spi-pxa2xx.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. * Copyright (C) 2013, Intel Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  18. */
  19. #include <linux/init.h>
  20. #include <linux/module.h>
  21. #include <linux/device.h>
  22. #include <linux/ioport.h>
  23. #include <linux/errno.h>
  24. #include <linux/err.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/spi/pxa2xx_spi.h>
  28. #include <linux/spi/spi.h>
  29. #include <linux/delay.h>
  30. #include <linux/gpio.h>
  31. #include <linux/slab.h>
  32. #include <linux/clk.h>
  33. #include <linux/pm_runtime.h>
  34. #include <linux/acpi.h>
  35. #include <asm/io.h>
  36. #include <asm/irq.h>
  37. #include <asm/delay.h>
  38. #include "spi-pxa2xx.h"
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define TIMOUT_DFLT 1000
  45. /*
  46. * for testing SSCR1 changes that require SSP restart, basically
  47. * everything except the service and interrupt enables, the pxa270 developer
  48. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  49. * list, but the PXA255 dev man says all bits without really meaning the
  50. * service and interrupt enables
  51. */
  52. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  53. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  54. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  55. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  56. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  57. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  58. #define LPSS_RX_THRESH_DFLT 64
  59. #define LPSS_TX_LOTHRESH_DFLT 160
  60. #define LPSS_TX_HITHRESH_DFLT 224
  61. /* Offset from drv_data->lpss_base */
  62. #define GENERAL_REG 0x08
  63. #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
  64. #define SSP_REG 0x0c
  65. #define SPI_CS_CONTROL 0x18
  66. #define SPI_CS_CONTROL_SW_MODE BIT(0)
  67. #define SPI_CS_CONTROL_CS_HIGH BIT(1)
  68. static bool is_lpss_ssp(const struct driver_data *drv_data)
  69. {
  70. return drv_data->ssp_type == LPSS_SSP;
  71. }
  72. /*
  73. * Read and write LPSS SSP private registers. Caller must first check that
  74. * is_lpss_ssp() returns true before these can be called.
  75. */
  76. static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
  77. {
  78. WARN_ON(!drv_data->lpss_base);
  79. return readl(drv_data->lpss_base + offset);
  80. }
  81. static void __lpss_ssp_write_priv(struct driver_data *drv_data,
  82. unsigned offset, u32 value)
  83. {
  84. WARN_ON(!drv_data->lpss_base);
  85. writel(value, drv_data->lpss_base + offset);
  86. }
  87. /*
  88. * lpss_ssp_setup - perform LPSS SSP specific setup
  89. * @drv_data: pointer to the driver private data
  90. *
  91. * Perform LPSS SSP specific setup. This function must be called first if
  92. * one is going to use LPSS SSP private registers.
  93. */
  94. static void lpss_ssp_setup(struct driver_data *drv_data)
  95. {
  96. unsigned offset = 0x400;
  97. u32 value, orig;
  98. if (!is_lpss_ssp(drv_data))
  99. return;
  100. /*
  101. * Perform auto-detection of the LPSS SSP private registers. They
  102. * can be either at 1k or 2k offset from the base address.
  103. */
  104. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  105. /* Test SPI_CS_CONTROL_SW_MODE bit enabling */
  106. value = orig | SPI_CS_CONTROL_SW_MODE;
  107. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  108. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  109. if (value != (orig | SPI_CS_CONTROL_SW_MODE)) {
  110. offset = 0x800;
  111. goto detection_done;
  112. }
  113. orig = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  114. /* Test SPI_CS_CONTROL_SW_MODE bit disabling */
  115. value = orig & ~SPI_CS_CONTROL_SW_MODE;
  116. writel(value, drv_data->ioaddr + offset + SPI_CS_CONTROL);
  117. value = readl(drv_data->ioaddr + offset + SPI_CS_CONTROL);
  118. if (value != (orig & ~SPI_CS_CONTROL_SW_MODE)) {
  119. offset = 0x800;
  120. goto detection_done;
  121. }
  122. detection_done:
  123. /* Now set the LPSS base */
  124. drv_data->lpss_base = drv_data->ioaddr + offset;
  125. /* Enable software chip select control */
  126. value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
  127. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  128. /* Enable multiblock DMA transfers */
  129. if (drv_data->master_info->enable_dma) {
  130. __lpss_ssp_write_priv(drv_data, SSP_REG, 1);
  131. value = __lpss_ssp_read_priv(drv_data, GENERAL_REG);
  132. value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
  133. __lpss_ssp_write_priv(drv_data, GENERAL_REG, value);
  134. }
  135. }
  136. static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
  137. {
  138. u32 value;
  139. if (!is_lpss_ssp(drv_data))
  140. return;
  141. value = __lpss_ssp_read_priv(drv_data, SPI_CS_CONTROL);
  142. if (enable)
  143. value &= ~SPI_CS_CONTROL_CS_HIGH;
  144. else
  145. value |= SPI_CS_CONTROL_CS_HIGH;
  146. __lpss_ssp_write_priv(drv_data, SPI_CS_CONTROL, value);
  147. }
  148. static void cs_assert(struct driver_data *drv_data)
  149. {
  150. struct chip_data *chip = drv_data->cur_chip;
  151. if (drv_data->ssp_type == CE4100_SSP) {
  152. write_SSSR(drv_data->cur_chip->frm, drv_data->ioaddr);
  153. return;
  154. }
  155. if (chip->cs_control) {
  156. chip->cs_control(PXA2XX_CS_ASSERT);
