hw.c 70 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2014 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * The full GNU General Public License is included in this distribution in the
  15. * file called LICENSE.
  16. *
  17. * Contact Information:
  18. * wlanfae <wlanfae@realtek.com>
  19. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  20. * Hsinchu 300, Taiwan.
  21. *
  22. * Larry Finger <Larry.Finger@lwfinger.net>
  23. *
  24. *****************************************************************************/
  25. #include "../wifi.h"
  26. #include "../efuse.h"
  27. #include "../base.h"
  28. #include "../regd.h"
  29. #include "../cam.h"
  30. #include "../ps.h"
  31. #include "../pci.h"
  32. #include "reg.h"
  33. #include "def.h"
  34. #include "phy.h"
  35. #include "dm.h"
  36. #include "../rtl8723com/dm_common.h"
  37. #include "fw.h"
  38. #include "../rtl8723com/fw_common.h"
  39. #include "led.h"
  40. #include "hw.h"
  41. #include "pwrseq.h"
  42. #include "../btcoexist/rtl_btc.h"
  43. #define LLT_CONFIG 5
  44. static void _rtl8723be_return_beacon_queue_skb(struct ieee80211_hw *hw)
  45. {
  46. struct rtl_priv *rtlpriv = rtl_priv(hw);
  47. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  48. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
  49. while (skb_queue_len(&ring->queue)) {
  50. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  51. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  52. pci_unmap_single(rtlpci->pdev,
  53. rtlpriv->cfg->ops->get_desc(
  54. (u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
  55. skb->len, PCI_DMA_TODEVICE);
  56. kfree_skb(skb);
  57. ring->idx = (ring->idx + 1) % ring->entries;
  58. }
  59. }
  60. static void _rtl8723be_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  61. u8 set_bits, u8 clear_bits)
  62. {
  63. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  64. struct rtl_priv *rtlpriv = rtl_priv(hw);
  65. rtlpci->reg_bcn_ctrl_val |= set_bits;
  66. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  67. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  68. }
  69. static void _rtl8723be_stop_tx_beacon(struct ieee80211_hw *hw)
  70. {
  71. struct rtl_priv *rtlpriv = rtl_priv(hw);
  72. u8 tmp1byte;
  73. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  74. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  75. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  76. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  77. tmp1byte &= ~(BIT(0));
  78. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  79. }
  80. static void _rtl8723be_resume_tx_beacon(struct ieee80211_hw *hw)
  81. {
  82. struct rtl_priv *rtlpriv = rtl_priv(hw);
  83. u8 tmp1byte;
  84. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  85. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  86. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  87. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  88. tmp1byte |= BIT(1);
  89. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  90. }
  91. static void _rtl8723be_enable_bcn_sub_func(struct ieee80211_hw *hw)
  92. {
  93. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(1));
  94. }
  95. static void _rtl8723be_disable_bcn_sub_func(struct ieee80211_hw *hw)
  96. {
  97. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(1), 0);
  98. }
  99. static void _rtl8723be_set_fw_clock_on(struct ieee80211_hw *hw, u8 rpwm_val,
  100. bool need_turn_off_ckk)
  101. {
  102. struct rtl_priv *rtlpriv = rtl_priv(hw);
  103. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  104. bool support_remote_wake_up;
  105. u32 count = 0, isr_regaddr, content;
  106. bool schedule_timer = need_turn_off_ckk;
  107. rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
  108. (u8 *)(&support_remote_wake_up));
  109. if (!rtlhal->fw_ready)
  110. return;
  111. if (!rtlpriv->psc.fw_current_inpsmode)
  112. return;
  113. while (1) {
  114. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  115. if (rtlhal->fw_clk_change_in_progress) {
  116. while (rtlhal->fw_clk_change_in_progress) {
  117. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  118. count++;
  119. udelay(100);
  120. if (count > 1000)
  121. return;
  122. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  123. }
  124. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  125. } else {
  126. rtlhal->fw_clk_change_in_progress = false;
  127. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  128. break;
  129. }
  130. }
  131. if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
  132. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM,
  133. &rpwm_val);
  134. if (FW_PS_IS_ACK(rpwm_val)) {
  135. isr_regaddr = REG_HISR;
  136. content = rtl_read_dword(rtlpriv, isr_regaddr);
  137. while (!(content & IMR_CPWM) && (count < 500)) {
  138. udelay(50);
  139. count++;
  140. content = rtl_read_dword(rtlpriv, isr_regaddr);
  141. }
  142. if (content & IMR_CPWM) {
  143. rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
  144. rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
  145. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  146. "Receive CPWM INT!!! Set "
  147. "pHalData->FwPSState = %X\n",
  148. rtlhal->fw_ps_state);
  149. }
  150. }
  151. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  152. rtlhal->fw_clk_change_in_progress = false;
  153. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  154. if (schedule_timer) {
  155. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  156. jiffies + MSECS(10));
  157. }
  158. } else {
  159. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  160. rtlhal->fw_clk_change_in_progress = false;
  161. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  162. }
  163. }
  164. static void _rtl8723be_set_fw_clock_off(struct ieee80211_hw *hw, u8 rpwm_val)
  165. {
  166. struct rtl_priv *rtlpriv = rtl_priv(hw);
  167. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  168. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  169. struct rtl8192_tx_ring *ring;
  170. enum rf_pwrstate rtstate;
  171. bool schedule_timer = false;
  172. u8 queue;
  173. if (!rtlhal->fw_ready)
  174. return;
  175. if (!rtlpriv->psc.fw_current_inpsmode)
  176. return;
  177. if (!rtlhal->allow_sw_to_change_hwclc)
  178. return;
  179. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
  180. if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
  181. return;
  182. for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
  183. ring = &rtlpci->tx_ring[queue];
  184. if (skb_queue_len(&ring->queue)) {
  185. schedule_timer = true;
  186. break;
  187. }
  188. }
  189. if (schedule_timer) {
  190. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  191. jiffies + MSECS(10));
  192. return;
  193. }
  194. if (FW_PS_STATE(rtlhal->fw_ps_state) !=
  195. FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
  196. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  197. if (!rtlhal->fw_clk_change_in_progress) {
  198. rtlhal->fw_clk_change_in_progress = true;
  199. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  200. rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
  201. rtl_write_word(rtlpriv, REG_HISR, 0x0100);
  202. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  203. &rpwm_val);
  204. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  205. rtlhal->fw_clk_change_in_progress = false;
  206. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  207. } else {
  208. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  209. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  210. jiffies + MSECS(10));
  211. }
  212. }
  213. }
  214. static void _rtl8723be_set_fw_ps_rf_on(struct ieee80211_hw *hw)
  215. {
  216. u8 rpwm_val = 0;
  217. rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
  218. _rtl8723be_set_fw_clock_on(hw, rpwm_val, true);
  219. }
  220. static void _rtl8723be_fwlps_leave(struct ieee80211_hw *hw)
  221. {
  222. struct rtl_priv *rtlpriv = rtl_priv(hw);
  223. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  224. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  225. bool fw_current_inps = false;
  226. u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
  227. if (ppsc->low_power_enable) {
  228. rpwm_val = (FW_PS_STATE_ALL_ON_88E | FW_PS_ACK);/* RF on */
  229. _rtl8723be_set_fw_clock_on(hw, rpwm_val, false);
  230. rtlhal->allow_sw_to_change_hwclc = false;
  231. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  232. &fw_pwrmode);
  233. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  234. (u8 *)(&fw_current_inps));
  235. } else {
  236. rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
  237. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
  238. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  239. &fw_pwrmode);
  240. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  241. (u8 *)(&fw_current_inps));
  242. }
  243. }
  244. static void _rtl8723be_fwlps_enter(struct ieee80211_hw *hw)
  245. {
  246. struct rtl_priv *rtlpriv = rtl_priv(hw);
  247. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  248. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  249. bool fw_current_inps = true;
  250. u8 rpwm_val;
  251. if (ppsc->low_power_enable) {
  252. rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
  253. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  254. (u8 *)(&fw_current_inps));
  255. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  256. &ppsc->fwctrl_psmode);
  257. rtlhal->allow_sw_to_change_hwclc = true;
  258. _rtl8723be_set_fw_clock_off(hw, rpwm_val);
  259. } else {
  260. rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
  261. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  262. (u8 *)(&fw_current_inps));
  263. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  264. &ppsc->fwctrl_psmode);
  265. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
  266. }
  267. }
  268. void rtl8723be_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  269. {
  270. struct rtl_priv *rtlpriv = rtl_priv(hw);
  271. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  272. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  273. switch (variable) {
  274. case HW_VAR_RCR:
  275. *((u32 *)(val)) = rtlpci->receive_config;
  276. break;
  277. case HW_VAR_RF_STATE:
  278. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  279. break;
  280. case HW_VAR_FWLPS_RF_ON: {
  281. enum rf_pwrstate rfstate;
  282. u32 val_rcr;
