phy.c 61 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2013 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../pci.h"
  31. #include "../core.h"
  32. #include "../ps.h"
  33. #include "reg.h"
  34. #include "def.h"
  35. #include "phy.h"
  36. #include "rf.h"
  37. #include "dm.h"
  38. #include "table.h"
  39. static void set_baseband_phy_config(struct ieee80211_hw *hw);
  40. static void set_baseband_agc_config(struct ieee80211_hw *hw);
  41. static void store_pwrindex_offset(struct ieee80211_hw *hw,
  42. u32 regaddr, u32 bitmask,
  43. u32 data);
  44. static bool check_cond(struct ieee80211_hw *hw, const u32 condition);
  45. static u32 rf_serial_read(struct ieee80211_hw *hw,
  46. enum radio_path rfpath, u32 offset)
  47. {
  48. struct rtl_priv *rtlpriv = rtl_priv(hw);
  49. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  50. struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath];
  51. u32 newoffset;
  52. u32 tmplong, tmplong2;
  53. u8 rfpi_enable = 0;
  54. u32 ret;
  55. int jj = RF90_PATH_A;
  56. int kk = RF90_PATH_B;
  57. offset &= 0xff;
  58. newoffset = offset;
  59. if (RT_CANNOT_IO(hw)) {
  60. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "return all one\n");
  61. return 0xFFFFFFFF;
  62. }
  63. tmplong = rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD);
  64. if (rfpath == jj)
  65. tmplong2 = tmplong;
  66. else
  67. tmplong2 = rtl_get_bbreg(hw, phreg->rfhssi_para2, MASKDWORD);
  68. tmplong2 = (tmplong2 & (~BLSSIREADADDRESS)) |
  69. (newoffset << 23) | BLSSIREADEDGE;
  70. rtl_set_bbreg(hw, RFPGA0_XA_HSSIPARAMETER2, MASKDWORD,
  71. tmplong & (~BLSSIREADEDGE));
  72. mdelay(1);
  73. rtl_set_bbreg(hw, phreg->rfhssi_para2, MASKDWORD, tmplong2);
  74. mdelay(2);
  75. if (rfpath == jj)
  76. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XA_HSSIPARAMETER1,
  77. BIT(8));
  78. else if (rfpath == kk)
  79. rfpi_enable = (u8) rtl_get_bbreg(hw, RFPGA0_XB_HSSIPARAMETER1,
  80. BIT(8));
  81. if (rfpi_enable)
  82. ret = rtl_get_bbreg(hw, phreg->rf_rbpi, BLSSIREADBACKDATA);
  83. else
  84. ret = rtl_get_bbreg(hw, phreg->rf_rb, BLSSIREADBACKDATA);
  85. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFR-%d Addr[0x%x]= 0x%x\n",
  86. rfpath, phreg->rf_rb, ret);
  87. return ret;
  88. }
  89. static void rf_serial_write(struct ieee80211_hw *hw,
  90. enum radio_path rfpath, u32 offset,
  91. u32 data)
  92. {
  93. u32 data_and_addr;
  94. u32 newoffset;
  95. struct rtl_priv *rtlpriv = rtl_priv(hw);
  96. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  97. struct bb_reg_def *phreg = &rtlphy->phyreg_def[rfpath];
  98. if (RT_CANNOT_IO(hw)) {
  99. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "stop\n");
  100. return;
  101. }
  102. offset &= 0xff;
  103. newoffset = offset;
  104. data_and_addr = ((newoffset << 20) | (data & 0x000fffff)) & 0x0fffffff;
  105. rtl_set_bbreg(hw, phreg->rf3wire_offset, MASKDWORD, data_and_addr);
  106. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE, "RFW-%d Addr[0x%x]= 0x%x\n",
  107. rfpath, phreg->rf3wire_offset, data_and_addr);
  108. }
  109. static u32 cal_bit_shift(u32 bitmask)
  110. {
  111. u32 i;
  112. for (i = 0; i <= 31; i++) {
  113. if (((bitmask >> i) & 0x1) == 1)
  114. break;
  115. }
  116. return i;
  117. }
  118. static bool config_bb_with_header(struct ieee80211_hw *hw,
  119. u8 configtype)
  120. {
  121. if (configtype == BASEBAND_CONFIG_PHY_REG)
  122. set_baseband_phy_config(hw);
  123. else if (configtype == BASEBAND_CONFIG_AGC_TAB)
  124. set_baseband_agc_config(hw);
  125. return true;
  126. }
  127. static bool config_bb_with_pgheader(struct ieee80211_hw *hw,
  128. u8 configtype)
  129. {
  130. struct rtl_priv *rtlpriv = rtl_priv(hw);
  131. int i;
  132. u32 *table_pg;
  133. u16 tbl_page_len;
  134. u32 v1 = 0, v2 = 0;
  135. tbl_page_len = RTL8188EEPHY_REG_ARRAY_PGLEN;
  136. table_pg = RTL8188EEPHY_REG_ARRAY_PG;
  137. if (configtype == BASEBAND_CONFIG_PHY_REG) {
  138. for (i = 0; i < tbl_page_len; i = i + 3) {
  139. v1 = table_pg[i];
  140. v2 = table_pg[i + 1];
  141. if (v1 < 0xcdcdcdcd) {
  142. rtl_addr_delay(table_pg[i]);
  143. store_pwrindex_offset(hw, table_pg[i],
  144. table_pg[i + 1],
  145. table_pg[i + 2]);
  146. continue;
  147. } else {
  148. if (!check_cond(hw, table_pg[i])) {
  149. /*don't need the hw_body*/
  150. i += 2; /* skip the pair of expression*/
  151. v1 = table_pg[i];
  152. v2 = table_pg[i + 1];
  153. while (v2 != 0xDEAD) {
  154. i += 3;
  155. v1 = table_pg[i];
  156. v2 = table_pg[i + 1];
  157. }
  158. }
  159. }
  160. }
  161. } else {
  162. RT_TRACE(rtlpriv, COMP_SEND, DBG_TRACE,
  163. "configtype != BaseBand_Config_PHY_REG\n");
  164. }
  165. return true;
  166. }
  167. static bool config_parafile(struct ieee80211_hw *hw)
  168. {
  169. struct rtl_priv *rtlpriv = rtl_priv(hw);
  170. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  171. struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
  172. bool rtstatus;
  173. rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_PHY_REG);
  174. if (rtstatus != true) {
  175. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Write BB Reg Fail!!");
  176. return false;
  177. }
  178. if (fuse->autoload_failflag == false) {
  179. rtlphy->pwrgroup_cnt = 0;
  180. rtstatus = config_bb_with_pgheader(hw, BASEBAND_CONFIG_PHY_REG);
  181. }
  182. if (rtstatus != true) {
  183. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "BB_PG Reg Fail!!");
  184. return false;
  185. }
  186. rtstatus = config_bb_with_header(hw, BASEBAND_CONFIG_AGC_TAB);
  187. if (rtstatus != true) {
  188. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "AGC Table Fail\n");
  189. return false;
  190. }
  191. rtlphy->cck_high_power = (bool) (rtl_get_bbreg(hw,
  192. RFPGA0_XA_HSSIPARAMETER2, 0x200));
  193. return true;
  194. }
  195. static void rtl88e_phy_init_bb_rf_register_definition(struct ieee80211_hw *hw)
  196. {
  197. struct rtl_priv *rtlpriv = rtl_priv(hw);
  198. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  199. int jj = RF90_PATH_A;
  200. int kk = RF90_PATH_B;
  201. rtlphy->phyreg_def[jj].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  202. rtlphy->phyreg_def[kk].rfintfs = RFPGA0_XAB_RFINTERFACESW;
  203. rtlphy->phyreg_def[RF90_PATH_C].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  204. rtlphy->phyreg_def[RF90_PATH_D].rfintfs = RFPGA0_XCD_RFINTERFACESW;
  205. rtlphy->phyreg_def[jj].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  206. rtlphy->phyreg_def[kk].rfintfi = RFPGA0_XAB_RFINTERFACERB;
  207. rtlphy->phyreg_def[RF90_PATH_C].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  208. rtlphy->phyreg_def[RF90_PATH_D].rfintfi = RFPGA0_XCD_RFINTERFACERB;
  209. rtlphy->phyreg_def[jj].rfintfo = RFPGA0_XA_RFINTERFACEOE;
  210. rtlphy->phyreg_def[kk].rfintfo = RFPGA0_XB_RFINTERFACEOE;
  211. rtlphy->phyreg_def[jj].rfintfe = RFPGA0_XA_RFINTERFACEOE;
  212. rtlphy->phyreg_def[kk].rfintfe = RFPGA0_XB_RFINTERFACEOE;
  213. rtlphy->phyreg_def[jj].rf3wire_offset = RFPGA0_XA_LSSIPARAMETER;
  214. rtlphy->phyreg_def[kk].rf3wire_offset = RFPGA0_XB_LSSIPARAMETER;
  215. rtlphy->phyreg_def[jj].rflssi_select = rFPGA0_XAB_RFPARAMETER;
  216. rtlphy->phyreg_def[kk].rflssi_select = rFPGA0_XAB_RFPARAMETER;
  217. rtlphy->phyreg_def[RF90_PATH_C].rflssi_select = rFPGA0_XCD_RFPARAMETER;
  218. rtlphy->phyreg_def[RF90_PATH_D].rflssi_select = rFPGA0_XCD_RFPARAMETER;
  219. rtlphy->phyreg_def[jj].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  220. rtlphy->phyreg_def[kk].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  221. rtlphy->phyreg_def[RF90_PATH_C].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  222. rtlphy->phyreg_def[RF90_PATH_D].rftxgain_stage = RFPGA0_TXGAINSTAGE;
  223. rtlphy->phyreg_def[jj].rfhssi_para1 = RFPGA0_XA_HSSIPARAMETER1;
  224. rtlphy->phyreg_def[kk].rfhssi_para1 = RFPGA0_XB_HSSIPARAMETER1;
  225. rtlphy->phyreg_def[jj].rfhssi_para2 = RFPGA0_XA_HSSIPARAMETER2;
  226. rtlphy->phyreg_def[kk].rfhssi_para2 = RFPGA0_XB_HSSIPARAMETER2;
  227. rtlphy->phyreg_def[jj].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  228. rtlphy->phyreg_def[kk].rfsw_ctrl = RFPGA0_XAB_SWITCHCONTROL;
  229. rtlphy->phyreg_def[RF90_PATH_C].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  230. rtlphy->phyreg_def[RF90_PATH_D].rfsw_ctrl = RFPGA0_XCD_SWITCHCONTROL;
  231. rtlphy->phyreg_def[jj].rfagc_control1 = ROFDM0_XAAGCCORE1;
  232. rtlphy->phyreg_def[kk].rfagc_control1 = ROFDM0_XBAGCCORE1;
  233. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control1 = ROFDM0_XCAGCCORE1;
  234. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control1 = ROFDM0_XDAGCCORE1;
  235. rtlphy->phyreg_def[jj].rfagc_control2 = ROFDM0_XAAGCCORE2;
  236. rtlphy->phyreg_def[kk].rfagc_control2 = ROFDM0_XBAGCCORE2;
  237. rtlphy->phyreg_def[RF90_PATH_C].rfagc_control2 = ROFDM0_XCAGCCORE2;
  238. rtlphy->phyreg_def[RF90_PATH_D].rfagc_control2 = ROFDM0_XDAGCCORE2;
  239. rtlphy->phyreg_def[jj].rfrxiq_imbal = ROFDM0_XARXIQIMBAL;
  240. rtlphy->phyreg_def[kk].rfrxiq_imbal = ROFDM0_XBRXIQIMBAL;
  241. rtlphy->phyreg_def[RF90_PATH_C].rfrxiq_imbal = ROFDM0_XCRXIQIMBAL;
  242. rtlphy->phyreg_def[RF90_PATH_D].rfrxiq_imbal = ROFDM0_XDRXIQIMBAL;
  243. rtlphy->phyreg_def[jj].rfrx_afe = ROFDM0_XARXAFE;
  244. rtlphy->phyreg_def[kk].rfrx_afe = ROFDM0_XBRXAFE;
  245. rtlphy->phyreg_def[RF90_PATH_C].rfrx_afe = ROFDM0_XCRXAFE;