  157. return;
  158. }
  159. if (gpio_is_valid(chip->gpio_cs)) {
  160. gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
  161. return;
  162. }
  163. lpss_ssp_cs_control(drv_data, true);
  164. }
  165. static void cs_deassert(struct driver_data *drv_data)
  166. {
  167. struct chip_data *chip = drv_data->cur_chip;
  168. if (drv_data->ssp_type == CE4100_SSP)
  169. return;
  170. if (chip->cs_control) {
  171. chip->cs_control(PXA2XX_CS_DEASSERT);
  172. return;
  173. }
  174. if (gpio_is_valid(chip->gpio_cs)) {
  175. gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
  176. return;
  177. }
  178. lpss_ssp_cs_control(drv_data, false);
  179. }
  180. int pxa2xx_spi_flush(struct driver_data *drv_data)
  181. {
  182. unsigned long limit = loops_per_jiffy << 1;
  183. void __iomem *reg = drv_data->ioaddr;
  184. do {
  185. while (read_SSSR(reg) & SSSR_RNE) {
  186. read_SSDR(reg);
  187. }
  188. } while ((read_SSSR(reg) & SSSR_BSY) && --limit);
  189. write_SSSR_CS(drv_data, SSSR_ROR);
  190. return limit;
  191. }
  192. static int null_writer(struct driver_data *drv_data)
  193. {
  194. void __iomem *reg = drv_data->ioaddr;
  195. u8 n_bytes = drv_data->n_bytes;
  196. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  197. || (drv_data->tx == drv_data->tx_end))
  198. return 0;
  199. write_SSDR(0, reg);
  200. drv_data->tx += n_bytes;
  201. return 1;
  202. }
  203. static int null_reader(struct driver_data *drv_data)
  204. {
  205. void __iomem *reg = drv_data->ioaddr;
  206. u8 n_bytes = drv_data->n_bytes;
  207. while ((read_SSSR(reg) & SSSR_RNE)
  208. && (drv_data->rx < drv_data->rx_end)) {
  209. read_SSDR(reg);
  210. drv_data->rx += n_bytes;
  211. }
  212. return drv_data->rx == drv_data->rx_end;
  213. }
  214. static int u8_writer(struct driver_data *drv_data)
  215. {
  216. void __iomem *reg = drv_data->ioaddr;
  217. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  218. || (drv_data->tx == drv_data->tx_end))
  219. return 0;
  220. write_SSDR(*(u8 *)(drv_data->tx), reg);
  221. ++drv_data->tx;
  222. return 1;
  223. }
  224. static int u8_reader(struct driver_data *drv_data)
  225. {
  226. void __iomem *reg = drv_data->ioaddr;
  227. while ((read_SSSR(reg) & SSSR_RNE)
  228. && (drv_data->rx < drv_data->rx_end)) {
  229. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  230. ++drv_data->rx;
  231. }
  232. return drv_data->rx == drv_data->rx_end;
  233. }
  234. static int u16_writer(struct driver_data *drv_data)
  235. {
  236. void __iomem *reg = drv_data->ioaddr;
  237. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  238. || (drv_data->tx == drv_data->tx_end))
  239. return 0;
  240. write_SSDR(*(u16 *)(drv_data->tx), reg);
  241. drv_data->tx += 2;
  242. return 1;
  243. }
  244. static int u16_reader(struct driver_data *drv_data)
  245. {
  246. void __iomem *reg = drv_data->ioaddr;
  247. while ((read_SSSR(reg) & SSSR_RNE)
  248. && (drv_data->rx < drv_data->rx_end)) {
  249. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  250. drv_data->rx += 2;
  251. }
  252. return drv_data->rx == drv_data->rx_end;
  253. }
  254. static int u32_writer(struct driver_data *drv_data)
  255. {
  256. void __iomem *reg = drv_data->ioaddr;
  257. if (((read_SSSR(reg) & SSSR_TFL_MASK) == SSSR_TFL_MASK)
  258. || (drv_data->tx == drv_data->tx_end))
  259. return 0;
  260. write_SSDR(*(u32 *)(drv_data->tx), reg);
  261. drv_data->tx += 4;
  262. return 1;
  263. }
  264. static int u32_reader(struct driver_data *drv_data)
  265. {
  266. void __iomem *reg = drv_data->ioaddr;
  267. while ((read_SSSR(reg) & SSSR_RNE)
  268. && (drv_data->rx < drv_data->rx_end)) {
  269. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  270. drv_data->rx += 4;
  271. }
  272. return drv_data->rx == drv_data->rx_end;
  273. }
  274. void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
  275. {
  276. struct spi_message *msg = drv_data->cur_msg;
  277. struct spi_transfer *trans = drv_data->cur_transfer;
  278. /* Move to next transfer */
  279. if (trans->transfer_list.next != &msg->transfers) {
  280. drv_data->cur_transfer =
  281. list_entry(trans->transfer_list.next,
  282. struct spi_transfer,
  283. transfer_list);
  284. return RUNNING_STATE;
  285. } else
  286. return DONE_STATE;
  287. }
  288. /* caller already set message->status; dma and pio irqs are blocked */
  289. static void giveback(struct driver_data *drv_data)
  290. {
  291. struct spi_transfer* last_transfer;
  292. struct spi_message *msg;
  293. msg = drv_data->cur_msg;
  294. drv_data->cur_msg = NULL;
  295. drv_data->cur_transfer = NULL;
  296. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  297. transfer_list);
  298. /* Delay if requested before any change in chip select */
  299. if (last_transfer->delay_usecs)
  300. udelay(last_transfer->delay_usecs);
  301. /* Drop chip select UNLESS cs_change is true or we are returning
  302. * a message with an error, or next message is for another chip
  303. */
  304. if (!last_transfer->cs_change)
  305. cs_deassert(drv_data);
  306. else {
  307. struct spi_message *next_msg;
  308. /* Holding of cs was hinted, but we need to make sure
  309. * the next message is for the same chip. Don't waste
  310. * time with the following tests unless this was hinted.