  283. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  284. (u8 *)(&rfstate));
  285. if (rfstate == ERFOFF) {
  286. *((bool *)(val)) = true;
  287. } else {
  288. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  289. val_rcr &= 0x00070000;
  290. if (val_rcr)
  291. *((bool *)(val)) = false;
  292. else
  293. *((bool *)(val)) = true;
  294. }
  295. break; }
  296. case HW_VAR_FW_PSMODE_STATUS:
  297. *((bool *)(val)) = ppsc->fw_current_inpsmode;
  298. break;
  299. case HW_VAR_CORRECT_TSF: {
  300. u64 tsf;
  301. u32 *ptsf_low = (u32 *)&tsf;
  302. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  303. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  304. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  305. *((u64 *)(val)) = tsf;
  306. break; }
  307. default:
  308. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  309. "switch case not process %x\n", variable);
  310. break;
  311. }
  312. }
  313. void rtl8723be_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  314. {
  315. struct rtl_priv *rtlpriv = rtl_priv(hw);
  316. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  317. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  318. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  319. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  320. u8 idx;
  321. switch (variable) {
  322. case HW_VAR_ETHER_ADDR:
  323. for (idx = 0; idx < ETH_ALEN; idx++)
  324. rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
  325. break;
  326. case HW_VAR_BASIC_RATE: {
  327. u16 rate_cfg = ((u16 *)val)[0];
  328. u8 rate_index = 0;
  329. rate_cfg = rate_cfg & 0x15f;
  330. rate_cfg |= 0x01;
  331. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  332. rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff);
  333. while (rate_cfg > 0x1) {
  334. rate_cfg = (rate_cfg >> 1);
  335. rate_index++;
  336. }
  337. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
  338. break; }
  339. case HW_VAR_BSSID:
  340. for (idx = 0; idx < ETH_ALEN; idx++)
  341. rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
  342. break;
  343. case HW_VAR_SIFS:
  344. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  345. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  346. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  347. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  348. if (!mac->ht_enable)
  349. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
  350. else
  351. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  352. *((u16 *)val));
  353. break;
  354. case HW_VAR_SLOT_TIME: {
  355. u8 e_aci;
  356. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  357. "HW_VAR_SLOT_TIME %x\n", val[0]);
  358. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  359. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  360. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
  361. &e_aci);
  362. }
  363. break; }
  364. case HW_VAR_ACK_PREAMBLE: {
  365. u8 reg_tmp;
  366. u8 short_preamble = (bool)*val;
  367. reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL + 2);
  368. if (short_preamble) {
  369. reg_tmp |= 0x02;
  370. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  371. } else {
  372. reg_tmp &= 0xFD;
  373. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  374. }
  375. break; }
  376. case HW_VAR_WPA_CONFIG:
  377. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  378. break;
  379. case HW_VAR_AMPDU_MIN_SPACE: {
  380. u8 min_spacing_to_set;
  381. u8 sec_min_space;
  382. min_spacing_to_set = *val;
  383. if (min_spacing_to_set <= 7) {
  384. sec_min_space = 0;
  385. if (min_spacing_to_set < sec_min_space)
  386. min_spacing_to_set = sec_min_space;
  387. mac->min_space_cfg = ((mac->min_space_cfg & 0xf8) |
  388. min_spacing_to_set);
  389. *val = min_spacing_to_set;
  390. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  391. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  392. mac->min_space_cfg);
  393. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  394. mac->min_space_cfg);
  395. }
  396. break; }
  397. case HW_VAR_SHORTGI_DENSITY: {
  398. u8 density_to_set;
  399. density_to_set = *val;
  400. mac->min_space_cfg |= (density_to_set << 3);
  401. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  402. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  403. mac->min_space_cfg);
  404. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  405. mac->min_space_cfg);
  406. break; }
  407. case HW_VAR_AMPDU_FACTOR: {
  408. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  409. u8 factor_toset;
  410. u8 *p_regtoset = NULL;
  411. u8 index = 0;
  412. p_regtoset = regtoset_normal;
  413. factor_toset = *val;
  414. if (factor_toset <= 3) {
  415. factor_toset = (1 << (factor_toset + 2));
  416. if (factor_toset > 0xf)
  417. factor_toset = 0xf;
  418. for (index = 0; index < 4; index++) {
  419. if ((p_regtoset[index] & 0xf0) >
  420. (factor_toset << 4))
  421. p_regtoset[index] =
  422. (p_regtoset[index] & 0x0f) |
  423. (factor_toset << 4);
  424. if ((p_regtoset[index] & 0x0f) > factor_toset)
  425. p_regtoset[index] =
  426. (p_regtoset[index] & 0xf0) |
  427. (factor_toset);
  428. rtl_write_byte(rtlpriv,
  429. (REG_AGGLEN_LMT + index),
  430. p_regtoset[index]);
  431. }
  432. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  433. "Set HW_VAR_AMPDU_FACTOR: %#x\n",
  434. factor_toset);
  435. }
  436. break; }
  437. case HW_VAR_AC_PARAM: {
  438. u8 e_aci = *val;
  439. rtl8723_dm_init_edca_turbo(hw);
  440. if (rtlpci->acm_method != EACMWAY2_SW)
  441. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
  442. &e_aci);
  443. break; }
  444. case HW_VAR_ACM_CTRL: {
  445. u8 e_aci = *val;
  446. union aci_aifsn *p_aci_aifsn =
  447. (union aci_aifsn *)(&(mac->ac[0].aifs));
  448. u8 acm = p_aci_aifsn->f.acm;
  449. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  450. acm_ctrl =
  451. acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  452. if (acm) {
  453. switch (e_aci) {
  454. case AC0_BE:
  455. acm_ctrl |= ACMHW_BEQEN;
  456. break;
  457. case AC2_VI:
  458. acm_ctrl |= ACMHW_VIQEN;
  459. break;
  460. case AC3_VO:
  461. acm_ctrl |= ACMHW_VOQEN;
  462. break;
  463. default:
  464. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  465. "HW_VAR_ACM_CTRL acm set "
  466. "failed: eACI is %d\n", acm);
  467. break;
  468. }
  469. } else {
  470. switch (e_aci) {
  471. case AC0_BE:
  472. acm_ctrl &= (~ACMHW_BEQEN);
  473. break;
  474. case AC2_VI:
  475. acm_ctrl &= (~ACMHW_VIQEN);
  476. break;
  477. case AC3_VO:
  478. acm_ctrl &= (~ACMHW_BEQEN);
  479. break;
  480. default:
  481. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  482. "switch case not process\n");
  483. break;
  484. }
  485. }
  486. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  487. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
  488. "Write 0x%X\n", acm_ctrl);
  489. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  490. break; }
  491. case HW_VAR_RCR:
  492. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
  493. rtlpci->receive_config = ((u32 *)(val))[0];
  494. break;
  495. case HW_VAR_RETRY_LIMIT: {
  496. u8 retry_limit = *val;
  497. rtl_write_word(rtlpriv, REG_RL,
  498. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  499. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  500. break; }
  501. case HW_VAR_DUAL_TSF_RST:
  502. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  503. break;
  504. case HW_VAR_EFUSE_BYTES:
  505. rtlefuse->efuse_usedbytes = *((u16 *)val);
  506. break;
  507. case HW_VAR_EFUSE_USAGE:
  508. rtlefuse->efuse_usedpercentage = *val;
  509. break;
  510. case HW_VAR_IO_CMD:
  511. rtl8723be_phy_set_io_cmd(hw, (*(enum io_type *)val));
  512. break;
  513. case HW_VAR_SET_RPWM: {
  514. u8 rpwm_val;
  515. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  516. udelay(1);
  517. if (rpwm_val & BIT(7)) {
  518. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  519. } else {
  520. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7));
  521. }
  522. break; }
  523. case HW_VAR_H2C_FW_PWRMODE:
  524. rtl8723be_set_fw_pwrmode_cmd(hw, *val);
  525. break;
  526. case HW_VAR_FW_PSMODE_STATUS:
  527. ppsc->fw_current_inpsmode = *((bool *)val);
  528. break;
  529. case HW_VAR_RESUME_CLK_ON:
  530. _rtl8723be_set_fw_ps_rf_on(hw);
  531. break;
  532. case HW_VAR_FW_LPS_ACTION: {
  533. bool enter_fwlps = *((bool *)val);
  534. if (enter_fwlps)
  535. _rtl8723be_fwlps_enter(hw);
  536. else
  537. _rtl8723be_fwlps_leave(hw);
  538. break; }
  539. case HW_VAR_H2C_FW_JOINBSSRPT: {
  540. u8 mstatus = *val;
  541. u8 tmp_regcr, tmp_reg422, bcnvalid_reg;
  542. u8 count = 0, dlbcn_count = 0;
  543. bool recover = false;
  544. if (mstatus == RT_MEDIA_CONNECT) {
  545. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
  546. tmp_regcr = rtl_read_byte(rtlpriv, REG_CR + 1);
  547. rtl_write_byte(rtlpriv, REG_CR + 1,
  548. (tmp_regcr | BIT(0)));
  549. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
  550. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
  551. tmp_reg422 = rtl_read_byte(rtlpriv,
  552. REG_FWHW_TXQ_CTRL + 2);
  553. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  554. tmp_reg422 & (~BIT(6)));
  555. if (tmp_reg422 & BIT(6))
  556. recover = true;
  557. do {
  558. bcnvalid_reg = rtl_read_byte(rtlpriv,
  559. REG_TDECTRL + 2);
  560. rtl_write_byte(rtlpriv, REG_TDECTRL + 2,
  561. (bcnvalid_reg | BIT(0)));
  562. _rtl8723be_return_beacon_queue_skb(hw);
  563. rtl8723be_set_fw_rsvdpagepkt(hw, 0);
  564. bcnvalid_reg = rtl_read_byte(rtlpriv,
  565. REG_TDECTRL + 2);
  566. count = 0;
  567. while (!(bcnvalid_reg & BIT(0)) && count < 20) {
  568. count++;
  569. udelay(10);
  570. bcnvalid_reg = rtl_read_byte(rtlpriv,
  571. REG_TDECTRL + 2);
  572. }
  573. dlbcn_count++;
  574. } while (!(bcnvalid_reg & BIT(0)) && dlbcn_count < 5);
  575. if (bcnvalid_reg & BIT(0))
  576. rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
  577. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  578. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
  579. if (recover) {
  580. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  581. tmp_reg422);
  582. }
  583. rtl_write_byte(rtlpriv, REG_CR + 1,
  584. (tmp_regcr & ~(BIT(0))));
  585. }
  586. rtl8723be_set_fw_joinbss_report_cmd(hw, *val);
  587. break; }
  588. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  589. rtl8723be_set_p2p_ps_offload_cmd(hw, *val);
  590. break;
  591. case HW_VAR_AID: {
