mac80211_hwsim.c 73 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728
  1. /*
  2. * mac80211_hwsim - software simulator of 802.11 radio(s) for mac80211
  3. * Copyright (c) 2008, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2011, Javier Lopez <jlopex@gmail.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. /*
  11. * TODO:
  12. * - Add TSF sync and fix IBSS beacon transmission by adding
  13. * competition for "air time" at TBTT
  14. * - RX filtering based on filter configuration (data->rx_filter)
  15. */
  16. #include <linux/list.h>
  17. #include <linux/slab.h>
  18. #include <linux/spinlock.h>
  19. #include <net/dst.h>
  20. #include <net/xfrm.h>
  21. #include <net/mac80211.h>
  22. #include <net/ieee80211_radiotap.h>
  23. #include <linux/if_arp.h>
  24. #include <linux/rtnetlink.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/platform_device.h>
  27. #include <linux/debugfs.h>
  28. #include <linux/module.h>
  29. #include <linux/ktime.h>
  30. #include <net/genetlink.h>
  31. #include "mac80211_hwsim.h"
  32. #define WARN_QUEUE 100
  33. #define MAX_QUEUE 200
  34. MODULE_AUTHOR("Jouni Malinen");
  35. MODULE_DESCRIPTION("Software simulator of 802.11 radio(s) for mac80211");
  36. MODULE_LICENSE("GPL");
  37. static u32 wmediumd_portid;
  38. static int radios = 2;
  39. module_param(radios, int, 0444);
  40. MODULE_PARM_DESC(radios, "Number of simulated radios");
  41. static int channels = 1;
  42. module_param(channels, int, 0444);
  43. MODULE_PARM_DESC(channels, "Number of concurrent channels");
  44. static bool paged_rx = false;
  45. module_param(paged_rx, bool, 0644);
  46. MODULE_PARM_DESC(paged_rx, "Use paged SKBs for RX instead of linear ones");
  47. static bool rctbl = false;
  48. module_param(rctbl, bool, 0444);
  49. MODULE_PARM_DESC(rctbl, "Handle rate control table");
  50. static bool support_p2p_device = true;
  51. module_param(support_p2p_device, bool, 0444);
  52. MODULE_PARM_DESC(support_p2p_device, "Support P2P-Device interface type");
  53. /**
  54. * enum hwsim_regtest - the type of regulatory tests we offer
  55. *
  56. * These are the different values you can use for the regtest
  57. * module parameter. This is useful to help test world roaming
  58. * and the driver regulatory_hint() call and combinations of these.
  59. * If you want to do specific alpha2 regulatory domain tests simply
  60. * use the userspace regulatory request as that will be respected as
  61. * well without the need of this module parameter. This is designed
  62. * only for testing the driver regulatory request, world roaming
  63. * and all possible combinations.
  64. *
  65. * @HWSIM_REGTEST_DISABLED: No regulatory tests are performed,
  66. * this is the default value.
  67. * @HWSIM_REGTEST_DRIVER_REG_FOLLOW: Used for testing the driver regulatory
  68. * hint, only one driver regulatory hint will be sent as such the
  69. * secondary radios are expected to follow.
  70. * @HWSIM_REGTEST_DRIVER_REG_ALL: Used for testing the driver regulatory
  71. * request with all radios reporting the same regulatory domain.
  72. * @HWSIM_REGTEST_DIFF_COUNTRY: Used for testing the drivers calling
  73. * different regulatory domains requests. Expected behaviour is for
  74. * an intersection to occur but each device will still use their
  75. * respective regulatory requested domains. Subsequent radios will
  76. * use the resulting intersection.
  77. * @HWSIM_REGTEST_WORLD_ROAM: Used for testing the world roaming. We accomplish
  78. * this by using a custom beacon-capable regulatory domain for the first
  79. * radio. All other device world roam.
  80. * @HWSIM_REGTEST_CUSTOM_WORLD: Used for testing the custom world regulatory
  81. * domain requests. All radios will adhere to this custom world regulatory
  82. * domain.
  83. * @HWSIM_REGTEST_CUSTOM_WORLD_2: Used for testing 2 custom world regulatory
  84. * domain requests. The first radio will adhere to the first custom world
  85. * regulatory domain, the second one to the second custom world regulatory
  86. * domain. All other devices will world roam.
  87. * @HWSIM_REGTEST_STRICT_FOLLOW_: Used for testing strict regulatory domain
  88. * settings, only the first radio will send a regulatory domain request
  89. * and use strict settings. The rest of the radios are expected to follow.
  90. * @HWSIM_REGTEST_STRICT_ALL: Used for testing strict regulatory domain
  91. * settings. All radios will adhere to this.
  92. * @HWSIM_REGTEST_STRICT_AND_DRIVER_REG: Used for testing strict regulatory
  93. * domain settings, combined with secondary driver regulatory domain
  94. * settings. The first radio will get a strict regulatory domain setting
  95. * using the first driver regulatory request and the second radio will use
  96. * non-strict settings using the second driver regulatory request. All
  97. * other devices should follow the intersection created between the
  98. * first two.
  99. * @HWSIM_REGTEST_ALL: Used for testing every possible mix. You will need
  100. * at least 6 radios for a complete test. We will test in this order:
  101. * 1 - driver custom world regulatory domain
  102. * 2 - second custom world regulatory domain
  103. * 3 - first driver regulatory domain request
  104. * 4 - second driver regulatory domain request
  105. * 5 - strict regulatory domain settings using the third driver regulatory
  106. * domain request
  107. * 6 and on - should follow the intersection of the 3rd, 4rth and 5th radio
  108. * regulatory requests.
  109. */
  110. enum hwsim_regtest {
  111. HWSIM_REGTEST_DISABLED = 0,
  112. HWSIM_REGTEST_DRIVER_REG_FOLLOW = 1,
  113. HWSIM_REGTEST_DRIVER_REG_ALL = 2,
  114. HWSIM_REGTEST_DIFF_COUNTRY = 3,
  115. HWSIM_REGTEST_WORLD_ROAM = 4,
  116. HWSIM_REGTEST_CUSTOM_WORLD = 5,
  117. HWSIM_REGTEST_CUSTOM_WORLD_2 = 6,
  118. HWSIM_REGTEST_STRICT_FOLLOW = 7,
  119. HWSIM_REGTEST_STRICT_ALL = 8,
  120. HWSIM_REGTEST_STRICT_AND_DRIVER_REG = 9,
  121. HWSIM_REGTEST_ALL = 10,
  122. };
  123. /* Set to one of the HWSIM_REGTEST_* values above */
  124. static int regtest = HWSIM_REGTEST_DISABLED;
  125. module_param(regtest, int, 0444);
  126. MODULE_PARM_DESC(regtest, "The type of regulatory test we want to run");
  127. static const char *hwsim_alpha2s[] = {
  128. "FI",
  129. "AL",
  130. "US",
  131. "DE",
  132. "JP",
  133. "AL",
  134. };
  135. static const struct ieee80211_regdomain hwsim_world_regdom_custom_01 = {
  136. .n_reg_rules = 4,
  137. .alpha2 = "99",
  138. .reg_rules = {
  139. REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
  140. REG_RULE(2484-10, 2484+10, 40, 0, 20, 0),
  141. REG_RULE(5150-10, 5240+10, 40, 0, 30, 0),
  142. REG_RULE(5745-10, 5825+10, 40, 0, 30, 0),
  143. }
  144. };
  145. static const struct ieee80211_regdomain hwsim_world_regdom_custom_02 = {
  146. .n_reg_rules = 2,
  147. .alpha2 = "99",
  148. .reg_rules = {
  149. REG_RULE(2412-10, 2462+10, 40, 0, 20, 0),
  150. REG_RULE(5725-10, 5850+10, 40, 0, 30,
  151. NL80211_RRF_NO_IR),
  152. }
  153. };
  154. static const struct ieee80211_regdomain *hwsim_world_regdom_custom[] = {
  155. &hwsim_world_regdom_custom_01,
  156. &hwsim_world_regdom_custom_02,
  157. };
  158. struct hwsim_vif_priv {
  159. u32 magic;
  160. u8 bssid[ETH_ALEN];
  161. bool assoc;
  162. bool bcn_en;
  163. u16 aid;
  164. };
  165. #define HWSIM_VIF_MAGIC 0x69537748
  166. static inline void hwsim_check_magic(struct ieee80211_vif *vif)
  167. {
  168. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  169. WARN(vp->magic != HWSIM_VIF_MAGIC,
  170. "Invalid VIF (%p) magic %#x, %pM, %d/%d\n",
  171. vif, vp->magic, vif->addr, vif->type, vif->p2p);
  172. }
  173. static inline void hwsim_set_magic(struct ieee80211_vif *vif)
  174. {
  175. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  176. vp->magic = HWSIM_VIF_MAGIC;
  177. }
  178. static inline void hwsim_clear_magic(struct ieee80211_vif *vif)
  179. {
  180. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  181. vp->magic = 0;
  182. }
  183. struct hwsim_sta_priv {
  184. u32 magic;
  185. };
  186. #define HWSIM_STA_MAGIC 0x6d537749
  187. static inline void hwsim_check_sta_magic(struct ieee80211_sta *sta)
  188. {
  189. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  190. WARN_ON(sp->magic != HWSIM_STA_MAGIC);
  191. }
  192. static inline void hwsim_set_sta_magic(struct ieee80211_sta *sta)
  193. {
  194. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  195. sp->magic = HWSIM_STA_MAGIC;
  196. }
  197. static inline void hwsim_clear_sta_magic(struct ieee80211_sta *sta)
  198. {
  199. struct hwsim_sta_priv *sp = (void *)sta->drv_priv;
  200. sp->magic = 0;
  201. }
  202. struct hwsim_chanctx_priv {
  203. u32 magic;
  204. };
  205. #define HWSIM_CHANCTX_MAGIC 0x6d53774a
  206. static inline void hwsim_check_chanctx_magic(struct ieee80211_chanctx_conf *c)
  207. {
  208. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  209. WARN_ON(cp->magic != HWSIM_CHANCTX_MAGIC);
  210. }
  211. static inline void hwsim_set_chanctx_magic(struct ieee80211_chanctx_conf *c)
  212. {
  213. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  214. cp->magic = HWSIM_CHANCTX_MAGIC;
  215. }
  216. static inline void hwsim_clear_chanctx_magic(struct ieee80211_chanctx_conf *c)
  217. {
  218. struct hwsim_chanctx_priv *cp = (void *)c->drv_priv;
  219. cp->magic = 0;
  220. }
  221. static struct class *hwsim_class;
  222. static struct net_device *hwsim_mon; /* global monitor netdev */
  223. #define CHAN2G(_freq) { \
  224. .band = IEEE80211_BAND_2GHZ, \
  225. .center_freq = (_freq), \
  226. .hw_value = (_freq), \
  227. .max_power = 20, \
  228. }
  229. #define CHAN5G(_freq) { \
  230. .band = IEEE80211_BAND_5GHZ, \
  231. .center_freq = (_freq), \
  232. .hw_value = (_freq), \
  233. .max_power = 20, \
  234. }
  235. static const struct ieee80211_channel hwsim_channels_2ghz[] = {
  236. CHAN2G(2412), /* Channel 1 */
  237. CHAN2G(2417), /* Channel 2 */
  238. CHAN2G(2422), /* Channel 3 */
  239. CHAN2G(2427), /* Channel 4 */
  240. CHAN2G(2432), /* Channel 5 */
  241. CHAN2G(2437), /* Channel 6 */
  242. CHAN2G(2442), /* Channel 7 */
  243. CHAN2G(2447), /* Channel 8 */
  244. CHAN2G(2452), /* Channel 9 */
  245. CHAN2G(2457), /* Channel 10 */
  246. CHAN2G(2462), /* Channel 11 */
  247. CHAN2G(2467), /* Channel 12 */
  248. CHAN2G(2472), /* Channel 13 */
  249. CHAN2G(2484), /* Channel 14 */
  250. };
  251. static const struct ieee80211_channel hwsim_channels_5ghz[] = {
  252. CHAN5G(5180), /* Channel 36 */
  253. CHAN5G(5200), /* Channel 40 */
  254. CHAN5G(5220), /* Channel 44 */
  255. CHAN5G(5240), /* Channel 48 */
  256. CHAN5G(5260), /* Channel 52 */
  257. CHAN5G(5280), /* Channel 56 */
  258. CHAN5G(5300), /* Channel 60 */
  259. CHAN5G(5320), /* Channel 64 */
  260. CHAN5G(5500), /* Channel 100 */
  261. CHAN5G(5520), /* Channel 104 */
  262. CHAN5G(5540), /* Channel 108 */
  263. CHAN5G(5560), /* Channel 112 */
  264. CHAN5G(5580), /* Channel 116 */
  265. CHAN5G(5600), /* Channel 120 */
  266. CHAN5G(5620), /* Channel 124 */
  267. CHAN5G(5640), /* Channel 128 */
