chip.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035
  1. /*
  2. * Copyright (c) 2014 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/kernel.h>
  17. #include <linux/delay.h>
  18. #include <linux/list.h>
  19. #include <linux/ssb/ssb_regs.h>
  20. #include <linux/bcma/bcma.h>
  21. #include <linux/bcma/bcma_regs.h>
  22. #include <defs.h>
  23. #include <soc.h>
  24. #include <brcm_hw_ids.h>
  25. #include <brcmu_utils.h>
  26. #include <chipcommon.h>
  27. #include "dhd_dbg.h"
  28. #include "chip.h"
  29. /* SOC Interconnect types (aka chip types) */
  30. #define SOCI_SB 0
  31. #define SOCI_AI 1
  32. /* PL-368 DMP definitions */
  33. #define DMP_DESC_TYPE_MSK 0x0000000F
  34. #define DMP_DESC_EMPTY 0x00000000
  35. #define DMP_DESC_VALID 0x00000001
  36. #define DMP_DESC_COMPONENT 0x00000001
  37. #define DMP_DESC_MASTER_PORT 0x00000003
  38. #define DMP_DESC_ADDRESS 0x00000005
  39. #define DMP_DESC_ADDRSIZE_GT32 0x00000008
  40. #define DMP_DESC_EOT 0x0000000F
  41. #define DMP_COMP_DESIGNER 0xFFF00000
  42. #define DMP_COMP_DESIGNER_S 20
  43. #define DMP_COMP_PARTNUM 0x000FFF00
  44. #define DMP_COMP_PARTNUM_S 8
  45. #define DMP_COMP_CLASS 0x000000F0
  46. #define DMP_COMP_CLASS_S 4
  47. #define DMP_COMP_REVISION 0xFF000000
  48. #define DMP_COMP_REVISION_S 24
  49. #define DMP_COMP_NUM_SWRAP 0x00F80000
  50. #define DMP_COMP_NUM_SWRAP_S 19
  51. #define DMP_COMP_NUM_MWRAP 0x0007C000
  52. #define DMP_COMP_NUM_MWRAP_S 14
  53. #define DMP_COMP_NUM_SPORT 0x00003E00
  54. #define DMP_COMP_NUM_SPORT_S 9
  55. #define DMP_COMP_NUM_MPORT 0x000001F0
  56. #define DMP_COMP_NUM_MPORT_S 4
  57. #define DMP_MASTER_PORT_UID 0x0000FF00
  58. #define DMP_MASTER_PORT_UID_S 8
  59. #define DMP_MASTER_PORT_NUM 0x000000F0
  60. #define DMP_MASTER_PORT_NUM_S 4
  61. #define DMP_SLAVE_ADDR_BASE 0xFFFFF000
  62. #define DMP_SLAVE_ADDR_BASE_S 12
  63. #define DMP_SLAVE_PORT_NUM 0x00000F00
  64. #define DMP_SLAVE_PORT_NUM_S 8
  65. #define DMP_SLAVE_TYPE 0x000000C0
  66. #define DMP_SLAVE_TYPE_S 6
  67. #define DMP_SLAVE_TYPE_SLAVE 0
  68. #define DMP_SLAVE_TYPE_BRIDGE 1
  69. #define DMP_SLAVE_TYPE_SWRAP 2
  70. #define DMP_SLAVE_TYPE_MWRAP 3
  71. #define DMP_SLAVE_SIZE_TYPE 0x00000030
  72. #define DMP_SLAVE_SIZE_TYPE_S 4
  73. #define DMP_SLAVE_SIZE_4K 0
  74. #define DMP_SLAVE_SIZE_8K 1
  75. #define DMP_SLAVE_SIZE_16K 2
  76. #define DMP_SLAVE_SIZE_DESC 3
  77. /* EROM CompIdentB */
  78. #define CIB_REV_MASK 0xff000000
  79. #define CIB_REV_SHIFT 24
  80. /* ARM CR4 core specific control flag bits */
  81. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  82. /* D11 core specific control flag bits */
  83. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  84. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  85. /* chip core base & ramsize */
  86. /* bcm4329 */
  87. /* SDIO device core, ID 0x829 */
  88. #define BCM4329_CORE_BUS_BASE 0x18011000
  89. /* internal memory core, ID 0x80e */
  90. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  91. /* ARM Cortex M3 core, ID 0x82a */
  92. #define BCM4329_CORE_ARM_BASE 0x18002000
  93. #define BCM4329_RAMSIZE 0x48000
  94. /* bcm43143 */
  95. /* SDIO device core */
  96. #define BCM43143_CORE_BUS_BASE 0x18002000
  97. /* internal memory core */
  98. #define BCM43143_CORE_SOCRAM_BASE 0x18004000
  99. /* ARM Cortex M3 core, ID 0x82a */
  100. #define BCM43143_CORE_ARM_BASE 0x18003000
  101. #define BCM43143_RAMSIZE 0x70000
  102. #define CORE_SB(base, field) \
  103. (base + SBCONFIGOFF + offsetof(struct sbconfig, field))
  104. #define SBCOREREV(sbidh) \
  105. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  106. ((sbidh) & SSB_IDHIGH_RCLO))