  592. u16 u2btmp;
  593. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  594. u2btmp &= 0xC000;
  595. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  596. (u2btmp | mac->assoc_id));
  597. break; }
  598. case HW_VAR_CORRECT_TSF: {
  599. u8 btype_ibss = *val;
  600. if (btype_ibss)
  601. _rtl8723be_stop_tx_beacon(hw);
  602. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(3));
  603. rtl_write_dword(rtlpriv, REG_TSFTR,
  604. (u32) (mac->tsf & 0xffffffff));
  605. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  606. (u32) ((mac->tsf >> 32) & 0xffffffff));
  607. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  608. if (btype_ibss)
  609. _rtl8723be_resume_tx_beacon(hw);
  610. break; }
  611. case HW_VAR_KEEP_ALIVE: {
  612. u8 array[2];
  613. array[0] = 0xff;
  614. array[1] = *val;
  615. rtl8723be_fill_h2c_cmd(hw, H2C_8723BE_KEEP_ALIVE_CTRL,
  616. 2, array);
  617. break; }
  618. default:
  619. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  620. "switch case not process %x\n",
  621. variable);
  622. break;
  623. }
  624. }
  625. static bool _rtl8723be_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  626. {
  627. struct rtl_priv *rtlpriv = rtl_priv(hw);
  628. bool status = true;
  629. int count = 0;
  630. u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
  631. _LLT_OP(_LLT_WRITE_ACCESS);
  632. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  633. do {
  634. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  635. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  636. break;
  637. if (count > POLLING_LLT_THRESHOLD) {
  638. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  639. "Failed to polling write LLT done at "
  640. "address %d!\n", address);
  641. status = false;
  642. break;
  643. }
  644. } while (++count);
  645. return status;
  646. }
  647. static bool _rtl8723be_llt_table_init(struct ieee80211_hw *hw)
  648. {
  649. struct rtl_priv *rtlpriv = rtl_priv(hw);
  650. unsigned short i;
  651. u8 txpktbuf_bndy;
  652. u8 maxpage;
  653. bool status;
  654. maxpage = 255;
  655. txpktbuf_bndy = 245;
  656. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY,
  657. (0x27FF0000 | txpktbuf_bndy));
  658. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  659. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  660. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  661. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  662. rtl_write_byte(rtlpriv, REG_PBP, 0x31);
  663. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  664. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  665. status = _rtl8723be_llt_write(hw, i, i + 1);
  666. if (!status)
  667. return status;
  668. }
  669. status = _rtl8723be_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  670. if (!status)
  671. return status;
  672. for (i = txpktbuf_bndy; i < maxpage; i++) {
  673. status = _rtl8723be_llt_write(hw, i, (i + 1));
  674. if (!status)
  675. return status;
  676. }
  677. status = _rtl8723be_llt_write(hw, maxpage, txpktbuf_bndy);
  678. if (!status)
  679. return status;
  680. rtl_write_dword(rtlpriv, REG_RQPN, 0x80e40808);
  681. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x00);
  682. return true;
  683. }
  684. static void _rtl8723be_gen_refresh_led_state(struct ieee80211_hw *hw)
  685. {
  686. struct rtl_priv *rtlpriv = rtl_priv(hw);
  687. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  688. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  689. struct rtl_led *pled0 = &(pcipriv->ledctl.sw_led0);
  690. if (rtlpriv->rtlhal.up_first_time)
  691. return;
  692. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  693. rtl8723be_sw_led_on(hw, pled0);
  694. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  695. rtl8723be_sw_led_on(hw, pled0);
  696. else
  697. rtl8723be_sw_led_off(hw, pled0);
  698. }
  699. static bool _rtl8723be_init_mac(struct ieee80211_hw *hw)
  700. {
  701. struct rtl_priv *rtlpriv = rtl_priv(hw);
  702. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  703. unsigned char bytetmp;
  704. unsigned short wordtmp;
  705. u16 retry = 0;
  706. bool mac_func_enable;
  707. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  708. /*Auto Power Down to CHIP-off State*/
  709. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
  710. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  711. bytetmp = rtl_read_byte(rtlpriv, REG_CR);
  712. if (bytetmp == 0xFF)
  713. mac_func_enable = true;
  714. else
  715. mac_func_enable = false;
  716. /* HW Power on sequence */
  717. if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
  718. PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
  719. RTL8723_NIC_ENABLE_FLOW)) {
  720. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  721. "init MAC Fail as power on failure\n");
  722. return false;
  723. }
  724. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
  725. rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
  726. bytetmp = rtl_read_byte(rtlpriv, REG_CR);
  727. bytetmp = 0xff;
  728. rtl_write_byte(rtlpriv, REG_CR, bytetmp);
  729. mdelay(2);
  730. bytetmp = rtl_read_byte(rtlpriv, REG_HWSEQ_CTRL);
  731. bytetmp |= 0x7f;
  732. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, bytetmp);
  733. mdelay(2);
  734. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CFG + 3);
  735. if (bytetmp & BIT(0)) {
  736. bytetmp = rtl_read_byte(rtlpriv, 0x7c);
  737. bytetmp |= BIT(6);
  738. rtl_write_byte(rtlpriv, 0x7c, bytetmp);
  739. }
  740. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
  741. bytetmp |= BIT(3);
  742. rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp);
  743. bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG + 1);
  744. bytetmp &= ~BIT(4);
  745. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG + 1, bytetmp);
  746. bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+3);
  747. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+3, bytetmp | 0x77);
  748. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  749. if (!mac_func_enable) {
  750. if (!_rtl8723be_llt_table_init(hw))
  751. return false;
  752. }
  753. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  754. rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
  755. /* Enable FW Beamformer Interrupt */
  756. bytetmp = rtl_read_byte(rtlpriv, REG_FWIMR + 3);
  757. rtl_write_byte(rtlpriv, REG_FWIMR + 3, bytetmp | BIT(6));
  758. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  759. wordtmp &= 0xf;
  760. wordtmp |= 0xF5B1;
  761. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  762. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 1, 0x1F);
  763. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  764. rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xFFFF);
  765. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  766. rtl_write_byte(rtlpriv, 0x4d0, 0x0);
  767. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  768. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  769. DMA_BIT_MASK(32));
  770. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  771. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  772. DMA_BIT_MASK(32));
  773. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  774. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  775. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  776. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  777. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  778. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  779. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  780. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  781. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  782. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  783. DMA_BIT_MASK(32));
  784. rtl_write_dword(rtlpriv, REG_RX_DESA,
  785. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  786. DMA_BIT_MASK(32));
  787. bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG + 3);
  788. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG + 3, bytetmp | 0x77);
  789. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  790. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  791. rtl_write_byte(rtlpriv, REG_APSD_CTRL, bytetmp & ~BIT(6));
  792. rtl_write_byte(rtlpriv, REG_SECONDARY_CCA_CTRL, 0x3);
  793. do {
  794. retry++;
  795. bytetmp = rtl_read_byte(rtlpriv, REG_APSD_CTRL);
  796. } while ((retry < 200) && (bytetmp & BIT(7)));
  797. _rtl8723be_gen_refresh_led_state(hw);
  798. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  799. bytetmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  800. rtl_write_byte(rtlpriv, REG_RXDMA_CONTROL, bytetmp & ~BIT(2));
  801. return true;
  802. }
  803. static void _rtl8723be_hw_configure(struct ieee80211_hw *hw)
  804. {
  805. struct rtl_priv *rtlpriv = rtl_priv(hw);
  806. u8 reg_bw_opmode;
  807. u32 reg_ratr, reg_prsr;
  808. reg_bw_opmode = BW_OPMODE_20MHZ;
  809. reg_ratr = RATE_ALL_CCK | RATE_ALL_OFDM_AG |
  810. RATE_ALL_OFDM_1SS | RATE_ALL_OFDM_2SS;
  811. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  812. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  813. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  814. }
  815. static void _rtl8723be_enable_aspm_back_door(struct ieee80211_hw *hw)
  816. {
  817. struct rtl_priv *rtlpriv = rtl_priv(hw);
  818. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  819. rtl_write_byte(rtlpriv, 0x34b, 0x93);
  820. rtl_write_word(rtlpriv, 0x350, 0x870c);
  821. rtl_write_byte(rtlpriv, 0x352, 0x1);
  822. if (ppsc->support_backdoor)
  823. rtl_write_byte(rtlpriv, 0x349, 0x1b);
  824. else
  825. rtl_write_byte(rtlpriv, 0x349, 0x03);
  826. rtl_write_word(rtlpriv, 0x350, 0x2718);
  827. rtl_write_byte(rtlpriv, 0x352, 0x1);
  828. }
  829. void rtl8723be_enable_hw_security_config(struct ieee80211_hw *hw)
  830. {
  831. struct rtl_priv *rtlpriv = rtl_priv(hw);
  832. u8 sec_reg_value;
  833. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  834. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  835. rtlpriv->sec.pairwise_enc_algorithm,
  836. rtlpriv->sec.group_enc_algorithm);
  837. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  838. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  839. "not open hw encryption\n");
  840. return;
  841. }
  842. sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
  843. if (rtlpriv->sec.use_defaultkey) {
  844. sec_reg_value |= SCR_TXUSEDK;
  845. sec_reg_value |= SCR_RXUSEDK;
  846. }
