wmi.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198
  1. /*
  2. * Copyright (c) 2012 Qualcomm Atheros, Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/etherdevice.h>
  17. #include <linux/if_arp.h>
  18. #include "wil6210.h"
  19. #include "txrx.h"
  20. #include "wmi.h"
  21. #include "trace.h"
  22. /**
  23. * WMI event receiving - theory of operations
  24. *
  25. * When firmware about to report WMI event, it fills memory area
  26. * in the mailbox and raises misc. IRQ. Thread interrupt handler invoked for
  27. * the misc IRQ, function @wmi_recv_cmd called by thread IRQ handler.
  28. *
  29. * @wmi_recv_cmd reads event, allocates memory chunk and attaches it to the
  30. * event list @wil->pending_wmi_ev. Then, work queue @wil->wmi_wq wakes up
  31. * and handles events within the @wmi_event_worker. Every event get detached
  32. * from list, processed and deleted.
  33. *
  34. * Purpose for this mechanism is to release IRQ thread; otherwise,
  35. * if WMI event handling involves another WMI command flow, this 2-nd flow
  36. * won't be completed because of blocked IRQ thread.
  37. */
  38. /**
  39. * Addressing - theory of operations
  40. *
  41. * There are several buses present on the WIL6210 card.
  42. * Same memory areas are visible at different address on
  43. * the different busses. There are 3 main bus masters:
  44. * - MAC CPU (ucode)
  45. * - User CPU (firmware)
  46. * - AHB (host)
  47. *
  48. * On the PCI bus, there is one BAR (BAR0) of 2Mb size, exposing
  49. * AHB addresses starting from 0x880000
  50. *
  51. * Internally, firmware uses addresses that allows faster access but
  52. * are invisible from the host. To read from these addresses, alternative
  53. * AHB address must be used.
  54. *
  55. * Memory mapping
  56. * Linker address PCI/Host address
  57. * 0x880000 .. 0xa80000 2Mb BAR0
  58. * 0x800000 .. 0x807000 0x900000 .. 0x907000 28k DCCM
  59. * 0x840000 .. 0x857000 0x908000 .. 0x91f000 92k PERIPH
  60. */
  61. /**
  62. * @fw_mapping provides memory remapping table
  63. */
  64. static const struct {
  65. u32 from; /* linker address - from, inclusive */
  66. u32 to; /* linker address - to, exclusive */
  67. u32 host; /* PCI/Host address - BAR0 + 0x880000 */
  68. } fw_mapping[] = {
  69. {0x000000, 0x040000, 0x8c0000}, /* FW code RAM 256k */
  70. {0x800000, 0x808000, 0x900000}, /* FW data RAM 32k */
  71. {0x840000, 0x860000, 0x908000}, /* peripheral data RAM 128k/96k used */
  72. {0x880000, 0x88a000, 0x880000}, /* various RGF */
  73. {0x8c0000, 0x949000, 0x8c0000}, /* trivial mapping for upper area */
  74. /*
  75. * 920000..930000 ucode code RAM
  76. * 930000..932000 ucode data RAM
  77. * 932000..949000 back-door debug data
  78. */
  79. };
  80. /**
  81. * return AHB address for given firmware/ucode internal (linker) address
  82. * @x - internal address
  83. * If address have no valid AHB mapping, return 0
  84. */
  85. static u32 wmi_addr_remap(u32 x)
  86. {
  87. uint i;
  88. for (i = 0; i < ARRAY_SIZE(fw_mapping); i++) {
  89. if ((x >= fw_mapping[i].from) && (x < fw_mapping[i].to))
  90. return x + fw_mapping[i].host - fw_mapping[i].from;
  91. }
  92. return 0;
  93. }
  94. /**
  95. * Check address validity for WMI buffer; remap if needed
  96. * @ptr - internal (linker) fw/ucode address
  97. *
  98. * Valid buffer should be DWORD aligned
  99. *
  100. * return address for accessing buffer from the host;
  101. * if buffer is not valid, return NULL.
  102. */
  103. void __iomem *wmi_buffer(struct wil6210_priv *wil, __le32 ptr_)
  104. {
  105. u32 off;
  106. u32 ptr = le32_to_cpu(ptr_);
  107. if (ptr % 4)
  108. return NULL;
  109. ptr = wmi_addr_remap(ptr);
  110. if (ptr < WIL6210_FW_HOST_OFF)
  111. return NULL;
  112. off = HOSTADDR(ptr);
  113. if (off > WIL6210_MEM_SIZE - 4)
  114. return NULL;
  115. return wil->csr + off;
  116. }
  117. /**
  118. * Check address validity
  119. */
  120. void __iomem *wmi_addr(struct wil6210_priv *wil, u32 ptr)
  121. {
  122. u32 off;
  123. if (ptr % 4)
  124. return NULL;
  125. if (ptr < WIL6210_FW_HOST_OFF)
  126. return NULL;
  127. off = HOSTADDR(ptr);
  128. if (off > WIL6210_MEM_SIZE - 4)
  129. return NULL;
  130. return wil->csr + off;
  131. }
  132. int wmi_read_hdr(struct wil6210_priv *wil, __le32 ptr,
  133. struct wil6210_mbox_hdr *hdr)
  134. {
  135. void __iomem *src = wmi_buffer(wil, ptr);
  136. if (!src)
  137. return -EINVAL;
  138. wil_memcpy_fromio_32(hdr, src, sizeof(*hdr));
  139. return 0;
  140. }
  141. static int __wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  142. {
  143. struct {