  311. *
  312. * We cannot postpone this until pump_messages, because
  313. * after calling msg->complete (below) the driver that
  314. * sent the current message could be unloaded, which
  315. * could invalidate the cs_control() callback...
  316. */
  317. /* get a pointer to the next message, if any */
  318. next_msg = spi_get_next_queued_message(drv_data->master);
  319. /* see if the next and current messages point
  320. * to the same chip
  321. */
  322. if (next_msg && next_msg->spi != msg->spi)
  323. next_msg = NULL;
  324. if (!next_msg || msg->state == ERROR_STATE)
  325. cs_deassert(drv_data);
  326. }
  327. spi_finalize_current_message(drv_data->master);
  328. drv_data->cur_chip = NULL;
  329. }
  330. static void reset_sccr1(struct driver_data *drv_data)
  331. {
  332. void __iomem *reg = drv_data->ioaddr;
  333. struct chip_data *chip = drv_data->cur_chip;
  334. u32 sccr1_reg;
  335. sccr1_reg = read_SSCR1(reg) & ~drv_data->int_cr1;
  336. sccr1_reg &= ~SSCR1_RFT;
  337. sccr1_reg |= chip->threshold;
  338. write_SSCR1(sccr1_reg, reg);
  339. }
  340. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  341. {
  342. void __iomem *reg = drv_data->ioaddr;
  343. /* Stop and reset SSP */
  344. write_SSSR_CS(drv_data, drv_data->clear_sr);
  345. reset_sccr1(drv_data);
  346. if (!pxa25x_ssp_comp(drv_data))
  347. write_SSTO(0, reg);
  348. pxa2xx_spi_flush(drv_data);
  349. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  350. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  351. drv_data->cur_msg->state = ERROR_STATE;
  352. tasklet_schedule(&drv_data->pump_transfers);
  353. }
  354. static void int_transfer_complete(struct driver_data *drv_data)
  355. {
  356. void __iomem *reg = drv_data->ioaddr;
  357. /* Stop SSP */
  358. write_SSSR_CS(drv_data, drv_data->clear_sr);
  359. reset_sccr1(drv_data);
  360. if (!pxa25x_ssp_comp(drv_data))
  361. write_SSTO(0, reg);
  362. /* Update total byte transferred return count actual bytes read */
  363. drv_data->cur_msg->actual_length += drv_data->len -
  364. (drv_data->rx_end - drv_data->rx);
  365. /* Transfer delays and chip select release are
  366. * handled in pump_transfers or giveback
  367. */
  368. /* Move to next transfer */
  369. drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
  370. /* Schedule transfer tasklet */
  371. tasklet_schedule(&drv_data->pump_transfers);
  372. }
  373. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  374. {
  375. void __iomem *reg = drv_data->ioaddr;
  376. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  377. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  378. u32 irq_status = read_SSSR(reg) & irq_mask;
  379. if (irq_status & SSSR_ROR) {
  380. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  381. return IRQ_HANDLED;
  382. }
  383. if (irq_status & SSSR_TINT) {
  384. write_SSSR(SSSR_TINT, reg);
  385. if (drv_data->read(drv_data)) {
  386. int_transfer_complete(drv_data);
  387. return IRQ_HANDLED;
  388. }
  389. }
  390. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  391. do {
  392. if (drv_data->read(drv_data)) {
  393. int_transfer_complete(drv_data);
  394. return IRQ_HANDLED;
  395. }
  396. } while (drv_data->write(drv_data));
  397. if (drv_data->read(drv_data)) {
  398. int_transfer_complete(drv_data);
  399. return IRQ_HANDLED;
  400. }
  401. if (drv_data->tx == drv_data->tx_end) {
  402. u32 bytes_left;
  403. u32 sccr1_reg;
  404. sccr1_reg = read_SSCR1(reg);
  405. sccr1_reg &= ~SSCR1_TIE;
  406. /*
  407. * PXA25x_SSP has no timeout, set up rx threshould for the
  408. * remaining RX bytes.
  409. */
  410. if (pxa25x_ssp_comp(drv_data)) {
  411. sccr1_reg &= ~SSCR1_RFT;
  412. bytes_left = drv_data->rx_end - drv_data->rx;
  413. switch (drv_data->n_bytes) {
  414. case 4:
  415. bytes_left >>= 1;
  416. case 2:
  417. bytes_left >>= 1;
  418. }
  419. if (bytes_left > RX_THRESH_DFLT)
  420. bytes_left = RX_THRESH_DFLT;
  421. sccr1_reg |= SSCR1_RxTresh(bytes_left);
  422. }
  423. write_SSCR1(sccr1_reg, reg);
  424. }
  425. /* We did something */
  426. return IRQ_HANDLED;
  427. }
  428. static irqreturn_t ssp_int(int irq, void *dev_id)
  429. {
  430. struct driver_data *drv_data = dev_id;
  431. void __iomem *reg = drv_data->ioaddr;
  432. u32 sccr1_reg;
  433. u32 mask = drv_data->mask_sr;
  434. u32 status;
  435. /*
  436. * The IRQ might be shared with other peripherals so we must first
  437. * check that are we RPM suspended or not. If we are we assume that
  438. * the IRQ was not for us (we shouldn't be RPM suspended when the
  439. * interrupt is enabled).
