spi-atmel.c 37 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514
  1. /*
  2. * Driver for Atmel AT32 and AT91 SPI Controllers
  3. *
  4. * Copyright (C) 2006 Atmel Corporation
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/clk.h>
  12. #include <linux/module.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/delay.h>
  15. #include <linux/dma-mapping.h>
  16. #include <linux/dmaengine.h>
  17. #include <linux/err.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/spi/spi.h>
  20. #include <linux/slab.h>
  21. #include <linux/platform_data/atmel.h>
  22. #include <linux/platform_data/dma-atmel.h>
  23. #include <linux/of.h>
  24. #include <linux/io.h>
  25. #include <linux/gpio.h>
  26. #include <linux/pinctrl/consumer.h>
  27. /* SPI register offsets */
  28. #define SPI_CR 0x0000
  29. #define SPI_MR 0x0004
  30. #define SPI_RDR 0x0008
  31. #define SPI_TDR 0x000c
  32. #define SPI_SR 0x0010
  33. #define SPI_IER 0x0014
  34. #define SPI_IDR 0x0018
  35. #define SPI_IMR 0x001c
  36. #define SPI_CSR0 0x0030
  37. #define SPI_CSR1 0x0034
  38. #define SPI_CSR2 0x0038
  39. #define SPI_CSR3 0x003c
  40. #define SPI_VERSION 0x00fc
  41. #define SPI_RPR 0x0100
  42. #define SPI_RCR 0x0104
  43. #define SPI_TPR 0x0108
  44. #define SPI_TCR 0x010c
  45. #define SPI_RNPR 0x0110
  46. #define SPI_RNCR 0x0114
  47. #define SPI_TNPR 0x0118
  48. #define SPI_TNCR 0x011c
  49. #define SPI_PTCR 0x0120
  50. #define SPI_PTSR 0x0124
  51. /* Bitfields in CR */
  52. #define SPI_SPIEN_OFFSET 0
  53. #define SPI_SPIEN_SIZE 1
  54. #define SPI_SPIDIS_OFFSET 1
  55. #define SPI_SPIDIS_SIZE 1
  56. #define SPI_SWRST_OFFSET 7
  57. #define SPI_SWRST_SIZE 1
  58. #define SPI_LASTXFER_OFFSET 24
  59. #define SPI_LASTXFER_SIZE 1
  60. /* Bitfields in MR */
  61. #define SPI_MSTR_OFFSET 0
  62. #define SPI_MSTR_SIZE 1
  63. #define SPI_PS_OFFSET 1
  64. #define SPI_PS_SIZE 1
  65. #define SPI_PCSDEC_OFFSET 2
  66. #define SPI_PCSDEC_SIZE 1
  67. #define SPI_FDIV_OFFSET 3
  68. #define SPI_FDIV_SIZE 1
  69. #define SPI_MODFDIS_OFFSET 4
  70. #define SPI_MODFDIS_SIZE 1
  71. #define SPI_WDRBT_OFFSET 5
  72. #define SPI_WDRBT_SIZE 1
  73. #define SPI_LLB_OFFSET 7
  74. #define SPI_LLB_SIZE 1
  75. #define SPI_PCS_OFFSET 16
  76. #define SPI_PCS_SIZE 4
  77. #define SPI_DLYBCS_OFFSET 24
  78. #define SPI_DLYBCS_SIZE 8
  79. /* Bitfields in RDR */
  80. #define SPI_RD_OFFSET 0
  81. #define SPI_RD_SIZE 16
  82. /* Bitfields in TDR */
  83. #define SPI_TD_OFFSET 0
  84. #define SPI_TD_SIZE 16
  85. /* Bitfields in SR */
  86. #define SPI_RDRF_OFFSET 0
  87. #define SPI_RDRF_SIZE 1
  88. #define SPI_TDRE_OFFSET 1
  89. #define SPI_TDRE_SIZE 1
  90. #define SPI_MODF_OFFSET 2
  91. #define SPI_MODF_SIZE 1
  92. #define SPI_OVRES_OFFSET 3
  93. #define SPI_OVRES_SIZE 1
  94. #define SPI_ENDRX_OFFSET 4
  95. #define SPI_ENDRX_SIZE 1
  96. #define SPI_ENDTX_OFFSET 5
  97. #define SPI_ENDTX_SIZE 1
  98. #define SPI_RXBUFF_OFFSET 6
  99. #define SPI_RXBUFF_SIZE 1
  100. #define SPI_TXBUFE_OFFSET 7
  101. #define SPI_TXBUFE_SIZE 1
  102. #define SPI_NSSR_OFFSET 8
  103. #define SPI_NSSR_SIZE 1
  104. #define SPI_TXEMPTY_OFFSET 9
  105. #define SPI_TXEMPTY_SIZE 1
  106. #define SPI_SPIENS_OFFSET 16
  107. #define SPI_SPIENS_SIZE 1
  108. /* Bitfields in CSR0 */
  109. #define SPI_CPOL_OFFSET 0
  110. #define SPI_CPOL_SIZE 1
  111. #define SPI_NCPHA_OFFSET 1
  112. #define SPI_NCPHA_SIZE 1
  113. #define SPI_CSAAT_OFFSET 3
  114. #define SPI_CSAAT_SIZE 1
  115. #define SPI_BITS_OFFSET 4
  116. #define SPI_BITS_SIZE 4
  117. #define SPI_SCBR_OFFSET 8
  118. #define SPI_SCBR_SIZE 8
  119. #define SPI_DLYBS_OFFSET 16
  120. #define SPI_DLYBS_SIZE 8
  121. #define SPI_DLYBCT_OFFSET 24
  122. #define SPI_DLYBCT_SIZE 8
  123. /* Bitfields in RCR */
  124. #define SPI_RXCTR_OFFSET 0
  125. #define SPI_RXCTR_SIZE 16
  126. /* Bitfields in TCR */
  127. #define SPI_TXCTR_OFFSET 0
  128. #define SPI_TXCTR_SIZE 16
  129. /* Bitfields in RNCR */
  130. #define SPI_RXNCR_OFFSET 0
  131. #define SPI_RXNCR_SIZE 16
  132. /* Bitfields in TNCR */
  133. #define SPI_TXNCR_OFFSET 0
  134. #define SPI_TXNCR_SIZE 16
  135. /* Bitfields in PTCR */
  136. #define SPI_RXTEN_OFFSET 0
  137. #define SPI_RXTEN_SIZE 1
  138. #define SPI_RXTDIS_OFFSET 1
  139. #define SPI_RXTDIS_SIZE 1
  140. #define SPI_TXTEN_OFFSET 8
  141. #define SPI_TXTEN_SIZE 1
  142. #define SPI_TXTDIS_OFFSET 9
  143. #define SPI_TXTDIS_SIZE 1
  144. /* Constants for BITS */
  145. #define SPI_BITS_8_BPT 0
  146. #define SPI_BITS_9_BPT 1
  147. #define SPI_BITS_10_BPT 2
  148. #define SPI_BITS_11_BPT 3
  149. #define SPI_BITS_12_BPT 4
  150. #define SPI_BITS_13_BPT 5
  151. #define SPI_BITS_14_BPT 6
  152. #define SPI_BITS_15_BPT 7
  153. #define SPI_BITS_16_BPT 8
  154. /* Bit manipulation macros */
  155. #define SPI_BIT(name) \
  156. (1 << SPI_##name##_OFFSET)
  157. #define SPI_BF(name, value) \
  158. (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
  159. #define SPI_BFEXT(name, value) \
  160. (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
  161. #define SPI_BFINS(name, value, old) \
  162. (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
  163. | SPI_BF(name, value))
  164. /* Register access macros */
  165. #define spi_readl(port, reg) \
  166. __raw_readl((port)->regs + SPI_##reg)
  167. #define spi_writel(port, reg, value) \
  168. __raw_writel((value), (port)->regs + SPI_##reg)
  169. /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
  170. * cache operations; better heuristics consider wordsize and bitrate.