  144. struct wil6210_mbox_hdr hdr;
  145. struct wil6210_mbox_hdr_wmi wmi;
  146. } __packed cmd = {
  147. .hdr = {
  148. .type = WIL_MBOX_HDR_TYPE_WMI,
  149. .flags = 0,
  150. .len = cpu_to_le16(sizeof(cmd.wmi) + len),
  151. },
  152. .wmi = {
  153. .mid = 0,
  154. .id = cpu_to_le16(cmdid),
  155. },
  156. };
  157. struct wil6210_mbox_ring *r = &wil->mbox_ctl.tx;
  158. struct wil6210_mbox_ring_desc d_head;
  159. u32 next_head;
  160. void __iomem *dst;
  161. void __iomem *head = wmi_addr(wil, r->head);
  162. uint retry;
  163. if (sizeof(cmd) + len > r->entry_size) {
  164. wil_err(wil, "WMI size too large: %d bytes, max is %d\n",
  165. (int)(sizeof(cmd) + len), r->entry_size);
  166. return -ERANGE;
  167. }
  168. might_sleep();
  169. if (!test_bit(wil_status_fwready, &wil->status)) {
  170. wil_err(wil, "WMI: cannot send command while FW not ready\n");
  171. return -EAGAIN;
  172. }
  173. if (!head) {
  174. wil_err(wil, "WMI head is garbage: 0x%08x\n", r->head);
  175. return -EINVAL;
  176. }
  177. /* read Tx head till it is not busy */
  178. for (retry = 5; retry > 0; retry--) {
  179. wil_memcpy_fromio_32(&d_head, head, sizeof(d_head));
  180. if (d_head.sync == 0)
  181. break;
  182. msleep(20);
  183. }
  184. if (d_head.sync != 0) {
  185. wil_err(wil, "WMI head busy\n");
  186. return -EBUSY;
  187. }
  188. /* next head */
  189. next_head = r->base + ((r->head - r->base + sizeof(d_head)) % r->size);
  190. wil_dbg_wmi(wil, "Head 0x%08x -> 0x%08x\n", r->head, next_head);
  191. /* wait till FW finish with previous command */
  192. for (retry = 5; retry > 0; retry--) {
  193. r->tail = ioread32(wil->csr + HOST_MBOX +
  194. offsetof(struct wil6210_mbox_ctl, tx.tail));
  195. if (next_head != r->tail)
  196. break;
  197. msleep(20);
  198. }
  199. if (next_head == r->tail) {
  200. wil_err(wil, "WMI ring full\n");
  201. return -EBUSY;
  202. }
  203. dst = wmi_buffer(wil, d_head.addr);
  204. if (!dst) {
  205. wil_err(wil, "invalid WMI buffer: 0x%08x\n",
  206. le32_to_cpu(d_head.addr));
  207. return -EINVAL;
  208. }
  209. cmd.hdr.seq = cpu_to_le16(++wil->wmi_seq);
  210. /* set command */
  211. wil_dbg_wmi(wil, "WMI command 0x%04x [%d]\n", cmdid, len);
  212. wil_hex_dump_wmi("Cmd ", DUMP_PREFIX_OFFSET, 16, 1, &cmd,
  213. sizeof(cmd), true);
  214. wil_hex_dump_wmi("cmd ", DUMP_PREFIX_OFFSET, 16, 1, buf,
  215. len, true);
  216. wil_memcpy_toio_32(dst, &cmd, sizeof(cmd));
  217. wil_memcpy_toio_32(dst + sizeof(cmd), buf, len);
  218. /* mark entry as full */
  219. iowrite32(1, wil->csr + HOSTADDR(r->head) +
  220. offsetof(struct wil6210_mbox_ring_desc, sync));
  221. /* advance next ptr */
  222. iowrite32(r->head = next_head, wil->csr + HOST_MBOX +
  223. offsetof(struct wil6210_mbox_ctl, tx.head));
  224. trace_wil6210_wmi_cmd(&cmd.wmi, buf, len);
  225. /* interrupt to FW */
  226. iowrite32(SW_INT_MBOX, wil->csr + HOST_SW_INT);
  227. return 0;
  228. }
  229. int wmi_send(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len)
  230. {
  231. int rc;
  232. mutex_lock(&wil->wmi_mutex);
  233. rc = __wmi_send(wil, cmdid, buf, len);
  234. mutex_unlock(&wil->wmi_mutex);
  235. return rc;
  236. }
  237. /*=== Event handlers ===*/
  238. static void wmi_evt_ready(struct wil6210_priv *wil, int id, void *d, int len)
  239. {
  240. struct net_device *ndev = wil_to_ndev(wil);
  241. struct wireless_dev *wdev = wil->wdev;
  242. struct wmi_ready_event *evt = d;
  243. wil->fw_version = le32_to_cpu(evt->sw_version);
  244. wil->n_mids = evt->numof_additional_mids;
  245. wil_info(wil, "FW ver. %d; MAC %pM; %d MID's\n", wil->fw_version,
  246. evt->mac, wil->n_mids);
  247. if (!is_valid_ether_addr(ndev->dev_addr)) {
  248. memcpy(ndev->dev_addr, evt->mac, ETH_ALEN);
  249. memcpy(ndev->perm_addr, evt->mac, ETH_ALEN);
  250. }
  251. snprintf(wdev->wiphy->fw_version, sizeof(wdev->wiphy->fw_version),
  252. "%d", wil->fw_version);
  253. }
  254. static void wmi_evt_fw_ready(struct wil6210_priv *wil, int id, void *d,
  255. int len)
  256. {
  257. wil_dbg_wmi(wil, "WMI: got FW ready event\n");
  258. set_bit(wil_status_fwready, &wil->status);
  259. /* reuse wmi_ready for the firmware ready indication */
  260. complete(&wil->wmi_ready);
  261. }
  262. static void wmi_evt_rx_mgmt(struct wil6210_priv *wil, int id, void *d, int len)
  263. {
  264. struct wmi_rx_mgmt_packet_event *data = d;
  265. struct wiphy *wiphy = wil_to_wiphy(wil);
  266. struct ieee80211_mgmt *rx_mgmt_frame =
  267. (struct ieee80211_mgmt *)data->payload;
  268. int ch_no = data->info.channel+1;
  269. u32 freq = ieee80211_channel_to_frequency(ch_no,
  270. IEEE80211_BAND_60GHZ);