  268. CHAN5G(5660), /* Channel 132 */
  269. CHAN5G(5680), /* Channel 136 */
  270. CHAN5G(5700), /* Channel 140 */
  271. CHAN5G(5745), /* Channel 149 */
  272. CHAN5G(5765), /* Channel 153 */
  273. CHAN5G(5785), /* Channel 157 */
  274. CHAN5G(5805), /* Channel 161 */
  275. CHAN5G(5825), /* Channel 165 */
  276. };
  277. static const struct ieee80211_rate hwsim_rates[] = {
  278. { .bitrate = 10 },
  279. { .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  280. { .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  281. { .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  282. { .bitrate = 60 },
  283. { .bitrate = 90 },
  284. { .bitrate = 120 },
  285. { .bitrate = 180 },
  286. { .bitrate = 240 },
  287. { .bitrate = 360 },
  288. { .bitrate = 480 },
  289. { .bitrate = 540 }
  290. };
  291. static const struct ieee80211_iface_limit hwsim_if_limits[] = {
  292. { .max = 1, .types = BIT(NL80211_IFTYPE_ADHOC) },
  293. { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) |
  294. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  295. #ifdef CONFIG_MAC80211_MESH
  296. BIT(NL80211_IFTYPE_MESH_POINT) |
  297. #endif
  298. BIT(NL80211_IFTYPE_AP) |
  299. BIT(NL80211_IFTYPE_P2P_GO) },
  300. /* must be last, see hwsim_if_comb */
  301. { .max = 1, .types = BIT(NL80211_IFTYPE_P2P_DEVICE) }
  302. };
  303. static const struct ieee80211_iface_limit hwsim_if_dfs_limits[] = {
  304. { .max = 8, .types = BIT(NL80211_IFTYPE_AP) },
  305. };
  306. static const struct ieee80211_iface_combination hwsim_if_comb[] = {
  307. {
  308. .limits = hwsim_if_limits,
  309. /* remove the last entry which is P2P_DEVICE */
  310. .n_limits = ARRAY_SIZE(hwsim_if_limits) - 1,
  311. .max_interfaces = 2048,
  312. .num_different_channels = 1,
  313. },
  314. {
  315. .limits = hwsim_if_dfs_limits,
  316. .n_limits = ARRAY_SIZE(hwsim_if_dfs_limits),
  317. .max_interfaces = 8,
  318. .num_different_channels = 1,
  319. .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
  320. BIT(NL80211_CHAN_WIDTH_20) |
  321. BIT(NL80211_CHAN_WIDTH_40) |
  322. BIT(NL80211_CHAN_WIDTH_80) |
  323. BIT(NL80211_CHAN_WIDTH_160),
  324. }
  325. };
  326. static const struct ieee80211_iface_combination hwsim_if_comb_p2p_dev[] = {
  327. {
  328. .limits = hwsim_if_limits,
  329. .n_limits = ARRAY_SIZE(hwsim_if_limits),
  330. .max_interfaces = 2048,
  331. .num_different_channels = 1,
  332. },
  333. {
  334. .limits = hwsim_if_dfs_limits,
  335. .n_limits = ARRAY_SIZE(hwsim_if_dfs_limits),
  336. .max_interfaces = 8,
  337. .num_different_channels = 1,
  338. .radar_detect_widths = BIT(NL80211_CHAN_WIDTH_20_NOHT) |
  339. BIT(NL80211_CHAN_WIDTH_20) |
  340. BIT(NL80211_CHAN_WIDTH_40) |
  341. BIT(NL80211_CHAN_WIDTH_80) |
  342. BIT(NL80211_CHAN_WIDTH_160),
  343. }
  344. };
  345. static spinlock_t hwsim_radio_lock;
  346. static struct list_head hwsim_radios;
  347. static int hwsim_radio_idx;
  348. static struct platform_driver mac80211_hwsim_driver = {
  349. .driver = {
  350. .name = "mac80211_hwsim",
  351. .owner = THIS_MODULE,
  352. },
  353. };
  354. struct mac80211_hwsim_data {
  355. struct list_head list;
  356. struct ieee80211_hw *hw;
  357. struct device *dev;
  358. struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
  359. struct ieee80211_channel channels_2ghz[ARRAY_SIZE(hwsim_channels_2ghz)];
  360. struct ieee80211_channel channels_5ghz[ARRAY_SIZE(hwsim_channels_5ghz)];
  361. struct ieee80211_rate rates[ARRAY_SIZE(hwsim_rates)];
  362. struct ieee80211_iface_combination if_combination;
  363. struct mac_address addresses[2];
  364. int channels, idx;
  365. bool use_chanctx;
  366. struct ieee80211_channel *tmp_chan;
  367. struct delayed_work roc_done;
  368. struct delayed_work hw_scan;
  369. struct cfg80211_scan_request *hw_scan_request;
  370. struct ieee80211_vif *hw_scan_vif;
  371. int scan_chan_idx;
  372. struct ieee80211_channel *channel;
  373. u64 beacon_int /* beacon interval in us */;
  374. unsigned int rx_filter;
  375. bool started, idle, scanning;
  376. struct mutex mutex;
  377. struct tasklet_hrtimer beacon_timer;
  378. enum ps_mode {
  379. PS_DISABLED, PS_ENABLED, PS_AUTO_POLL, PS_MANUAL_POLL
  380. } ps;
  381. bool ps_poll_pending;
  382. struct dentry *debugfs;
  383. struct sk_buff_head pending; /* packets pending */
  384. /*
  385. * Only radios in the same group can communicate together (the
  386. * channel has to match too). Each bit represents a group. A
  387. * radio can be in more then one group.
  388. */
  389. u64 group;
  390. int power_level;
  391. /* difference between this hw's clock and the real clock, in usecs */
  392. s64 tsf_offset;
  393. s64 bcn_delta;
  394. /* absolute beacon transmission time. Used to cover up "tx" delay. */
  395. u64 abs_bcn_ts;
  396. };
  397. struct hwsim_radiotap_hdr {
  398. struct ieee80211_radiotap_header hdr;
  399. __le64 rt_tsft;
  400. u8 rt_flags;
  401. u8 rt_rate;
  402. __le16 rt_channel;
  403. __le16 rt_chbitmask;
  404. } __packed;
  405. struct hwsim_radiotap_ack_hdr {
  406. struct ieee80211_radiotap_header hdr;
  407. u8 rt_flags;
  408. u8 pad;
  409. __le16 rt_channel;
  410. __le16 rt_chbitmask;
  411. } __packed;
  412. /* MAC80211_HWSIM netlinf family */
  413. static struct genl_family hwsim_genl_family = {
  414. .id = GENL_ID_GENERATE,
  415. .hdrsize = 0,
  416. .name = "MAC80211_HWSIM",
  417. .version = 1,
  418. .maxattr = HWSIM_ATTR_MAX,
  419. };
  420. /* MAC80211_HWSIM netlink policy */
  421. static const struct nla_policy hwsim_genl_policy[HWSIM_ATTR_MAX + 1] = {
  422. [HWSIM_ATTR_ADDR_RECEIVER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
  423. [HWSIM_ATTR_ADDR_TRANSMITTER] = { .type = NLA_UNSPEC, .len = ETH_ALEN },
  424. [HWSIM_ATTR_FRAME] = { .type = NLA_BINARY,
  425. .len = IEEE80211_MAX_DATA_LEN },
  426. [HWSIM_ATTR_FLAGS] = { .type = NLA_U32 },
  427. [HWSIM_ATTR_RX_RATE] = { .type = NLA_U32 },
  428. [HWSIM_ATTR_SIGNAL] = { .type = NLA_U32 },
  429. [HWSIM_ATTR_TX_INFO] = { .type = NLA_UNSPEC,
  430. .len = IEEE80211_TX_MAX_RATES *
  431. sizeof(struct hwsim_tx_rate)},
  432. [HWSIM_ATTR_COOKIE] = { .type = NLA_U64 },
  433. [HWSIM_ATTR_CHANNELS] = { .type = NLA_U32 },
  434. [HWSIM_ATTR_RADIO_ID] = { .type = NLA_U32 },
  435. [HWSIM_ATTR_REG_HINT_ALPHA2] = { .type = NLA_STRING, .len = 2 },
  436. [HWSIM_ATTR_REG_CUSTOM_REG] = { .type = NLA_U32 },
  437. [HWSIM_ATTR_REG_STRICT_REG] = { .type = NLA_FLAG },
  438. [HWSIM_ATTR_SUPPORT_P2P_DEVICE] = { .type = NLA_FLAG },
  439. };
  440. static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
  441. struct sk_buff *skb,
  442. struct ieee80211_channel *chan);
  443. /* sysfs attributes */
  444. static void hwsim_send_ps_poll(void *dat, u8 *mac, struct ieee80211_vif *vif)
  445. {
  446. struct mac80211_hwsim_data *data = dat;
  447. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  448. struct sk_buff *skb;
  449. struct ieee80211_pspoll *pspoll;
  450. if (!vp->assoc)
  451. return;
  452. wiphy_debug(data->hw->wiphy,
  453. "%s: send PS-Poll to %pM for aid %d\n",
  454. __func__, vp->bssid, vp->aid);
  455. skb = dev_alloc_skb(sizeof(*pspoll));
  456. if (!skb)
  457. return;
  458. pspoll = (void *) skb_put(skb, sizeof(*pspoll));
  459. pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
  460. IEEE80211_STYPE_PSPOLL |
  461. IEEE80211_FCTL_PM);
  462. pspoll->aid = cpu_to_le16(0xc000 | vp->aid);
  463. memcpy(pspoll->bssid, vp->bssid, ETH_ALEN);
  464. memcpy(pspoll->ta, mac, ETH_ALEN);
  465. rcu_read_lock();
  466. mac80211_hwsim_tx_frame(data->hw, skb,
  467. rcu_dereference(vif->chanctx_conf)->def.chan);
  468. rcu_read_unlock();
  469. }
  470. static void hwsim_send_nullfunc(struct mac80211_hwsim_data *data, u8 *mac,
  471. struct ieee80211_vif *vif, int ps)
  472. {
  473. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  474. struct sk_buff *skb;
  475. struct ieee80211_hdr *hdr;
  476. if (!vp->assoc)
  477. return;
  478. wiphy_debug(data->hw->wiphy,
  479. "%s: send data::nullfunc to %pM ps=%d\n",
  480. __func__, vp->bssid, ps);
  481. skb = dev_alloc_skb(sizeof(*hdr));
  482. if (!skb)
  483. return;
  484. hdr = (void *) skb_put(skb, sizeof(*hdr) - ETH_ALEN);
  485. hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA |
  486. IEEE80211_STYPE_NULLFUNC |
  487. (ps ? IEEE80211_FCTL_PM : 0));
  488. hdr->duration_id = cpu_to_le16(0);
  489. memcpy(hdr->addr1, vp->bssid, ETH_ALEN);
  490. memcpy(hdr->addr2, mac, ETH_ALEN);
  491. memcpy(hdr->addr3, vp->bssid, ETH_ALEN);
  492. rcu_read_lock();
  493. mac80211_hwsim_tx_frame(data->hw, skb,
  494. rcu_dereference(vif->chanctx_conf)->def.chan);
  495. rcu_read_unlock();
  496. }
  497. static void hwsim_send_nullfunc_ps(void *dat, u8 *mac,
  498. struct ieee80211_vif *vif)
  499. {
  500. struct mac80211_hwsim_data *data = dat;
  501. hwsim_send_nullfunc(data, mac, vif, 1);
  502. }
  503. static void hwsim_send_nullfunc_no_ps(void *dat, u8 *mac,
  504. struct ieee80211_vif *vif)
  505. {
  506. struct mac80211_hwsim_data *data = dat;
  507. hwsim_send_nullfunc(data, mac, vif, 0);
  508. }
  509. static int hwsim_fops_ps_read(void *dat, u64 *val)
  510. {
  511. struct mac80211_hwsim_data *data = dat;
  512. *val = data->ps;
  513. return 0;
  514. }
  515. static int hwsim_fops_ps_write(void *dat, u64 val)
  516. {
  517. struct mac80211_hwsim_data *data = dat;
  518. enum ps_mode old_ps;
  519. if (val != PS_DISABLED && val != PS_ENABLED && val != PS_AUTO_POLL &&
  520. val != PS_MANUAL_POLL)
  521. return -EINVAL;
  522. old_ps = data->ps;
  523. data->ps = val;
  524. if (val == PS_MANUAL_POLL) {
  525. ieee80211_iterate_active_interfaces(data->hw,
  526. IEEE80211_IFACE_ITER_NORMAL,
  527. hwsim_send_ps_poll, data);
  528. data->ps_poll_pending = true;
  529. } else if (old_ps == PS_DISABLED && val != PS_DISABLED) {
  530. ieee80211_iterate_active_interfaces(data->hw,
  531. IEEE80211_IFACE_ITER_NORMAL,
  532. hwsim_send_nullfunc_ps,
  533. data);
  534. } else if (old_ps != PS_DISABLED && val == PS_DISABLED) {
  535. ieee80211_iterate_active_interfaces(data->hw,
  536. IEEE80211_IFACE_ITER_NORMAL,
  537. hwsim_send_nullfunc_no_ps,
  538. data);
  539. }
  540. return 0;
  541. }
  542. DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_ps, hwsim_fops_ps_read, hwsim_fops_ps_write,
  543. "%llu\n");
  544. static int hwsim_write_simulate_radar(void *dat, u64 val)
  545. {
  546. struct mac80211_hwsim_data *data = dat;
  547. ieee80211_radar_detected(data->hw);
  548. return 0;
  549. }
  550. DEFINE_SIMPLE_ATTRIBUTE(hwsim_simulate_radar, NULL,
  551. hwsim_write_simulate_radar, "%llu\n");
  552. static int hwsim_fops_group_read(void *dat, u64 *val)
  553. {
  554. struct mac80211_hwsim_data *data = dat;
  555. *val = data->group;
  556. return 0;
  557. }
  558. static int hwsim_fops_group_write(void *dat, u64 val)
  559. {
  560. struct mac80211_hwsim_data *data = dat;
  561. data->group = val;
  562. return 0;
  563. }
  564. DEFINE_SIMPLE_ATTRIBUTE(hwsim_fops_group,
  565. hwsim_fops_group_read, hwsim_fops_group_write,
  566. "%llx\n");