  171. */
  172. #define DMA_MIN_BYTES 16
  173. #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
  174. struct atmel_spi_dma {
  175. struct dma_chan *chan_rx;
  176. struct dma_chan *chan_tx;
  177. struct scatterlist sgrx;
  178. struct scatterlist sgtx;
  179. struct dma_async_tx_descriptor *data_desc_rx;
  180. struct dma_async_tx_descriptor *data_desc_tx;
  181. struct at_dma_slave dma_slave;
  182. };
  183. struct atmel_spi_caps {
  184. bool is_spi2;
  185. bool has_wdrbt;
  186. bool has_dma_support;
  187. };
  188. /*
  189. * The core SPI transfer engine just talks to a register bank to set up
  190. * DMA transfers; transfer queue progress is driven by IRQs. The clock
  191. * framework provides the base clock, subdivided for each spi_device.
  192. */
  193. struct atmel_spi {
  194. spinlock_t lock;
  195. unsigned long flags;
  196. phys_addr_t phybase;
  197. void __iomem *regs;
  198. int irq;
  199. struct clk *clk;
  200. struct platform_device *pdev;
  201. struct spi_transfer *current_transfer;
  202. int current_remaining_bytes;
  203. int done_status;
  204. struct completion xfer_completion;
  205. /* scratch buffer */
  206. void *buffer;
  207. dma_addr_t buffer_dma;
  208. struct atmel_spi_caps caps;
  209. bool use_dma;
  210. bool use_pdc;
  211. /* dmaengine data */
  212. struct atmel_spi_dma dma;
  213. bool keep_cs;
  214. bool cs_active;
  215. };
  216. /* Controller-specific per-slave state */
  217. struct atmel_spi_device {
  218. unsigned int npcs_pin;
  219. u32 csr;
  220. };
  221. #define BUFFER_SIZE PAGE_SIZE
  222. #define INVALID_DMA_ADDRESS 0xffffffff
  223. /*
  224. * Version 2 of the SPI controller has
  225. * - CR.LASTXFER
  226. * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
  227. * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
  228. * - SPI_CSRx.CSAAT
  229. * - SPI_CSRx.SBCR allows faster clocking
  230. */
  231. static bool atmel_spi_is_v2(struct atmel_spi *as)
  232. {
  233. return as->caps.is_spi2;
  234. }
  235. /*
  236. * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
  237. * they assume that spi slave device state will not change on deselect, so
  238. * that automagic deselection is OK. ("NPCSx rises if no data is to be
  239. * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
  240. * controllers have CSAAT and friends.
  241. *
  242. * Since the CSAAT functionality is a bit weird on newer controllers as
  243. * well, we use GPIO to control nCSx pins on all controllers, updating
  244. * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
  245. * support active-high chipselects despite the controller's belief that
  246. * only active-low devices/systems exists.
  247. *
  248. * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
  249. * right when driven with GPIO. ("Mode Fault does not allow more than one
  250. * Master on Chip Select 0.") No workaround exists for that ... so for
  251. * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
  252. * and (c) will trigger that first erratum in some cases.
  253. */
  254. static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
  255. {
  256. struct atmel_spi_device *asd = spi->controller_state;
  257. unsigned active = spi->mode & SPI_CS_HIGH;
  258. u32 mr;
  259. if (atmel_spi_is_v2(as)) {
  260. spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
  261. /* For the low SPI version, there is a issue that PDC transfer
  262. * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
  263. */
  264. spi_writel(as, CSR0, asd->csr);
  265. if (as->caps.has_wdrbt) {
  266. spi_writel(as, MR,
  267. SPI_BF(PCS, ~(0x01 << spi->chip_select))
  268. | SPI_BIT(WDRBT)
  269. | SPI_BIT(MODFDIS)
  270. | SPI_BIT(MSTR));
  271. } else {
  272. spi_writel(as, MR,
  273. SPI_BF(PCS, ~(0x01 << spi->chip_select))
  274. | SPI_BIT(MODFDIS)
  275. | SPI_BIT(MSTR));
  276. }
  277. mr = spi_readl(as, MR);
  278. gpio_set_value(asd->npcs_pin, active);
  279. } else {
  280. u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
  281. int i;
  282. u32 csr;
  283. /* Make sure clock polarity is correct */
  284. for (i = 0; i < spi->master->num_chipselect; i++) {
  285. csr = spi_readl(as, CSR0 + 4 * i);
  286. if ((csr ^ cpol) & SPI_BIT(CPOL))
  287. spi_writel(as, CSR0 + 4 * i,
  288. csr ^ SPI_BIT(CPOL));
  289. }
  290. mr = spi_readl(as, MR);
  291. mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
  292. if (spi->chip_select != 0)
  293. gpio_set_value(asd->npcs_pin, active);
  294. spi_writel(as, MR, mr);
  295. }
  296. dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
  297. asd->npcs_pin, active ? " (high)" : "",
  298. mr);
  299. }
  300. static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
  301. {
  302. struct atmel_spi_device *asd = spi->controller_state;
  303. unsigned active = spi->mode & SPI_CS_HIGH;
  304. u32 mr;
  305. /* only deactivate *this* device; sometimes transfers to
  306. * another device may be active when this routine is called.
