spi-rspi.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177
  1. /*
  2. * SH RSPI driver
  3. *
  4. * Copyright (C) 2012, 2013 Renesas Solutions Corp.
  5. * Copyright (C) 2014 Glider bvba
  6. *
  7. * Based on spi-sh.c:
  8. * Copyright (C) 2011 Renesas Solutions Corp.
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; version 2 of the License.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22. *
  23. */
  24. #include <linux/module.h>
  25. #include <linux/kernel.h>
  26. #include <linux/sched.h>
  27. #include <linux/errno.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/platform_device.h>
  30. #include <linux/io.h>
  31. #include <linux/clk.h>
  32. #include <linux/dmaengine.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/of_device.h>
  35. #include <linux/pm_runtime.h>
  36. #include <linux/sh_dma.h>
  37. #include <linux/spi/spi.h>
  38. #include <linux/spi/rspi.h>
  39. #define RSPI_SPCR 0x00 /* Control Register */
  40. #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
  41. #define RSPI_SPPCR 0x02 /* Pin Control Register */
  42. #define RSPI_SPSR 0x03 /* Status Register */
  43. #define RSPI_SPDR 0x04 /* Data Register */
  44. #define RSPI_SPSCR 0x08 /* Sequence Control Register */
  45. #define RSPI_SPSSR 0x09 /* Sequence Status Register */
  46. #define RSPI_SPBR 0x0a /* Bit Rate Register */
  47. #define RSPI_SPDCR 0x0b /* Data Control Register */
  48. #define RSPI_SPCKD 0x0c /* Clock Delay Register */
  49. #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
  50. #define RSPI_SPND 0x0e /* Next-Access Delay Register */
  51. #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
  52. #define RSPI_SPCMD0 0x10 /* Command Register 0 */
  53. #define RSPI_SPCMD1 0x12 /* Command Register 1 */
  54. #define RSPI_SPCMD2 0x14 /* Command Register 2 */
  55. #define RSPI_SPCMD3 0x16 /* Command Register 3 */
  56. #define RSPI_SPCMD4 0x18 /* Command Register 4 */
  57. #define RSPI_SPCMD5 0x1a /* Command Register 5 */
  58. #define RSPI_SPCMD6 0x1c /* Command Register 6 */
  59. #define RSPI_SPCMD7 0x1e /* Command Register 7 */
  60. #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
  61. #define RSPI_NUM_SPCMD 8
  62. #define RSPI_RZ_NUM_SPCMD 4
  63. #define QSPI_NUM_SPCMD 4
  64. /* RSPI on RZ only */
  65. #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
  66. #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
  67. /* QSPI only */
  68. #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
  69. #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
  70. #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
  71. #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
  72. #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
  73. #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
  74. #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
  75. /* SPCR - Control Register */
  76. #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
  77. #define SPCR_SPE 0x40 /* Function Enable */
  78. #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
  79. #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
  80. #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
  81. #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
  82. /* RSPI on SH only */
  83. #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
  84. #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
  85. /* QSPI on R-Car M2 only */
  86. #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
  87. #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
  88. /* SSLP - Slave Select Polarity Register */
  89. #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
  90. #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
  91. /* SPPCR - Pin Control Register */
  92. #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
  93. #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
  94. #define SPPCR_SPOM 0x04
  95. #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
  96. #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
  97. #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  98. #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  99. /* SPSR - Status Register */
  100. #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
  101. #define SPSR_TEND 0x40 /* Transmit End */
  102. #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
  103. #define SPSR_PERF 0x08 /* Parity Error Flag */
  104. #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
  105. #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
  106. #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
  107. /* SPSCR - Sequence Control Register */
  108. #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
  109. /* SPSSR - Sequence Status Register */
  110. #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
  111. #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
  112. /* SPDCR - Data Control Register */
  113. #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
  114. #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
  115. #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
  116. #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
  117. #define SPDCR_SPLWORD SPDCR_SPLW1
  118. #define SPDCR_SPLBYTE SPDCR_SPLW0
  119. #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
  120. #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
  121. #define SPDCR_SLSEL1 0x08
  122. #define SPDCR_SLSEL0 0x04
  123. #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