  246. rtlphy->phyreg_def[RF90_PATH_D].rfrx_afe = ROFDM0_XDRXAFE;
  247. rtlphy->phyreg_def[jj].rftxiq_imbal = ROFDM0_XATXIQIMBAL;
  248. rtlphy->phyreg_def[kk].rftxiq_imbal = ROFDM0_XBTXIQIMBAL;
  249. rtlphy->phyreg_def[RF90_PATH_C].rftxiq_imbal = ROFDM0_XCTXIQIMBAL;
  250. rtlphy->phyreg_def[RF90_PATH_D].rftxiq_imbal = ROFDM0_XDTXIQIMBAL;
  251. rtlphy->phyreg_def[jj].rftx_afe = ROFDM0_XATXAFE;
  252. rtlphy->phyreg_def[kk].rftx_afe = ROFDM0_XBTXAFE;
  253. rtlphy->phyreg_def[jj].rf_rb = RFPGA0_XA_LSSIREADBACK;
  254. rtlphy->phyreg_def[kk].rf_rb = RFPGA0_XB_LSSIREADBACK;
  255. rtlphy->phyreg_def[jj].rf_rbpi = TRANSCEIVEA_HSPI_READBACK;
  256. rtlphy->phyreg_def[kk].rf_rbpi = TRANSCEIVEB_HSPI_READBACK;
  257. }
  258. static bool rtl88e_phy_set_sw_chnl_cmdarray(struct swchnlcmd *cmdtable,
  259. u32 cmdtableidx, u32 cmdtablesz,
  260. enum swchnlcmd_id cmdid,
  261. u32 para1, u32 para2, u32 msdelay)
  262. {
  263. struct swchnlcmd *pcmd;
  264. if (cmdtable == NULL) {
  265. RT_ASSERT(false, "cmdtable cannot be NULL.\n");
  266. return false;
  267. }
  268. if (cmdtableidx >= cmdtablesz)
  269. return false;
  270. pcmd = cmdtable + cmdtableidx;
  271. pcmd->cmdid = cmdid;
  272. pcmd->para1 = para1;
  273. pcmd->para2 = para2;
  274. pcmd->msdelay = msdelay;
  275. return true;
  276. }
  277. static bool chnl_step_by_step(struct ieee80211_hw *hw,
  278. u8 channel, u8 *stage, u8 *step,
  279. u32 *delay)
  280. {
  281. struct rtl_priv *rtlpriv = rtl_priv(hw);
  282. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  283. struct swchnlcmd precommoncmd[MAX_PRECMD_CNT];
  284. u32 precommoncmdcnt;
  285. struct swchnlcmd postcommoncmd[MAX_POSTCMD_CNT];
  286. u32 postcommoncmdcnt;
  287. struct swchnlcmd rfdependcmd[MAX_RFDEPENDCMD_CNT];
  288. u32 rfdependcmdcnt;
  289. struct swchnlcmd *currentcmd = NULL;
  290. u8 rfpath;
  291. u8 num_total_rfpath = rtlphy->num_total_rfpath;
  292. precommoncmdcnt = 0;
  293. rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  294. MAX_PRECMD_CNT,
  295. CMDID_SET_TXPOWEROWER_LEVEL, 0, 0, 0);
  296. rtl88e_phy_set_sw_chnl_cmdarray(precommoncmd, precommoncmdcnt++,
  297. MAX_PRECMD_CNT, CMDID_END, 0, 0, 0);
  298. postcommoncmdcnt = 0;
  299. rtl88e_phy_set_sw_chnl_cmdarray(postcommoncmd, postcommoncmdcnt++,
  300. MAX_POSTCMD_CNT, CMDID_END, 0, 0, 0);
  301. rfdependcmdcnt = 0;
  302. RT_ASSERT((channel >= 1 && channel <= 14),
  303. "illegal channel for Zebra: %d\n", channel);
  304. rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  305. MAX_RFDEPENDCMD_CNT, CMDID_RF_WRITEREG,
  306. RF_CHNLBW, channel, 10);
  307. rtl88e_phy_set_sw_chnl_cmdarray(rfdependcmd, rfdependcmdcnt++,
  308. MAX_RFDEPENDCMD_CNT, CMDID_END, 0, 0,
  309. 0);
  310. do {
  311. switch (*stage) {
  312. case 0:
  313. currentcmd = &precommoncmd[*step];
  314. break;
  315. case 1:
  316. currentcmd = &rfdependcmd[*step];
  317. break;
  318. case 2:
  319. currentcmd = &postcommoncmd[*step];
  320. break;
  321. }
  322. if (currentcmd->cmdid == CMDID_END) {
  323. if ((*stage) == 2) {
  324. return true;
  325. } else {
  326. (*stage)++;
  327. (*step) = 0;
  328. continue;
  329. }
  330. }
  331. switch (currentcmd->cmdid) {
  332. case CMDID_SET_TXPOWEROWER_LEVEL:
  333. rtl88e_phy_set_txpower_level(hw, channel);
  334. break;
  335. case CMDID_WRITEPORT_ULONG:
  336. rtl_write_dword(rtlpriv, currentcmd->para1,
  337. currentcmd->para2);
  338. break;
  339. case CMDID_WRITEPORT_USHORT:
  340. rtl_write_word(rtlpriv, currentcmd->para1,
  341. (u16) currentcmd->para2);
  342. break;
  343. case CMDID_WRITEPORT_UCHAR:
  344. rtl_write_byte(rtlpriv, currentcmd->para1,
  345. (u8) currentcmd->para2);
  346. break;
  347. case CMDID_RF_WRITEREG:
  348. for (rfpath = 0; rfpath < num_total_rfpath; rfpath++) {
  349. rtlphy->rfreg_chnlval[rfpath] =
  350. ((rtlphy->rfreg_chnlval[rfpath] &
  351. 0xfffffc00) | currentcmd->para2);
  352. rtl_set_rfreg(hw, (enum radio_path)rfpath,
  353. currentcmd->para1,
  354. RFREG_OFFSET_MASK,
  355. rtlphy->rfreg_chnlval[rfpath]);
  356. }
  357. break;
  358. default:
  359. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  360. "switch case not processed\n");
  361. break;
  362. }
  363. break;
  364. } while (true);
  365. (*delay) = currentcmd->msdelay;
  366. (*step)++;
  367. return false;
  368. }
  369. static long rtl88e_pwr_idx_dbm(struct ieee80211_hw *hw,
  370. enum wireless_mode wirelessmode,
  371. u8 txpwridx)
  372. {
  373. long offset;
  374. long pwrout_dbm;
  375. switch (wirelessmode) {
  376. case WIRELESS_MODE_B:
  377. offset = -7;
  378. break;
  379. case WIRELESS_MODE_G:
  380. case WIRELESS_MODE_N_24G:
  381. offset = -8;
  382. break;
  383. default:
  384. offset = -8;
  385. break;
  386. }
  387. pwrout_dbm = txpwridx / 2 + offset;
  388. return pwrout_dbm;
  389. }
  390. static void rtl88e_phy_set_io(struct ieee80211_hw *hw)
  391. {
  392. struct rtl_priv *rtlpriv = rtl_priv(hw);
  393. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  394. struct dig_t *dm_digtable = &rtlpriv->dm_digtable;
  395. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  396. "--->Cmd(%#x), set_io_inprogress(%d)\n",
  397. rtlphy->current_io_type, rtlphy->set_io_inprogress);
  398. switch (rtlphy->current_io_type) {
  399. case IO_CMD_RESUME_DM_BY_SCAN:
  400. dm_digtable->cur_igvalue = rtlphy->initgain_backup.xaagccore1;
  401. /*rtl92c_dm_write_dig(hw);*/
  402. rtl88e_phy_set_txpower_level(hw, rtlphy->current_channel);
  403. rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x83);
  404. break;
  405. case IO_CMD_PAUSE_DM_BY_SCAN:
  406. rtlphy->initgain_backup.xaagccore1 = dm_digtable->cur_igvalue;
  407. dm_digtable->cur_igvalue = 0x17;
  408. rtl_set_bbreg(hw, RCCK0_CCA, 0xff0000, 0x40);
  409. break;
  410. default:
  411. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  412. "switch case not processed\n");
  413. break;
  414. }
  415. rtlphy->set_io_inprogress = false;
  416. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  417. "(%#x)\n", rtlphy->current_io_type);
  418. }
  419. u32 rtl88e_phy_query_bb_reg(struct ieee80211_hw *hw, u32 regaddr, u32 bitmask)
  420. {
  421. struct rtl_priv *rtlpriv = rtl_priv(hw);
  422. u32 returnvalue, originalvalue, bitshift;
  423. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  424. "regaddr(%#x), bitmask(%#x)\n", regaddr, bitmask);
  425. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  426. bitshift = cal_bit_shift(bitmask);
  427. returnvalue = (originalvalue & bitmask) >> bitshift;
  428. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  429. "BBR MASK = 0x%x Addr[0x%x]= 0x%x\n", bitmask,
  430. regaddr, originalvalue);
  431. return returnvalue;
  432. }
  433. void rtl88e_phy_set_bb_reg(struct ieee80211_hw *hw,
  434. u32 regaddr, u32 bitmask, u32 data)
  435. {
  436. struct rtl_priv *rtlpriv = rtl_priv(hw);
  437. u32 originalvalue, bitshift;
  438. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  439. "regaddr(%#x), bitmask(%#x),data(%#x)\n",
  440. regaddr, bitmask, data);
  441. if (bitmask != MASKDWORD) {
  442. originalvalue = rtl_read_dword(rtlpriv, regaddr);
  443. bitshift = cal_bit_shift(bitmask);
  444. data = ((originalvalue & (~bitmask)) | (data << bitshift));
  445. }
  446. rtl_write_dword(rtlpriv, regaddr, data);
  447. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  448. "regaddr(%#x), bitmask(%#x), data(%#x)\n",
  449. regaddr, bitmask, data);
  450. }
  451. u32 rtl88e_phy_query_rf_reg(struct ieee80211_hw *hw,
  452. enum radio_path rfpath, u32 regaddr, u32 bitmask)
  453. {
  454. struct rtl_priv *rtlpriv = rtl_priv(hw);
  455. u32 original_value, readback_value, bitshift;
  456. unsigned long flags;
  457. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  458. "regaddr(%#x), rfpath(%#x), bitmask(%#x)\n",
  459. regaddr, rfpath, bitmask);
  460. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  461. original_value = rf_serial_read(hw, rfpath, regaddr);
  462. bitshift = cal_bit_shift(bitmask);
  463. readback_value = (original_value & bitmask) >> bitshift;
  464. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  465. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  466. "regaddr(%#x), rfpath(%#x), bitmask(%#x), original_value(%#x)\n",
  467. regaddr, rfpath, bitmask, original_value);
  468. return readback_value;
  469. }
  470. void rtl88e_phy_set_rf_reg(struct ieee80211_hw *hw,
  471. enum radio_path rfpath,
  472. u32 regaddr, u32 bitmask, u32 data)
  473. {
  474. struct rtl_priv *rtlpriv = rtl_priv(hw);
  475. u32 original_value, bitshift;
  476. unsigned long flags;
  477. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  478. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  479. regaddr, bitmask, data, rfpath);
  480. spin_lock_irqsave(&rtlpriv->locks.rf_lock, flags);
  481. if (bitmask != RFREG_OFFSET_MASK) {
  482. original_value = rf_serial_read(hw, rfpath, regaddr);
  483. bitshift = cal_bit_shift(bitmask);
  484. data = ((original_value & (~bitmask)) |
  485. (data << bitshift));
  486. }
  487. rf_serial_write(hw, rfpath, regaddr, data);
  488. spin_unlock_irqrestore(&rtlpriv->locks.rf_lock, flags);
  489. RT_TRACE(rtlpriv, COMP_RF, DBG_TRACE,
  490. "regaddr(%#x), bitmask(%#x), data(%#x), rfpath(%#x)\n",
  491. regaddr, bitmask, data, rfpath);
  492. }
  493. static bool config_mac_with_header(struct ieee80211_hw *hw)
  494. {
  495. struct rtl_priv *rtlpriv = rtl_priv(hw);