  567. static netdev_tx_t hwsim_mon_xmit(struct sk_buff *skb,
  568. struct net_device *dev)
  569. {
  570. /* TODO: allow packet injection */
  571. dev_kfree_skb(skb);
  572. return NETDEV_TX_OK;
  573. }
  574. static inline u64 mac80211_hwsim_get_tsf_raw(void)
  575. {
  576. return ktime_to_us(ktime_get_real());
  577. }
  578. static __le64 __mac80211_hwsim_get_tsf(struct mac80211_hwsim_data *data)
  579. {
  580. u64 now = mac80211_hwsim_get_tsf_raw();
  581. return cpu_to_le64(now + data->tsf_offset);
  582. }
  583. static u64 mac80211_hwsim_get_tsf(struct ieee80211_hw *hw,
  584. struct ieee80211_vif *vif)
  585. {
  586. struct mac80211_hwsim_data *data = hw->priv;
  587. return le64_to_cpu(__mac80211_hwsim_get_tsf(data));
  588. }
  589. static void mac80211_hwsim_set_tsf(struct ieee80211_hw *hw,
  590. struct ieee80211_vif *vif, u64 tsf)
  591. {
  592. struct mac80211_hwsim_data *data = hw->priv;
  593. u64 now = mac80211_hwsim_get_tsf(hw, vif);
  594. u32 bcn_int = data->beacon_int;
  595. s64 delta = tsf - now;
  596. data->tsf_offset += delta;
  597. /* adjust after beaconing with new timestamp at old TBTT */
  598. data->bcn_delta = do_div(delta, bcn_int);
  599. }
  600. static void mac80211_hwsim_monitor_rx(struct ieee80211_hw *hw,
  601. struct sk_buff *tx_skb,
  602. struct ieee80211_channel *chan)
  603. {
  604. struct mac80211_hwsim_data *data = hw->priv;
  605. struct sk_buff *skb;
  606. struct hwsim_radiotap_hdr *hdr;
  607. u16 flags;
  608. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx_skb);
  609. struct ieee80211_rate *txrate = ieee80211_get_tx_rate(hw, info);
  610. if (!netif_running(hwsim_mon))
  611. return;
  612. skb = skb_copy_expand(tx_skb, sizeof(*hdr), 0, GFP_ATOMIC);
  613. if (skb == NULL)
  614. return;
  615. hdr = (struct hwsim_radiotap_hdr *) skb_push(skb, sizeof(*hdr));
  616. hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
  617. hdr->hdr.it_pad = 0;
  618. hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
  619. hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  620. (1 << IEEE80211_RADIOTAP_RATE) |
  621. (1 << IEEE80211_RADIOTAP_TSFT) |
  622. (1 << IEEE80211_RADIOTAP_CHANNEL));
  623. hdr->rt_tsft = __mac80211_hwsim_get_tsf(data);
  624. hdr->rt_flags = 0;
  625. hdr->rt_rate = txrate->bitrate / 5;
  626. hdr->rt_channel = cpu_to_le16(chan->center_freq);
  627. flags = IEEE80211_CHAN_2GHZ;
  628. if (txrate->flags & IEEE80211_RATE_ERP_G)
  629. flags |= IEEE80211_CHAN_OFDM;
  630. else
  631. flags |= IEEE80211_CHAN_CCK;
  632. hdr->rt_chbitmask = cpu_to_le16(flags);
  633. skb->dev = hwsim_mon;
  634. skb_set_mac_header(skb, 0);
  635. skb->ip_summed = CHECKSUM_UNNECESSARY;
  636. skb->pkt_type = PACKET_OTHERHOST;
  637. skb->protocol = htons(ETH_P_802_2);
  638. memset(skb->cb, 0, sizeof(skb->cb));
  639. netif_rx(skb);
  640. }
  641. static void mac80211_hwsim_monitor_ack(struct ieee80211_channel *chan,
  642. const u8 *addr)
  643. {
  644. struct sk_buff *skb;
  645. struct hwsim_radiotap_ack_hdr *hdr;
  646. u16 flags;
  647. struct ieee80211_hdr *hdr11;
  648. if (!netif_running(hwsim_mon))
  649. return;
  650. skb = dev_alloc_skb(100);
  651. if (skb == NULL)
  652. return;
  653. hdr = (struct hwsim_radiotap_ack_hdr *) skb_put(skb, sizeof(*hdr));
  654. hdr->hdr.it_version = PKTHDR_RADIOTAP_VERSION;
  655. hdr->hdr.it_pad = 0;
  656. hdr->hdr.it_len = cpu_to_le16(sizeof(*hdr));
  657. hdr->hdr.it_present = cpu_to_le32((1 << IEEE80211_RADIOTAP_FLAGS) |
  658. (1 << IEEE80211_RADIOTAP_CHANNEL));
  659. hdr->rt_flags = 0;
  660. hdr->pad = 0;
  661. hdr->rt_channel = cpu_to_le16(chan->center_freq);
  662. flags = IEEE80211_CHAN_2GHZ;
  663. hdr->rt_chbitmask = cpu_to_le16(flags);
  664. hdr11 = (struct ieee80211_hdr *) skb_put(skb, 10);
  665. hdr11->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL |
  666. IEEE80211_STYPE_ACK);
  667. hdr11->duration_id = cpu_to_le16(0);
  668. memcpy(hdr11->addr1, addr, ETH_ALEN);
  669. skb->dev = hwsim_mon;
  670. skb_set_mac_header(skb, 0);
  671. skb->ip_summed = CHECKSUM_UNNECESSARY;
  672. skb->pkt_type = PACKET_OTHERHOST;
  673. skb->protocol = htons(ETH_P_802_2);
  674. memset(skb->cb, 0, sizeof(skb->cb));
  675. netif_rx(skb);
  676. }
  677. static bool hwsim_ps_rx_ok(struct mac80211_hwsim_data *data,
  678. struct sk_buff *skb)
  679. {
  680. switch (data->ps) {
  681. case PS_DISABLED:
  682. return true;
  683. case PS_ENABLED:
  684. return false;
  685. case PS_AUTO_POLL:
  686. /* TODO: accept (some) Beacons by default and other frames only
  687. * if pending PS-Poll has been sent */
  688. return true;
  689. case PS_MANUAL_POLL:
  690. /* Allow unicast frames to own address if there is a pending
  691. * PS-Poll */
  692. if (data->ps_poll_pending &&
  693. memcmp(data->hw->wiphy->perm_addr, skb->data + 4,
  694. ETH_ALEN) == 0) {
  695. data->ps_poll_pending = false;
  696. return true;
  697. }
  698. return false;
  699. }
  700. return true;
  701. }
  702. struct mac80211_hwsim_addr_match_data {
  703. bool ret;
  704. const u8 *addr;
  705. };
  706. static void mac80211_hwsim_addr_iter(void *data, u8 *mac,
  707. struct ieee80211_vif *vif)
  708. {
  709. struct mac80211_hwsim_addr_match_data *md = data;
  710. if (memcmp(mac, md->addr, ETH_ALEN) == 0)
  711. md->ret = true;
  712. }
  713. static bool mac80211_hwsim_addr_match(struct mac80211_hwsim_data *data,
  714. const u8 *addr)
  715. {
  716. struct mac80211_hwsim_addr_match_data md;
  717. if (memcmp(addr, data->hw->wiphy->perm_addr, ETH_ALEN) == 0)
  718. return true;
  719. md.ret = false;
  720. md.addr = addr;
  721. ieee80211_iterate_active_interfaces_atomic(data->hw,
  722. IEEE80211_IFACE_ITER_NORMAL,
  723. mac80211_hwsim_addr_iter,
  724. &md);
  725. return md.ret;
  726. }
  727. static void mac80211_hwsim_tx_frame_nl(struct ieee80211_hw *hw,
  728. struct sk_buff *my_skb,
  729. int dst_portid)
  730. {
  731. struct sk_buff *skb;
  732. struct mac80211_hwsim_data *data = hw->priv;
  733. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) my_skb->data;
  734. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(my_skb);
  735. void *msg_head;
  736. unsigned int hwsim_flags = 0;
  737. int i;
  738. struct hwsim_tx_rate tx_attempts[IEEE80211_TX_MAX_RATES];
  739. if (data->ps != PS_DISABLED)
  740. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
  741. /* If the queue contains MAX_QUEUE skb's drop some */
  742. if (skb_queue_len(&data->pending) >= MAX_QUEUE) {
  743. /* Droping until WARN_QUEUE level */
  744. while (skb_queue_len(&data->pending) >= WARN_QUEUE)
  745. skb_dequeue(&data->pending);
  746. }
  747. skb = genlmsg_new(GENLMSG_DEFAULT_SIZE, GFP_ATOMIC);
  748. if (skb == NULL)
  749. goto nla_put_failure;
  750. msg_head = genlmsg_put(skb, 0, 0, &hwsim_genl_family, 0,
  751. HWSIM_CMD_FRAME);
  752. if (msg_head == NULL) {
  753. printk(KERN_DEBUG "mac80211_hwsim: problem with msg_head\n");
  754. goto nla_put_failure;
  755. }
  756. if (nla_put(skb, HWSIM_ATTR_ADDR_TRANSMITTER,
  757. ETH_ALEN, data->addresses[1].addr))
  758. goto nla_put_failure;
  759. /* We get the skb->data */
  760. if (nla_put(skb, HWSIM_ATTR_FRAME, my_skb->len, my_skb->data))
  761. goto nla_put_failure;
  762. /* We get the flags for this transmission, and we translate them to
  763. wmediumd flags */
  764. if (info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS)
  765. hwsim_flags |= HWSIM_TX_CTL_REQ_TX_STATUS;
  766. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  767. hwsim_flags |= HWSIM_TX_CTL_NO_ACK;
  768. if (nla_put_u32(skb, HWSIM_ATTR_FLAGS, hwsim_flags))
  769. goto nla_put_failure;
  770. /* We get the tx control (rate and retries) info*/
  771. for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
  772. tx_attempts[i].idx = info->status.rates[i].idx;
  773. tx_attempts[i].count = info->status.rates[i].count;
  774. }
  775. if (nla_put(skb, HWSIM_ATTR_TX_INFO,
  776. sizeof(struct hwsim_tx_rate)*IEEE80211_TX_MAX_RATES,
  777. tx_attempts))
  778. goto nla_put_failure;
  779. /* We create a cookie to identify this skb */
  780. if (nla_put_u64(skb, HWSIM_ATTR_COOKIE, (unsigned long) my_skb))
  781. goto nla_put_failure;
  782. genlmsg_end(skb, msg_head);
  783. genlmsg_unicast(&init_net, skb, dst_portid);
  784. /* Enqueue the packet */
  785. skb_queue_tail(&data->pending, my_skb);
  786. return;
  787. nla_put_failure:
  788. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  789. }
  790. static bool hwsim_chans_compat(struct ieee80211_channel *c1,
  791. struct ieee80211_channel *c2)
  792. {
  793. if (!c1 || !c2)
  794. return false;
  795. return c1->center_freq == c2->center_freq;
  796. }
  797. struct tx_iter_data {
  798. struct ieee80211_channel *channel;
  799. bool receive;
  800. };
  801. static void mac80211_hwsim_tx_iter(void *_data, u8 *addr,
  802. struct ieee80211_vif *vif)
  803. {
  804. struct tx_iter_data *data = _data;
  805. if (!vif->chanctx_conf)
  806. return;
  807. if (!hwsim_chans_compat(data->channel,
  808. rcu_dereference(vif->chanctx_conf)->def.chan))
  809. return;
  810. data->receive = true;
  811. }
  812. static bool mac80211_hwsim_tx_frame_no_nl(struct ieee80211_hw *hw,
  813. struct sk_buff *skb,
  814. struct ieee80211_channel *chan)
  815. {
  816. struct mac80211_hwsim_data *data = hw->priv, *data2;
  817. bool ack = false;
  818. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  819. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  820. struct ieee80211_rx_status rx_status;
  821. u64 now;
  822. memset(&rx_status, 0, sizeof(rx_status));
  823. rx_status.flag |= RX_FLAG_MACTIME_START;
  824. rx_status.freq = chan->center_freq;
  825. rx_status.band = chan->band;
  826. if (info->control.rates[0].flags & IEEE80211_TX_RC_VHT_MCS) {
  827. rx_status.rate_idx =
  828. ieee80211_rate_get_vht_mcs(&info->control.rates[0]);
  829. rx_status.vht_nss =
  830. ieee80211_rate_get_vht_nss(&info->control.rates[0]);
  831. rx_status.flag |= RX_FLAG_VHT;
  832. } else {
  833. rx_status.rate_idx = info->control.rates[0].idx;
  834. if (info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
  835. rx_status.flag |= RX_FLAG_HT;
  836. }
  837. if (info->control.rates[0].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  838. rx_status.flag |= RX_FLAG_40MHZ;
  839. if (info->control.rates[0].flags & IEEE80211_TX_RC_SHORT_GI)
  840. rx_status.flag |= RX_FLAG_SHORT_GI;
  841. /* TODO: simulate real signal strength (and optional packet loss) */
  842. rx_status.signal = data->power_level - 50;
  843. if (data->ps != PS_DISABLED)
  844. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
  845. /* release the skb's source info */
  846. skb_orphan(skb);
  847. skb_dst_drop(skb);
  848. skb->mark = 0;
  849. secpath_reset(skb);
  850. nf_reset(skb);
  851. /*
  852. * Get absolute mactime here so all HWs RX at the "same time", and
  853. * absolute TX time for beacon mactime so the timestamp matches.
  854. * Giving beacons a different mactime than non-beacons looks messy, but
  855. * it helps the Toffset be exact and a ~10us mactime discrepancy
  856. * probably doesn't really matter.