  847. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  848. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  849. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "The SECR-value %x\n",
  850. sec_reg_value);
  851. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  852. }
  853. int rtl8723be_hw_init(struct ieee80211_hw *hw)
  854. {
  855. struct rtl_priv *rtlpriv = rtl_priv(hw);
  856. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  857. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  858. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  859. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  860. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  861. bool rtstatus = true;
  862. int err;
  863. u8 tmp_u1b;
  864. unsigned long flags;
  865. /* reenable interrupts to not interfere with other devices */
  866. local_save_flags(flags);
  867. local_irq_enable();
  868. rtlpriv->rtlhal.being_init_adapter = true;
  869. rtlpriv->intf_ops->disable_aspm(hw);
  870. rtstatus = _rtl8723be_init_mac(hw);
  871. if (!rtstatus) {
  872. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  873. err = 1;
  874. goto exit;
  875. }
  876. tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CFG);
  877. tmp_u1b &= 0x7F;
  878. rtl_write_byte(rtlpriv, REG_SYS_CFG, tmp_u1b);
  879. err = rtl8723_download_fw(hw, true);
  880. if (err) {
  881. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  882. "Failed to download FW. Init HW without FW now..\n");
  883. err = 1;
  884. rtlhal->fw_ready = false;
  885. goto exit;
  886. } else {
  887. rtlhal->fw_ready = true;
  888. }
  889. rtlhal->last_hmeboxnum = 0;
  890. rtl8723be_phy_mac_config(hw);
  891. /* because last function modify RCR, so we update
  892. * rcr var here, or TP will unstable for receive_config
  893. * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
  894. * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
  895. */
  896. rtlpci->receive_config = rtl_read_dword(rtlpriv, REG_RCR);
  897. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  898. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  899. rtl8723be_phy_bb_config(hw);
  900. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  901. rtl8723be_phy_rf_config(hw);
  902. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  903. RF_CHNLBW, RFREG_OFFSET_MASK);
  904. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  905. RF_CHNLBW, RFREG_OFFSET_MASK);
  906. rtlphy->rfreg_chnlval[0] &= 0xFFF03FF;
  907. rtlphy->rfreg_chnlval[0] |= (BIT(10) | BIT(11));
  908. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  909. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  910. rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);
  911. _rtl8723be_hw_configure(hw);
  912. rtl_cam_reset_all_entry(hw);
  913. rtl8723be_enable_hw_security_config(hw);
  914. ppsc->rfpwr_state = ERFON;
  915. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  916. _rtl8723be_enable_aspm_back_door(hw);
  917. rtlpriv->intf_ops->enable_aspm(hw);
  918. rtl8723be_bt_hw_init(hw);
  919. rtl_set_bbreg(hw, 0x64, BIT(20), 0);
  920. rtl_set_bbreg(hw, 0x64, BIT(24), 0);
  921. rtl_set_bbreg(hw, 0x40, BIT(4), 0);
  922. rtl_set_bbreg(hw, 0x40, BIT(3), 1);
  923. rtl_set_bbreg(hw, 0x944, BIT(0)|BIT(1), 0x3);
  924. rtl_set_bbreg(hw, 0x930, 0xff, 0x77);
  925. rtl_set_bbreg(hw, 0x38, BIT(11), 0x1);
  926. rtl_set_bbreg(hw, 0xb2c, 0xffffffff, 0x80000000);
  927. if (ppsc->rfpwr_state == ERFON) {
  928. rtl8723be_dm_check_txpower_tracking(hw);
  929. rtl8723be_phy_lc_calibrate(hw);
  930. }
  931. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  932. if (!(tmp_u1b & BIT(0))) {
  933. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  934. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "PA BIAS path A\n");
  935. }
  936. if (!(tmp_u1b & BIT(4))) {
  937. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  938. tmp_u1b &= 0x0F;
  939. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  940. udelay(10);
  941. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  942. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "under 1.5V\n");
  943. }
  944. rtl8723be_dm_init(hw);
  945. exit:
  946. local_irq_restore(flags);
  947. rtlpriv->rtlhal.being_init_adapter = false;
  948. return err;
  949. }
  950. static enum version_8723e _rtl8723be_read_chip_version(struct ieee80211_hw *hw)
  951. {
  952. struct rtl_priv *rtlpriv = rtl_priv(hw);
  953. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  954. enum version_8723e version = VERSION_UNKNOWN;
  955. u8 count = 0;
  956. u8 value8;
  957. u32 value32;
  958. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0);
  959. value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 2);
  960. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 2, value8 | BIT(0));
  961. value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  962. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, value8 | BIT(0));
  963. value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  964. while (((value8 & BIT(0))) && (count++ < 100)) {
  965. udelay(10);
  966. value8 = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1);
  967. }
  968. count = 0;
  969. value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
  970. while ((value8 == 0) && (count++ < 50)) {
  971. value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
  972. mdelay(1);
  973. }
  974. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG1);
  975. if ((value32 & (CHIP_8723B)) != CHIP_8723B)
  976. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "unkown chip version\n");
  977. else
  978. version = (enum version_8723e) VERSION_TEST_CHIP_1T1R_8723B;
  979. rtlphy->rf_type = RF_1T1R;
  980. value8 = rtl_read_byte(rtlpriv, REG_ROM_VERSION);
  981. if (value8 >= 0x02)
  982. version |= BIT(3);
  983. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  984. "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
  985. "RF_2T2R" : "RF_1T1R");
  986. return version;
  987. }
  988. static int _rtl8723be_set_media_status(struct ieee80211_hw *hw,
  989. enum nl80211_iftype type)
  990. {
  991. struct rtl_priv *rtlpriv = rtl_priv(hw);
  992. u8 bt_msr = rtl_read_byte(rtlpriv, MSR) & 0xfc;
  993. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  994. rtl_write_dword(rtlpriv, REG_BCN_CTRL, 0);
  995. RT_TRACE(rtlpriv, COMP_BEACON, DBG_LOUD,
  996. "clear 0x550 when set HW_VAR_MEDIA_STATUS\n");
  997. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  998. type == NL80211_IFTYPE_STATION) {
  999. _rtl8723be_stop_tx_beacon(hw);
  1000. _rtl8723be_enable_bcn_sub_func(hw);
  1001. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1002. _rtl8723be_resume_tx_beacon(hw);
  1003. _rtl8723be_disable_bcn_sub_func(hw);
  1004. } else {
  1005. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1006. "Set HW_VAR_MEDIA_STATUS: "
  1007. "No such media status(%x).\n", type);
  1008. }
  1009. switch (type) {
  1010. case NL80211_IFTYPE_UNSPECIFIED:
  1011. bt_msr |= MSR_NOLINK;
  1012. ledaction = LED_CTL_LINK;
  1013. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1014. "Set Network type to NO LINK!\n");
  1015. break;
  1016. case NL80211_IFTYPE_ADHOC:
  1017. bt_msr |= MSR_ADHOC;
  1018. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1019. "Set Network type to Ad Hoc!\n");
  1020. break;
  1021. case NL80211_IFTYPE_STATION:
  1022. bt_msr |= MSR_INFRA;
  1023. ledaction = LED_CTL_LINK;
  1024. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1025. "Set Network type to STA!\n");
  1026. break;
  1027. case NL80211_IFTYPE_AP:
  1028. bt_msr |= MSR_AP;
  1029. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1030. "Set Network type to AP!\n");
  1031. break;
  1032. default:
  1033. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1034. "Network type %d not support!\n", type);
  1035. return 1;
  1036. }
  1037. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1038. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1039. if ((bt_msr & 0x03) == MSR_AP)
  1040. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1041. else
  1042. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1043. return 0;
  1044. }
  1045. void rtl8723be_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1046. {
  1047. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1048. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1049. u32 reg_rcr = rtlpci->receive_config;
  1050. if (rtlpriv->psc.rfpwr_state != ERFON)
  1051. return;
  1052. if (check_bssid) {
  1053. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1054. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1055. (u8 *)(&reg_rcr));
  1056. _rtl8723be_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1057. } else if (!check_bssid) {
  1058. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1059. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1060. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1061. (u8 *)(&reg_rcr));
  1062. }
  1063. }
  1064. int rtl8723be_set_network_type(struct ieee80211_hw *hw,
  1065. enum nl80211_iftype type)
  1066. {
  1067. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1068. if (_rtl8723be_set_media_status(hw, type))
  1069. return -EOPNOTSUPP;
  1070. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1071. if (type != NL80211_IFTYPE_AP)
  1072. rtl8723be_set_check_bssid(hw, true);
  1073. } else {
  1074. rtl8723be_set_check_bssid(hw, false);
  1075. }
  1076. return 0;
  1077. }
  1078. /* don't set REG_EDCA_BE_PARAM here
  1079. * because mac80211 will send pkt when scan
  1080. */
  1081. void rtl8723be_set_qos(struct ieee80211_hw *hw, int aci)
  1082. {
  1083. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1084. rtl8723_dm_init_edca_turbo(hw);
  1085. switch (aci) {
  1086. case AC1_BK:
  1087. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1088. break;
  1089. case AC0_BE:
  1090. break;
  1091. case AC2_VI:
  1092. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1093. break;
  1094. case AC3_VO:
  1095. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1096. break;
  1097. default:
  1098. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1099. break;
  1100. }
  1101. }
  1102. void rtl8723be_enable_interrupt(struct ieee80211_hw *hw)
  1103. {
  1104. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1105. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1106. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1107. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1108. rtlpci->irq_enabled = true;