  107. struct sbconfig {
  108. u32 PAD[2];
  109. u32 sbipsflag; /* initiator port ocp slave flag */
  110. u32 PAD[3];
  111. u32 sbtpsflag; /* target port ocp slave flag */
  112. u32 PAD[11];
  113. u32 sbtmerrloga; /* (sonics >= 2.3) */
  114. u32 PAD;
  115. u32 sbtmerrlog; /* (sonics >= 2.3) */
  116. u32 PAD[3];
  117. u32 sbadmatch3; /* address match3 */
  118. u32 PAD;
  119. u32 sbadmatch2; /* address match2 */
  120. u32 PAD;
  121. u32 sbadmatch1; /* address match1 */
  122. u32 PAD[7];
  123. u32 sbimstate; /* initiator agent state */
  124. u32 sbintvec; /* interrupt mask */
  125. u32 sbtmstatelow; /* target state */
  126. u32 sbtmstatehigh; /* target state */
  127. u32 sbbwa0; /* bandwidth allocation table0 */
  128. u32 PAD;
  129. u32 sbimconfiglow; /* initiator configuration */
  130. u32 sbimconfighigh; /* initiator configuration */
  131. u32 sbadmatch0; /* address match0 */
  132. u32 PAD;
  133. u32 sbtmconfiglow; /* target configuration */
  134. u32 sbtmconfighigh; /* target configuration */
  135. u32 sbbconfig; /* broadcast configuration */
  136. u32 PAD;
  137. u32 sbbstate; /* broadcast state */
  138. u32 PAD[3];
  139. u32 sbactcnfg; /* activate configuration */
  140. u32 PAD[3];
  141. u32 sbflagst; /* current sbflags */
  142. u32 PAD[3];
  143. u32 sbidlow; /* identification */
  144. u32 sbidhigh; /* identification */
  145. };
  146. struct brcmf_core_priv {
  147. struct brcmf_core pub;
  148. u32 wrapbase;
  149. struct list_head list;
  150. struct brcmf_chip_priv *chip;
  151. };
  152. /* ARM CR4 core specific control flag bits */
  153. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  154. /* D11 core specific control flag bits */
  155. #define D11_BCMA_IOCTL_PHYCLOCKEN 0x0004
  156. #define D11_BCMA_IOCTL_PHYRESET 0x0008
  157. struct brcmf_chip_priv {
  158. struct brcmf_chip pub;
  159. const struct brcmf_buscore_ops *ops;
  160. void *ctx;
  161. /* assured first core is chipcommon, second core is buscore */
  162. struct list_head cores;
  163. u16 num_cores;
  164. bool (*iscoreup)(struct brcmf_core_priv *core);
  165. void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
  166. u32 reset);
  167. void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
  168. u32 postreset);
  169. };
  170. static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
  171. struct brcmf_core *core)
  172. {
  173. u32 regdata;
  174. regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
  175. core->rev = SBCOREREV(regdata);
  176. }
  177. static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
  178. {
  179. struct brcmf_chip_priv *ci;
  180. u32 regdata;
  181. u32 address;
  182. ci = core->chip;
  183. address = CORE_SB(core->pub.base, sbtmstatelow);
  184. regdata = ci->ops->read32(ci->ctx, address);
  185. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  186. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  187. return SSB_TMSLOW_CLOCK == regdata;
  188. }
  189. static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
  190. {
  191. struct brcmf_chip_priv *ci;
  192. u32 regdata;
  193. bool ret;
  194. ci = core->chip;
  195. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  196. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  197. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  198. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  199. return ret;
  200. }
  201. static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
  202. u32 prereset, u32 reset)
  203. {
  204. struct brcmf_chip_priv *ci;
  205. u32 val, base;
  206. ci = core->chip;
  207. base = core->pub.base;