  857. */
  858. if (ieee80211_is_beacon(hdr->frame_control) ||
  859. ieee80211_is_probe_resp(hdr->frame_control))
  860. now = data->abs_bcn_ts;
  861. else
  862. now = mac80211_hwsim_get_tsf_raw();
  863. /* Copy skb to all enabled radios that are on the current frequency */
  864. spin_lock(&hwsim_radio_lock);
  865. list_for_each_entry(data2, &hwsim_radios, list) {
  866. struct sk_buff *nskb;
  867. struct tx_iter_data tx_iter_data = {
  868. .receive = false,
  869. .channel = chan,
  870. };
  871. if (data == data2)
  872. continue;
  873. if (!data2->started || (data2->idle && !data2->tmp_chan) ||
  874. !hwsim_ps_rx_ok(data2, skb))
  875. continue;
  876. if (!(data->group & data2->group))
  877. continue;
  878. if (!hwsim_chans_compat(chan, data2->tmp_chan) &&
  879. !hwsim_chans_compat(chan, data2->channel)) {
  880. ieee80211_iterate_active_interfaces_atomic(
  881. data2->hw, IEEE80211_IFACE_ITER_NORMAL,
  882. mac80211_hwsim_tx_iter, &tx_iter_data);
  883. if (!tx_iter_data.receive)
  884. continue;
  885. }
  886. /*
  887. * reserve some space for our vendor and the normal
  888. * radiotap header, since we're copying anyway
  889. */
  890. if (skb->len < PAGE_SIZE && paged_rx) {
  891. struct page *page = alloc_page(GFP_ATOMIC);
  892. if (!page)
  893. continue;
  894. nskb = dev_alloc_skb(128);
  895. if (!nskb) {
  896. __free_page(page);
  897. continue;
  898. }
  899. memcpy(page_address(page), skb->data, skb->len);
  900. skb_add_rx_frag(nskb, 0, page, 0, skb->len, skb->len);
  901. } else {
  902. nskb = skb_copy(skb, GFP_ATOMIC);
  903. if (!nskb)
  904. continue;
  905. }
  906. if (mac80211_hwsim_addr_match(data2, hdr->addr1))
  907. ack = true;
  908. rx_status.mactime = now + data2->tsf_offset;
  909. memcpy(IEEE80211_SKB_RXCB(nskb), &rx_status, sizeof(rx_status));
  910. ieee80211_rx_irqsafe(data2->hw, nskb);
  911. }
  912. spin_unlock(&hwsim_radio_lock);
  913. return ack;
  914. }
  915. static void mac80211_hwsim_tx(struct ieee80211_hw *hw,
  916. struct ieee80211_tx_control *control,
  917. struct sk_buff *skb)
  918. {
  919. struct mac80211_hwsim_data *data = hw->priv;
  920. struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
  921. struct ieee80211_chanctx_conf *chanctx_conf;
  922. struct ieee80211_channel *channel;
  923. bool ack;
  924. u32 _portid;
  925. if (WARN_ON(skb->len < 10)) {
  926. /* Should not happen; just a sanity check for addr1 use */
  927. ieee80211_free_txskb(hw, skb);
  928. return;
  929. }
  930. if (!data->use_chanctx) {
  931. channel = data->channel;
  932. } else if (txi->hw_queue == 4) {
  933. channel = data->tmp_chan;
  934. } else {
  935. chanctx_conf = rcu_dereference(txi->control.vif->chanctx_conf);
  936. if (chanctx_conf)
  937. channel = chanctx_conf->def.chan;
  938. else
  939. channel = NULL;
  940. }
  941. if (WARN(!channel, "TX w/o channel - queue = %d\n", txi->hw_queue)) {
  942. ieee80211_free_txskb(hw, skb);
  943. return;
  944. }
  945. if (data->idle && !data->tmp_chan) {
  946. wiphy_debug(hw->wiphy, "Trying to TX when idle - reject\n");
  947. ieee80211_free_txskb(hw, skb);
  948. return;
  949. }
  950. if (txi->control.vif)
  951. hwsim_check_magic(txi->control.vif);
  952. if (control->sta)
  953. hwsim_check_sta_magic(control->sta);
  954. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE)
  955. ieee80211_get_tx_rates(txi->control.vif, control->sta, skb,
  956. txi->control.rates,
  957. ARRAY_SIZE(txi->control.rates));
  958. txi->rate_driver_data[0] = channel;
  959. mac80211_hwsim_monitor_rx(hw, skb, channel);
  960. /* wmediumd mode check */
  961. _portid = ACCESS_ONCE(wmediumd_portid);
  962. if (_portid)
  963. return mac80211_hwsim_tx_frame_nl(hw, skb, _portid);
  964. /* NO wmediumd detected, perfect medium simulation */
  965. ack = mac80211_hwsim_tx_frame_no_nl(hw, skb, channel);
  966. if (ack && skb->len >= 16) {
  967. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  968. mac80211_hwsim_monitor_ack(channel, hdr->addr2);
  969. }
  970. ieee80211_tx_info_clear_status(txi);
  971. /* frame was transmitted at most favorable rate at first attempt */
  972. txi->control.rates[0].count = 1;
  973. txi->control.rates[1].idx = -1;
  974. if (!(txi->flags & IEEE80211_TX_CTL_NO_ACK) && ack)
  975. txi->flags |= IEEE80211_TX_STAT_ACK;
  976. ieee80211_tx_status_irqsafe(hw, skb);
  977. }
  978. static int mac80211_hwsim_start(struct ieee80211_hw *hw)
  979. {
  980. struct mac80211_hwsim_data *data = hw->priv;
  981. wiphy_debug(hw->wiphy, "%s\n", __func__);
  982. data->started = true;
  983. return 0;
  984. }
  985. static void mac80211_hwsim_stop(struct ieee80211_hw *hw)
  986. {
  987. struct mac80211_hwsim_data *data = hw->priv;
  988. data->started = false;
  989. tasklet_hrtimer_cancel(&data->beacon_timer);
  990. wiphy_debug(hw->wiphy, "%s\n", __func__);
  991. }
  992. static int mac80211_hwsim_add_interface(struct ieee80211_hw *hw,
  993. struct ieee80211_vif *vif)
  994. {
  995. wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
  996. __func__, ieee80211_vif_type_p2p(vif),
  997. vif->addr);
  998. hwsim_set_magic(vif);
  999. vif->cab_queue = 0;
  1000. vif->hw_queue[IEEE80211_AC_VO] = 0;
  1001. vif->hw_queue[IEEE80211_AC_VI] = 1;
  1002. vif->hw_queue[IEEE80211_AC_BE] = 2;
  1003. vif->hw_queue[IEEE80211_AC_BK] = 3;
  1004. return 0;
  1005. }
  1006. static int mac80211_hwsim_change_interface(struct ieee80211_hw *hw,
  1007. struct ieee80211_vif *vif,
  1008. enum nl80211_iftype newtype,
  1009. bool newp2p)
  1010. {
  1011. newtype = ieee80211_iftype_p2p(newtype, newp2p);
  1012. wiphy_debug(hw->wiphy,
  1013. "%s (old type=%d, new type=%d, mac_addr=%pM)\n",
  1014. __func__, ieee80211_vif_type_p2p(vif),
  1015. newtype, vif->addr);
  1016. hwsim_check_magic(vif);
  1017. /*
  1018. * interface may change from non-AP to AP in
  1019. * which case this needs to be set up again
  1020. */
  1021. vif->cab_queue = 0;
  1022. return 0;
  1023. }
  1024. static void mac80211_hwsim_remove_interface(
  1025. struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1026. {
  1027. wiphy_debug(hw->wiphy, "%s (type=%d mac_addr=%pM)\n",
  1028. __func__, ieee80211_vif_type_p2p(vif),
  1029. vif->addr);
  1030. hwsim_check_magic(vif);
  1031. hwsim_clear_magic(vif);
  1032. }
  1033. static void mac80211_hwsim_tx_frame(struct ieee80211_hw *hw,
  1034. struct sk_buff *skb,
  1035. struct ieee80211_channel *chan)
  1036. {
  1037. u32 _pid = ACCESS_ONCE(wmediumd_portid);
  1038. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE) {
  1039. struct ieee80211_tx_info *txi = IEEE80211_SKB_CB(skb);
  1040. ieee80211_get_tx_rates(txi->control.vif, NULL, skb,
  1041. txi->control.rates,
  1042. ARRAY_SIZE(txi->control.rates));
  1043. }
  1044. mac80211_hwsim_monitor_rx(hw, skb, chan);
  1045. if (_pid)
  1046. return mac80211_hwsim_tx_frame_nl(hw, skb, _pid);
  1047. mac80211_hwsim_tx_frame_no_nl(hw, skb, chan);
  1048. dev_kfree_skb(skb);
  1049. }
  1050. static void mac80211_hwsim_beacon_tx(void *arg, u8 *mac,
  1051. struct ieee80211_vif *vif)
  1052. {
  1053. struct mac80211_hwsim_data *data = arg;
  1054. struct ieee80211_hw *hw = data->hw;
  1055. struct ieee80211_tx_info *info;
  1056. struct ieee80211_rate *txrate;
  1057. struct ieee80211_mgmt *mgmt;
  1058. struct sk_buff *skb;
  1059. hwsim_check_magic(vif);
  1060. if (vif->type != NL80211_IFTYPE_AP &&
  1061. vif->type != NL80211_IFTYPE_MESH_POINT &&
  1062. vif->type != NL80211_IFTYPE_ADHOC)
  1063. return;
  1064. skb = ieee80211_beacon_get(hw, vif);
  1065. if (skb == NULL)
  1066. return;
  1067. info = IEEE80211_SKB_CB(skb);
  1068. if (hw->flags & IEEE80211_HW_SUPPORTS_RC_TABLE)
  1069. ieee80211_get_tx_rates(vif, NULL, skb,
  1070. info->control.rates,
  1071. ARRAY_SIZE(info->control.rates));
  1072. txrate = ieee80211_get_tx_rate(hw, info);
  1073. mgmt = (struct ieee80211_mgmt *) skb->data;
  1074. /* fake header transmission time */
  1075. data->abs_bcn_ts = mac80211_hwsim_get_tsf_raw();
  1076. mgmt->u.beacon.timestamp = cpu_to_le64(data->abs_bcn_ts +
  1077. data->tsf_offset +
  1078. 24 * 8 * 10 / txrate->bitrate);
  1079. mac80211_hwsim_tx_frame(hw, skb,
  1080. rcu_dereference(vif->chanctx_conf)->def.chan);
  1081. if (vif->csa_active && ieee80211_csa_is_complete(vif))
  1082. ieee80211_csa_finish(vif);
  1083. }
  1084. static enum hrtimer_restart
  1085. mac80211_hwsim_beacon(struct hrtimer *timer)
  1086. {
  1087. struct mac80211_hwsim_data *data =
  1088. container_of(timer, struct mac80211_hwsim_data,
  1089. beacon_timer.timer);
  1090. struct ieee80211_hw *hw = data->hw;
  1091. u64 bcn_int = data->beacon_int;
  1092. ktime_t next_bcn;
  1093. if (!data->started)
  1094. goto out;
  1095. ieee80211_iterate_active_interfaces_atomic(
  1096. hw, IEEE80211_IFACE_ITER_NORMAL,
  1097. mac80211_hwsim_beacon_tx, data);
  1098. /* beacon at new TBTT + beacon interval */
  1099. if (data->bcn_delta) {
  1100. bcn_int -= data->bcn_delta;
  1101. data->bcn_delta = 0;
  1102. }
  1103. next_bcn = ktime_add(hrtimer_get_expires(timer),
  1104. ns_to_ktime(bcn_int * 1000));
  1105. tasklet_hrtimer_start(&data->beacon_timer, next_bcn, HRTIMER_MODE_ABS);
  1106. out:
  1107. return HRTIMER_NORESTART;
  1108. }
  1109. static const char * const hwsim_chanwidths[] = {
  1110. [NL80211_CHAN_WIDTH_20_NOHT] = "noht",
  1111. [NL80211_CHAN_WIDTH_20] = "ht20",
  1112. [NL80211_CHAN_WIDTH_40] = "ht40",
  1113. [NL80211_CHAN_WIDTH_80] = "vht80",
  1114. [NL80211_CHAN_WIDTH_80P80] = "vht80p80",
  1115. [NL80211_CHAN_WIDTH_160] = "vht160",
  1116. };
  1117. static int mac80211_hwsim_config(struct ieee80211_hw *hw, u32 changed)
  1118. {
  1119. struct mac80211_hwsim_data *data = hw->priv;
  1120. struct ieee80211_conf *conf = &hw->conf;
  1121. static const char *smps_modes[IEEE80211_SMPS_NUM_MODES] = {
  1122. [IEEE80211_SMPS_AUTOMATIC] = "auto",
  1123. [IEEE80211_SMPS_OFF] = "off",
  1124. [IEEE80211_SMPS_STATIC] = "static",
  1125. [IEEE80211_SMPS_DYNAMIC] = "dynamic",
  1126. };
  1127. if (conf->chandef.chan)
  1128. wiphy_debug(hw->wiphy,
  1129. "%s (freq=%d(%d - %d)/%s idle=%d ps=%d smps=%s)\n",
  1130. __func__,
  1131. conf->chandef.chan->center_freq,
  1132. conf->chandef.center_freq1,
  1133. conf->chandef.center_freq2,
  1134. hwsim_chanwidths[conf->chandef.width],
  1135. !!(conf->flags & IEEE80211_CONF_IDLE),
  1136. !!(conf->flags & IEEE80211_CONF_PS),
  1137. smps_modes[conf->smps_mode]);
  1138. else
  1139. wiphy_debug(hw->wiphy,
  1140. "%s (freq=0 idle=%d ps=%d smps=%s)\n",
  1141. __func__,
  1142. !!(conf->flags & IEEE80211_CONF_IDLE),
  1143. !!(conf->flags & IEEE80211_CONF_PS),
  1144. smps_modes[conf->smps_mode]);
  1145. data->idle = !!(conf->flags & IEEE80211_CONF_IDLE);
  1146. data->channel = conf->chandef.chan;
  1147. WARN_ON(data->channel && data->use_chanctx);
  1148. data->power_level = conf->power_level;
  1149. if (!data->started || !data->beacon_int)
  1150. tasklet_hrtimer_cancel(&data->beacon_timer);
  1151. else if (!hrtimer_is_queued(&data->beacon_timer.timer)) {
  1152. u64 tsf = mac80211_hwsim_get_tsf(hw, NULL);
  1153. u32 bcn_int = data->beacon_int;