  1109. /* there are some C2H CMDs have been sent
  1110. * before system interrupt is enabled, e.g., C2H, CPWM.
  1111. * So we need to clear all C2H events that FW has notified,
  1112. * otherwise FW won't schedule any commands anymore.
  1113. */
  1114. rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
  1115. /*enable system interrupt*/
  1116. rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
  1117. }
  1118. void rtl8723be_disable_interrupt(struct ieee80211_hw *hw)
  1119. {
  1120. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1121. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1122. rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
  1123. rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
  1124. rtlpci->irq_enabled = false;
  1125. synchronize_irq(rtlpci->pdev->irq);
  1126. }
  1127. static void _rtl8723be_poweroff_adapter(struct ieee80211_hw *hw)
  1128. {
  1129. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1130. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1131. u8 u1b_tmp;
  1132. /* Combo (PCIe + USB) Card and PCIe-MF Card */
  1133. /* 1. Run LPS WL RFOFF flow */
  1134. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1135. PWR_INTF_PCI_MSK, RTL8723_NIC_LPS_ENTER_FLOW);
  1136. /* 2. 0x1F[7:0] = 0 */
  1137. /* turn off RF */
  1138. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1139. if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) &&
  1140. rtlhal->fw_ready)
  1141. rtl8723be_firmware_selfreset(hw);
  1142. /* Reset MCU. Suggested by Filen. */
  1143. u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
  1144. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
  1145. /* g. MCUFWDL 0x80[1:0]= 0 */
  1146. /* reset MCU ready status */
  1147. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1148. /* HW card disable configuration. */
  1149. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1150. PWR_INTF_PCI_MSK, RTL8723_NIC_DISABLE_FLOW);
  1151. /* Reset MCU IO Wrapper */
  1152. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
  1153. rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, (u1b_tmp & (~BIT(0))));
  1154. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL + 1);
  1155. rtl_write_byte(rtlpriv, REG_RSV_CTRL + 1, u1b_tmp | BIT(0));
  1156. /* 7. RSV_CTRL 0x1C[7:0] = 0x0E */
  1157. /* lock ISO/CLK/Power control register */
  1158. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0e);
  1159. }
  1160. void rtl8723be_card_disable(struct ieee80211_hw *hw)
  1161. {
  1162. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1163. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1164. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1165. enum nl80211_iftype opmode;
  1166. mac->link_state = MAC80211_NOLINK;
  1167. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1168. _rtl8723be_set_media_status(hw, opmode);
  1169. if (rtlpriv->rtlhal.driver_is_goingto_unload ||
  1170. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1171. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1172. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1173. _rtl8723be_poweroff_adapter(hw);
  1174. /* after power off we should do iqk again */
  1175. rtlpriv->phy.iqk_initialized = false;
  1176. }
  1177. void rtl8723be_interrupt_recognized(struct ieee80211_hw *hw,
  1178. u32 *p_inta, u32 *p_intb)
  1179. {
  1180. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1181. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1182. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1183. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1184. *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) &
  1185. rtlpci->irq_mask[1];
  1186. rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
  1187. }
  1188. void rtl8723be_set_beacon_related_registers(struct ieee80211_hw *hw)
  1189. {
  1190. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1191. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1192. u16 bcn_interval, atim_window;
  1193. bcn_interval = mac->beacon_interval;
  1194. atim_window = 2; /*FIX MERGE */
  1195. rtl8723be_disable_interrupt(hw);
  1196. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1197. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1198. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1199. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1200. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1201. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1202. rtl8723be_enable_interrupt(hw);
  1203. }
  1204. void rtl8723be_set_beacon_interval(struct ieee80211_hw *hw)
  1205. {
  1206. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1207. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1208. u16 bcn_interval = mac->beacon_interval;
  1209. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1210. "beacon_interval:%d\n", bcn_interval);
  1211. rtl8723be_disable_interrupt(hw);
  1212. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1213. rtl8723be_enable_interrupt(hw);
  1214. }
  1215. void rtl8723be_update_interrupt_mask(struct ieee80211_hw *hw,
  1216. u32 add_msr, u32 rm_msr)
  1217. {
  1218. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1219. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1220. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
  1221. "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
  1222. if (add_msr)
  1223. rtlpci->irq_mask[0] |= add_msr;
  1224. if (rm_msr)
  1225. rtlpci->irq_mask[0] &= (~rm_msr);
  1226. rtl8723be_disable_interrupt(hw);
  1227. rtl8723be_enable_interrupt(hw);
  1228. }
  1229. static u8 _rtl8723be_get_chnl_group(u8 chnl)
  1230. {
  1231. u8 group;
  1232. if (chnl < 3)
  1233. group = 0;
  1234. else if (chnl < 9)
  1235. group = 1;
  1236. else
  1237. group = 2;
  1238. return group;
  1239. }
  1240. static void _rtl8723be_read_power_value_fromprom(struct ieee80211_hw *hw,
  1241. struct txpower_info_2g *pw2g,
  1242. struct txpower_info_5g *pw5g,
  1243. bool autoload_fail, u8 *hwinfo)
  1244. {
  1245. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1246. u32 path, addr = EEPROM_TX_PWR_INX, group, cnt = 0;
  1247. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1248. "hal_ReadPowerValueFromPROM8723BE(): "
  1249. "PROMContent[0x%x]= 0x%x\n",
  1250. (addr + 1), hwinfo[addr + 1]);
  1251. if (0xFF == hwinfo[addr + 1]) /*YJ, add, 120316*/
  1252. autoload_fail = true;
  1253. if (autoload_fail) {
  1254. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1255. "auto load fail : Use Default value!\n");
  1256. for (path = 0; path < MAX_RF_PATH; path++) {
  1257. /* 2.4G default value */
  1258. for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
  1259. pw2g->index_cck_base[path][group] = 0x2D;
  1260. pw2g->index_bw40_base[path][group] = 0x2D;
  1261. }
  1262. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1263. if (cnt == 0) {
  1264. pw2g->bw20_diff[path][0] = 0x02;
  1265. pw2g->ofdm_diff[path][0] = 0x04;
  1266. } else {
  1267. pw2g->bw20_diff[path][cnt] = 0xFE;
  1268. pw2g->bw40_diff[path][cnt] = 0xFE;
  1269. pw2g->cck_diff[path][cnt] = 0xFE;
  1270. pw2g->ofdm_diff[path][cnt] = 0xFE;
  1271. }
  1272. }
  1273. }
  1274. return;
  1275. }
  1276. for (path = 0; path < MAX_RF_PATH; path++) {
  1277. /*2.4G default value*/
  1278. for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
  1279. pw2g->index_cck_base[path][group] = hwinfo[addr++];
  1280. if (pw2g->index_cck_base[path][group] == 0xFF)
  1281. pw2g->index_cck_base[path][group] = 0x2D;
  1282. }
  1283. for (group = 0; group < MAX_CHNL_GROUP_24G - 1; group++) {
  1284. pw2g->index_bw40_base[path][group] = hwinfo[addr++];
  1285. if (pw2g->index_bw40_base[path][group] == 0xFF)
  1286. pw2g->index_bw40_base[path][group] = 0x2D;
  1287. }
  1288. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1289. if (cnt == 0) {
  1290. pw2g->bw40_diff[path][cnt] = 0;
  1291. if (hwinfo[addr] == 0xFF) {
  1292. pw2g->bw20_diff[path][cnt] = 0x02;
  1293. } else {
  1294. pw2g->bw20_diff[path][cnt] =
  1295. (hwinfo[addr] & 0xf0) >> 4;
  1296. /*bit sign number to 8 bit sign number*/
  1297. if (pw2g->bw20_diff[path][cnt] & BIT(3))
  1298. pw2g->bw20_diff[path][cnt] |= 0xF0;
  1299. }
  1300. if (hwinfo[addr] == 0xFF) {
  1301. pw2g->ofdm_diff[path][cnt] = 0x04;
  1302. } else {
  1303. pw2g->ofdm_diff[path][cnt] =
  1304. (hwinfo[addr] & 0x0f);
  1305. /*bit sign number to 8 bit sign number*/
  1306. if (pw2g->ofdm_diff[path][cnt] & BIT(3))
  1307. pw2g->ofdm_diff[path][cnt] |=
  1308. 0xF0;
  1309. }
  1310. pw2g->cck_diff[path][cnt] = 0;
  1311. addr++;
  1312. } else {
  1313. if (hwinfo[addr] == 0xFF) {
  1314. pw2g->bw40_diff[path][cnt] = 0xFE;
  1315. } else {
  1316. pw2g->bw40_diff[path][cnt] =
  1317. (hwinfo[addr] & 0xf0) >> 4;
  1318. if (pw2g->bw40_diff[path][cnt] & BIT(3))
  1319. pw2g->bw40_diff[path][cnt] |=
  1320. 0xF0;
  1321. }
  1322. if (hwinfo[addr] == 0xFF) {
  1323. pw2g->bw20_diff[path][cnt] = 0xFE;
  1324. } else {
  1325. pw2g->bw20_diff[path][cnt] =
  1326. (hwinfo[addr] & 0x0f);
  1327. if (pw2g->bw20_diff[path][cnt] & BIT(3))
  1328. pw2g->bw20_diff[path][cnt] |=
  1329. 0xF0;
  1330. }
  1331. addr++;
  1332. if (hwinfo[addr] == 0xFF) {
  1333. pw2g->ofdm_diff[path][cnt] = 0xFE;
  1334. } else {
  1335. pw2g->ofdm_diff[path][cnt] =
  1336. (hwinfo[addr] & 0xf0) >> 4;
  1337. if (pw2g->ofdm_diff[path][cnt] & BIT(3))
  1338. pw2g->ofdm_diff[path][cnt] |=
  1339. 0xF0;
  1340. }
  1341. if (hwinfo[addr] == 0xFF) {
  1342. pw2g->cck_diff[path][cnt] = 0xFE;
  1343. } else {
  1344. pw2g->cck_diff[path][cnt] =
  1345. (hwinfo[addr] & 0x0f);
  1346. if (pw2g->cck_diff[path][cnt] & BIT(3))
  1347. pw2g->cck_diff[path][cnt] |=
  1348. 0xF0;
  1349. }
  1350. addr++;
  1351. }
  1352. }
  1353. /*5G default value*/
  1354. for (group = 0; group < MAX_CHNL_GROUP_5G; group++) {
  1355. pw5g->index_bw40_base[path][group] = hwinfo[addr++];
  1356. if (pw5g->index_bw40_base[path][group] == 0xFF)
  1357. pw5g->index_bw40_base[path][group] = 0xFE;
  1358. }
  1359. for (cnt = 0; cnt < MAX_TX_COUNT; cnt++) {
  1360. if (cnt == 0) {
  1361. pw5g->bw40_diff[path][cnt] = 0;
  1362. if (hwinfo[addr] == 0xFF) {
  1363. pw5g->bw20_diff[path][cnt] = 0;
  1364. } else {
  1365. pw5g->bw20_diff[path][0] =
  1366. (hwinfo[addr] & 0xf0) >> 4;
  1367. if (pw5g->bw20_diff[path][cnt] & BIT(3))
  1368. pw5g->bw20_diff[path][cnt] |=
  1369. 0xF0;
  1370. }
  1371. if (hwinfo[addr] == 0xFF) {
  1372. pw5g->ofdm_diff[path][cnt] = 0x04;