  440. */
  441. if (pm_runtime_suspended(&drv_data->pdev->dev))
  442. return IRQ_NONE;
  443. /*
  444. * If the device is not yet in RPM suspended state and we get an
  445. * interrupt that is meant for another device, check if status bits
  446. * are all set to one. That means that the device is already
  447. * powered off.
  448. */
  449. status = read_SSSR(reg);
  450. if (status == ~0)
  451. return IRQ_NONE;
  452. sccr1_reg = read_SSCR1(reg);
  453. /* Ignore possible writes if we don't need to write */
  454. if (!(sccr1_reg & SSCR1_TIE))
  455. mask &= ~SSSR_TFS;
  456. if (!(status & mask))
  457. return IRQ_NONE;
  458. if (!drv_data->cur_msg) {
  459. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  460. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  461. if (!pxa25x_ssp_comp(drv_data))
  462. write_SSTO(0, reg);
  463. write_SSSR_CS(drv_data, drv_data->clear_sr);
  464. dev_err(&drv_data->pdev->dev,
  465. "bad message state in interrupt handler\n");
  466. /* Never fail */
  467. return IRQ_HANDLED;
  468. }
  469. return drv_data->transfer_handler(drv_data);
  470. }
  471. static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
  472. {
  473. unsigned long ssp_clk = drv_data->max_clk_rate;
  474. const struct ssp_device *ssp = drv_data->ssp;
  475. rate = min_t(int, ssp_clk, rate);
  476. if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
  477. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  478. else
  479. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  480. }
  481. static void pump_transfers(unsigned long data)
  482. {
  483. struct driver_data *drv_data = (struct driver_data *)data;
  484. struct spi_message *message = NULL;
  485. struct spi_transfer *transfer = NULL;
  486. struct spi_transfer *previous = NULL;
  487. struct chip_data *chip = NULL;
  488. void __iomem *reg = drv_data->ioaddr;
  489. u32 clk_div = 0;
  490. u8 bits = 0;
  491. u32 speed = 0;
  492. u32 cr0;
  493. u32 cr1;
  494. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  495. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  496. /* Get current state information */
  497. message = drv_data->cur_msg;
  498. transfer = drv_data->cur_transfer;
  499. chip = drv_data->cur_chip;
  500. /* Handle for abort */
  501. if (message->state == ERROR_STATE) {
  502. message->status = -EIO;
  503. giveback(drv_data);
  504. return;
  505. }
  506. /* Handle end of message */
  507. if (message->state == DONE_STATE) {
  508. message->status = 0;
  509. giveback(drv_data);
  510. return;
  511. }
  512. /* Delay if requested at end of transfer before CS change */
  513. if (message->state == RUNNING_STATE) {
  514. previous = list_entry(transfer->transfer_list.prev,
  515. struct spi_transfer,
  516. transfer_list);
  517. if (previous->delay_usecs)
  518. udelay(previous->delay_usecs);
  519. /* Drop chip select only if cs_change is requested */
  520. if (previous->cs_change)
  521. cs_deassert(drv_data);
  522. }
  523. /* Check if we can DMA this transfer */
  524. if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
  525. /* reject already-mapped transfers; PIO won't always work */
  526. if (message->is_dma_mapped
  527. || transfer->rx_dma || transfer->tx_dma) {
  528. dev_err(&drv_data->pdev->dev,
  529. "pump_transfers: mapped transfer length of "
  530. "%u is greater than %d\n",
  531. transfer->len, MAX_DMA_LEN);
  532. message->status = -EINVAL;
  533. giveback(drv_data);
  534. return;
  535. }
  536. /* warn ... we force this to PIO mode */
  537. dev_warn_ratelimited(&message->spi->dev,
  538. "pump_transfers: DMA disabled for transfer length %ld "
  539. "greater than %d\n",
  540. (long)drv_data->len, MAX_DMA_LEN);
  541. }
  542. /* Setup the transfer state based on the type of transfer */
  543. if (pxa2xx_spi_flush(drv_data) == 0) {
  544. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  545. message->status = -EIO;
  546. giveback(drv_data);
  547. return;
  548. }
  549. drv_data->n_bytes = chip->n_bytes;
  550. drv_data->tx = (void *)transfer->tx_buf;
  551. drv_data->tx_end = drv_data->tx + transfer->len;
  552. drv_data->rx = transfer->rx_buf;
  553. drv_data->rx_end = drv_data->rx + transfer->len;
  554. drv_data->rx_dma = transfer->rx_dma;
  555. drv_data->tx_dma = transfer->tx_dma;
  556. drv_data->len = transfer->len;
  557. drv_data->write = drv_data->tx ? chip->write : null_writer;
  558. drv_data->read = drv_data->rx ? chip->read : null_reader;
  559. /* Change speed and bit per word on a per transfer */
  560. cr0 = chip->cr0;
  561. if (transfer->speed_hz || transfer->bits_per_word) {
  562. bits = chip->bits_per_word;
  563. speed = chip->speed_hz;
  564. if (transfer->speed_hz)
  565. speed = transfer->speed_hz;
  566. if (transfer->bits_per_word)
  567. bits = transfer->bits_per_word;
  568. clk_div = ssp_get_clk_div(drv_data, speed);
  569. if (bits <= 8) {
  570. drv_data->n_bytes = 1;
  571. drv_data->read = drv_data->read != null_reader ?
