spi-dw.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
  1. /*
  2. * Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/module.h>
  22. #include <linux/highmem.h>
  23. #include <linux/delay.h>
  24. #include <linux/slab.h>
  25. #include <linux/spi/spi.h>
  26. #include <linux/gpio.h>
  27. #include "spi-dw.h"
  28. #ifdef CONFIG_DEBUG_FS
  29. #include <linux/debugfs.h>
  30. #endif
  31. #define START_STATE ((void *)0)
  32. #define RUNNING_STATE ((void *)1)
  33. #define DONE_STATE ((void *)2)
  34. #define ERROR_STATE ((void *)-1)
  35. /* Slave spi_dev related */
  36. struct chip_data {
  37. u16 cr0;
  38. u8 cs; /* chip select pin */
  39. u8 n_bytes; /* current is a 1/2/4 byte op */
  40. u8 tmode; /* TR/TO/RO/EEPROM */
  41. u8 type; /* SPI/SSP/MicroWire */
  42. u8 poll_mode; /* 1 means use poll mode */
  43. u32 dma_width;
  44. u32 rx_threshold;
  45. u32 tx_threshold;
  46. u8 enable_dma;
  47. u8 bits_per_word;
  48. u16 clk_div; /* baud rate divider */
  49. u32 speed_hz; /* baud rate */
  50. void (*cs_control)(u32 command);
  51. };
  52. #ifdef CONFIG_DEBUG_FS
  53. #define SPI_REGS_BUFSIZE 1024
  54. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  55. size_t count, loff_t *ppos)
  56. {
  57. struct dw_spi *dws;
  58. char *buf;
  59. u32 len = 0;
  60. ssize_t ret;
  61. dws = file->private_data;
  62. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  63. if (!buf)
  64. return 0;
  65. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  66. "MRST SPI0 registers:\n");
  67. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  68. "=================================\n");
  69. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  70. "CTRL0: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL0));
  71. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  72. "CTRL1: \t\t0x%08x\n", dw_readl(dws, DW_SPI_CTRL1));
  73. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  74. "SSIENR: \t0x%08x\n", dw_readl(dws, DW_SPI_SSIENR));
  75. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  76. "SER: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SER));
  77. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  78. "BAUDR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_BAUDR));
  79. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  80. "TXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_TXFLTR));
  81. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  82. "RXFTLR: \t0x%08x\n", dw_readl(dws, DW_SPI_RXFLTR));
  83. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  84. "TXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_TXFLR));
  85. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  86. "RXFLR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_RXFLR));
  87. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  88. "SR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_SR));
  89. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  90. "IMR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_IMR));
  91. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  92. "ISR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_ISR));
  93. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  94. "DMACR: \t\t0x%08x\n", dw_readl(dws, DW_SPI_DMACR));
  95. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  96. "DMATDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMATDLR));
  97. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  98. "DMARDLR: \t0x%08x\n", dw_readl(dws, DW_SPI_DMARDLR));
  99. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  100. "=================================\n");
  101. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  102. kfree(buf);
  103. return ret;
  104. }
  105. static const struct file_operations mrst_spi_regs_ops = {
  106. .owner = THIS_MODULE,
  107. .open = simple_open,
  108. .read = spi_show_regs,
  109. .llseek = default_llseek,
  110. };
  111. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  112. {
  113. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  114. if (!dws->debugfs)
  115. return -ENOMEM;
  116. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  117. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  118. return 0;
  119. }
  120. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  121. {
  122. if (dws->debugfs)
  123. debugfs_remove_recursive(dws->debugfs);
  124. }
  125. #else
  126. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  127. {
  128. return 0;
  129. }
  130. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  131. {
  132. }
  133. #endif /* CONFIG_DEBUG_FS */
  134. /* Return the max entries we can fill into tx fifo */
  135. static inline u32 tx_max(struct dw_spi *dws)
  136. {
  137. u32 tx_left, tx_room, rxtx_gap;
  138. tx_left = (dws->tx_end - dws->tx) / dws->n_bytes;
  139. tx_room = dws->fifo_len - dw_readw(dws, DW_SPI_TXFLR);
  140. /*
  141. * Another concern is about the tx/rx mismatch, we
  142. * though to use (dws->fifo_len - rxflr - txflr) as
  143. * one maximum value for tx, but it doesn't cover the
  144. * data which is out of tx/rx fifo and inside the
  145. * shift registers. So a control from sw point of
  146. * view is taken.