  307. */
  308. mr = spi_readl(as, MR);
  309. if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
  310. mr = SPI_BFINS(PCS, 0xf, mr);
  311. spi_writel(as, MR, mr);
  312. }
  313. dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
  314. asd->npcs_pin, active ? " (low)" : "",
  315. mr);
  316. if (atmel_spi_is_v2(as) || spi->chip_select != 0)
  317. gpio_set_value(asd->npcs_pin, !active);
  318. }
  319. static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
  320. {
  321. spin_lock_irqsave(&as->lock, as->flags);
  322. }
  323. static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
  324. {
  325. spin_unlock_irqrestore(&as->lock, as->flags);
  326. }
  327. static inline bool atmel_spi_use_dma(struct atmel_spi *as,
  328. struct spi_transfer *xfer)
  329. {
  330. return as->use_dma && xfer->len >= DMA_MIN_BYTES;
  331. }
  332. static int atmel_spi_dma_slave_config(struct atmel_spi *as,
  333. struct dma_slave_config *slave_config,
  334. u8 bits_per_word)
  335. {
  336. int err = 0;
  337. if (bits_per_word > 8) {
  338. slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  339. slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
  340. } else {
  341. slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  342. slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
  343. }
  344. slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
  345. slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
  346. slave_config->src_maxburst = 1;
  347. slave_config->dst_maxburst = 1;
  348. slave_config->device_fc = false;
  349. slave_config->direction = DMA_MEM_TO_DEV;
  350. if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
  351. dev_err(&as->pdev->dev,
  352. "failed to configure tx dma channel\n");
  353. err = -EINVAL;
  354. }
  355. slave_config->direction = DMA_DEV_TO_MEM;
  356. if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
  357. dev_err(&as->pdev->dev,
  358. "failed to configure rx dma channel\n");
  359. err = -EINVAL;
  360. }
  361. return err;
  362. }
  363. static bool filter(struct dma_chan *chan, void *pdata)
  364. {
  365. struct atmel_spi_dma *sl_pdata = pdata;
  366. struct at_dma_slave *sl;
  367. if (!sl_pdata)
  368. return false;
  369. sl = &sl_pdata->dma_slave;
  370. if (sl->dma_dev == chan->device->dev) {
  371. chan->private = sl;
  372. return true;
  373. } else {
  374. return false;
  375. }
  376. }
  377. static int atmel_spi_configure_dma(struct atmel_spi *as)
  378. {
  379. struct dma_slave_config slave_config;
  380. struct device *dev = &as->pdev->dev;
  381. int err;
  382. dma_cap_mask_t mask;
  383. dma_cap_zero(mask);
  384. dma_cap_set(DMA_SLAVE, mask);
  385. as->dma.chan_tx = dma_request_slave_channel_compat(mask, filter,
  386. &as->dma,
  387. dev, "tx");
  388. if (!as->dma.chan_tx) {
  389. dev_err(dev,
  390. "DMA TX channel not available, SPI unable to use DMA\n");
  391. err = -EBUSY;
  392. goto error;
  393. }
  394. as->dma.chan_rx = dma_request_slave_channel_compat(mask, filter,
  395. &as->dma,
  396. dev, "rx");
  397. if (!as->dma.chan_rx) {
  398. dev_err(dev,
  399. "DMA RX channel not available, SPI unable to use DMA\n");
  400. err = -EBUSY;
  401. goto error;
  402. }
  403. err = atmel_spi_dma_slave_config(as, &slave_config, 8);
  404. if (err)
  405. goto error;
  406. dev_info(&as->pdev->dev,
  407. "Using %s (tx) and %s (rx) for DMA transfers\n",
  408. dma_chan_name(as->dma.chan_tx),
  409. dma_chan_name(as->dma.chan_rx));
  410. return 0;
  411. error:
  412. if (as->dma.chan_rx)
  413. dma_release_channel(as->dma.chan_rx);
  414. if (as->dma.chan_tx)
  415. dma_release_channel(as->dma.chan_tx);
  416. return err;
  417. }
  418. static void atmel_spi_stop_dma(struct atmel_spi *as)
  419. {
  420. if (as->dma.chan_rx)
  421. as->dma.chan_rx->device->device_control(as->dma.chan_rx,
  422. DMA_TERMINATE_ALL, 0);
  423. if (as->dma.chan_tx)
  424. as->dma.chan_tx->device->device_control(as->dma.chan_tx,
  425. DMA_TERMINATE_ALL, 0);
  426. }
  427. static void atmel_spi_release_dma(struct atmel_spi *as)
  428. {
  429. if (as->dma.chan_rx)
  430. dma_release_channel(as->dma.chan_rx);
  431. if (as->dma.chan_tx)
  432. dma_release_channel(as->dma.chan_tx);
  433. }
  434. /* This function is called by the DMA driver from tasklet context */
  435. static void dma_callback(void *data)
  436. {
  437. struct spi_master *master = data;
  438. struct atmel_spi *as = spi_master_get_devdata(master);
  439. complete(&as->xfer_completion);
  440. }
  441. /*
  442. * Next transfer using PIO.
  443. */
  444. static void atmel_spi_next_xfer_pio(struct spi_master *master,
  445. struct spi_transfer *xfer)
  446. {
  447. struct atmel_spi *as = spi_master_get_devdata(master);
  448. unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
  449. dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
  450. /* Make sure data is not remaining in RDR */
  451. spi_readl(as, RDR);
  452. while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
  453. spi_readl(as, RDR);
  454. cpu_relax();
  455. }
  456. if (xfer->tx_buf) {
  457. if (xfer->bits_per_word > 8)
  458. spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
  459. else
  460. spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
  461. } else {
  462. spi_writel(as, TDR, 0);
  463. }
  464. dev_dbg(master->dev.parent,
  465. " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
  466. xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
  467. xfer->bits_per_word);
  468. /* Enable relevant interrupts */
  469. spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
  470. }
  471. /*
  472. * Submit next transfer for DMA.