  271. struct ieee80211_channel *channel = ieee80211_get_channel(wiphy, freq);
  272. s32 signal = data->info.sqi;
  273. __le16 fc = rx_mgmt_frame->frame_control;
  274. u32 d_len = le32_to_cpu(data->info.len);
  275. u16 d_status = le16_to_cpu(data->info.status);
  276. wil_dbg_wmi(wil, "MGMT: channel %d MCS %d SNR %d SQI %d%%\n",
  277. data->info.channel, data->info.mcs, data->info.snr,
  278. data->info.sqi);
  279. wil_dbg_wmi(wil, "status 0x%04x len %d fc 0x%04x\n", d_status, d_len,
  280. le16_to_cpu(fc));
  281. wil_dbg_wmi(wil, "qid %d mid %d cid %d\n",
  282. data->info.qid, data->info.mid, data->info.cid);
  283. if (!channel) {
  284. wil_err(wil, "Frame on unsupported channel\n");
  285. return;
  286. }
  287. if (ieee80211_is_beacon(fc) || ieee80211_is_probe_resp(fc)) {
  288. struct cfg80211_bss *bss;
  289. bss = cfg80211_inform_bss_frame(wiphy, channel, rx_mgmt_frame,
  290. d_len, signal, GFP_KERNEL);
  291. if (bss) {
  292. wil_dbg_wmi(wil, "Added BSS %pM\n",
  293. rx_mgmt_frame->bssid);
  294. cfg80211_put_bss(wiphy, bss);
  295. } else {
  296. wil_err(wil, "cfg80211_inform_bss() failed\n");
  297. }
  298. } else {
  299. cfg80211_rx_mgmt(wil->wdev, freq, signal,
  300. (void *)rx_mgmt_frame, d_len, 0, GFP_KERNEL);
  301. }
  302. }
  303. static void wmi_evt_scan_complete(struct wil6210_priv *wil, int id,
  304. void *d, int len)
  305. {
  306. if (wil->scan_request) {
  307. struct wmi_scan_complete_event *data = d;
  308. bool aborted = (data->status != WMI_SCAN_SUCCESS);
  309. wil_dbg_wmi(wil, "SCAN_COMPLETE(0x%08x)\n", data->status);
  310. del_timer_sync(&wil->scan_timer);
  311. cfg80211_scan_done(wil->scan_request, aborted);
  312. wil->scan_request = NULL;
  313. } else {
  314. wil_err(wil, "SCAN_COMPLETE while not scanning\n");
  315. }
  316. }
  317. static void wmi_evt_connect(struct wil6210_priv *wil, int id, void *d, int len)
  318. {
  319. struct net_device *ndev = wil_to_ndev(wil);
  320. struct wireless_dev *wdev = wil->wdev;
  321. struct wmi_connect_event *evt = d;
  322. int ch; /* channel number */
  323. struct station_info sinfo;
  324. u8 *assoc_req_ie, *assoc_resp_ie;
  325. size_t assoc_req_ielen, assoc_resp_ielen;
  326. /* capinfo(u16) + listen_interval(u16) + IEs */
  327. const size_t assoc_req_ie_offset = sizeof(u16) * 2;
  328. /* capinfo(u16) + status_code(u16) + associd(u16) + IEs */
  329. const size_t assoc_resp_ie_offset = sizeof(u16) * 3;
  330. if (len < sizeof(*evt)) {
  331. wil_err(wil, "Connect event too short : %d bytes\n", len);
  332. return;
  333. }
  334. if (len != sizeof(*evt) + evt->beacon_ie_len + evt->assoc_req_len +
  335. evt->assoc_resp_len) {
  336. wil_err(wil,
  337. "Connect event corrupted : %d != %d + %d + %d + %d\n",
  338. len, (int)sizeof(*evt), evt->beacon_ie_len,
  339. evt->assoc_req_len, evt->assoc_resp_len);
  340. return;
  341. }
  342. if (evt->cid >= WIL6210_MAX_CID) {
  343. wil_err(wil, "Connect CID invalid : %d\n", evt->cid);
  344. return;
  345. }
  346. ch = evt->channel + 1;
  347. wil_dbg_wmi(wil, "Connect %pM channel [%d] cid %d\n",
  348. evt->bssid, ch, evt->cid);
  349. wil_hex_dump_wmi("connect AI : ", DUMP_PREFIX_OFFSET, 16, 1,
  350. evt->assoc_info, len - sizeof(*evt), true);
  351. /* figure out IE's */
  352. assoc_req_ie = &evt->assoc_info[evt->beacon_ie_len +
  353. assoc_req_ie_offset];
  354. assoc_req_ielen = evt->assoc_req_len - assoc_req_ie_offset;
  355. if (evt->assoc_req_len <= assoc_req_ie_offset) {
  356. assoc_req_ie = NULL;
  357. assoc_req_ielen = 0;
  358. }
  359. assoc_resp_ie = &evt->assoc_info[evt->beacon_ie_len +
  360. evt->assoc_req_len +
  361. assoc_resp_ie_offset];
  362. assoc_resp_ielen = evt->assoc_resp_len - assoc_resp_ie_offset;
  363. if (evt->assoc_resp_len <= assoc_resp_ie_offset) {
  364. assoc_resp_ie = NULL;
  365. assoc_resp_ielen = 0;
  366. }
  367. if ((wdev->iftype == NL80211_IFTYPE_STATION) ||
  368. (wdev->iftype == NL80211_IFTYPE_P2P_CLIENT)) {
  369. if (!test_bit(wil_status_fwconnecting, &wil->status)) {
  370. wil_err(wil, "Not in connecting state\n");
  371. return;
  372. }
  373. del_timer_sync(&wil->connect_timer);
  374. cfg80211_connect_result(ndev, evt->bssid,
  375. assoc_req_ie, assoc_req_ielen,
  376. assoc_resp_ie, assoc_resp_ielen,
  377. WLAN_STATUS_SUCCESS, GFP_KERNEL);
  378. } else if ((wdev->iftype == NL80211_IFTYPE_AP) ||
  379. (wdev->iftype == NL80211_IFTYPE_P2P_GO)) {
  380. memset(&sinfo, 0, sizeof(sinfo));
  381. sinfo.generation = wil->sinfo_gen++;
  382. if (assoc_req_ie) {
  383. sinfo.assoc_req_ies = assoc_req_ie;
  384. sinfo.assoc_req_ies_len = assoc_req_ielen;