  208. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  209. if (val & SSB_TMSLOW_RESET)
  210. return;
  211. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  212. if ((val & SSB_TMSLOW_CLOCK) != 0) {
  213. /*
  214. * set target reject and spin until busy is clear
  215. * (preserve core-specific bits)
  216. */
  217. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  218. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  219. val | SSB_TMSLOW_REJECT);
  220. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  221. udelay(1);
  222. SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
  223. & SSB_TMSHIGH_BUSY), 100000);
  224. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  225. if (val & SSB_TMSHIGH_BUSY)
  226. brcmf_err("core state still busy\n");
  227. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  228. if (val & SSB_IDLOW_INITIATOR) {
  229. val = ci->ops->read32(ci->ctx,
  230. CORE_SB(base, sbimstate));
  231. val |= SSB_IMSTATE_REJECT;
  232. ci->ops->write32(ci->ctx,
  233. CORE_SB(base, sbimstate), val);
  234. val = ci->ops->read32(ci->ctx,
  235. CORE_SB(base, sbimstate));
  236. udelay(1);
  237. SPINWAIT((ci->ops->read32(ci->ctx,
  238. CORE_SB(base, sbimstate)) &
  239. SSB_IMSTATE_BUSY), 100000);
  240. }
  241. /* set reset and reject while enabling the clocks */
  242. val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  243. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  244. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
  245. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  246. udelay(10);
  247. /* clear the initiator reject bit */
  248. val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
  249. if (val & SSB_IDLOW_INITIATOR) {
  250. val = ci->ops->read32(ci->ctx,
  251. CORE_SB(base, sbimstate));
  252. val &= ~SSB_IMSTATE_REJECT;
  253. ci->ops->write32(ci->ctx,
  254. CORE_SB(base, sbimstate), val);
  255. }
  256. }
  257. /* leave reset and reject asserted */
  258. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  259. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
  260. udelay(1);
  261. }
  262. static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
  263. u32 prereset, u32 reset)
  264. {
  265. struct brcmf_chip_priv *ci;
  266. u32 regdata;
  267. ci = core->chip;
  268. /* if core is already in reset, skip reset */
  269. regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
  270. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  271. goto in_reset_configure;
  272. /* configure reset */
  273. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  274. prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  275. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  276. /* put in reset */
  277. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
  278. BCMA_RESET_CTL_RESET);
  279. usleep_range(10, 20);
  280. /* wait till reset is 1 */
  281. SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
  282. BCMA_RESET_CTL_RESET, 300);
  283. in_reset_configure:
  284. /* in-reset configure */
  285. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  286. reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
  287. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  288. }
  289. static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
  290. u32 reset, u32 postreset)
  291. {
  292. struct brcmf_chip_priv *ci;
  293. u32 regdata;
  294. u32 base;
  295. ci = core->chip;
  296. base = core->pub.base;
  297. /*
  298. * Must do the disable sequence first to work for
  299. * arbitrary current core state.
  300. */
  301. brcmf_chip_sb_coredisable(core, 0, 0);
  302. /*
  303. * Now do the initialization sequence.
