spi-mxs.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. /*
  2. * Freescale MXS SPI master driver
  3. *
  4. * Copyright 2012 DENX Software Engineering, GmbH.
  5. * Copyright 2012 Freescale Semiconductor, Inc.
  6. * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
  7. *
  8. * Rework and transition to new API by:
  9. * Marek Vasut <marex@denx.de>
  10. *
  11. * Based on previous attempt by:
  12. * Fabio Estevam <fabio.estevam@freescale.com>
  13. *
  14. * Based on code from U-Boot bootloader by:
  15. * Marek Vasut <marex@denx.de>
  16. *
  17. * Based on spi-stmp.c, which is:
  18. * Author: Dmitry Pervushin <dimka@embeddedalley.com>
  19. *
  20. * This program is free software; you can redistribute it and/or modify
  21. * it under the terms of the GNU General Public License as published by
  22. * the Free Software Foundation; either version 2 of the License, or
  23. * (at your option) any later version.
  24. *
  25. * This program is distributed in the hope that it will be useful,
  26. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  27. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  28. * GNU General Public License for more details.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/ioport.h>
  32. #include <linux/of.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of_gpio.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/delay.h>
  37. #include <linux/interrupt.h>
  38. #include <linux/dma-mapping.h>
  39. #include <linux/dmaengine.h>
  40. #include <linux/highmem.h>
  41. #include <linux/clk.h>
  42. #include <linux/err.h>
  43. #include <linux/completion.h>
  44. #include <linux/gpio.h>
  45. #include <linux/regulator/consumer.h>
  46. #include <linux/module.h>
  47. #include <linux/stmp_device.h>
  48. #include <linux/spi/spi.h>
  49. #include <linux/spi/mxs-spi.h>
  50. #define DRIVER_NAME "mxs-spi"
  51. /* Use 10S timeout for very long transfers, it should suffice. */
  52. #define SSP_TIMEOUT 10000
  53. #define SG_MAXLEN 0xff00
  54. /*
  55. * Flags for txrx functions. More efficient that using an argument register for
  56. * each one.
  57. */
  58. #define TXRX_WRITE (1<<0) /* This is a write */
  59. #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */
  60. struct mxs_spi {
  61. struct mxs_ssp ssp;
  62. struct completion c;
  63. unsigned int sck; /* Rate requested (vs actual) */
  64. };
  65. static int mxs_spi_setup_transfer(struct spi_device *dev,
  66. const struct spi_transfer *t)
  67. {
  68. struct mxs_spi *spi = spi_master_get_devdata(dev->master);
  69. struct mxs_ssp *ssp = &spi->ssp;
  70. const unsigned int hz = min(dev->max_speed_hz, t->speed_hz);
  71. if (hz == 0) {
  72. dev_err(&dev->dev, "SPI clock rate of zero not allowed\n");
  73. return -EINVAL;
  74. }
  75. if (hz != spi->sck) {
  76. mxs_ssp_set_clk_rate(ssp, hz);
  77. /*
  78. * Save requested rate, hz, rather than the actual rate,
  79. * ssp->clk_rate. Otherwise we would set the rate every trasfer
  80. * when the actual rate is not quite the same as requested rate.
  81. */
  82. spi->sck = hz;
  83. /*
  84. * Perhaps we should return an error if the actual clock is
  85. * nowhere close to what was requested?
  86. */
  87. }
  88. writel(BM_SSP_CTRL0_LOCK_CS,
  89. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  90. writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
  91. BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
  92. ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
  93. ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
  94. ssp->base + HW_SSP_CTRL1(ssp));
  95. writel(0x0, ssp->base + HW_SSP_CMD0);
  96. writel(0x0, ssp->base + HW_SSP_CMD1);
  97. return 0;
  98. }
  99. static u32 mxs_spi_cs_to_reg(unsigned cs)
  100. {
  101. u32 select = 0;
  102. /*
  103. * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
  104. *
  105. * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
  106. * in HW_SSP_CTRL0 register do have multiple usage, please refer to
  107. * the datasheet for further details. In SPI mode, they are used to
  108. * toggle the chip-select lines (nCS pins).