  147. */
  148. rxtx_gap = ((dws->rx_end - dws->rx) - (dws->tx_end - dws->tx))
  149. / dws->n_bytes;
  150. return min3(tx_left, tx_room, (u32) (dws->fifo_len - rxtx_gap));
  151. }
  152. /* Return the max entries we should read out of rx fifo */
  153. static inline u32 rx_max(struct dw_spi *dws)
  154. {
  155. u32 rx_left = (dws->rx_end - dws->rx) / dws->n_bytes;
  156. return min(rx_left, (u32)dw_readw(dws, DW_SPI_RXFLR));
  157. }
  158. static void dw_writer(struct dw_spi *dws)
  159. {
  160. u32 max = tx_max(dws);
  161. u16 txw = 0;
  162. while (max--) {
  163. /* Set the tx word if the transfer's original "tx" is not null */
  164. if (dws->tx_end - dws->len) {
  165. if (dws->n_bytes == 1)
  166. txw = *(u8 *)(dws->tx);
  167. else
  168. txw = *(u16 *)(dws->tx);
  169. }
  170. dw_writew(dws, DW_SPI_DR, txw);
  171. dws->tx += dws->n_bytes;
  172. }
  173. }
  174. static void dw_reader(struct dw_spi *dws)
  175. {
  176. u32 max = rx_max(dws);
  177. u16 rxw;
  178. while (max--) {
  179. rxw = dw_readw(dws, DW_SPI_DR);
  180. /* Care rx only if the transfer's original "rx" is not null */
  181. if (dws->rx_end - dws->len) {
  182. if (dws->n_bytes == 1)
  183. *(u8 *)(dws->rx) = rxw;
  184. else
  185. *(u16 *)(dws->rx) = rxw;
  186. }
  187. dws->rx += dws->n_bytes;
  188. }
  189. }
  190. static void *next_transfer(struct dw_spi *dws)
  191. {
  192. struct spi_message *msg = dws->cur_msg;
  193. struct spi_transfer *trans = dws->cur_transfer;
  194. /* Move to next transfer */
  195. if (trans->transfer_list.next != &msg->transfers) {
  196. dws->cur_transfer =
  197. list_entry(trans->transfer_list.next,
  198. struct spi_transfer,
  199. transfer_list);
  200. return RUNNING_STATE;
  201. } else
  202. return DONE_STATE;
  203. }
  204. /*
  205. * Note: first step is the protocol driver prepares
  206. * a dma-capable memory, and this func just need translate
  207. * the virt addr to physical
  208. */
  209. static int map_dma_buffers(struct dw_spi *dws)
  210. {
  211. if (!dws->cur_msg->is_dma_mapped
  212. || !dws->dma_inited
  213. || !dws->cur_chip->enable_dma
  214. || !dws->dma_ops)
  215. return 0;
  216. if (dws->cur_transfer->tx_dma)
  217. dws->tx_dma = dws->cur_transfer->tx_dma;
  218. if (dws->cur_transfer->rx_dma)
  219. dws->rx_dma = dws->cur_transfer->rx_dma;
  220. return 1;
  221. }
  222. /* Caller already set message->status; dma and pio irqs are blocked */
  223. static void giveback(struct dw_spi *dws)
  224. {
  225. struct spi_transfer *last_transfer;
  226. struct spi_message *msg;
  227. msg = dws->cur_msg;
  228. dws->cur_msg = NULL;
  229. dws->cur_transfer = NULL;
  230. dws->prev_chip = dws->cur_chip;
  231. dws->cur_chip = NULL;
  232. dws->dma_mapped = 0;
  233. last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
  234. transfer_list);
  235. if (!last_transfer->cs_change)
  236. spi_chip_sel(dws, dws->cur_msg->spi, 0);
  237. spi_finalize_current_message(dws->master);
  238. }
  239. static void int_error_stop(struct dw_spi *dws, const char *msg)
  240. {
  241. /* Stop the hw */
  242. spi_enable_chip(dws, 0);
  243. dev_err(&dws->master->dev, "%s\n", msg);