  496. u32 i;
  497. u32 arraylength;
  498. u32 *ptrarray;
  499. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE, "Read Rtl8188EMACPHY_Array\n");
  500. arraylength = RTL8188EEMAC_1T_ARRAYLEN;
  501. ptrarray = RTL8188EEMAC_1T_ARRAY;
  502. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  503. "Img:RTL8188EEMAC_1T_ARRAY LEN %d\n", arraylength);
  504. for (i = 0; i < arraylength; i = i + 2)
  505. rtl_write_byte(rtlpriv, ptrarray[i], (u8) ptrarray[i + 1]);
  506. return true;
  507. }
  508. bool rtl88e_phy_mac_config(struct ieee80211_hw *hw)
  509. {
  510. struct rtl_priv *rtlpriv = rtl_priv(hw);
  511. bool rtstatus = config_mac_with_header(hw);
  512. rtl_write_byte(rtlpriv, 0x04CA, 0x0B);
  513. return rtstatus;
  514. }
  515. bool rtl88e_phy_bb_config(struct ieee80211_hw *hw)
  516. {
  517. bool rtstatus = true;
  518. struct rtl_priv *rtlpriv = rtl_priv(hw);
  519. u16 regval;
  520. u8 reg_hwparafile = 1;
  521. u32 tmp;
  522. rtl88e_phy_init_bb_rf_register_definition(hw);
  523. regval = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  524. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN,
  525. regval | BIT(13) | BIT(0) | BIT(1));
  526. rtl_write_byte(rtlpriv, REG_RF_CTRL, RF_EN | RF_RSTB | RF_SDMRSTB);
  527. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN,
  528. FEN_PPLL | FEN_PCIEA | FEN_DIO_PCIE |
  529. FEN_BB_GLB_RSTN | FEN_BBRSTB);
  530. tmp = rtl_read_dword(rtlpriv, 0x4c);
  531. rtl_write_dword(rtlpriv, 0x4c, tmp | BIT(23));
  532. if (reg_hwparafile == 1)
  533. rtstatus = config_parafile(hw);
  534. return rtstatus;
  535. }
  536. bool rtl88e_phy_rf_config(struct ieee80211_hw *hw)
  537. {
  538. return rtl88e_phy_rf6052_config(hw);
  539. }
  540. static bool check_cond(struct ieee80211_hw *hw,
  541. const u32 condition)
  542. {
  543. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  544. struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
  545. u32 _board = fuse->board_type; /*need efuse define*/
  546. u32 _interface = rtlhal->interface;
  547. u32 _platform = 0x08;/*SupportPlatform */
  548. u32 cond = condition;
  549. if (condition == 0xCDCDCDCD)
  550. return true;
  551. cond = condition & 0xFF;
  552. if ((_board & cond) == 0 && cond != 0x1F)
  553. return false;
  554. cond = condition & 0xFF00;
  555. cond = cond >> 8;
  556. if ((_interface & cond) == 0 && cond != 0x07)
  557. return false;
  558. cond = condition & 0xFF0000;
  559. cond = cond >> 16;
  560. if ((_platform & cond) == 0 && cond != 0x0F)
  561. return false;
  562. return true;
  563. }
  564. static void _rtl8188e_config_rf_reg(struct ieee80211_hw *hw,
  565. u32 addr, u32 data, enum radio_path rfpath,
  566. u32 regaddr)
  567. {
  568. rtl_rfreg_delay(hw, rfpath, regaddr,
  569. RFREG_OFFSET_MASK,
  570. data);
  571. }
  572. static void rtl88_config_s(struct ieee80211_hw *hw,
  573. u32 addr, u32 data)
  574. {
  575. u32 content = 0x1000; /*RF Content: radio_a_txt*/
  576. u32 maskforphyset = (u32)(content & 0xE000);
  577. _rtl8188e_config_rf_reg(hw, addr, data, RF90_PATH_A,
  578. addr | maskforphyset);
  579. }
  580. #define NEXT_PAIR(v1, v2, i) \
  581. do { \
  582. i += 2; v1 = array_table[i]; \
  583. v2 = array_table[i + 1]; \
  584. } while (0)
  585. static void set_baseband_agc_config(struct ieee80211_hw *hw)
  586. {
  587. int i;
  588. u32 *array_table;
  589. u16 arraylen;
  590. struct rtl_priv *rtlpriv = rtl_priv(hw);
  591. u32 v1 = 0, v2 = 0;
  592. arraylen = RTL8188EEAGCTAB_1TARRAYLEN;
  593. array_table = RTL8188EEAGCTAB_1TARRAY;
  594. for (i = 0; i < arraylen; i += 2) {
  595. v1 = array_table[i];
  596. v2 = array_table[i + 1];
  597. if (v1 < 0xCDCDCDCD) {
  598. rtl_set_bbreg(hw, array_table[i], MASKDWORD,
  599. array_table[i + 1]);
  600. udelay(1);
  601. continue;
  602. } else {/*This line is the start line of branch.*/
  603. if (!check_cond(hw, array_table[i])) {
  604. /*Discard the following (offset, data) pairs*/
  605. NEXT_PAIR(v1, v2, i);
  606. while (v2 != 0xDEAD && v2 != 0xCDEF &&
  607. v2 != 0xCDCD && i < arraylen - 2) {
  608. NEXT_PAIR(v1, v2, i);
  609. }
  610. i -= 2; /* compensate for loop's += 2*/
  611. } else {
  612. /* Configure matched pairs and skip to end */
  613. NEXT_PAIR(v1, v2, i);
  614. while (v2 != 0xDEAD && v2 != 0xCDEF &&
  615. v2 != 0xCDCD && i < arraylen - 2) {
  616. rtl_set_bbreg(hw, array_table[i],
  617. MASKDWORD,
  618. array_table[i + 1]);
  619. udelay(1);
  620. NEXT_PAIR(v1, v2, i);
  621. }
  622. while (v2 != 0xDEAD && i < arraylen - 2)
  623. NEXT_PAIR(v1, v2, i);
  624. }
  625. }
  626. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  627. "The agctab_array_table[0] is %x Rtl818EEPHY_REGArray[1] is %x\n",
  628. array_table[i],
  629. array_table[i + 1]);
  630. }
  631. }
  632. static void set_baseband_phy_config(struct ieee80211_hw *hw)
  633. {
  634. int i;
  635. u32 *array_table;
  636. u16 arraylen;
  637. u32 v1 = 0, v2 = 0;
  638. arraylen = RTL8188EEPHY_REG_1TARRAYLEN;
  639. array_table = RTL8188EEPHY_REG_1TARRAY;
  640. for (i = 0; i < arraylen; i += 2) {
  641. v1 = array_table[i];
  642. v2 = array_table[i + 1];
  643. if (v1 < 0xcdcdcdcd) {
  644. rtl_bb_delay(hw, v1, v2);
  645. } else {/*This line is the start line of branch.*/
  646. if (!check_cond(hw, array_table[i])) {
  647. /*Discard the following (offset, data) pairs*/
  648. NEXT_PAIR(v1, v2, i);
  649. while (v2 != 0xDEAD &&
  650. v2 != 0xCDEF &&
  651. v2 != 0xCDCD && i < arraylen - 2)
  652. NEXT_PAIR(v1, v2, i);
  653. i -= 2; /* prevent from for-loop += 2*/
  654. } else {
  655. /* Configure matched pairs and skip to end */
  656. NEXT_PAIR(v1, v2, i);
  657. while (v2 != 0xDEAD &&
  658. v2 != 0xCDEF &&
  659. v2 != 0xCDCD && i < arraylen - 2) {
  660. rtl_bb_delay(hw, v1, v2);
  661. NEXT_PAIR(v1, v2, i);
  662. }
  663. while (v2 != 0xDEAD && i < arraylen - 2)
  664. NEXT_PAIR(v1, v2, i);
  665. }
  666. }
  667. }
  668. }
  669. static void store_pwrindex_offset(struct ieee80211_hw *hw,
  670. u32 regaddr, u32 bitmask,
  671. u32 data)
  672. {
  673. struct rtl_priv *rtlpriv = rtl_priv(hw);
  674. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  675. if (regaddr == RTXAGC_A_RATE18_06) {
  676. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0] = data;
  677. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  678. "MCSTxPowerLevelOriginalOffset[%d][0] = 0x%x\n",
  679. rtlphy->pwrgroup_cnt,
  680. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][0]);
  681. }
  682. if (regaddr == RTXAGC_A_RATE54_24) {
  683. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1] = data;
  684. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  685. "MCSTxPowerLevelOriginalOffset[%d][1] = 0x%x\n",
  686. rtlphy->pwrgroup_cnt,
  687. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][1]);
  688. }
  689. if (regaddr == RTXAGC_A_CCK1_MCS32) {
  690. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6] = data;
  691. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  692. "MCSTxPowerLevelOriginalOffset[%d][6] = 0x%x\n",
  693. rtlphy->pwrgroup_cnt,
  694. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][6]);
  695. }
  696. if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0xffffff00) {
  697. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7] = data;
  698. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  699. "MCSTxPowerLevelOriginalOffset[%d][7] = 0x%x\n",
  700. rtlphy->pwrgroup_cnt,
  701. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][7]);
  702. }
  703. if (regaddr == RTXAGC_A_MCS03_MCS00) {
  704. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2] = data;
  705. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  706. "MCSTxPowerLevelOriginalOffset[%d][2] = 0x%x\n",
  707. rtlphy->pwrgroup_cnt,
  708. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][2]);
  709. }
  710. if (regaddr == RTXAGC_A_MCS07_MCS04) {
  711. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3] = data;
  712. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  713. "MCSTxPowerLevelOriginalOffset[%d][3] = 0x%x\n",
  714. rtlphy->pwrgroup_cnt,
  715. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][3]);
  716. }
  717. if (regaddr == RTXAGC_A_MCS11_MCS08) {
  718. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4] = data;
  719. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  720. "MCSTxPowerLevelOriginalOffset[%d][4] = 0x%x\n",
  721. rtlphy->pwrgroup_cnt,
  722. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][4]);
  723. }
  724. if (regaddr == RTXAGC_A_MCS15_MCS12) {
  725. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5] = data;
  726. if (get_rf_type(rtlphy) == RF_1T1R)
  727. rtlphy->pwrgroup_cnt++;
  728. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  729. "MCSTxPowerLevelOriginalOffset[%d][5] = 0x%x\n",
  730. rtlphy->pwrgroup_cnt,
  731. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][5]);
  732. }
  733. if (regaddr == RTXAGC_B_RATE18_06) {
  734. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8] = data;
  735. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  736. "MCSTxPowerLevelOriginalOffset[%d][8] = 0x%x\n",
  737. rtlphy->pwrgroup_cnt,
  738. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][8]);
  739. }
  740. if (regaddr == RTXAGC_B_RATE54_24) {
  741. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9] = data;
  742. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  743. "MCSTxPowerLevelOriginalOffset[%d][9] = 0x%x\n",