  109. */
  110. if (cs & 1)
  111. select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
  112. if (cs & 2)
  113. select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
  114. return select;
  115. }
  116. static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
  117. {
  118. const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
  119. struct mxs_ssp *ssp = &spi->ssp;
  120. u32 reg;
  121. do {
  122. reg = readl_relaxed(ssp->base + offset);
  123. if (!set)
  124. reg = ~reg;
  125. reg &= mask;
  126. if (reg == mask)
  127. return 0;
  128. } while (time_before(jiffies, timeout));
  129. return -ETIMEDOUT;
  130. }
  131. static void mxs_ssp_dma_irq_callback(void *param)
  132. {
  133. struct mxs_spi *spi = param;
  134. complete(&spi->c);
  135. }
  136. static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
  137. {
  138. struct mxs_ssp *ssp = dev_id;
  139. dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
  140. __func__, __LINE__,
  141. readl(ssp->base + HW_SSP_CTRL1(ssp)),
  142. readl(ssp->base + HW_SSP_STATUS(ssp)));
  143. return IRQ_HANDLED;
  144. }
  145. static int mxs_spi_txrx_dma(struct mxs_spi *spi,
  146. unsigned char *buf, int len,
  147. unsigned int flags)
  148. {
  149. struct mxs_ssp *ssp = &spi->ssp;
  150. struct dma_async_tx_descriptor *desc = NULL;
  151. const bool vmalloced_buf = is_vmalloc_addr(buf);
  152. const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
  153. const int sgs = DIV_ROUND_UP(len, desc_len);
  154. int sg_count;
  155. int min, ret;
  156. u32 ctrl0;
  157. struct page *vm_page;
  158. void *sg_buf;
  159. struct {
  160. u32 pio[4];
  161. struct scatterlist sg;
  162. } *dma_xfer;
  163. if (!len)
  164. return -EINVAL;
  165. dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
  166. if (!dma_xfer)
  167. return -ENOMEM;
  168. reinit_completion(&spi->c);
  169. /* Chip select was already programmed into CTRL0 */
  170. ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
  171. ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC |
  172. BM_SSP_CTRL0_READ);
  173. ctrl0 |= BM_SSP_CTRL0_DATA_XFER;
  174. if (!(flags & TXRX_WRITE))
  175. ctrl0 |= BM_SSP_CTRL0_READ;
  176. /* Queue the DMA data transfer. */
  177. for (sg_count = 0; sg_count < sgs; sg_count++) {
  178. /* Prepare the transfer descriptor. */
  179. min = min(len, desc_len);
  180. /*
  181. * De-assert CS on last segment if flag is set (i.e., no more
  182. * transfers will follow)
  183. */
  184. if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS))
  185. ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
  186. if (ssp->devid == IMX23_SSP) {
  187. ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
  188. ctrl0 |= min;
  189. }
  190. dma_xfer[sg_count].pio[0] = ctrl0;
  191. dma_xfer[sg_count].pio[3] = min;
  192. if (vmalloced_buf) {
  193. vm_page = vmalloc_to_page(buf);
  194. if (!vm_page) {
  195. ret = -ENOMEM;
  196. goto err_vmalloc;
  197. }
  198. sg_buf = page_address(vm_page) +
  199. ((size_t)buf & ~PAGE_MASK);
  200. } else {
  201. sg_buf = buf;
  202. }
  203. sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
  204. ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  205. (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  206. len -= min;
  207. buf += min;
  208. /* Queue the PIO register write transfer. */
  209. desc = dmaengine_prep_slave_sg(ssp->dmach,
  210. (struct scatterlist *)dma_xfer[sg_count].pio,
  211. (ssp->devid == IMX23_SSP) ? 1 : 4,
  212. DMA_TRANS_NONE,
  213. sg_count ? DMA_PREP_INTERRUPT : 0);
  214. if (!desc) {
  215. dev_err(ssp->dev,
  216. "Failed to get PIO reg. write descriptor.\n");
  217. ret = -EINVAL;
  218. goto err_mapped;
  219. }
  220. desc = dmaengine_prep_slave_sg(ssp->dmach,
  221. &dma_xfer[sg_count].sg, 1,
  222. (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
  223. DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  224. if (!desc) {
  225. dev_err(ssp->dev,
  226. "Failed to get DMA data write descriptor.\n");
  227. ret = -EINVAL;
  228. goto err_mapped;
  229. }
  230. }
  231. /*
  232. * The last descriptor must have this callback,
  233. * to finish the DMA transaction.