  304. * set reset while enabling the clock and
  305. * forcing them on throughout the core
  306. */
  307. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  308. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  309. SSB_TMSLOW_RESET);
  310. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  311. udelay(1);
  312. /* clear any serror */
  313. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
  314. if (regdata & SSB_TMSHIGH_SERR)
  315. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
  316. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
  317. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  318. regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  319. ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
  320. }
  321. /* clear reset and allow it to propagate throughout the core */
  322. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  323. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
  324. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  325. udelay(1);
  326. /* leave clock enabled */
  327. ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
  328. SSB_TMSLOW_CLOCK);
  329. regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
  330. udelay(1);
  331. }
  332. static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
  333. u32 reset, u32 postreset)
  334. {
  335. struct brcmf_chip_priv *ci;
  336. int count;
  337. ci = core->chip;
  338. /* must disable first to work for arbitrary current core state */
  339. brcmf_chip_ai_coredisable(core, prereset, reset);
  340. count = 0;
  341. while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
  342. BCMA_RESET_CTL_RESET) {
  343. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
  344. count++;
  345. if (count > 50)
  346. break;
  347. usleep_range(40, 60);
  348. }
  349. ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
  350. postreset | BCMA_IOCTL_CLK);
  351. ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
  352. }
  353. static char *brcmf_chip_name(uint chipid, char *buf, uint len)
  354. {
  355. const char *fmt;
  356. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  357. snprintf(buf, len, fmt, chipid);
  358. return buf;
  359. }
  360. static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
  361. u16 coreid, u32 base,
  362. u32 wrapbase)
  363. {
  364. struct brcmf_core_priv *core;
  365. core = kzalloc(sizeof(*core), GFP_KERNEL);
  366. if (!core)
  367. return ERR_PTR(-ENOMEM);
  368. core->pub.id = coreid;
  369. core->pub.base = base;
  370. core->chip = ci;
  371. core->wrapbase = wrapbase;
  372. list_add_tail(&core->list, &ci->cores);
  373. return &core->pub;
  374. }
  375. #ifdef DEBUG
  376. /* safety check for chipinfo */
  377. static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  378. {
  379. struct brcmf_core_priv *core;
  380. bool need_socram = false;
  381. bool has_socram = false;
  382. int idx = 1;
  383. list_for_each_entry(core, &ci->cores, list) {
  384. brcmf_dbg(INFO, " [%-2d] core 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
  385. idx++, core->pub.id, core->pub.rev, core->pub.base,
  386. core->wrapbase);
  387. switch (core->pub.id) {
  388. case BCMA_CORE_ARM_CM3:
  389. need_socram = true;
  390. break;
  391. case BCMA_CORE_INTERNAL_MEM:
  392. has_socram = true;
  393. break;
  394. case BCMA_CORE_ARM_CR4:
  395. if (ci->pub.rambase == 0) {
  396. brcmf_err("RAM base not provided with ARM CR4 core\n");
  397. return -ENOMEM;
  398. }
  399. break;
  400. default:
  401. break;
  402. }
  403. }
  404. /* check RAM core presence for ARM CM3 core */
  405. if (need_socram && !has_socram) {
  406. brcmf_err("RAM core not provided with ARM CM3 core\n");
  407. return -ENODEV;
  408. }
  409. return 0;
  410. }
  411. #else /* DEBUG */
  412. static inline int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
  413. {
  414. return 0;
  415. }
  416. #endif
  417. static void brcmf_chip_get_raminfo(struct brcmf_chip_priv *ci)
  418. {
  419. switch (ci->pub.chip) {
  420. case BCM4329_CHIP_ID:
  421. ci->pub.ramsize = BCM4329_RAMSIZE;
  422. break;
  423. case BCM43143_CHIP_ID:
  424. ci->pub.ramsize = BCM43143_RAMSIZE;
  425. break;
  426. case BCM43241_CHIP_ID:
  427. ci->pub.ramsize = 0x90000;
  428. break;
  429. case BCM4330_CHIP_ID:
  430. ci->pub.ramsize = 0x48000;
  431. break;
  432. case BCM4334_CHIP_ID:
  433. ci->pub.ramsize = 0x80000;
  434. break;
  435. case BCM4335_CHIP_ID:
  436. ci->pub.ramsize = 0xc0000;
  437. ci->pub.rambase = 0x180000;
  438. break;
  439. case BCM43362_CHIP_ID:
  440. ci->pub.ramsize = 0x3c000;
  441. break;
  442. case BCM4339_CHIP_ID:
  443. case BCM4354_CHIP_ID:
  444. ci->pub.ramsize = 0xc0000;
  445. ci->pub.rambase = 0x180000;
  446. break;
  447. default:
  448. brcmf_err("unknown chip: %s\n", ci->pub.name);
  449. break;
  450. }
  451. }
  452. static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
  453. u8 *type)
  454. {
  455. u32 val;
  456. /* read next descriptor */
  457. val = ci->ops->read32(ci->ctx, *eromaddr);
  458. *eromaddr += 4;
  459. if (!type)
  460. return val;
  461. /* determine descriptor type */
  462. *type = (val & DMP_DESC_TYPE_MSK);
  463. if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
  464. *type = DMP_DESC_ADDRESS;
  465. return val;
  466. }
  467. static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
  468. u32 *regbase, u32 *wrapbase)
  469. {
  470. u8 desc;
  471. u32 val;
  472. u8 mpnum = 0;
  473. u8 stype, sztype, wraptype;
  474. *regbase = 0;
  475. *wrapbase = 0;
  476. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  477. if (desc == DMP_DESC_MASTER_PORT) {
  478. mpnum = (val & DMP_MASTER_PORT_NUM) >> DMP_MASTER_PORT_NUM_S;
  479. wraptype = DMP_SLAVE_TYPE_MWRAP;
  480. } else if (desc == DMP_DESC_ADDRESS) {
  481. /* revert erom address */
  482. *eromaddr -= 4;
  483. wraptype = DMP_SLAVE_TYPE_SWRAP;
  484. } else {
  485. *eromaddr -= 4;
  486. return -EILSEQ;
  487. }
  488. do {
  489. /* locate address descriptor */
  490. do {
  491. val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
  492. /* unexpected table end */
  493. if (desc == DMP_DESC_EOT) {
  494. *eromaddr -= 4;
  495. return -EFAULT;
  496. }
  497. } while (desc != DMP_DESC_ADDRESS);
  498. /* skip upper 32-bit address descriptor */
  499. if (val & DMP_DESC_ADDRSIZE_GT32)
  500. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  501. sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
  502. /* next size descriptor can be skipped */
  503. if (sztype == DMP_SLAVE_SIZE_DESC) {
  504. val = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  505. /* skip upper size descriptor if present */
  506. if (val & DMP_DESC_ADDRSIZE_GT32)
  507. brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
  508. }
  509. /* only look for 4K register regions */
  510. if (sztype != DMP_SLAVE_SIZE_4K)
  511. continue;
  512. stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
  513. /* only regular slave and wrapper */
  514. if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
  515. *regbase = val & DMP_SLAVE_ADDR_BASE;
  516. if (*wrapbase == 0 && stype == wraptype)
  517. *wrapbase = val & DMP_SLAVE_ADDR_BASE;
  518. } while (*regbase == 0 || *wrapbase == 0);
  519. return 0;
  520. }
  521. static
  522. int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
  523. {
  524. struct brcmf_core *core;
  525. u32 eromaddr;
  526. u8 desc_type = 0;
  527. u32 val;
  528. u16 id;
  529. u8 nmp, nsp, nmw, nsw, rev;
  530. u32 base, wrap;
  531. int err;
  532. eromaddr = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, eromptr));
  533. while (desc_type != DMP_DESC_EOT) {
  534. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  535. if (!(val & DMP_DESC_VALID))
  536. continue;
  537. if (desc_type == DMP_DESC_EMPTY)
  538. continue;
  539. /* need a component descriptor */
  540. if (desc_type != DMP_DESC_COMPONENT)
  541. continue;
  542. id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
  543. /* next descriptor must be component as well */
  544. val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
  545. if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
  546. return -EFAULT;
  547. /* only look at cores with master port(s) */
  548. nmp = (val & DMP_COMP_NUM_MPORT) >> DMP_COMP_NUM_MPORT_S;
  549. nsp = (val & DMP_COMP_NUM_SPORT) >> DMP_COMP_NUM_SPORT_S;
  550. nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
  551. nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
  552. rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
  553. /* need core with ports */
  554. if (nmw + nsw == 0)
  555. continue;
  556. /* try to obtain register address info */
  557. err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
  558. if (err)
  559. continue;
  560. /* finally a core to be added */
  561. core = brcmf_chip_add_core(ci, id, base, wrap);
  562. if (IS_ERR(core))
  563. return PTR_ERR(core);
  564. core->rev = rev;
  565. }
  566. return 0;
  567. }
  568. static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
  569. {
  570. struct brcmf_core *core;
  571. u32 regdata;
  572. u32 socitype;
  573. /* Get CC core rev
  574. * Chipid is assume to be at offset 0 from SI_ENUM_BASE
  575. * For different chiptypes or old sdio hosts w/o chipcommon,
  576. * other ways of recognition should be added here.