  385. sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
  386. }
  387. cfg80211_new_sta(ndev, evt->bssid, &sinfo, GFP_KERNEL);
  388. }
  389. clear_bit(wil_status_fwconnecting, &wil->status);
  390. set_bit(wil_status_fwconnected, &wil->status);
  391. /* FIXME FW can transmit only ucast frames to peer */
  392. /* FIXME real ring_id instead of hard coded 0 */
  393. memcpy(wil->sta[evt->cid].addr, evt->bssid, ETH_ALEN);
  394. wil->sta[evt->cid].status = wil_sta_conn_pending;
  395. wil->pending_connect_cid = evt->cid;
  396. queue_work(wil->wmi_wq_conn, &wil->connect_worker);
  397. }
  398. static void wmi_evt_disconnect(struct wil6210_priv *wil, int id,
  399. void *d, int len)
  400. {
  401. struct wmi_disconnect_event *evt = d;
  402. wil_dbg_wmi(wil, "Disconnect %pM reason %d proto %d wmi\n",
  403. evt->bssid,
  404. evt->protocol_reason_status, evt->disconnect_reason);
  405. wil->sinfo_gen++;
  406. mutex_lock(&wil->mutex);
  407. wil6210_disconnect(wil, evt->bssid);
  408. mutex_unlock(&wil->mutex);
  409. }
  410. static void wmi_evt_notify(struct wil6210_priv *wil, int id, void *d, int len)
  411. {
  412. struct wmi_notify_req_done_event *evt = d;
  413. if (len < sizeof(*evt)) {
  414. wil_err(wil, "Short NOTIFY event\n");
  415. return;
  416. }
  417. wil->stats.tsf = le64_to_cpu(evt->tsf);
  418. wil->stats.snr = le32_to_cpu(evt->snr_val);
  419. wil->stats.bf_mcs = le16_to_cpu(evt->bf_mcs);
  420. wil->stats.my_rx_sector = le16_to_cpu(evt->my_rx_sector);
  421. wil->stats.my_tx_sector = le16_to_cpu(evt->my_tx_sector);
  422. wil->stats.peer_rx_sector = le16_to_cpu(evt->other_rx_sector);
  423. wil->stats.peer_tx_sector = le16_to_cpu(evt->other_tx_sector);
  424. wil_dbg_wmi(wil, "Link status, MCS %d TSF 0x%016llx\n"
  425. "BF status 0x%08x SNR 0x%08x SQI %d%%\n"
  426. "Tx Tpt %d goodput %d Rx goodput %d\n"
  427. "Sectors(rx:tx) my %d:%d peer %d:%d\n",
  428. wil->stats.bf_mcs, wil->stats.tsf, evt->status,
  429. wil->stats.snr, evt->sqi, le32_to_cpu(evt->tx_tpt),
  430. le32_to_cpu(evt->tx_goodput), le32_to_cpu(evt->rx_goodput),
  431. wil->stats.my_rx_sector, wil->stats.my_tx_sector,
  432. wil->stats.peer_rx_sector, wil->stats.peer_tx_sector);
  433. }
  434. /*
  435. * Firmware reports EAPOL frame using WME event.
  436. * Reconstruct Ethernet frame and deliver it via normal Rx
  437. */
  438. static void wmi_evt_eapol_rx(struct wil6210_priv *wil, int id,
  439. void *d, int len)
  440. {
  441. struct net_device *ndev = wil_to_ndev(wil);
  442. struct wmi_eapol_rx_event *evt = d;
  443. u16 eapol_len = le16_to_cpu(evt->eapol_len);
  444. int sz = eapol_len + ETH_HLEN;
  445. struct sk_buff *skb;
  446. struct ethhdr *eth;
  447. int cid;
  448. struct wil_net_stats *stats = NULL;
  449. wil_dbg_wmi(wil, "EAPOL len %d from %pM\n", eapol_len,
  450. evt->src_mac);
  451. cid = wil_find_cid(wil, evt->src_mac);
  452. if (cid >= 0)
  453. stats = &wil->sta[cid].stats;
  454. if (eapol_len > 196) { /* TODO: revisit size limit */
  455. wil_err(wil, "EAPOL too large\n");
  456. return;
  457. }
  458. skb = alloc_skb(sz, GFP_KERNEL);
  459. if (!skb) {
  460. wil_err(wil, "Failed to allocate skb\n");
  461. return;
  462. }
  463. eth = (struct ethhdr *)skb_put(skb, ETH_HLEN);
  464. memcpy(eth->h_dest, ndev->dev_addr, ETH_ALEN);
  465. memcpy(eth->h_source, evt->src_mac, ETH_ALEN);
  466. eth->h_proto = cpu_to_be16(ETH_P_PAE);
  467. memcpy(skb_put(skb, eapol_len), evt->eapol, eapol_len);
  468. skb->protocol = eth_type_trans(skb, ndev);
  469. if (likely(netif_rx_ni(skb) == NET_RX_SUCCESS)) {
  470. ndev->stats.rx_packets++;
  471. ndev->stats.rx_bytes += sz;
  472. if (stats) {
  473. stats->rx_packets++;
  474. stats->rx_bytes += sz;
  475. }
  476. } else {
  477. ndev->stats.rx_dropped++;
  478. if (stats)
  479. stats->rx_dropped++;
  480. }
  481. }
  482. static void wmi_evt_linkup(struct wil6210_priv *wil, int id, void *d, int len)
  483. {
  484. struct net_device *ndev = wil_to_ndev(wil);
  485. struct wmi_data_port_open_event *evt = d;
  486. u8 cid = evt->cid;
  487. wil_dbg_wmi(wil, "Link UP for CID %d\n", cid);
  488. if (cid >= ARRAY_SIZE(wil->sta)) {
  489. wil_err(wil, "Link UP for invalid CID %d\n", cid);
  490. return;
  491. }
  492. wil->sta[cid].data_port_open = true;
  493. netif_carrier_on(ndev);
  494. }
  495. static void wmi_evt_linkdown(struct wil6210_priv *wil, int id, void *d, int len)
  496. {
  497. struct net_device *ndev = wil_to_ndev(wil);
  498. struct wmi_wbe_link_down_event *evt = d;
  499. u8 cid = evt->cid;
  500. wil_dbg_wmi(wil, "Link DOWN for CID %d, reason %d\n",
  501. cid, le32_to_cpu(evt->reason));