  124. #define SPDCR_SPFC1 0x02
  125. #define SPDCR_SPFC0 0x01
  126. #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
  127. /* SPCKD - Clock Delay Register */
  128. #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
  129. /* SSLND - Slave Select Negation Delay Register */
  130. #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
  131. /* SPND - Next-Access Delay Register */
  132. #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
  133. /* SPCR2 - Control Register 2 */
  134. #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
  135. #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
  136. #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
  137. #define SPCR2_SPPE 0x01 /* Parity Enable */
  138. /* SPCMDn - Command Registers */
  139. #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
  140. #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
  141. #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
  142. #define SPCMD_LSBF 0x1000 /* LSB First */
  143. #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
  144. #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
  145. #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
  146. #define SPCMD_SPB_16BIT 0x0100
  147. #define SPCMD_SPB_20BIT 0x0000
  148. #define SPCMD_SPB_24BIT 0x0100
  149. #define SPCMD_SPB_32BIT 0x0200
  150. #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
  151. #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
  152. #define SPCMD_SPIMOD1 0x0040
  153. #define SPCMD_SPIMOD0 0x0020
  154. #define SPCMD_SPIMOD_SINGLE 0
  155. #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
  156. #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
  157. #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
  158. #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
  159. #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
  160. #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
  161. #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
  162. /* SPBFCR - Buffer Control Register */
  163. #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
  164. #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
  165. #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
  166. #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
  167. struct rspi_data {
  168. void __iomem *addr;
  169. u32 max_speed_hz;
  170. struct spi_master *master;
  171. wait_queue_head_t wait;
  172. struct clk *clk;
  173. u16 spcmd;
  174. u8 spsr;
  175. u8 sppcr;
  176. int rx_irq, tx_irq;
  177. const struct spi_ops *ops;
  178. unsigned dma_callbacked:1;
  179. unsigned byte_access:1;
  180. };
  181. static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
  182. {
  183. iowrite8(data, rspi->addr + offset);
  184. }
  185. static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
  186. {
  187. iowrite16(data, rspi->addr + offset);
  188. }
  189. static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
  190. {
  191. iowrite32(data, rspi->addr + offset);
  192. }
  193. static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
  194. {
  195. return ioread8(rspi->addr + offset);
  196. }
  197. static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
  198. {
  199. return ioread16(rspi->addr + offset);
  200. }
  201. static void rspi_write_data(const struct rspi_data *rspi, u16 data)
  202. {
  203. if (rspi->byte_access)
  204. rspi_write8(rspi, data, RSPI_SPDR);
  205. else /* 16 bit */
  206. rspi_write16(rspi, data, RSPI_SPDR);
  207. }
  208. static u16 rspi_read_data(const struct rspi_data *rspi)
  209. {
  210. if (rspi->byte_access)
  211. return rspi_read8(rspi, RSPI_SPDR);
  212. else /* 16 bit */
  213. return rspi_read16(rspi, RSPI_SPDR);
  214. }
  215. /* optional functions */
  216. struct spi_ops {
  217. int (*set_config_register)(struct rspi_data *rspi, int access_size);
  218. int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
  219. struct spi_transfer *xfer);
  220. u16 mode_bits;
  221. u16 flags;
  222. u16 fifo_size;
  223. };
  224. /*
  225. * functions for RSPI on legacy SH
  226. */
  227. static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
  228. {
  229. int spbr;
  230. /* Sets output mode, MOSI signal, and (optionally) loopback */
  231. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  232. /* Sets transfer bit rate */
  233. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  234. 2 * rspi->max_speed_hz) - 1;
  235. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  236. /* Disable dummy transmission, set 16-bit word access, 1 frame */
  237. rspi_write8(rspi, 0, RSPI_SPDCR);
  238. rspi->byte_access = 0;
  239. /* Sets RSPCK, SSL, next-access delay value */
  240. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  241. rspi_write8(rspi, 0x00, RSPI_SSLND);
  242. rspi_write8(rspi, 0x00, RSPI_SPND);
  243. /* Sets parity, interrupt mask */
  244. rspi_write8(rspi, 0x00, RSPI_SPCR2);
  245. /* Sets SPCMD */
  246. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  247. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  248. /* Sets RSPI mode */
  249. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  250. return 0;
  251. }
  252. /*
  253. * functions for RSPI on RZ
  254. */
  255. static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
  256. {
  257. int spbr;
  258. /* Sets output mode, MOSI signal, and (optionally) loopback */
  259. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  260. /* Sets transfer bit rate */