  234. */
  235. desc->callback = mxs_ssp_dma_irq_callback;
  236. desc->callback_param = spi;
  237. /* Start the transfer. */
  238. dmaengine_submit(desc);
  239. dma_async_issue_pending(ssp->dmach);
  240. ret = wait_for_completion_timeout(&spi->c,
  241. msecs_to_jiffies(SSP_TIMEOUT));
  242. if (!ret) {
  243. dev_err(ssp->dev, "DMA transfer timeout\n");
  244. ret = -ETIMEDOUT;
  245. dmaengine_terminate_all(ssp->dmach);
  246. goto err_vmalloc;
  247. }
  248. ret = 0;
  249. err_vmalloc:
  250. while (--sg_count >= 0) {
  251. err_mapped:
  252. dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
  253. (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
  254. }
  255. kfree(dma_xfer);
  256. return ret;
  257. }
  258. static int mxs_spi_txrx_pio(struct mxs_spi *spi,
  259. unsigned char *buf, int len,
  260. unsigned int flags)
  261. {
  262. struct mxs_ssp *ssp = &spi->ssp;
  263. writel(BM_SSP_CTRL0_IGNORE_CRC,
  264. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  265. while (len--) {
  266. if (len == 0 && (flags & TXRX_DEASSERT_CS))
  267. writel(BM_SSP_CTRL0_IGNORE_CRC,
  268. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  269. if (ssp->devid == IMX23_SSP) {
  270. writel(BM_SSP_CTRL0_XFER_COUNT,
  271. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  272. writel(1,
  273. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  274. } else {
  275. writel(1, ssp->base + HW_SSP_XFER_SIZE);
  276. }
  277. if (flags & TXRX_WRITE)
  278. writel(BM_SSP_CTRL0_READ,
  279. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  280. else
  281. writel(BM_SSP_CTRL0_READ,
  282. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  283. writel(BM_SSP_CTRL0_RUN,
  284. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  285. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
  286. return -ETIMEDOUT;
  287. if (flags & TXRX_WRITE)
  288. writel(*buf, ssp->base + HW_SSP_DATA(ssp));
  289. writel(BM_SSP_CTRL0_DATA_XFER,
  290. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  291. if (!(flags & TXRX_WRITE)) {
  292. if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
  293. BM_SSP_STATUS_FIFO_EMPTY, 0))
  294. return -ETIMEDOUT;
  295. *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
  296. }
  297. if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
  298. return -ETIMEDOUT;
  299. buf++;
  300. }
  301. if (len <= 0)
  302. return 0;
  303. return -ETIMEDOUT;
  304. }
  305. static int mxs_spi_transfer_one(struct spi_master *master,
  306. struct spi_message *m)
  307. {
  308. struct mxs_spi *spi = spi_master_get_devdata(master);
  309. struct mxs_ssp *ssp = &spi->ssp;
  310. struct spi_transfer *t;
  311. unsigned int flag;
  312. int status = 0;
  313. /* Program CS register bits here, it will be used for all transfers. */
  314. writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ,
  315. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
  316. writel(mxs_spi_cs_to_reg(m->spi->chip_select),
  317. ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
  318. list_for_each_entry(t, &m->transfers, transfer_list) {
  319. status = mxs_spi_setup_transfer(m->spi, t);
  320. if (status)
  321. break;
  322. /* De-assert on last transfer, inverted by cs_change flag */
  323. flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ?
  324. TXRX_DEASSERT_CS : 0;
  325. /*
  326. * Small blocks can be transfered via PIO.
  327. * Measured by empiric means:
  328. *
  329. * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
  330. *
  331. * DMA only: 2.164808 seconds, 473.0KB/s
  332. * Combined: 1.676276 seconds, 610.9KB/s
  333. */
  334. if (t->len < 32) {
  335. writel(BM_SSP_CTRL1_DMA_ENABLE,
  336. ssp->base + HW_SSP_CTRL1(ssp) +
  337. STMP_OFFSET_REG_CLR);
  338. if (t->tx_buf)
  339. status = mxs_spi_txrx_pio(spi,
  340. (void *)t->tx_buf,
  341. t->len, flag | TXRX_WRITE);
  342. if (t->rx_buf)
  343. status = mxs_spi_txrx_pio(spi,
  344. t->rx_buf, t->len,
  345. flag);
  346. } else {
  347. writel(BM_SSP_CTRL1_DMA_ENABLE,
  348. ssp->base + HW_SSP_CTRL1(ssp) +
  349. STMP_OFFSET_REG_SET);
  350. if (t->tx_buf)
  351. status = mxs_spi_txrx_dma(spi,
  352. (void *)t->tx_buf, t->len,
  353. flag | TXRX_WRITE);
  354. if (t->rx_buf)
  355. status = mxs_spi_txrx_dma(spi,
  356. t->rx_buf, t->len,
  357. flag);
  358. }
  359. if (status) {
  360. stmp_reset_block(ssp->base);
  361. break;
  362. }
  363. m->actual_length += t->len;
  364. }
  365. m->status = status;
  366. spi_finalize_current_message(master);
  367. return status;
  368. }
  369. static const struct of_device_id mxs_spi_dt_ids[] = {
  370. { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
  371. { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
  372. { /* sentinel */ }
  373. };
  374. MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
  375. static int mxs_spi_probe(struct platform_device *pdev)
  376. {
  377. const struct of_device_id *of_id =
  378. of_match_device(mxs_spi_dt_ids, &pdev->dev);
  379. struct device_node *np = pdev->dev.of_node;
  380. struct spi_master *master;
  381. struct mxs_spi *spi;
  382. struct mxs_ssp *ssp;
  383. struct resource *iores;
  384. struct clk *clk;
  385. void __iomem *base;
  386. int devid, clk_freq;
  387. int ret = 0, irq_err;
  388. /*
  389. * Default clock speed for the SPI core. 160MHz seems to
  390. * work reasonably well with most SPI flashes, so use this
  391. * as a default. Override with "clock-frequency" DT prop.