  502. if (cid >= ARRAY_SIZE(wil->sta)) {
  503. wil_err(wil, "Link DOWN for invalid CID %d\n", cid);
  504. return;
  505. }
  506. wil->sta[cid].data_port_open = false;
  507. netif_carrier_off(ndev);
  508. }
  509. static void wmi_evt_ba_status(struct wil6210_priv *wil, int id, void *d,
  510. int len)
  511. {
  512. struct wmi_vring_ba_status_event *evt = d;
  513. struct wil_sta_info *sta;
  514. uint i, cid;
  515. /* TODO: use Rx BA status, not Tx one */
  516. wil_dbg_wmi(wil, "BACK[%d] %s {%d} timeout %d\n",
  517. evt->ringid,
  518. evt->status == WMI_BA_AGREED ? "OK" : "N/A",
  519. evt->agg_wsize, __le16_to_cpu(evt->ba_timeout));
  520. if (evt->ringid >= WIL6210_MAX_TX_RINGS) {
  521. wil_err(wil, "invalid ring id %d\n", evt->ringid);
  522. return;
  523. }
  524. cid = wil->vring2cid_tid[evt->ringid][0];
  525. if (cid >= WIL6210_MAX_CID) {
  526. wil_err(wil, "invalid CID %d for vring %d\n", cid, evt->ringid);
  527. return;
  528. }
  529. sta = &wil->sta[cid];
  530. if (sta->status == wil_sta_unused) {
  531. wil_err(wil, "CID %d unused\n", cid);
  532. return;
  533. }
  534. wil_dbg_wmi(wil, "BACK for CID %d %pM\n", cid, sta->addr);
  535. for (i = 0; i < WIL_STA_TID_NUM; i++) {
  536. struct wil_tid_ampdu_rx *r = sta->tid_rx[i];
  537. sta->tid_rx[i] = NULL;
  538. wil_tid_ampdu_rx_free(wil, r);
  539. if ((evt->status == WMI_BA_AGREED) && evt->agg_wsize)
  540. sta->tid_rx[i] = wil_tid_ampdu_rx_alloc(wil,
  541. evt->agg_wsize, 0);
  542. }
  543. }
  544. static const struct {
  545. int eventid;
  546. void (*handler)(struct wil6210_priv *wil, int eventid,
  547. void *data, int data_len);
  548. } wmi_evt_handlers[] = {
  549. {WMI_READY_EVENTID, wmi_evt_ready},
  550. {WMI_FW_READY_EVENTID, wmi_evt_fw_ready},
  551. {WMI_RX_MGMT_PACKET_EVENTID, wmi_evt_rx_mgmt},
  552. {WMI_SCAN_COMPLETE_EVENTID, wmi_evt_scan_complete},
  553. {WMI_CONNECT_EVENTID, wmi_evt_connect},
  554. {WMI_DISCONNECT_EVENTID, wmi_evt_disconnect},
  555. {WMI_NOTIFY_REQ_DONE_EVENTID, wmi_evt_notify},
  556. {WMI_EAPOL_RX_EVENTID, wmi_evt_eapol_rx},
  557. {WMI_DATA_PORT_OPEN_EVENTID, wmi_evt_linkup},
  558. {WMI_WBE_LINKDOWN_EVENTID, wmi_evt_linkdown},
  559. {WMI_BA_STATUS_EVENTID, wmi_evt_ba_status},
  560. };
  561. /*
  562. * Run in IRQ context
  563. * Extract WMI command from mailbox. Queue it to the @wil->pending_wmi_ev
  564. * that will be eventually handled by the @wmi_event_worker in the thread
  565. * context of thread "wil6210_wmi"
  566. */
  567. void wmi_recv_cmd(struct wil6210_priv *wil)
  568. {
  569. struct wil6210_mbox_ring_desc d_tail;
  570. struct wil6210_mbox_hdr hdr;
  571. struct wil6210_mbox_ring *r = &wil->mbox_ctl.rx;
  572. struct pending_wmi_event *evt;
  573. u8 *cmd;
  574. void __iomem *src;
  575. ulong flags;
  576. unsigned n;
  577. if (!test_bit(wil_status_reset_done, &wil->status)) {
  578. wil_err(wil, "Reset not completed\n");
  579. return;
  580. }
  581. for (n = 0;; n++) {
  582. u16 len;
  583. r->head = ioread32(wil->csr + HOST_MBOX +
  584. offsetof(struct wil6210_mbox_ctl, rx.head));
  585. if (r->tail == r->head) {
  586. if (n == 0)
  587. wil_dbg_wmi(wil, "No events?\n");
  588. return;
  589. }
  590. wil_dbg_wmi(wil, "Mbox head %08x tail %08x\n",
  591. r->head, r->tail);
  592. /* read cmd descriptor from tail */
  593. wil_memcpy_fromio_32(&d_tail, wil->csr + HOSTADDR(r->tail),
  594. sizeof(struct wil6210_mbox_ring_desc));
  595. if (d_tail.sync == 0) {
  596. wil_err(wil, "Mbox evt not owned by FW?\n");
  597. return;
  598. }
  599. /* read cmd header from descriptor */
  600. if (0 != wmi_read_hdr(wil, d_tail.addr, &hdr)) {
  601. wil_err(wil, "Mbox evt at 0x%08x?\n",
  602. le32_to_cpu(d_tail.addr));
  603. return;
  604. }
  605. len = le16_to_cpu(hdr.len);
  606. wil_dbg_wmi(wil, "Mbox evt %04x %04x %04x %02x\n",
  607. le16_to_cpu(hdr.seq), len, le16_to_cpu(hdr.type),
  608. hdr.flags);
  609. /* read cmd buffer from descriptor */
  610. src = wmi_buffer(wil, d_tail.addr) +
  611. sizeof(struct wil6210_mbox_hdr);
  612. evt = kmalloc(ALIGN(offsetof(struct pending_wmi_event,
  613. event.wmi) + len, 4),
  614. GFP_KERNEL);
  615. if (!evt)
  616. return;
  617. evt->event.hdr = hdr;
  618. cmd = (void *)&evt->event.wmi;
  619. wil_memcpy_fromio_32(cmd, src, len);
  620. /* mark entry as empty */
  621. iowrite32(0, wil->csr + HOSTADDR(r->tail) +
  622. offsetof(struct wil6210_mbox_ring_desc, sync));
  623. /* indicate */
  624. if ((hdr.type == WIL_MBOX_HDR_TYPE_WMI) &&
  625. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  626. struct wil6210_mbox_hdr_wmi *wmi = &evt->event.wmi;
  627. u16 id = le16_to_cpu(wmi->id);
