hw.c 70 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2013 Realtek Corporation.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../regd.h"
  33. #include "../cam.h"
  34. #include "../ps.h"
  35. #include "../pci.h"
  36. #include "reg.h"
  37. #include "def.h"
  38. #include "phy.h"
  39. #include "dm.h"
  40. #include "fw.h"
  41. #include "led.h"
  42. #include "hw.h"
  43. #include "pwrseq.h"
  44. #define LLT_CONFIG 5
  45. static void _rtl88ee_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  46. u8 set_bits, u8 clear_bits)
  47. {
  48. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  49. struct rtl_priv *rtlpriv = rtl_priv(hw);
  50. rtlpci->reg_bcn_ctrl_val |= set_bits;
  51. rtlpci->reg_bcn_ctrl_val &= ~clear_bits;
  52. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  53. }
  54. static void _rtl88ee_stop_tx_beacon(struct ieee80211_hw *hw)
  55. {
  56. struct rtl_priv *rtlpriv = rtl_priv(hw);
  57. u8 tmp1byte;
  58. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  59. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte & (~BIT(6)));
  60. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  61. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  62. tmp1byte &= ~(BIT(0));
  63. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  64. }
  65. static void _rtl88ee_resume_tx_beacon(struct ieee80211_hw *hw)
  66. {
  67. struct rtl_priv *rtlpriv = rtl_priv(hw);
  68. u8 tmp1byte;
  69. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  70. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2, tmp1byte | BIT(6));
  71. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  72. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  73. tmp1byte |= BIT(0);
  74. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  75. }
  76. static void _rtl88ee_enable_bcn_sub_func(struct ieee80211_hw *hw)
  77. {
  78. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(1));
  79. }
  80. static void _rtl88ee_return_beacon_queue_skb(struct ieee80211_hw *hw)
  81. {
  82. struct rtl_priv *rtlpriv = rtl_priv(hw);
  83. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  84. struct rtl8192_tx_ring *ring = &rtlpci->tx_ring[BEACON_QUEUE];
  85. while (skb_queue_len(&ring->queue)) {
  86. struct rtl_tx_desc *entry = &ring->desc[ring->idx];
  87. struct sk_buff *skb = __skb_dequeue(&ring->queue);
  88. pci_unmap_single(rtlpci->pdev,
  89. rtlpriv->cfg->ops->get_desc(
  90. (u8 *)entry, true, HW_DESC_TXBUFF_ADDR),
  91. skb->len, PCI_DMA_TODEVICE);
  92. kfree_skb(skb);
  93. ring->idx = (ring->idx + 1) % ring->entries;
  94. }
  95. }
  96. static void _rtl88ee_disable_bcn_sub_func(struct ieee80211_hw *hw)
  97. {
  98. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(1), 0);
  99. }
  100. static void _rtl88ee_set_fw_clock_on(struct ieee80211_hw *hw,
  101. u8 rpwm_val, bool need_turn_off_ckk)
  102. {
  103. struct rtl_priv *rtlpriv = rtl_priv(hw);
  104. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  105. bool support_remote_wake_up;
  106. u32 count = 0, isr_regaddr, content;
  107. bool schedule_timer = need_turn_off_ckk;
  108. rtlpriv->cfg->ops->get_hw_reg(hw, HAL_DEF_WOWLAN,
  109. (u8 *)(&support_remote_wake_up));
  110. if (!rtlhal->fw_ready)
  111. return;
  112. if (!rtlpriv->psc.fw_current_inpsmode)
  113. return;
  114. while (1) {
  115. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  116. if (rtlhal->fw_clk_change_in_progress) {
  117. while (rtlhal->fw_clk_change_in_progress) {
  118. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  119. udelay(100);
  120. if (++count > 1000)
  121. return;
  122. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  123. }
  124. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  125. } else {
  126. rtlhal->fw_clk_change_in_progress = false;
  127. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  128. break;
  129. }
  130. }
  131. if (IS_IN_LOW_POWER_STATE_88E(rtlhal->fw_ps_state)) {
  132. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
  133. if (FW_PS_IS_ACK(rpwm_val)) {
  134. isr_regaddr = REG_HISR;
  135. content = rtl_read_dword(rtlpriv, isr_regaddr);
  136. while (!(content & IMR_CPWM) && (count < 500)) {
  137. udelay(50);
  138. count++;
  139. content = rtl_read_dword(rtlpriv, isr_regaddr);
  140. }
  141. if (content & IMR_CPWM) {
  142. rtl_write_word(rtlpriv, isr_regaddr, 0x0100);
  143. rtlhal->fw_ps_state = FW_PS_STATE_RF_ON_88E;
  144. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD,
  145. "Receive CPWM INT!!! Set pHalData->FwPSState = %X\n",
  146. rtlhal->fw_ps_state);
  147. }
  148. }
  149. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  150. rtlhal->fw_clk_change_in_progress = false;
  151. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  152. if (schedule_timer) {
  153. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  154. jiffies + MSECS(10));
  155. }
  156. } else {
  157. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  158. rtlhal->fw_clk_change_in_progress = false;
  159. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  160. }
  161. }
  162. static void _rtl88ee_set_fw_clock_off(struct ieee80211_hw *hw,
  163. u8 rpwm_val)
  164. {
  165. struct rtl_priv *rtlpriv = rtl_priv(hw);
  166. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  167. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  168. struct rtl8192_tx_ring *ring;
  169. enum rf_pwrstate rtstate;
  170. bool schedule_timer = false;
  171. u8 queue;
  172. if (!rtlhal->fw_ready)
  173. return;
  174. if (!rtlpriv->psc.fw_current_inpsmode)
  175. return;
  176. if (!rtlhal->allow_sw_to_change_hwclc)
  177. return;
  178. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE, (u8 *)(&rtstate));
  179. if (rtstate == ERFOFF || rtlpriv->psc.inactive_pwrstate == ERFOFF)
  180. return;
  181. for (queue = 0; queue < RTL_PCI_MAX_TX_QUEUE_COUNT; queue++) {
  182. ring = &rtlpci->tx_ring[queue];
  183. if (skb_queue_len(&ring->queue)) {
  184. schedule_timer = true;
  185. break;
  186. }
  187. }
  188. if (schedule_timer) {
  189. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  190. jiffies + MSECS(10));
  191. return;
  192. }
  193. if (FW_PS_STATE(rtlhal->fw_ps_state) !=
  194. FW_PS_STATE_RF_OFF_LOW_PWR_88E) {
  195. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  196. if (!rtlhal->fw_clk_change_in_progress) {
  197. rtlhal->fw_clk_change_in_progress = true;
  198. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  199. rtlhal->fw_ps_state = FW_PS_STATE(rpwm_val);
  200. rtl_write_word(rtlpriv, REG_HISR, 0x0100);
  201. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
  202. &rpwm_val);
  203. spin_lock_bh(&rtlpriv->locks.fw_ps_lock);
  204. rtlhal->fw_clk_change_in_progress = false;
  205. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  206. } else {
  207. spin_unlock_bh(&rtlpriv->locks.fw_ps_lock);
  208. mod_timer(&rtlpriv->works.fw_clockoff_timer,
  209. jiffies + MSECS(10));
  210. }
  211. }
  212. }
  213. static void _rtl88ee_set_fw_ps_rf_on(struct ieee80211_hw *hw)
  214. {
  215. u8 rpwm_val = 0;
  216. rpwm_val |= (FW_PS_STATE_RF_OFF_88E | FW_PS_ACK);
  217. _rtl88ee_set_fw_clock_on(hw, rpwm_val, true);
  218. }
  219. static void _rtl88ee_set_fw_ps_rf_off_low_power(struct ieee80211_hw *hw)
  220. {
  221. u8 rpwm_val = 0;
  222. rpwm_val |= FW_PS_STATE_RF_OFF_LOW_PWR_88E;
  223. _rtl88ee_set_fw_clock_off(hw, rpwm_val);
  224. }
  225. void rtl88ee_fw_clk_off_timer_callback(unsigned long data)
  226. {
  227. struct ieee80211_hw *hw = (struct ieee80211_hw *)data;
  228. _rtl88ee_set_fw_ps_rf_off_low_power(hw);
  229. }
  230. static void _rtl88ee_fwlps_leave(struct ieee80211_hw *hw)
  231. {
  232. struct rtl_priv *rtlpriv = rtl_priv(hw);
  233. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  234. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  235. bool fw_current_inps = false;
  236. u8 rpwm_val = 0, fw_pwrmode = FW_PS_ACTIVE_MODE;
  237. if (ppsc->low_power_enable) {
  238. rpwm_val = (FW_PS_STATE_ALL_ON_88E|FW_PS_ACK);/* RF on */
  239. _rtl88ee_set_fw_clock_on(hw, rpwm_val, false);
  240. rtlhal->allow_sw_to_change_hwclc = false;
  241. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  242. &fw_pwrmode);
  243. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  244. (u8 *)(&fw_current_inps));
  245. } else {
  246. rpwm_val = FW_PS_STATE_ALL_ON_88E; /* RF on */
  247. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
  248. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  249. &fw_pwrmode);
  250. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  251. (u8 *)(&fw_current_inps));
  252. }
  253. }
  254. static void _rtl88ee_fwlps_enter(struct ieee80211_hw *hw)
  255. {
  256. struct rtl_priv *rtlpriv = rtl_priv(hw);
  257. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  258. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  259. bool fw_current_inps = true;
  260. u8 rpwm_val;
  261. if (ppsc->low_power_enable) {
  262. rpwm_val = FW_PS_STATE_RF_OFF_LOW_PWR_88E; /* RF off */
  263. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  264. (u8 *)(&fw_current_inps));
  265. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  266. &ppsc->fwctrl_psmode);
  267. rtlhal->allow_sw_to_change_hwclc = true;
  268. _rtl88ee_set_fw_clock_off(hw, rpwm_val);
  269. } else {
  270. rpwm_val = FW_PS_STATE_RF_OFF_88E; /* RF off */
  271. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_FW_PSMODE_STATUS,
  272. (u8 *)(&fw_current_inps));
  273. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
  274. &ppsc->fwctrl_psmode);
  275. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM, &rpwm_val);
  276. }
  277. }
  278. void rtl88ee_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  279. {
  280. struct rtl_priv *rtlpriv = rtl_priv(hw);
  281. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  282. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  283. switch (variable) {
  284. case HW_VAR_RCR:
  285. *((u32 *)(val)) = rtlpci->receive_config;
  286. break;
  287. case HW_VAR_RF_STATE:
  288. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  289. break;
  290. case HW_VAR_FWLPS_RF_ON:{
  291. enum rf_pwrstate rfstate;
  292. u32 val_rcr;
  293. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  294. (u8 *)(&rfstate));
  295. if (rfstate == ERFOFF) {
  296. *((bool *)(val)) = true;
  297. } else {
  298. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  299. val_rcr &= 0x00070000;
  300. if (val_rcr)
  301. *((bool *)(val)) = false;
  302. else
  303. *((bool *)(val)) = true;
  304. }
  305. break;
  306. }
  307. case HW_VAR_FW_PSMODE_STATUS:
  308. *((bool *)(val)) = ppsc->fw_current_inpsmode;
  309. break;
  310. case HW_VAR_CORRECT_TSF:{
  311. u64 tsf;
  312. u32 *ptsf_low = (u32 *)&tsf;
  313. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  314. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  315. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  316. *((u64 *)(val)) = tsf;
