hw.c 78 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <linux/module.h>
  19. #include <linux/time.h>
  20. #include <linux/bitops.h>
  21. #include <asm/unaligned.h>
  22. #include "hw.h"
  23. #include "hw-ops.h"
  24. #include "ar9003_mac.h"
  25. #include "ar9003_mci.h"
  26. #include "ar9003_phy.h"
  27. #include "ath9k.h"
  28. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  29. MODULE_AUTHOR("Atheros Communications");
  30. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  31. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  32. MODULE_LICENSE("Dual BSD/GPL");
  33. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  34. {
  35. struct ath_common *common = ath9k_hw_common(ah);
  36. struct ath9k_channel *chan = ah->curchan;
  37. unsigned int clockrate;
  38. /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
  39. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
  40. clockrate = 117;
  41. else if (!chan) /* should really check for CCK instead */
  42. clockrate = ATH9K_CLOCK_RATE_CCK;
  43. else if (IS_CHAN_2GHZ(chan))
  44. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  45. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  46. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  47. else
  48. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  49. if (chan) {
  50. if (IS_CHAN_HT40(chan))
  51. clockrate *= 2;
  52. if (IS_CHAN_HALF_RATE(chan))
  53. clockrate /= 2;
  54. if (IS_CHAN_QUARTER_RATE(chan))
  55. clockrate /= 4;
  56. }
  57. common->clockrate = clockrate;
  58. }
  59. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  60. {
  61. struct ath_common *common = ath9k_hw_common(ah);
  62. return usecs * common->clockrate;
  63. }
  64. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  65. {
  66. int i;
  67. BUG_ON(timeout < AH_TIME_QUANTUM);
  68. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  69. if ((REG_READ(ah, reg) & mask) == val)
  70. return true;
  71. udelay(AH_TIME_QUANTUM);
  72. }
  73. ath_dbg(ath9k_hw_common(ah), ANY,
  74. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  75. timeout, reg, REG_READ(ah, reg), mask, val);
  76. return false;
  77. }
  78. EXPORT_SYMBOL(ath9k_hw_wait);
  79. void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
  80. int hw_delay)
  81. {
  82. hw_delay /= 10;
  83. if (IS_CHAN_HALF_RATE(chan))
  84. hw_delay *= 2;
  85. else if (IS_CHAN_QUARTER_RATE(chan))
  86. hw_delay *= 4;
  87. udelay(hw_delay + BASE_ACTIVATE_DELAY);
  88. }
  89. void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
  90. int column, unsigned int *writecnt)
  91. {
  92. int r;
  93. ENABLE_REGWRITE_BUFFER(ah);
  94. for (r = 0; r < array->ia_rows; r++) {
  95. REG_WRITE(ah, INI_RA(array, r, 0),
  96. INI_RA(array, r, column));
  97. DO_DELAY(*writecnt);
  98. }
  99. REGWRITE_BUFFER_FLUSH(ah);
  100. }
  101. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  102. {
  103. u32 retval;
  104. int i;
  105. for (i = 0, retval = 0; i < n; i++) {
  106. retval = (retval << 1) | (val & 1);
  107. val >>= 1;
  108. }
  109. return retval;
  110. }
  111. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  112. u8 phy, int kbps,
  113. u32 frameLen, u16 rateix,
  114. bool shortPreamble)
  115. {
  116. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  117. if (kbps == 0)
  118. return 0;
  119. switch (phy) {
  120. case WLAN_RC_PHY_CCK:
  121. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  122. if (shortPreamble)
  123. phyTime >>= 1;
  124. numBits = frameLen << 3;
  125. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  126. break;
  127. case WLAN_RC_PHY_OFDM:
  128. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  129. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  130. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  131. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  132. txTime = OFDM_SIFS_TIME_QUARTER
  133. + OFDM_PREAMBLE_TIME_QUARTER
  134. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  135. } else if (ah->curchan &&
  136. IS_CHAN_HALF_RATE(ah->curchan)) {
  137. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  138. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  139. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  140. txTime = OFDM_SIFS_TIME_HALF +
  141. OFDM_PREAMBLE_TIME_HALF
  142. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  143. } else {
  144. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  145. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  146. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  147. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  148. + (numSymbols * OFDM_SYMBOL_TIME);
  149. }
  150. break;
  151. default:
  152. ath_err(ath9k_hw_common(ah),
  153. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  154. txTime = 0;
  155. break;
  156. }
  157. return txTime;
  158. }
  159. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  160. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  161. struct ath9k_channel *chan,
  162. struct chan_centers *centers)
  163. {
  164. int8_t extoff;
  165. if (!IS_CHAN_HT40(chan)) {
  166. centers->ctl_center = centers->ext_center =
  167. centers->synth_center = chan->channel;
  168. return;
  169. }
  170. if (IS_CHAN_HT40PLUS(chan)) {
  171. centers->synth_center =
  172. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  173. extoff = 1;
  174. } else {
  175. centers->synth_center =
  176. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  177. extoff = -1;
  178. }
  179. centers->ctl_center =
  180. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  181. /* 25 MHz spacing is supported by hw but not on upper layers */
  182. centers->ext_center =
  183. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  184. }
  185. /******************/
  186. /* Chip Revisions */
  187. /******************/
  188. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  189. {
  190. u32 val;
  191. switch (ah->hw_version.devid) {
  192. case AR5416_AR9100_DEVID:
  193. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  194. break;
  195. case AR9300_DEVID_AR9330:
  196. ah->hw_version.macVersion = AR_SREV_VERSION_9330;
  197. if (ah->get_mac_revision) {
  198. ah->hw_version.macRev = ah->get_mac_revision();
  199. } else {
  200. val = REG_READ(ah, AR_SREV);
  201. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  202. }
  203. return;
  204. case AR9300_DEVID_AR9340:
  205. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  206. val = REG_READ(ah, AR_SREV);
  207. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  208. return;
  209. case AR9300_DEVID_QCA955X:
  210. ah->hw_version.macVersion = AR_SREV_VERSION_9550;
  211. return;
  212. case AR9300_DEVID_AR953X:
  213. ah->hw_version.macVersion = AR_SREV_VERSION_9531;
  214. if (ah->get_mac_revision)
  215. ah->hw_version.macRev = ah->get_mac_revision();
  216. return;
  217. }
  218. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  219. if (val == 0xFF) {
  220. val = REG_READ(ah, AR_SREV);
  221. ah->hw_version.macVersion =
  222. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  223. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  224. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  225. ah->is_pciexpress = true;
  226. else
  227. ah->is_pciexpress = (val &
  228. AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  229. } else {
  230. if (!AR_SREV_9100(ah))
  231. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  232. ah->hw_version.macRev = val & AR_SREV_REVISION;
  233. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  234. ah->is_pciexpress = true;
  235. }
  236. }
  237. /************************************/
  238. /* HW Attach, Detach, Init Routines */
  239. /************************************/
  240. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  241. {
  242. if (!AR_SREV_5416(ah))
  243. return;
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  248. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  249. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  250. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  251. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  252. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  253. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  254. }
  255. /* This should work for all families including legacy */
  256. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  257. {
  258. struct ath_common *common = ath9k_hw_common(ah);
  259. u32 regAddr[2] = { AR_STA_ID0 };
  260. u32 regHold[2];
  261. static const u32 patternData[4] = {
  262. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  263. };
  264. int i, j, loop_max;
  265. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  266. loop_max = 2;
  267. regAddr[1] = AR_PHY_BASE + (8 << 2);
  268. } else
  269. loop_max = 1;
  270. for (i = 0; i < loop_max; i++) {
  271. u32 addr = regAddr[i];
  272. u32 wrData, rdData;
  273. regHold[i] = REG_READ(ah, addr);
  274. for (j = 0; j < 0x100; j++) {
  275. wrData = (j << 16) | j;
  276. REG_WRITE(ah, addr, wrData);
  277. rdData = REG_READ(ah, addr);
  278. if (rdData != wrData) {
  279. ath_err(common,
  280. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  281. addr, wrData, rdData);
  282. return false;
  283. }
  284. }
  285. for (j = 0; j < 4; j++) {
  286. wrData = patternData[j];
  287. REG_WRITE(ah, addr, wrData);
  288. rdData = REG_READ(ah, addr);
  289. if (wrData != rdData) {
  290. ath_err(common,
  291. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  292. addr, wrData, rdData);
  293. return false;
  294. }
  295. }
  296. REG_WRITE(ah, regAddr[i], regHold[i]);
  297. }
  298. udelay(100);
  299. return true;
  300. }
  301. static void ath9k_hw_init_config(struct ath_hw *ah)
  302. {
  303. struct ath_common *common = ath9k_hw_common(ah);
  304. ah->config.dma_beacon_response_time = 1;
  305. ah->config.sw_beacon_response_time = 6;
  306. ah->config.cwm_ignore_extcca = 0;
  307. ah->config.analog_shiftreg = 1;
  308. ah->config.rx_intr_mitigation = true;
  309. if (AR_SREV_9300_20_OR_LATER(ah)) {
  310. ah->config.rimt_last = 500;
  311. ah->config.rimt_first = 2000;
  312. } else {
  313. ah->config.rimt_last = 250;
  314. ah->config.rimt_first = 700;
  315. }
  316. /*
  317. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  318. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  319. * This means we use it for all AR5416 devices, and the few
  320. * minor PCI AR9280 devices out there.