  572. u8_reader : null_reader;
  573. drv_data->write = drv_data->write != null_writer ?
  574. u8_writer : null_writer;
  575. } else if (bits <= 16) {
  576. drv_data->n_bytes = 2;
  577. drv_data->read = drv_data->read != null_reader ?
  578. u16_reader : null_reader;
  579. drv_data->write = drv_data->write != null_writer ?
  580. u16_writer : null_writer;
  581. } else if (bits <= 32) {
  582. drv_data->n_bytes = 4;
  583. drv_data->read = drv_data->read != null_reader ?
  584. u32_reader : null_reader;
  585. drv_data->write = drv_data->write != null_writer ?
  586. u32_writer : null_writer;
  587. }
  588. /* if bits/word is changed in dma mode, then must check the
  589. * thresholds and burst also */
  590. if (chip->enable_dma) {
  591. if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
  592. message->spi,
  593. bits, &dma_burst,
  594. &dma_thresh))
  595. dev_warn_ratelimited(&message->spi->dev,
  596. "pump_transfers: DMA burst size reduced to match bits_per_word\n");
  597. }
  598. cr0 = clk_div
  599. | SSCR0_Motorola
  600. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  601. | SSCR0_SSE
  602. | (bits > 16 ? SSCR0_EDSS : 0);
  603. }
  604. message->state = RUNNING_STATE;
  605. drv_data->dma_mapped = 0;
  606. if (pxa2xx_spi_dma_is_possible(drv_data->len))
  607. drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
  608. if (drv_data->dma_mapped) {
  609. /* Ensure we have the correct interrupt handler */
  610. drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
  611. pxa2xx_spi_dma_prepare(drv_data, dma_burst);
  612. /* Clear status and start DMA engine */
  613. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  614. write_SSSR(drv_data->clear_sr, reg);
  615. pxa2xx_spi_dma_start(drv_data);
  616. } else {
  617. /* Ensure we have the correct interrupt handler */
  618. drv_data->transfer_handler = interrupt_transfer;
  619. /* Clear status */
  620. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  621. write_SSSR_CS(drv_data, drv_data->clear_sr);
  622. }
  623. if (is_lpss_ssp(drv_data)) {
  624. if ((read_SSIRF(reg) & 0xff) != chip->lpss_rx_threshold)
  625. write_SSIRF(chip->lpss_rx_threshold, reg);
  626. if ((read_SSITF(reg) & 0xffff) != chip->lpss_tx_threshold)
  627. write_SSITF(chip->lpss_tx_threshold, reg);
  628. }
  629. /* see if we need to reload the config registers */
  630. if ((read_SSCR0(reg) != cr0)
  631. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  632. (cr1 & SSCR1_CHANGE_MASK)) {
  633. /* stop the SSP, and update the other bits */
  634. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  635. if (!pxa25x_ssp_comp(drv_data))
  636. write_SSTO(chip->timeout, reg);
  637. /* first set CR1 without interrupt and service enables */
  638. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  639. /* restart the SSP */
  640. write_SSCR0(cr0, reg);
  641. } else {
  642. if (!pxa25x_ssp_comp(drv_data))
  643. write_SSTO(chip->timeout, reg);
  644. }
  645. cs_assert(drv_data);
  646. /* after chip select, release the data by enabling service
  647. * requests and interrupts, without changing any mode bits */
  648. write_SSCR1(cr1, reg);
  649. }
  650. static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
  651. struct spi_message *msg)
  652. {
  653. struct driver_data *drv_data = spi_master_get_devdata(master);
  654. drv_data->cur_msg = msg;
  655. /* Initial message state*/
  656. drv_data->cur_msg->state = START_STATE;
  657. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  658. struct spi_transfer,
  659. transfer_list);
  660. /* prepare to setup the SSP, in pump_transfers, using the per
  661. * chip configuration */
  662. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  663. /* Mark as busy and launch transfers */
  664. tasklet_schedule(&drv_data->pump_transfers);
  665. return 0;
  666. }
  667. static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
  668. {
  669. struct driver_data *drv_data = spi_master_get_devdata(master);
  670. /* Disable the SSP now */
  671. write_SSCR0(read_SSCR0(drv_data->ioaddr) & ~SSCR0_SSE,
  672. drv_data->ioaddr);
  673. return 0;
  674. }
  675. static int setup_cs(struct spi_device *spi, struct chip_data *chip,
  676. struct pxa2xx_spi_chip *chip_info)
  677. {
  678. int err = 0;
  679. if (chip == NULL || chip_info == NULL)
  680. return 0;
  681. /* NOTE: setup() can be called multiple times, possibly with
  682. * different chip_info, release previously requested GPIO
  683. */
  684. if (gpio_is_valid(chip->gpio_cs))
  685. gpio_free(chip->gpio_cs);
  686. /* If (*cs_control) is provided, ignore GPIO chip select */
  687. if (chip_info->cs_control) {
  688. chip->cs_control = chip_info->cs_control;
  689. return 0;
  690. }
  691. if (gpio_is_valid(chip_info->gpio_cs)) {
  692. err = gpio_request(chip_info->gpio_cs, "SPI_CS");
  693. if (err) {
  694. dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
  695. chip_info->gpio_cs);
  696. return err;
  697. }