  317. break; }
  318. default:
  319. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  320. "switch case not process %x\n", variable);
  321. break;
  322. }
  323. }
  324. void rtl88ee_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  325. {
  326. struct rtl_priv *rtlpriv = rtl_priv(hw);
  327. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  328. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  329. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  330. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  331. u8 idx;
  332. switch (variable) {
  333. case HW_VAR_ETHER_ADDR:
  334. for (idx = 0; idx < ETH_ALEN; idx++)
  335. rtl_write_byte(rtlpriv, (REG_MACID + idx), val[idx]);
  336. break;
  337. case HW_VAR_BASIC_RATE:{
  338. u16 rate_cfg = ((u16 *)val)[0];
  339. u8 rate_index = 0;
  340. rate_cfg = rate_cfg & 0x15f;
  341. rate_cfg |= 0x01;
  342. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  343. rtl_write_byte(rtlpriv, REG_RRSR + 1, (rate_cfg >> 8) & 0xff);
  344. while (rate_cfg > 0x1) {
  345. rate_cfg = (rate_cfg >> 1);
  346. rate_index++;
  347. }
  348. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL, rate_index);
  349. break; }
  350. case HW_VAR_BSSID:
  351. for (idx = 0; idx < ETH_ALEN; idx++)
  352. rtl_write_byte(rtlpriv, (REG_BSSID + idx), val[idx]);
  353. break;
  354. case HW_VAR_SIFS:
  355. rtl_write_byte(rtlpriv, REG_SIFS_CTX + 1, val[0]);
  356. rtl_write_byte(rtlpriv, REG_SIFS_TRX + 1, val[1]);
  357. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  358. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  359. if (!mac->ht_enable)
  360. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM, 0x0e0e);
  361. else
  362. rtl_write_word(rtlpriv, REG_RESP_SIFS_OFDM,
  363. *((u16 *)val));
  364. break;
  365. case HW_VAR_SLOT_TIME:{
  366. u8 e_aci;
  367. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  368. "HW_VAR_SLOT_TIME %x\n", val[0]);
  369. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  370. for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
  371. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM,
  372. &e_aci);
  373. }
  374. break; }
  375. case HW_VAR_ACK_PREAMBLE:{
  376. u8 reg_tmp;
  377. u8 short_preamble = (bool)*val;
  378. reg_tmp = rtl_read_byte(rtlpriv, REG_TRXPTCL_CTL+2);
  379. if (short_preamble) {
  380. reg_tmp |= 0x02;
  381. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  382. } else {
  383. reg_tmp |= 0xFD;
  384. rtl_write_byte(rtlpriv, REG_TRXPTCL_CTL + 2, reg_tmp);
  385. }
  386. break; }
  387. case HW_VAR_WPA_CONFIG:
  388. rtl_write_byte(rtlpriv, REG_SECCFG, *val);
  389. break;
  390. case HW_VAR_AMPDU_MIN_SPACE:{
  391. u8 min_spacing_to_set;
  392. u8 sec_min_space;
  393. min_spacing_to_set = *val;
  394. if (min_spacing_to_set <= 7) {
  395. sec_min_space = 0;
  396. if (min_spacing_to_set < sec_min_space)
  397. min_spacing_to_set = sec_min_space;
  398. mac->min_space_cfg = ((mac->min_space_cfg &
  399. 0xf8) | min_spacing_to_set);
  400. *val = min_spacing_to_set;
  401. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  402. "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  403. mac->min_space_cfg);
  404. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  405. mac->min_space_cfg);
  406. }
  407. break; }
  408. case HW_VAR_SHORTGI_DENSITY:{
  409. u8 density_to_set;
  410. density_to_set = *val;
  411. mac->min_space_cfg |= (density_to_set << 3);
  412. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  413. "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  414. mac->min_space_cfg);
  415. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  416. mac->min_space_cfg);
  417. break; }
  418. case HW_VAR_AMPDU_FACTOR:{
  419. u8 regtoset_normal[4] = { 0x41, 0xa8, 0x72, 0xb9 };
  420. u8 factor;
  421. u8 *reg = NULL;
  422. u8 id = 0;
  423. reg = regtoset_normal;
  424. factor = *val;
  425. if (factor <= 3) {
  426. factor = (1 << (factor + 2));
  427. if (factor > 0xf)
  428. factor = 0xf;
  429. for (id = 0; id < 4; id++) {
  430. if ((reg[id] & 0xf0) > (factor << 4))
  431. reg[id] = (reg[id] & 0x0f) |
  432. (factor << 4);
  433. if ((reg[id] & 0x0f) > factor)
  434. reg[id] = (reg[id] & 0xf0) | (factor);
  435. rtl_write_byte(rtlpriv, (REG_AGGLEN_LMT + id),
  436. reg[id]);
  437. }
  438. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  439. "Set HW_VAR_AMPDU_FACTOR: %#x\n", factor);
  440. }
  441. break; }
  442. case HW_VAR_AC_PARAM:{
  443. u8 e_aci = *val;
  444. rtl88e_dm_init_edca_turbo(hw);
  445. if (rtlpci->acm_method != EACMWAY2_SW)
  446. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ACM_CTRL,
  447. &e_aci);
  448. break; }
  449. case HW_VAR_ACM_CTRL:{
  450. u8 e_aci = *val;
  451. union aci_aifsn *p_aci_aifsn =
  452. (union aci_aifsn *)(&(mac->ac[0].aifs));
  453. u8 acm = p_aci_aifsn->f.acm;
  454. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  455. acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ? 0x0 : 0x1);
  456. if (acm) {
  457. switch (e_aci) {
  458. case AC0_BE:
  459. acm_ctrl |= ACMHW_BEQEN;
  460. break;
  461. case AC2_VI:
  462. acm_ctrl |= ACMHW_VIQEN;
  463. break;
  464. case AC3_VO:
  465. acm_ctrl |= ACMHW_VOQEN;
  466. break;
  467. default:
  468. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  469. "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
  470. acm);
  471. break;
  472. }
  473. } else {
  474. switch (e_aci) {
  475. case AC0_BE:
  476. acm_ctrl &= (~ACMHW_BEQEN);
  477. break;
  478. case AC2_VI:
  479. acm_ctrl &= (~ACMHW_VIQEN);
  480. break;
  481. case AC3_VO:
  482. acm_ctrl &= (~ACMHW_BEQEN);
  483. break;
  484. default:
  485. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  486. "switch case not process\n");
  487. break;
  488. }
  489. }
  490. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  491. "SetHwReg8190pci(): [HW_VAR_ACM_CTRL] Write 0x%X\n",
  492. acm_ctrl);
  493. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  494. break; }
  495. case HW_VAR_RCR:
  496. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *)(val))[0]);
  497. rtlpci->receive_config = ((u32 *)(val))[0];
  498. break;
  499. case HW_VAR_RETRY_LIMIT:{
  500. u8 retry_limit = *val;
  501. rtl_write_word(rtlpriv, REG_RL,
  502. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  503. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  504. break; }
  505. case HW_VAR_DUAL_TSF_RST:
  506. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  507. break;
  508. case HW_VAR_EFUSE_BYTES:
  509. rtlefuse->efuse_usedbytes = *((u16 *)val);
  510. break;
  511. case HW_VAR_EFUSE_USAGE:
  512. rtlefuse->efuse_usedpercentage = *val;
  513. break;
  514. case HW_VAR_IO_CMD:
  515. rtl88e_phy_set_io_cmd(hw, (*(enum io_type *)val));
  516. break;
  517. case HW_VAR_SET_RPWM:{
  518. u8 rpwm_val;
  519. rpwm_val = rtl_read_byte(rtlpriv, REG_PCIE_HRPWM);
  520. udelay(1);
  521. if (rpwm_val & BIT(7)) {
  522. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val);
  523. } else {
  524. rtl_write_byte(rtlpriv, REG_PCIE_HRPWM, *val | BIT(7));
  525. }
  526. break; }
  527. case HW_VAR_H2C_FW_PWRMODE:
  528. rtl88e_set_fw_pwrmode_cmd(hw, *val);
  529. break;
  530. case HW_VAR_FW_PSMODE_STATUS:
  531. ppsc->fw_current_inpsmode = *((bool *)val);
  532. break;
  533. case HW_VAR_RESUME_CLK_ON:
  534. _rtl88ee_set_fw_ps_rf_on(hw);
  535. break;
  536. case HW_VAR_FW_LPS_ACTION:{
  537. bool enter_fwlps = *((bool *)val);
  538. if (enter_fwlps)
  539. _rtl88ee_fwlps_enter(hw);
  540. else
  541. _rtl88ee_fwlps_leave(hw);
  542. break; }
  543. case HW_VAR_H2C_FW_JOINBSSRPT:{
  544. u8 mstatus = *val;
  545. u8 tmp, tmp_reg422, uval;
  546. u8 count = 0, dlbcn_count = 0;
  547. bool recover = false;
  548. if (mstatus == RT_MEDIA_CONNECT) {
  549. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AID, NULL);
  550. tmp = rtl_read_byte(rtlpriv, REG_CR + 1);
  551. rtl_write_byte(rtlpriv, REG_CR + 1, (tmp | BIT(0)));
  552. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
  553. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
  554. tmp_reg422 = rtl_read_byte(rtlpriv,
  555. REG_FWHW_TXQ_CTRL + 2);
  556. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  557. tmp_reg422 & (~BIT(6)));
  558. if (tmp_reg422 & BIT(6))
  559. recover = true;
  560. do {
  561. uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
  562. rtl_write_byte(rtlpriv, REG_TDECTRL+2,
  563. (uval | BIT(0)));
  564. _rtl88ee_return_beacon_queue_skb(hw);
  565. rtl88e_set_fw_rsvdpagepkt(hw, 0);
  566. uval = rtl_read_byte(rtlpriv, REG_TDECTRL+2);
  567. count = 0;
  568. while (!(uval & BIT(0)) && count < 20) {
  569. count++;
  570. udelay(10);
  571. uval = rtl_read_byte(rtlpriv,
  572. REG_TDECTRL+2);
  573. }
  574. dlbcn_count++;
  575. } while (!(uval & BIT(0)) && dlbcn_count < 5);
  576. if (uval & BIT(0))
  577. rtl_write_byte(rtlpriv, REG_TDECTRL+2, BIT(0));
  578. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  579. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
  580. if (recover) {
  581. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  582. tmp_reg422);
  583. }
  584. rtl_write_byte(rtlpriv, REG_CR + 1, (tmp & ~(BIT(0))));
  585. }
  586. rtl88e_set_fw_joinbss_report_cmd(hw, *val);
  587. break; }
  588. case HW_VAR_H2C_FW_P2P_PS_OFFLOAD:
  589. rtl88e_set_p2p_ps_offload_cmd(hw, *val);
  590. break;
  591. case HW_VAR_AID:{
  592. u16 u2btmp;
  593. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  594. u2btmp &= 0xC000;
  595. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT, (u2btmp |
  596. mac->assoc_id));
  597. break; }
  598. case HW_VAR_CORRECT_TSF:{
  599. u8 btype_ibss = *val;
  600. if (btype_ibss == true)
  601. _rtl88ee_stop_tx_beacon(hw);
  602. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(3));
  603. rtl_write_dword(rtlpriv, REG_TSFTR,
  604. (u32) (mac->tsf & 0xffffffff));
  605. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  606. (u32) ((mac->tsf >> 32) & 0xffffffff));
  607. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  608. if (btype_ibss == true)
  609. _rtl88ee_resume_tx_beacon(hw);
  610. break; }
  611. default:
  612. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  613. "switch case not process %x\n", variable);
  614. break;
  615. }
  616. }
  617. static bool _rtl88ee_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
  618. {
  619. struct rtl_priv *rtlpriv = rtl_priv(hw);
  620. bool status = true;
  621. long count = 0;
  622. u32 value = _LLT_INIT_ADDR(address) | _LLT_INIT_DATA(data) |
  623. _LLT_OP(_LLT_WRITE_ACCESS);
  624. rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
  625. do {
  626. value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
  627. if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
  628. break;
  629. if (count > POLLING_LLT_THRESHOLD) {
  630. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  631. "Failed to polling write LLT done at address %d!\n",