  261. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
  262. 2 * rspi->max_speed_hz) - 1;
  263. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  264. /* Disable dummy transmission, set byte access */
  265. rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
  266. rspi->byte_access = 1;
  267. /* Sets RSPCK, SSL, next-access delay value */
  268. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  269. rspi_write8(rspi, 0x00, RSPI_SSLND);
  270. rspi_write8(rspi, 0x00, RSPI_SPND);
  271. /* Sets SPCMD */
  272. rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
  273. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  274. /* Sets RSPI mode */
  275. rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
  276. return 0;
  277. }
  278. /*
  279. * functions for QSPI
  280. */
  281. static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
  282. {
  283. int spbr;
  284. /* Sets output mode, MOSI signal, and (optionally) loopback */
  285. rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
  286. /* Sets transfer bit rate */
  287. spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
  288. rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
  289. /* Disable dummy transmission, set byte access */
  290. rspi_write8(rspi, 0, RSPI_SPDCR);
  291. rspi->byte_access = 1;
  292. /* Sets RSPCK, SSL, next-access delay value */
  293. rspi_write8(rspi, 0x00, RSPI_SPCKD);
  294. rspi_write8(rspi, 0x00, RSPI_SSLND);
  295. rspi_write8(rspi, 0x00, RSPI_SPND);
  296. /* Data Length Setting */
  297. if (access_size == 8)
  298. rspi->spcmd |= SPCMD_SPB_8BIT;
  299. else if (access_size == 16)
  300. rspi->spcmd |= SPCMD_SPB_16BIT;
  301. else
  302. rspi->spcmd |= SPCMD_SPB_32BIT;
  303. rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
  304. /* Resets transfer data length */
  305. rspi_write32(rspi, 0, QSPI_SPBMUL0);
  306. /* Resets transmit and receive buffer */
  307. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  308. /* Sets buffer to allow normal operation */
  309. rspi_write8(rspi, 0x00, QSPI_SPBFCR);
  310. /* Sets SPCMD */
  311. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  312. /* Enables SPI function in master mode */
  313. rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
  314. return 0;
  315. }
  316. #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
  317. static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
  318. {
  319. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
  320. }
  321. static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
  322. {
  323. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
  324. }
  325. static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
  326. u8 enable_bit)
  327. {
  328. int ret;
  329. rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
  330. if (rspi->spsr & wait_mask)
  331. return 0;
  332. rspi_enable_irq(rspi, enable_bit);
  333. ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
  334. if (ret == 0 && !(rspi->spsr & wait_mask))
  335. return -ETIMEDOUT;
  336. return 0;
  337. }
  338. static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
  339. {
  340. return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
  341. }
  342. static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
  343. {
  344. return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
  345. }
  346. static int rspi_data_out(struct rspi_data *rspi, u8 data)
  347. {
  348. int error = rspi_wait_for_tx_empty(rspi);
  349. if (error < 0) {
  350. dev_err(&rspi->master->dev, "transmit timeout\n");
  351. return error;
  352. }
  353. rspi_write_data(rspi, data);
  354. return 0;
  355. }
  356. static int rspi_data_in(struct rspi_data *rspi)
  357. {
  358. int error;
  359. u8 data;
  360. error = rspi_wait_for_rx_full(rspi);
  361. if (error < 0) {
  362. dev_err(&rspi->master->dev, "receive timeout\n");
  363. return error;
  364. }
  365. data = rspi_read_data(rspi);
  366. return data;
  367. }
  368. static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
  369. unsigned int n)
  370. {
  371. while (n-- > 0) {
  372. if (tx) {
  373. int ret = rspi_data_out(rspi, *tx++);
  374. if (ret < 0)
  375. return ret;
  376. }
  377. if (rx) {
  378. int ret = rspi_data_in(rspi);
  379. if (ret < 0)
  380. return ret;
  381. *rx++ = ret;
  382. }
  383. }
  384. return 0;
  385. }
  386. static void rspi_dma_complete(void *arg)
  387. {
  388. struct rspi_data *rspi = arg;
  389. rspi->dma_callbacked = 1;
  390. wake_up_interruptible(&rspi->wait);
  391. }
  392. static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
  393. struct sg_table *rx)
  394. {
  395. struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
  396. u8 irq_mask = 0;
  397. unsigned int other_irq = 0;
  398. dma_cookie_t cookie;
  399. int ret;
  400. if (tx) {
  401. desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
  402. tx->sgl, tx->nents, DMA_TO_DEVICE,
  403. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  404. if (!desc_tx)
  405. return -EIO;
  406. irq_mask |= SPCR_SPTIE;
  407. }
  408. if (rx) {
  409. desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
  410. rx->sgl, rx->nents, DMA_FROM_DEVICE,
  411. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  412. if (!desc_rx)
  413. return -EIO;
  414. irq_mask |= SPCR_SPRIE;
  415. }
  416. /*
  417. * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
  418. * called. So, this driver disables the IRQ while DMA transfer.