  244. dws->cur_msg->state = ERROR_STATE;
  245. tasklet_schedule(&dws->pump_transfers);
  246. }
  247. void dw_spi_xfer_done(struct dw_spi *dws)
  248. {
  249. /* Update total byte transferred return count actual bytes read */
  250. dws->cur_msg->actual_length += dws->len;
  251. /* Move to next transfer */
  252. dws->cur_msg->state = next_transfer(dws);
  253. /* Handle end of message */
  254. if (dws->cur_msg->state == DONE_STATE) {
  255. dws->cur_msg->status = 0;
  256. giveback(dws);
  257. } else
  258. tasklet_schedule(&dws->pump_transfers);
  259. }
  260. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  261. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  262. {
  263. u16 irq_status = dw_readw(dws, DW_SPI_ISR);
  264. /* Error handling */
  265. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  266. dw_readw(dws, DW_SPI_TXOICR);
  267. dw_readw(dws, DW_SPI_RXOICR);
  268. dw_readw(dws, DW_SPI_RXUICR);
  269. int_error_stop(dws, "interrupt_transfer: fifo overrun/underrun");
  270. return IRQ_HANDLED;
  271. }
  272. dw_reader(dws);
  273. if (dws->rx_end == dws->rx) {
  274. spi_mask_intr(dws, SPI_INT_TXEI);
  275. dw_spi_xfer_done(dws);
  276. return IRQ_HANDLED;
  277. }
  278. if (irq_status & SPI_INT_TXEI) {
  279. spi_mask_intr(dws, SPI_INT_TXEI);
  280. dw_writer(dws);
  281. /* Enable TX irq always, it will be disabled when RX finished */
  282. spi_umask_intr(dws, SPI_INT_TXEI);
  283. }
  284. return IRQ_HANDLED;
  285. }
  286. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  287. {
  288. struct dw_spi *dws = dev_id;
  289. u16 irq_status = dw_readw(dws, DW_SPI_ISR) & 0x3f;
  290. if (!irq_status)
  291. return IRQ_NONE;
  292. if (!dws->cur_msg) {
  293. spi_mask_intr(dws, SPI_INT_TXEI);
  294. return IRQ_HANDLED;
  295. }
  296. return dws->transfer_handler(dws);
  297. }
  298. /* Must be called inside pump_transfers() */
  299. static void poll_transfer(struct dw_spi *dws)
  300. {
  301. do {
  302. dw_writer(dws);
  303. dw_reader(dws);
  304. cpu_relax();
  305. } while (dws->rx_end > dws->rx);
  306. dw_spi_xfer_done(dws);
  307. }
  308. static void pump_transfers(unsigned long data)
  309. {
  310. struct dw_spi *dws = (struct dw_spi *)data;
  311. struct spi_message *message = NULL;
  312. struct spi_transfer *transfer = NULL;
  313. struct spi_transfer *previous = NULL;
  314. struct spi_device *spi = NULL;
  315. struct chip_data *chip = NULL;
  316. u8 bits = 0;
  317. u8 imask = 0;
  318. u8 cs_change = 0;
  319. u16 txint_level = 0;
  320. u16 clk_div = 0;
  321. u32 speed = 0;
  322. u32 cr0 = 0;
  323. /* Get current state information */
  324. message = dws->cur_msg;
  325. transfer = dws->cur_transfer;
  326. chip = dws->cur_chip;
  327. spi = message->spi;
  328. if (unlikely(!chip->clk_div))
  329. chip->clk_div = dws->max_freq / chip->speed_hz;
  330. if (message->state == ERROR_STATE) {
  331. message->status = -EIO;
  332. goto early_exit;
  333. }
  334. /* Handle end of message */
  335. if (message->state == DONE_STATE) {
  336. message->status = 0;
  337. goto early_exit;
  338. }
  339. /* Delay if requested at end of transfer*/
  340. if (message->state == RUNNING_STATE) {