  632. address);
  633. status = false;
  634. break;
  635. }
  636. } while (++count);
  637. return status;
  638. }
  639. static bool _rtl88ee_llt_table_init(struct ieee80211_hw *hw)
  640. {
  641. struct rtl_priv *rtlpriv = rtl_priv(hw);
  642. unsigned short i;
  643. u8 txpktbuf_bndy;
  644. u8 maxpage;
  645. bool status;
  646. maxpage = 0xAF;
  647. txpktbuf_bndy = 0xAB;
  648. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, 0x01);
  649. rtl_write_dword(rtlpriv, REG_RQPN, 0x80730d29);
  650. rtl_write_dword(rtlpriv, REG_TRXFF_BNDY, (0x25FF0000 | txpktbuf_bndy));
  651. rtl_write_byte(rtlpriv, REG_TDECTRL + 1, txpktbuf_bndy);
  652. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  653. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  654. rtl_write_byte(rtlpriv, 0x45D, txpktbuf_bndy);
  655. rtl_write_byte(rtlpriv, REG_PBP, 0x11);
  656. rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, 0x4);
  657. for (i = 0; i < (txpktbuf_bndy - 1); i++) {
  658. status = _rtl88ee_llt_write(hw, i, i + 1);
  659. if (true != status)
  660. return status;
  661. }
  662. status = _rtl88ee_llt_write(hw, (txpktbuf_bndy - 1), 0xFF);
  663. if (true != status)
  664. return status;
  665. for (i = txpktbuf_bndy; i < maxpage; i++) {
  666. status = _rtl88ee_llt_write(hw, i, (i + 1));
  667. if (true != status)
  668. return status;
  669. }
  670. status = _rtl88ee_llt_write(hw, maxpage, txpktbuf_bndy);
  671. if (true != status)
  672. return status;
  673. return true;
  674. }
  675. static void _rtl88ee_gen_refresh_led_state(struct ieee80211_hw *hw)
  676. {
  677. struct rtl_priv *rtlpriv = rtl_priv(hw);
  678. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  679. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  680. struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
  681. if (rtlpriv->rtlhal.up_first_time)
  682. return;
  683. if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS)
  684. rtl88ee_sw_led_on(hw, pLed0);
  685. else if (ppsc->rfoff_reason == RF_CHANGE_BY_INIT)
  686. rtl88ee_sw_led_on(hw, pLed0);
  687. else
  688. rtl88ee_sw_led_off(hw, pLed0);
  689. }
  690. static bool _rtl88ee_init_mac(struct ieee80211_hw *hw)
  691. {
  692. struct rtl_priv *rtlpriv = rtl_priv(hw);
  693. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  694. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  695. u8 bytetmp;
  696. u16 wordtmp;
  697. /*Disable XTAL OUTPUT for power saving. YJ, add, 111206. */
  698. bytetmp = rtl_read_byte(rtlpriv, REG_XCK_OUT_CTRL) & (~BIT(0));
  699. rtl_write_byte(rtlpriv, REG_XCK_OUT_CTRL, bytetmp);
  700. /*Auto Power Down to CHIP-off State*/
  701. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO + 1) & (~BIT(7));
  702. rtl_write_byte(rtlpriv, REG_APS_FSMCO + 1, bytetmp);
  703. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x00);
  704. /* HW Power on sequence */
  705. if (!rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK,
  706. PWR_FAB_ALL_MSK, PWR_INTF_PCI_MSK,
  707. Rtl8188E_NIC_ENABLE_FLOW)) {
  708. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  709. "init MAC Fail as rtl_hal_pwrseqcmdparsing\n");
  710. return false;
  711. }
  712. bytetmp = rtl_read_byte(rtlpriv, REG_APS_FSMCO) | BIT(4);
  713. rtl_write_byte(rtlpriv, REG_APS_FSMCO, bytetmp);
  714. bytetmp = rtl_read_byte(rtlpriv, REG_PCIE_CTRL_REG+2);
  715. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+2, bytetmp|BIT(2));
  716. bytetmp = rtl_read_byte(rtlpriv, REG_WATCH_DOG+1);
  717. rtl_write_byte(rtlpriv, REG_WATCH_DOG+1, bytetmp|BIT(7));
  718. bytetmp = rtl_read_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1);
  719. rtl_write_byte(rtlpriv, REG_AFE_XTAL_CTRL_EXT+1, bytetmp|BIT(1));
  720. bytetmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
  721. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, bytetmp|BIT(1)|BIT(0));
  722. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL+1, 2);
  723. rtl_write_word(rtlpriv, REG_TX_RPT_TIME, 0xcdf0);
  724. /*Add for wake up online*/
  725. bytetmp = rtl_read_byte(rtlpriv, REG_SYS_CLKR);
  726. rtl_write_byte(rtlpriv, REG_SYS_CLKR, bytetmp|BIT(3));
  727. bytetmp = rtl_read_byte(rtlpriv, REG_GPIO_MUXCFG+1);
  728. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+1, (bytetmp & (~BIT(4))));
  729. rtl_write_byte(rtlpriv, 0x367, 0x80);
  730. rtl_write_word(rtlpriv, REG_CR, 0x2ff);
  731. rtl_write_byte(rtlpriv, REG_CR+1, 0x06);
  732. rtl_write_byte(rtlpriv, REG_CR+2, 0x00);
  733. if (!rtlhal->mac_func_enable) {
  734. if (_rtl88ee_llt_table_init(hw) == false) {
  735. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  736. "LLT table init fail\n");
  737. return false;
  738. }
  739. }
  740. rtl_write_dword(rtlpriv, REG_HISR, 0xffffffff);
  741. rtl_write_dword(rtlpriv, REG_HISRE, 0xffffffff);
  742. wordtmp = rtl_read_word(rtlpriv, REG_TRXDMA_CTRL);
  743. wordtmp &= 0xf;
  744. wordtmp |= 0xE771;
  745. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, wordtmp);
  746. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  747. rtl_write_word(rtlpriv, REG_RXFLTMAP2, 0xffff);
  748. rtl_write_dword(rtlpriv, REG_TCR, rtlpci->transmit_config);
  749. rtl_write_dword(rtlpriv, REG_BCNQ_DESA,
  750. ((u64) rtlpci->tx_ring[BEACON_QUEUE].dma) &
  751. DMA_BIT_MASK(32));
  752. rtl_write_dword(rtlpriv, REG_MGQ_DESA,
  753. (u64) rtlpci->tx_ring[MGNT_QUEUE].dma &
  754. DMA_BIT_MASK(32));
  755. rtl_write_dword(rtlpriv, REG_VOQ_DESA,
  756. (u64) rtlpci->tx_ring[VO_QUEUE].dma & DMA_BIT_MASK(32));
  757. rtl_write_dword(rtlpriv, REG_VIQ_DESA,
  758. (u64) rtlpci->tx_ring[VI_QUEUE].dma & DMA_BIT_MASK(32));
  759. rtl_write_dword(rtlpriv, REG_BEQ_DESA,
  760. (u64) rtlpci->tx_ring[BE_QUEUE].dma & DMA_BIT_MASK(32));
  761. rtl_write_dword(rtlpriv, REG_BKQ_DESA,
  762. (u64) rtlpci->tx_ring[BK_QUEUE].dma & DMA_BIT_MASK(32));
  763. rtl_write_dword(rtlpriv, REG_HQ_DESA,
  764. (u64) rtlpci->tx_ring[HIGH_QUEUE].dma &
  765. DMA_BIT_MASK(32));
  766. rtl_write_dword(rtlpriv, REG_RX_DESA,
  767. (u64) rtlpci->rx_ring[RX_MPDU_QUEUE].dma &
  768. DMA_BIT_MASK(32));
  769. /* if we want to support 64 bit DMA, we should set it here,
  770. * but at the moment we do not support 64 bit DMA
  771. */
  772. rtl_write_dword(rtlpriv, REG_INT_MIG, 0);
  773. rtl_write_dword(rtlpriv, REG_MCUTST_1, 0x0);
  774. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0);/*Enable RX DMA */
  775. if (rtlhal->earlymode_enable) {/*Early mode enable*/
  776. bytetmp = rtl_read_byte(rtlpriv, REG_EARLY_MODE_CONTROL);
  777. bytetmp |= 0x1f;
  778. rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL, bytetmp);
  779. rtl_write_byte(rtlpriv, REG_EARLY_MODE_CONTROL+3, 0x81);
  780. }
  781. _rtl88ee_gen_refresh_led_state(hw);
  782. return true;
  783. }
  784. static void _rtl88ee_hw_configure(struct ieee80211_hw *hw)
  785. {
  786. struct rtl_priv *rtlpriv = rtl_priv(hw);
  787. u32 reg_prsr;
  788. reg_prsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
  789. rtl_write_dword(rtlpriv, REG_RRSR, reg_prsr);
  790. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  791. }
  792. static void _rtl88ee_enable_aspm_back_door(struct ieee80211_hw *hw)
  793. {
  794. struct rtl_priv *rtlpriv = rtl_priv(hw);
  795. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  796. u8 tmp1byte = 0;
  797. u32 tmp4Byte = 0, count;
  798. rtl_write_word(rtlpriv, 0x354, 0x8104);
  799. rtl_write_word(rtlpriv, 0x358, 0x24);
  800. rtl_write_word(rtlpriv, 0x350, 0x70c);
  801. rtl_write_byte(rtlpriv, 0x352, 0x2);
  802. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  803. count = 0;
  804. while (tmp1byte && count < 20) {
  805. udelay(10);
  806. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  807. count++;
  808. }
  809. if (0 == tmp1byte) {
  810. tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
  811. rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(31));
  812. rtl_write_word(rtlpriv, 0x350, 0xf70c);
  813. rtl_write_byte(rtlpriv, 0x352, 0x1);
  814. }
  815. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  816. count = 0;
  817. while (tmp1byte && count < 20) {
  818. udelay(10);
  819. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  820. count++;
  821. }
  822. rtl_write_word(rtlpriv, 0x350, 0x718);
  823. rtl_write_byte(rtlpriv, 0x352, 0x2);
  824. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  825. count = 0;
  826. while (tmp1byte && count < 20) {
  827. udelay(10);
  828. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  829. count++;
  830. }
  831. if (ppsc->support_backdoor || (0 == tmp1byte)) {
  832. tmp4Byte = rtl_read_dword(rtlpriv, 0x34c);
  833. rtl_write_dword(rtlpriv, 0x348, tmp4Byte|BIT(11)|BIT(12));
  834. rtl_write_word(rtlpriv, 0x350, 0xf718);
  835. rtl_write_byte(rtlpriv, 0x352, 0x1);
  836. }
  837. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  838. count = 0;
  839. while (tmp1byte && count < 20) {
  840. udelay(10);
  841. tmp1byte = rtl_read_byte(rtlpriv, 0x352);
  842. count++;
  843. }
  844. }
  845. void rtl88ee_enable_hw_security_config(struct ieee80211_hw *hw)
  846. {
  847. struct rtl_priv *rtlpriv = rtl_priv(hw);
  848. u8 sec_reg_value;
  849. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  850. "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  851. rtlpriv->sec.pairwise_enc_algorithm,
  852. rtlpriv->sec.group_enc_algorithm);
  853. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  854. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  855. "not open hw encryption\n");
  856. return;
  857. }
  858. sec_reg_value = SCR_TXENCENABLE | SCR_RXDECENABLE;
  859. if (rtlpriv->sec.use_defaultkey) {
  860. sec_reg_value |= SCR_TXUSEDK;
  861. sec_reg_value |= SCR_RXUSEDK;
  862. }
  863. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  864. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  865. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  866. "The SECR-value %x\n", sec_reg_value);
  867. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  868. }
  869. int rtl88ee_hw_init(struct ieee80211_hw *hw)
  870. {
  871. struct rtl_priv *rtlpriv = rtl_priv(hw);
  872. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  873. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  874. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  875. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  876. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  877. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  878. bool rtstatus = true;
  879. int err = 0;
  880. u8 tmp_u1b, u1byte;
  881. unsigned long flags;
  882. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Rtl8188EE hw init\n");
  883. rtlpriv->rtlhal.being_init_adapter = true;
  884. /* As this function can take a very long time (up to 350 ms)
  885. * and can be called with irqs disabled, reenable the irqs
  886. * to let the other devices continue being serviced.