  628. u32 tstamp = le32_to_cpu(wmi->timestamp);
  629. wil_dbg_wmi(wil, "WMI event 0x%04x MID %d @%d msec\n",
  630. id, wmi->mid, tstamp);
  631. trace_wil6210_wmi_event(wmi, &wmi[1],
  632. len - sizeof(*wmi));
  633. }
  634. wil_hex_dump_wmi("evt ", DUMP_PREFIX_OFFSET, 16, 1,
  635. &evt->event.hdr, sizeof(hdr) + len, true);
  636. /* advance tail */
  637. r->tail = r->base + ((r->tail - r->base +
  638. sizeof(struct wil6210_mbox_ring_desc)) % r->size);
  639. iowrite32(r->tail, wil->csr + HOST_MBOX +
  640. offsetof(struct wil6210_mbox_ctl, rx.tail));
  641. /* add to the pending list */
  642. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  643. list_add_tail(&evt->list, &wil->pending_wmi_ev);
  644. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  645. {
  646. int q = queue_work(wil->wmi_wq,
  647. &wil->wmi_event_worker);
  648. wil_dbg_wmi(wil, "queue_work -> %d\n", q);
  649. }
  650. }
  651. if (n > 1)
  652. wil_dbg_wmi(wil, "%s -> %d events processed\n", __func__, n);
  653. }
  654. int wmi_call(struct wil6210_priv *wil, u16 cmdid, void *buf, u16 len,
  655. u16 reply_id, void *reply, u8 reply_size, int to_msec)
  656. {
  657. int rc;
  658. int remain;
  659. mutex_lock(&wil->wmi_mutex);
  660. rc = __wmi_send(wil, cmdid, buf, len);
  661. if (rc)
  662. goto out;
  663. wil->reply_id = reply_id;
  664. wil->reply_buf = reply;
  665. wil->reply_size = reply_size;
  666. remain = wait_for_completion_timeout(&wil->wmi_ready,
  667. msecs_to_jiffies(to_msec));
  668. if (0 == remain) {
  669. wil_err(wil, "wmi_call(0x%04x->0x%04x) timeout %d msec\n",
  670. cmdid, reply_id, to_msec);
  671. rc = -ETIME;
  672. } else {
  673. wil_dbg_wmi(wil,
  674. "wmi_call(0x%04x->0x%04x) completed in %d msec\n",
  675. cmdid, reply_id,
  676. to_msec - jiffies_to_msecs(remain));
  677. }
  678. wil->reply_id = 0;
  679. wil->reply_buf = NULL;
  680. wil->reply_size = 0;
  681. out:
  682. mutex_unlock(&wil->wmi_mutex);
  683. return rc;
  684. }
  685. int wmi_echo(struct wil6210_priv *wil)
  686. {
  687. struct wmi_echo_cmd cmd = {
  688. .value = cpu_to_le32(0x12345678),
  689. };
  690. return wmi_call(wil, WMI_ECHO_CMDID, &cmd, sizeof(cmd),
  691. WMI_ECHO_RSP_EVENTID, NULL, 0, 20);
  692. }
  693. int wmi_set_mac_address(struct wil6210_priv *wil, void *addr)
  694. {
  695. struct wmi_set_mac_address_cmd cmd;
  696. memcpy(cmd.mac, addr, ETH_ALEN);
  697. wil_dbg_wmi(wil, "Set MAC %pM\n", addr);
  698. return wmi_send(wil, WMI_SET_MAC_ADDRESS_CMDID, &cmd, sizeof(cmd));
  699. }
  700. int wmi_pcp_start(struct wil6210_priv *wil, int bi, u8 wmi_nettype, u8 chan)
  701. {
  702. int rc;
  703. struct wmi_pcp_start_cmd cmd = {
  704. .bcon_interval = cpu_to_le16(bi),
  705. .network_type = wmi_nettype,
  706. .disable_sec_offload = 1,
  707. .channel = chan - 1,
  708. .pcp_max_assoc_sta = WIL6210_MAX_CID,
  709. };
  710. struct {
  711. struct wil6210_mbox_hdr_wmi wmi;
  712. struct wmi_pcp_started_event evt;
  713. } __packed reply;
  714. if (!wil->secure_pcp)
  715. cmd.disable_sec = 1;
  716. /*
  717. * Processing time may be huge, in case of secure AP it takes about
  718. * 3500ms for FW to start AP
  719. */
  720. rc = wmi_call(wil, WMI_PCP_START_CMDID, &cmd, sizeof(cmd),
  721. WMI_PCP_STARTED_EVENTID, &reply, sizeof(reply), 5000);
  722. if (rc)
  723. return rc;
  724. if (reply.evt.status != WMI_FW_STATUS_SUCCESS)
  725. rc = -EINVAL;
  726. return rc;
  727. }
  728. int wmi_pcp_stop(struct wil6210_priv *wil)
  729. {
  730. return wmi_call(wil, WMI_PCP_STOP_CMDID, NULL, 0,
  731. WMI_PCP_STOPPED_EVENTID, NULL, 0, 20);
  732. }
  733. int wmi_set_ssid(struct wil6210_priv *wil, u8 ssid_len, const void *ssid)
  734. {
  735. struct wmi_set_ssid_cmd cmd = {
  736. .ssid_len = cpu_to_le32(ssid_len),
  737. };
  738. if (ssid_len > sizeof(cmd.ssid))
  739. return -EINVAL;
  740. memcpy(cmd.ssid, ssid, ssid_len);
  741. return wmi_send(wil, WMI_SET_SSID_CMDID, &cmd, sizeof(cmd));
  742. }
  743. int wmi_get_ssid(struct wil6210_priv *wil, u8 *ssid_len, void *ssid)
  744. {
  745. int rc;
  746. struct {
  747. struct wil6210_mbox_hdr_wmi wmi;
  748. struct wmi_set_ssid_cmd cmd;
  749. } __packed reply;
  750. int len; /* reply.cmd.ssid_len in CPU order */
  751. rc = wmi_call(wil, WMI_GET_SSID_CMDID, NULL, 0, WMI_GET_SSID_EVENTID,
  752. &reply, sizeof(reply), 20);
  753. if (rc)
  754. return rc;
  755. len = le32_to_cpu(reply.cmd.ssid_len);
  756. if (len > sizeof(reply.cmd.ssid))
  757. return -EINVAL;
  758. *ssid_len = len;
  759. memcpy(ssid, reply.cmd.ssid, len);
  760. return 0;
  761. }
  762. int wmi_set_channel(struct wil6210_priv *wil, int channel)