  321. *
  322. * Serialization is required because these devices do not handle
  323. * well the case of two concurrent reads/writes due to the latency
  324. * involved. During one read/write another read/write can be issued
  325. * on another CPU while the previous read/write may still be working
  326. * on our hardware, if we hit this case the hardware poops in a loop.
  327. * We prevent this by serializing reads and writes.
  328. *
  329. * This issue is not present on PCI-Express devices or pre-AR5416
  330. * devices (legacy, 802.11abg).
  331. */
  332. if (num_possible_cpus() > 1)
  333. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  334. if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  335. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  336. ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
  337. !ah->is_pciexpress)) {
  338. ah->config.serialize_regmode = SER_REG_MODE_ON;
  339. } else {
  340. ah->config.serialize_regmode = SER_REG_MODE_OFF;
  341. }
  342. }
  343. ath_dbg(common, RESET, "serialize_regmode is %d\n",
  344. ah->config.serialize_regmode);
  345. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  346. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  347. else
  348. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  349. }
  350. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  351. {
  352. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  353. regulatory->country_code = CTRY_DEFAULT;
  354. regulatory->power_limit = MAX_RATE_POWER;
  355. ah->hw_version.magic = AR5416_MAGIC;
  356. ah->hw_version.subvendorid = 0;
  357. ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
  358. AR_STA_ID1_MCAST_KSRCH;
  359. if (AR_SREV_9100(ah))
  360. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  361. ah->slottime = ATH9K_SLOT_TIME_9;
  362. ah->globaltxtimeout = (u32) -1;
  363. ah->power_mode = ATH9K_PM_UNDEFINED;
  364. ah->htc_reset_init = true;
  365. ah->ani_function = ATH9K_ANI_ALL;
  366. if (!AR_SREV_9300_20_OR_LATER(ah))
  367. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  368. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  369. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  370. else
  371. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  372. }
  373. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  374. {
  375. struct ath_common *common = ath9k_hw_common(ah);
  376. u32 sum;
  377. int i;
  378. u16 eeval;
  379. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  380. sum = 0;
  381. for (i = 0; i < 3; i++) {
  382. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  383. sum += eeval;
  384. common->macaddr[2 * i] = eeval >> 8;
  385. common->macaddr[2 * i + 1] = eeval & 0xff;
  386. }
  387. if (sum == 0 || sum == 0xffff * 3)
  388. return -EADDRNOTAVAIL;
  389. return 0;
  390. }
  391. static int ath9k_hw_post_init(struct ath_hw *ah)
  392. {
  393. struct ath_common *common = ath9k_hw_common(ah);
  394. int ecode;
  395. if (common->bus_ops->ath_bus_type != ATH_USB) {
  396. if (!ath9k_hw_chip_test(ah))
  397. return -ENODEV;
  398. }
  399. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  400. ecode = ar9002_hw_rf_claim(ah);
  401. if (ecode != 0)
  402. return ecode;
  403. }
  404. ecode = ath9k_hw_eeprom_init(ah);
  405. if (ecode != 0)
  406. return ecode;
  407. ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
  408. ah->eep_ops->get_eeprom_ver(ah),
  409. ah->eep_ops->get_eeprom_rev(ah));
  410. ath9k_hw_ani_init(ah);
  411. /*
  412. * EEPROM needs to be initialized before we do this.
  413. * This is required for regulatory compliance.
  414. */
  415. if (AR_SREV_9300_20_OR_LATER(ah)) {
  416. u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  417. if ((regdmn & 0xF0) == CTL_FCC) {
  418. ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
  419. ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
  420. }
  421. }
  422. return 0;
  423. }
  424. static int ath9k_hw_attach_ops(struct ath_hw *ah)
  425. {
  426. if (!AR_SREV_9300_20_OR_LATER(ah))
  427. return ar9002_hw_attach_ops(ah);
  428. ar9003_hw_attach_ops(ah);
  429. return 0;
  430. }
  431. /* Called for all hardware families */
  432. static int __ath9k_hw_init(struct ath_hw *ah)
  433. {
  434. struct ath_common *common = ath9k_hw_common(ah);
  435. int r = 0;
  436. ath9k_hw_read_revisions(ah);
  437. switch (ah->hw_version.macVersion) {
  438. case AR_SREV_VERSION_5416_PCI:
  439. case AR_SREV_VERSION_5416_PCIE:
  440. case AR_SREV_VERSION_9160:
  441. case AR_SREV_VERSION_9100:
  442. case AR_SREV_VERSION_9280:
  443. case AR_SREV_VERSION_9285:
  444. case AR_SREV_VERSION_9287:
  445. case AR_SREV_VERSION_9271:
  446. case AR_SREV_VERSION_9300:
  447. case AR_SREV_VERSION_9330:
  448. case AR_SREV_VERSION_9485:
  449. case AR_SREV_VERSION_9340:
  450. case AR_SREV_VERSION_9462:
  451. case AR_SREV_VERSION_9550:
  452. case AR_SREV_VERSION_9565:
  453. case AR_SREV_VERSION_9531:
  454. break;
  455. default:
  456. ath_err(common,
  457. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  458. ah->hw_version.macVersion, ah->hw_version.macRev);
  459. return -EOPNOTSUPP;
  460. }
  461. /*
  462. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  463. * We need to do this to avoid RMW of this register. We cannot
  464. * read the reg when chip is asleep.