  887. *
  888. * It is safe doing so since our own interrupts will only be enabled
  889. * in a subsequent step.
  890. */
  891. local_save_flags(flags);
  892. local_irq_enable();
  893. rtlpriv->intf_ops->disable_aspm(hw);
  894. tmp_u1b = rtl_read_byte(rtlpriv, REG_SYS_CLKR+1);
  895. u1byte = rtl_read_byte(rtlpriv, REG_CR);
  896. if ((tmp_u1b & BIT(3)) && (u1byte != 0 && u1byte != 0xEA)) {
  897. rtlhal->mac_func_enable = true;
  898. } else {
  899. rtlhal->mac_func_enable = false;
  900. rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
  901. }
  902. rtstatus = _rtl88ee_init_mac(hw);
  903. if (rtstatus != true) {
  904. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Init MAC failed\n");
  905. err = 1;
  906. goto exit;
  907. }
  908. err = rtl88e_download_fw(hw, false);
  909. if (err) {
  910. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  911. "Failed to download FW. Init HW without FW now..\n");
  912. err = 1;
  913. goto exit;
  914. } else {
  915. rtlhal->fw_ready = true;
  916. }
  917. /*fw related variable initialize */
  918. rtlhal->last_hmeboxnum = 0;
  919. rtlhal->fw_ps_state = FW_PS_STATE_ALL_ON_88E;
  920. rtlhal->fw_clk_change_in_progress = false;
  921. rtlhal->allow_sw_to_change_hwclc = false;
  922. ppsc->fw_current_inpsmode = false;
  923. rtl88e_phy_mac_config(hw);
  924. /* because last function modifies RCR, we update
  925. * rcr var here, or TP will be unstable for receive_config
  926. * is wrong, RX RCR_ACRC32 will cause TP unstable & Rx
  927. * RCR_APP_ICV will cause mac80211 disassoc for cisco 1252
  928. */
  929. rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
  930. rtl_write_dword(rtlpriv, REG_RCR, rtlpci->receive_config);
  931. rtl88e_phy_bb_config(hw);
  932. rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
  933. rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
  934. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  935. rtl88e_phy_rf_config(hw);
  936. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  937. RF_CHNLBW, RFREG_OFFSET_MASK);
  938. rtlphy->rfreg_chnlval[0] = rtlphy->rfreg_chnlval[0] & 0xfff00fff;
  939. _rtl88ee_hw_configure(hw);
  940. rtl_cam_reset_all_entry(hw);
  941. rtl88ee_enable_hw_security_config(hw);
  942. rtlhal->mac_func_enable = true;
  943. ppsc->rfpwr_state = ERFON;
  944. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  945. _rtl88ee_enable_aspm_back_door(hw);
  946. rtlpriv->intf_ops->enable_aspm(hw);
  947. if (ppsc->rfpwr_state == ERFON) {
  948. if ((rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV) ||
  949. ((rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV) &&
  950. (rtlhal->oem_id == RT_CID_819X_HP))) {
  951. rtl88e_phy_set_rfpath_switch(hw, true);
  952. rtlpriv->dm.fat_table.rx_idle_ant = MAIN_ANT;
  953. } else {
  954. rtl88e_phy_set_rfpath_switch(hw, false);
  955. rtlpriv->dm.fat_table.rx_idle_ant = AUX_ANT;
  956. }
  957. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  958. "rx idle ant %s\n",
  959. (rtlpriv->dm.fat_table.rx_idle_ant == MAIN_ANT) ?
  960. ("MAIN_ANT") : ("AUX_ANT"));
  961. if (rtlphy->iqk_initialized) {
  962. rtl88e_phy_iq_calibrate(hw, true);
  963. } else {
  964. rtl88e_phy_iq_calibrate(hw, false);
  965. rtlphy->iqk_initialized = true;
  966. }
  967. rtl88e_dm_check_txpower_tracking(hw);
  968. rtl88e_phy_lc_calibrate(hw);
  969. }
  970. tmp_u1b = efuse_read_1byte(hw, 0x1FA);
  971. if (!(tmp_u1b & BIT(0))) {
  972. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0F, 0x05);
  973. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "PA BIAS path A\n");
  974. }
  975. if (!(tmp_u1b & BIT(4))) {
  976. tmp_u1b = rtl_read_byte(rtlpriv, 0x16);
  977. tmp_u1b &= 0x0F;
  978. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x80);
  979. udelay(10);
  980. rtl_write_byte(rtlpriv, 0x16, tmp_u1b | 0x90);
  981. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "under 1.5V\n");
  982. }
  983. rtl_write_byte(rtlpriv, REG_NAV_CTRL+2, ((30000+127)/128));
  984. rtl88e_dm_init(hw);
  985. exit:
  986. local_irq_restore(flags);
  987. rtlpriv->rtlhal.being_init_adapter = false;
  988. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "end of Rtl8188EE hw init %x\n",
  989. err);
  990. return err;
  991. }
  992. static enum version_8188e _rtl88ee_read_chip_version(struct ieee80211_hw *hw)
  993. {
  994. struct rtl_priv *rtlpriv = rtl_priv(hw);
  995. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  996. enum version_8188e version = VERSION_UNKNOWN;
  997. u32 value32;
  998. value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
  999. if (value32 & TRP_VAUX_EN) {
  1000. version = (enum version_8188e) VERSION_TEST_CHIP_88E;
  1001. } else {
  1002. version = NORMAL_CHIP;
  1003. version = version | ((value32 & TYPE_ID) ? RF_TYPE_2T2R : 0);
  1004. version = version | ((value32 & VENDOR_ID) ?
  1005. CHIP_VENDOR_UMC : 0);
  1006. }
  1007. rtlphy->rf_type = RF_1T1R;
  1008. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1009. "Chip RF Type: %s\n", (rtlphy->rf_type == RF_2T2R) ?
  1010. "RF_2T2R" : "RF_1T1R");
  1011. return version;
  1012. }
  1013. static int _rtl88ee_set_media_status(struct ieee80211_hw *hw,
  1014. enum nl80211_iftype type)
  1015. {
  1016. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1017. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1018. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1019. bt_msr &= 0xfc;
  1020. if (type == NL80211_IFTYPE_UNSPECIFIED ||
  1021. type == NL80211_IFTYPE_STATION) {
  1022. _rtl88ee_stop_tx_beacon(hw);
  1023. _rtl88ee_enable_bcn_sub_func(hw);
  1024. } else if (type == NL80211_IFTYPE_ADHOC ||
  1025. type == NL80211_IFTYPE_AP ||
  1026. type == NL80211_IFTYPE_MESH_POINT) {
  1027. _rtl88ee_resume_tx_beacon(hw);
  1028. _rtl88ee_disable_bcn_sub_func(hw);
  1029. } else {
  1030. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1031. "Set HW_VAR_MEDIA_STATUS: No such media status(%x).\n",
  1032. type);
  1033. }
  1034. switch (type) {
  1035. case NL80211_IFTYPE_UNSPECIFIED:
  1036. bt_msr |= MSR_NOLINK;
  1037. ledaction = LED_CTL_LINK;
  1038. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1039. "Set Network type to NO LINK!\n");
  1040. break;
  1041. case NL80211_IFTYPE_ADHOC:
  1042. bt_msr |= MSR_ADHOC;
  1043. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1044. "Set Network type to Ad Hoc!\n");
  1045. break;
  1046. case NL80211_IFTYPE_STATION:
  1047. bt_msr |= MSR_INFRA;
  1048. ledaction = LED_CTL_LINK;
  1049. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1050. "Set Network type to STA!\n");
  1051. break;
  1052. case NL80211_IFTYPE_AP:
  1053. bt_msr |= MSR_AP;
  1054. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1055. "Set Network type to AP!\n");
  1056. break;
  1057. case NL80211_IFTYPE_MESH_POINT:
  1058. bt_msr |= MSR_ADHOC;
  1059. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1060. "Set Network type to Mesh Point!\n");
  1061. break;
  1062. default:
  1063. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1064. "Network type %d not support!\n", type);
  1065. return 1;
  1066. }
  1067. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1068. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1069. if ((bt_msr & 0xfc) == MSR_AP)
  1070. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1071. else
  1072. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1073. return 0;
  1074. }
  1075. void rtl88ee_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1076. {
  1077. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1078. u32 reg_rcr;
  1079. if (rtlpriv->psc.rfpwr_state != ERFON)
  1080. return;
  1081. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
  1082. if (check_bssid == true) {
  1083. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1084. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1085. (u8 *)(&reg_rcr));
  1086. _rtl88ee_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1087. } else if (check_bssid == false) {
  1088. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1089. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1090. rtlpriv->cfg->ops->set_hw_reg(hw,
  1091. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1092. }
  1093. }
  1094. int rtl88ee_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1095. {
  1096. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1097. if (_rtl88ee_set_media_status(hw, type))
  1098. return -EOPNOTSUPP;
  1099. if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
  1100. if (type != NL80211_IFTYPE_AP &&
  1101. type != NL80211_IFTYPE_MESH_POINT)
  1102. rtl88ee_set_check_bssid(hw, true);
  1103. } else {
  1104. rtl88ee_set_check_bssid(hw, false);
  1105. }
  1106. return 0;
  1107. }
  1108. /* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
  1109. void rtl88ee_set_qos(struct ieee80211_hw *hw, int aci)
  1110. {
  1111. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1112. rtl88e_dm_init_edca_turbo(hw);
  1113. switch (aci) {
  1114. case AC1_BK:
  1115. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0xa44f);
  1116. break;
  1117. case AC0_BE:
  1118. break;
  1119. case AC2_VI:
  1120. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x5e4322);
  1121. break;
  1122. case AC3_VO:
  1123. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x2f3222);
  1124. break;
  1125. default:
  1126. RT_ASSERT(false, "invalid aci: %d !\n", aci);
  1127. break;
  1128. }
  1129. }
  1130. void rtl88ee_enable_interrupt(struct ieee80211_hw *hw)
  1131. {
  1132. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1133. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1134. rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] & 0xFFFFFFFF);
  1135. rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] & 0xFFFFFFFF);
  1136. rtlpci->irq_enabled = true;
  1137. /* there are some C2H CMDs have been sent before system interrupt
  1138. * is enabled, e.g., C2H, CPWM.
  1139. * So we need to clear all C2H events that FW has notified, otherwise
  1140. * FW won't schedule any commands anymore.