  577. */
  578. regdata = ci->ops->read32(ci->ctx, CORE_CC_REG(SI_ENUM_BASE, chipid));
  579. ci->pub.chip = regdata & CID_ID_MASK;
  580. ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  581. socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  582. brcmf_chip_name(ci->pub.chip, ci->pub.name, sizeof(ci->pub.name));
  583. brcmf_dbg(INFO, "found %s chip: BCM%s, rev=%d\n",
  584. socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name,
  585. ci->pub.chiprev);
  586. if (socitype == SOCI_SB) {
  587. if (ci->pub.chip != BCM4329_CHIP_ID) {
  588. brcmf_err("SB chip is not supported\n");
  589. return -ENODEV;
  590. }
  591. ci->iscoreup = brcmf_chip_sb_iscoreup;
  592. ci->coredisable = brcmf_chip_sb_coredisable;
  593. ci->resetcore = brcmf_chip_sb_resetcore;
  594. core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
  595. SI_ENUM_BASE, 0);
  596. brcmf_chip_sb_corerev(ci, core);
  597. core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
  598. BCM4329_CORE_BUS_BASE, 0);
  599. brcmf_chip_sb_corerev(ci, core);
  600. core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
  601. BCM4329_CORE_SOCRAM_BASE, 0);
  602. brcmf_chip_sb_corerev(ci, core);
  603. core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
  604. BCM4329_CORE_ARM_BASE, 0);
  605. brcmf_chip_sb_corerev(ci, core);
  606. core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
  607. brcmf_chip_sb_corerev(ci, core);
  608. } else if (socitype == SOCI_AI) {
  609. ci->iscoreup = brcmf_chip_ai_iscoreup;
  610. ci->coredisable = brcmf_chip_ai_coredisable;
  611. ci->resetcore = brcmf_chip_ai_resetcore;
  612. brcmf_chip_dmp_erom_scan(ci);
  613. } else {
  614. brcmf_err("chip backplane type %u is not supported\n",
  615. socitype);
  616. return -ENODEV;
  617. }
  618. brcmf_chip_get_raminfo(ci);
  619. return brcmf_chip_cores_check(ci);
  620. }
  621. static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
  622. {
  623. struct brcmf_core *core;
  624. struct brcmf_core_priv *cr4;
  625. u32 val;
  626. core = brcmf_chip_get_core(&chip->pub, id);
  627. if (!core)
  628. return;
  629. switch (id) {
  630. case BCMA_CORE_ARM_CM3:
  631. brcmf_chip_coredisable(core, 0, 0);
  632. break;
  633. case BCMA_CORE_ARM_CR4:
  634. cr4 = container_of(core, struct brcmf_core_priv, pub);
  635. /* clear all IOCTL bits except HALT bit */
  636. val = chip->ops->read32(chip->ctx, cr4->wrapbase + BCMA_IOCTL);
  637. val &= ARMCR4_BCMA_IOCTL_CPUHALT;
  638. brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
  639. ARMCR4_BCMA_IOCTL_CPUHALT);
  640. break;
  641. default:
  642. brcmf_err("unknown id: %u\n", id);
  643. break;
  644. }
  645. }
  646. static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
  647. {
  648. struct brcmf_chip *pub;
  649. struct brcmf_core_priv *cc;
  650. u32 base;
  651. u32 val;
  652. int ret = 0;
  653. pub = &chip->pub;
  654. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  655. base = cc->pub.base;
  656. /* get chipcommon capabilites */
  657. pub->cc_caps = chip->ops->read32(chip->ctx,
  658. CORE_CC_REG(base, capabilities));
  659. /* get pmu caps & rev */
  660. if (pub->cc_caps & CC_CAP_PMU) {
  661. val = chip->ops->read32(chip->ctx,
  662. CORE_CC_REG(base, pmucapabilities));
  663. pub->pmurev = val & PCAP_REV_MASK;
  664. pub->pmucaps = val;
  665. }
  666. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
  667. cc->pub.rev, pub->pmurev, pub->pmucaps);
  668. /* execute bus core specific setup */
  669. if (chip->ops->setup)
  670. ret = chip->ops->setup(chip->ctx, pub);
  671. /*
  672. * Make sure any on-chip ARM is off (in case strapping is wrong),
  673. * or downloaded code was already running.