  744. rtlphy->pwrgroup_cnt,
  745. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][9]);
  746. }
  747. if (regaddr == RTXAGC_B_CCK1_55_MCS32) {
  748. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14] = data;
  749. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  750. "MCSTxPowerLevelOriginalOffset[%d][14] = 0x%x\n",
  751. rtlphy->pwrgroup_cnt,
  752. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][14]);
  753. }
  754. if (regaddr == RTXAGC_B_CCK11_A_CCK2_11 && bitmask == 0x000000ff) {
  755. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15] = data;
  756. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  757. "MCSTxPowerLevelOriginalOffset[%d][15] = 0x%x\n",
  758. rtlphy->pwrgroup_cnt,
  759. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][15]);
  760. }
  761. if (regaddr == RTXAGC_B_MCS03_MCS00) {
  762. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10] = data;
  763. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  764. "MCSTxPowerLevelOriginalOffset[%d][10] = 0x%x\n",
  765. rtlphy->pwrgroup_cnt,
  766. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][10]);
  767. }
  768. if (regaddr == RTXAGC_B_MCS07_MCS04) {
  769. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11] = data;
  770. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  771. "MCSTxPowerLevelOriginalOffset[%d][11] = 0x%x\n",
  772. rtlphy->pwrgroup_cnt,
  773. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][11]);
  774. }
  775. if (regaddr == RTXAGC_B_MCS11_MCS08) {
  776. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12] = data;
  777. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  778. "MCSTxPowerLevelOriginalOffset[%d][12] = 0x%x\n",
  779. rtlphy->pwrgroup_cnt,
  780. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][12]);
  781. }
  782. if (regaddr == RTXAGC_B_MCS15_MCS12) {
  783. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13] = data;
  784. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  785. "MCSTxPowerLevelOriginalOffset[%d][13] = 0x%x\n",
  786. rtlphy->pwrgroup_cnt,
  787. rtlphy->mcs_offset[rtlphy->pwrgroup_cnt][13]);
  788. if (get_rf_type(rtlphy) != RF_1T1R)
  789. rtlphy->pwrgroup_cnt++;
  790. }
  791. }
  792. #define READ_NEXT_RF_PAIR(v1, v2, i) \
  793. do { \
  794. i += 2; v1 = a_table[i]; \
  795. v2 = a_table[i + 1]; \
  796. } while (0)
  797. bool rtl88e_phy_config_rf_with_headerfile(struct ieee80211_hw *hw,
  798. enum radio_path rfpath)
  799. {
  800. int i;
  801. u32 *a_table;
  802. u16 a_len;
  803. struct rtl_priv *rtlpriv = rtl_priv(hw);
  804. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  805. u32 v1 = 0, v2 = 0;
  806. a_len = RTL8188EE_RADIOA_1TARRAYLEN;
  807. a_table = RTL8188EE_RADIOA_1TARRAY;
  808. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  809. "Radio_A:RTL8188EE_RADIOA_1TARRAY %d\n", a_len);
  810. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Radio No %x\n", rfpath);
  811. switch (rfpath) {
  812. case RF90_PATH_A:
  813. for (i = 0; i < a_len; i = i + 2) {
  814. v1 = a_table[i];
  815. v2 = a_table[i + 1];
  816. if (v1 < 0xcdcdcdcd) {
  817. rtl88_config_s(hw, v1, v2);
  818. } else {/*This line is the start line of branch.*/
  819. if (!check_cond(hw, a_table[i])) {
  820. /* Discard the following (offset, data)
  821. * pairs
  822. */
  823. READ_NEXT_RF_PAIR(v1, v2, i);
  824. while (v2 != 0xDEAD && v2 != 0xCDEF &&
  825. v2 != 0xCDCD && i < a_len - 2)
  826. READ_NEXT_RF_PAIR(v1, v2, i);
  827. i -= 2; /* prevent from for-loop += 2*/
  828. } else {
  829. /* Configure matched pairs and skip to
  830. * end of if-else.
  831. */
  832. READ_NEXT_RF_PAIR(v1, v2, i);
  833. while (v2 != 0xDEAD && v2 != 0xCDEF &&
  834. v2 != 0xCDCD && i < a_len - 2) {
  835. rtl88_config_s(hw, v1, v2);
  836. READ_NEXT_RF_PAIR(v1, v2, i);
  837. }
  838. while (v2 != 0xDEAD && i < a_len - 2)
  839. READ_NEXT_RF_PAIR(v1, v2, i);
  840. }
  841. }
  842. }
  843. if (rtlhal->oem_id == RT_CID_819X_HP)
  844. rtl88_config_s(hw, 0x52, 0x7E4BD);
  845. break;
  846. case RF90_PATH_B:
  847. case RF90_PATH_C:
  848. case RF90_PATH_D:
  849. default:
  850. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  851. "switch case not processed\n");
  852. break;
  853. }
  854. return true;
  855. }
  856. void rtl88e_phy_get_hw_reg_originalvalue(struct ieee80211_hw *hw)
  857. {
  858. struct rtl_priv *rtlpriv = rtl_priv(hw);
  859. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  860. rtlphy->default_initialgain[0] = rtl_get_bbreg(hw, ROFDM0_XAAGCCORE1,
  861. MASKBYTE0);
  862. rtlphy->default_initialgain[1] = rtl_get_bbreg(hw, ROFDM0_XBAGCCORE1,
  863. MASKBYTE0);
  864. rtlphy->default_initialgain[2] = rtl_get_bbreg(hw, ROFDM0_XCAGCCORE1,
  865. MASKBYTE0);
  866. rtlphy->default_initialgain[3] = rtl_get_bbreg(hw, ROFDM0_XDAGCCORE1,
  867. MASKBYTE0);
  868. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  869. "Default initial gain (c50 = 0x%x, c58 = 0x%x, c60 = 0x%x, c68 = 0x%x\n",
  870. rtlphy->default_initialgain[0],
  871. rtlphy->default_initialgain[1],
  872. rtlphy->default_initialgain[2],
  873. rtlphy->default_initialgain[3]);
  874. rtlphy->framesync = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR3,
  875. MASKBYTE0);
  876. rtlphy->framesync_c34 = rtl_get_bbreg(hw, ROFDM0_RXDETECTOR2,
  877. MASKDWORD);
  878. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  879. "Default framesync (0x%x) = 0x%x\n",
  880. ROFDM0_RXDETECTOR3, rtlphy->framesync);
  881. }
  882. void rtl88e_phy_get_txpower_level(struct ieee80211_hw *hw, long *powerlevel)
  883. {
  884. struct rtl_priv *rtlpriv = rtl_priv(hw);
  885. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  886. u8 level;
  887. long dbm;
  888. level = rtlphy->cur_cck_txpwridx;
  889. dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_B, level);
  890. level = rtlphy->cur_ofdm24g_txpwridx;
  891. if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level) > dbm)
  892. dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_G, level);
  893. level = rtlphy->cur_ofdm24g_txpwridx;
  894. if (rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level) > dbm)
  895. dbm = rtl88e_pwr_idx_dbm(hw, WIRELESS_MODE_N_24G, level);
  896. *powerlevel = dbm;
  897. }
  898. static void _rtl88e_get_txpower_index(struct ieee80211_hw *hw, u8 channel,
  899. u8 *cckpower, u8 *ofdm, u8 *bw20_pwr,
  900. u8 *bw40_pwr)
  901. {
  902. struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
  903. u8 i = (channel - 1);
  904. u8 rf_path = 0;
  905. int jj = RF90_PATH_A;
  906. int kk = RF90_PATH_B;
  907. for (rf_path = 0; rf_path < 2; rf_path++) {
  908. if (rf_path == jj) {
  909. cckpower[jj] = fuse->txpwrlevel_cck[jj][i];
  910. if (fuse->txpwr_ht20diff[jj][i] > 0x0f) /*-8~7 */
  911. bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] -
  912. (~(fuse->txpwr_ht20diff[jj][i]) + 1);
  913. else
  914. bw20_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i] +
  915. fuse->txpwr_ht20diff[jj][i];
  916. if (fuse->txpwr_legacyhtdiff[jj][i] > 0xf)
  917. ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] -
  918. (~(fuse->txpwr_legacyhtdiff[jj][i])+1);
  919. else
  920. ofdm[jj] = fuse->txpwrlevel_ht40_1s[jj][i] +
  921. fuse->txpwr_legacyhtdiff[jj][i];
  922. bw40_pwr[jj] = fuse->txpwrlevel_ht40_1s[jj][i];
  923. } else if (rf_path == kk) {
  924. cckpower[kk] = fuse->txpwrlevel_cck[kk][i];
  925. bw20_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i] +
  926. fuse->txpwr_ht20diff[kk][i];
  927. ofdm[kk] = fuse->txpwrlevel_ht40_1s[kk][i] +
  928. fuse->txpwr_legacyhtdiff[kk][i];
  929. bw40_pwr[kk] = fuse->txpwrlevel_ht40_1s[kk][i];
  930. }
  931. }
  932. }
  933. static void _rtl88e_ccxpower_index_check(struct ieee80211_hw *hw,
  934. u8 channel, u8 *cckpower,
  935. u8 *ofdm, u8 *bw20_pwr,
  936. u8 *bw40_pwr)
  937. {
  938. struct rtl_priv *rtlpriv = rtl_priv(hw);
  939. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  940. rtlphy->cur_cck_txpwridx = cckpower[0];
  941. rtlphy->cur_ofdm24g_txpwridx = ofdm[0];
  942. rtlphy->cur_bw20_txpwridx = bw20_pwr[0];
  943. rtlphy->cur_bw40_txpwridx = bw40_pwr[0];
  944. }
  945. void rtl88e_phy_set_txpower_level(struct ieee80211_hw *hw, u8 channel)
  946. {
  947. struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
  948. u8 cckpower[MAX_TX_COUNT] = {0}, ofdm[MAX_TX_COUNT] = {0};
  949. u8 bw20_pwr[MAX_TX_COUNT] = {0}, bw40_pwr[MAX_TX_COUNT] = {0};
  950. if (fuse->txpwr_fromeprom == false)
  951. return;
  952. _rtl88e_get_txpower_index(hw, channel, &cckpower[0], &ofdm[0],
  953. &bw20_pwr[0], &bw40_pwr[0]);
  954. _rtl88e_ccxpower_index_check(hw, channel, &cckpower[0], &ofdm[0],
  955. &bw20_pwr[0], &bw40_pwr[0]);
  956. rtl88e_phy_rf6052_set_cck_txpower(hw, &cckpower[0]);
  957. rtl88e_phy_rf6052_set_ofdm_txpower(hw, &ofdm[0], &bw20_pwr[0],
  958. &bw40_pwr[0], channel);
  959. }
  960. void rtl88e_phy_set_bw_mode_callback(struct ieee80211_hw *hw)
  961. {
  962. struct rtl_priv *rtlpriv = rtl_priv(hw);
  963. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  964. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  965. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  966. u8 reg_bw_opmode;
  967. u8 reg_prsr_rsc;
  968. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  969. "Switch to %s bandwidth\n",
  970. rtlphy->current_chan_bw == HT_CHANNEL_WIDTH_20 ?