  465. */
  466. if (AR_SREV_9300_20_OR_LATER(ah)) {
  467. ah->WARegVal = REG_READ(ah, AR_WA);
  468. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  469. AR_WA_ASPM_TIMER_BASED_DISABLE);
  470. }
  471. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  472. ath_err(common, "Couldn't reset chip\n");
  473. return -EIO;
  474. }
  475. if (AR_SREV_9565(ah)) {
  476. ah->WARegVal |= AR_WA_BIT22;
  477. REG_WRITE(ah, AR_WA, ah->WARegVal);
  478. }
  479. ath9k_hw_init_defaults(ah);
  480. ath9k_hw_init_config(ah);
  481. r = ath9k_hw_attach_ops(ah);
  482. if (r)
  483. return r;
  484. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  485. ath_err(common, "Couldn't wakeup chip\n");
  486. return -EIO;
  487. }
  488. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
  489. AR_SREV_9330(ah) || AR_SREV_9550(ah))
  490. ah->is_pciexpress = false;
  491. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  492. ath9k_hw_init_cal_settings(ah);
  493. if (!ah->is_pciexpress)
  494. ath9k_hw_disablepcie(ah);
  495. r = ath9k_hw_post_init(ah);
  496. if (r)
  497. return r;
  498. ath9k_hw_init_mode_gain_regs(ah);
  499. r = ath9k_hw_fill_cap_info(ah);
  500. if (r)
  501. return r;
  502. r = ath9k_hw_init_macaddr(ah);
  503. if (r) {
  504. ath_err(common, "Failed to initialize MAC address\n");
  505. return r;
  506. }
  507. ath9k_hw_init_hang_checks(ah);
  508. common->state = ATH_HW_INITIALIZED;
  509. return 0;
  510. }
  511. int ath9k_hw_init(struct ath_hw *ah)
  512. {
  513. int ret;
  514. struct ath_common *common = ath9k_hw_common(ah);
  515. /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
  516. switch (ah->hw_version.devid) {
  517. case AR5416_DEVID_PCI:
  518. case AR5416_DEVID_PCIE:
  519. case AR5416_AR9100_DEVID:
  520. case AR9160_DEVID_PCI:
  521. case AR9280_DEVID_PCI:
  522. case AR9280_DEVID_PCIE:
  523. case AR9285_DEVID_PCIE:
  524. case AR9287_DEVID_PCI:
  525. case AR9287_DEVID_PCIE:
  526. case AR2427_DEVID_PCIE:
  527. case AR9300_DEVID_PCIE:
  528. case AR9300_DEVID_AR9485_PCIE:
  529. case AR9300_DEVID_AR9330:
  530. case AR9300_DEVID_AR9340:
  531. case AR9300_DEVID_QCA955X:
  532. case AR9300_DEVID_AR9580:
  533. case AR9300_DEVID_AR9462:
  534. case AR9485_DEVID_AR1111:
  535. case AR9300_DEVID_AR9565:
  536. case AR9300_DEVID_AR953X:
  537. break;
  538. default:
  539. if (common->bus_ops->ath_bus_type == ATH_USB)
  540. break;
  541. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  542. ah->hw_version.devid);
  543. return -EOPNOTSUPP;
  544. }
  545. ret = __ath9k_hw_init(ah);
  546. if (ret) {
  547. ath_err(common,
  548. "Unable to initialize hardware; initialization status: %d\n",
  549. ret);
  550. return ret;
  551. }
  552. return 0;
  553. }
  554. EXPORT_SYMBOL(ath9k_hw_init);
  555. static void ath9k_hw_init_qos(struct ath_hw *ah)
  556. {
  557. ENABLE_REGWRITE_BUFFER(ah);
  558. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  559. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  560. REG_WRITE(ah, AR_QOS_NO_ACK,
  561. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  562. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  563. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  564. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  565. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  566. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  567. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  568. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  569. REGWRITE_BUFFER_FLUSH(ah);
  570. }
  571. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  572. {
  573. struct ath_common *common = ath9k_hw_common(ah);
  574. int i = 0;
  575. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  576. udelay(100);
  577. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  578. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
  579. udelay(100);
  580. if (WARN_ON_ONCE(i >= 100)) {
  581. ath_err(common, "PLL4 meaurement not done\n");
  582. break;
  583. }
  584. i++;
  585. }
  586. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  587. }
  588. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  589. static void ath9k_hw_init_pll(struct ath_hw *ah,
  590. struct ath9k_channel *chan)
  591. {
  592. u32 pll;
  593. if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  594. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  595. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  596. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  597. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  598. AR_CH0_DPLL2_KD, 0x40);
  599. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  600. AR_CH0_DPLL2_KI, 0x4);
  601. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  602. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  603. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  604. AR_CH0_BB_DPLL1_NINI, 0x58);
  605. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  606. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  607. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  608. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  609. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  610. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  611. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  612. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  613. /* program BB PLL phase_shift to 0x6 */
  614. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  615. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  616. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  617. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  618. udelay(1000);
  619. } else if (AR_SREV_9330(ah)) {
  620. u32 ddr_dpll2, pll_control2, kd;
  621. if (ah->is_clk_25mhz) {
  622. ddr_dpll2 = 0x18e82f01;
  623. pll_control2 = 0xe04a3d;
  624. kd = 0x1d;
  625. } else {
  626. ddr_dpll2 = 0x19e82f01;
  627. pll_control2 = 0x886666;
  628. kd = 0x3d;
  629. }
  630. /* program DDR PLL ki and kd value */
  631. REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
  632. /* program DDR PLL phase_shift */
  633. REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
  634. AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
  635. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  636. udelay(1000);
  637. /* program refdiv, nint, frac to RTC register */
  638. REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
  639. /* program BB PLL kd and ki value */
  640. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
  641. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
  642. /* program BB PLL phase_shift */
  643. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  644. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
  645. } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
  646. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  647. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  648. udelay(1000);
  649. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  650. udelay(100);
  651. if (ah->is_clk_25mhz) {
  652. if (AR_SREV_9531(ah)) {
  653. pll2_divint = 0x1c;
  654. pll2_divfrac = 0xa3d2;
  655. refdiv = 1;
  656. } else {
  657. pll2_divint = 0x54;
  658. pll2_divfrac = 0x1eb85;
  659. refdiv = 3;
  660. }
  661. } else {
  662. if (AR_SREV_9340(ah)) {
  663. pll2_divint = 88;
  664. pll2_divfrac = 0;
  665. refdiv = 5;
  666. } else {
  667. pll2_divint = 0x11;
  668. pll2_divfrac = 0x26666;
