dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
  1443. }
  1444. return retval;
  1445. }
  1446. static int pch_spi_resume(struct pci_dev *pdev)
  1447. {
  1448. int retval;
  1449. struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
  1450. dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
  1451. pci_set_power_state(pdev, PCI_D0);
  1452. pci_restore_state(pdev);
  1453. retval = pci_enable_device(pdev);
  1454. if (retval < 0) {
  1455. dev_err(&pdev->dev,
  1456. "%s pci_enable_device failed\n", __func__);
  1457. } else {
  1458. pci_enable_wake(pdev, PCI_D3hot, 0);
  1459. /* set suspend status to false */
  1460. pd_dev_save->board_dat->suspend_sts = false;
  1461. }
  1462. return retval;
  1463. }
  1464. #else
  1465. #define pch_spi_suspend NULL
  1466. #define pch_spi_resume NULL
  1467. #endif
  1468. static struct pci_driver pch_spi_pcidev_driver = {
  1469. .name = "pch_spi",
  1470. .id_table = pch_spi_pcidev_id,
  1471. .probe = pch_spi_probe,
  1472. .remove = pch_spi_remove,
  1473. .suspend = pch_spi_suspend,
  1474. .resume = pch_spi_resume,
  1475. };
  1476. static int __init pch_spi_init(void)
  1477. {
  1478. int ret;
  1479. ret = platform_driver_register(&pch_spi_pd_driver);
  1480. if (ret)
  1481. return ret;
  1482. ret = pci_register_driver(&pch_spi_pcidev_driver);
  1483. if (ret) {
  1484. platform_driver_unregister(&pch_spi_pd_driver);
  1485. return ret;
  1486. }
  1487. return 0;
  1488. }
  1489. module_init(pch_spi_init);
  1490. static void __exit pch_spi_exit(void)
  1491. {
  1492. pci_unregister_driver(&pch_spi_pcidev_driver);
  1493. platform_driver_unregister(&pch_spi_pd_driver);
  1494. }
  1495. module_exit(pch_spi_exit);
  1496. module_param(use_dma, int, 0644);
  1497. MODULE_PARM_DESC(use_dma,
  1498. "to use DMA for data transfers pass 1 else 0; default 1");
  1499. MODULE_LICENSE("GPL");
  1500. MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
  1501. MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);