  473. */
  474. static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
  475. struct spi_transfer *xfer,
  476. u32 *plen)
  477. {
  478. struct atmel_spi *as = spi_master_get_devdata(master);
  479. struct dma_chan *rxchan = as->dma.chan_rx;
  480. struct dma_chan *txchan = as->dma.chan_tx;
  481. struct dma_async_tx_descriptor *rxdesc;
  482. struct dma_async_tx_descriptor *txdesc;
  483. struct dma_slave_config slave_config;
  484. dma_cookie_t cookie;
  485. u32 len = *plen;
  486. dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
  487. /* Check that the channels are available */
  488. if (!rxchan || !txchan)
  489. return -ENODEV;
  490. /* release lock for DMA operations */
  491. atmel_spi_unlock(as);
  492. /* prepare the RX dma transfer */
  493. sg_init_table(&as->dma.sgrx, 1);
  494. if (xfer->rx_buf) {
  495. as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
  496. } else {
  497. as->dma.sgrx.dma_address = as->buffer_dma;
  498. if (len > BUFFER_SIZE)
  499. len = BUFFER_SIZE;
  500. }
  501. /* prepare the TX dma transfer */
  502. sg_init_table(&as->dma.sgtx, 1);
  503. if (xfer->tx_buf) {
  504. as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
  505. } else {
  506. as->dma.sgtx.dma_address = as->buffer_dma;
  507. if (len > BUFFER_SIZE)
  508. len = BUFFER_SIZE;
  509. memset(as->buffer, 0, len);
  510. }
  511. sg_dma_len(&as->dma.sgtx) = len;
  512. sg_dma_len(&as->dma.sgrx) = len;
  513. *plen = len;
  514. if (atmel_spi_dma_slave_config(as, &slave_config, 8))
  515. goto err_exit;
  516. /* Send both scatterlists */
  517. rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
  518. &as->dma.sgrx,
  519. 1,
  520. DMA_FROM_DEVICE,
  521. DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
  522. NULL);
  523. if (!rxdesc)
  524. goto err_dma;
  525. txdesc = txchan->device->device_prep_slave_sg(txchan,
  526. &as->dma.sgtx,
  527. 1,
  528. DMA_TO_DEVICE,
  529. DMA_PREP_INTERRUPT | DMA_CTRL_ACK,
  530. NULL);
  531. if (!txdesc)
  532. goto err_dma;
  533. dev_dbg(master->dev.parent,
  534. " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
  535. xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
  536. xfer->rx_buf, (unsigned long long)xfer->rx_dma);
  537. /* Enable relevant interrupts */
  538. spi_writel(as, IER, SPI_BIT(OVRES));
  539. /* Put the callback on the RX transfer only, that should finish last */
  540. rxdesc->callback = dma_callback;
  541. rxdesc->callback_param = master;
  542. /* Submit and fire RX and TX with TX last so we're ready to read! */
  543. cookie = rxdesc->tx_submit(rxdesc);
  544. if (dma_submit_error(cookie))
  545. goto err_dma;
  546. cookie = txdesc->tx_submit(txdesc);
  547. if (dma_submit_error(cookie))
  548. goto err_dma;
  549. rxchan->device->device_issue_pending(rxchan);
  550. txchan->device->device_issue_pending(txchan);
  551. /* take back lock */
  552. atmel_spi_lock(as);
  553. return 0;
  554. err_dma:
  555. spi_writel(as, IDR, SPI_BIT(OVRES));
  556. atmel_spi_stop_dma(as);
  557. err_exit:
  558. atmel_spi_lock(as);
  559. return -ENOMEM;
  560. }
  561. static void atmel_spi_next_xfer_data(struct spi_master *master,
  562. struct spi_transfer *xfer,
  563. dma_addr_t *tx_dma,
  564. dma_addr_t *rx_dma,
  565. u32 *plen)
  566. {
  567. struct atmel_spi *as = spi_master_get_devdata(master);
  568. u32 len = *plen;
  569. /* use scratch buffer only when rx or tx data is unspecified */
  570. if (xfer->rx_buf)
  571. *rx_dma = xfer->rx_dma + xfer->len - *plen;
  572. else {
  573. *rx_dma = as->buffer_dma;
  574. if (len > BUFFER_SIZE)
  575. len = BUFFER_SIZE;
  576. }
  577. if (xfer->tx_buf)
  578. *tx_dma = xfer->tx_dma + xfer->len - *plen;
  579. else {
  580. *tx_dma = as->buffer_dma;
  581. if (len > BUFFER_SIZE)
  582. len = BUFFER_SIZE;
  583. memset(as->buffer, 0, len);
  584. dma_sync_single_for_device(&as->pdev->dev,
  585. as->buffer_dma, len, DMA_TO_DEVICE);
  586. }
  587. *plen = len;
  588. }
  589. static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
  590. struct spi_device *spi,
  591. struct spi_transfer *xfer)
  592. {
  593. u32 scbr, csr;
  594. unsigned long bus_hz;
  595. /* v1 chips start out at half the peripheral bus speed. */
  596. bus_hz = clk_get_rate(as->clk);
  597. if (!atmel_spi_is_v2(as))
  598. bus_hz /= 2;
  599. /*
  600. * Calculate the lowest divider that satisfies the
  601. * constraint, assuming div32/fdiv/mbz == 0.
  602. */
  603. if (xfer->speed_hz)
  604. scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
  605. else
  606. /*
  607. * This can happend if max_speed is null.
  608. * In this case, we set the lowest possible speed
  609. */
  610. scbr = 0xff;
  611. /*
  612. * If the resulting divider doesn't fit into the
  613. * register bitfield, we can't satisfy the constraint.
  614. */
  615. if (scbr >= (1 << SPI_SCBR_SIZE)) {
  616. dev_err(&spi->dev,
  617. "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
  618. xfer->speed_hz, scbr, bus_hz/255);
  619. return -EINVAL;
  620. }
  621. if (scbr == 0) {
  622. dev_err(&spi->dev,
  623. "setup: %d Hz too high, scbr %u; max %ld Hz\n",
  624. xfer->speed_hz, scbr, bus_hz);
  625. return -EINVAL;
  626. }
  627. csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
  628. csr = SPI_BFINS(SCBR, scbr, csr);
  629. spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
  630. return 0;
  631. }
  632. /*
  633. * Submit next transfer for PDC.