  669. refdiv = 1;
  670. }
  671. }
  672. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  673. if (AR_SREV_9531(ah))
  674. regval |= (0x1 << 22);
  675. else
  676. regval |= (0x1 << 16);
  677. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  678. udelay(100);
  679. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  680. (pll2_divint << 18) | pll2_divfrac);
  681. udelay(100);
  682. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  683. if (AR_SREV_9340(ah))
  684. regval = (regval & 0x80071fff) |
  685. (0x1 << 30) |
  686. (0x1 << 13) |
  687. (0x4 << 26) |
  688. (0x18 << 19);
  689. else if (AR_SREV_9531(ah))
  690. regval = (regval & 0x01c00fff) |
  691. (0x1 << 31) |
  692. (0x2 << 29) |
  693. (0xa << 25) |
  694. (0x1 << 19) |
  695. (0x6 << 12);
  696. else
  697. regval = (regval & 0x80071fff) |
  698. (0x3 << 30) |
  699. (0x1 << 13) |
  700. (0x4 << 26) |
  701. (0x60 << 19);
  702. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  703. if (AR_SREV_9531(ah))
  704. REG_WRITE(ah, AR_PHY_PLL_MODE,
  705. REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
  706. else
  707. REG_WRITE(ah, AR_PHY_PLL_MODE,
  708. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  709. udelay(1000);
  710. }
  711. pll = ath9k_hw_compute_pll_control(ah, chan);
  712. if (AR_SREV_9565(ah))
  713. pll |= 0x40000;
  714. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  715. if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
  716. AR_SREV_9550(ah))
  717. udelay(1000);
  718. /* Switch the core clock for ar9271 to 117Mhz */
  719. if (AR_SREV_9271(ah)) {
  720. udelay(500);
  721. REG_WRITE(ah, 0x50040, 0x304);
  722. }
  723. udelay(RTC_PLL_SETTLE_DELAY);
  724. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  725. if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
  726. if (ah->is_clk_25mhz) {
  727. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  728. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  729. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  730. } else {
  731. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  732. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  733. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  734. }
  735. udelay(100);
  736. }
  737. }
  738. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  739. enum nl80211_iftype opmode)
  740. {
  741. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  742. u32 imr_reg = AR_IMR_TXERR |
  743. AR_IMR_TXURN |
  744. AR_IMR_RXERR |
  745. AR_IMR_RXORN |
  746. AR_IMR_BCNMISC;
  747. if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
  748. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  749. if (AR_SREV_9300_20_OR_LATER(ah)) {
  750. imr_reg |= AR_IMR_RXOK_HP;
  751. if (ah->config.rx_intr_mitigation)
  752. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  753. else
  754. imr_reg |= AR_IMR_RXOK_LP;
  755. } else {
  756. if (ah->config.rx_intr_mitigation)
  757. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  758. else
  759. imr_reg |= AR_IMR_RXOK;
  760. }
  761. if (ah->config.tx_intr_mitigation)
  762. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  763. else
  764. imr_reg |= AR_IMR_TXOK;
  765. ENABLE_REGWRITE_BUFFER(ah);
  766. REG_WRITE(ah, AR_IMR, imr_reg);
  767. ah->imrs2_reg |= AR_IMR_S2_GTT;
  768. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  769. if (!AR_SREV_9100(ah)) {
  770. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  771. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  772. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  773. }
  774. REGWRITE_BUFFER_FLUSH(ah);
  775. if (AR_SREV_9300_20_OR_LATER(ah)) {
  776. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  777. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  778. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  779. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  780. }
  781. }
  782. static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
  783. {
  784. u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
  785. val = min(val, (u32) 0xFFFF);
  786. REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
  787. }
  788. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  789. {
  790. u32 val = ath9k_hw_mac_to_clks(ah, us);
  791. val = min(val, (u32) 0xFFFF);
  792. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  793. }
  794. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  795. {
  796. u32 val = ath9k_hw_mac_to_clks(ah, us);
  797. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  798. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  799. }
  800. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  801. {
  802. u32 val = ath9k_hw_mac_to_clks(ah, us);
  803. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  804. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  805. }
  806. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  807. {
  808. if (tu > 0xFFFF) {
  809. ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
  810. tu);
  811. ah->globaltxtimeout = (u32) -1;
  812. return false;
  813. } else {
  814. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  815. ah->globaltxtimeout = tu;
  816. return true;
  817. }
  818. }
  819. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  820. {
  821. struct ath_common *common = ath9k_hw_common(ah);
  822. const struct ath9k_channel *chan = ah->curchan;
  823. int acktimeout, ctstimeout, ack_offset = 0;
  824. int slottime;
  825. int sifstime;
  826. int rx_lat = 0, tx_lat = 0, eifs = 0;
  827. u32 reg;
  828. ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
  829. ah->misc_mode);
  830. if (!chan)
  831. return;
  832. if (ah->misc_mode != 0)
  833. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  834. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  835. rx_lat = 41;
  836. else
  837. rx_lat = 37;
  838. tx_lat = 54;
  839. if (IS_CHAN_5GHZ(chan))
  840. sifstime = 16;
  841. else
  842. sifstime = 10;
  843. if (IS_CHAN_HALF_RATE(chan)) {
  844. eifs = 175;
  845. rx_lat *= 2;
  846. tx_lat *= 2;
  847. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  848. tx_lat += 11;
  849. sifstime = 32;
  850. ack_offset = 16;
  851. slottime = 13;
  852. } else if (IS_CHAN_QUARTER_RATE(chan)) {
  853. eifs = 340;
  854. rx_lat = (rx_lat * 4) - 1;
  855. tx_lat *= 4;
  856. if (IS_CHAN_A_FAST_CLOCK(ah, chan))
  857. tx_lat += 22;
  858. sifstime = 64;
  859. ack_offset = 32;
  860. slottime = 21;
  861. } else {
  862. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  863. eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
  864. reg = AR_USEC_ASYNC_FIFO;
  865. } else {
  866. eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
  867. common->clockrate;
  868. reg = REG_READ(ah, AR_USEC);
  869. }
  870. rx_lat = MS(reg, AR_USEC_RX_LAT);
  871. tx_lat = MS(reg, AR_USEC_TX_LAT);
  872. slottime = ah->slottime;
  873. }
  874. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  875. slottime += 3 * ah->coverage_class;
  876. acktimeout = slottime + sifstime + ack_offset;
  877. ctstimeout = acktimeout;
  878. /*
  879. * Workaround for early ACK timeouts, add an offset to match the
  880. * initval's 64us ack timeout value. Use 48us for the CTS timeout.
  881. * This was initially only meant to work around an issue with delayed
  882. * BA frames in some implementations, but it has been found to fix ACK
  883. * timeout issues in other cases as well.