  971. "20MHz" : "40MHz");
  972. if (is_hal_stop(rtlhal)) {
  973. rtlphy->set_bwmode_inprogress = false;
  974. return;
  975. }
  976. reg_bw_opmode = rtl_read_byte(rtlpriv, REG_BWOPMODE);
  977. reg_prsr_rsc = rtl_read_byte(rtlpriv, REG_RRSR + 2);
  978. switch (rtlphy->current_chan_bw) {
  979. case HT_CHANNEL_WIDTH_20:
  980. reg_bw_opmode |= BW_OPMODE_20MHZ;
  981. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  982. break;
  983. case HT_CHANNEL_WIDTH_20_40:
  984. reg_bw_opmode &= ~BW_OPMODE_20MHZ;
  985. rtl_write_byte(rtlpriv, REG_BWOPMODE, reg_bw_opmode);
  986. reg_prsr_rsc =
  987. (reg_prsr_rsc & 0x90) | (mac->cur_40_prime_sc << 5);
  988. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_prsr_rsc);
  989. break;
  990. default:
  991. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  992. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  993. break;
  994. }
  995. switch (rtlphy->current_chan_bw) {
  996. case HT_CHANNEL_WIDTH_20:
  997. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x0);
  998. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x0);
  999. /* rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 1);*/
  1000. break;
  1001. case HT_CHANNEL_WIDTH_20_40:
  1002. rtl_set_bbreg(hw, RFPGA0_RFMOD, BRFMOD, 0x1);
  1003. rtl_set_bbreg(hw, RFPGA1_RFMOD, BRFMOD, 0x1);
  1004. rtl_set_bbreg(hw, RCCK0_SYSTEM, BCCK_SIDEBAND,
  1005. (mac->cur_40_prime_sc >> 1));
  1006. rtl_set_bbreg(hw, ROFDM1_LSTF, 0xC00, mac->cur_40_prime_sc);
  1007. /*rtl_set_bbreg(hw, RFPGA0_ANALOGPARAMETER2, BIT(10), 0);*/
  1008. rtl_set_bbreg(hw, 0x818, (BIT(26) | BIT(27)),
  1009. (mac->cur_40_prime_sc ==
  1010. HAL_PRIME_CHNL_OFFSET_LOWER) ? 2 : 1);
  1011. break;
  1012. default:
  1013. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1014. "unknown bandwidth: %#X\n", rtlphy->current_chan_bw);
  1015. break;
  1016. }
  1017. rtl88e_phy_rf6052_set_bandwidth(hw, rtlphy->current_chan_bw);
  1018. rtlphy->set_bwmode_inprogress = false;
  1019. RT_TRACE(rtlpriv, COMP_SCAN, DBG_LOUD, "\n");
  1020. }
  1021. void rtl88e_phy_set_bw_mode(struct ieee80211_hw *hw,
  1022. enum nl80211_channel_type ch_type)
  1023. {
  1024. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1025. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1026. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1027. u8 tmp_bw = rtlphy->current_chan_bw;
  1028. if (rtlphy->set_bwmode_inprogress)
  1029. return;
  1030. rtlphy->set_bwmode_inprogress = true;
  1031. if ((!is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
  1032. rtl88e_phy_set_bw_mode_callback(hw);
  1033. } else {
  1034. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1035. "FALSE driver sleep or unload\n");
  1036. rtlphy->set_bwmode_inprogress = false;
  1037. rtlphy->current_chan_bw = tmp_bw;
  1038. }
  1039. }
  1040. void rtl88e_phy_sw_chnl_callback(struct ieee80211_hw *hw)
  1041. {
  1042. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1043. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1044. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1045. u32 delay;
  1046. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE,
  1047. "switch to channel%d\n", rtlphy->current_channel);
  1048. if (is_hal_stop(rtlhal))
  1049. return;
  1050. do {
  1051. if (!rtlphy->sw_chnl_inprogress)
  1052. break;
  1053. if (!chnl_step_by_step(hw, rtlphy->current_channel,
  1054. &rtlphy->sw_chnl_stage,
  1055. &rtlphy->sw_chnl_step, &delay)) {
  1056. if (delay > 0)
  1057. mdelay(delay);
  1058. else
  1059. continue;
  1060. } else {
  1061. rtlphy->sw_chnl_inprogress = false;
  1062. }
  1063. break;
  1064. } while (true);
  1065. RT_TRACE(rtlpriv, COMP_SCAN, DBG_TRACE, "\n");
  1066. }
  1067. u8 rtl88e_phy_sw_chnl(struct ieee80211_hw *hw)
  1068. {
  1069. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1070. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1071. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1072. if (rtlphy->sw_chnl_inprogress)
  1073. return 0;
  1074. if (rtlphy->set_bwmode_inprogress)
  1075. return 0;
  1076. RT_ASSERT((rtlphy->current_channel <= 14),
  1077. "WIRELESS_MODE_G but channel>14");
  1078. rtlphy->sw_chnl_inprogress = true;
  1079. rtlphy->sw_chnl_stage = 0;
  1080. rtlphy->sw_chnl_step = 0;
  1081. if (!(is_hal_stop(rtlhal)) && !(RT_CANNOT_IO(hw))) {
  1082. rtl88e_phy_sw_chnl_callback(hw);
  1083. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  1084. "sw_chnl_inprogress false schdule workitem current channel %d\n",
  1085. rtlphy->current_channel);
  1086. rtlphy->sw_chnl_inprogress = false;
  1087. } else {
  1088. RT_TRACE(rtlpriv, COMP_CHAN, DBG_LOUD,
  1089. "sw_chnl_inprogress false driver sleep or unload\n");
  1090. rtlphy->sw_chnl_inprogress = false;
  1091. }
  1092. return 1;
  1093. }
  1094. static u8 _rtl88e_phy_path_a_iqk(struct ieee80211_hw *hw, bool config_pathb)
  1095. {
  1096. u32 reg_eac, reg_e94, reg_e9c;
  1097. u8 result = 0x00;
  1098. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x10008c1c);
  1099. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x30008c1c);
  1100. rtl_set_bbreg(hw, 0xe38, MASKDWORD, 0x8214032a);
  1101. rtl_set_bbreg(hw, 0xe3c, MASKDWORD, 0x28160000);
  1102. rtl_set_bbreg(hw, 0xe4c, MASKDWORD, 0x00462911);
  1103. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf9000000);
  1104. rtl_set_bbreg(hw, 0xe48, MASKDWORD, 0xf8000000);
  1105. mdelay(IQK_DELAY_TIME);
  1106. reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1107. reg_e94 = rtl_get_bbreg(hw, 0xe94, MASKDWORD);
  1108. reg_e9c = rtl_get_bbreg(hw, 0xe9c, MASKDWORD);
  1109. if (!(reg_eac & BIT(28)) &&
  1110. (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
  1111. (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
  1112. result |= 0x01;
  1113. return result;
  1114. }
  1115. static u8 _rtl88e_phy_path_b_iqk(struct ieee80211_hw *hw)
  1116. {
  1117. u32 reg_eac, reg_eb4, reg_ebc, reg_ec4, reg_ecc;
  1118. u8 result = 0x00;
  1119. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000002);
  1120. rtl_set_bbreg(hw, 0xe60, MASKDWORD, 0x00000000);
  1121. mdelay(IQK_DELAY_TIME);
  1122. reg_eac = rtl_get_bbreg(hw, 0xeac, MASKDWORD);
  1123. reg_eb4 = rtl_get_bbreg(hw, 0xeb4, MASKDWORD);
  1124. reg_ebc = rtl_get_bbreg(hw, 0xebc, MASKDWORD);
  1125. reg_ec4 = rtl_get_bbreg(hw, 0xec4, MASKDWORD);
  1126. reg_ecc = rtl_get_bbreg(hw, 0xecc, MASKDWORD);
  1127. if (!(reg_eac & BIT(31)) &&
  1128. (((reg_eb4 & 0x03FF0000) >> 16) != 0x142) &&
  1129. (((reg_ebc & 0x03FF0000) >> 16) != 0x42))
  1130. result |= 0x01;
  1131. else
  1132. return result;
  1133. if (!(reg_eac & BIT(30)) &&
  1134. (((reg_ec4 & 0x03FF0000) >> 16) != 0x132) &&
  1135. (((reg_ecc & 0x03FF0000) >> 16) != 0x36))
  1136. result |= 0x02;
  1137. return result;
  1138. }
  1139. static u8 _rtl88e_phy_path_a_rx_iqk(struct ieee80211_hw *hw, bool config_pathb)
  1140. {
  1141. u32 reg_eac, reg_e94, reg_e9c, reg_ea4, u32temp;
  1142. u8 result = 0x00;
  1143. int jj = RF90_PATH_A;
  1144. /*Get TXIMR Setting*/
  1145. /*Modify RX IQK mode table*/
  1146. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
  1147. rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
  1148. rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
  1149. rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
  1150. rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf117b);
  1151. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
  1152. /*IQK Setting*/
  1153. rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, 0x01007c00);