  1141. */
  1142. rtl_write_byte(rtlpriv, REG_C2HEVT_CLEAR, 0);
  1143. /*enable system interrupt*/
  1144. rtl_write_dword(rtlpriv, REG_HSIMR, rtlpci->sys_irq_mask & 0xFFFFFFFF);
  1145. }
  1146. void rtl88ee_disable_interrupt(struct ieee80211_hw *hw)
  1147. {
  1148. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1149. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1150. rtl_write_dword(rtlpriv, REG_HIMR, IMR_DISABLED);
  1151. rtl_write_dword(rtlpriv, REG_HIMRE, IMR_DISABLED);
  1152. rtlpci->irq_enabled = false;
  1153. synchronize_irq(rtlpci->pdev->irq);
  1154. }
  1155. static void _rtl88ee_poweroff_adapter(struct ieee80211_hw *hw)
  1156. {
  1157. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1158. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1159. u8 u1b_tmp;
  1160. u32 count = 0;
  1161. rtlhal->mac_func_enable = false;
  1162. rtlpriv->intf_ops->enable_aspm(hw);
  1163. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "POWER OFF adapter\n");
  1164. u1b_tmp = rtl_read_byte(rtlpriv, REG_TX_RPT_CTRL);
  1165. rtl_write_byte(rtlpriv, REG_TX_RPT_CTRL, u1b_tmp & (~BIT(1)));
  1166. u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1167. while (!(u1b_tmp & BIT(1)) && (count++ < 100)) {
  1168. udelay(10);
  1169. u1b_tmp = rtl_read_byte(rtlpriv, REG_RXDMA_CONTROL);
  1170. count++;
  1171. }
  1172. rtl_write_byte(rtlpriv, REG_PCIE_CTRL_REG+1, 0xFF);
  1173. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1174. PWR_INTF_PCI_MSK,
  1175. Rtl8188E_NIC_LPS_ENTER_FLOW);
  1176. rtl_write_byte(rtlpriv, REG_RF_CTRL, 0x00);
  1177. if ((rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(7)) && rtlhal->fw_ready)
  1178. rtl88e_firmware_selfreset(hw);
  1179. u1b_tmp = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN+1);
  1180. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, (u1b_tmp & (~BIT(2))));
  1181. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0x00);
  1182. u1b_tmp = rtl_read_byte(rtlpriv, REG_32K_CTRL);
  1183. rtl_write_byte(rtlpriv, REG_32K_CTRL, (u1b_tmp & (~BIT(0))));
  1184. rtl_hal_pwrseqcmdparsing(rtlpriv, PWR_CUT_ALL_MSK, PWR_FAB_ALL_MSK,
  1185. PWR_INTF_PCI_MSK, Rtl8188E_NIC_DISABLE_FLOW);
  1186. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
  1187. rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp & (~BIT(3))));
  1188. u1b_tmp = rtl_read_byte(rtlpriv, REG_RSV_CTRL+1);
  1189. rtl_write_byte(rtlpriv, REG_RSV_CTRL+1, (u1b_tmp | BIT(3)));
  1190. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1191. u1b_tmp = rtl_read_byte(rtlpriv, GPIO_IN);
  1192. rtl_write_byte(rtlpriv, GPIO_OUT, u1b_tmp);
  1193. rtl_write_byte(rtlpriv, GPIO_IO_SEL, 0x7F);
  1194. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  1195. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL, (u1b_tmp << 4) | u1b_tmp);
  1196. u1b_tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL+1);
  1197. rtl_write_byte(rtlpriv, REG_GPIO_IO_SEL+1, u1b_tmp | 0x0F);
  1198. rtl_write_dword(rtlpriv, REG_GPIO_IO_SEL_2+2, 0x00080808);
  1199. }
  1200. void rtl88ee_card_disable(struct ieee80211_hw *hw)
  1201. {
  1202. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1203. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1204. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1205. enum nl80211_iftype opmode;
  1206. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "RTL8188ee card disable\n");
  1207. mac->link_state = MAC80211_NOLINK;
  1208. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1209. _rtl88ee_set_media_status(hw, opmode);
  1210. if (rtlpriv->rtlhal.driver_is_goingto_unload ||
  1211. ppsc->rfoff_reason > RF_CHANGE_BY_PS)
  1212. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1213. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1214. _rtl88ee_poweroff_adapter(hw);
  1215. /* after power off we should do iqk again */
  1216. rtlpriv->phy.iqk_initialized = false;
  1217. }
  1218. void rtl88ee_interrupt_recognized(struct ieee80211_hw *hw,
  1219. u32 *p_inta, u32 *p_intb)
  1220. {
  1221. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1222. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1223. *p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
  1224. rtl_write_dword(rtlpriv, ISR, *p_inta);
  1225. *p_intb = rtl_read_dword(rtlpriv, REG_HISRE) & rtlpci->irq_mask[1];
  1226. rtl_write_dword(rtlpriv, REG_HISRE, *p_intb);
  1227. }
  1228. void rtl88ee_set_beacon_related_registers(struct ieee80211_hw *hw)
  1229. {
  1230. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1231. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1232. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1233. u16 bcn_interval, atim_window;
  1234. bcn_interval = mac->beacon_interval;
  1235. atim_window = 2; /*FIX MERGE */
  1236. rtl88ee_disable_interrupt(hw);
  1237. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1238. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1239. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660f);
  1240. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x18);
  1241. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x18);
  1242. rtl_write_byte(rtlpriv, 0x606, 0x30);
  1243. rtlpci->reg_bcn_ctrl_val |= BIT(3);
  1244. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlpci->reg_bcn_ctrl_val);
  1245. /*rtl88ee_enable_interrupt(hw);*/
  1246. }
  1247. void rtl88ee_set_beacon_interval(struct ieee80211_hw *hw)
  1248. {
  1249. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1250. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1251. u16 bcn_interval = mac->beacon_interval;
  1252. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1253. "beacon_interval:%d\n", bcn_interval);
  1254. /*rtl88ee_disable_interrupt(hw);*/
  1255. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1256. /*rtl88ee_enable_interrupt(hw);*/
  1257. }
  1258. void rtl88ee_update_interrupt_mask(struct ieee80211_hw *hw,
  1259. u32 add_msr, u32 rm_msr)
  1260. {
  1261. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1262. struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
  1263. RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD,
  1264. "add_msr:%x, rm_msr:%x\n", add_msr, rm_msr);
  1265. rtl88ee_disable_interrupt(hw);
  1266. if (add_msr)
  1267. rtlpci->irq_mask[0] |= add_msr;
  1268. if (rm_msr)
  1269. rtlpci->irq_mask[0] &= (~rm_msr);
  1270. rtl88ee_enable_interrupt(hw);
  1271. }
  1272. static inline u8 get_chnl_group(u8 chnl)
  1273. {
  1274. u8 group;
  1275. group = chnl / 3;
  1276. if (chnl == 14)
  1277. group = 5;
  1278. return group;
  1279. }
  1280. static void set_diff0_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1281. u32 i, u32 eadr)
  1282. {
  1283. pwr2g->bw40_diff[path][i] = 0;
  1284. if (hwinfo[eadr] == 0xFF) {
  1285. pwr2g->bw20_diff[path][i] = 0x02;
  1286. } else {
  1287. pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1288. /*bit sign number to 8 bit sign number*/
  1289. if (pwr2g->bw20_diff[path][i] & BIT(3))
  1290. pwr2g->bw20_diff[path][i] |= 0xF0;
  1291. }
  1292. if (hwinfo[eadr] == 0xFF) {
  1293. pwr2g->ofdm_diff[path][i] = 0x04;
  1294. } else {
  1295. pwr2g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1296. /*bit sign number to 8 bit sign number*/
  1297. if (pwr2g->ofdm_diff[path][i] & BIT(3))
  1298. pwr2g->ofdm_diff[path][i] |= 0xF0;
  1299. }
  1300. pwr2g->cck_diff[path][i] = 0;
  1301. }
  1302. static void set_diff0_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
  1303. u32 i, u32 eadr)
  1304. {
  1305. pwr5g->bw40_diff[path][i] = 0;
  1306. if (hwinfo[eadr] == 0xFF) {
  1307. pwr5g->bw20_diff[path][i] = 0;
  1308. } else {
  1309. pwr5g->bw20_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1310. /*bit sign number to 8 bit sign number*/
  1311. if (pwr5g->bw20_diff[path][i] & BIT(3))
  1312. pwr5g->bw20_diff[path][i] |= 0xF0;
  1313. }
  1314. if (hwinfo[eadr] == 0xFF) {
  1315. pwr5g->ofdm_diff[path][i] = 0x04;
  1316. } else {
  1317. pwr5g->ofdm_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1318. /*bit sign number to 8 bit sign number*/
  1319. if (pwr5g->ofdm_diff[path][i] & BIT(3))
  1320. pwr5g->ofdm_diff[path][i] |= 0xF0;
  1321. }
  1322. }
  1323. static void set_diff1_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1324. u32 i, u32 eadr)
  1325. {
  1326. if (hwinfo[eadr] == 0xFF) {
  1327. pwr2g->bw40_diff[path][i] = 0xFE;
  1328. } else {
  1329. pwr2g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1330. if (pwr2g->bw40_diff[path][i] & BIT(3))
  1331. pwr2g->bw40_diff[path][i] |= 0xF0;
  1332. }
  1333. if (hwinfo[eadr] == 0xFF) {
  1334. pwr2g->bw20_diff[path][i] = 0xFE;
  1335. } else {
  1336. pwr2g->bw20_diff[path][i] = (hwinfo[eadr]&0x0f);
  1337. if (pwr2g->bw20_diff[path][i] & BIT(3))
  1338. pwr2g->bw20_diff[path][i] |= 0xF0;
  1339. }
  1340. }
  1341. static void set_diff1_5g(struct txpower_info_5g *pwr5g, u8 *hwinfo, u32 path,
  1342. u32 i, u32 eadr)
  1343. {
  1344. if (hwinfo[eadr] == 0xFF) {
  1345. pwr5g->bw40_diff[path][i] = 0xFE;
  1346. } else {
  1347. pwr5g->bw40_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1348. if (pwr5g->bw40_diff[path][i] & BIT(3))
  1349. pwr5g->bw40_diff[path][i] |= 0xF0;
  1350. }
  1351. if (hwinfo[eadr] == 0xFF) {
  1352. pwr5g->bw20_diff[path][i] = 0xFE;
  1353. } else {
  1354. pwr5g->bw20_diff[path][i] = (hwinfo[eadr] & 0x0f);
  1355. if (pwr5g->bw20_diff[path][i] & BIT(3))
  1356. pwr5g->bw20_diff[path][i] |= 0xF0;
  1357. }
  1358. }
  1359. static void set_diff2_2g(struct txpower_info_2g *pwr2g, u8 *hwinfo, u32 path,
  1360. u32 i, u32 eadr)
  1361. {
  1362. if (hwinfo[eadr] == 0xFF) {
  1363. pwr2g->ofdm_diff[path][i] = 0xFE;
  1364. } else {
  1365. pwr2g->ofdm_diff[path][i] = (hwinfo[eadr]&0xf0)>>4;
  1366. if (pwr2g->ofdm_diff[path][i] & BIT(3))
  1367. pwr2g->ofdm_diff[path][i] |= 0xF0;
  1368. }
  1369. if (hwinfo[eadr] == 0xFF) {
  1370. pwr2g->cck_diff[path][i] = 0xFE;
  1371. } else {
  1372. pwr2g->cck_diff[path][i] = (hwinfo[eadr]&0x0f);
  1373. if (pwr2g->cck_diff[path][i] & BIT(3))
  1374. pwr2g->cck_diff[path][i] |= 0xF0;
  1375. }
  1376. }
  1377. static void _rtl8188e_read_power_value_fromprom(struct ieee80211_hw *hw,
  1378. struct txpower_info_2g *pwr2g,
  1379. struct txpower_info_5g *pwr5g,
  1380. bool autoload_fail,