  419. */
  420. if (tx)
  421. disable_irq(other_irq = rspi->tx_irq);
  422. if (rx && rspi->rx_irq != other_irq)
  423. disable_irq(rspi->rx_irq);
  424. rspi_enable_irq(rspi, irq_mask);
  425. rspi->dma_callbacked = 0;
  426. if (rx) {
  427. desc_rx->callback = rspi_dma_complete;
  428. desc_rx->callback_param = rspi;
  429. cookie = dmaengine_submit(desc_rx);
  430. if (dma_submit_error(cookie))
  431. return cookie;
  432. dma_async_issue_pending(rspi->master->dma_rx);
  433. }
  434. if (tx) {
  435. if (rx) {
  436. /* No callback */
  437. desc_tx->callback = NULL;
  438. } else {
  439. desc_tx->callback = rspi_dma_complete;
  440. desc_tx->callback_param = rspi;
  441. }
  442. cookie = dmaengine_submit(desc_tx);
  443. if (dma_submit_error(cookie))
  444. return cookie;
  445. dma_async_issue_pending(rspi->master->dma_tx);
  446. }
  447. ret = wait_event_interruptible_timeout(rspi->wait,
  448. rspi->dma_callbacked, HZ);
  449. if (ret > 0 && rspi->dma_callbacked)
  450. ret = 0;
  451. else if (!ret)
  452. ret = -ETIMEDOUT;
  453. rspi_disable_irq(rspi, irq_mask);
  454. if (tx)
  455. enable_irq(rspi->tx_irq);
  456. if (rx && rspi->rx_irq != other_irq)
  457. enable_irq(rspi->rx_irq);
  458. return ret;
  459. }
  460. static void rspi_receive_init(const struct rspi_data *rspi)
  461. {
  462. u8 spsr;
  463. spsr = rspi_read8(rspi, RSPI_SPSR);
  464. if (spsr & SPSR_SPRF)
  465. rspi_read_data(rspi); /* dummy read */
  466. if (spsr & SPSR_OVRF)
  467. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
  468. RSPI_SPSR);
  469. }
  470. static void rspi_rz_receive_init(const struct rspi_data *rspi)
  471. {
  472. rspi_receive_init(rspi);
  473. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
  474. rspi_write8(rspi, 0, RSPI_SPBFCR);
  475. }
  476. static void qspi_receive_init(const struct rspi_data *rspi)
  477. {
  478. u8 spsr;
  479. spsr = rspi_read8(rspi, RSPI_SPSR);
  480. if (spsr & SPSR_SPRF)
  481. rspi_read_data(rspi); /* dummy read */
  482. rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
  483. rspi_write8(rspi, 0, QSPI_SPBFCR);
  484. }
  485. static bool __rspi_can_dma(const struct rspi_data *rspi,
  486. const struct spi_transfer *xfer)
  487. {
  488. return xfer->len > rspi->ops->fifo_size;
  489. }
  490. static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
  491. struct spi_transfer *xfer)
  492. {
  493. struct rspi_data *rspi = spi_master_get_devdata(master);
  494. return __rspi_can_dma(rspi, xfer);
  495. }
  496. static int rspi_common_transfer(struct rspi_data *rspi,
  497. struct spi_transfer *xfer)
  498. {
  499. int ret;
  500. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
  501. /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
  502. return rspi_dma_transfer(rspi, &xfer->tx_sg,
  503. xfer->rx_buf ? &xfer->rx_sg : NULL);
  504. }
  505. ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
  506. if (ret < 0)
  507. return ret;
  508. /* Wait for the last transmission */
  509. rspi_wait_for_tx_empty(rspi);
  510. return 0;
  511. }
  512. static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  513. struct spi_transfer *xfer)
  514. {
  515. struct rspi_data *rspi = spi_master_get_devdata(master);
  516. u8 spcr;
  517. spcr = rspi_read8(rspi, RSPI_SPCR);
  518. if (xfer->rx_buf) {
  519. rspi_receive_init(rspi);
  520. spcr &= ~SPCR_TXMD;
  521. } else {
  522. spcr |= SPCR_TXMD;
  523. }
  524. rspi_write8(rspi, spcr, RSPI_SPCR);
  525. return rspi_common_transfer(rspi, xfer);
  526. }
  527. static int rspi_rz_transfer_one(struct spi_master *master,
  528. struct spi_device *spi,
  529. struct spi_transfer *xfer)
  530. {
  531. struct rspi_data *rspi = spi_master_get_devdata(master);
  532. int ret;
  533. rspi_rz_receive_init(rspi);
  534. return rspi_common_transfer(rspi, xfer);
  535. }