  1154. rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x81004800);
  1155. /*path a IQK setting*/
  1156. rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
  1157. rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
  1158. rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160804);
  1159. rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160000);
  1160. /*LO calibration Setting*/
  1161. rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
  1162. /*one shot, path A LOK & iqk*/
  1163. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
  1164. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
  1165. mdelay(IQK_DELAY_TIME);
  1166. reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
  1167. reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
  1168. reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
  1169. if (!(reg_eac & BIT(28)) &&
  1170. (((reg_e94 & 0x03FF0000) >> 16) != 0x142) &&
  1171. (((reg_e9c & 0x03FF0000) >> 16) != 0x42))
  1172. result |= 0x01;
  1173. else
  1174. return result;
  1175. u32temp = 0x80007C00 | (reg_e94&0x3FF0000) |
  1176. ((reg_e9c&0x3FF0000) >> 16);
  1177. rtl_set_bbreg(hw, RTX_IQK, MASKDWORD, u32temp);
  1178. /*RX IQK*/
  1179. /*Modify RX IQK mode table*/
  1180. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x00000000);
  1181. rtl_set_rfreg(hw, jj, RF_WE_LUT, RFREG_OFFSET_MASK, 0x800a0);
  1182. rtl_set_rfreg(hw, jj, RF_RCK_OS, RFREG_OFFSET_MASK, 0x30000);
  1183. rtl_set_rfreg(hw, jj, RF_TXPA_G1, RFREG_OFFSET_MASK, 0x0000f);
  1184. rtl_set_rfreg(hw, jj, RF_TXPA_G2, RFREG_OFFSET_MASK, 0xf7ffa);
  1185. rtl_set_bbreg(hw, RFPGA0_IQK, MASKDWORD, 0x80800000);
  1186. /*IQK Setting*/
  1187. rtl_set_bbreg(hw, RRX_IQK, MASKDWORD, 0x01004800);
  1188. /*path a IQK setting*/
  1189. rtl_set_bbreg(hw, RTX_IQK_TONE_A, MASKDWORD, 0x30008c1c);
  1190. rtl_set_bbreg(hw, RRX_IQK_TONE_A, MASKDWORD, 0x10008c1c);
  1191. rtl_set_bbreg(hw, RTX_IQK_PI_A, MASKDWORD, 0x82160c05);
  1192. rtl_set_bbreg(hw, RRX_IQK_PI_A, MASKDWORD, 0x28160c05);
  1193. /*LO calibration Setting*/
  1194. rtl_set_bbreg(hw, RIQK_AGC_RSP, MASKDWORD, 0x0046a911);
  1195. /*one shot, path A LOK & iqk*/
  1196. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf9000000);
  1197. rtl_set_bbreg(hw, RIQK_AGC_PTS, MASKDWORD, 0xf8000000);
  1198. mdelay(IQK_DELAY_TIME);
  1199. reg_eac = rtl_get_bbreg(hw, RRX_POWER_AFTER_IQK_A_2, MASKDWORD);
  1200. reg_e94 = rtl_get_bbreg(hw, RTX_POWER_BEFORE_IQK_A, MASKDWORD);
  1201. reg_e9c = rtl_get_bbreg(hw, RTX_POWER_AFTER_IQK_A, MASKDWORD);
  1202. reg_ea4 = rtl_get_bbreg(hw, RRX_POWER_BEFORE_IQK_A_2, MASKDWORD);
  1203. if (!(reg_eac & BIT(27)) &&
  1204. (((reg_ea4 & 0x03FF0000) >> 16) != 0x132) &&
  1205. (((reg_eac & 0x03FF0000) >> 16) != 0x36))
  1206. result |= 0x02;
  1207. return result;
  1208. }
  1209. static void fill_iqk(struct ieee80211_hw *hw, bool iqk_ok, long result[][8],
  1210. u8 final, bool btxonly)
  1211. {
  1212. u32 oldval_0, x, tx0_a, reg;
  1213. long y, tx0_c;
  1214. if (final == 0xFF) {
  1215. return;
  1216. } else if (iqk_ok) {
  1217. oldval_0 = (rtl_get_bbreg(hw, ROFDM0_XATXIQIMBAL,
  1218. MASKDWORD) >> 22) & 0x3FF;
  1219. x = result[final][0];
  1220. if ((x & 0x00000200) != 0)
  1221. x = x | 0xFFFFFC00;
  1222. tx0_a = (x * oldval_0) >> 8;
  1223. rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x3FF, tx0_a);
  1224. rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(31),
  1225. ((x * oldval_0 >> 7) & 0x1));
  1226. y = result[final][1];
  1227. if ((y & 0x00000200) != 0)
  1228. y |= 0xFFFFFC00;
  1229. tx0_c = (y * oldval_0) >> 8;
  1230. rtl_set_bbreg(hw, ROFDM0_XCTXAFE, 0xF0000000,
  1231. ((tx0_c & 0x3C0) >> 6));
  1232. rtl_set_bbreg(hw, ROFDM0_XATXIQIMBAL, 0x003F0000,
  1233. (tx0_c & 0x3F));
  1234. rtl_set_bbreg(hw, ROFDM0_ECCATHRES, BIT(29),
  1235. ((y * oldval_0 >> 7) & 0x1));
  1236. if (btxonly)
  1237. return;
  1238. reg = result[final][2];
  1239. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0x3FF, reg);
  1240. reg = result[final][3] & 0x3F;
  1241. rtl_set_bbreg(hw, ROFDM0_XARXIQIMBAL, 0xFC00, reg);
  1242. reg = (result[final][3] >> 6) & 0xF;
  1243. rtl_set_bbreg(hw, 0xca0, 0xF0000000, reg);
  1244. }
  1245. }
  1246. static void save_adda_reg(struct ieee80211_hw *hw,
  1247. const u32 *addareg, u32 *backup,
  1248. u32 registernum)
  1249. {
  1250. u32 i;
  1251. for (i = 0; i < registernum; i++)
  1252. backup[i] = rtl_get_bbreg(hw, addareg[i], MASKDWORD);
  1253. }
  1254. static void save_mac_reg(struct ieee80211_hw *hw, const u32 *macreg,
  1255. u32 *macbackup)
  1256. {
  1257. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1258. u32 i;
  1259. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1260. macbackup[i] = rtl_read_byte(rtlpriv, macreg[i]);
  1261. macbackup[i] = rtl_read_dword(rtlpriv, macreg[i]);
  1262. }
  1263. static void reload_adda(struct ieee80211_hw *hw, const u32 *addareg,
  1264. u32 *backup, u32 reg_num)
  1265. {
  1266. u32 i;
  1267. for (i = 0; i < reg_num; i++)
  1268. rtl_set_bbreg(hw, addareg[i], MASKDWORD, backup[i]);
  1269. }
  1270. static void reload_mac(struct ieee80211_hw *hw, const u32 *macreg,
  1271. u32 *macbackup)
  1272. {
  1273. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1274. u32 i;
  1275. for (i = 0; i < (IQK_MAC_REG_NUM - 1); i++)
  1276. rtl_write_byte(rtlpriv, macreg[i], (u8) macbackup[i]);
  1277. rtl_write_dword(rtlpriv, macreg[i], macbackup[i]);
  1278. }
  1279. static void _rtl88e_phy_path_adda_on(struct ieee80211_hw *hw,
  1280. const u32 *addareg, bool is_patha_on,
  1281. bool is2t)
  1282. {
  1283. u32 pathon;
  1284. u32 i;
  1285. pathon = is_patha_on ? 0x04db25a4 : 0x0b1b25a4;
  1286. if (false == is2t) {
  1287. pathon = 0x0bdb25a0;
  1288. rtl_set_bbreg(hw, addareg[0], MASKDWORD, 0x0b1b25a0);
  1289. } else {
  1290. rtl_set_bbreg(hw, addareg[0], MASKDWORD, pathon);
  1291. }
  1292. for (i = 1; i < IQK_ADDA_REG_NUM; i++)
  1293. rtl_set_bbreg(hw, addareg[i], MASKDWORD, pathon);
  1294. }
  1295. static void _rtl88e_phy_mac_setting_calibration(struct ieee80211_hw *hw,
  1296. const u32 *macreg,
  1297. u32 *macbackup)
  1298. {
  1299. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1300. u32 i = 0;
  1301. rtl_write_byte(rtlpriv, macreg[i], 0x3F);
  1302. for (i = 1; i < (IQK_MAC_REG_NUM - 1); i++)
  1303. rtl_write_byte(rtlpriv, macreg[i],
  1304. (u8) (macbackup[i] & (~BIT(3))));
  1305. rtl_write_byte(rtlpriv, macreg[i], (u8) (macbackup[i] & (~BIT(5))));
  1306. }
  1307. static void _rtl88e_phy_path_a_standby(struct ieee80211_hw *hw)
  1308. {
  1309. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x0);
  1310. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
  1311. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1312. }
  1313. static void _rtl88e_phy_pi_mode_switch(struct ieee80211_hw *hw, bool pi_mode)
  1314. {
  1315. u32 mode;
  1316. mode = pi_mode ? 0x01000100 : 0x01000000;
  1317. rtl_set_bbreg(hw, 0x820, MASKDWORD, mode);
  1318. rtl_set_bbreg(hw, 0x828, MASKDWORD, mode);
  1319. }
  1320. static bool sim_comp(struct ieee80211_hw *hw, long result[][8], u8 c1, u8 c2)
  1321. {
  1322. u32 i, j, diff, bitmap, bound;
  1323. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1324. u8 final[2] = {0xFF, 0xFF};
  1325. bool bresult = true, is2t = IS_92C_SERIAL(rtlhal->version);
  1326. if (is2t)
  1327. bound = 8;
  1328. else
  1329. bound = 4;
  1330. bitmap = 0;
  1331. for (i = 0; i < bound; i++) {
  1332. diff = (result[c1][i] > result[c2][i]) ?