  1154. u64 until_tbtt = bcn_int - do_div(tsf, bcn_int);
  1155. tasklet_hrtimer_start(&data->beacon_timer,
  1156. ns_to_ktime(until_tbtt * 1000),
  1157. HRTIMER_MODE_REL);
  1158. }
  1159. return 0;
  1160. }
  1161. static void mac80211_hwsim_configure_filter(struct ieee80211_hw *hw,
  1162. unsigned int changed_flags,
  1163. unsigned int *total_flags,u64 multicast)
  1164. {
  1165. struct mac80211_hwsim_data *data = hw->priv;
  1166. wiphy_debug(hw->wiphy, "%s\n", __func__);
  1167. data->rx_filter = 0;
  1168. if (*total_flags & FIF_PROMISC_IN_BSS)
  1169. data->rx_filter |= FIF_PROMISC_IN_BSS;
  1170. if (*total_flags & FIF_ALLMULTI)
  1171. data->rx_filter |= FIF_ALLMULTI;
  1172. *total_flags = data->rx_filter;
  1173. }
  1174. static void mac80211_hwsim_bcn_en_iter(void *data, u8 *mac,
  1175. struct ieee80211_vif *vif)
  1176. {
  1177. unsigned int *count = data;
  1178. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  1179. if (vp->bcn_en)
  1180. (*count)++;
  1181. }
  1182. static void mac80211_hwsim_bss_info_changed(struct ieee80211_hw *hw,
  1183. struct ieee80211_vif *vif,
  1184. struct ieee80211_bss_conf *info,
  1185. u32 changed)
  1186. {
  1187. struct hwsim_vif_priv *vp = (void *)vif->drv_priv;
  1188. struct mac80211_hwsim_data *data = hw->priv;
  1189. hwsim_check_magic(vif);
  1190. wiphy_debug(hw->wiphy, "%s(changed=0x%x vif->addr=%pM)\n",
  1191. __func__, changed, vif->addr);
  1192. if (changed & BSS_CHANGED_BSSID) {
  1193. wiphy_debug(hw->wiphy, "%s: BSSID changed: %pM\n",
  1194. __func__, info->bssid);
  1195. memcpy(vp->bssid, info->bssid, ETH_ALEN);
  1196. }
  1197. if (changed & BSS_CHANGED_ASSOC) {
  1198. wiphy_debug(hw->wiphy, " ASSOC: assoc=%d aid=%d\n",
  1199. info->assoc, info->aid);
  1200. vp->assoc = info->assoc;
  1201. vp->aid = info->aid;
  1202. }
  1203. if (changed & BSS_CHANGED_BEACON_INT) {
  1204. wiphy_debug(hw->wiphy, " BCNINT: %d\n", info->beacon_int);
  1205. data->beacon_int = info->beacon_int * 1024;
  1206. }
  1207. if (changed & BSS_CHANGED_BEACON_ENABLED) {
  1208. wiphy_debug(hw->wiphy, " BCN EN: %d\n", info->enable_beacon);
  1209. vp->bcn_en = info->enable_beacon;
  1210. if (data->started &&
  1211. !hrtimer_is_queued(&data->beacon_timer.timer) &&
  1212. info->enable_beacon) {
  1213. u64 tsf, until_tbtt;
  1214. u32 bcn_int;
  1215. if (WARN_ON(!data->beacon_int))
  1216. data->beacon_int = 1000 * 1024;
  1217. tsf = mac80211_hwsim_get_tsf(hw, vif);
  1218. bcn_int = data->beacon_int;
  1219. until_tbtt = bcn_int - do_div(tsf, bcn_int);
  1220. tasklet_hrtimer_start(&data->beacon_timer,
  1221. ns_to_ktime(until_tbtt * 1000),
  1222. HRTIMER_MODE_REL);
  1223. } else if (!info->enable_beacon) {
  1224. unsigned int count = 0;
  1225. ieee80211_iterate_active_interfaces_atomic(
  1226. data->hw, IEEE80211_IFACE_ITER_NORMAL,
  1227. mac80211_hwsim_bcn_en_iter, &count);
  1228. wiphy_debug(hw->wiphy, " beaconing vifs remaining: %u",
  1229. count);
  1230. if (count == 0)
  1231. tasklet_hrtimer_cancel(&data->beacon_timer);
  1232. }
  1233. }
  1234. if (changed & BSS_CHANGED_ERP_CTS_PROT) {
  1235. wiphy_debug(hw->wiphy, " ERP_CTS_PROT: %d\n",
  1236. info->use_cts_prot);
  1237. }
  1238. if (changed & BSS_CHANGED_ERP_PREAMBLE) {
  1239. wiphy_debug(hw->wiphy, " ERP_PREAMBLE: %d\n",
  1240. info->use_short_preamble);
  1241. }
  1242. if (changed & BSS_CHANGED_ERP_SLOT) {
  1243. wiphy_debug(hw->wiphy, " ERP_SLOT: %d\n", info->use_short_slot);
  1244. }
  1245. if (changed & BSS_CHANGED_HT) {
  1246. wiphy_debug(hw->wiphy, " HT: op_mode=0x%x\n",
  1247. info->ht_operation_mode);
  1248. }
  1249. if (changed & BSS_CHANGED_BASIC_RATES) {
  1250. wiphy_debug(hw->wiphy, " BASIC_RATES: 0x%llx\n",
  1251. (unsigned long long) info->basic_rates);
  1252. }
  1253. if (changed & BSS_CHANGED_TXPOWER)
  1254. wiphy_debug(hw->wiphy, " TX Power: %d dBm\n", info->txpower);
  1255. }
  1256. static int mac80211_hwsim_sta_add(struct ieee80211_hw *hw,
  1257. struct ieee80211_vif *vif,
  1258. struct ieee80211_sta *sta)
  1259. {
  1260. hwsim_check_magic(vif);
  1261. hwsim_set_sta_magic(sta);
  1262. return 0;
  1263. }
  1264. static int mac80211_hwsim_sta_remove(struct ieee80211_hw *hw,
  1265. struct ieee80211_vif *vif,
  1266. struct ieee80211_sta *sta)
  1267. {
  1268. hwsim_check_magic(vif);
  1269. hwsim_clear_sta_magic(sta);
  1270. return 0;
  1271. }
  1272. static void mac80211_hwsim_sta_notify(struct ieee80211_hw *hw,
  1273. struct ieee80211_vif *vif,
  1274. enum sta_notify_cmd cmd,
  1275. struct ieee80211_sta *sta)
  1276. {
  1277. hwsim_check_magic(vif);
  1278. switch (cmd) {
  1279. case STA_NOTIFY_SLEEP:
  1280. case STA_NOTIFY_AWAKE:
  1281. /* TODO: make good use of these flags */
  1282. break;
  1283. default:
  1284. WARN(1, "Invalid sta notify: %d\n", cmd);
  1285. break;
  1286. }
  1287. }
  1288. static int mac80211_hwsim_set_tim(struct ieee80211_hw *hw,
  1289. struct ieee80211_sta *sta,
  1290. bool set)
  1291. {
  1292. hwsim_check_sta_magic(sta);
  1293. return 0;
  1294. }
  1295. static int mac80211_hwsim_conf_tx(
  1296. struct ieee80211_hw *hw,
  1297. struct ieee80211_vif *vif, u16 queue,
  1298. const struct ieee80211_tx_queue_params *params)
  1299. {
  1300. wiphy_debug(hw->wiphy,
  1301. "%s (queue=%d txop=%d cw_min=%d cw_max=%d aifs=%d)\n",
  1302. __func__, queue,
  1303. params->txop, params->cw_min,
  1304. params->cw_max, params->aifs);
  1305. return 0;
  1306. }
  1307. static int mac80211_hwsim_get_survey(
  1308. struct ieee80211_hw *hw, int idx,
  1309. struct survey_info *survey)
  1310. {
  1311. struct ieee80211_conf *conf = &hw->conf;
  1312. wiphy_debug(hw->wiphy, "%s (idx=%d)\n", __func__, idx);
  1313. if (idx != 0)
  1314. return -ENOENT;
  1315. /* Current channel */
  1316. survey->channel = conf->chandef.chan;
  1317. /*
  1318. * Magically conjured noise level --- this is only ok for simulated hardware.
  1319. *
  1320. * A real driver which cannot determine the real channel noise MUST NOT
  1321. * report any noise, especially not a magically conjured one :-)
  1322. */
  1323. survey->filled = SURVEY_INFO_NOISE_DBM;
  1324. survey->noise = -92;
  1325. return 0;
  1326. }
  1327. #ifdef CONFIG_NL80211_TESTMODE
  1328. /*
  1329. * This section contains example code for using netlink
  1330. * attributes with the testmode command in nl80211.
  1331. */
  1332. /* These enums need to be kept in sync with userspace */
  1333. enum hwsim_testmode_attr {
  1334. __HWSIM_TM_ATTR_INVALID = 0,
  1335. HWSIM_TM_ATTR_CMD = 1,
  1336. HWSIM_TM_ATTR_PS = 2,
  1337. /* keep last */
  1338. __HWSIM_TM_ATTR_AFTER_LAST,
  1339. HWSIM_TM_ATTR_MAX = __HWSIM_TM_ATTR_AFTER_LAST - 1
  1340. };
  1341. enum hwsim_testmode_cmd {
  1342. HWSIM_TM_CMD_SET_PS = 0,
  1343. HWSIM_TM_CMD_GET_PS = 1,
  1344. HWSIM_TM_CMD_STOP_QUEUES = 2,
  1345. HWSIM_TM_CMD_WAKE_QUEUES = 3,
  1346. };
  1347. static const struct nla_policy hwsim_testmode_policy[HWSIM_TM_ATTR_MAX + 1] = {
  1348. [HWSIM_TM_ATTR_CMD] = { .type = NLA_U32 },
  1349. [HWSIM_TM_ATTR_PS] = { .type = NLA_U32 },
  1350. };
  1351. static int mac80211_hwsim_testmode_cmd(struct ieee80211_hw *hw,
  1352. struct ieee80211_vif *vif,
  1353. void *data, int len)
  1354. {
  1355. struct mac80211_hwsim_data *hwsim = hw->priv;
  1356. struct nlattr *tb[HWSIM_TM_ATTR_MAX + 1];
  1357. struct sk_buff *skb;
  1358. int err, ps;
  1359. err = nla_parse(tb, HWSIM_TM_ATTR_MAX, data, len,
  1360. hwsim_testmode_policy);
  1361. if (err)
  1362. return err;
  1363. if (!tb[HWSIM_TM_ATTR_CMD])
  1364. return -EINVAL;
  1365. switch (nla_get_u32(tb[HWSIM_TM_ATTR_CMD])) {
  1366. case HWSIM_TM_CMD_SET_PS:
  1367. if (!tb[HWSIM_TM_ATTR_PS])
  1368. return -EINVAL;
  1369. ps = nla_get_u32(tb[HWSIM_TM_ATTR_PS]);
  1370. return hwsim_fops_ps_write(hwsim, ps);
  1371. case HWSIM_TM_CMD_GET_PS:
  1372. skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy,
  1373. nla_total_size(sizeof(u32)));
  1374. if (!skb)
  1375. return -ENOMEM;
  1376. if (nla_put_u32(skb, HWSIM_TM_ATTR_PS, hwsim->ps))
  1377. goto nla_put_failure;
  1378. return cfg80211_testmode_reply(skb);
  1379. case HWSIM_TM_CMD_STOP_QUEUES:
  1380. ieee80211_stop_queues(hw);
  1381. return 0;
  1382. case HWSIM_TM_CMD_WAKE_QUEUES:
  1383. ieee80211_wake_queues(hw);
  1384. return 0;
  1385. default:
  1386. return -EOPNOTSUPP;
  1387. }
  1388. nla_put_failure:
  1389. kfree_skb(skb);
  1390. return -ENOBUFS;
  1391. }
  1392. #endif
  1393. static int mac80211_hwsim_ampdu_action(struct ieee80211_hw *hw,
  1394. struct ieee80211_vif *vif,
  1395. enum ieee80211_ampdu_mlme_action action,
  1396. struct ieee80211_sta *sta, u16 tid, u16 *ssn,
  1397. u8 buf_size)
  1398. {
  1399. switch (action) {
  1400. case IEEE80211_AMPDU_TX_START:
  1401. ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  1402. break;
  1403. case IEEE80211_AMPDU_TX_STOP_CONT:
  1404. case IEEE80211_AMPDU_TX_STOP_FLUSH:
  1405. case IEEE80211_AMPDU_TX_STOP_FLUSH_CONT:
  1406. ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid);
  1407. break;
  1408. case IEEE80211_AMPDU_TX_OPERATIONAL:
  1409. break;
  1410. case IEEE80211_AMPDU_RX_START:
  1411. case IEEE80211_AMPDU_RX_STOP:
  1412. break;
  1413. default:
  1414. return -EOPNOTSUPP;
  1415. }
  1416. return 0;
  1417. }
  1418. static void mac80211_hwsim_flush(struct ieee80211_hw *hw,
  1419. struct ieee80211_vif *vif,
  1420. u32 queues, bool drop)
  1421. {
  1422. /* Not implemented, queues only on kernel side */
  1423. }
  1424. static void hw_scan_work(struct work_struct *work)
  1425. {
  1426. struct mac80211_hwsim_data *hwsim =
  1427. container_of(work, struct mac80211_hwsim_data, hw_scan.work);
  1428. struct cfg80211_scan_request *req = hwsim->hw_scan_request;
  1429. int dwell, i;
  1430. mutex_lock(&hwsim->mutex);
  1431. if (hwsim->scan_chan_idx >= req->n_channels) {
  1432. wiphy_debug(hwsim->hw->wiphy, "hw scan complete\n");
  1433. ieee80211_scan_completed(hwsim->hw, false);
  1434. hwsim->hw_scan_request = NULL;
  1435. hwsim->hw_scan_vif = NULL;
  1436. hwsim->tmp_chan = NULL;
  1437. mutex_unlock(&hwsim->mutex);
  1438. return;
  1439. }
  1440. wiphy_debug(hwsim->hw->wiphy, "hw scan %d MHz\n",
  1441. req->channels[hwsim->scan_chan_idx]->center_freq);
  1442. hwsim->tmp_chan = req->channels[hwsim->scan_chan_idx];
  1443. if (hwsim->tmp_chan->flags & IEEE80211_CHAN_NO_IR ||
  1444. !req->n_ssids) {
  1445. dwell = 120;
  1446. } else {
  1447. dwell = 30;
  1448. /* send probes */
  1449. for (i = 0; i < req->n_ssids; i++) {
  1450. struct sk_buff *probe;
  1451. probe = ieee80211_probereq_get(hwsim->hw,
  1452. hwsim->hw_scan_vif,
  1453. req->ssids[i].ssid,
  1454. req->ssids[i].ssid_len,
  1455. req->ie_len);
  1456. if (!probe)
  1457. continue;
  1458. if (req->ie_len)
  1459. memcpy(skb_put(probe, req->ie_len), req->ie,
  1460. req->ie_len);
  1461. local_bh_disable();
  1462. mac80211_hwsim_tx_frame(hwsim->hw, probe,
  1463. hwsim->tmp_chan);
  1464. local_bh_enable();
  1465. }
  1466. }
  1467. ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan,
  1468. msecs_to_jiffies(dwell));
  1469. hwsim->scan_chan_idx++;
  1470. mutex_unlock(&hwsim->mutex);