  341. previous = list_entry(transfer->transfer_list.prev,
  342. struct spi_transfer,
  343. transfer_list);
  344. if (previous->delay_usecs)
  345. udelay(previous->delay_usecs);
  346. }
  347. dws->n_bytes = chip->n_bytes;
  348. dws->dma_width = chip->dma_width;
  349. dws->cs_control = chip->cs_control;
  350. dws->rx_dma = transfer->rx_dma;
  351. dws->tx_dma = transfer->tx_dma;
  352. dws->tx = (void *)transfer->tx_buf;
  353. dws->tx_end = dws->tx + transfer->len;
  354. dws->rx = transfer->rx_buf;
  355. dws->rx_end = dws->rx + transfer->len;
  356. dws->len = dws->cur_transfer->len;
  357. if (chip != dws->prev_chip)
  358. cs_change = 1;
  359. cr0 = chip->cr0;
  360. /* Handle per transfer options for bpw and speed */
  361. if (transfer->speed_hz) {
  362. speed = chip->speed_hz;
  363. if (transfer->speed_hz != speed) {
  364. speed = transfer->speed_hz;
  365. /* clk_div doesn't support odd number */
  366. clk_div = dws->max_freq / speed;
  367. clk_div = (clk_div + 1) & 0xfffe;
  368. chip->speed_hz = speed;
  369. chip->clk_div = clk_div;
  370. }
  371. }
  372. if (transfer->bits_per_word) {
  373. bits = transfer->bits_per_word;
  374. dws->n_bytes = dws->dma_width = bits >> 3;
  375. cr0 = (bits - 1)
  376. | (chip->type << SPI_FRF_OFFSET)
  377. | (spi->mode << SPI_MODE_OFFSET)
  378. | (chip->tmode << SPI_TMOD_OFFSET);
  379. }
  380. message->state = RUNNING_STATE;
  381. /*
  382. * Adjust transfer mode if necessary. Requires platform dependent
  383. * chipselect mechanism.
  384. */
  385. if (dws->cs_control) {
  386. if (dws->rx && dws->tx)
  387. chip->tmode = SPI_TMOD_TR;
  388. else if (dws->rx)
  389. chip->tmode = SPI_TMOD_RO;
  390. else
  391. chip->tmode = SPI_TMOD_TO;
  392. cr0 &= ~SPI_TMOD_MASK;
  393. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  394. }
  395. /* Check if current transfer is a DMA transaction */
  396. dws->dma_mapped = map_dma_buffers(dws);
  397. /*
  398. * Interrupt mode
  399. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  400. */
  401. if (!dws->dma_mapped && !chip->poll_mode) {
  402. int templen = dws->len / dws->n_bytes;
  403. txint_level = dws->fifo_len / 2;
  404. txint_level = (templen > txint_level) ? txint_level : templen;
  405. imask |= SPI_INT_TXEI | SPI_INT_TXOI | SPI_INT_RXUI | SPI_INT_RXOI;
  406. dws->transfer_handler = interrupt_transfer;
  407. }
  408. /*
  409. * Reprogram registers only if
  410. * 1. chip select changes
  411. * 2. clk_div is changed
  412. * 3. control value changes
  413. */
  414. if (dw_readw(dws, DW_SPI_CTRL0) != cr0 || cs_change || clk_div || imask) {
  415. spi_enable_chip(dws, 0);
  416. if (dw_readw(dws, DW_SPI_CTRL0) != cr0)
  417. dw_writew(dws, DW_SPI_CTRL0, cr0);
  418. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  419. spi_chip_sel(dws, spi, 1);
  420. /* Set the interrupt mask, for poll mode just disable all int */
  421. spi_mask_intr(dws, 0xff);
  422. if (imask)
  423. spi_umask_intr(dws, imask);
  424. if (txint_level)
  425. dw_writew(dws, DW_SPI_TXFLTR, txint_level);
  426. spi_enable_chip(dws, 1);
  427. if (cs_change)
  428. dws->prev_chip = chip;
  429. }
  430. if (dws->dma_mapped)