  763. {
  764. struct wmi_set_pcp_channel_cmd cmd = {
  765. .channel = channel - 1,
  766. };
  767. return wmi_send(wil, WMI_SET_PCP_CHANNEL_CMDID, &cmd, sizeof(cmd));
  768. }
  769. int wmi_get_channel(struct wil6210_priv *wil, int *channel)
  770. {
  771. int rc;
  772. struct {
  773. struct wil6210_mbox_hdr_wmi wmi;
  774. struct wmi_set_pcp_channel_cmd cmd;
  775. } __packed reply;
  776. rc = wmi_call(wil, WMI_GET_PCP_CHANNEL_CMDID, NULL, 0,
  777. WMI_GET_PCP_CHANNEL_EVENTID, &reply, sizeof(reply), 20);
  778. if (rc)
  779. return rc;
  780. if (reply.cmd.channel > 3)
  781. return -EINVAL;
  782. *channel = reply.cmd.channel + 1;
  783. return 0;
  784. }
  785. int wmi_p2p_cfg(struct wil6210_priv *wil, int channel)
  786. {
  787. struct wmi_p2p_cfg_cmd cmd = {
  788. .discovery_mode = WMI_DISCOVERY_MODE_NON_OFFLOAD,
  789. .channel = channel - 1,
  790. };
  791. return wmi_send(wil, WMI_P2P_CFG_CMDID, &cmd, sizeof(cmd));
  792. }
  793. int wmi_del_cipher_key(struct wil6210_priv *wil, u8 key_index,
  794. const void *mac_addr)
  795. {
  796. struct wmi_delete_cipher_key_cmd cmd = {
  797. .key_index = key_index,
  798. };
  799. if (mac_addr)
  800. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  801. return wmi_send(wil, WMI_DELETE_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  802. }
  803. int wmi_add_cipher_key(struct wil6210_priv *wil, u8 key_index,
  804. const void *mac_addr, int key_len, const void *key)
  805. {
  806. struct wmi_add_cipher_key_cmd cmd = {
  807. .key_index = key_index,
  808. .key_usage = WMI_KEY_USE_PAIRWISE,
  809. .key_len = key_len,
  810. };
  811. if (!key || (key_len > sizeof(cmd.key)))
  812. return -EINVAL;
  813. memcpy(cmd.key, key, key_len);
  814. if (mac_addr)
  815. memcpy(cmd.mac, mac_addr, WMI_MAC_LEN);
  816. return wmi_send(wil, WMI_ADD_CIPHER_KEY_CMDID, &cmd, sizeof(cmd));
  817. }
  818. int wmi_set_ie(struct wil6210_priv *wil, u8 type, u16 ie_len, const void *ie)
  819. {
  820. int rc;
  821. u16 len = sizeof(struct wmi_set_appie_cmd) + ie_len;
  822. struct wmi_set_appie_cmd *cmd = kzalloc(len, GFP_KERNEL);
  823. if (!cmd)
  824. return -ENOMEM;
  825. cmd->mgmt_frm_type = type;
  826. /* BUG: FW API define ieLen as u8. Will fix FW */
  827. cmd->ie_len = cpu_to_le16(ie_len);
  828. memcpy(cmd->ie_info, ie, ie_len);
  829. rc = wmi_send(wil, WMI_SET_APPIE_CMDID, cmd, len);
  830. kfree(cmd);
  831. return rc;
  832. }
  833. /**
  834. * wmi_rxon - turn radio on/off
  835. * @on: turn on if true, off otherwise
  836. *
  837. * Only switch radio. Channel should be set separately.
  838. * No timeout for rxon - radio turned on forever unless some other call
  839. * turns it off
  840. */
  841. int wmi_rxon(struct wil6210_priv *wil, bool on)
  842. {
  843. int rc;
  844. struct {
  845. struct wil6210_mbox_hdr_wmi wmi;
  846. struct wmi_listen_started_event evt;
  847. } __packed reply;
  848. wil_info(wil, "%s(%s)\n", __func__, on ? "on" : "off");
  849. if (on) {
  850. rc = wmi_call(wil, WMI_START_LISTEN_CMDID, NULL, 0,
  851. WMI_LISTEN_STARTED_EVENTID,
  852. &reply, sizeof(reply), 100);
  853. if ((rc == 0) && (reply.evt.status != WMI_FW_STATUS_SUCCESS))
  854. rc = -EINVAL;
  855. } else {
  856. rc = wmi_call(wil, WMI_DISCOVERY_STOP_CMDID, NULL, 0,
  857. WMI_DISCOVERY_STOPPED_EVENTID, NULL, 0, 20);
  858. }
  859. return rc;
  860. }
  861. int wmi_rx_chain_add(struct wil6210_priv *wil, struct vring *vring)
  862. {
  863. struct wireless_dev *wdev = wil->wdev;
  864. struct net_device *ndev = wil_to_ndev(wil);
  865. struct wmi_cfg_rx_chain_cmd cmd = {
  866. .action = WMI_RX_CHAIN_ADD,
  867. .rx_sw_ring = {
  868. .max_mpdu_size = cpu_to_le16(RX_BUF_LEN),
  869. .ring_mem_base = cpu_to_le64(vring->pa),
  870. .ring_size = cpu_to_le16(vring->size),
  871. },
  872. .mid = 0, /* TODO - what is it? */
  873. .decap_trans_type = WMI_DECAP_TYPE_802_3,
  874. .reorder_type = WMI_RX_SW_REORDER,
  875. };
  876. struct {
  877. struct wil6210_mbox_hdr_wmi wmi;
  878. struct wmi_cfg_rx_chain_done_event evt;
  879. } __packed evt;
  880. int rc;
  881. if (wdev->iftype == NL80211_IFTYPE_MONITOR) {
  882. struct ieee80211_channel *ch = wdev->preset_chandef.chan;
  883. cmd.sniffer_cfg.mode = cpu_to_le32(WMI_SNIFFER_ON);
  884. if (ch)
  885. cmd.sniffer_cfg.channel = ch->hw_value - 1;
  886. cmd.sniffer_cfg.phy_info_mode =
  887. cpu_to_le32(ndev->type == ARPHRD_IEEE80211_RADIOTAP);
  888. cmd.sniffer_cfg.phy_support =
  889. cpu_to_le32((wil->monitor_flags & MONITOR_FLAG_CONTROL)
  890. ? WMI_SNIFFER_CP : WMI_SNIFFER_DP);
  891. } else {
  892. /* Initialize offload (in non-sniffer mode).