  1471. }
  1472. static int mac80211_hwsim_hw_scan(struct ieee80211_hw *hw,
  1473. struct ieee80211_vif *vif,
  1474. struct cfg80211_scan_request *req)
  1475. {
  1476. struct mac80211_hwsim_data *hwsim = hw->priv;
  1477. mutex_lock(&hwsim->mutex);
  1478. if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
  1479. mutex_unlock(&hwsim->mutex);
  1480. return -EBUSY;
  1481. }
  1482. hwsim->hw_scan_request = req;
  1483. hwsim->hw_scan_vif = vif;
  1484. hwsim->scan_chan_idx = 0;
  1485. mutex_unlock(&hwsim->mutex);
  1486. wiphy_debug(hw->wiphy, "hwsim hw_scan request\n");
  1487. ieee80211_queue_delayed_work(hwsim->hw, &hwsim->hw_scan, 0);
  1488. return 0;
  1489. }
  1490. static void mac80211_hwsim_cancel_hw_scan(struct ieee80211_hw *hw,
  1491. struct ieee80211_vif *vif)
  1492. {
  1493. struct mac80211_hwsim_data *hwsim = hw->priv;
  1494. wiphy_debug(hw->wiphy, "hwsim cancel_hw_scan\n");
  1495. cancel_delayed_work_sync(&hwsim->hw_scan);
  1496. mutex_lock(&hwsim->mutex);
  1497. ieee80211_scan_completed(hwsim->hw, true);
  1498. hwsim->tmp_chan = NULL;
  1499. hwsim->hw_scan_request = NULL;
  1500. hwsim->hw_scan_vif = NULL;
  1501. mutex_unlock(&hwsim->mutex);
  1502. }
  1503. static void mac80211_hwsim_sw_scan(struct ieee80211_hw *hw)
  1504. {
  1505. struct mac80211_hwsim_data *hwsim = hw->priv;
  1506. mutex_lock(&hwsim->mutex);
  1507. if (hwsim->scanning) {
  1508. printk(KERN_DEBUG "two hwsim sw_scans detected!\n");
  1509. goto out;
  1510. }
  1511. printk(KERN_DEBUG "hwsim sw_scan request, prepping stuff\n");
  1512. hwsim->scanning = true;
  1513. out:
  1514. mutex_unlock(&hwsim->mutex);
  1515. }
  1516. static void mac80211_hwsim_sw_scan_complete(struct ieee80211_hw *hw)
  1517. {
  1518. struct mac80211_hwsim_data *hwsim = hw->priv;
  1519. mutex_lock(&hwsim->mutex);
  1520. printk(KERN_DEBUG "hwsim sw_scan_complete\n");
  1521. hwsim->scanning = false;
  1522. mutex_unlock(&hwsim->mutex);
  1523. }
  1524. static void hw_roc_done(struct work_struct *work)
  1525. {
  1526. struct mac80211_hwsim_data *hwsim =
  1527. container_of(work, struct mac80211_hwsim_data, roc_done.work);
  1528. mutex_lock(&hwsim->mutex);
  1529. ieee80211_remain_on_channel_expired(hwsim->hw);
  1530. hwsim->tmp_chan = NULL;
  1531. mutex_unlock(&hwsim->mutex);
  1532. wiphy_debug(hwsim->hw->wiphy, "hwsim ROC expired\n");
  1533. }
  1534. static int mac80211_hwsim_roc(struct ieee80211_hw *hw,
  1535. struct ieee80211_vif *vif,
  1536. struct ieee80211_channel *chan,
  1537. int duration,
  1538. enum ieee80211_roc_type type)
  1539. {
  1540. struct mac80211_hwsim_data *hwsim = hw->priv;
  1541. mutex_lock(&hwsim->mutex);
  1542. if (WARN_ON(hwsim->tmp_chan || hwsim->hw_scan_request)) {
  1543. mutex_unlock(&hwsim->mutex);
  1544. return -EBUSY;
  1545. }
  1546. hwsim->tmp_chan = chan;
  1547. mutex_unlock(&hwsim->mutex);
  1548. wiphy_debug(hw->wiphy, "hwsim ROC (%d MHz, %d ms)\n",
  1549. chan->center_freq, duration);
  1550. ieee80211_ready_on_channel(hw);
  1551. ieee80211_queue_delayed_work(hw, &hwsim->roc_done,
  1552. msecs_to_jiffies(duration));
  1553. return 0;
  1554. }
  1555. static int mac80211_hwsim_croc(struct ieee80211_hw *hw)
  1556. {
  1557. struct mac80211_hwsim_data *hwsim = hw->priv;
  1558. cancel_delayed_work_sync(&hwsim->roc_done);
  1559. mutex_lock(&hwsim->mutex);
  1560. hwsim->tmp_chan = NULL;
  1561. mutex_unlock(&hwsim->mutex);
  1562. wiphy_debug(hw->wiphy, "hwsim ROC canceled\n");
  1563. return 0;
  1564. }
  1565. static int mac80211_hwsim_add_chanctx(struct ieee80211_hw *hw,
  1566. struct ieee80211_chanctx_conf *ctx)
  1567. {
  1568. hwsim_set_chanctx_magic(ctx);
  1569. wiphy_debug(hw->wiphy,
  1570. "add channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1571. ctx->def.chan->center_freq, ctx->def.width,
  1572. ctx->def.center_freq1, ctx->def.center_freq2);
  1573. return 0;
  1574. }
  1575. static void mac80211_hwsim_remove_chanctx(struct ieee80211_hw *hw,
  1576. struct ieee80211_chanctx_conf *ctx)
  1577. {
  1578. wiphy_debug(hw->wiphy,
  1579. "remove channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1580. ctx->def.chan->center_freq, ctx->def.width,
  1581. ctx->def.center_freq1, ctx->def.center_freq2);
  1582. hwsim_check_chanctx_magic(ctx);
  1583. hwsim_clear_chanctx_magic(ctx);
  1584. }
  1585. static void mac80211_hwsim_change_chanctx(struct ieee80211_hw *hw,
  1586. struct ieee80211_chanctx_conf *ctx,
  1587. u32 changed)
  1588. {
  1589. hwsim_check_chanctx_magic(ctx);
  1590. wiphy_debug(hw->wiphy,
  1591. "change channel context control: %d MHz/width: %d/cfreqs:%d/%d MHz\n",
  1592. ctx->def.chan->center_freq, ctx->def.width,
  1593. ctx->def.center_freq1, ctx->def.center_freq2);
  1594. }
  1595. static int mac80211_hwsim_assign_vif_chanctx(struct ieee80211_hw *hw,
  1596. struct ieee80211_vif *vif,
  1597. struct ieee80211_chanctx_conf *ctx)
  1598. {
  1599. hwsim_check_magic(vif);
  1600. hwsim_check_chanctx_magic(ctx);
  1601. return 0;
  1602. }
  1603. static void mac80211_hwsim_unassign_vif_chanctx(struct ieee80211_hw *hw,
  1604. struct ieee80211_vif *vif,
  1605. struct ieee80211_chanctx_conf *ctx)
  1606. {
  1607. hwsim_check_magic(vif);
  1608. hwsim_check_chanctx_magic(ctx);
  1609. }
  1610. static const struct ieee80211_ops mac80211_hwsim_ops = {
  1611. .tx = mac80211_hwsim_tx,
  1612. .start = mac80211_hwsim_start,
  1613. .stop = mac80211_hwsim_stop,
  1614. .add_interface = mac80211_hwsim_add_interface,
  1615. .change_interface = mac80211_hwsim_change_interface,
  1616. .remove_interface = mac80211_hwsim_remove_interface,
  1617. .config = mac80211_hwsim_config,
  1618. .configure_filter = mac80211_hwsim_configure_filter,
  1619. .bss_info_changed = mac80211_hwsim_bss_info_changed,
  1620. .sta_add = mac80211_hwsim_sta_add,
  1621. .sta_remove = mac80211_hwsim_sta_remove,
  1622. .sta_notify = mac80211_hwsim_sta_notify,
  1623. .set_tim = mac80211_hwsim_set_tim,
  1624. .conf_tx = mac80211_hwsim_conf_tx,
  1625. .get_survey = mac80211_hwsim_get_survey,
  1626. CFG80211_TESTMODE_CMD(mac80211_hwsim_testmode_cmd)
  1627. .ampdu_action = mac80211_hwsim_ampdu_action,
  1628. .sw_scan_start = mac80211_hwsim_sw_scan,
  1629. .sw_scan_complete = mac80211_hwsim_sw_scan_complete,
  1630. .flush = mac80211_hwsim_flush,
  1631. .get_tsf = mac80211_hwsim_get_tsf,
  1632. .set_tsf = mac80211_hwsim_set_tsf,
  1633. };
  1634. static struct ieee80211_ops mac80211_hwsim_mchan_ops;
  1635. static int mac80211_hwsim_create_radio(int channels, const char *reg_alpha2,
  1636. const struct ieee80211_regdomain *regd,
  1637. bool reg_strict, bool p2p_device,
  1638. bool use_chanctx)
  1639. {
  1640. int err;
  1641. u8 addr[ETH_ALEN];
  1642. struct mac80211_hwsim_data *data;
  1643. struct ieee80211_hw *hw;
  1644. enum ieee80211_band band;
  1645. const struct ieee80211_ops *ops = &mac80211_hwsim_ops;
  1646. int idx;
  1647. if (WARN_ON(channels > 1 && !use_chanctx))
  1648. return -EINVAL;
  1649. spin_lock_bh(&hwsim_radio_lock);
  1650. idx = hwsim_radio_idx++;
  1651. spin_unlock_bh(&hwsim_radio_lock);
  1652. if (use_chanctx)
  1653. ops = &mac80211_hwsim_mchan_ops;
  1654. hw = ieee80211_alloc_hw(sizeof(*data), ops);
  1655. if (!hw) {
  1656. printk(KERN_DEBUG "mac80211_hwsim: ieee80211_alloc_hw failed\n");
  1657. err = -ENOMEM;
  1658. goto failed;
  1659. }
  1660. data = hw->priv;
  1661. data->hw = hw;
  1662. data->dev = device_create(hwsim_class, NULL, 0, hw, "hwsim%d", idx);
  1663. if (IS_ERR(data->dev)) {
  1664. printk(KERN_DEBUG
  1665. "mac80211_hwsim: device_create failed (%ld)\n",
  1666. PTR_ERR(data->dev));
  1667. err = -ENOMEM;
  1668. goto failed_drvdata;
  1669. }
  1670. data->dev->driver = &mac80211_hwsim_driver.driver;
  1671. err = device_bind_driver(data->dev);
  1672. if (err != 0) {
  1673. printk(KERN_DEBUG "mac80211_hwsim: device_bind_driver failed (%d)\n",
  1674. err);
  1675. goto failed_hw;
  1676. }
  1677. skb_queue_head_init(&data->pending);
  1678. SET_IEEE80211_DEV(hw, data->dev);
  1679. memset(addr, 0, ETH_ALEN);
  1680. addr[0] = 0x02;
  1681. addr[3] = idx >> 8;
  1682. addr[4] = idx;
  1683. memcpy(data->addresses[0].addr, addr, ETH_ALEN);
  1684. memcpy(data->addresses[1].addr, addr, ETH_ALEN);
  1685. data->addresses[1].addr[0] |= 0x40;
  1686. hw->wiphy->n_addresses = 2;
  1687. hw->wiphy->addresses = data->addresses;
  1688. data->channels = channels;
  1689. data->use_chanctx = use_chanctx;
  1690. data->idx = idx;
  1691. if (data->use_chanctx) {
  1692. hw->wiphy->max_scan_ssids = 255;
  1693. hw->wiphy->max_scan_ie_len = IEEE80211_MAX_DATA_LEN;
  1694. hw->wiphy->max_remain_on_channel_duration = 1000;
  1695. /* For channels > 1 DFS is not allowed */
  1696. hw->wiphy->n_iface_combinations = 1;
  1697. hw->wiphy->iface_combinations = &data->if_combination;
  1698. if (p2p_device)
  1699. data->if_combination = hwsim_if_comb_p2p_dev[0];
  1700. else
  1701. data->if_combination = hwsim_if_comb[0];
  1702. data->if_combination.num_different_channels = data->channels;
  1703. } else if (p2p_device) {
  1704. hw->wiphy->iface_combinations = hwsim_if_comb_p2p_dev;
  1705. hw->wiphy->n_iface_combinations =
  1706. ARRAY_SIZE(hwsim_if_comb_p2p_dev);
  1707. } else {
  1708. hw->wiphy->iface_combinations = hwsim_if_comb;
  1709. hw->wiphy->n_iface_combinations = ARRAY_SIZE(hwsim_if_comb);
  1710. }
  1711. INIT_DELAYED_WORK(&data->roc_done, hw_roc_done);
  1712. INIT_DELAYED_WORK(&data->hw_scan, hw_scan_work);
  1713. hw->queues = 5;
  1714. hw->offchannel_tx_hw_queue = 4;
  1715. hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
  1716. BIT(NL80211_IFTYPE_AP) |
  1717. BIT(NL80211_IFTYPE_P2P_CLIENT) |
  1718. BIT(NL80211_IFTYPE_P2P_GO) |
  1719. BIT(NL80211_IFTYPE_ADHOC) |
  1720. BIT(NL80211_IFTYPE_MESH_POINT);
  1721. if (p2p_device)
  1722. hw->wiphy->interface_modes |= BIT(NL80211_IFTYPE_P2P_DEVICE);
  1723. hw->flags = IEEE80211_HW_MFP_CAPABLE |
  1724. IEEE80211_HW_SIGNAL_DBM |
  1725. IEEE80211_HW_SUPPORTS_STATIC_SMPS |
  1726. IEEE80211_HW_SUPPORTS_DYNAMIC_SMPS |
  1727. IEEE80211_HW_AMPDU_AGGREGATION |
  1728. IEEE80211_HW_WANT_MONITOR_VIF |
  1729. IEEE80211_HW_QUEUE_CONTROL |
  1730. IEEE80211_HW_SUPPORTS_HT_CCK_RATES |
  1731. IEEE80211_HW_CHANCTX_STA_CSA;
  1732. if (rctbl)
  1733. hw->flags |= IEEE80211_HW_SUPPORTS_RC_TABLE;
  1734. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
  1735. WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL |
  1736. WIPHY_FLAG_AP_UAPSD |
  1737. WIPHY_FLAG_HAS_CHANNEL_SWITCH;
  1738. hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
  1739. hw->wiphy->features |= NL80211_FEATURE_AP_MODE_CHAN_WIDTH_CHANGE;
  1740. /* ask mac80211 to reserve space for magic */
  1741. hw->vif_data_size = sizeof(struct hwsim_vif_priv);
  1742. hw->sta_data_size = sizeof(struct hwsim_sta_priv);
  1743. hw->chanctx_data_size = sizeof(struct hwsim_chanctx_priv);
  1744. memcpy(data->channels_2ghz, hwsim_channels_2ghz,
  1745. sizeof(hwsim_channels_2ghz));
  1746. memcpy(data->channels_5ghz, hwsim_channels_5ghz,
  1747. sizeof(hwsim_channels_5ghz));
  1748. memcpy(data->rates, hwsim_rates, sizeof(hwsim_rates));