  392. */
  393. const int clk_freq_default = 160000000;
  394. iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  395. irq_err = platform_get_irq(pdev, 0);
  396. if (irq_err < 0)
  397. return irq_err;
  398. base = devm_ioremap_resource(&pdev->dev, iores);
  399. if (IS_ERR(base))
  400. return PTR_ERR(base);
  401. clk = devm_clk_get(&pdev->dev, NULL);
  402. if (IS_ERR(clk))
  403. return PTR_ERR(clk);
  404. devid = (enum mxs_ssp_id) of_id->data;
  405. ret = of_property_read_u32(np, "clock-frequency",
  406. &clk_freq);
  407. if (ret)
  408. clk_freq = clk_freq_default;
  409. master = spi_alloc_master(&pdev->dev, sizeof(*spi));
  410. if (!master)
  411. return -ENOMEM;
  412. master->transfer_one_message = mxs_spi_transfer_one;
  413. master->bits_per_word_mask = SPI_BPW_MASK(8);
  414. master->mode_bits = SPI_CPOL | SPI_CPHA;
  415. master->num_chipselect = 3;
  416. master->dev.of_node = np;
  417. master->flags = SPI_MASTER_HALF_DUPLEX;
  418. spi = spi_master_get_devdata(master);
  419. ssp = &spi->ssp;
  420. ssp->dev = &pdev->dev;
  421. ssp->clk = clk;
  422. ssp->base = base;
  423. ssp->devid = devid;
  424. init_completion(&spi->c);
  425. ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
  426. DRIVER_NAME, ssp);
  427. if (ret)
  428. goto out_master_free;
  429. ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
  430. if (!ssp->dmach) {
  431. dev_err(ssp->dev, "Failed to request DMA\n");
  432. ret = -ENODEV;
  433. goto out_master_free;
  434. }
  435. ret = clk_prepare_enable(ssp->clk);
  436. if (ret)
  437. goto out_dma_release;
  438. clk_set_rate(ssp->clk, clk_freq);
  439. ret = stmp_reset_block(ssp->base);
  440. if (ret)
  441. goto out_disable_clk;
  442. platform_set_drvdata(pdev, master);
  443. ret = devm_spi_register_master(&pdev->dev, master);
  444. if (ret) {
  445. dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
  446. goto out_disable_clk;
  447. }
  448. return 0;
  449. out_disable_clk:
  450. clk_disable_unprepare(ssp->clk);
  451. out_dma_release:
  452. dma_release_channel(ssp->dmach);
  453. out_master_free:
  454. spi_master_put(master);
  455. return ret;
  456. }
  457. static int mxs_spi_remove(struct platform_device *pdev)
  458. {
  459. struct spi_master *master;
  460. struct mxs_spi *spi;
  461. struct mxs_ssp *ssp;
  462. master = platform_get_drvdata(pdev);
  463. spi = spi_master_get_devdata(master);
  464. ssp = &spi->ssp;
  465. clk_disable_unprepare(ssp->clk);
  466. dma_release_channel(ssp->dmach);
  467. return 0;
  468. }
  469. static struct platform_driver mxs_spi_driver = {
  470. .probe = mxs_spi_probe,
  471. .remove = mxs_spi_remove,
  472. .driver = {
  473. .name = DRIVER_NAME,
  474. .owner = THIS_MODULE,
  475. .of_match_table = mxs_spi_dt_ids,
  476. },
  477. };
  478. module_platform_driver(mxs_spi_driver);
  479. MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
  480. MODULE_DESCRIPTION("MXS SPI master driver");
  481. MODULE_LICENSE("GPL");
  482. MODULE_ALIAS("platform:mxs-spi");