  1373. } else {
  1374. pw5g->ofdm_diff[path][0] =
  1375. (hwinfo[addr] & 0x0f);
  1376. if (pw5g->ofdm_diff[path][cnt] & BIT(3))
  1377. pw5g->ofdm_diff[path][cnt] |=
  1378. 0xF0;
  1379. }
  1380. addr++;
  1381. } else {
  1382. if (hwinfo[addr] == 0xFF) {
  1383. pw5g->bw40_diff[path][cnt] = 0xFE;
  1384. } else {
  1385. pw5g->bw40_diff[path][cnt] =
  1386. (hwinfo[addr] & 0xf0) >> 4;
  1387. if (pw5g->bw40_diff[path][cnt] & BIT(3))
  1388. pw5g->bw40_diff[path][cnt] |= 0xF0;
  1389. }
  1390. if (hwinfo[addr] == 0xFF) {
  1391. pw5g->bw20_diff[path][cnt] = 0xFE;
  1392. } else {
  1393. pw5g->bw20_diff[path][cnt] =
  1394. (hwinfo[addr] & 0x0f);
  1395. if (pw5g->bw20_diff[path][cnt] & BIT(3))
  1396. pw5g->bw20_diff[path][cnt] |= 0xF0;
  1397. }
  1398. addr++;
  1399. }
  1400. }
  1401. if (hwinfo[addr] == 0xFF) {
  1402. pw5g->ofdm_diff[path][1] = 0xFE;
  1403. pw5g->ofdm_diff[path][2] = 0xFE;
  1404. } else {
  1405. pw5g->ofdm_diff[path][1] = (hwinfo[addr] & 0xf0) >> 4;
  1406. pw5g->ofdm_diff[path][2] = (hwinfo[addr] & 0x0f);
  1407. }
  1408. addr++;
  1409. if (hwinfo[addr] == 0xFF)
  1410. pw5g->ofdm_diff[path][3] = 0xFE;
  1411. else
  1412. pw5g->ofdm_diff[path][3] = (hwinfo[addr] & 0x0f);
  1413. addr++;
  1414. for (cnt = 1; cnt < MAX_TX_COUNT; cnt++) {
  1415. if (pw5g->ofdm_diff[path][cnt] == 0xFF)
  1416. pw5g->ofdm_diff[path][cnt] = 0xFE;
  1417. else if (pw5g->ofdm_diff[path][cnt] & BIT(3))
  1418. pw5g->ofdm_diff[path][cnt] |= 0xF0;
  1419. }
  1420. }
  1421. }
  1422. static void _rtl8723be_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1423. bool autoload_fail,
  1424. u8 *hwinfo)
  1425. {
  1426. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1427. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1428. struct txpower_info_2g pw2g;
  1429. struct txpower_info_5g pw5g;
  1430. u8 rf_path, index;
  1431. u8 i;
  1432. _rtl8723be_read_power_value_fromprom(hw, &pw2g, &pw5g, autoload_fail,
  1433. hwinfo);
  1434. for (rf_path = 0; rf_path < 2; rf_path++) {
  1435. for (i = 0; i < 14; i++) {
  1436. index = _rtl8723be_get_chnl_group(i+1);
  1437. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1438. pw2g.index_cck_base[rf_path][index];
  1439. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1440. pw2g.index_bw40_base[rf_path][index];
  1441. }
  1442. for (i = 0; i < MAX_TX_COUNT; i++) {
  1443. rtlefuse->txpwr_ht20diff[rf_path][i] =
  1444. pw2g.bw20_diff[rf_path][i];
  1445. rtlefuse->txpwr_ht40diff[rf_path][i] =
  1446. pw2g.bw40_diff[rf_path][i];
  1447. rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
  1448. pw2g.ofdm_diff[rf_path][i];
  1449. }
  1450. for (i = 0; i < 14; i++) {
  1451. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1452. "RF(%d)-Ch(%d) [CCK / HT40_1S ] = "
  1453. "[0x%x / 0x%x ]\n", rf_path, i,
  1454. rtlefuse->txpwrlevel_cck[rf_path][i],
  1455. rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
  1456. }
  1457. }
  1458. if (!autoload_fail)
  1459. rtlefuse->eeprom_thermalmeter =
  1460. hwinfo[EEPROM_THERMAL_METER_88E];
  1461. else
  1462. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1463. if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
  1464. rtlefuse->apk_thermalmeterignore = true;
  1465. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1466. }
  1467. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1468. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1469. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1470. if (!autoload_fail) {
  1471. rtlefuse->eeprom_regulatory =
  1472. hwinfo[EEPROM_RF_BOARD_OPTION_88E] & 0x07;/*bit0~2*/
  1473. if (hwinfo[EEPROM_RF_BOARD_OPTION_88E] == 0xFF)
  1474. rtlefuse->eeprom_regulatory = 0;
  1475. } else {
  1476. rtlefuse->eeprom_regulatory = 0;
  1477. }
  1478. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  1479. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1480. }
  1481. static void _rtl8723be_read_adapter_info(struct ieee80211_hw *hw,
  1482. bool pseudo_test)
  1483. {
  1484. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1485. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1486. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1487. u16 i, usvalue;
  1488. u8 hwinfo[HWSET_MAX_SIZE];
  1489. u16 eeprom_id;
  1490. bool is_toshiba_smid1 = false;
  1491. bool is_toshiba_smid2 = false;
  1492. bool is_samsung_smid = false;
  1493. bool is_lenovo_smid = false;
  1494. u16 toshiba_smid1[] = {
  1495. 0x6151, 0x6152, 0x6154, 0x6155, 0x6177, 0x6178, 0x6179, 0x6180,
  1496. 0x7151, 0x7152, 0x7154, 0x7155, 0x7177, 0x7178, 0x7179, 0x7180,
  1497. 0x8151, 0x8152, 0x8154, 0x8155, 0x8181, 0x8182, 0x8184, 0x8185,
  1498. 0x9151, 0x9152, 0x9154, 0x9155, 0x9181, 0x9182, 0x9184, 0x9185
  1499. };
  1500. u16 toshiba_smid2[] = {
  1501. 0x6181, 0x6184, 0x6185, 0x7181, 0x7182, 0x7184, 0x7185, 0x8181,
  1502. 0x8182, 0x8184, 0x8185, 0x9181, 0x9182, 0x9184, 0x9185
  1503. };
  1504. u16 samsung_smid[] = {
  1505. 0x6191, 0x6192, 0x6193, 0x7191, 0x7192, 0x7193, 0x8191, 0x8192,
  1506. 0x8193, 0x9191, 0x9192, 0x9193
  1507. };
  1508. u16 lenovo_smid[] = {
  1509. 0x8195, 0x9195, 0x7194, 0x8200, 0x8201, 0x8202, 0x9199, 0x9200
  1510. };
  1511. if (pseudo_test) {
  1512. /* needs to be added */
  1513. return;
  1514. }
  1515. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1516. rtl_efuse_shadow_map_update(hw);
  1517. memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1518. HWSET_MAX_SIZE);
  1519. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1520. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1521. "RTL819X Not boot from eeprom, check it !!");
  1522. }
  1523. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
  1524. hwinfo, HWSET_MAX_SIZE);
  1525. eeprom_id = *((u16 *)&hwinfo[0]);
  1526. if (eeprom_id != RTL8723BE_EEPROM_ID) {
  1527. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1528. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1529. rtlefuse->autoload_failflag = true;
  1530. } else {
  1531. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1532. rtlefuse->autoload_failflag = false;
  1533. }
  1534. if (rtlefuse->autoload_failflag)
  1535. return;
  1536. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1537. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1538. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1539. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1540. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1541. "EEPROMId = 0x%4x\n", eeprom_id);
  1542. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1543. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1544. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1545. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1546. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1547. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1548. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1549. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1550. for (i = 0; i < 6; i += 2) {
  1551. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1552. *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
  1553. }
  1554. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "dev_addr: %pM\n",
  1555. rtlefuse->dev_addr);
  1556. /*parse xtal*/
  1557. rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_8723BE];
  1558. if (rtlefuse->crystalcap == 0xFF)
  1559. rtlefuse->crystalcap = 0x20;
  1560. _rtl8723be_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
  1561. hwinfo);
  1562. rtl8723be_read_bt_coexist_info_from_hwpg(hw,
  1563. rtlefuse->autoload_failflag,
  1564. hwinfo);
  1565. rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
  1566. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1567. rtlefuse->txpwr_fromeprom = true;
  1568. rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
  1569. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1570. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1571. /* set channel plan to world wide 13 */
  1572. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1573. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1574. /* Does this one have a Toshiba SMID from group 1? */
  1575. for (i = 0; i < sizeof(toshiba_smid1) / sizeof(u16); i++) {
  1576. if (rtlefuse->eeprom_smid == toshiba_smid1[i]) {
  1577. is_toshiba_smid1 = true;
  1578. break;
  1579. }
  1580. }
  1581. /* Does this one have a Toshiba SMID from group 2? */
  1582. for (i = 0; i < sizeof(toshiba_smid2) / sizeof(u16); i++) {
  1583. if (rtlefuse->eeprom_smid == toshiba_smid2[i]) {
  1584. is_toshiba_smid2 = true;
  1585. break;
  1586. }
  1587. }
  1588. /* Does this one have a Samsung SMID? */
  1589. for (i = 0; i < sizeof(samsung_smid) / sizeof(u16); i++) {
  1590. if (rtlefuse->eeprom_smid == samsung_smid[i]) {
  1591. is_samsung_smid = true;
  1592. break;
  1593. }
  1594. }
  1595. /* Does this one have a Lenovo SMID? */
  1596. for (i = 0; i < sizeof(lenovo_smid) / sizeof(u16); i++) {
  1597. if (rtlefuse->eeprom_smid == lenovo_smid[i]) {
  1598. is_lenovo_smid = true;
  1599. break;
  1600. }
  1601. }
  1602. switch (rtlefuse->eeprom_oemid) {
  1603. case EEPROM_CID_DEFAULT:
  1604. if (rtlefuse->eeprom_did == 0x8176) {
  1605. if (rtlefuse->eeprom_svid == 0x10EC &&
  1606. is_toshiba_smid1) {
  1607. rtlhal->oem_id = RT_CID_TOSHIBA;
  1608. } else if (rtlefuse->eeprom_svid == 0x1025) {
  1609. rtlhal->oem_id = RT_CID_819X_ACER;
  1610. } else if (rtlefuse->eeprom_svid == 0x10EC &&
  1611. is_samsung_smid) {
  1612. rtlhal->oem_id = RT_CID_819X_SAMSUNG;
  1613. } else if (rtlefuse->eeprom_svid == 0x10EC &&
  1614. is_lenovo_smid) {
  1615. rtlhal->oem_id = RT_CID_819X_LENOVO;
  1616. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1617. rtlefuse->eeprom_smid == 0x8197) ||
  1618. (rtlefuse->eeprom_svid == 0x10EC &&
  1619. rtlefuse->eeprom_smid == 0x9196)) {
  1620. rtlhal->oem_id = RT_CID_819X_CLEVO;
  1621. } else if ((rtlefuse->eeprom_svid == 0x1028 &&
  1622. rtlefuse->eeprom_smid == 0x8194) ||
  1623. (rtlefuse->eeprom_svid == 0x1028 &&
  1624. rtlefuse->eeprom_smid == 0x8198) ||
  1625. (rtlefuse->eeprom_svid == 0x1028 &&
  1626. rtlefuse->eeprom_smid == 0x9197) ||
  1627. (rtlefuse->eeprom_svid == 0x1028 &&
  1628. rtlefuse->eeprom_smid == 0x9198)) {
  1629. rtlhal->oem_id = RT_CID_819X_DELL;
  1630. } else if ((rtlefuse->eeprom_svid == 0x103C &&
  1631. rtlefuse->eeprom_smid == 0x1629)) {
  1632. rtlhal->oem_id = RT_CID_819X_HP;
  1633. } else if ((rtlefuse->eeprom_svid == 0x1A32 &&