  1749. for (band = IEEE80211_BAND_2GHZ; band < IEEE80211_NUM_BANDS; band++) {
  1750. struct ieee80211_supported_band *sband = &data->bands[band];
  1751. switch (band) {
  1752. case IEEE80211_BAND_2GHZ:
  1753. sband->channels = data->channels_2ghz;
  1754. sband->n_channels = ARRAY_SIZE(hwsim_channels_2ghz);
  1755. sband->bitrates = data->rates;
  1756. sband->n_bitrates = ARRAY_SIZE(hwsim_rates);
  1757. break;
  1758. case IEEE80211_BAND_5GHZ:
  1759. sband->channels = data->channels_5ghz;
  1760. sband->n_channels = ARRAY_SIZE(hwsim_channels_5ghz);
  1761. sband->bitrates = data->rates + 4;
  1762. sband->n_bitrates = ARRAY_SIZE(hwsim_rates) - 4;
  1763. break;
  1764. default:
  1765. continue;
  1766. }
  1767. sband->ht_cap.ht_supported = true;
  1768. sband->ht_cap.cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
  1769. IEEE80211_HT_CAP_GRN_FLD |
  1770. IEEE80211_HT_CAP_SGI_40 |
  1771. IEEE80211_HT_CAP_DSSSCCK40;
  1772. sband->ht_cap.ampdu_factor = 0x3;
  1773. sband->ht_cap.ampdu_density = 0x6;
  1774. memset(&sband->ht_cap.mcs, 0,
  1775. sizeof(sband->ht_cap.mcs));
  1776. sband->ht_cap.mcs.rx_mask[0] = 0xff;
  1777. sband->ht_cap.mcs.rx_mask[1] = 0xff;
  1778. sband->ht_cap.mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
  1779. hw->wiphy->bands[band] = sband;
  1780. sband->vht_cap.vht_supported = true;
  1781. sband->vht_cap.cap =
  1782. IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
  1783. IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160_80PLUS80MHZ |
  1784. IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
  1785. IEEE80211_VHT_CAP_RXLDPC |
  1786. IEEE80211_VHT_CAP_SHORT_GI_80 |
  1787. IEEE80211_VHT_CAP_SHORT_GI_160 |
  1788. IEEE80211_VHT_CAP_TXSTBC |
  1789. IEEE80211_VHT_CAP_RXSTBC_1 |
  1790. IEEE80211_VHT_CAP_RXSTBC_2 |
  1791. IEEE80211_VHT_CAP_RXSTBC_3 |
  1792. IEEE80211_VHT_CAP_RXSTBC_4 |
  1793. IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK;
  1794. sband->vht_cap.vht_mcs.rx_mcs_map =
  1795. cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_8 << 0 |
  1796. IEEE80211_VHT_MCS_SUPPORT_0_8 << 2 |
  1797. IEEE80211_VHT_MCS_SUPPORT_0_9 << 4 |
  1798. IEEE80211_VHT_MCS_SUPPORT_0_8 << 6 |
  1799. IEEE80211_VHT_MCS_SUPPORT_0_8 << 8 |
  1800. IEEE80211_VHT_MCS_SUPPORT_0_9 << 10 |
  1801. IEEE80211_VHT_MCS_SUPPORT_0_9 << 12 |
  1802. IEEE80211_VHT_MCS_SUPPORT_0_8 << 14);
  1803. sband->vht_cap.vht_mcs.tx_mcs_map =
  1804. sband->vht_cap.vht_mcs.rx_mcs_map;
  1805. }
  1806. /* By default all radios belong to the first group */
  1807. data->group = 1;
  1808. mutex_init(&data->mutex);
  1809. /* Enable frame retransmissions for lossy channels */
  1810. hw->max_rates = 4;
  1811. hw->max_rate_tries = 11;
  1812. if (reg_strict)
  1813. hw->wiphy->regulatory_flags |= REGULATORY_STRICT_REG;
  1814. if (regd) {
  1815. hw->wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
  1816. wiphy_apply_custom_regulatory(hw->wiphy, regd);
  1817. /* give the regulatory workqueue a chance to run */
  1818. schedule_timeout_interruptible(1);
  1819. }
  1820. err = ieee80211_register_hw(hw);
  1821. if (err < 0) {
  1822. printk(KERN_DEBUG "mac80211_hwsim: ieee80211_register_hw failed (%d)\n",
  1823. err);
  1824. goto failed_hw;
  1825. }
  1826. wiphy_debug(hw->wiphy, "hwaddr %pM registered\n", hw->wiphy->perm_addr);
  1827. if (reg_alpha2)
  1828. regulatory_hint(hw->wiphy, reg_alpha2);
  1829. data->debugfs = debugfs_create_dir("hwsim", hw->wiphy->debugfsdir);
  1830. debugfs_create_file("ps", 0666, data->debugfs, data, &hwsim_fops_ps);
  1831. debugfs_create_file("group", 0666, data->debugfs, data,
  1832. &hwsim_fops_group);
  1833. if (!data->use_chanctx)
  1834. debugfs_create_file("dfs_simulate_radar", 0222,
  1835. data->debugfs,
  1836. data, &hwsim_simulate_radar);
  1837. tasklet_hrtimer_init(&data->beacon_timer,
  1838. mac80211_hwsim_beacon,
  1839. CLOCK_MONOTONIC_RAW, HRTIMER_MODE_ABS);
  1840. spin_lock_bh(&hwsim_radio_lock);
  1841. list_add_tail(&data->list, &hwsim_radios);
  1842. spin_unlock_bh(&hwsim_radio_lock);
  1843. return idx;
  1844. failed_hw:
  1845. device_unregister(data->dev);
  1846. failed_drvdata:
  1847. ieee80211_free_hw(hw);
  1848. failed:
  1849. return err;
  1850. }
  1851. static void mac80211_hwsim_destroy_radio(struct mac80211_hwsim_data *data)
  1852. {
  1853. debugfs_remove_recursive(data->debugfs);
  1854. ieee80211_unregister_hw(data->hw);
  1855. device_release_driver(data->dev);
  1856. device_unregister(data->dev);
  1857. ieee80211_free_hw(data->hw);
  1858. }
  1859. static void mac80211_hwsim_free(void)
  1860. {
  1861. struct mac80211_hwsim_data *data;
  1862. spin_lock_bh(&hwsim_radio_lock);
  1863. while ((data = list_first_entry_or_null(&hwsim_radios,
  1864. struct mac80211_hwsim_data,
  1865. list))) {
  1866. list_del(&data->list);
  1867. spin_unlock_bh(&hwsim_radio_lock);
  1868. mac80211_hwsim_destroy_radio(data);
  1869. spin_lock_bh(&hwsim_radio_lock);
  1870. }
  1871. spin_unlock_bh(&hwsim_radio_lock);
  1872. class_destroy(hwsim_class);
  1873. }
  1874. static const struct net_device_ops hwsim_netdev_ops = {
  1875. .ndo_start_xmit = hwsim_mon_xmit,
  1876. .ndo_change_mtu = eth_change_mtu,
  1877. .ndo_set_mac_address = eth_mac_addr,
  1878. .ndo_validate_addr = eth_validate_addr,
  1879. };
  1880. static void hwsim_mon_setup(struct net_device *dev)
  1881. {
  1882. dev->netdev_ops = &hwsim_netdev_ops;
  1883. dev->destructor = free_netdev;
  1884. ether_setup(dev);
  1885. dev->tx_queue_len = 0;
  1886. dev->type = ARPHRD_IEEE80211_RADIOTAP;
  1887. memset(dev->dev_addr, 0, ETH_ALEN);
  1888. dev->dev_addr[0] = 0x12;
  1889. }
  1890. static struct mac80211_hwsim_data *get_hwsim_data_ref_from_addr(const u8 *addr)
  1891. {
  1892. struct mac80211_hwsim_data *data;
  1893. bool _found = false;
  1894. spin_lock_bh(&hwsim_radio_lock);
  1895. list_for_each_entry(data, &hwsim_radios, list) {
  1896. if (memcmp(data->addresses[1].addr, addr, ETH_ALEN) == 0) {
  1897. _found = true;
  1898. break;
  1899. }
  1900. }
  1901. spin_unlock_bh(&hwsim_radio_lock);
  1902. if (!_found)
  1903. return NULL;
  1904. return data;
  1905. }
  1906. static int hwsim_tx_info_frame_received_nl(struct sk_buff *skb_2,
  1907. struct genl_info *info)
  1908. {
  1909. struct ieee80211_hdr *hdr;
  1910. struct mac80211_hwsim_data *data2;
  1911. struct ieee80211_tx_info *txi;
  1912. struct hwsim_tx_rate *tx_attempts;
  1913. unsigned long ret_skb_ptr;
  1914. struct sk_buff *skb, *tmp;
  1915. const u8 *src;
  1916. unsigned int hwsim_flags;
  1917. int i;
  1918. bool found = false;
  1919. if (info->snd_portid != wmediumd_portid)
  1920. return -EINVAL;
  1921. if (!info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER] ||
  1922. !info->attrs[HWSIM_ATTR_FLAGS] ||
  1923. !info->attrs[HWSIM_ATTR_COOKIE] ||
  1924. !info->attrs[HWSIM_ATTR_TX_INFO])
  1925. goto out;
  1926. src = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_TRANSMITTER]);
  1927. hwsim_flags = nla_get_u32(info->attrs[HWSIM_ATTR_FLAGS]);
  1928. ret_skb_ptr = nla_get_u64(info->attrs[HWSIM_ATTR_COOKIE]);
  1929. data2 = get_hwsim_data_ref_from_addr(src);
  1930. if (!data2)
  1931. goto out;
  1932. /* look for the skb matching the cookie passed back from user */
  1933. skb_queue_walk_safe(&data2->pending, skb, tmp) {
  1934. if ((unsigned long)skb == ret_skb_ptr) {
  1935. skb_unlink(skb, &data2->pending);
  1936. found = true;
  1937. break;
  1938. }
  1939. }
  1940. /* not found */
  1941. if (!found)
  1942. goto out;
  1943. /* Tx info received because the frame was broadcasted on user space,
  1944. so we get all the necessary info: tx attempts and skb control buff */
  1945. tx_attempts = (struct hwsim_tx_rate *)nla_data(
  1946. info->attrs[HWSIM_ATTR_TX_INFO]);
  1947. /* now send back TX status */
  1948. txi = IEEE80211_SKB_CB(skb);
  1949. ieee80211_tx_info_clear_status(txi);
  1950. for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) {
  1951. txi->status.rates[i].idx = tx_attempts[i].idx;
  1952. txi->status.rates[i].count = tx_attempts[i].count;
  1953. /*txi->status.rates[i].flags = 0;*/
  1954. }
  1955. txi->status.ack_signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
  1956. if (!(hwsim_flags & HWSIM_TX_CTL_NO_ACK) &&
  1957. (hwsim_flags & HWSIM_TX_STAT_ACK)) {
  1958. if (skb->len >= 16) {
  1959. hdr = (struct ieee80211_hdr *) skb->data;
  1960. mac80211_hwsim_monitor_ack(data2->channel,
  1961. hdr->addr2);
  1962. }
  1963. txi->flags |= IEEE80211_TX_STAT_ACK;
  1964. }
  1965. ieee80211_tx_status_irqsafe(data2->hw, skb);
  1966. return 0;
  1967. out:
  1968. return -EINVAL;
  1969. }
  1970. static int hwsim_cloned_frame_received_nl(struct sk_buff *skb_2,
  1971. struct genl_info *info)
  1972. {
  1973. struct mac80211_hwsim_data *data2;
  1974. struct ieee80211_rx_status rx_status;
  1975. const u8 *dst;
  1976. int frame_data_len;
  1977. void *frame_data;
  1978. struct sk_buff *skb = NULL;
  1979. if (info->snd_portid != wmediumd_portid)
  1980. return -EINVAL;
  1981. if (!info->attrs[HWSIM_ATTR_ADDR_RECEIVER] ||
  1982. !info->attrs[HWSIM_ATTR_FRAME] ||
  1983. !info->attrs[HWSIM_ATTR_RX_RATE] ||
  1984. !info->attrs[HWSIM_ATTR_SIGNAL])
  1985. goto out;
  1986. dst = (void *)nla_data(info->attrs[HWSIM_ATTR_ADDR_RECEIVER]);
  1987. frame_data_len = nla_len(info->attrs[HWSIM_ATTR_FRAME]);
  1988. frame_data = (void *)nla_data(info->attrs[HWSIM_ATTR_FRAME]);
  1989. /* Allocate new skb here */
  1990. skb = alloc_skb(frame_data_len, GFP_KERNEL);
  1991. if (skb == NULL)
  1992. goto err;
  1993. if (frame_data_len > IEEE80211_MAX_DATA_LEN)
  1994. goto err;
  1995. /* Copy the data */
  1996. memcpy(skb_put(skb, frame_data_len), frame_data, frame_data_len);
  1997. data2 = get_hwsim_data_ref_from_addr(dst);
  1998. if (!data2)
  1999. goto out;
  2000. /* check if radio is configured properly */
  2001. if (data2->idle || !data2->started)
  2002. goto out;
  2003. /* A frame is received from user space */
  2004. memset(&rx_status, 0, sizeof(rx_status));
  2005. rx_status.freq = data2->channel->center_freq;
  2006. rx_status.band = data2->channel->band;
  2007. rx_status.rate_idx = nla_get_u32(info->attrs[HWSIM_ATTR_RX_RATE]);
  2008. rx_status.signal = nla_get_u32(info->attrs[HWSIM_ATTR_SIGNAL]);
  2009. memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status));
  2010. ieee80211_rx_irqsafe(data2->hw, skb);
  2011. return 0;
  2012. err:
  2013. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  2014. goto out;
  2015. out:
  2016. dev_kfree_skb(skb);
  2017. return -EINVAL;
  2018. }
  2019. static int hwsim_register_received_nl(struct sk_buff *skb_2,
  2020. struct genl_info *info)
  2021. {
  2022. struct mac80211_hwsim_data *data;
  2023. int chans = 1;
  2024. spin_lock_bh(&hwsim_radio_lock);
  2025. list_for_each_entry(data, &hwsim_radios, list)
  2026. chans = max(chans, data->channels);
  2027. spin_unlock_bh(&hwsim_radio_lock);
  2028. /* In the future we should revise the userspace API and allow it
  2029. * to set a flag that it does support multi-channel, then we can
  2030. * let this pass conditionally on the flag.