  674. */
  675. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  676. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  677. return ret;
  678. }
  679. struct brcmf_chip *brcmf_chip_attach(void *ctx,
  680. const struct brcmf_buscore_ops *ops)
  681. {
  682. struct brcmf_chip_priv *chip;
  683. int err = 0;
  684. if (WARN_ON(!ops->read32))
  685. err = -EINVAL;
  686. if (WARN_ON(!ops->write32))
  687. err = -EINVAL;
  688. if (WARN_ON(!ops->prepare))
  689. err = -EINVAL;
  690. if (WARN_ON(!ops->exit_dl))
  691. err = -EINVAL;
  692. if (err < 0)
  693. return ERR_PTR(-EINVAL);
  694. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  695. if (!chip)
  696. return ERR_PTR(-ENOMEM);
  697. INIT_LIST_HEAD(&chip->cores);
  698. chip->num_cores = 0;
  699. chip->ops = ops;
  700. chip->ctx = ctx;
  701. err = ops->prepare(ctx);
  702. if (err < 0)
  703. goto fail;
  704. err = brcmf_chip_recognition(chip);
  705. if (err < 0)
  706. goto fail;
  707. err = brcmf_chip_setup(chip);
  708. if (err < 0)
  709. goto fail;
  710. return &chip->pub;
  711. fail:
  712. brcmf_chip_detach(&chip->pub);
  713. return ERR_PTR(err);
  714. }
  715. void brcmf_chip_detach(struct brcmf_chip *pub)
  716. {
  717. struct brcmf_chip_priv *chip;
  718. struct brcmf_core_priv *core;
  719. struct brcmf_core_priv *tmp;
  720. chip = container_of(pub, struct brcmf_chip_priv, pub);
  721. list_for_each_entry_safe(core, tmp, &chip->cores, list) {
  722. list_del(&core->list);
  723. kfree(core);
  724. }
  725. kfree(chip);
  726. }
  727. struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
  728. {
  729. struct brcmf_chip_priv *chip;
  730. struct brcmf_core_priv *core;
  731. chip = container_of(pub, struct brcmf_chip_priv, pub);
  732. list_for_each_entry(core, &chip->cores, list)
  733. if (core->pub.id == coreid)
  734. return &core->pub;
  735. return NULL;
  736. }
  737. struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
  738. {
  739. struct brcmf_chip_priv *chip;
  740. struct brcmf_core_priv *cc;
  741. chip = container_of(pub, struct brcmf_chip_priv, pub);
  742. cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
  743. if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
  744. return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
  745. return &cc->pub;
  746. }
  747. bool brcmf_chip_iscoreup(struct brcmf_core *pub)
  748. {
  749. struct brcmf_core_priv *core;
  750. core = container_of(pub, struct brcmf_core_priv, pub);
  751. return core->chip->iscoreup(core);
  752. }
  753. void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
  754. {
  755. struct brcmf_core_priv *core;
  756. core = container_of(pub, struct brcmf_core_priv, pub);
  757. core->chip->coredisable(core, prereset, reset);
  758. }
  759. void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
  760. u32 postreset)
  761. {
  762. struct brcmf_core_priv *core;
  763. core = container_of(pub, struct brcmf_core_priv, pub);
  764. core->chip->resetcore(core, prereset, reset, postreset);
  765. }
  766. static void
  767. brcmf_chip_cm3_enterdl(struct brcmf_chip_priv *chip)
  768. {
  769. struct brcmf_core *core;
  770. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
  771. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  772. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  773. D11_BCMA_IOCTL_PHYCLOCKEN,
  774. D11_BCMA_IOCTL_PHYCLOCKEN,
  775. D11_BCMA_IOCTL_PHYCLOCKEN);
  776. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  777. brcmf_chip_resetcore(core, 0, 0, 0);