  536. static int qspi_transfer_out_in(struct rspi_data *rspi,
  537. struct spi_transfer *xfer)
  538. {
  539. qspi_receive_init(rspi);
  540. return rspi_common_transfer(rspi, xfer);
  541. }
  542. static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
  543. {
  544. int ret;
  545. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
  546. return rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
  547. ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
  548. if (ret < 0)
  549. return ret;
  550. /* Wait for the last transmission */
  551. rspi_wait_for_tx_empty(rspi);
  552. return 0;
  553. }
  554. static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
  555. {
  556. if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer))
  557. return rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
  558. return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
  559. }
  560. static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
  561. struct spi_transfer *xfer)
  562. {
  563. struct rspi_data *rspi = spi_master_get_devdata(master);
  564. if (spi->mode & SPI_LOOP) {
  565. return qspi_transfer_out_in(rspi, xfer);
  566. } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
  567. /* Quad or Dual SPI Write */
  568. return qspi_transfer_out(rspi, xfer);
  569. } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
  570. /* Quad or Dual SPI Read */
  571. return qspi_transfer_in(rspi, xfer);
  572. } else {
  573. /* Single SPI Transfer */
  574. return qspi_transfer_out_in(rspi, xfer);
  575. }
  576. }
  577. static int rspi_setup(struct spi_device *spi)
  578. {
  579. struct rspi_data *rspi = spi_master_get_devdata(spi->master);
  580. rspi->max_speed_hz = spi->max_speed_hz;
  581. rspi->spcmd = SPCMD_SSLKP;
  582. if (spi->mode & SPI_CPOL)
  583. rspi->spcmd |= SPCMD_CPOL;
  584. if (spi->mode & SPI_CPHA)
  585. rspi->spcmd |= SPCMD_CPHA;
  586. /* CMOS output mode and MOSI signal from previous transfer */
  587. rspi->sppcr = 0;
  588. if (spi->mode & SPI_LOOP)
  589. rspi->sppcr |= SPPCR_SPLP;
  590. set_config_register(rspi, 8);
  591. return 0;
  592. }
  593. static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
  594. {
  595. if (xfer->tx_buf)
  596. switch (xfer->tx_nbits) {
  597. case SPI_NBITS_QUAD:
  598. return SPCMD_SPIMOD_QUAD;
  599. case SPI_NBITS_DUAL:
  600. return SPCMD_SPIMOD_DUAL;
  601. default:
  602. return 0;
  603. }
  604. if (xfer->rx_buf)
  605. switch (xfer->rx_nbits) {
  606. case SPI_NBITS_QUAD:
  607. return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
  608. case SPI_NBITS_DUAL:
  609. return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
  610. default:
  611. return 0;
  612. }
  613. return 0;
  614. }
  615. static int qspi_setup_sequencer(struct rspi_data *rspi,
  616. const struct spi_message *msg)
  617. {
  618. const struct spi_transfer *xfer;
  619. unsigned int i = 0, len = 0;
  620. u16 current_mode = 0xffff, mode;
  621. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  622. mode = qspi_transfer_mode(xfer);
  623. if (mode == current_mode) {
  624. len += xfer->len;
  625. continue;
  626. }
  627. /* Transfer mode change */
  628. if (i) {
  629. /* Set transfer data length of previous transfer */
  630. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  631. }
  632. if (i >= QSPI_NUM_SPCMD) {
  633. dev_err(&msg->spi->dev,
  634. "Too many different transfer modes");
  635. return -EINVAL;
  636. }
  637. /* Program transfer mode for this transfer */
  638. rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
  639. current_mode = mode;
  640. len = xfer->len;
  641. i++;
  642. }
  643. if (i) {
  644. /* Set final transfer data length and sequence length */
  645. rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
  646. rspi_write8(rspi, i - 1, RSPI_SPSCR);
  647. }
  648. return 0;
  649. }