  1381. u8 *hwinfo)
  1382. {
  1383. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1384. u32 path, eadr = EEPROM_TX_PWR_INX, i;
  1385. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1386. "hal_ReadPowerValueFromPROM88E(): PROMContent[0x%x]= 0x%x\n",
  1387. (eadr+1), hwinfo[eadr+1]);
  1388. if (0xFF == hwinfo[eadr+1])
  1389. autoload_fail = true;
  1390. if (autoload_fail) {
  1391. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1392. "auto load fail : Use Default value!\n");
  1393. for (path = 0; path < MAX_RF_PATH; path++) {
  1394. /* 2.4G default value */
  1395. for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
  1396. pwr2g->index_cck_base[path][i] = 0x2D;
  1397. pwr2g->index_bw40_base[path][i] = 0x2D;
  1398. }
  1399. for (i = 0; i < MAX_TX_COUNT; i++) {
  1400. if (i == 0) {
  1401. pwr2g->bw20_diff[path][0] = 0x02;
  1402. pwr2g->ofdm_diff[path][0] = 0x04;
  1403. } else {
  1404. pwr2g->bw20_diff[path][i] = 0xFE;
  1405. pwr2g->bw40_diff[path][i] = 0xFE;
  1406. pwr2g->cck_diff[path][i] = 0xFE;
  1407. pwr2g->ofdm_diff[path][i] = 0xFE;
  1408. }
  1409. }
  1410. }
  1411. return;
  1412. }
  1413. for (path = 0; path < MAX_RF_PATH; path++) {
  1414. /*2.4G default value*/
  1415. for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
  1416. pwr2g->index_cck_base[path][i] = hwinfo[eadr++];
  1417. if (pwr2g->index_cck_base[path][i] == 0xFF)
  1418. pwr2g->index_cck_base[path][i] = 0x2D;
  1419. }
  1420. for (i = 0; i < MAX_CHNL_GROUP_24G; i++) {
  1421. pwr2g->index_bw40_base[path][i] = hwinfo[eadr++];
  1422. if (pwr2g->index_bw40_base[path][i] == 0xFF)
  1423. pwr2g->index_bw40_base[path][i] = 0x2D;
  1424. }
  1425. for (i = 0; i < MAX_TX_COUNT; i++) {
  1426. if (i == 0) {
  1427. set_diff0_2g(pwr2g, hwinfo, path, i, eadr);
  1428. eadr++;
  1429. } else {
  1430. set_diff1_2g(pwr2g, hwinfo, path, i, eadr);
  1431. eadr++;
  1432. set_diff2_2g(pwr2g, hwinfo, path, i, eadr);
  1433. eadr++;
  1434. }
  1435. }
  1436. /*5G default value*/
  1437. for (i = 0; i < MAX_CHNL_GROUP_5G; i++) {
  1438. pwr5g->index_bw40_base[path][i] = hwinfo[eadr++];
  1439. if (pwr5g->index_bw40_base[path][i] == 0xFF)
  1440. pwr5g->index_bw40_base[path][i] = 0xFE;
  1441. }
  1442. for (i = 0; i < MAX_TX_COUNT; i++) {
  1443. if (i == 0) {
  1444. set_diff0_5g(pwr5g, hwinfo, path, i, eadr);
  1445. eadr++;
  1446. } else {
  1447. set_diff1_5g(pwr5g, hwinfo, path, i, eadr);
  1448. eadr++;
  1449. }
  1450. }
  1451. if (hwinfo[eadr] == 0xFF) {
  1452. pwr5g->ofdm_diff[path][1] = 0xFE;
  1453. pwr5g->ofdm_diff[path][2] = 0xFE;
  1454. } else {
  1455. pwr5g->ofdm_diff[path][1] = (hwinfo[eadr] & 0xf0) >> 4;
  1456. pwr5g->ofdm_diff[path][2] = (hwinfo[eadr] & 0x0f);
  1457. }
  1458. eadr++;
  1459. if (hwinfo[eadr] == 0xFF)
  1460. pwr5g->ofdm_diff[path][3] = 0xFE;
  1461. else
  1462. pwr5g->ofdm_diff[path][3] = (hwinfo[eadr]&0x0f);
  1463. eadr++;
  1464. for (i = 1; i < MAX_TX_COUNT; i++) {
  1465. if (pwr5g->ofdm_diff[path][i] == 0xFF)
  1466. pwr5g->ofdm_diff[path][i] = 0xFE;
  1467. else if (pwr5g->ofdm_diff[path][i] & BIT(3))
  1468. pwr5g->ofdm_diff[path][i] |= 0xF0;
  1469. }
  1470. }
  1471. }
  1472. static void _rtl88ee_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  1473. bool autoload_fail,
  1474. u8 *hwinfo)
  1475. {
  1476. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1477. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1478. struct txpower_info_2g pwrinfo24g;
  1479. struct txpower_info_5g pwrinfo5g;
  1480. u8 rf_path, index;
  1481. u8 i;
  1482. int jj = EEPROM_RF_BOARD_OPTION_88E;
  1483. int kk = EEPROM_THERMAL_METER_88E;
  1484. _rtl8188e_read_power_value_fromprom(hw, &pwrinfo24g, &pwrinfo5g,
  1485. autoload_fail, hwinfo);
  1486. for (rf_path = 0; rf_path < 2; rf_path++) {
  1487. for (i = 0; i < 14; i++) {
  1488. index = get_chnl_group(i+1);
  1489. rtlefuse->txpwrlevel_cck[rf_path][i] =
  1490. pwrinfo24g.index_cck_base[rf_path][index];
  1491. if (i == 13)
  1492. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1493. pwrinfo24g.index_bw40_base[rf_path][4];
  1494. else
  1495. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  1496. pwrinfo24g.index_bw40_base[rf_path][index];
  1497. rtlefuse->txpwr_ht20diff[rf_path][i] =
  1498. pwrinfo24g.bw20_diff[rf_path][0];
  1499. rtlefuse->txpwr_legacyhtdiff[rf_path][i] =
  1500. pwrinfo24g.ofdm_diff[rf_path][0];
  1501. }
  1502. for (i = 0; i < 14; i++) {
  1503. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1504. "RF(%d)-Ch(%d) [CCK / HT40_1S ] = "
  1505. "[0x%x / 0x%x ]\n", rf_path, i,
  1506. rtlefuse->txpwrlevel_cck[rf_path][i],
  1507. rtlefuse->txpwrlevel_ht40_1s[rf_path][i]);
  1508. }
  1509. }
  1510. if (!autoload_fail)
  1511. rtlefuse->eeprom_thermalmeter = hwinfo[kk];
  1512. else
  1513. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1514. if (rtlefuse->eeprom_thermalmeter == 0xff || autoload_fail) {
  1515. rtlefuse->apk_thermalmeterignore = true;
  1516. rtlefuse->eeprom_thermalmeter = EEPROM_DEFAULT_THERMALMETER;
  1517. }
  1518. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  1519. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1520. "thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
  1521. if (!autoload_fail) {
  1522. rtlefuse->eeprom_regulatory = hwinfo[jj] & 0x07;/*bit0~2*/
  1523. if (hwinfo[jj] == 0xFF)
  1524. rtlefuse->eeprom_regulatory = 0;
  1525. } else {
  1526. rtlefuse->eeprom_regulatory = 0;
  1527. }
  1528. RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
  1529. "eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
  1530. }
  1531. static void _rtl88ee_read_adapter_info(struct ieee80211_hw *hw)
  1532. {
  1533. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1534. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1535. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1536. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  1537. u16 i, usvalue;
  1538. u8 hwinfo[HWSET_MAX_SIZE];
  1539. u16 eeprom_id;
  1540. int jj = EEPROM_RF_BOARD_OPTION_88E;
  1541. int kk = EEPROM_RF_FEATURE_OPTION_88E;
  1542. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  1543. rtl_efuse_shadow_map_update(hw);
  1544. memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  1545. HWSET_MAX_SIZE);
  1546. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  1547. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1548. "RTL819X Not boot from eeprom, check it !!");
  1549. }
  1550. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, ("MAP\n"),
  1551. hwinfo, HWSET_MAX_SIZE);
  1552. eeprom_id = *((u16 *)&hwinfo[0]);
  1553. if (eeprom_id != RTL8188E_EEPROM_ID) {
  1554. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1555. "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
  1556. rtlefuse->autoload_failflag = true;
  1557. } else {
  1558. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1559. rtlefuse->autoload_failflag = false;
  1560. }
  1561. if (rtlefuse->autoload_failflag == true)
  1562. return;
  1563. /*VID DID SVID SDID*/
  1564. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  1565. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  1566. rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
  1567. rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
  1568. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1569. "EEPROMId = 0x%4x\n", eeprom_id);
  1570. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1571. "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
  1572. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1573. "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
  1574. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1575. "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
  1576. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1577. "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
  1578. /*customer ID*/
  1579. rtlefuse->eeprom_oemid = hwinfo[EEPROM_CUSTOMER_ID];
  1580. if (rtlefuse->eeprom_oemid == 0xFF)
  1581. rtlefuse->eeprom_oemid = 0;
  1582. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1583. "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
  1584. /*EEPROM version*/
  1585. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  1586. /*mac address*/
  1587. for (i = 0; i < 6; i += 2) {
  1588. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  1589. *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
  1590. }
  1591. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1592. "dev_addr: %pM\n", rtlefuse->dev_addr);
  1593. /*channel plan */
  1594. rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
  1595. /* set channel paln to world wide 13 */
  1596. rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
  1597. /*tx power*/
  1598. _rtl88ee_read_txpower_info_from_hwpg(hw, rtlefuse->autoload_failflag,
  1599. hwinfo);
  1600. rtlefuse->txpwr_fromeprom = true;
  1601. rtl8188ee_read_bt_coexist_info_from_hwpg(hw,
  1602. rtlefuse->autoload_failflag,
  1603. hwinfo);
  1604. /*board type*/
  1605. rtlefuse->board_type = (hwinfo[jj] & 0xE0) >> 5;
  1606. /*Wake on wlan*/
  1607. rtlefuse->wowlan_enable = ((hwinfo[kk] & 0x40) >> 6);
  1608. /*parse xtal*/
  1609. rtlefuse->crystalcap = hwinfo[EEPROM_XTAL_88E];
  1610. if (hwinfo[EEPROM_XTAL_88E])
  1611. rtlefuse->crystalcap = 0x20;
  1612. /*antenna diversity*/
  1613. rtlefuse->antenna_div_cfg = (hwinfo[jj] & 0x18) >> 3;
  1614. if (hwinfo[jj] == 0xFF)
  1615. rtlefuse->antenna_div_cfg = 0;
  1616. if (rppriv->bt_coexist.eeprom_bt_coexist != 0 &&
  1617. rppriv->bt_coexist.eeprom_bt_ant_num == ANT_X1)
  1618. rtlefuse->antenna_div_cfg = 0;
  1619. rtlefuse->antenna_div_type = hwinfo[EEPROM_RF_ANTENNA_OPT_88E];
  1620. if (rtlefuse->antenna_div_type == 0xFF)
  1621. rtlefuse->antenna_div_type = 0x01;
  1622. if (rtlefuse->antenna_div_type == CG_TRX_HW_ANTDIV ||
  1623. rtlefuse->antenna_div_type == CGCS_RX_HW_ANTDIV)
  1624. rtlefuse->antenna_div_cfg = 1;
  1625. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  1626. switch (rtlefuse->eeprom_oemid) {
  1627. case EEPROM_CID_DEFAULT:
  1628. if (rtlefuse->eeprom_did == 0x8179) {
  1629. if (rtlefuse->eeprom_svid == 0x1025) {
  1630. rtlhal->oem_id = RT_CID_819X_ACER;
  1631. } else if ((rtlefuse->eeprom_svid == 0x10EC &&