  884. */
  885. if (IS_CHAN_2GHZ(chan) &&
  886. !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
  887. acktimeout += 64 - sifstime - ah->slottime;
  888. ctstimeout += 48 - sifstime - ah->slottime;
  889. }
  890. ath9k_hw_set_sifs_time(ah, sifstime);
  891. ath9k_hw_setslottime(ah, slottime);
  892. ath9k_hw_set_ack_timeout(ah, acktimeout);
  893. ath9k_hw_set_cts_timeout(ah, ctstimeout);
  894. if (ah->globaltxtimeout != (u32) -1)
  895. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  896. REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
  897. REG_RMW(ah, AR_USEC,
  898. (common->clockrate - 1) |
  899. SM(rx_lat, AR_USEC_RX_LAT) |
  900. SM(tx_lat, AR_USEC_TX_LAT),
  901. AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
  902. }
  903. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  904. void ath9k_hw_deinit(struct ath_hw *ah)
  905. {
  906. struct ath_common *common = ath9k_hw_common(ah);
  907. if (common->state < ATH_HW_INITIALIZED)
  908. return;
  909. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  910. }
  911. EXPORT_SYMBOL(ath9k_hw_deinit);
  912. /*******/
  913. /* INI */
  914. /*******/
  915. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  916. {
  917. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  918. if (IS_CHAN_2GHZ(chan))
  919. ctl |= CTL_11G;
  920. else
  921. ctl |= CTL_11A;
  922. return ctl;
  923. }
  924. /****************************************/
  925. /* Reset and Channel Switching Routines */
  926. /****************************************/
  927. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  928. {
  929. struct ath_common *common = ath9k_hw_common(ah);
  930. int txbuf_size;
  931. ENABLE_REGWRITE_BUFFER(ah);
  932. /*
  933. * set AHB_MODE not to do cacheline prefetches
  934. */
  935. if (!AR_SREV_9300_20_OR_LATER(ah))
  936. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  937. /*
  938. * let mac dma reads be in 128 byte chunks
  939. */
  940. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  941. REGWRITE_BUFFER_FLUSH(ah);
  942. /*
  943. * Restore TX Trigger Level to its pre-reset value.
  944. * The initial value depends on whether aggregation is enabled, and is
  945. * adjusted whenever underruns are detected.
  946. */
  947. if (!AR_SREV_9300_20_OR_LATER(ah))
  948. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  949. ENABLE_REGWRITE_BUFFER(ah);
  950. /*
  951. * let mac dma writes be in 128 byte chunks
  952. */
  953. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  954. /*
  955. * Setup receive FIFO threshold to hold off TX activities
  956. */
  957. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  958. if (AR_SREV_9300_20_OR_LATER(ah)) {
  959. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  960. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  961. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  962. ah->caps.rx_status_len);
  963. }
  964. /*
  965. * reduce the number of usable entries in PCU TXBUF to avoid
  966. * wrap around issues.
  967. */
  968. if (AR_SREV_9285(ah)) {
  969. /* For AR9285 the number of Fifos are reduced to half.
  970. * So set the usable tx buf size also to half to
  971. * avoid data/delimiter underruns
  972. */
  973. txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
  974. } else if (AR_SREV_9340_13_OR_LATER(ah)) {
  975. /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
  976. txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
  977. } else {
  978. txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
  979. }
  980. if (!AR_SREV_9271(ah))
  981. REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
  982. REGWRITE_BUFFER_FLUSH(ah);
  983. if (AR_SREV_9300_20_OR_LATER(ah))
  984. ath9k_hw_reset_txstatus_ring(ah);
  985. }
  986. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  987. {
  988. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  989. u32 set = AR_STA_ID1_KSRCH_MODE;
  990. switch (opmode) {
  991. case NL80211_IFTYPE_ADHOC:
  992. set |= AR_STA_ID1_ADHOC;
  993. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  994. break;
  995. case NL80211_IFTYPE_MESH_POINT:
  996. case NL80211_IFTYPE_AP:
  997. set |= AR_STA_ID1_STA_AP;
  998. /* fall through */
  999. case NL80211_IFTYPE_STATION:
  1000. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  1001. break;
  1002. default:
  1003. if (!ah->is_monitoring)
  1004. set = 0;
  1005. break;
  1006. }
  1007. REG_RMW(ah, AR_STA_ID1, set, mask);
  1008. }
  1009. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  1010. u32 *coef_mantissa, u32 *coef_exponent)
  1011. {
  1012. u32 coef_exp, coef_man;
  1013. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  1014. if ((coef_scaled >> coef_exp) & 0x1)
  1015. break;
  1016. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  1017. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  1018. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  1019. *coef_exponent = coef_exp - 16;
  1020. }
  1021. /* AR9330 WAR:
  1022. * call external reset function to reset WMAC if:
  1023. * - doing a cold reset
  1024. * - we have pending frames in the TX queues.
  1025. */
  1026. static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
  1027. {
  1028. int i, npend = 0;
  1029. for (i = 0; i < AR_NUM_QCU; i++) {
  1030. npend = ath9k_hw_numtxpending(ah, i);
  1031. if (npend)
  1032. break;
  1033. }
  1034. if (ah->external_reset &&
  1035. (npend || type == ATH9K_RESET_COLD)) {
  1036. int reset_err = 0;
  1037. ath_dbg(ath9k_hw_common(ah), RESET,
  1038. "reset MAC via external reset\n");
  1039. reset_err = ah->external_reset();
  1040. if (reset_err) {
  1041. ath_err(ath9k_hw_common(ah),
  1042. "External reset failed, err=%d\n",
  1043. reset_err);
  1044. return false;
  1045. }
  1046. REG_WRITE(ah, AR_RTC_RESET, 1);
  1047. }
  1048. return true;
  1049. }
  1050. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  1051. {
  1052. u32 rst_flags;
  1053. u32 tmpReg;
  1054. if (AR_SREV_9100(ah)) {
  1055. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  1056. AR_RTC_DERIVED_CLK_PERIOD, 1);
  1057. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  1058. }
  1059. ENABLE_REGWRITE_BUFFER(ah);
  1060. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1061. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1062. udelay(10);
  1063. }
  1064. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1065. AR_RTC_FORCE_WAKE_ON_INT);
  1066. if (AR_SREV_9100(ah)) {
  1067. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  1068. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  1069. } else {
  1070. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  1071. if (AR_SREV_9340(ah))
  1072. tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
  1073. else
  1074. tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
  1075. AR_INTR_SYNC_RADM_CPL_TIMEOUT;
  1076. if (tmpReg) {
  1077. u32 val;
  1078. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  1079. val = AR_RC_HOSTIF;
  1080. if (!AR_SREV_9300_20_OR_LATER(ah))
  1081. val |= AR_RC_AHB;
  1082. REG_WRITE(ah, AR_RC, val);
  1083. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  1084. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1085. rst_flags = AR_RTC_RC_MAC_WARM;
  1086. if (type == ATH9K_RESET_COLD)
  1087. rst_flags |= AR_RTC_RC_MAC_COLD;
  1088. }
  1089. if (AR_SREV_9330(ah)) {
  1090. if (!ath9k_hw_ar9330_reset_war(ah, type))
  1091. return false;
  1092. }
  1093. if (ath9k_hw_mci_is_enabled(ah))
  1094. ar9003_mci_check_gpm_offset(ah);
  1095. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  1096. REGWRITE_BUFFER_FLUSH(ah);