  634. * lock is held, spi irq is blocked
  635. */
  636. static void atmel_spi_pdc_next_xfer(struct spi_master *master,
  637. struct spi_message *msg,
  638. struct spi_transfer *xfer)
  639. {
  640. struct atmel_spi *as = spi_master_get_devdata(master);
  641. u32 len;
  642. dma_addr_t tx_dma, rx_dma;
  643. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  644. len = as->current_remaining_bytes;
  645. atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
  646. as->current_remaining_bytes -= len;
  647. spi_writel(as, RPR, rx_dma);
  648. spi_writel(as, TPR, tx_dma);
  649. if (msg->spi->bits_per_word > 8)
  650. len >>= 1;
  651. spi_writel(as, RCR, len);
  652. spi_writel(as, TCR, len);
  653. dev_dbg(&msg->spi->dev,
  654. " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
  655. xfer, xfer->len, xfer->tx_buf,
  656. (unsigned long long)xfer->tx_dma, xfer->rx_buf,
  657. (unsigned long long)xfer->rx_dma);
  658. if (as->current_remaining_bytes) {
  659. len = as->current_remaining_bytes;
  660. atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
  661. as->current_remaining_bytes -= len;
  662. spi_writel(as, RNPR, rx_dma);
  663. spi_writel(as, TNPR, tx_dma);
  664. if (msg->spi->bits_per_word > 8)
  665. len >>= 1;
  666. spi_writel(as, RNCR, len);
  667. spi_writel(as, TNCR, len);
  668. dev_dbg(&msg->spi->dev,
  669. " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
  670. xfer, xfer->len, xfer->tx_buf,
  671. (unsigned long long)xfer->tx_dma, xfer->rx_buf,
  672. (unsigned long long)xfer->rx_dma);
  673. }
  674. /* REVISIT: We're waiting for ENDRX before we start the next
  675. * transfer because we need to handle some difficult timing
  676. * issues otherwise. If we wait for ENDTX in one transfer and
  677. * then starts waiting for ENDRX in the next, it's difficult
  678. * to tell the difference between the ENDRX interrupt we're
  679. * actually waiting for and the ENDRX interrupt of the
  680. * previous transfer.
  681. *
  682. * It should be doable, though. Just not now...
  683. */
  684. spi_writel(as, IER, SPI_BIT(ENDRX) | SPI_BIT(OVRES));
  685. spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
  686. }
  687. /*
  688. * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
  689. * - The buffer is either valid for CPU access, else NULL
  690. * - If the buffer is valid, so is its DMA address
  691. *
  692. * This driver manages the dma address unless message->is_dma_mapped.
  693. */
  694. static int
  695. atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
  696. {
  697. struct device *dev = &as->pdev->dev;
  698. xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
  699. if (xfer->tx_buf) {
  700. /* tx_buf is a const void* where we need a void * for the dma
  701. * mapping */
  702. void *nonconst_tx = (void *)xfer->tx_buf;
  703. xfer->tx_dma = dma_map_single(dev,
  704. nonconst_tx, xfer->len,
  705. DMA_TO_DEVICE);
  706. if (dma_mapping_error(dev, xfer->tx_dma))
  707. return -ENOMEM;
  708. }
  709. if (xfer->rx_buf) {
  710. xfer->rx_dma = dma_map_single(dev,
  711. xfer->rx_buf, xfer->len,
  712. DMA_FROM_DEVICE);
  713. if (dma_mapping_error(dev, xfer->rx_dma)) {
  714. if (xfer->tx_buf)
  715. dma_unmap_single(dev,
  716. xfer->tx_dma, xfer->len,
  717. DMA_TO_DEVICE);
  718. return -ENOMEM;
  719. }
  720. }
  721. return 0;
  722. }
  723. static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
  724. struct spi_transfer *xfer)
  725. {
  726. if (xfer->tx_dma != INVALID_DMA_ADDRESS)
  727. dma_unmap_single(master->dev.parent, xfer->tx_dma,
  728. xfer->len, DMA_TO_DEVICE);
  729. if (xfer->rx_dma != INVALID_DMA_ADDRESS)
  730. dma_unmap_single(master->dev.parent, xfer->rx_dma,
  731. xfer->len, DMA_FROM_DEVICE);
  732. }
  733. static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
  734. {
  735. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  736. }
  737. /* Called from IRQ
  738. *
  739. * Must update "current_remaining_bytes" to keep track of data
  740. * to transfer.
  741. */
  742. static void
  743. atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
  744. {
  745. u8 *rxp;
  746. u16 *rxp16;
  747. unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
  748. if (xfer->rx_buf) {
  749. if (xfer->bits_per_word > 8) {
  750. rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
  751. *rxp16 = spi_readl(as, RDR);
  752. } else {
  753. rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
  754. *rxp = spi_readl(as, RDR);
  755. }
  756. } else {
  757. spi_readl(as, RDR);
  758. }
  759. if (xfer->bits_per_word > 8) {
  760. if (as->current_remaining_bytes > 2)
  761. as->current_remaining_bytes -= 2;
  762. else
  763. as->current_remaining_bytes = 0;
  764. } else {
  765. as->current_remaining_bytes--;
  766. }
  767. }
  768. /* Interrupt
  769. *
  770. * No need for locking in this Interrupt handler: done_status is the
  771. * only information modified.
  772. */
  773. static irqreturn_t
  774. atmel_spi_pio_interrupt(int irq, void *dev_id)
  775. {
  776. struct spi_master *master = dev_id;
  777. struct atmel_spi *as = spi_master_get_devdata(master);
  778. u32 status, pending, imr;
  779. struct spi_transfer *xfer;
  780. int ret = IRQ_NONE;
  781. imr = spi_readl(as, IMR);
  782. status = spi_readl(as, SR);
  783. pending = status & imr;
  784. if (pending & SPI_BIT(OVRES)) {
  785. ret = IRQ_HANDLED;
  786. spi_writel(as, IDR, SPI_BIT(OVRES));
  787. dev_warn(master->dev.parent, "overrun\n");
  788. /*
  789. * When we get an overrun, we disregard the current
  790. * transfer. Data will not be copied back from any
  791. * bounce buffer and msg->actual_len will not be
  792. * updated with the last xfer.
  793. *
  794. * We will also not process any remaning transfers in
  795. * the message.