  1333. (result[c1][i] - result[c2][i]) :
  1334. (result[c2][i] - result[c1][i]);
  1335. if (diff > MAX_TOLERANCE) {
  1336. if ((i == 2 || i == 6) && !bitmap) {
  1337. if (result[c1][i] + result[c1][i + 1] == 0)
  1338. final[(i / 4)] = c2;
  1339. else if (result[c2][i] + result[c2][i + 1] == 0)
  1340. final[(i / 4)] = c1;
  1341. else
  1342. bitmap = bitmap | (1 << i);
  1343. } else {
  1344. bitmap = bitmap | (1 << i);
  1345. }
  1346. }
  1347. }
  1348. if (bitmap == 0) {
  1349. for (i = 0; i < (bound / 4); i++) {
  1350. if (final[i] != 0xFF) {
  1351. for (j = i * 4; j < (i + 1) * 4 - 2; j++)
  1352. result[3][j] = result[final[i]][j];
  1353. bresult = false;
  1354. }
  1355. }
  1356. return bresult;
  1357. } else if (!(bitmap & 0x0F)) {
  1358. for (i = 0; i < 4; i++)
  1359. result[3][i] = result[c1][i];
  1360. return false;
  1361. } else if (!(bitmap & 0xF0) && is2t) {
  1362. for (i = 4; i < 8; i++)
  1363. result[3][i] = result[c1][i];
  1364. return false;
  1365. } else {
  1366. return false;
  1367. }
  1368. }
  1369. static void _rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw,
  1370. long result[][8], u8 t, bool is2t)
  1371. {
  1372. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1373. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1374. u32 i;
  1375. u8 patha_ok, pathb_ok;
  1376. const u32 adda_reg[IQK_ADDA_REG_NUM] = {
  1377. 0x85c, 0xe6c, 0xe70, 0xe74,
  1378. 0xe78, 0xe7c, 0xe80, 0xe84,
  1379. 0xe88, 0xe8c, 0xed0, 0xed4,
  1380. 0xed8, 0xedc, 0xee0, 0xeec
  1381. };
  1382. const u32 iqk_mac_reg[IQK_MAC_REG_NUM] = {
  1383. 0x522, 0x550, 0x551, 0x040
  1384. };
  1385. const u32 iqk_bb_reg[IQK_BB_REG_NUM] = {
  1386. ROFDM0_TRXPATHENABLE, ROFDM0_TRMUXPAR, RFPGA0_XCD_RFINTERFACESW,
  1387. 0xb68, 0xb6c, 0x870, 0x860, 0x864, 0x800
  1388. };
  1389. const u32 retrycount = 2;
  1390. if (t == 0) {
  1391. save_adda_reg(hw, adda_reg, rtlphy->adda_backup, 16);
  1392. save_mac_reg(hw, iqk_mac_reg, rtlphy->iqk_mac_backup);
  1393. save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup,
  1394. IQK_BB_REG_NUM);
  1395. }
  1396. _rtl88e_phy_path_adda_on(hw, adda_reg, true, is2t);
  1397. if (t == 0) {
  1398. rtlphy->rfpi_enable = (u8) rtl_get_bbreg(hw,
  1399. RFPGA0_XA_HSSIPARAMETER1, BIT(8));
  1400. }
  1401. if (!rtlphy->rfpi_enable)
  1402. _rtl88e_phy_pi_mode_switch(hw, true);
  1403. /*BB Setting*/
  1404. rtl_set_bbreg(hw, 0x800, BIT(24), 0x00);
  1405. rtl_set_bbreg(hw, 0xc04, MASKDWORD, 0x03a05600);
  1406. rtl_set_bbreg(hw, 0xc08, MASKDWORD, 0x000800e4);
  1407. rtl_set_bbreg(hw, 0x874, MASKDWORD, 0x22204000);
  1408. rtl_set_bbreg(hw, 0x870, BIT(10), 0x01);
  1409. rtl_set_bbreg(hw, 0x870, BIT(26), 0x01);
  1410. rtl_set_bbreg(hw, 0x860, BIT(10), 0x00);
  1411. rtl_set_bbreg(hw, 0x864, BIT(10), 0x00);
  1412. if (is2t) {
  1413. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00010000);
  1414. rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00010000);
  1415. }
  1416. _rtl88e_phy_mac_setting_calibration(hw, iqk_mac_reg,
  1417. rtlphy->iqk_mac_backup);
  1418. rtl_set_bbreg(hw, 0xb68, MASKDWORD, 0x0f600000);
  1419. if (is2t)
  1420. rtl_set_bbreg(hw, 0xb6c, MASKDWORD, 0x0f600000);
  1421. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0x80800000);
  1422. rtl_set_bbreg(hw, 0xe40, MASKDWORD, 0x01007c00);
  1423. rtl_set_bbreg(hw, 0xe44, MASKDWORD, 0x81004800);
  1424. for (i = 0; i < retrycount; i++) {
  1425. patha_ok = _rtl88e_phy_path_a_iqk(hw, is2t);
  1426. if (patha_ok == 0x01) {
  1427. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1428. "Path A Tx IQK Success!!\n");
  1429. result[t][0] = (rtl_get_bbreg(hw, 0xe94, MASKDWORD) &
  1430. 0x3FF0000) >> 16;
  1431. result[t][1] = (rtl_get_bbreg(hw, 0xe9c, MASKDWORD) &
  1432. 0x3FF0000) >> 16;
  1433. break;
  1434. }
  1435. }
  1436. for (i = 0; i < retrycount; i++) {
  1437. patha_ok = _rtl88e_phy_path_a_rx_iqk(hw, is2t);
  1438. if (patha_ok == 0x03) {
  1439. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1440. "Path A Rx IQK Success!!\n");
  1441. result[t][2] = (rtl_get_bbreg(hw, 0xea4, MASKDWORD) &
  1442. 0x3FF0000) >> 16;
  1443. result[t][3] = (rtl_get_bbreg(hw, 0xeac, MASKDWORD) &
  1444. 0x3FF0000) >> 16;
  1445. break;
  1446. } else {
  1447. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1448. "Path a RX iqk fail!!!\n");
  1449. }
  1450. }
  1451. if (0 == patha_ok) {
  1452. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1453. "Path A IQK Success!!\n");
  1454. }
  1455. if (is2t) {
  1456. _rtl88e_phy_path_a_standby(hw);
  1457. _rtl88e_phy_path_adda_on(hw, adda_reg, false, is2t);
  1458. for (i = 0; i < retrycount; i++) {
  1459. pathb_ok = _rtl88e_phy_path_b_iqk(hw);
  1460. if (pathb_ok == 0x03) {
  1461. result[t][4] = (rtl_get_bbreg(hw,
  1462. 0xeb4, MASKDWORD) &
  1463. 0x3FF0000) >> 16;
  1464. result[t][5] =
  1465. (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1466. 0x3FF0000) >> 16;
  1467. result[t][6] =
  1468. (rtl_get_bbreg(hw, 0xec4, MASKDWORD) &
  1469. 0x3FF0000) >> 16;
  1470. result[t][7] =
  1471. (rtl_get_bbreg(hw, 0xecc, MASKDWORD) &
  1472. 0x3FF0000) >> 16;
  1473. break;
  1474. } else if (i == (retrycount - 1) && pathb_ok == 0x01) {
  1475. result[t][4] = (rtl_get_bbreg(hw,
  1476. 0xeb4, MASKDWORD) &
  1477. 0x3FF0000) >> 16;
  1478. }
  1479. result[t][5] = (rtl_get_bbreg(hw, 0xebc, MASKDWORD) &
  1480. 0x3FF0000) >> 16;
  1481. }
  1482. }
  1483. rtl_set_bbreg(hw, 0xe28, MASKDWORD, 0);
  1484. if (t != 0) {
  1485. if (!rtlphy->rfpi_enable)
  1486. _rtl88e_phy_pi_mode_switch(hw, false);
  1487. reload_adda(hw, adda_reg, rtlphy->adda_backup, 16);
  1488. reload_mac(hw, iqk_mac_reg, rtlphy->iqk_mac_backup);
  1489. reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup,
  1490. IQK_BB_REG_NUM);
  1491. rtl_set_bbreg(hw, 0x840, MASKDWORD, 0x00032ed3);
  1492. if (is2t)
  1493. rtl_set_bbreg(hw, 0x844, MASKDWORD, 0x00032ed3);
  1494. rtl_set_bbreg(hw, 0xe30, MASKDWORD, 0x01008c00);
  1495. rtl_set_bbreg(hw, 0xe34, MASKDWORD, 0x01008c00);
  1496. }
  1497. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "88ee IQK Finish!!\n");
  1498. }
  1499. static void _rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw, bool is2t)
  1500. {
  1501. u8 tmpreg;
  1502. u32 rf_a_mode = 0, rf_b_mode = 0, lc_cal;
  1503. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1504. int jj = RF90_PATH_A;
  1505. int kk = RF90_PATH_B;
  1506. tmpreg = rtl_read_byte(rtlpriv, 0xd03);
  1507. if ((tmpreg & 0x70) != 0)
  1508. rtl_write_byte(rtlpriv, 0xd03, tmpreg & 0x8F);
  1509. else
  1510. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1511. if ((tmpreg & 0x70) != 0) {
  1512. rf_a_mode = rtl_get_rfreg(hw, jj, 0x00, MASK12BITS);
  1513. if (is2t)
  1514. rf_b_mode = rtl_get_rfreg(hw, kk, 0x00,
  1515. MASK12BITS);
  1516. rtl_set_rfreg(hw, jj, 0x00, MASK12BITS,
  1517. (rf_a_mode & 0x8FFFF) | 0x10000);
  1518. if (is2t)
  1519. rtl_set_rfreg(hw, kk, 0x00, MASK12BITS,
  1520. (rf_b_mode & 0x8FFFF) | 0x10000);
  1521. }
  1522. lc_cal = rtl_get_rfreg(hw, jj, 0x18, MASK12BITS);
  1523. rtl_set_rfreg(hw, jj, 0x18, MASK12BITS, lc_cal | 0x08000);
  1524. mdelay(100);
  1525. if ((tmpreg & 0x70) != 0) {
  1526. rtl_write_byte(rtlpriv, 0xd03, tmpreg);
  1527. rtl_set_rfreg(hw, jj, 0x00, MASK12BITS, rf_a_mode);
  1528. if (is2t)
  1529. rtl_set_rfreg(hw, kk, 0x00, MASK12BITS,
  1530. rf_b_mode);
  1531. } else {
  1532. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  1533. }
  1534. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
  1535. }
  1536. static void rfpath_switch(struct ieee80211_hw *hw,
  1537. bool bmain, bool is2t)
  1538. {
  1539. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1540. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1541. struct rtl_efuse *fuse = rtl_efuse(rtl_priv(hw));
  1542. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "\n");
  1543. if (is_hal_stop(rtlhal)) {
  1544. u8 u1btmp;
  1545. u1btmp = rtl_read_byte(rtlpriv, REG_LEDCFG0);
  1546. rtl_write_byte(rtlpriv, REG_LEDCFG0, u1btmp | BIT(7));
  1547. rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1548. }
  1549. if (is2t) {
  1550. if (bmain)
  1551. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1552. BIT(5) | BIT(6), 0x1);
  1553. else
  1554. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE,
  1555. BIT(5) | BIT(6), 0x2);
  1556. } else {
  1557. rtl_set_bbreg(hw, RFPGA0_XAB_RFINTERFACESW, BIT(8) | BIT(9), 0);
  1558. rtl_set_bbreg(hw, 0x914, MASKLWORD, 0x0201);
  1559. /* We use the RF definition of MAIN and AUX, left antenna and
  1560. * right antenna repectively.
  1561. * Default output at AUX.