  778. }
  779. static bool brcmf_chip_cm3_exitdl(struct brcmf_chip_priv *chip)
  780. {
  781. struct brcmf_core *core;
  782. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
  783. if (!brcmf_chip_iscoreup(core)) {
  784. brcmf_err("SOCRAM core is down after reset?\n");
  785. return false;
  786. }
  787. chip->ops->exit_dl(chip->ctx, &chip->pub, 0);
  788. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
  789. brcmf_chip_resetcore(core, 0, 0, 0);
  790. return true;
  791. }
  792. static inline void
  793. brcmf_chip_cr4_enterdl(struct brcmf_chip_priv *chip)
  794. {
  795. struct brcmf_core *core;
  796. brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
  797. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
  798. brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
  799. D11_BCMA_IOCTL_PHYCLOCKEN,
  800. D11_BCMA_IOCTL_PHYCLOCKEN,
  801. D11_BCMA_IOCTL_PHYCLOCKEN);
  802. }
  803. static bool brcmf_chip_cr4_exitdl(struct brcmf_chip_priv *chip, u32 rstvec)
  804. {
  805. struct brcmf_core *core;
  806. chip->ops->exit_dl(chip->ctx, &chip->pub, rstvec);
  807. /* restore ARM */
  808. core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
  809. brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
  810. return true;
  811. }
  812. void brcmf_chip_enter_download(struct brcmf_chip *pub)
  813. {
  814. struct brcmf_chip_priv *chip;
  815. struct brcmf_core *arm;
  816. brcmf_dbg(TRACE, "Enter\n");
  817. chip = container_of(pub, struct brcmf_chip_priv, pub);
  818. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  819. if (arm) {
  820. brcmf_chip_cr4_enterdl(chip);
  821. return;
  822. }
  823. brcmf_chip_cm3_enterdl(chip);
  824. }
  825. bool brcmf_chip_exit_download(struct brcmf_chip *pub, u32 rstvec)
  826. {
  827. struct brcmf_chip_priv *chip;
  828. struct brcmf_core *arm;
  829. brcmf_dbg(TRACE, "Enter\n");
  830. chip = container_of(pub, struct brcmf_chip_priv, pub);
  831. arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
  832. if (arm)
  833. return brcmf_chip_cr4_exitdl(chip, rstvec);
  834. return brcmf_chip_cm3_exitdl(chip);
  835. }
  836. bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
  837. {
  838. u32 base, addr, reg, pmu_cc3_mask = ~0;
  839. struct brcmf_chip_priv *chip;
  840. brcmf_dbg(TRACE, "Enter\n");
  841. /* old chips with PMU version less than 17 don't support save restore */
  842. if (pub->pmurev < 17)
  843. return false;
  844. base = brcmf_chip_get_chipcommon(pub)->base;
  845. chip = container_of(pub, struct brcmf_chip_priv, pub);
  846. switch (pub->chip) {
  847. case BCM4354_CHIP_ID:
  848. /* explicitly check SR engine enable bit */
  849. pmu_cc3_mask = BIT(2);
  850. /* fall-through */
  851. case BCM43241_CHIP_ID:
  852. case BCM4335_CHIP_ID:
  853. case BCM4339_CHIP_ID:
  854. /* read PMU chipcontrol register 3 */
  855. addr = CORE_CC_REG(base, chipcontrol_addr);
  856. chip->ops->write32(chip->ctx, addr, 3);
  857. addr = CORE_CC_REG(base, chipcontrol_data);
  858. reg = chip->ops->read32(chip->ctx, addr);
  859. return (reg & pmu_cc3_mask) != 0;
  860. default:
  861. addr = CORE_CC_REG(base, pmucapabilities_ext);
  862. reg = chip->ops->read32(chip->ctx, addr);
  863. if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
  864. return false;
  865. addr = CORE_CC_REG(base, retention_ctl);
  866. reg = chip->ops->read32(chip->ctx, addr);
  867. return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
  868. PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
  869. }
  870. }