  698. chip->gpio_cs = chip_info->gpio_cs;
  699. chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
  700. err = gpio_direction_output(chip->gpio_cs,
  701. !chip->gpio_cs_inverted);
  702. }
  703. return err;
  704. }
  705. static int setup(struct spi_device *spi)
  706. {
  707. struct pxa2xx_spi_chip *chip_info = NULL;
  708. struct chip_data *chip;
  709. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  710. unsigned int clk_div;
  711. uint tx_thres, tx_hi_thres, rx_thres;
  712. if (is_lpss_ssp(drv_data)) {
  713. tx_thres = LPSS_TX_LOTHRESH_DFLT;
  714. tx_hi_thres = LPSS_TX_HITHRESH_DFLT;
  715. rx_thres = LPSS_RX_THRESH_DFLT;
  716. } else {
  717. tx_thres = TX_THRESH_DFLT;
  718. tx_hi_thres = 0;
  719. rx_thres = RX_THRESH_DFLT;
  720. }
  721. /* Only alloc on first setup */
  722. chip = spi_get_ctldata(spi);
  723. if (!chip) {
  724. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  725. if (!chip)
  726. return -ENOMEM;
  727. if (drv_data->ssp_type == CE4100_SSP) {
  728. if (spi->chip_select > 4) {
  729. dev_err(&spi->dev,
  730. "failed setup: cs number must not be > 4.\n");
  731. kfree(chip);
  732. return -EINVAL;
  733. }
  734. chip->frm = spi->chip_select;
  735. } else
  736. chip->gpio_cs = -1;
  737. chip->enable_dma = 0;
  738. chip->timeout = TIMOUT_DFLT;
  739. }
  740. /* protocol drivers may change the chip settings, so...
  741. * if chip_info exists, use it */
  742. chip_info = spi->controller_data;
  743. /* chip_info isn't always needed */
  744. chip->cr1 = 0;
  745. if (chip_info) {
  746. if (chip_info->timeout)
  747. chip->timeout = chip_info->timeout;
  748. if (chip_info->tx_threshold)
  749. tx_thres = chip_info->tx_threshold;
  750. if (chip_info->tx_hi_threshold)
  751. tx_hi_thres = chip_info->tx_hi_threshold;
  752. if (chip_info->rx_threshold)
  753. rx_thres = chip_info->rx_threshold;
  754. chip->enable_dma = drv_data->master_info->enable_dma;
  755. chip->dma_threshold = 0;
  756. if (chip_info->enable_loopback)
  757. chip->cr1 = SSCR1_LBM;
  758. } else if (ACPI_HANDLE(&spi->dev)) {
  759. /*
  760. * Slave devices enumerated from ACPI namespace don't
  761. * usually have chip_info but we still might want to use
  762. * DMA with them.
  763. */
  764. chip->enable_dma = drv_data->master_info->enable_dma;
  765. }
  766. chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
  767. (SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
  768. chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
  769. chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
  770. | SSITF_TxHiThresh(tx_hi_thres);
  771. /* set dma burst and threshold outside of chip_info path so that if
  772. * chip_info goes away after setting chip->enable_dma, the
  773. * burst and threshold can still respond to changes in bits_per_word */
  774. if (chip->enable_dma) {
  775. /* set up legal burst and threshold for dma */
  776. if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
  777. spi->bits_per_word,
  778. &chip->dma_burst_size,
  779. &chip->dma_threshold)) {
  780. dev_warn(&spi->dev,
  781. "in setup: DMA burst size reduced to match bits_per_word\n");
  782. }
  783. }
  784. clk_div = ssp_get_clk_div(drv_data, spi->max_speed_hz);
  785. chip->speed_hz = spi->max_speed_hz;
  786. chip->cr0 = clk_div
  787. | SSCR0_Motorola
  788. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  789. spi->bits_per_word - 16 : spi->bits_per_word)
  790. | SSCR0_SSE
  791. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  792. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  793. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  794. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  795. if (spi->mode & SPI_LOOP)
  796. chip->cr1 |= SSCR1_LBM;
  797. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  798. if (!pxa25x_ssp_comp(drv_data))
  799. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  800. drv_data->max_clk_rate
  801. / (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
  802. chip->enable_dma ? "DMA" : "PIO");
  803. else
  804. dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
  805. drv_data->max_clk_rate / 2
  806. / (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
  807. chip->enable_dma ? "DMA" : "PIO");
  808. if (spi->bits_per_word <= 8) {
  809. chip->n_bytes = 1;
  810. chip->read = u8_reader;
  811. chip->write = u8_writer;
  812. } else if (spi->bits_per_word <= 16) {
  813. chip->n_bytes = 2;
  814. chip->read = u16_reader;
  815. chip->write = u16_writer;
  816. } else if (spi->bits_per_word <= 32) {
  817. chip->cr0 |= SSCR0_EDSS;
  818. chip->n_bytes = 4;
  819. chip->read = u32_reader;
  820. chip->write = u32_writer;
  821. }
  822. chip->bits_per_word = spi->bits_per_word;
  823. spi_set_ctldata(spi, chip);
  824. if (drv_data->ssp_type == CE4100_SSP)
  825. return 0;
  826. return setup_cs(spi, chip, chip_info);
  827. }
  828. static void cleanup(struct spi_device *spi)
  829. {