  650. static int rspi_prepare_message(struct spi_master *master,
  651. struct spi_message *msg)
  652. {
  653. struct rspi_data *rspi = spi_master_get_devdata(master);
  654. int ret;
  655. if (msg->spi->mode &
  656. (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
  657. /* Setup sequencer for messages with multiple transfer modes */
  658. ret = qspi_setup_sequencer(rspi, msg);
  659. if (ret < 0)
  660. return ret;
  661. }
  662. /* Enable SPI function in master mode */
  663. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
  664. return 0;
  665. }
  666. static int rspi_unprepare_message(struct spi_master *master,
  667. struct spi_message *msg)
  668. {
  669. struct rspi_data *rspi = spi_master_get_devdata(master);
  670. /* Disable SPI function */
  671. rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
  672. /* Reset sequencer for Single SPI Transfers */
  673. rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
  674. rspi_write8(rspi, 0, RSPI_SPSCR);
  675. return 0;
  676. }
  677. static irqreturn_t rspi_irq_mux(int irq, void *_sr)
  678. {
  679. struct rspi_data *rspi = _sr;
  680. u8 spsr;
  681. irqreturn_t ret = IRQ_NONE;
  682. u8 disable_irq = 0;
  683. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  684. if (spsr & SPSR_SPRF)
  685. disable_irq |= SPCR_SPRIE;
  686. if (spsr & SPSR_SPTEF)
  687. disable_irq |= SPCR_SPTIE;
  688. if (disable_irq) {
  689. ret = IRQ_HANDLED;
  690. rspi_disable_irq(rspi, disable_irq);
  691. wake_up(&rspi->wait);
  692. }
  693. return ret;
  694. }
  695. static irqreturn_t rspi_irq_rx(int irq, void *_sr)
  696. {
  697. struct rspi_data *rspi = _sr;
  698. u8 spsr;
  699. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  700. if (spsr & SPSR_SPRF) {
  701. rspi_disable_irq(rspi, SPCR_SPRIE);
  702. wake_up(&rspi->wait);
  703. return IRQ_HANDLED;
  704. }
  705. return 0;
  706. }
  707. static irqreturn_t rspi_irq_tx(int irq, void *_sr)
  708. {
  709. struct rspi_data *rspi = _sr;
  710. u8 spsr;
  711. rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
  712. if (spsr & SPSR_SPTEF) {
  713. rspi_disable_irq(rspi, SPCR_SPTIE);
  714. wake_up(&rspi->wait);
  715. return IRQ_HANDLED;
  716. }
  717. return 0;
  718. }
  719. static struct dma_chan *rspi_request_dma_chan(struct device *dev,
  720. enum dma_transfer_direction dir,
  721. unsigned int id,
  722. dma_addr_t port_addr)
  723. {
  724. dma_cap_mask_t mask;
  725. struct dma_chan *chan;
  726. struct dma_slave_config cfg;
  727. int ret;
  728. dma_cap_zero(mask);
  729. dma_cap_set(DMA_SLAVE, mask);
  730. chan = dma_request_channel(mask, shdma_chan_filter,
  731. (void *)(unsigned long)id);
  732. if (!chan) {
  733. dev_warn(dev, "dma_request_channel failed\n");
  734. return NULL;
  735. }
  736. memset(&cfg, 0, sizeof(cfg));
  737. cfg.slave_id = id;
  738. cfg.direction = dir;
  739. if (dir == DMA_MEM_TO_DEV)
  740. cfg.dst_addr = port_addr;
  741. else
  742. cfg.src_addr = port_addr;
  743. ret = dmaengine_slave_config(chan, &cfg);
  744. if (ret) {
  745. dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
  746. dma_release_channel(chan);
  747. return NULL;
  748. }
  749. return chan;
  750. }
  751. static int rspi_request_dma(struct device *dev, struct spi_master *master,
  752. const struct resource *res)
  753. {
  754. const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
  755. if (!rspi_pd || !rspi_pd->dma_rx_id || !rspi_pd->dma_tx_id)
  756. return 0; /* The driver assumes no error. */
  757. master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM,
  758. rspi_pd->dma_rx_id,
  759. res->start + RSPI_SPDR);
  760. if (!master->dma_rx)
  761. return -ENODEV;
  762. master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV,
  763. rspi_pd->dma_tx_id,
  764. res->start + RSPI_SPDR);
  765. if (!master->dma_tx) {