  1634. rtlefuse->eeprom_smid == 0x2315)) {
  1635. rtlhal->oem_id = RT_CID_819X_QMI;
  1636. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1637. rtlefuse->eeprom_smid == 0x8203)) {
  1638. rtlhal->oem_id = RT_CID_819X_PRONETS;
  1639. } else if ((rtlefuse->eeprom_svid == 0x1043 &&
  1640. rtlefuse->eeprom_smid == 0x84B5)) {
  1641. rtlhal->oem_id = RT_CID_819X_EDIMAX_ASUS;
  1642. } else {
  1643. rtlhal->oem_id = RT_CID_DEFAULT;
  1644. }
  1645. } else if (rtlefuse->eeprom_did == 0x8178) {
  1646. if (rtlefuse->eeprom_svid == 0x10EC &&
  1647. is_toshiba_smid2)
  1648. rtlhal->oem_id = RT_CID_TOSHIBA;
  1649. else if (rtlefuse->eeprom_svid == 0x1025)
  1650. rtlhal->oem_id = RT_CID_819X_ACER;
  1651. else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1652. rtlefuse->eeprom_smid == 0x8186))
  1653. rtlhal->oem_id = RT_CID_819X_PRONETS;
  1654. else if ((rtlefuse->eeprom_svid == 0x1043 &&
  1655. rtlefuse->eeprom_smid == 0x84B6))
  1656. rtlhal->oem_id =
  1657. RT_CID_819X_EDIMAX_ASUS;
  1658. else
  1659. rtlhal->oem_id = RT_CID_DEFAULT;
  1660. } else {
  1661. rtlhal->oem_id = RT_CID_DEFAULT;
  1662. }
  1663. break;
  1664. case EEPROM_CID_TOSHIBA:
  1665. rtlhal->oem_id = RT_CID_TOSHIBA;
  1666. break;
  1667. case EEPROM_CID_CCX:
  1668. rtlhal->oem_id = RT_CID_CCX;
  1669. break;
  1670. case EEPROM_CID_QMI:
  1671. rtlhal->oem_id = RT_CID_819X_QMI;
  1672. break;
  1673. case EEPROM_CID_WHQL:
  1674. break;
  1675. default:
  1676. rtlhal->oem_id = RT_CID_DEFAULT;
  1677. break;
  1678. }
  1679. }
  1680. }
  1681. static void _rtl8723be_hal_customized_behavior(struct ieee80211_hw *hw)
  1682. {
  1683. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1684. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1685. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1686. pcipriv->ledctl.led_opendrain = true;
  1687. switch (rtlhal->oem_id) {
  1688. case RT_CID_819X_HP:
  1689. pcipriv->ledctl.led_opendrain = true;
  1690. break;
  1691. case RT_CID_819X_LENOVO:
  1692. case RT_CID_DEFAULT:
  1693. case RT_CID_TOSHIBA:
  1694. case RT_CID_CCX:
  1695. case RT_CID_819X_ACER:
  1696. case RT_CID_WHQL:
  1697. default:
  1698. break;
  1699. }
  1700. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1701. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1702. }
  1703. void rtl8723be_read_eeprom_info(struct ieee80211_hw *hw)
  1704. {
  1705. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1706. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1707. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1708. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1709. u8 tmp_u1b;
  1710. rtlhal->version = _rtl8723be_read_chip_version(hw);
  1711. if (get_rf_type(rtlphy) == RF_1T1R)
  1712. rtlpriv->dm.rfpath_rxenable[0] = true;
  1713. else
  1714. rtlpriv->dm.rfpath_rxenable[0] =
  1715. rtlpriv->dm.rfpath_rxenable[1] = true;
  1716. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1717. rtlhal->version);
  1718. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1719. if (tmp_u1b & BIT(4)) {
  1720. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1721. rtlefuse->epromtype = EEPROM_93C46;
  1722. } else {
  1723. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1724. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1725. }
  1726. if (tmp_u1b & BIT(5)) {
  1727. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1728. rtlefuse->autoload_failflag = false;
  1729. _rtl8723be_read_adapter_info(hw, false);
  1730. } else {
  1731. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1732. }
  1733. _rtl8723be_hal_customized_behavior(hw);
  1734. }
  1735. static void rtl8723be_update_hal_rate_table(struct ieee80211_hw *hw,
  1736. struct ieee80211_sta *sta)
  1737. {
  1738. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1739. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1740. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1741. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1742. u32 ratr_value;
  1743. u8 ratr_index = 0;
  1744. u8 nmode = mac->ht_enable;
  1745. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1746. u16 shortgi_rate;
  1747. u32 tmp_ratr_value;
  1748. u8 curtxbw_40mhz = mac->bw_40;
  1749. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1750. 1 : 0;
  1751. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1752. 1 : 0;
  1753. enum wireless_mode wirelessmode = mac->mode;
  1754. if (rtlhal->current_bandtype == BAND_ON_5G)
  1755. ratr_value = sta->supp_rates[1] << 4;
  1756. else
  1757. ratr_value = sta->supp_rates[0];
  1758. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1759. ratr_value = 0xfff;
  1760. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1761. sta->ht_cap.mcs.rx_mask[0] << 12);
  1762. switch (wirelessmode) {
  1763. case WIRELESS_MODE_B:
  1764. if (ratr_value & 0x0000000c)
  1765. ratr_value &= 0x0000000d;
  1766. else
  1767. ratr_value &= 0x0000000f;
  1768. break;
  1769. case WIRELESS_MODE_G:
  1770. ratr_value &= 0x00000FF5;
  1771. break;
  1772. case WIRELESS_MODE_N_24G:
  1773. case WIRELESS_MODE_N_5G:
  1774. nmode = 1;
  1775. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1776. ratr_value &= 0x0007F005;
  1777. } else {
  1778. u32 ratr_mask;
  1779. if (get_rf_type(rtlphy) == RF_1T2R ||
  1780. get_rf_type(rtlphy) == RF_1T1R)
  1781. ratr_mask = 0x000ff005;
  1782. else
  1783. ratr_mask = 0x0f0ff005;
  1784. ratr_value &= ratr_mask;
  1785. }
  1786. break;
  1787. default:
  1788. if (rtlphy->rf_type == RF_1T2R)
  1789. ratr_value &= 0x000ff0ff;
  1790. else
  1791. ratr_value &= 0x0f0ff0ff;
  1792. break;
  1793. }
  1794. if ((rtlpriv->btcoexist.bt_coexistence) &&
  1795. (rtlpriv->btcoexist.bt_coexist_type == BT_CSR_BC4) &&
  1796. (rtlpriv->btcoexist.bt_cur_state) &&
  1797. (rtlpriv->btcoexist.bt_ant_isolation) &&
  1798. ((rtlpriv->btcoexist.bt_service == BT_SCO) ||
  1799. (rtlpriv->btcoexist.bt_service == BT_BUSY)))
  1800. ratr_value &= 0x0fffcfc0;
  1801. else
  1802. ratr_value &= 0x0FFFFFFF;
  1803. if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
  1804. (!curtxbw_40mhz && curshortgi_20mhz))) {
  1805. ratr_value |= 0x10000000;
  1806. tmp_ratr_value = (ratr_value >> 12);
  1807. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1808. if ((1 << shortgi_rate) & tmp_ratr_value)
  1809. break;
  1810. }
  1811. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1812. (shortgi_rate << 4) | (shortgi_rate);
  1813. }
  1814. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1815. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1816. "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
  1817. }
  1818. static u8 _rtl8723be_mrate_idx_to_arfr_id(struct ieee80211_hw *hw,
  1819. u8 rate_index)
  1820. {
  1821. u8 ret = 0;
  1822. switch (rate_index) {
  1823. case RATR_INX_WIRELESS_NGB:
  1824. ret = 1;
  1825. break;
  1826. case RATR_INX_WIRELESS_N:
  1827. case RATR_INX_WIRELESS_NG:
  1828. ret = 5;
  1829. break;
  1830. case RATR_INX_WIRELESS_NB:
  1831. ret = 3;
  1832. break;
  1833. case RATR_INX_WIRELESS_GB:
  1834. ret = 6;
  1835. break;
  1836. case RATR_INX_WIRELESS_G:
  1837. ret = 7;
  1838. break;
  1839. case RATR_INX_WIRELESS_B:
  1840. ret = 8;
  1841. break;
  1842. default:
  1843. ret = 0;
  1844. break;
  1845. }
  1846. return ret;
  1847. }
  1848. static void rtl8723be_update_hal_rate_mask(struct ieee80211_hw *hw,
  1849. struct ieee80211_sta *sta,
  1850. u8 rssi_level)
  1851. {
  1852. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1853. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1854. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1855. struct rtl_sta_info *sta_entry = NULL;
  1856. u32 ratr_bitmap;
  1857. u8 ratr_index;
  1858. u8 curtxbw_40mhz = (sta->ht_cap.cap &
  1859. IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
  1860. u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
  1861. 1 : 0;
  1862. u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
  1863. 1 : 0;
  1864. enum wireless_mode wirelessmode = 0;
  1865. bool shortgi = false;
  1866. u8 rate_mask[7];
  1867. u8 macid = 0;
  1868. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1869. sta_entry = (struct rtl_sta_info *)sta->drv_priv;
  1870. wirelessmode = sta_entry->wireless_mode;
  1871. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1872. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1873. curtxbw_40mhz = mac->bw_40;
  1874. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1875. mac->opmode == NL80211_IFTYPE_ADHOC)
  1876. macid = sta->aid + 1;
  1877. ratr_bitmap = sta->supp_rates[0];
  1878. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1879. ratr_bitmap = 0xfff;
  1880. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1881. sta->ht_cap.mcs.rx_mask[0] << 12);
  1882. switch (wirelessmode) {
  1883. case WIRELESS_MODE_B:
  1884. ratr_index = RATR_INX_WIRELESS_B;
  1885. if (ratr_bitmap & 0x0000000c)
  1886. ratr_bitmap &= 0x0000000d;
  1887. else
  1888. ratr_bitmap &= 0x0000000f;
  1889. break;
  1890. case WIRELESS_MODE_G:
  1891. ratr_index = RATR_INX_WIRELESS_GB;
  1892. if (rssi_level == 1)
  1893. ratr_bitmap &= 0x00000f00;
  1894. else if (rssi_level == 2)
  1895. ratr_bitmap &= 0x00000ff0;
  1896. else
  1897. ratr_bitmap &= 0x00000ff5;
  1898. break;
  1899. case WIRELESS_MODE_A:
  1900. ratr_index = RATR_INX_WIRELESS_A;
  1901. ratr_bitmap &= 0x00000ff0;
  1902. break;
  1903. case WIRELESS_MODE_N_24G:
  1904. case WIRELESS_MODE_N_5G:
  1905. ratr_index = RATR_INX_WIRELESS_NGB;
  1906. if (mimo_ps == IEEE80211_SMPS_STATIC ||
  1907. mimo_ps == IEEE80211_SMPS_DYNAMIC) {
  1908. if (rssi_level == 1)
  1909. ratr_bitmap &= 0x00070000;
  1910. else if (rssi_level == 2)
  1911. ratr_bitmap &= 0x0007f000;
  1912. else
  1913. ratr_bitmap &= 0x0007f005;
  1914. } else {
  1915. if (rtlphy->rf_type == RF_1T1R) {
  1916. if (curtxbw_40mhz) {
  1917. if (rssi_level == 1)
  1918. ratr_bitmap &= 0x000f0000;
  1919. else if (rssi_level == 2)
  1920. ratr_bitmap &= 0x000ff000;
  1921. else
  1922. ratr_bitmap &= 0x000ff015;
  1923. } else {
  1924. if (rssi_level == 1)
  1925. ratr_bitmap &= 0x000f0000;
  1926. else if (rssi_level == 2)
  1927. ratr_bitmap &= 0x000ff000;
  1928. else
  1929. ratr_bitmap &= 0x000ff005;
  1930. }
  1931. } else {
  1932. if (curtxbw_40mhz) {
  1933. if (rssi_level == 1)
  1934. ratr_bitmap &= 0x0f8f0000;
  1935. else if (rssi_level == 2)
  1936. ratr_bitmap &= 0x0f8ff000;
  1937. else
  1938. ratr_bitmap &= 0x0f8ff015;
  1939. } else {