  1097. if (AR_SREV_9300_20_OR_LATER(ah))
  1098. udelay(50);
  1099. else if (AR_SREV_9100(ah))
  1100. mdelay(10);
  1101. else
  1102. udelay(100);
  1103. REG_WRITE(ah, AR_RTC_RC, 0);
  1104. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  1105. ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
  1106. return false;
  1107. }
  1108. if (!AR_SREV_9100(ah))
  1109. REG_WRITE(ah, AR_RC, 0);
  1110. if (AR_SREV_9100(ah))
  1111. udelay(50);
  1112. return true;
  1113. }
  1114. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  1115. {
  1116. ENABLE_REGWRITE_BUFFER(ah);
  1117. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1118. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1119. udelay(10);
  1120. }
  1121. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  1122. AR_RTC_FORCE_WAKE_ON_INT);
  1123. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1124. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  1125. REG_WRITE(ah, AR_RTC_RESET, 0);
  1126. REGWRITE_BUFFER_FLUSH(ah);
  1127. udelay(2);
  1128. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1129. REG_WRITE(ah, AR_RC, 0);
  1130. REG_WRITE(ah, AR_RTC_RESET, 1);
  1131. if (!ath9k_hw_wait(ah,
  1132. AR_RTC_STATUS,
  1133. AR_RTC_STATUS_M,
  1134. AR_RTC_STATUS_ON,
  1135. AH_WAIT_TIMEOUT)) {
  1136. ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
  1137. return false;
  1138. }
  1139. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  1140. }
  1141. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  1142. {
  1143. bool ret = false;
  1144. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1145. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1146. udelay(10);
  1147. }
  1148. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1149. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  1150. if (!ah->reset_power_on)
  1151. type = ATH9K_RESET_POWER_ON;
  1152. switch (type) {
  1153. case ATH9K_RESET_POWER_ON:
  1154. ret = ath9k_hw_set_reset_power_on(ah);
  1155. if (ret)
  1156. ah->reset_power_on = true;
  1157. break;
  1158. case ATH9K_RESET_WARM:
  1159. case ATH9K_RESET_COLD:
  1160. ret = ath9k_hw_set_reset(ah, type);
  1161. break;
  1162. default:
  1163. break;
  1164. }
  1165. return ret;
  1166. }
  1167. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  1168. struct ath9k_channel *chan)
  1169. {
  1170. int reset_type = ATH9K_RESET_WARM;
  1171. if (AR_SREV_9280(ah)) {
  1172. if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
  1173. reset_type = ATH9K_RESET_POWER_ON;
  1174. else
  1175. reset_type = ATH9K_RESET_COLD;
  1176. } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
  1177. (REG_READ(ah, AR_CR) & AR_CR_RXE))
  1178. reset_type = ATH9K_RESET_COLD;
  1179. if (!ath9k_hw_set_reset_reg(ah, reset_type))
  1180. return false;
  1181. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1182. return false;
  1183. ah->chip_fullsleep = false;
  1184. if (AR_SREV_9330(ah))
  1185. ar9003_hw_internal_regulator_apply(ah);
  1186. ath9k_hw_init_pll(ah, chan);
  1187. return true;
  1188. }
  1189. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  1190. struct ath9k_channel *chan)
  1191. {
  1192. struct ath_common *common = ath9k_hw_common(ah);
  1193. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1194. bool band_switch = false, mode_diff = false;
  1195. u8 ini_reloaded = 0;
  1196. u32 qnum;
  1197. int r;
  1198. if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
  1199. u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
  1200. band_switch = !!(flags_diff & CHANNEL_5GHZ);
  1201. mode_diff = !!(flags_diff & ~CHANNEL_HT);
  1202. }
  1203. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1204. if (ath9k_hw_numtxpending(ah, qnum)) {
  1205. ath_dbg(common, QUEUE,
  1206. "Transmit frames pending on queue %d\n", qnum);
  1207. return false;
  1208. }
  1209. }
  1210. if (!ath9k_hw_rfbus_req(ah)) {
  1211. ath_err(common, "Could not kill baseband RX\n");
  1212. return false;
  1213. }
  1214. if (band_switch || mode_diff) {
  1215. ath9k_hw_mark_phy_inactive(ah);
  1216. udelay(5);
  1217. if (band_switch)
  1218. ath9k_hw_init_pll(ah, chan);
  1219. if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
  1220. ath_err(common, "Failed to do fast channel change\n");
  1221. return false;
  1222. }
  1223. }
  1224. ath9k_hw_set_channel_regs(ah, chan);
  1225. r = ath9k_hw_rf_set_freq(ah, chan);
  1226. if (r) {
  1227. ath_err(common, "Failed to set channel\n");
  1228. return false;
  1229. }
  1230. ath9k_hw_set_clockrate(ah);
  1231. ath9k_hw_apply_txpower(ah, chan, false);
  1232. ath9k_hw_set_delta_slope(ah, chan);
  1233. ath9k_hw_spur_mitigate_freq(ah, chan);
  1234. if (band_switch || ini_reloaded)
  1235. ah->eep_ops->set_board_values(ah, chan);
  1236. ath9k_hw_init_bb(ah, chan);
  1237. ath9k_hw_rfbus_done(ah);
  1238. if (band_switch || ini_reloaded) {
  1239. ah->ah_flags |= AH_FASTCC;
  1240. ath9k_hw_init_cal(ah, chan);
  1241. ah->ah_flags &= ~AH_FASTCC;
  1242. }
  1243. return true;
  1244. }
  1245. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1246. {
  1247. u32 gpio_mask = ah->gpio_mask;
  1248. int i;
  1249. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1250. if (!(gpio_mask & 1))
  1251. continue;
  1252. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1253. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1254. }
  1255. }
  1256. void ath9k_hw_check_nav(struct ath_hw *ah)
  1257. {
  1258. struct ath_common *common = ath9k_hw_common(ah);
  1259. u32 val;
  1260. val = REG_READ(ah, AR_NAV);
  1261. if (val != 0xdeadbeef && val > 0x7fff) {
  1262. ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
  1263. REG_WRITE(ah, AR_NAV, 0);
  1264. }
  1265. }
  1266. EXPORT_SYMBOL(ath9k_hw_check_nav);
  1267. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1268. {
  1269. int count = 50;
  1270. u32 reg, last_val;
  1271. if (AR_SREV_9300(ah))
  1272. return !ath9k_hw_detect_mac_hang(ah);
  1273. if (AR_SREV_9285_12_OR_LATER(ah))
  1274. return true;
  1275. last_val = REG_READ(ah, AR_OBS_BUS_1);
  1276. do {
  1277. reg = REG_READ(ah, AR_OBS_BUS_1);
  1278. if (reg != last_val)
  1279. return true;
  1280. udelay(1);
  1281. last_val = reg;
  1282. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1283. continue;
  1284. switch (reg & 0x7E000B00) {
  1285. case 0x1E000000:
  1286. case 0x52000B00:
  1287. case 0x18000B00:
  1288. continue;
  1289. default:
  1290. return true;
  1291. }
  1292. } while (count-- > 0);
  1293. return false;
  1294. }
  1295. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1296. static void ath9k_hw_init_mfp(struct ath_hw *ah)
  1297. {
  1298. /* Setup MFP options for CCMP */
  1299. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1300. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1301. * frames when constructing CCMP AAD. */
  1302. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1303. 0xc7ff);
  1304. ah->sw_mgmt_crypto = false;
  1305. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1306. /* Disable hardware crypto for management frames */
  1307. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1308. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1309. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1310. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1311. ah->sw_mgmt_crypto = true;
  1312. } else {
  1313. ah->sw_mgmt_crypto = true;
  1314. }
  1315. }
  1316. static void ath9k_hw_reset_opmode(struct ath_hw *ah,
  1317. u32 macStaId1, u32 saveDefAntenna)
  1318. {
  1319. struct ath_common *common = ath9k_hw_common(ah);
  1320. ENABLE_REGWRITE_BUFFER(ah);
  1321. REG_RMW(ah, AR_STA_ID1, macStaId1