  1562. */
  1563. if (bmain) {
  1564. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) |
  1565. BIT(13) | BIT(12), 0);
  1566. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) |
  1567. BIT(4) | BIT(3), 0);
  1568. if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1569. rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 0);
  1570. } else {
  1571. rtl_set_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, BIT(14) |
  1572. BIT(13) | BIT(12), 1);
  1573. rtl_set_bbreg(hw, RFPGA0_XB_RFINTERFACEOE, BIT(5) |
  1574. BIT(4) | BIT(3), 1);
  1575. if (fuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1576. rtl_set_bbreg(hw, RCONFIG_RAM64X16, BIT(31), 1);
  1577. }
  1578. }
  1579. }
  1580. #undef IQK_ADDA_REG_NUM
  1581. #undef IQK_DELAY_TIME
  1582. void rtl88e_phy_iq_calibrate(struct ieee80211_hw *hw, bool recovery)
  1583. {
  1584. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1585. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1586. long result[4][8];
  1587. u8 i, final;
  1588. bool patha_ok;
  1589. long reg_e94, reg_e9c, reg_ea4, reg_eb4, reg_ebc, reg_tmp = 0;
  1590. bool is12simular, is13simular, is23simular;
  1591. u32 iqk_bb_reg[9] = {
  1592. ROFDM0_XARXIQIMBAL,
  1593. ROFDM0_XBRXIQIMBAL,
  1594. ROFDM0_ECCATHRES,
  1595. ROFDM0_AGCRSSITABLE,
  1596. ROFDM0_XATXIQIMBAL,
  1597. ROFDM0_XBTXIQIMBAL,
  1598. ROFDM0_XCTXAFE,
  1599. ROFDM0_XDTXAFE,
  1600. ROFDM0_RXIQEXTANTA
  1601. };
  1602. if (recovery) {
  1603. reload_adda(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9);
  1604. return;
  1605. }
  1606. memset(result, 0, 32 * sizeof(long));
  1607. final = 0xff;
  1608. patha_ok = false;
  1609. is12simular = false;
  1610. is23simular = false;
  1611. is13simular = false;
  1612. for (i = 0; i < 3; i++) {
  1613. if (get_rf_type(rtlphy) == RF_2T2R)
  1614. _rtl88e_phy_iq_calibrate(hw, result, i, true);
  1615. else
  1616. _rtl88e_phy_iq_calibrate(hw, result, i, false);
  1617. if (i == 1) {
  1618. is12simular = sim_comp(hw, result, 0, 1);
  1619. if (is12simular) {
  1620. final = 0;
  1621. break;
  1622. }
  1623. }
  1624. if (i == 2) {
  1625. is13simular = sim_comp(hw, result, 0, 2);
  1626. if (is13simular) {
  1627. final = 0;
  1628. break;
  1629. }
  1630. is23simular = sim_comp(hw, result, 1, 2);
  1631. if (is23simular) {
  1632. final = 1;
  1633. } else {
  1634. for (i = 0; i < 8; i++)
  1635. reg_tmp += result[3][i];
  1636. if (reg_tmp != 0)
  1637. final = 3;
  1638. else
  1639. final = 0xFF;
  1640. }
  1641. }
  1642. }
  1643. for (i = 0; i < 4; i++) {
  1644. reg_e94 = result[i][0];
  1645. reg_e9c = result[i][1];
  1646. reg_ea4 = result[i][2];
  1647. reg_eb4 = result[i][4];
  1648. reg_ebc = result[i][5];
  1649. }
  1650. if (final != 0xff) {
  1651. reg_e94 = result[final][0];
  1652. rtlphy->reg_e94 = reg_e94;
  1653. reg_e9c = result[final][1];
  1654. rtlphy->reg_e9c = reg_e9c;
  1655. reg_ea4 = result[final][2];
  1656. reg_eb4 = result[final][4];
  1657. rtlphy->reg_eb4 = reg_eb4;
  1658. reg_ebc = result[final][5];
  1659. rtlphy->reg_ebc = reg_ebc;
  1660. patha_ok = true;
  1661. } else {
  1662. rtlphy->reg_e94 = 0x100;
  1663. rtlphy->reg_eb4 = 0x100;
  1664. rtlphy->reg_ebc = 0x0;
  1665. rtlphy->reg_e9c = 0x0;
  1666. }
  1667. if (reg_e94 != 0) /*&&(reg_ea4 != 0) */
  1668. fill_iqk(hw, patha_ok, result, final, (reg_ea4 == 0));
  1669. if (final != 0xFF) {
  1670. for (i = 0; i < IQK_MATRIX_REG_NUM; i++)
  1671. rtlphy->iqk_matrix[0].value[0][i] = result[final][i];
  1672. rtlphy->iqk_matrix[0].iqk_done = true;
  1673. }
  1674. save_adda_reg(hw, iqk_bb_reg, rtlphy->iqk_bb_backup, 9);
  1675. }
  1676. void rtl88e_phy_lc_calibrate(struct ieee80211_hw *hw)
  1677. {
  1678. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1679. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1680. struct rtl_hal *rtlhal = &(rtlpriv->rtlhal);
  1681. bool start_conttx = false, singletone = false;
  1682. u32 timeout = 2000, timecount = 0;
  1683. if (start_conttx || singletone)
  1684. return;
  1685. while (rtlpriv->mac80211.act_scanning && timecount < timeout) {
  1686. udelay(50);
  1687. timecount += 50;
  1688. }
  1689. rtlphy->lck_inprogress = true;
  1690. RTPRINT(rtlpriv, FINIT, INIT_IQK,
  1691. "LCK:Start!!! currentband %x delay %d ms\n",
  1692. rtlhal->current_bandtype, timecount);
  1693. _rtl88e_phy_lc_calibrate(hw, false);
  1694. rtlphy->lck_inprogress = false;
  1695. }
  1696. void rtl88e_phy_set_rfpath_switch(struct ieee80211_hw *hw, bool bmain)
  1697. {
  1698. rfpath_switch(hw, bmain, false);
  1699. }
  1700. bool rtl88e_phy_set_io_cmd(struct ieee80211_hw *hw, enum io_type iotype)
  1701. {
  1702. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1703. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1704. bool postprocessing = false;
  1705. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1706. "-->IO Cmd(%#x), set_io_inprogress(%d)\n",
  1707. iotype, rtlphy->set_io_inprogress);
  1708. do {
  1709. switch (iotype) {
  1710. case IO_CMD_RESUME_DM_BY_SCAN:
  1711. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1712. "[IO CMD] Resume DM after scan.\n");
  1713. postprocessing = true;
  1714. break;
  1715. case IO_CMD_PAUSE_DM_BY_SCAN:
  1716. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE,
  1717. "[IO CMD] Pause DM before scan.\n");
  1718. postprocessing = true;
  1719. break;
  1720. default:
  1721. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1722. "switch case not processed\n");
  1723. break;
  1724. }
  1725. } while (false);
  1726. if (postprocessing && !rtlphy->set_io_inprogress) {
  1727. rtlphy->set_io_inprogress = true;
  1728. rtlphy->current_io_type = iotype;
  1729. } else {
  1730. return false;
  1731. }
  1732. rtl88e_phy_set_io(hw);
  1733. RT_TRACE(rtlpriv, COMP_CMD, DBG_TRACE, "IO Type(%#x)\n", iotype);
  1734. return true;
  1735. }
  1736. static void rtl88ee_phy_set_rf_on(struct ieee80211_hw *hw)
  1737. {
  1738. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1739. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  1740. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  1741. /*rtl_write_byte(rtlpriv, REG_APSD_CTRL, 0x00);*/
  1742. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1743. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE3);
  1744. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0x00);
  1745. }
  1746. static void _rtl88ee_phy_set_rf_sleep(struct ieee80211_hw *hw)
  1747. {
  1748. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1749. int jj = RF90_PATH_A;
  1750. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1751. rtl_set_rfreg(hw, jj, 0x00, RFREG_OFFSET_MASK, 0x00);
  1752. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, 0xE2);
  1753. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x22);
  1754. }
  1755. static bool _rtl88ee_phy_set_rf_power_state(struct ieee80211_hw *hw,
  1756. enum rf_pwrstate rfpwr_state)
  1757. {
  1758. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1759. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1760. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1761. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1762. struct rtl8192_tx_ring *ring = NULL;
  1763. bool bresult = true;
  1764. u8 i, queue_id;
  1765. switch (rfpwr_state) {
  1766. case ERFON:{
  1767. if ((ppsc->rfpwr_state == ERFOFF) &&
  1768. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
  1769. bool rtstatus;
  1770. u32 init = 0;
  1771. do {
  1772. init++;
  1773. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1774. "IPS Set eRf nic enable\n");
  1775. rtstatus = rtl_ps_enable_nic(hw);
  1776. } while ((rtstatus != true) && (init < 10));
  1777. RT_CLEAR_PS_LEVEL(ppsc,
  1778. RT_RF_OFF_LEVL_HALT_NIC);
  1779. } else {
  1780. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1781. "Set ERFON sleeped:%d ms\n",
  1782. jiffies_to_msecs(jiffies - ppsc->
  1783. last_sleep_jiffies));
  1784. ppsc->last_awake_jiffies = jiffies;
  1785. rtl88ee_phy_set_rf_on(hw);
  1786. }
  1787. if (mac->link_state == MAC80211_LINKED)
  1788. rtlpriv->cfg->ops->led_control(hw, LED_CTL_LINK);
  1789. else
  1790. rtlpriv->cfg->ops->led_control(hw, LED_CTL_NO_LINK);
  1791. break; }
  1792. case ERFOFF:{
  1793. for (queue_id = 0, i = 0;
  1794. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  1795. ring = &pcipriv->dev.tx_ring[queue_id];
  1796. if (skb_queue_len(&ring->queue) == 0) {
  1797. queue_id++;
  1798. continue;
  1799. } else {
  1800. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1801. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  1802. (i + 1), queue_id,
  1803. skb_queue_len(&ring->queue));
  1804. udelay(10);
  1805. i++;
  1806. }
  1807. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  1808. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1809. "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
  1810. MAX_DOZE_WAITING_TIMES_9x,
  1811. queue_id,
  1812. skb_queue_len(&ring->queue));
  1813. break;
  1814. }
  1815. }
  1816. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC) {
  1817. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1818. "IPS Set eRf nic disable\n");
  1819. rtl_ps_disable_nic(hw);
  1820. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1821. } else {
  1822. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS) {
  1823. rtlpriv->cfg->ops->led_control(hw,
  1824. LED_CTL_NO_LINK);
  1825. } else {
  1826. rtlpriv->cfg->ops->led_control(hw,
  1827. LED_CTL_POWER_OFF);
  1828. }
  1829. }
  1830. break; }
  1831. case ERFSLEEP:{
  1832. if (ppsc->rfpwr_state == ERFOFF)
  1833. break;
  1834. for (queue_id = 0, i = 0;
  1835. queue_id < RTL_PCI_MAX_TX_QUEUE_COUNT;) {
  1836. ring = &pcipriv->dev.tx_ring[queue_id];
  1837. if (skb_queue_len(&ring->queue) == 0) {
  1838. queue_id++;
  1839. continue;
  1840. } else {
  1841. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1842. "eRf Off/Sleep: %d times TcbBusyQueue[%d] =%d before doze!\n",
  1843. (i + 1), queue_id,
  1844. skb_queue_len(&ring->queue));
  1845. udelay(10);
  1846. i++;
  1847. }
  1848. if (i >= MAX_DOZE_WAITING_TIMES_9x) {
  1849. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1850. "\n ERFSLEEP: %d times TcbBusyQueue[%d] = %d !\n",
  1851. MAX_DOZE_WAITING_TIMES_9x,
  1852. queue_id,
  1853. skb_queue_len(&ring->queue));
  1854. break;
  1855. }
  1856. }
  1857. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1858. "Set ERFSLEEP awaked:%d ms\n",
  1859. jiffies_to_msecs(jiffies - ppsc->last_awake_jiffies));
  1860. ppsc->last_sleep_jiffies = jiffies;
  1861. _rtl88ee_phy_set_rf_sleep(hw);
  1862. break; }
  1863. default:
  1864. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1865. "switch case not processed\n");
  1866. bresult = false;
  1867. break;
  1868. }
  1869. if (bresult)
  1870. ppsc->rfpwr_state = rfpwr_state;
  1871. return bresult;
  1872. }
  1873. bool rtl88e_phy_set_rf_power_state(struct ieee80211_hw *hw,
  1874. enum rf_pwrstate rfpwr_state)
  1875. {
  1876. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1877. bool bresult;
  1878. if (rfpwr_state == ppsc->rfpwr_state)
  1879. return false;
  1880. bresult = _rtl88ee_phy_set_rf_power_state(hw, rfpwr_state);
  1881. return bresult;
  1882. }