  830. struct chip_data *chip = spi_get_ctldata(spi);
  831. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  832. if (!chip)
  833. return;
  834. if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
  835. gpio_free(chip->gpio_cs);
  836. kfree(chip);
  837. }
  838. #ifdef CONFIG_ACPI
  839. static struct pxa2xx_spi_master *
  840. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  841. {
  842. struct pxa2xx_spi_master *pdata;
  843. struct acpi_device *adev;
  844. struct ssp_device *ssp;
  845. struct resource *res;
  846. int devid;
  847. if (!ACPI_HANDLE(&pdev->dev) ||
  848. acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
  849. return NULL;
  850. pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
  851. if (!pdata)
  852. return NULL;
  853. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  854. if (!res)
  855. return NULL;
  856. ssp = &pdata->ssp;
  857. ssp->phys_base = res->start;
  858. ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
  859. if (IS_ERR(ssp->mmio_base))
  860. return NULL;
  861. ssp->clk = devm_clk_get(&pdev->dev, NULL);
  862. ssp->irq = platform_get_irq(pdev, 0);
  863. ssp->type = LPSS_SSP;
  864. ssp->pdev = pdev;
  865. ssp->port_id = -1;
  866. if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
  867. ssp->port_id = devid;
  868. pdata->num_chipselect = 1;
  869. pdata->enable_dma = true;
  870. pdata->tx_chan_id = -1;
  871. pdata->rx_chan_id = -1;
  872. return pdata;
  873. }
  874. static struct acpi_device_id pxa2xx_spi_acpi_match[] = {
  875. { "INT33C0", 0 },
  876. { "INT33C1", 0 },
  877. { "INT3430", 0 },
  878. { "INT3431", 0 },
  879. { "80860F0E", 0 },
  880. { },
  881. };
  882. MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
  883. #else
  884. static inline struct pxa2xx_spi_master *
  885. pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
  886. {
  887. return NULL;
  888. }
  889. #endif
  890. static int pxa2xx_spi_probe(struct platform_device *pdev)
  891. {
  892. struct device *dev = &pdev->dev;
  893. struct pxa2xx_spi_master *platform_info;
  894. struct spi_master *master;
  895. struct driver_data *drv_data;
  896. struct ssp_device *ssp;
  897. int status;
  898. platform_info = dev_get_platdata(dev);
  899. if (!platform_info) {
  900. platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
  901. if (!platform_info) {
  902. dev_err(&pdev->dev, "missing platform data\n");
  903. return -ENODEV;
  904. }
  905. }
  906. ssp = pxa_ssp_request(pdev->id, pdev->name);
  907. if (!ssp)
  908. ssp = &platform_info->ssp;
  909. if (!ssp->mmio_base) {
  910. dev_err(&pdev->dev, "failed to get ssp\n");
  911. return -ENODEV;
  912. }
  913. /* Allocate master with space for drv_data and null dma buffer */
  914. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  915. if (!master) {
  916. dev_err(&pdev->dev, "cannot alloc spi_master\n");
  917. pxa_ssp_free(ssp);
  918. return -ENOMEM;
  919. }
  920. drv_data = spi_master_get_devdata(master);
  921. drv_data->master = master;
  922. drv_data->master_info = platform_info;
  923. drv_data->pdev = pdev;
  924. drv_data->ssp = ssp;
  925. master->dev.parent = &pdev->dev;
  926. master->dev.of_node = pdev->dev.of_node;
  927. /* the spi->mode bits understood by this driver: */
  928. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
  929. master->bus_num = ssp->port_id;
  930. master->num_chipselect = platform_info->num_chipselect;
  931. master->dma_alignment = DMA_ALIGNMENT;
  932. master->cleanup = cleanup;
  933. master->setup = setup;
  934. master->transfer_one_message = pxa2xx_spi_transfer_one_message;
  935. master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
  936. master->auto_runtime_pm = true;
  937. drv_data->ssp_type = ssp->type;
  938. drv_data->null_dma_buf = (u32 *)PTR_ALIGN(&drv_data[1], DMA_ALIGNMENT);
  939. drv_data->ioaddr = ssp->mmio_base;
  940. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  941. if (pxa25x_ssp_comp(drv_data)) {
  942. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
  943. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  944. drv_data->dma_cr1 = 0;
  945. drv_data->clear_sr = SSSR_ROR;
  946. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  947. } else {
  948. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
  949. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  950. drv_data->dma_cr1 = DEFAULT_DMA_CR1;
  951. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  952. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  953. }
  954. status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
  955. drv_data);
  956. if (status < 0) {
  957. dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
  958. goto out_error_master_alloc;
  959. }
  960. /* Setup DMA if requested */
  961. drv_data->tx_channel = -1;
  962. drv_data->rx_channel = -1;
  963. if (platform_info->enable_dma) {
  964. status = pxa2xx_spi_dma_setup(drv_data);
  965. if (status) {
  966. dev_dbg(dev, "no DMA channels available, using PIO\n");