  1322. | AR_STA_ID1_RTS_USE_DEF
  1323. | ah->sta_id1_defaults,
  1324. ~AR_STA_ID1_SADH_MASK);
  1325. ath_hw_setbssidmask(common);
  1326. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1327. ath9k_hw_write_associd(ah);
  1328. REG_WRITE(ah, AR_ISR, ~0);
  1329. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1330. REGWRITE_BUFFER_FLUSH(ah);
  1331. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1332. }
  1333. static void ath9k_hw_init_queues(struct ath_hw *ah)
  1334. {
  1335. int i;
  1336. ENABLE_REGWRITE_BUFFER(ah);
  1337. for (i = 0; i < AR_NUM_DCU; i++)
  1338. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1339. REGWRITE_BUFFER_FLUSH(ah);
  1340. ah->intr_txqs = 0;
  1341. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1342. ath9k_hw_resettxqueue(ah, i);
  1343. }
  1344. /*
  1345. * For big endian systems turn on swapping for descriptors
  1346. */
  1347. static void ath9k_hw_init_desc(struct ath_hw *ah)
  1348. {
  1349. struct ath_common *common = ath9k_hw_common(ah);
  1350. if (AR_SREV_9100(ah)) {
  1351. u32 mask;
  1352. mask = REG_READ(ah, AR_CFG);
  1353. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1354. ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
  1355. mask);
  1356. } else {
  1357. mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1358. REG_WRITE(ah, AR_CFG, mask);
  1359. ath_dbg(common, RESET, "Setting CFG 0x%x\n",
  1360. REG_READ(ah, AR_CFG));
  1361. }
  1362. } else {
  1363. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1364. /* Configure AR9271 target WLAN */
  1365. if (AR_SREV_9271(ah))
  1366. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1367. else
  1368. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1369. }
  1370. #ifdef __BIG_ENDIAN
  1371. else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
  1372. AR_SREV_9550(ah) || AR_SREV_9531(ah))
  1373. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1374. else
  1375. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1376. #endif
  1377. }
  1378. }
  1379. /*
  1380. * Fast channel change:
  1381. * (Change synthesizer based on channel freq without resetting chip)
  1382. */
  1383. static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
  1384. {
  1385. struct ath_common *common = ath9k_hw_common(ah);
  1386. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1387. int ret;
  1388. if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
  1389. goto fail;
  1390. if (ah->chip_fullsleep)
  1391. goto fail;
  1392. if (!ah->curchan)
  1393. goto fail;
  1394. if (chan->channel == ah->curchan->channel)
  1395. goto fail;
  1396. if ((ah->curchan->channelFlags | chan->channelFlags) &
  1397. (CHANNEL_HALF | CHANNEL_QUARTER))
  1398. goto fail;
  1399. /*
  1400. * If cross-band fcc is not supoprted, bail out if channelFlags differ.
  1401. */
  1402. if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
  1403. ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
  1404. goto fail;
  1405. if (!ath9k_hw_check_alive(ah))
  1406. goto fail;
  1407. /*
  1408. * For AR9462, make sure that calibration data for
  1409. * re-using are present.
  1410. */
  1411. if (AR_SREV_9462(ah) && (ah->caldata &&
  1412. (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
  1413. !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
  1414. !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
  1415. goto fail;
  1416. ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
  1417. ah->curchan->channel, chan->channel);
  1418. ret = ath9k_hw_channel_change(ah, chan);
  1419. if (!ret)
  1420. goto fail;
  1421. if (ath9k_hw_mci_is_enabled(ah))
  1422. ar9003_mci_2g5g_switch(ah, false);
  1423. ath9k_hw_loadnf(ah, ah->curchan);
  1424. ath9k_hw_start_nfcal(ah, true);
  1425. if (AR_SREV_9271(ah))
  1426. ar9002_hw_load_ani_reg(ah, chan);
  1427. return 0;
  1428. fail:
  1429. return -EINVAL;
  1430. }
  1431. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1432. struct ath9k_hw_cal_data *caldata, bool fastcc)
  1433. {
  1434. struct ath_common *common = ath9k_hw_common(ah);
  1435. struct timespec ts;
  1436. u32 saveLedState;
  1437. u32 saveDefAntenna;
  1438. u32 macStaId1;
  1439. u64 tsf = 0;
  1440. s64 usec = 0;
  1441. int r;
  1442. bool start_mci_reset = false;
  1443. bool save_fullsleep = ah->chip_fullsleep;
  1444. if (ath9k_hw_mci_is_enabled(ah)) {
  1445. start_mci_reset = ar9003_mci_start_reset(ah, chan);
  1446. if (start_mci_reset)
  1447. return 0;
  1448. }
  1449. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1450. return -EIO;
  1451. if (ah->curchan && !ah->chip_fullsleep)
  1452. ath9k_hw_getnf(ah, ah->curchan);
  1453. ah->caldata = caldata;
  1454. if (caldata && (chan->channel != caldata->channel ||
  1455. chan->channelFlags != caldata->channelFlags)) {
  1456. /* Operating channel changed, reset channel calibration data */
  1457. memset(caldata, 0, sizeof(*caldata));
  1458. ath9k_init_nfcal_hist_buffer(ah, chan);
  1459. } else if (caldata) {
  1460. clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
  1461. }
  1462. ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
  1463. if (fastcc) {
  1464. r = ath9k_hw_do_fastcc(ah, chan);
  1465. if (!r)
  1466. return r;
  1467. }
  1468. if (ath9k_hw_mci_is_enabled(ah))
  1469. ar9003_mci_stop_bt(ah, save_fullsleep);
  1470. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1471. if (saveDefAntenna == 0)
  1472. saveDefAntenna = 1;
  1473. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1474. /* Save TSF before chip reset, a cold reset clears it */
  1475. tsf = ath9k_hw_gettsf64(ah);
  1476. getrawmonotonic(&ts);
  1477. usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
  1478. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1479. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1480. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1481. ath9k_hw_mark_phy_inactive(ah);
  1482. ah->paprd_table_write_done = false;
  1483. /* Only required on the first reset */
  1484. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1485. REG_WRITE(ah,
  1486. AR9271_RESET_POWER_DOWN_CONTROL,
  1487. AR9271_RADIO_RF_RST);
  1488. udelay(50);
  1489. }
  1490. if (!ath9k_hw_chip_reset(ah, chan)) {
  1491. ath_err(common, "Chip reset failed\n");
  1492. return -EINVAL;
  1493. }
  1494. /* Only required on the first reset */
  1495. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1496. ah->htc_reset_init = false;
  1497. REG_WRITE(ah,
  1498. AR9271_RESET_POWER_DOWN_CONTROL,
  1499. AR9271_GATE_MAC_CTL);
  1500. udelay(50);
  1501. }
  1502. /* Restore TSF */
  1503. getrawmonotonic(&ts);
  1504. usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
  1505. ath9k_hw_settsf64(ah, tsf + usec);
  1506. if (AR_SREV_9280_20_OR_LATER(ah))
  1507. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1508. if (!AR_SREV_9300_20_OR_LATER(ah))
  1509. ar9002_hw_enable_async_fifo(ah);
  1510. r = ath9k_hw_process_ini(ah, chan);
  1511. if (r)
  1512. return r;
  1513. ath9k_hw_set_rfmode(ah, chan);
  1514. if (ath9k_hw_mci_is_enabled(ah))
  1515. ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
  1516. /*
  1517. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1518. * right after the chip reset. When that happens, write a new
  1519. * value after the initvals have been applied, with an offset
  1520. * based on measured time difference
  1521. */
  1522. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1523. tsf += 1500;
  1524. ath9k_hw_settsf64(ah, tsf);
  1525. }
  1526. ath9k_hw_init_mfp(ah);
  1527. ath9k_hw_set_delta_slope(ah, chan);
  1528. ath9k_hw_spur_mitigate_freq(ah, chan);