  796. */
  797. as->done_status = -EIO;
  798. smp_wmb();
  799. /* Clear any overrun happening while cleaning up */
  800. spi_readl(as, SR);
  801. complete(&as->xfer_completion);
  802. } else if (pending & SPI_BIT(RDRF)) {
  803. atmel_spi_lock(as);
  804. if (as->current_remaining_bytes) {
  805. ret = IRQ_HANDLED;
  806. xfer = as->current_transfer;
  807. atmel_spi_pump_pio_data(as, xfer);
  808. if (!as->current_remaining_bytes)
  809. spi_writel(as, IDR, pending);
  810. complete(&as->xfer_completion);
  811. }
  812. atmel_spi_unlock(as);
  813. } else {
  814. WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
  815. ret = IRQ_HANDLED;
  816. spi_writel(as, IDR, pending);
  817. }
  818. return ret;
  819. }
  820. static irqreturn_t
  821. atmel_spi_pdc_interrupt(int irq, void *dev_id)
  822. {
  823. struct spi_master *master = dev_id;
  824. struct atmel_spi *as = spi_master_get_devdata(master);
  825. u32 status, pending, imr;
  826. int ret = IRQ_NONE;
  827. imr = spi_readl(as, IMR);
  828. status = spi_readl(as, SR);
  829. pending = status & imr;
  830. if (pending & SPI_BIT(OVRES)) {
  831. ret = IRQ_HANDLED;
  832. spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
  833. | SPI_BIT(OVRES)));
  834. /* Clear any overrun happening while cleaning up */
  835. spi_readl(as, SR);
  836. as->done_status = -EIO;
  837. complete(&as->xfer_completion);
  838. } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
  839. ret = IRQ_HANDLED;
  840. spi_writel(as, IDR, pending);
  841. complete(&as->xfer_completion);
  842. }
  843. return ret;
  844. }
  845. static int atmel_spi_setup(struct spi_device *spi)
  846. {
  847. struct atmel_spi *as;
  848. struct atmel_spi_device *asd;
  849. u32 csr;
  850. unsigned int bits = spi->bits_per_word;
  851. unsigned int npcs_pin;
  852. int ret;
  853. as = spi_master_get_devdata(spi->master);
  854. /* see notes above re chipselect */
  855. if (!atmel_spi_is_v2(as)
  856. && spi->chip_select == 0
  857. && (spi->mode & SPI_CS_HIGH)) {
  858. dev_dbg(&spi->dev, "setup: can't be active-high\n");
  859. return -EINVAL;
  860. }
  861. csr = SPI_BF(BITS, bits - 8);
  862. if (spi->mode & SPI_CPOL)
  863. csr |= SPI_BIT(CPOL);
  864. if (!(spi->mode & SPI_CPHA))
  865. csr |= SPI_BIT(NCPHA);
  866. /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
  867. *
  868. * DLYBCT would add delays between words, slowing down transfers.
  869. * It could potentially be useful to cope with DMA bottlenecks, but
  870. * in those cases it's probably best to just use a lower bitrate.
  871. */
  872. csr |= SPI_BF(DLYBS, 0);
  873. csr |= SPI_BF(DLYBCT, 0);
  874. /* chipselect must have been muxed as GPIO (e.g. in board setup) */
  875. npcs_pin = (unsigned int)spi->controller_data;
  876. if (gpio_is_valid(spi->cs_gpio))
  877. npcs_pin = spi->cs_gpio;
  878. asd = spi->controller_state;
  879. if (!asd) {
  880. asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
  881. if (!asd)
  882. return -ENOMEM;
  883. ret = gpio_request(npcs_pin, dev_name(&spi->dev));
  884. if (ret) {
  885. kfree(asd);
  886. return ret;
  887. }
  888. asd->npcs_pin = npcs_pin;
  889. spi->controller_state = asd;
  890. gpio_direction_output(npcs_pin, !(spi->mode & SPI_CS_HIGH));
  891. }
  892. asd->csr = csr;
  893. dev_dbg(&spi->dev,
  894. "setup: bpw %u mode 0x%x -> csr%d %08x\n",
  895. bits, spi->mode, spi->chip_select, csr);
  896. if (!atmel_spi_is_v2(as))
  897. spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
  898. return 0;
  899. }
  900. static int atmel_spi_one_transfer(struct spi_master *master,
  901. struct spi_message *msg,
  902. struct spi_transfer *xfer)
  903. {
  904. struct atmel_spi *as;
  905. struct spi_device *spi = msg->spi;
  906. u8 bits;
  907. u32 len;
  908. struct atmel_spi_device *asd;
  909. int timeout;
  910. int ret;
  911. as = spi_master_get_devdata(master);
  912. if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
  913. dev_dbg(&spi->dev, "missing rx or tx buf\n");
  914. return -EINVAL;
  915. }
  916. if (xfer->bits_per_word) {
  917. asd = spi->controller_state;
  918. bits = (asd->csr >> 4) & 0xf;
  919. if (bits != xfer->bits_per_word - 8) {
  920. dev_dbg(&spi->dev,
  921. "you can't yet change bits_per_word in transfers\n");
  922. return -ENOPROTOOPT;
  923. }
  924. }
  925. /*
  926. * DMA map early, for performance (empties dcache ASAP) and
  927. * better fault reporting.
  928. */
  929. if ((!msg->is_dma_mapped)
  930. && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
  931. if (atmel_spi_dma_map_xfer(as, xfer) < 0)
  932. return -ENOMEM;
  933. }
  934. atmel_spi_set_xfer_speed(as, msg->spi, xfer);
  935. as->done_status = 0;
  936. as->current_transfer = xfer;
  937. as->current_remaining_bytes = xfer->len;
  938. while (as->current_remaining_bytes) {
  939. reinit_completion(&as->xfer_completion);
  940. if (as->use_pdc) {
  941. atmel_spi_pdc_next_xfer(master, msg, xfer);
  942. } else if (atmel_spi_use_dma(as, xfer)) {
  943. len = as->current_remaining_bytes;
  944. ret = atmel_spi_next_xfer_dma_submit(master,
  945. xfer, &len);
  946. if (ret) {
  947. dev_err(&spi->dev,
  948. "unable to use DMA, fallback to PIO\n");
  949. atmel_spi_next_xfer_pio(master, xfer);
  950. } else {
  951. as->current_remaining_bytes -= len;
  952. if (as->current_remaining_bytes < 0)
  953. as->current_remaining_bytes = 0;
  954. }
  955. } else {
  956. atmel_spi_next_xfer_pio(master, xfer);
  957. }
  958. /* interrupts are disabled, so free the lock for schedule */
  959. atmel_spi_unlock(as);
  960. ret = wait_for_completion_timeout(&as->xfer_completion,
  961. SPI_DMA_TIMEOUT);
  962. atmel_spi_lock(as);
  963. if (WARN_ON(ret == 0)) {
  964. dev_err(&spi->dev,
  965. "spi trasfer timeout, err %d\n", ret);
  966. as->done_status = -EIO;
  967. } else {
  968. ret = 0;
  969. }
  970. if (as->done_status)
  971. break;
  972. }
  973. if (as->done_status) {
  974. if (as->use_pdc) {
  975. dev_warn(master->dev.parent,
  976. "overrun (%u/%u remaining)\n",
  977. spi_readl(as, TCR), spi_readl(as, RCR));
  978. /*
  979. * Clean up DMA registers and make sure the data
  980. * registers are empty.