  766. dma_release_channel(master->dma_rx);
  767. master->dma_rx = NULL;
  768. return -ENODEV;
  769. }
  770. master->can_dma = rspi_can_dma;
  771. dev_info(dev, "DMA available");
  772. return 0;
  773. }
  774. static void rspi_release_dma(struct rspi_data *rspi)
  775. {
  776. if (rspi->master->dma_tx)
  777. dma_release_channel(rspi->master->dma_tx);
  778. if (rspi->master->dma_rx)
  779. dma_release_channel(rspi->master->dma_rx);
  780. }
  781. static int rspi_remove(struct platform_device *pdev)
  782. {
  783. struct rspi_data *rspi = platform_get_drvdata(pdev);
  784. rspi_release_dma(rspi);
  785. pm_runtime_disable(&pdev->dev);
  786. return 0;
  787. }
  788. static const struct spi_ops rspi_ops = {
  789. .set_config_register = rspi_set_config_register,
  790. .transfer_one = rspi_transfer_one,
  791. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  792. .flags = SPI_MASTER_MUST_TX,
  793. .fifo_size = 8,
  794. };
  795. static const struct spi_ops rspi_rz_ops = {
  796. .set_config_register = rspi_rz_set_config_register,
  797. .transfer_one = rspi_rz_transfer_one,
  798. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
  799. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  800. .fifo_size = 8, /* 8 for TX, 32 for RX */
  801. };
  802. static const struct spi_ops qspi_ops = {
  803. .set_config_register = qspi_set_config_register,
  804. .transfer_one = qspi_transfer_one,
  805. .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
  806. SPI_TX_DUAL | SPI_TX_QUAD |
  807. SPI_RX_DUAL | SPI_RX_QUAD,
  808. .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
  809. .fifo_size = 32,
  810. };
  811. #ifdef CONFIG_OF
  812. static const struct of_device_id rspi_of_match[] = {
  813. /* RSPI on legacy SH */
  814. { .compatible = "renesas,rspi", .data = &rspi_ops },
  815. /* RSPI on RZ/A1H */
  816. { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
  817. /* QSPI on R-Car Gen2 */
  818. { .compatible = "renesas,qspi", .data = &qspi_ops },
  819. { /* sentinel */ }
  820. };
  821. MODULE_DEVICE_TABLE(of, rspi_of_match);
  822. static int rspi_parse_dt(struct device *dev, struct spi_master *master)
  823. {
  824. u32 num_cs;
  825. int error;
  826. /* Parse DT properties */
  827. error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
  828. if (error) {
  829. dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
  830. return error;
  831. }
  832. master->num_chipselect = num_cs;
  833. return 0;
  834. }
  835. #else
  836. #define rspi_of_match NULL
  837. static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
  838. {
  839. return -EINVAL;
  840. }
  841. #endif /* CONFIG_OF */
  842. static int rspi_request_irq(struct device *dev, unsigned int irq,
  843. irq_handler_t handler, const char *suffix,
  844. void *dev_id)
  845. {
  846. const char *base = dev_name(dev);
  847. size_t len = strlen(base) + strlen(suffix) + 2;
  848. char *name = devm_kzalloc(dev, len, GFP_KERNEL);
  849. if (!name)
  850. return -ENOMEM;
  851. snprintf(name, len, "%s:%s", base, suffix);
  852. return devm_request_irq(dev, irq, handler, 0, name, dev_id);
  853. }
  854. static int rspi_probe(struct platform_device *pdev)
  855. {
  856. struct resource *res;
  857. struct spi_master *master;
  858. struct rspi_data *rspi;
  859. int ret;
  860. const struct of_device_id *of_id;
  861. const struct rspi_plat_data *rspi_pd;
  862. const struct spi_ops *ops;
  863. master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
  864. if (master == NULL) {
  865. dev_err(&pdev->dev, "spi_alloc_master error.\n");
  866. return -ENOMEM;
  867. }
  868. of_id = of_match_device(rspi_of_match, &pdev->dev);
  869. if (of_id) {
  870. ops = of_id->data;
  871. ret = rspi_parse_dt(&pdev->dev, master);
  872. if (ret)
  873. goto error1;
  874. } else {