  1940. if (rssi_level == 1)
  1941. ratr_bitmap &= 0x0f8f0000;
  1942. else if (rssi_level == 2)
  1943. ratr_bitmap &= 0x0f8ff000;
  1944. else
  1945. ratr_bitmap &= 0x0f8ff005;
  1946. }
  1947. }
  1948. }
  1949. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  1950. (!curtxbw_40mhz && curshortgi_20mhz)) {
  1951. if (macid == 0)
  1952. shortgi = true;
  1953. else if (macid == 1)
  1954. shortgi = false;
  1955. }
  1956. break;
  1957. default:
  1958. ratr_index = RATR_INX_WIRELESS_NGB;
  1959. if (rtlphy->rf_type == RF_1T2R)
  1960. ratr_bitmap &= 0x000ff0ff;
  1961. else
  1962. ratr_bitmap &= 0x0f0ff0ff;
  1963. break;
  1964. }
  1965. sta_entry->ratr_index = ratr_index;
  1966. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1967. "ratr_bitmap :%x\n", ratr_bitmap);
  1968. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) | (ratr_index << 28);
  1969. rate_mask[0] = macid;
  1970. rate_mask[1] = _rtl8723be_mrate_idx_to_arfr_id(hw, ratr_index) |
  1971. (shortgi ? 0x80 : 0x00);
  1972. rate_mask[2] = curtxbw_40mhz;
  1973. /* if (prox_priv->proxim_modeinfo->power_output > 0)
  1974. * rate_mask[2] |= BIT(6);
  1975. */
  1976. rate_mask[3] = (u8)(ratr_bitmap & 0x000000ff);
  1977. rate_mask[4] = (u8)((ratr_bitmap & 0x0000ff00) >> 8);
  1978. rate_mask[5] = (u8)((ratr_bitmap & 0x00ff0000) >> 16);
  1979. rate_mask[6] = (u8)((ratr_bitmap & 0xff000000) >> 24);
  1980. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1981. "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x:%x:%x\n",
  1982. ratr_index, ratr_bitmap,
  1983. rate_mask[0], rate_mask[1],
  1984. rate_mask[2], rate_mask[3],
  1985. rate_mask[4], rate_mask[5],
  1986. rate_mask[6]);
  1987. rtl8723be_fill_h2c_cmd(hw, H2C_8723BE_RA_MASK, 7, rate_mask);
  1988. _rtl8723be_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1989. }
  1990. void rtl8723be_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1991. struct ieee80211_sta *sta,
  1992. u8 rssi_level)
  1993. {
  1994. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1995. if (rtlpriv->dm.useramask)
  1996. rtl8723be_update_hal_rate_mask(hw, sta, rssi_level);
  1997. else
  1998. rtl8723be_update_hal_rate_table(hw, sta);
  1999. }
  2000. void rtl8723be_update_channel_access_setting(struct ieee80211_hw *hw)
  2001. {
  2002. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2003. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2004. u16 sifs_timer;
  2005. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time);
  2006. if (!mac->ht_enable)
  2007. sifs_timer = 0x0a0a;
  2008. else
  2009. sifs_timer = 0x0e0e;
  2010. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2011. }
  2012. bool rtl8723be_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  2013. {
  2014. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2015. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2016. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2017. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2018. u8 u1tmp;
  2019. bool actuallyset = false;
  2020. if (rtlpriv->rtlhal.being_init_adapter)
  2021. return false;
  2022. if (ppsc->swrf_processing)
  2023. return false;
  2024. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2025. if (ppsc->rfchange_inprogress) {
  2026. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2027. return false;
  2028. } else {
  2029. ppsc->rfchange_inprogress = true;
  2030. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2031. }
  2032. cur_rfstate = ppsc->rfpwr_state;
  2033. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL_2,
  2034. rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL_2) & ~(BIT(1)));
  2035. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_PIN_CTRL_2);
  2036. if (rtlphy->polarity_ctl)
  2037. e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFOFF : ERFON;
  2038. else
  2039. e_rfpowerstate_toset = (u1tmp & BIT(1)) ? ERFON : ERFOFF;
  2040. if (ppsc->hwradiooff &&
  2041. (e_rfpowerstate_toset == ERFON)) {
  2042. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2043. "GPIOChangeRF - HW Radio ON, RF ON\n");
  2044. e_rfpowerstate_toset = ERFON;
  2045. ppsc->hwradiooff = false;
  2046. actuallyset = true;
  2047. } else if (!ppsc->hwradiooff &&
  2048. (e_rfpowerstate_toset == ERFOFF)) {
  2049. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  2050. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  2051. e_rfpowerstate_toset = ERFOFF;
  2052. ppsc->hwradiooff = true;
  2053. actuallyset = true;
  2054. }
  2055. if (actuallyset) {
  2056. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2057. ppsc->rfchange_inprogress = false;
  2058. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2059. } else {
  2060. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  2061. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  2062. spin_lock(&rtlpriv->locks.rf_ps_lock);
  2063. ppsc->rfchange_inprogress = false;
  2064. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  2065. }
  2066. *valid = 1;
  2067. return !ppsc->hwradiooff;
  2068. }
  2069. void rtl8723be_set_key(struct ieee80211_hw *hw, u32 key_index,
  2070. u8 *p_macaddr, bool is_group, u8 enc_algo,
  2071. bool is_wepkey, bool clear_all)
  2072. {
  2073. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2074. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2075. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  2076. u8 *macaddr = p_macaddr;
  2077. u32 entry_id = 0;
  2078. bool is_pairwise = false;
  2079. static u8 cam_const_addr[4][6] = {
  2080. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  2081. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  2082. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  2083. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  2084. };
  2085. static u8 cam_const_broad[] = {
  2086. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  2087. };
  2088. if (clear_all) {
  2089. u8 idx = 0;
  2090. u8 cam_offset = 0;
  2091. u8 clear_number = 5;
  2092. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  2093. for (idx = 0; idx < clear_number; idx++) {
  2094. rtl_cam_mark_invalid(hw, cam_offset + idx);
  2095. rtl_cam_empty_entry(hw, cam_offset + idx);
  2096. if (idx < 5) {
  2097. memset(rtlpriv->sec.key_buf[idx], 0,
  2098. MAX_KEY_LEN);
  2099. rtlpriv->sec.key_len[idx] = 0;
  2100. }
  2101. }
  2102. } else {
  2103. switch (enc_algo) {
  2104. case WEP40_ENCRYPTION:
  2105. enc_algo = CAM_WEP40;
  2106. break;
  2107. case WEP104_ENCRYPTION:
  2108. enc_algo = CAM_WEP104;
  2109. break;
  2110. case TKIP_ENCRYPTION:
  2111. enc_algo = CAM_TKIP;
  2112. break;
  2113. case AESCCMP_ENCRYPTION:
  2114. enc_algo = CAM_AES;
  2115. break;
  2116. default:
  2117. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2118. "switch case not process\n");
  2119. enc_algo = CAM_TKIP;
  2120. break;
  2121. }
  2122. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2123. macaddr = cam_const_addr[key_index];
  2124. entry_id = key_index;
  2125. } else {
  2126. if (is_group) {
  2127. macaddr = cam_const_broad;
  2128. entry_id = key_index;
  2129. } else {
  2130. if (mac->opmode == NL80211_IFTYPE_AP) {
  2131. entry_id = rtl_cam_get_free_entry(hw,
  2132. p_macaddr);
  2133. if (entry_id >= TOTAL_CAM_ENTRY) {
  2134. RT_TRACE(rtlpriv, COMP_SEC,
  2135. DBG_EMERG,
  2136. "Can not find free"
  2137. " hw security cam "
  2138. "entry\n");
  2139. return;
  2140. }
  2141. } else {
  2142. entry_id = CAM_PAIRWISE_KEY_POSITION;
  2143. }
  2144. key_index = PAIRWISE_KEYIDX;
  2145. is_pairwise = true;
  2146. }
  2147. }
  2148. if (rtlpriv->sec.key_len[key_index] == 0) {
  2149. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2150. "delete one entry, entry_id is %d\n",
  2151. entry_id);
  2152. if (mac->opmode == NL80211_IFTYPE_AP)
  2153. rtl_cam_del_entry(hw, p_macaddr);
  2154. rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
  2155. } else {
  2156. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2157. "add one entry\n");
  2158. if (is_pairwise) {
  2159. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2160. "set Pairwise key\n");
  2161. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2162. entry_id, enc_algo,
  2163. CAM_CONFIG_NO_USEDK,
  2164. rtlpriv->sec.key_buf[key_index]);
  2165. } else {
  2166. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2167. "set group key\n");
  2168. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2169. rtl_cam_add_one_entry(hw,
  2170. rtlefuse->dev_addr,
  2171. PAIRWISE_KEYIDX,
  2172. CAM_PAIRWISE_KEY_POSITION,
  2173. enc_algo,
  2174. CAM_CONFIG_NO_USEDK,
  2175. rtlpriv->sec.key_buf
  2176. [entry_id]);
  2177. }
  2178. rtl_cam_add_one_entry(hw, macaddr, key_index,
  2179. entry_id, enc_algo,
  2180. CAM_CONFIG_NO_USEDK,
  2181. rtlpriv->sec.key_buf[entry_id]);
  2182. }
  2183. }
  2184. }
  2185. }
  2186. void rtl8723be_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2187. bool auto_load_fail, u8 *hwinfo)
  2188. {
  2189. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2190. u8 value;
  2191. u32 tmpu_32;
  2192. if (!auto_load_fail) {
  2193. tmpu_32 = rtl_read_dword(rtlpriv, REG_MULTI_FUNC_CTRL);
  2194. if (tmpu_32 & BIT(18))
  2195. rtlpriv->btcoexist.btc_info.btcoexist = 1;
  2196. else
  2197. rtlpriv->btcoexist.btc_info.btcoexist = 0;
  2198. value = hwinfo[RF_OPTION4];
  2199. rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
  2200. rtlpriv->btcoexist.btc_info.ant_num = (value & 0x1);
  2201. } else {
  2202. rtlpriv->btcoexist.btc_info.btcoexist = 0;
  2203. rtlpriv->btcoexist.btc_info.bt_type = BT_RTL8723B;
  2204. rtlpriv->btcoexist.btc_info.ant_num = ANT_X2;
  2205. }
  2206. }
  2207. void rtl8723be_bt_reg_init(struct ieee80211_hw *hw)
  2208. {
  2209. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2210. /* 0:Low, 1:High, 2:From Efuse. */
  2211. rtlpriv->btcoexist.reg_bt_iso = 2;
  2212. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2213. rtlpriv->btcoexist.reg_bt_sco = 3;
  2214. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2215. rtlpriv->btcoexist.reg_bt_sco = 0;
  2216. }
  2217. void rtl8723be_bt_hw_init(struct ieee80211_hw *hw)
  2218. {
  2219. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2220. if (rtlpriv->cfg->ops->get_btc_status())
  2221. rtlpriv->btcoexist.btc_ops->btc_init_hw_config(rtlpriv);
  2222. }
  2223. void rtl8723be_suspend(struct ieee80211_hw *hw)
  2224. {
  2225. }
  2226. void rtl8723be_resume(struct ieee80211_hw *hw)
  2227. {
  2228. }