  981. */
  982. spi_writel(as, RNCR, 0);
  983. spi_writel(as, TNCR, 0);
  984. spi_writel(as, RCR, 0);
  985. spi_writel(as, TCR, 0);
  986. for (timeout = 1000; timeout; timeout--)
  987. if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
  988. break;
  989. if (!timeout)
  990. dev_warn(master->dev.parent,
  991. "timeout waiting for TXEMPTY");
  992. while (spi_readl(as, SR) & SPI_BIT(RDRF))
  993. spi_readl(as, RDR);
  994. /* Clear any overrun happening while cleaning up */
  995. spi_readl(as, SR);
  996. } else if (atmel_spi_use_dma(as, xfer)) {
  997. atmel_spi_stop_dma(as);
  998. }
  999. if (!msg->is_dma_mapped
  1000. && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
  1001. atmel_spi_dma_unmap_xfer(master, xfer);
  1002. return 0;
  1003. } else {
  1004. /* only update length if no error */
  1005. msg->actual_length += xfer->len;
  1006. }
  1007. if (!msg->is_dma_mapped
  1008. && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
  1009. atmel_spi_dma_unmap_xfer(master, xfer);
  1010. if (xfer->delay_usecs)
  1011. udelay(xfer->delay_usecs);
  1012. if (xfer->cs_change) {
  1013. if (list_is_last(&xfer->transfer_list,
  1014. &msg->transfers)) {
  1015. as->keep_cs = true;
  1016. } else {
  1017. as->cs_active = !as->cs_active;
  1018. if (as->cs_active)
  1019. cs_activate(as, msg->spi);
  1020. else
  1021. cs_deactivate(as, msg->spi);
  1022. }
  1023. }
  1024. return 0;
  1025. }
  1026. static int atmel_spi_transfer_one_message(struct spi_master *master,
  1027. struct spi_message *msg)
  1028. {
  1029. struct atmel_spi *as;
  1030. struct spi_transfer *xfer;
  1031. struct spi_device *spi = msg->spi;
  1032. int ret = 0;
  1033. as = spi_master_get_devdata(master);
  1034. dev_dbg(&spi->dev, "new message %p submitted for %s\n",
  1035. msg, dev_name(&spi->dev));
  1036. atmel_spi_lock(as);
  1037. cs_activate(as, spi);
  1038. as->cs_active = true;
  1039. as->keep_cs = false;
  1040. msg->status = 0;
  1041. msg->actual_length = 0;
  1042. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1043. ret = atmel_spi_one_transfer(master, msg, xfer);
  1044. if (ret)
  1045. goto msg_done;
  1046. }
  1047. if (as->use_pdc)
  1048. atmel_spi_disable_pdc_transfer(as);
  1049. list_for_each_entry(xfer, &msg->transfers, transfer_list) {
  1050. dev_dbg(&spi->dev,
  1051. " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
  1052. xfer, xfer->len,
  1053. xfer->tx_buf, &xfer->tx_dma,
  1054. xfer->rx_buf, &xfer->rx_dma);
  1055. }
  1056. msg_done:
  1057. if (!as->keep_cs)
  1058. cs_deactivate(as, msg->spi);
  1059. atmel_spi_unlock(as);
  1060. msg->status = as->done_status;
  1061. spi_finalize_current_message(spi->master);
  1062. return ret;
  1063. }
  1064. static void atmel_spi_cleanup(struct spi_device *spi)
  1065. {
  1066. struct atmel_spi_device *asd = spi->controller_state;
  1067. unsigned gpio = (unsigned) spi->controller_data;
  1068. if (!asd)
  1069. return;
  1070. spi->controller_state = NULL;
  1071. gpio_free(gpio);
  1072. kfree(asd);
  1073. }
  1074. static inline unsigned int atmel_get_version(struct atmel_spi *as)
  1075. {
  1076. return spi_readl(as, VERSION) & 0x00000fff;
  1077. }
  1078. static void atmel_get_caps(struct atmel_spi *as)
  1079. {
  1080. unsigned int version;
  1081. version = atmel_get_version(as);
  1082. dev_info(&as->pdev->dev, "version: 0x%x\n", version);
  1083. as->caps.is_spi2 = version > 0x121;
  1084. as->caps.has_wdrbt = version >= 0x210;
  1085. as->caps.has_dma_support = version >= 0x212;
  1086. }
  1087. /*-------------------------------------------------------------------------*/
  1088. static int atmel_spi_probe(struct platform_device *pdev)
  1089. {
  1090. struct resource *regs;
  1091. int irq;
  1092. struct clk *clk;
  1093. int ret;
  1094. struct spi_master *master;
  1095. struct atmel_spi *as;
  1096. /* Select default pin state */
  1097. pinctrl_pm_select_default_state(&pdev->dev);
  1098. regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1099. if (!regs)
  1100. return -ENXIO;
  1101. irq = platform_get_irq(pdev, 0);
  1102. if (irq < 0)
  1103. return irq;
  1104. clk = devm_clk_get(&pdev->dev, "spi_clk");
  1105. if (IS_ERR(clk))
  1106. return PTR_ERR(clk);
  1107. /* setup spi core then atmel-specific driver state */
  1108. ret = -ENOMEM;
  1109. master = spi_alloc_master(&pdev->dev, sizeof(*as));
  1110. if (!master)
  1111. goto out_free;
  1112. /* the spi->mode bits understood by this driver: */
  1113. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
  1114. master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
  1115. master->dev.of_node = pdev->dev.of_node;
  1116. master->bus_num = pdev->id;
  1117. master->num_chipselect = master->dev.of_node ? 0 : 4;
  1118. master->setup = atmel_spi_setup;
  1119. master->transfer_one_message = atmel_spi_transfer_one_message;
  1120. master->cleanup = atmel_spi_cleanup;
  1121. platform_set_drvdata(pdev, master);
  1122. as = spi_master_get_devdata(master);
  1123. /*
  1124. * Scratch buffer is used for throwaway rx and tx data.