  967. platform_info->enable_dma = false;
  968. }
  969. }
  970. /* Enable SOC clock */
  971. clk_prepare_enable(ssp->clk);
  972. drv_data->max_clk_rate = clk_get_rate(ssp->clk);
  973. /* Load default SSP configuration */
  974. write_SSCR0(0, drv_data->ioaddr);
  975. write_SSCR1(SSCR1_RxTresh(RX_THRESH_DFLT) |
  976. SSCR1_TxTresh(TX_THRESH_DFLT),
  977. drv_data->ioaddr);
  978. write_SSCR0(SSCR0_SCR(2)
  979. | SSCR0_Motorola
  980. | SSCR0_DataSize(8),
  981. drv_data->ioaddr);
  982. if (!pxa25x_ssp_comp(drv_data))
  983. write_SSTO(0, drv_data->ioaddr);
  984. write_SSPSP(0, drv_data->ioaddr);
  985. lpss_ssp_setup(drv_data);
  986. tasklet_init(&drv_data->pump_transfers, pump_transfers,
  987. (unsigned long)drv_data);
  988. pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
  989. pm_runtime_use_autosuspend(&pdev->dev);
  990. pm_runtime_set_active(&pdev->dev);
  991. pm_runtime_enable(&pdev->dev);
  992. /* Register with the SPI framework */
  993. platform_set_drvdata(pdev, drv_data);
  994. status = devm_spi_register_master(&pdev->dev, master);
  995. if (status != 0) {
  996. dev_err(&pdev->dev, "problem registering spi master\n");
  997. goto out_error_clock_enabled;
  998. }
  999. return status;
  1000. out_error_clock_enabled:
  1001. clk_disable_unprepare(ssp->clk);
  1002. pxa2xx_spi_dma_release(drv_data);
  1003. free_irq(ssp->irq, drv_data);
  1004. out_error_master_alloc:
  1005. spi_master_put(master);
  1006. pxa_ssp_free(ssp);
  1007. return status;
  1008. }
  1009. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1010. {
  1011. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1012. struct ssp_device *ssp;
  1013. if (!drv_data)
  1014. return 0;
  1015. ssp = drv_data->ssp;
  1016. pm_runtime_get_sync(&pdev->dev);
  1017. /* Disable the SSP at the peripheral and SOC level */
  1018. write_SSCR0(0, drv_data->ioaddr);
  1019. clk_disable_unprepare(ssp->clk);
  1020. /* Release DMA */
  1021. if (drv_data->master_info->enable_dma)
  1022. pxa2xx_spi_dma_release(drv_data);
  1023. pm_runtime_put_noidle(&pdev->dev);
  1024. pm_runtime_disable(&pdev->dev);
  1025. /* Release IRQ */
  1026. free_irq(ssp->irq, drv_data);
  1027. /* Release SSP */
  1028. pxa_ssp_free(ssp);
  1029. return 0;
  1030. }
  1031. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1032. {
  1033. int status = 0;
  1034. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1035. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1036. }
  1037. #ifdef CONFIG_PM_SLEEP
  1038. static int pxa2xx_spi_suspend(struct device *dev)
  1039. {
  1040. struct driver_data *drv_data = dev_get_drvdata(dev);
  1041. struct ssp_device *ssp = drv_data->ssp;
  1042. int status = 0;
  1043. status = spi_master_suspend(drv_data->master);
  1044. if (status != 0)
  1045. return status;
  1046. write_SSCR0(0, drv_data->ioaddr);
  1047. clk_disable_unprepare(ssp->clk);
  1048. return 0;
  1049. }
  1050. static int pxa2xx_spi_resume(struct device *dev)
  1051. {
  1052. struct driver_data *drv_data = dev_get_drvdata(dev);
  1053. struct ssp_device *ssp = drv_data->ssp;
  1054. int status = 0;
  1055. pxa2xx_spi_dma_resume(drv_data);
  1056. /* Enable the SSP clock */
  1057. clk_prepare_enable(ssp->clk);
  1058. /* Restore LPSS private register bits */
  1059. lpss_ssp_setup(drv_data);
  1060. /* Start the queue running */
  1061. status = spi_master_resume(drv_data->master);
  1062. if (status != 0) {
  1063. dev_err(dev, "problem starting queue (%d)\n", status);
  1064. return status;
  1065. }
  1066. return 0;
  1067. }
  1068. #endif
  1069. #ifdef CONFIG_PM_RUNTIME
  1070. static int pxa2xx_spi_runtime_suspend(struct device *dev)
  1071. {
  1072. struct driver_data *drv_data = dev_get_drvdata(dev);
  1073. clk_disable_unprepare(drv_data->ssp->clk);
  1074. return 0;
  1075. }
  1076. static int pxa2xx_spi_runtime_resume(struct device *dev)
  1077. {
  1078. struct driver_data *drv_data = dev_get_drvdata(dev);
  1079. clk_prepare_enable(drv_data->ssp->clk);
  1080. return 0;
  1081. }
  1082. #endif
  1083. static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
  1084. SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
  1085. SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
  1086. pxa2xx_spi_runtime_resume, NULL)
  1087. };
  1088. static struct platform_driver driver = {
  1089. .driver = {
  1090. .name = "pxa2xx-spi",
  1091. .owner = THIS_MODULE,
  1092. .pm = &pxa2xx_spi_pm_ops,
  1093. .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
  1094. },
  1095. .probe = pxa2xx_spi_probe,
  1096. .remove = pxa2xx_spi_remove,
  1097. .shutdown = pxa2xx_spi_shutdown,
  1098. };
  1099. static int __init pxa2xx_spi_init(void)
  1100. {
  1101. return platform_driver_register(&driver);
  1102. }
  1103. subsys_initcall(pxa2xx_spi_init);
  1104. static void __exit pxa2xx_spi_exit(void)
  1105. {
  1106. platform_driver_unregister(&driver);
  1107. }
  1108. module_exit(pxa2xx_spi_exit);