  2031. * For current userspace, prohibit it since it won't work right.
  2032. */
  2033. if (chans > 1)
  2034. return -EOPNOTSUPP;
  2035. if (wmediumd_portid)
  2036. return -EBUSY;
  2037. wmediumd_portid = info->snd_portid;
  2038. printk(KERN_DEBUG "mac80211_hwsim: received a REGISTER, "
  2039. "switching to wmediumd mode with pid %d\n", info->snd_portid);
  2040. return 0;
  2041. }
  2042. static int hwsim_create_radio_nl(struct sk_buff *msg, struct genl_info *info)
  2043. {
  2044. unsigned int chans = channels;
  2045. const char *alpha2 = NULL;
  2046. const struct ieee80211_regdomain *regd = NULL;
  2047. bool reg_strict = info->attrs[HWSIM_ATTR_REG_STRICT_REG];
  2048. bool p2p_device = info->attrs[HWSIM_ATTR_SUPPORT_P2P_DEVICE];
  2049. bool use_chanctx;
  2050. if (info->attrs[HWSIM_ATTR_CHANNELS])
  2051. chans = nla_get_u32(info->attrs[HWSIM_ATTR_CHANNELS]);
  2052. if (info->attrs[HWSIM_ATTR_USE_CHANCTX])
  2053. use_chanctx = true;
  2054. else
  2055. use_chanctx = (chans > 1);
  2056. if (info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2])
  2057. alpha2 = nla_data(info->attrs[HWSIM_ATTR_REG_HINT_ALPHA2]);
  2058. if (info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]) {
  2059. u32 idx = nla_get_u32(info->attrs[HWSIM_ATTR_REG_CUSTOM_REG]);
  2060. if (idx >= ARRAY_SIZE(hwsim_world_regdom_custom))
  2061. return -EINVAL;
  2062. regd = hwsim_world_regdom_custom[idx];
  2063. }
  2064. return mac80211_hwsim_create_radio(chans, alpha2, regd, reg_strict,
  2065. p2p_device, use_chanctx);
  2066. }
  2067. static int hwsim_destroy_radio_nl(struct sk_buff *msg, struct genl_info *info)
  2068. {
  2069. struct mac80211_hwsim_data *data;
  2070. int idx;
  2071. if (!info->attrs[HWSIM_ATTR_RADIO_ID])
  2072. return -EINVAL;
  2073. idx = nla_get_u32(info->attrs[HWSIM_ATTR_RADIO_ID]);
  2074. spin_lock_bh(&hwsim_radio_lock);
  2075. list_for_each_entry(data, &hwsim_radios, list) {
  2076. if (data->idx != idx)
  2077. continue;
  2078. list_del(&data->list);
  2079. spin_unlock_bh(&hwsim_radio_lock);
  2080. mac80211_hwsim_destroy_radio(data);
  2081. return 0;
  2082. }
  2083. spin_unlock_bh(&hwsim_radio_lock);
  2084. return -ENODEV;
  2085. }
  2086. /* Generic Netlink operations array */
  2087. static const struct genl_ops hwsim_ops[] = {
  2088. {
  2089. .cmd = HWSIM_CMD_REGISTER,
  2090. .policy = hwsim_genl_policy,
  2091. .doit = hwsim_register_received_nl,
  2092. .flags = GENL_ADMIN_PERM,
  2093. },
  2094. {
  2095. .cmd = HWSIM_CMD_FRAME,
  2096. .policy = hwsim_genl_policy,
  2097. .doit = hwsim_cloned_frame_received_nl,
  2098. },
  2099. {
  2100. .cmd = HWSIM_CMD_TX_INFO_FRAME,
  2101. .policy = hwsim_genl_policy,
  2102. .doit = hwsim_tx_info_frame_received_nl,
  2103. },
  2104. {
  2105. .cmd = HWSIM_CMD_CREATE_RADIO,
  2106. .policy = hwsim_genl_policy,
  2107. .doit = hwsim_create_radio_nl,
  2108. .flags = GENL_ADMIN_PERM,
  2109. },
  2110. {
  2111. .cmd = HWSIM_CMD_DESTROY_RADIO,
  2112. .policy = hwsim_genl_policy,
  2113. .doit = hwsim_destroy_radio_nl,
  2114. .flags = GENL_ADMIN_PERM,
  2115. },
  2116. };
  2117. static int mac80211_hwsim_netlink_notify(struct notifier_block *nb,
  2118. unsigned long state,
  2119. void *_notify)
  2120. {
  2121. struct netlink_notify *notify = _notify;
  2122. if (state != NETLINK_URELEASE)
  2123. return NOTIFY_DONE;
  2124. if (notify->portid == wmediumd_portid) {
  2125. printk(KERN_INFO "mac80211_hwsim: wmediumd released netlink"
  2126. " socket, switching to perfect channel medium\n");
  2127. wmediumd_portid = 0;
  2128. }
  2129. return NOTIFY_DONE;
  2130. }
  2131. static struct notifier_block hwsim_netlink_notifier = {
  2132. .notifier_call = mac80211_hwsim_netlink_notify,
  2133. };
  2134. static int hwsim_init_netlink(void)
  2135. {
  2136. int rc;
  2137. printk(KERN_INFO "mac80211_hwsim: initializing netlink\n");
  2138. rc = genl_register_family_with_ops(&hwsim_genl_family, hwsim_ops);
  2139. if (rc)
  2140. goto failure;
  2141. rc = netlink_register_notifier(&hwsim_netlink_notifier);
  2142. if (rc)
  2143. goto failure;
  2144. return 0;
  2145. failure:
  2146. printk(KERN_DEBUG "mac80211_hwsim: error occurred in %s\n", __func__);
  2147. return -EINVAL;
  2148. }
  2149. static void hwsim_exit_netlink(void)
  2150. {
  2151. /* unregister the notifier */
  2152. netlink_unregister_notifier(&hwsim_netlink_notifier);
  2153. /* unregister the family */
  2154. genl_unregister_family(&hwsim_genl_family);
  2155. }
  2156. static int __init init_mac80211_hwsim(void)
  2157. {
  2158. int i, err;
  2159. if (radios < 0 || radios > 100)
  2160. return -EINVAL;
  2161. if (channels < 1)
  2162. return -EINVAL;
  2163. mac80211_hwsim_mchan_ops = mac80211_hwsim_ops;
  2164. mac80211_hwsim_mchan_ops.hw_scan = mac80211_hwsim_hw_scan;
  2165. mac80211_hwsim_mchan_ops.cancel_hw_scan = mac80211_hwsim_cancel_hw_scan;
  2166. mac80211_hwsim_mchan_ops.sw_scan_start = NULL;
  2167. mac80211_hwsim_mchan_ops.sw_scan_complete = NULL;
  2168. mac80211_hwsim_mchan_ops.remain_on_channel = mac80211_hwsim_roc;
  2169. mac80211_hwsim_mchan_ops.cancel_remain_on_channel = mac80211_hwsim_croc;
  2170. mac80211_hwsim_mchan_ops.add_chanctx = mac80211_hwsim_add_chanctx;
  2171. mac80211_hwsim_mchan_ops.remove_chanctx = mac80211_hwsim_remove_chanctx;
  2172. mac80211_hwsim_mchan_ops.change_chanctx = mac80211_hwsim_change_chanctx;
  2173. mac80211_hwsim_mchan_ops.assign_vif_chanctx =
  2174. mac80211_hwsim_assign_vif_chanctx;
  2175. mac80211_hwsim_mchan_ops.unassign_vif_chanctx =
  2176. mac80211_hwsim_unassign_vif_chanctx;
  2177. spin_lock_init(&hwsim_radio_lock);
  2178. INIT_LIST_HEAD(&hwsim_radios);
  2179. err = platform_driver_register(&mac80211_hwsim_driver);
  2180. if (err)
  2181. return err;
  2182. hwsim_class = class_create(THIS_MODULE, "mac80211_hwsim");
  2183. if (IS_ERR(hwsim_class)) {
  2184. err = PTR_ERR(hwsim_class);
  2185. goto out_unregister_driver;
  2186. }
  2187. for (i = 0; i < radios; i++) {
  2188. const char *reg_alpha2 = NULL;
  2189. const struct ieee80211_regdomain *regd = NULL;
  2190. bool reg_strict = false;
  2191. switch (regtest) {
  2192. case HWSIM_REGTEST_DIFF_COUNTRY:
  2193. if (i < ARRAY_SIZE(hwsim_alpha2s))
  2194. reg_alpha2 = hwsim_alpha2s[i];
  2195. break;
  2196. case HWSIM_REGTEST_DRIVER_REG_FOLLOW:
  2197. if (!i)
  2198. reg_alpha2 = hwsim_alpha2s[0];
  2199. break;
  2200. case HWSIM_REGTEST_STRICT_ALL:
  2201. reg_strict = true;
  2202. case HWSIM_REGTEST_DRIVER_REG_ALL:
  2203. reg_alpha2 = hwsim_alpha2s[0];
  2204. break;
  2205. case HWSIM_REGTEST_WORLD_ROAM:
  2206. if (i == 0)
  2207. regd = &hwsim_world_regdom_custom_01;
  2208. break;
  2209. case HWSIM_REGTEST_CUSTOM_WORLD:
  2210. regd = &hwsim_world_regdom_custom_01;
  2211. break;
  2212. case HWSIM_REGTEST_CUSTOM_WORLD_2:
  2213. if (i == 0)
  2214. regd = &hwsim_world_regdom_custom_01;
  2215. else if (i == 1)
  2216. regd = &hwsim_world_regdom_custom_02;
  2217. break;
  2218. case HWSIM_REGTEST_STRICT_FOLLOW:
  2219. if (i == 0) {
  2220. reg_strict = true;
  2221. reg_alpha2 = hwsim_alpha2s[0];
  2222. }
  2223. break;
  2224. case HWSIM_REGTEST_STRICT_AND_DRIVER_REG:
  2225. if (i == 0) {
  2226. reg_strict = true;
  2227. reg_alpha2 = hwsim_alpha2s[0];
  2228. } else if (i == 1) {
  2229. reg_alpha2 = hwsim_alpha2s[1];
  2230. }
  2231. break;
  2232. case HWSIM_REGTEST_ALL:
  2233. switch (i) {
  2234. case 0:
  2235. regd = &hwsim_world_regdom_custom_01;
  2236. break;
  2237. case 1:
  2238. regd = &hwsim_world_regdom_custom_02;
  2239. break;
  2240. case 2:
  2241. reg_alpha2 = hwsim_alpha2s[0];
  2242. break;
  2243. case 3:
  2244. reg_alpha2 = hwsim_alpha2s[1];
  2245. break;
  2246. case 4:
  2247. reg_strict = true;
  2248. reg_alpha2 = hwsim_alpha2s[2];
  2249. break;
  2250. }
  2251. break;
  2252. default:
  2253. break;
  2254. }
  2255. err = mac80211_hwsim_create_radio(channels, reg_alpha2,
  2256. regd, reg_strict,
  2257. support_p2p_device,
  2258. channels > 1);
  2259. if (err < 0)
  2260. goto out_free_radios;
  2261. }
  2262. hwsim_mon = alloc_netdev(0, "hwsim%d", hwsim_mon_setup);
  2263. if (hwsim_mon == NULL) {
  2264. err = -ENOMEM;
  2265. goto out_free_radios;
  2266. }
  2267. rtnl_lock();
  2268. err = dev_alloc_name(hwsim_mon, hwsim_mon->name);
  2269. if (err < 0) {
  2270. rtnl_unlock();
  2271. goto out_free_radios;
  2272. }
  2273. err = register_netdevice(hwsim_mon);
  2274. if (err < 0) {
  2275. rtnl_unlock();
  2276. goto out_free_mon;
  2277. }
  2278. rtnl_unlock();
  2279. err = hwsim_init_netlink();
  2280. if (err < 0)
  2281. goto out_free_mon;
  2282. return 0;
  2283. out_free_mon:
  2284. free_netdev(hwsim_mon);
  2285. out_free_radios:
  2286. mac80211_hwsim_free();
  2287. out_unregister_driver:
  2288. platform_driver_unregister(&mac80211_hwsim_driver);
  2289. return err;
  2290. }
  2291. module_init(init_mac80211_hwsim);
  2292. static void __exit exit_mac80211_hwsim(void)
  2293. {
  2294. printk(KERN_DEBUG "mac80211_hwsim: unregister radios\n");
  2295. hwsim_exit_netlink();
  2296. mac80211_hwsim_free();
  2297. unregister_netdev(hwsim_mon);
  2298. platform_driver_unregister(&mac80211_hwsim_driver);
  2299. }
  2300. module_exit(exit_mac80211_hwsim);