  875. ops = (struct spi_ops *)pdev->id_entry->driver_data;
  876. rspi_pd = dev_get_platdata(&pdev->dev);
  877. if (rspi_pd && rspi_pd->num_chipselect)
  878. master->num_chipselect = rspi_pd->num_chipselect;
  879. else
  880. master->num_chipselect = 2; /* default */
  881. };
  882. /* ops parameter check */
  883. if (!ops->set_config_register) {
  884. dev_err(&pdev->dev, "there is no set_config_register\n");
  885. ret = -ENODEV;
  886. goto error1;
  887. }
  888. rspi = spi_master_get_devdata(master);
  889. platform_set_drvdata(pdev, rspi);
  890. rspi->ops = ops;
  891. rspi->master = master;
  892. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  893. rspi->addr = devm_ioremap_resource(&pdev->dev, res);
  894. if (IS_ERR(rspi->addr)) {
  895. ret = PTR_ERR(rspi->addr);
  896. goto error1;
  897. }
  898. rspi->clk = devm_clk_get(&pdev->dev, NULL);
  899. if (IS_ERR(rspi->clk)) {
  900. dev_err(&pdev->dev, "cannot get clock\n");
  901. ret = PTR_ERR(rspi->clk);
  902. goto error1;
  903. }
  904. pm_runtime_enable(&pdev->dev);
  905. init_waitqueue_head(&rspi->wait);
  906. master->bus_num = pdev->id;
  907. master->setup = rspi_setup;
  908. master->auto_runtime_pm = true;
  909. master->transfer_one = ops->transfer_one;
  910. master->prepare_message = rspi_prepare_message;
  911. master->unprepare_message = rspi_unprepare_message;
  912. master->mode_bits = ops->mode_bits;
  913. master->flags = ops->flags;
  914. master->dev.of_node = pdev->dev.of_node;
  915. ret = platform_get_irq_byname(pdev, "rx");
  916. if (ret < 0) {
  917. ret = platform_get_irq_byname(pdev, "mux");
  918. if (ret < 0)
  919. ret = platform_get_irq(pdev, 0);
  920. if (ret >= 0)
  921. rspi->rx_irq = rspi->tx_irq = ret;
  922. } else {
  923. rspi->rx_irq = ret;
  924. ret = platform_get_irq_byname(pdev, "tx");
  925. if (ret >= 0)
  926. rspi->tx_irq = ret;
  927. }
  928. if (ret < 0) {
  929. dev_err(&pdev->dev, "platform_get_irq error\n");
  930. goto error2;
  931. }
  932. if (rspi->rx_irq == rspi->tx_irq) {
  933. /* Single multiplexed interrupt */
  934. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
  935. "mux", rspi);
  936. } else {
  937. /* Multi-interrupt mode, only SPRI and SPTI are used */
  938. ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
  939. "rx", rspi);
  940. if (!ret)
  941. ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
  942. rspi_irq_tx, "tx", rspi);
  943. }
  944. if (ret < 0) {
  945. dev_err(&pdev->dev, "request_irq error\n");
  946. goto error2;
  947. }
  948. ret = rspi_request_dma(&pdev->dev, master, res);
  949. if (ret < 0)
  950. dev_warn(&pdev->dev, "DMA not available, using PIO\n");
  951. ret = devm_spi_register_master(&pdev->dev, master);
  952. if (ret < 0) {
  953. dev_err(&pdev->dev, "spi_register_master error.\n");
  954. goto error3;
  955. }
  956. dev_info(&pdev->dev, "probed\n");
  957. return 0;
  958. error3:
  959. rspi_release_dma(rspi);
  960. error2:
  961. pm_runtime_disable(&pdev->dev);
  962. error1:
  963. spi_master_put(master);
  964. return ret;
  965. }
  966. static struct platform_device_id spi_driver_ids[] = {
  967. { "rspi", (kernel_ulong_t)&rspi_ops },
  968. { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
  969. { "qspi", (kernel_ulong_t)&qspi_ops },
  970. {},
  971. };
  972. MODULE_DEVICE_TABLE(platform, spi_driver_ids);
  973. static struct platform_driver rspi_driver = {
  974. .probe = rspi_probe,
  975. .remove = rspi_remove,
  976. .id_table = spi_driver_ids,
  977. .driver = {
  978. .name = "renesas_spi",
  979. .owner = THIS_MODULE,
  980. .of_match_table = of_match_ptr(rspi_of_match),
  981. },
  982. };
  983. module_platform_driver(rspi_driver);
  984. MODULE_DESCRIPTION("Renesas RSPI bus driver");
  985. MODULE_LICENSE("GPL v2");
  986. MODULE_AUTHOR("Yoshihiro Shimoda");
  987. MODULE_ALIAS("platform:rspi");