  431. dws->dma_ops->dma_transfer(dws, cs_change);
  432. if (chip->poll_mode)
  433. poll_transfer(dws);
  434. return;
  435. early_exit:
  436. giveback(dws);
  437. return;
  438. }
  439. static int dw_spi_transfer_one_message(struct spi_master *master,
  440. struct spi_message *msg)
  441. {
  442. struct dw_spi *dws = spi_master_get_devdata(master);
  443. dws->cur_msg = msg;
  444. /* Initial message state*/
  445. dws->cur_msg->state = START_STATE;
  446. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  447. struct spi_transfer,
  448. transfer_list);
  449. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  450. /* Launch transfers */
  451. tasklet_schedule(&dws->pump_transfers);
  452. return 0;
  453. }
  454. /* This may be called twice for each spi dev */
  455. static int dw_spi_setup(struct spi_device *spi)
  456. {
  457. struct dw_spi_chip *chip_info = NULL;
  458. struct chip_data *chip;
  459. int ret;
  460. /* Only alloc on first setup */
  461. chip = spi_get_ctldata(spi);
  462. if (!chip) {
  463. chip = devm_kzalloc(&spi->dev, sizeof(struct chip_data),
  464. GFP_KERNEL);
  465. if (!chip)
  466. return -ENOMEM;
  467. spi_set_ctldata(spi, chip);
  468. }
  469. /*
  470. * Protocol drivers may change the chip settings, so...
  471. * if chip_info exists, use it
  472. */
  473. chip_info = spi->controller_data;
  474. /* chip_info doesn't always exist */
  475. if (chip_info) {
  476. if (chip_info->cs_control)
  477. chip->cs_control = chip_info->cs_control;
  478. chip->poll_mode = chip_info->poll_mode;
  479. chip->type = chip_info->type;
  480. chip->rx_threshold = 0;
  481. chip->tx_threshold = 0;
  482. chip->enable_dma = chip_info->enable_dma;
  483. }
  484. if (spi->bits_per_word == 8) {
  485. chip->n_bytes = 1;
  486. chip->dma_width = 1;
  487. } else if (spi->bits_per_word == 16) {
  488. chip->n_bytes = 2;
  489. chip->dma_width = 2;
  490. }
  491. chip->bits_per_word = spi->bits_per_word;
  492. if (!spi->max_speed_hz) {
  493. dev_err(&spi->dev, "No max speed HZ parameter\n");
  494. return -EINVAL;
  495. }
  496. chip->speed_hz = spi->max_speed_hz;
  497. chip->tmode = 0; /* Tx & Rx */
  498. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  499. chip->cr0 = (chip->bits_per_word - 1)
  500. | (chip->type << SPI_FRF_OFFSET)
  501. | (spi->mode << SPI_MODE_OFFSET)
  502. | (chip->tmode << SPI_TMOD_OFFSET);
  503. if (gpio_is_valid(spi->cs_gpio)) {
  504. ret = gpio_direction_output(spi->cs_gpio,
  505. !(spi->mode & SPI_CS_HIGH));
  506. if (ret)
  507. return ret;
  508. }
  509. return 0;
  510. }
  511. /* Restart the controller, disable all interrupts, clean rx fifo */
  512. static void spi_hw_init(struct dw_spi *dws)
  513. {
  514. spi_enable_chip(dws, 0);
  515. spi_mask_intr(dws, 0xff);
  516. spi_enable_chip(dws, 1);
  517. /*
  518. * Try to detect the FIFO depth if not set by interface driver,
  519. * the depth could be from 2 to 256 from HW spec
  520. */
  521. if (!dws->fifo_len) {
  522. u32 fifo;
  523. for (fifo = 2; fifo <= 257; fifo++) {
  524. dw_writew(dws, DW_SPI_TXFLTR, fifo);
  525. if (fifo != dw_readw(dws, DW_SPI_TXFLTR))
  526. break;
  527. }