  893. * Linux IP stack always calculates IP checksum
  894. * HW always calculate TCP/UDP checksum
  895. */
  896. cmd.l3_l4_ctrl |= (1 << L3_L4_CTRL_TCPIP_CHECKSUM_EN_POS);
  897. }
  898. /* typical time for secure PCP is 840ms */
  899. rc = wmi_call(wil, WMI_CFG_RX_CHAIN_CMDID, &cmd, sizeof(cmd),
  900. WMI_CFG_RX_CHAIN_DONE_EVENTID, &evt, sizeof(evt), 2000);
  901. if (rc)
  902. return rc;
  903. vring->hwtail = le32_to_cpu(evt.evt.rx_ring_tail_ptr);
  904. wil_dbg_misc(wil, "Rx init: status %d tail 0x%08x\n",
  905. le32_to_cpu(evt.evt.status), vring->hwtail);
  906. if (le32_to_cpu(evt.evt.status) != WMI_CFG_RX_CHAIN_SUCCESS)
  907. rc = -EINVAL;
  908. return rc;
  909. }
  910. int wmi_get_temperature(struct wil6210_priv *wil, u32 *t_m, u32 *t_r)
  911. {
  912. int rc;
  913. struct wmi_temp_sense_cmd cmd = {
  914. .measure_marlon_m_en = cpu_to_le32(!!t_m),
  915. .measure_marlon_r_en = cpu_to_le32(!!t_r),
  916. };
  917. struct {
  918. struct wil6210_mbox_hdr_wmi wmi;
  919. struct wmi_temp_sense_done_event evt;
  920. } __packed reply;
  921. rc = wmi_call(wil, WMI_TEMP_SENSE_CMDID, &cmd, sizeof(cmd),
  922. WMI_TEMP_SENSE_DONE_EVENTID, &reply, sizeof(reply), 100);
  923. if (rc)
  924. return rc;
  925. if (t_m)
  926. *t_m = le32_to_cpu(reply.evt.marlon_m_t1000);
  927. if (t_r)
  928. *t_r = le32_to_cpu(reply.evt.marlon_r_t1000);
  929. return 0;
  930. }
  931. int wmi_disconnect_sta(struct wil6210_priv *wil, const u8 *mac, u16 reason)
  932. {
  933. struct wmi_disconnect_sta_cmd cmd = {
  934. .disconnect_reason = cpu_to_le16(reason),
  935. };
  936. memcpy(cmd.dst_mac, mac, ETH_ALEN);
  937. wil_dbg_wmi(wil, "%s(%pM, reason %d)\n", __func__, mac, reason);
  938. return wmi_send(wil, WMI_DISCONNECT_STA_CMDID, &cmd, sizeof(cmd));
  939. }
  940. void wmi_event_flush(struct wil6210_priv *wil)
  941. {
  942. struct pending_wmi_event *evt, *t;
  943. wil_dbg_wmi(wil, "%s()\n", __func__);
  944. list_for_each_entry_safe(evt, t, &wil->pending_wmi_ev, list) {
  945. list_del(&evt->list);
  946. kfree(evt);
  947. }
  948. }
  949. static bool wmi_evt_call_handler(struct wil6210_priv *wil, int id,
  950. void *d, int len)
  951. {
  952. uint i;
  953. for (i = 0; i < ARRAY_SIZE(wmi_evt_handlers); i++) {
  954. if (wmi_evt_handlers[i].eventid == id) {
  955. wmi_evt_handlers[i].handler(wil, id, d, len);
  956. return true;
  957. }
  958. }
  959. return false;
  960. }
  961. static void wmi_event_handle(struct wil6210_priv *wil,
  962. struct wil6210_mbox_hdr *hdr)
  963. {
  964. u16 len = le16_to_cpu(hdr->len);
  965. if ((hdr->type == WIL_MBOX_HDR_TYPE_WMI) &&
  966. (len >= sizeof(struct wil6210_mbox_hdr_wmi))) {
  967. struct wil6210_mbox_hdr_wmi *wmi = (void *)(&hdr[1]);
  968. void *evt_data = (void *)(&wmi[1]);
  969. u16 id = le16_to_cpu(wmi->id);
  970. /* check if someone waits for this event */
  971. if (wil->reply_id && wil->reply_id == id) {
  972. if (wil->reply_buf) {
  973. memcpy(wil->reply_buf, wmi,
  974. min(len, wil->reply_size));
  975. } else {
  976. wmi_evt_call_handler(wil, id, evt_data,
  977. len - sizeof(*wmi));
  978. }
  979. wil_dbg_wmi(wil, "Complete WMI 0x%04x\n", id);
  980. complete(&wil->wmi_ready);
  981. return;
  982. }
  983. /* unsolicited event */
  984. /* search for handler */
  985. if (!wmi_evt_call_handler(wil, id, evt_data,
  986. len - sizeof(*wmi))) {
  987. wil_err(wil, "Unhandled event 0x%04x\n", id);
  988. }
  989. } else {
  990. wil_err(wil, "Unknown event type\n");
  991. print_hex_dump(KERN_ERR, "evt?? ", DUMP_PREFIX_OFFSET, 16, 1,
  992. hdr, sizeof(*hdr) + len, true);
  993. }
  994. }
  995. /*
  996. * Retrieve next WMI event from the pending list
  997. */
  998. static struct list_head *next_wmi_ev(struct wil6210_priv *wil)
  999. {
  1000. ulong flags;
  1001. struct list_head *ret = NULL;
  1002. spin_lock_irqsave(&wil->wmi_ev_lock, flags);
  1003. if (!list_empty(&wil->pending_wmi_ev)) {
  1004. ret = wil->pending_wmi_ev.next;
  1005. list_del(ret);
  1006. }
  1007. spin_unlock_irqrestore(&wil->wmi_ev_lock, flags);
  1008. return ret;
  1009. }
  1010. /*
  1011. * Handler for the WMI events
  1012. */
  1013. void wmi_event_worker(struct work_struct *work)
  1014. {
  1015. struct wil6210_priv *wil = container_of(work, struct wil6210_priv,
  1016. wmi_event_worker);
  1017. struct pending_wmi_event *evt;
  1018. struct list_head *lh;
  1019. while ((lh = next_wmi_ev(wil)) != NULL) {
  1020. evt = list_entry(lh, struct pending_wmi_event, list);
  1021. wmi_event_handle(wil, &evt->event.hdr);
  1022. kfree(evt);
  1023. }
  1024. }