  1632. rtlefuse->eeprom_smid == 0x0179) ||
  1633. (rtlefuse->eeprom_svid == 0x17AA &&
  1634. rtlefuse->eeprom_smid == 0x0179)) {
  1635. rtlhal->oem_id = RT_CID_819X_LENOVO;
  1636. } else if (rtlefuse->eeprom_svid == 0x103c &&
  1637. rtlefuse->eeprom_smid == 0x197d) {
  1638. rtlhal->oem_id = RT_CID_819X_HP;
  1639. } else {
  1640. rtlhal->oem_id = RT_CID_DEFAULT;
  1641. }
  1642. } else {
  1643. rtlhal->oem_id = RT_CID_DEFAULT;
  1644. }
  1645. break;
  1646. case EEPROM_CID_TOSHIBA:
  1647. rtlhal->oem_id = RT_CID_TOSHIBA;
  1648. break;
  1649. case EEPROM_CID_QMI:
  1650. rtlhal->oem_id = RT_CID_819X_QMI;
  1651. break;
  1652. case EEPROM_CID_WHQL:
  1653. default:
  1654. rtlhal->oem_id = RT_CID_DEFAULT;
  1655. break;
  1656. }
  1657. }
  1658. }
  1659. static void _rtl88ee_hal_customized_behavior(struct ieee80211_hw *hw)
  1660. {
  1661. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1662. struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
  1663. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1664. pcipriv->ledctl.led_opendrain = true;
  1665. switch (rtlhal->oem_id) {
  1666. case RT_CID_819X_HP:
  1667. pcipriv->ledctl.led_opendrain = true;
  1668. break;
  1669. case RT_CID_819X_LENOVO:
  1670. case RT_CID_DEFAULT:
  1671. case RT_CID_TOSHIBA:
  1672. case RT_CID_CCX:
  1673. case RT_CID_819X_ACER:
  1674. case RT_CID_WHQL:
  1675. default:
  1676. break;
  1677. }
  1678. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  1679. "RT Customized ID: 0x%02X\n", rtlhal->oem_id);
  1680. }
  1681. void rtl88ee_read_eeprom_info(struct ieee80211_hw *hw)
  1682. {
  1683. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1684. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1685. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1686. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1687. u8 tmp_u1b;
  1688. rtlhal->version = _rtl88ee_read_chip_version(hw);
  1689. if (get_rf_type(rtlphy) == RF_1T1R) {
  1690. rtlpriv->dm.rfpath_rxenable[0] = true;
  1691. } else {
  1692. rtlpriv->dm.rfpath_rxenable[0] = true;
  1693. rtlpriv->dm.rfpath_rxenable[1] = true;
  1694. }
  1695. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
  1696. rtlhal->version);
  1697. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  1698. if (tmp_u1b & BIT(4)) {
  1699. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
  1700. rtlefuse->epromtype = EEPROM_93C46;
  1701. } else {
  1702. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
  1703. rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
  1704. }
  1705. if (tmp_u1b & BIT(5)) {
  1706. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
  1707. rtlefuse->autoload_failflag = false;
  1708. _rtl88ee_read_adapter_info(hw);
  1709. } else {
  1710. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
  1711. }
  1712. _rtl88ee_hal_customized_behavior(hw);
  1713. }
  1714. static void rtl88ee_update_hal_rate_table(struct ieee80211_hw *hw,
  1715. struct ieee80211_sta *sta)
  1716. {
  1717. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1718. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  1719. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1720. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1721. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1722. u32 ratr_value;
  1723. u8 ratr_index = 0;
  1724. u8 nmode = mac->ht_enable;
  1725. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1726. u16 shortgi_rate;
  1727. u32 tmp_ratr_value;
  1728. u8 ctx40 = mac->bw_40;
  1729. u16 cap = sta->ht_cap.cap;
  1730. u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
  1731. u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
  1732. enum wireless_mode wirelessmode = mac->mode;
  1733. if (rtlhal->current_bandtype == BAND_ON_5G)
  1734. ratr_value = sta->supp_rates[1] << 4;
  1735. else
  1736. ratr_value = sta->supp_rates[0];
  1737. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1738. ratr_value = 0xfff;
  1739. ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1740. sta->ht_cap.mcs.rx_mask[0] << 12);
  1741. switch (wirelessmode) {
  1742. case WIRELESS_MODE_B:
  1743. if (ratr_value & 0x0000000c)
  1744. ratr_value &= 0x0000000d;
  1745. else
  1746. ratr_value &= 0x0000000f;
  1747. break;
  1748. case WIRELESS_MODE_G:
  1749. ratr_value &= 0x00000FF5;
  1750. break;
  1751. case WIRELESS_MODE_N_24G:
  1752. case WIRELESS_MODE_N_5G:
  1753. nmode = 1;
  1754. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1755. ratr_value &= 0x0007F005;
  1756. } else {
  1757. u32 ratr_mask;
  1758. if (get_rf_type(rtlphy) == RF_1T2R ||
  1759. get_rf_type(rtlphy) == RF_1T1R)
  1760. ratr_mask = 0x000ff005;
  1761. else
  1762. ratr_mask = 0x0f0ff005;
  1763. ratr_value &= ratr_mask;
  1764. }
  1765. break;
  1766. default:
  1767. if (rtlphy->rf_type == RF_1T2R)
  1768. ratr_value &= 0x000ff0ff;
  1769. else
  1770. ratr_value &= 0x0f0ff0ff;
  1771. break;
  1772. }
  1773. if ((rppriv->bt_coexist.bt_coexistence) &&
  1774. (rppriv->bt_coexist.bt_coexist_type == BT_CSR_BC4) &&
  1775. (rppriv->bt_coexist.bt_cur_state) &&
  1776. (rppriv->bt_coexist.bt_ant_isolation) &&
  1777. ((rppriv->bt_coexist.bt_service == BT_SCO) ||
  1778. (rppriv->bt_coexist.bt_service == BT_BUSY)))
  1779. ratr_value &= 0x0fffcfc0;
  1780. else
  1781. ratr_value &= 0x0FFFFFFF;
  1782. if (nmode && ((ctx40 && short40) ||
  1783. (!ctx40 && short20))) {
  1784. ratr_value |= 0x10000000;
  1785. tmp_ratr_value = (ratr_value >> 12);
  1786. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  1787. if ((1 << shortgi_rate) & tmp_ratr_value)
  1788. break;
  1789. }
  1790. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  1791. (shortgi_rate << 4) | (shortgi_rate);
  1792. }
  1793. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  1794. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1795. "%x\n", rtl_read_dword(rtlpriv, REG_ARFR0));
  1796. }
  1797. static void rtl88ee_update_hal_rate_mask(struct ieee80211_hw *hw,
  1798. struct ieee80211_sta *sta, u8 rssi)
  1799. {
  1800. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1801. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1802. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1803. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1804. struct rtl_sta_info *sta_entry = NULL;
  1805. u32 ratr_bitmap;
  1806. u8 ratr_index;
  1807. u16 cap = sta->ht_cap.cap;
  1808. u8 ctx40 = (cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40) ? 1 : 0;
  1809. u8 short40 = (cap & IEEE80211_HT_CAP_SGI_40) ? 1 : 0;
  1810. u8 short20 = (cap & IEEE80211_HT_CAP_SGI_20) ? 1 : 0;
  1811. enum wireless_mode wirelessmode = 0;
  1812. bool shortgi = false;
  1813. u8 rate_mask[5];
  1814. u8 macid = 0;
  1815. u8 mimo_ps = IEEE80211_SMPS_OFF;
  1816. sta_entry = (struct rtl_sta_info *)sta->drv_priv;
  1817. wirelessmode = sta_entry->wireless_mode;
  1818. if (mac->opmode == NL80211_IFTYPE_STATION ||
  1819. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  1820. ctx40 = mac->bw_40;
  1821. else if (mac->opmode == NL80211_IFTYPE_AP ||
  1822. mac->opmode == NL80211_IFTYPE_ADHOC)
  1823. macid = sta->aid + 1;
  1824. if (rtlhal->current_bandtype == BAND_ON_5G)
  1825. ratr_bitmap = sta->supp_rates[1] << 4;
  1826. else
  1827. ratr_bitmap = sta->supp_rates[0];
  1828. if (mac->opmode == NL80211_IFTYPE_ADHOC)
  1829. ratr_bitmap = 0xfff;
  1830. ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
  1831. sta->ht_cap.mcs.rx_mask[0] << 12);
  1832. switch (wirelessmode) {
  1833. case WIRELESS_MODE_B:
  1834. ratr_index = RATR_INX_WIRELESS_B;
  1835. if (ratr_bitmap & 0x0000000c)
  1836. ratr_bitmap &= 0x0000000d;
  1837. else
  1838. ratr_bitmap &= 0x0000000f;
  1839. break;
  1840. case WIRELESS_MODE_G:
  1841. ratr_index = RATR_INX_WIRELESS_GB;
  1842. if (rssi == 1)
  1843. ratr_bitmap &= 0x00000f00;
  1844. else if (rssi == 2)
  1845. ratr_bitmap &= 0x00000ff0;
  1846. else
  1847. ratr_bitmap &= 0x00000ff5;
  1848. break;
  1849. case WIRELESS_MODE_A:
  1850. ratr_index = RATR_INX_WIRELESS_A;
  1851. ratr_bitmap &= 0x00000ff0;
  1852. break;
  1853. case WIRELESS_MODE_N_24G:
  1854. case WIRELESS_MODE_N_5G:
  1855. ratr_index = RATR_INX_WIRELESS_NGB;
  1856. if (mimo_ps == IEEE80211_SMPS_STATIC) {
  1857. if (rssi == 1)
  1858. ratr_bitmap &= 0x00070000;
  1859. else if (rssi == 2)
  1860. ratr_bitmap &= 0x0007f000;
  1861. else
  1862. ratr_bitmap &= 0x0007f005;
  1863. } else {
  1864. if (rtlphy->rf_type == RF_1T2R ||
  1865. rtlphy->rf_type == RF_1T1R) {
  1866. if (ctx40) {
  1867. if (rssi == 1)
  1868. ratr_bitmap &= 0x000f0000;
  1869. else if (rssi == 2)
  1870. ratr_bitmap &= 0x000ff000;
  1871. else
  1872. ratr_bitmap &= 0x000ff015;
  1873. } else {
  1874. if (rssi == 1)
  1875. ratr_bitmap &= 0x000f0000;
  1876. else if (rssi == 2)
  1877. ratr_bitmap &= 0x000ff000;
  1878. else
  1879. ratr_bitmap &= 0x000ff005;
  1880. }
  1881. } else {
  1882. if (ctx40) {
  1883. if (rssi == 1)
  1884. ratr_bitmap &= 0x0f8f0000;
  1885. else if (rssi == 2)
  1886. ratr_bitmap &= 0x0f8ff000;
  1887. else
  1888. ratr_bitmap &= 0x0f8ff015;
  1889. } else {
  1890. if (rssi == 1)
  1891. ratr_bitmap &= 0x0f8f0000;
  1892. else if (rssi == 2)
  1893. ratr_bitmap &= 0x0f8ff000;
  1894. else
  1895. ratr_bitmap &= 0x0f8ff005;
  1896. }
  1897. }
  1898. }
  1899. if ((ctx40 && short40) || (!ctx40 && short20)) {
  1900. if (macid == 0)
  1901. shortgi = true;
  1902. else if (macid == 1)
  1903. shortgi = false;
  1904. }
  1905. break;
  1906. default:
  1907. ratr_index = RATR_INX_WIRELESS_NGB;
  1908. if (rtlphy->rf_type == RF_1T2R)
  1909. ratr_bitmap &= 0x000ff0ff;
  1910. else
  1911. ratr_bitmap &= 0x0f0ff0ff;
  1912. break;
  1913. }
  1914. sta_entry->ratr_index = ratr_index;
  1915. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1916. "ratr_bitmap :%x\n", ratr_bitmap);
  1917. *(u32 *)&rate_mask = (ratr_bitmap & 0x0fffffff) |
  1918. (ratr_index << 28);
  1919. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  1920. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG,
  1921. "Rate_index:%x, ratr_val:%x, %x:%x:%x:%x:%x\n",
  1922. ratr_index, ratr_bitmap, rate_mask[0], rate_mask[1],
  1923. rate_mask[2], rate_mask[3], rate_mask[4]);
  1924. rtl88e_fill_h2c_cmd(hw, H2C_88E_RA_MASK, 5, rate_mask);