  528. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  529. dw_writew(dws, DW_SPI_TXFLTR, 0);
  530. }
  531. }
  532. int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
  533. {
  534. struct spi_master *master;
  535. int ret;
  536. BUG_ON(dws == NULL);
  537. master = spi_alloc_master(dev, 0);
  538. if (!master)
  539. return -ENOMEM;
  540. dws->master = master;
  541. dws->type = SSI_MOTO_SPI;
  542. dws->prev_chip = NULL;
  543. dws->dma_inited = 0;
  544. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  545. snprintf(dws->name, sizeof(dws->name), "dw_spi%d",
  546. dws->bus_num);
  547. ret = devm_request_irq(dev, dws->irq, dw_spi_irq, IRQF_SHARED,
  548. dws->name, dws);
  549. if (ret < 0) {
  550. dev_err(&master->dev, "can not get IRQ\n");
  551. goto err_free_master;
  552. }
  553. master->mode_bits = SPI_CPOL | SPI_CPHA;
  554. master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
  555. master->bus_num = dws->bus_num;
  556. master->num_chipselect = dws->num_cs;
  557. master->setup = dw_spi_setup;
  558. master->transfer_one_message = dw_spi_transfer_one_message;
  559. master->max_speed_hz = dws->max_freq;
  560. /* Basic HW init */
  561. spi_hw_init(dws);
  562. if (dws->dma_ops && dws->dma_ops->dma_init) {
  563. ret = dws->dma_ops->dma_init(dws);
  564. if (ret) {
  565. dev_warn(&master->dev, "DMA init failed\n");
  566. dws->dma_inited = 0;
  567. }
  568. }
  569. tasklet_init(&dws->pump_transfers, pump_transfers, (unsigned long)dws);
  570. spi_master_set_devdata(master, dws);
  571. ret = devm_spi_register_master(dev, master);
  572. if (ret) {
  573. dev_err(&master->dev, "problem registering spi master\n");
  574. goto err_dma_exit;
  575. }
  576. mrst_spi_debugfs_init(dws);
  577. return 0;
  578. err_dma_exit:
  579. if (dws->dma_ops && dws->dma_ops->dma_exit)
  580. dws->dma_ops->dma_exit(dws);
  581. spi_enable_chip(dws, 0);
  582. err_free_master:
  583. spi_master_put(master);
  584. return ret;
  585. }
  586. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  587. void dw_spi_remove_host(struct dw_spi *dws)
  588. {
  589. if (!dws)
  590. return;
  591. mrst_spi_debugfs_remove(dws);
  592. if (dws->dma_ops && dws->dma_ops->dma_exit)
  593. dws->dma_ops->dma_exit(dws);
  594. spi_enable_chip(dws, 0);
  595. /* Disable clk */
  596. spi_set_clk(dws, 0);
  597. }
  598. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  599. int dw_spi_suspend_host(struct dw_spi *dws)
  600. {
  601. int ret = 0;
  602. ret = spi_master_suspend(dws->master);
  603. if (ret)
  604. return ret;
  605. spi_enable_chip(dws, 0);
  606. spi_set_clk(dws, 0);
  607. return ret;
  608. }
  609. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  610. int dw_spi_resume_host(struct dw_spi *dws)
  611. {
  612. int ret;
  613. spi_hw_init(dws);
  614. ret = spi_master_resume(dws->master);
  615. if (ret)
  616. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  617. return ret;
  618. }
  619. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  620. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  621. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  622. MODULE_LICENSE("GPL v2");