  1125. * It's coherent to minimize dcache pollution.
  1126. */
  1127. as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
  1128. &as->buffer_dma, GFP_KERNEL);
  1129. if (!as->buffer)
  1130. goto out_free;
  1131. spin_lock_init(&as->lock);
  1132. as->pdev = pdev;
  1133. as->regs = devm_ioremap_resource(&pdev->dev, regs);
  1134. if (IS_ERR(as->regs)) {
  1135. ret = PTR_ERR(as->regs);
  1136. goto out_free_buffer;
  1137. }
  1138. as->phybase = regs->start;
  1139. as->irq = irq;
  1140. as->clk = clk;
  1141. init_completion(&as->xfer_completion);
  1142. atmel_get_caps(as);
  1143. as->use_dma = false;
  1144. as->use_pdc = false;
  1145. if (as->caps.has_dma_support) {
  1146. if (atmel_spi_configure_dma(as) == 0)
  1147. as->use_dma = true;
  1148. } else {
  1149. as->use_pdc = true;
  1150. }
  1151. if (as->caps.has_dma_support && !as->use_dma)
  1152. dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
  1153. if (as->use_pdc) {
  1154. ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
  1155. 0, dev_name(&pdev->dev), master);
  1156. } else {
  1157. ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
  1158. 0, dev_name(&pdev->dev), master);
  1159. }
  1160. if (ret)
  1161. goto out_unmap_regs;
  1162. /* Initialize the hardware */
  1163. ret = clk_prepare_enable(clk);
  1164. if (ret)
  1165. goto out_free_irq;
  1166. spi_writel(as, CR, SPI_BIT(SWRST));
  1167. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1168. if (as->caps.has_wdrbt) {
  1169. spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
  1170. | SPI_BIT(MSTR));
  1171. } else {
  1172. spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
  1173. }
  1174. if (as->use_pdc)
  1175. spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
  1176. spi_writel(as, CR, SPI_BIT(SPIEN));
  1177. /* go! */
  1178. dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
  1179. (unsigned long)regs->start, irq);
  1180. ret = devm_spi_register_master(&pdev->dev, master);
  1181. if (ret)
  1182. goto out_free_dma;
  1183. return 0;
  1184. out_free_dma:
  1185. if (as->use_dma)
  1186. atmel_spi_release_dma(as);
  1187. spi_writel(as, CR, SPI_BIT(SWRST));
  1188. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1189. clk_disable_unprepare(clk);
  1190. out_free_irq:
  1191. out_unmap_regs:
  1192. out_free_buffer:
  1193. dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
  1194. as->buffer_dma);
  1195. out_free:
  1196. spi_master_put(master);
  1197. return ret;
  1198. }
  1199. static int atmel_spi_remove(struct platform_device *pdev)
  1200. {
  1201. struct spi_master *master = platform_get_drvdata(pdev);
  1202. struct atmel_spi *as = spi_master_get_devdata(master);
  1203. /* reset the hardware and block queue progress */
  1204. spin_lock_irq(&as->lock);
  1205. if (as->use_dma) {
  1206. atmel_spi_stop_dma(as);
  1207. atmel_spi_release_dma(as);
  1208. }
  1209. spi_writel(as, CR, SPI_BIT(SWRST));
  1210. spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
  1211. spi_readl(as, SR);
  1212. spin_unlock_irq(&as->lock);
  1213. dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
  1214. as->buffer_dma);
  1215. clk_disable_unprepare(as->clk);
  1216. return 0;
  1217. }
  1218. #ifdef CONFIG_PM_SLEEP
  1219. static int atmel_spi_suspend(struct device *dev)
  1220. {
  1221. struct spi_master *master = dev_get_drvdata(dev);
  1222. struct atmel_spi *as = spi_master_get_devdata(master);
  1223. int ret;
  1224. /* Stop the queue running */
  1225. ret = spi_master_suspend(master);
  1226. if (ret) {
  1227. dev_warn(dev, "cannot suspend master\n");
  1228. return ret;
  1229. }
  1230. clk_disable_unprepare(as->clk);
  1231. pinctrl_pm_select_sleep_state(dev);
  1232. return 0;
  1233. }
  1234. static int atmel_spi_resume(struct device *dev)
  1235. {
  1236. struct spi_master *master = dev_get_drvdata(dev);
  1237. struct atmel_spi *as = spi_master_get_devdata(master);
  1238. int ret;
  1239. pinctrl_pm_select_default_state(dev);
  1240. clk_prepare_enable(as->clk);
  1241. /* Start the queue running */
  1242. ret = spi_master_resume(master);
  1243. if (ret)
  1244. dev_err(dev, "problem starting queue (%d)\n", ret);
  1245. return ret;
  1246. }
  1247. static SIMPLE_DEV_PM_OPS(atmel_spi_pm_ops, atmel_spi_suspend, atmel_spi_resume);
  1248. #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
  1249. #else
  1250. #define ATMEL_SPI_PM_OPS NULL
  1251. #endif
  1252. #if defined(CONFIG_OF)
  1253. static const struct of_device_id atmel_spi_dt_ids[] = {
  1254. { .compatible = "atmel,at91rm9200-spi" },
  1255. { /* sentinel */ }
  1256. };
  1257. MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
  1258. #endif
  1259. static struct platform_driver atmel_spi_driver = {
  1260. .driver = {
  1261. .name = "atmel_spi",
  1262. .owner = THIS_MODULE,
  1263. .pm = ATMEL_SPI_PM_OPS,
  1264. .of_match_table = of_match_ptr(atmel_spi_dt_ids),
  1265. },
  1266. .probe = atmel_spi_probe,
  1267. .remove = atmel_spi_remove,
  1268. };
  1269. module_platform_driver(atmel_spi_driver);
  1270. MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
  1271. MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
  1272. MODULE_LICENSE("GPL");
  1273. MODULE_ALIAS("platform:atmel_spi");