  1925. _rtl88ee_set_bcn_ctrl_reg(hw, BIT(3), 0);
  1926. }
  1927. void rtl88ee_update_hal_rate_tbl(struct ieee80211_hw *hw,
  1928. struct ieee80211_sta *sta, u8 rssi)
  1929. {
  1930. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1931. if (rtlpriv->dm.useramask)
  1932. rtl88ee_update_hal_rate_mask(hw, sta, rssi);
  1933. else
  1934. rtl88ee_update_hal_rate_table(hw, sta);
  1935. }
  1936. void rtl88ee_update_channel_access_setting(struct ieee80211_hw *hw)
  1937. {
  1938. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1939. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1940. u16 sifs_timer;
  1941. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME, &mac->slot_time);
  1942. if (!mac->ht_enable)
  1943. sifs_timer = 0x0a0a;
  1944. else
  1945. sifs_timer = 0x0e0e;
  1946. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  1947. }
  1948. bool rtl88ee_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
  1949. {
  1950. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1951. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1952. enum rf_pwrstate state_toset;
  1953. u32 u4tmp;
  1954. bool actuallyset = false;
  1955. if (rtlpriv->rtlhal.being_init_adapter)
  1956. return false;
  1957. if (ppsc->swrf_processing)
  1958. return false;
  1959. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1960. if (ppsc->rfchange_inprogress) {
  1961. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1962. return false;
  1963. } else {
  1964. ppsc->rfchange_inprogress = true;
  1965. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1966. }
  1967. u4tmp = rtl_read_dword(rtlpriv, REG_GPIO_OUTPUT);
  1968. state_toset = (u4tmp & BIT(31)) ? ERFON : ERFOFF;
  1969. if ((ppsc->hwradiooff == true) && (state_toset == ERFON)) {
  1970. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1971. "GPIOChangeRF - HW Radio ON, RF ON\n");
  1972. state_toset = ERFON;
  1973. ppsc->hwradiooff = false;
  1974. actuallyset = true;
  1975. } else if ((ppsc->hwradiooff == false) && (state_toset == ERFOFF)) {
  1976. RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
  1977. "GPIOChangeRF - HW Radio OFF, RF OFF\n");
  1978. state_toset = ERFOFF;
  1979. ppsc->hwradiooff = true;
  1980. actuallyset = true;
  1981. }
  1982. if (actuallyset) {
  1983. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1984. ppsc->rfchange_inprogress = false;
  1985. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1986. } else {
  1987. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC)
  1988. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1989. spin_lock(&rtlpriv->locks.rf_ps_lock);
  1990. ppsc->rfchange_inprogress = false;
  1991. spin_unlock(&rtlpriv->locks.rf_ps_lock);
  1992. }
  1993. *valid = 1;
  1994. return !ppsc->hwradiooff;
  1995. }
  1996. static void add_one_key(struct ieee80211_hw *hw, u8 *macaddr,
  1997. struct rtl_mac *mac, u32 key, u32 id,
  1998. u8 enc_algo, bool is_pairwise)
  1999. {
  2000. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2001. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  2002. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "add one entry\n");
  2003. if (is_pairwise) {
  2004. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set Pairwise key\n");
  2005. rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
  2006. CAM_CONFIG_NO_USEDK,
  2007. rtlpriv->sec.key_buf[key]);
  2008. } else {
  2009. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "set group key\n");
  2010. if (mac->opmode == NL80211_IFTYPE_ADHOC) {
  2011. rtl_cam_add_one_entry(hw, rtlefuse->dev_addr,
  2012. PAIRWISE_KEYIDX,
  2013. CAM_PAIRWISE_KEY_POSITION,
  2014. enc_algo,
  2015. CAM_CONFIG_NO_USEDK,
  2016. rtlpriv->sec.key_buf[id]);
  2017. }
  2018. rtl_cam_add_one_entry(hw, macaddr, key, id, enc_algo,
  2019. CAM_CONFIG_NO_USEDK,
  2020. rtlpriv->sec.key_buf[id]);
  2021. }
  2022. }
  2023. void rtl88ee_set_key(struct ieee80211_hw *hw, u32 key,
  2024. u8 *mac_ad, bool is_group, u8 enc_algo,
  2025. bool is_wepkey, bool clear_all)
  2026. {
  2027. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2028. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2029. u8 *macaddr = mac_ad;
  2030. u32 id = 0;
  2031. bool is_pairwise = false;
  2032. static u8 cam_const_addr[4][6] = {
  2033. {0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
  2034. {0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
  2035. {0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
  2036. {0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
  2037. };
  2038. static u8 cam_const_broad[] = {
  2039. 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
  2040. };
  2041. if (clear_all) {
  2042. u8 idx = 0;
  2043. u8 cam_offset = 0;
  2044. u8 clear_number = 5;
  2045. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
  2046. for (idx = 0; idx < clear_number; idx++) {
  2047. rtl_cam_mark_invalid(hw, cam_offset + idx);
  2048. rtl_cam_empty_entry(hw, cam_offset + idx);
  2049. if (idx < 5) {
  2050. memset(rtlpriv->sec.key_buf[idx], 0,
  2051. MAX_KEY_LEN);
  2052. rtlpriv->sec.key_len[idx] = 0;
  2053. }
  2054. }
  2055. } else {
  2056. switch (enc_algo) {
  2057. case WEP40_ENCRYPTION:
  2058. enc_algo = CAM_WEP40;
  2059. break;
  2060. case WEP104_ENCRYPTION:
  2061. enc_algo = CAM_WEP104;
  2062. break;
  2063. case TKIP_ENCRYPTION:
  2064. enc_algo = CAM_TKIP;
  2065. break;
  2066. case AESCCMP_ENCRYPTION:
  2067. enc_algo = CAM_AES;
  2068. break;
  2069. default:
  2070. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  2071. "switch case not processed\n");
  2072. enc_algo = CAM_TKIP;
  2073. break;
  2074. }
  2075. if (is_wepkey || rtlpriv->sec.use_defaultkey) {
  2076. macaddr = cam_const_addr[key];
  2077. id = key;
  2078. } else {
  2079. if (is_group) {
  2080. macaddr = cam_const_broad;
  2081. id = key;
  2082. } else {
  2083. if (mac->opmode == NL80211_IFTYPE_AP ||
  2084. mac->opmode == NL80211_IFTYPE_MESH_POINT) {
  2085. id = rtl_cam_get_free_entry(hw, mac_ad);
  2086. if (id >= TOTAL_CAM_ENTRY) {
  2087. RT_TRACE(rtlpriv, COMP_SEC,
  2088. DBG_EMERG,
  2089. "Can not find free hw security cam entry\n");
  2090. return;
  2091. }
  2092. } else {
  2093. id = CAM_PAIRWISE_KEY_POSITION;
  2094. }
  2095. key = PAIRWISE_KEYIDX;
  2096. is_pairwise = true;
  2097. }
  2098. }
  2099. if (rtlpriv->sec.key_len[key] == 0) {
  2100. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  2101. "delete one entry, id is %d\n", id);
  2102. if (mac->opmode == NL80211_IFTYPE_AP ||
  2103. mac->opmode == NL80211_IFTYPE_MESH_POINT)
  2104. rtl_cam_del_entry(hw, mac_ad);
  2105. rtl_cam_delete_one_entry(hw, mac_ad, id);
  2106. } else {
  2107. add_one_key(hw, macaddr, mac, key, id, enc_algo,
  2108. is_pairwise);
  2109. }
  2110. }
  2111. }
  2112. static void rtl8188ee_bt_var_init(struct ieee80211_hw *hw)
  2113. {
  2114. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2115. struct bt_coexist_info coexist = rppriv->bt_coexist;
  2116. coexist.bt_coexistence = rppriv->bt_coexist.eeprom_bt_coexist;
  2117. coexist.bt_ant_num = coexist.eeprom_bt_ant_num;
  2118. coexist.bt_coexist_type = coexist.eeprom_bt_type;
  2119. if (coexist.reg_bt_iso == 2)
  2120. coexist.bt_ant_isolation = coexist.eeprom_bt_ant_isol;
  2121. else
  2122. coexist.bt_ant_isolation = coexist.reg_bt_iso;
  2123. coexist.bt_radio_shared_type = coexist.eeprom_bt_radio_shared;
  2124. if (coexist.bt_coexistence) {
  2125. if (coexist.reg_bt_sco == 1)
  2126. coexist.bt_service = BT_OTHER_ACTION;
  2127. else if (coexist.reg_bt_sco == 2)
  2128. coexist.bt_service = BT_SCO;
  2129. else if (coexist.reg_bt_sco == 4)
  2130. coexist.bt_service = BT_BUSY;
  2131. else if (coexist.reg_bt_sco == 5)
  2132. coexist.bt_service = BT_OTHERBUSY;
  2133. else
  2134. coexist.bt_service = BT_IDLE;
  2135. coexist.bt_edca_ul = 0;
  2136. coexist.bt_edca_dl = 0;
  2137. coexist.bt_rssi_state = 0xff;
  2138. }
  2139. }
  2140. void rtl8188ee_read_bt_coexist_info_from_hwpg(struct ieee80211_hw *hw,
  2141. bool auto_load_fail, u8 *hwinfo)
  2142. {
  2143. rtl8188ee_bt_var_init(hw);
  2144. }
  2145. void rtl8188ee_bt_reg_init(struct ieee80211_hw *hw)
  2146. {
  2147. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2148. /* 0:Low, 1:High, 2:From Efuse. */
  2149. rppriv->bt_coexist.reg_bt_iso = 2;
  2150. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter. */
  2151. rppriv->bt_coexist.reg_bt_sco = 3;
  2152. /* 0:Disable BT control A-MPDU, 1:Enable BT control A-MPDU. */
  2153. rppriv->bt_coexist.reg_bt_sco = 0;
  2154. }
  2155. void rtl8188ee_bt_hw_init(struct ieee80211_hw *hw)
  2156. {
  2157. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2158. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2159. struct rtl_pci_priv *rppriv = rtl_pcipriv(hw);
  2160. struct bt_coexist_info coexist = rppriv->bt_coexist;
  2161. u8 u1_tmp;
  2162. if (coexist.bt_coexistence &&
  2163. ((coexist.bt_coexist_type == BT_CSR_BC4) ||
  2164. coexist.bt_coexist_type == BT_CSR_BC8)) {
  2165. if (coexist.bt_ant_isolation)
  2166. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG, 0xa0);
  2167. u1_tmp = rtl_read_byte(rtlpriv, 0x4fd) &
  2168. BIT_OFFSET_LEN_MASK_32(0, 1);
  2169. u1_tmp = u1_tmp | ((coexist.bt_ant_isolation == 1) ?
  2170. 0 : BIT_OFFSET_LEN_MASK_32(1, 1)) |
  2171. ((coexist.bt_service == BT_SCO) ?
  2172. 0 : BIT_OFFSET_LEN_MASK_32(2, 1));
  2173. rtl_write_byte(rtlpriv, 0x4fd, u1_tmp);
  2174. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+4, 0xaaaa9aaa);
  2175. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+8, 0xffbd0040);
  2176. rtl_write_dword(rtlpriv, REG_BT_COEX_TABLE+0xc, 0x40000010);
  2177. /* Config to 1T1R. */
  2178. if (rtlphy->rf_type == RF_1T1R) {
  2179. u1_tmp = rtl_read_byte(rtlpriv, ROFDM0_TRXPATHENABLE);
  2180. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2181. rtl_write_byte(rtlpriv, ROFDM0_TRXPATHENABLE, u1_tmp);
  2182. u1_tmp = rtl_read_byte(rtlpriv, ROFDM1_TRXPATHENABLE);
  2183. u1_tmp &= ~(BIT_OFFSET_LEN_MASK_32(1, 1));
  2184. rtl_write_byte(rtlpriv, ROFDM1_TRXPATHENABLE, u1_tmp);
  2185. }
  2186. }
  2187. }
  2188. void rtl88ee_suspend(struct ieee80211_hw *hw)
  2189. {
  2190. }
  2191. void rtl88ee_resume(struct ieee80211_hw *hw)
  2192. {
  2193. }