  1529. ah->eep_ops->set_board_values(ah, chan);
  1530. ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
  1531. r = ath9k_hw_rf_set_freq(ah, chan);
  1532. if (r)
  1533. return r;
  1534. ath9k_hw_set_clockrate(ah);
  1535. ath9k_hw_init_queues(ah);
  1536. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1537. ath9k_hw_ani_cache_ini_regs(ah);
  1538. ath9k_hw_init_qos(ah);
  1539. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1540. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1541. ath9k_hw_init_global_settings(ah);
  1542. if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
  1543. REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
  1544. AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
  1545. REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
  1546. AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
  1547. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1548. AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
  1549. }
  1550. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1551. ath9k_hw_set_dma(ah);
  1552. if (!ath9k_hw_mci_is_enabled(ah))
  1553. REG_WRITE(ah, AR_OBS, 8);
  1554. if (ah->config.rx_intr_mitigation) {
  1555. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
  1556. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
  1557. }
  1558. if (ah->config.tx_intr_mitigation) {
  1559. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1560. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1561. }
  1562. ath9k_hw_init_bb(ah, chan);
  1563. if (caldata) {
  1564. clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
  1565. clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
  1566. }
  1567. if (!ath9k_hw_init_cal(ah, chan))
  1568. return -EIO;
  1569. if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
  1570. return -EIO;
  1571. ENABLE_REGWRITE_BUFFER(ah);
  1572. ath9k_hw_restore_chainmask(ah);
  1573. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1574. REGWRITE_BUFFER_FLUSH(ah);
  1575. ath9k_hw_init_desc(ah);
  1576. if (ath9k_hw_btcoex_is_enabled(ah))
  1577. ath9k_hw_btcoex_enable(ah);
  1578. if (ath9k_hw_mci_is_enabled(ah))
  1579. ar9003_mci_check_bt(ah);
  1580. ath9k_hw_loadnf(ah, chan);
  1581. ath9k_hw_start_nfcal(ah, true);
  1582. if (AR_SREV_9300_20_OR_LATER(ah))
  1583. ar9003_hw_bb_watchdog_config(ah);
  1584. if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
  1585. ar9003_hw_disable_phy_restart(ah);
  1586. ath9k_hw_apply_gpio_override(ah);
  1587. if (AR_SREV_9565(ah) && common->bt_ant_diversity)
  1588. REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
  1589. return 0;
  1590. }
  1591. EXPORT_SYMBOL(ath9k_hw_reset);
  1592. /******************************/
  1593. /* Power Management (Chipset) */
  1594. /******************************/
  1595. /*
  1596. * Notify Power Mgt is disabled in self-generated frames.
  1597. * If requested, force chip to sleep.
  1598. */
  1599. static void ath9k_set_power_sleep(struct ath_hw *ah)
  1600. {
  1601. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1602. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  1603. REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
  1604. REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
  1605. REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
  1606. /* xxx Required for WLAN only case ? */
  1607. REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
  1608. udelay(100);
  1609. }
  1610. /*
  1611. * Clear the RTC force wake bit to allow the
  1612. * mac to go to sleep.
  1613. */
  1614. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1615. if (ath9k_hw_mci_is_enabled(ah))
  1616. udelay(100);
  1617. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1618. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1619. /* Shutdown chip. Active low */
  1620. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
  1621. REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
  1622. udelay(2);
  1623. }
  1624. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1625. if (AR_SREV_9300_20_OR_LATER(ah))
  1626. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1627. }
  1628. /*
  1629. * Notify Power Management is enabled in self-generating
  1630. * frames. If request, set power mode of chip to
  1631. * auto/normal. Duration in units of 128us (1/8 TU).
  1632. */
  1633. static void ath9k_set_power_network_sleep(struct ath_hw *ah)
  1634. {
  1635. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1636. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1637. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1638. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1639. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1640. AR_RTC_FORCE_WAKE_ON_INT);
  1641. } else {
  1642. /* When chip goes into network sleep, it could be waken
  1643. * up by MCI_INT interrupt caused by BT's HW messages
  1644. * (LNA_xxx, CONT_xxx) which chould be in a very fast
  1645. * rate (~100us). This will cause chip to leave and
  1646. * re-enter network sleep mode frequently, which in
  1647. * consequence will have WLAN MCI HW to generate lots of
  1648. * SYS_WAKING and SYS_SLEEPING messages which will make
  1649. * BT CPU to busy to process.
  1650. */
  1651. if (ath9k_hw_mci_is_enabled(ah))
  1652. REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
  1653. AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
  1654. /*
  1655. * Clear the RTC force wake bit to allow the
  1656. * mac to go to sleep.
  1657. */
  1658. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
  1659. if (ath9k_hw_mci_is_enabled(ah))
  1660. udelay(30);
  1661. }
  1662. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1663. if (AR_SREV_9300_20_OR_LATER(ah))
  1664. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1665. }
  1666. static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
  1667. {
  1668. u32 val;
  1669. int i;
  1670. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1671. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1672. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1673. udelay(10);
  1674. }
  1675. if ((REG_READ(ah, AR_RTC_STATUS) &
  1676. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1677. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  1678. return false;
  1679. }
  1680. if (!AR_SREV_9300_20_OR_LATER(ah))
  1681. ath9k_hw_init_pll(ah, NULL);
  1682. }
  1683. if (AR_SREV_9100(ah))
  1684. REG_SET_BIT(ah, AR_RTC_RESET,
  1685. AR_RTC_RESET_EN);
  1686. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1687. AR_RTC_FORCE_WAKE_EN);
  1688. if (AR_SREV_9100(ah))
  1689. mdelay(10);
  1690. else
  1691. udelay(50);
  1692. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1693. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1694. if (val == AR_RTC_STATUS_ON)
  1695. break;
  1696. udelay(50);
  1697. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1698. AR_RTC_FORCE_WAKE_EN);
  1699. }
  1700. if (i == 0) {
  1701. ath_err(ath9k_hw_common(ah),
  1702. "Failed to wakeup in %uus\n",
  1703. POWER_UP_TIME / 20);
  1704. return false;
  1705. }
  1706. if (ath9k_hw_mci_is_enabled(ah))
  1707. ar9003_mci_set_power_awake(ah);
  1708. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1709. return true;
  1710. }
  1711. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1712. {
  1713. struct ath_common *common = ath9k_hw_common(ah);
  1714. int status = true;
  1715. static const char *modes[] = {
  1716. "AWAKE",
  1717. "FULL-SLEEP",
  1718. "NETWORK SLEEP",
  1719. "UNDEFINED"
  1720. };
  1721. if (ah->power_mode == mode)
  1722. return status;
  1723. ath_dbg(common, RESET, "%s -> %s\n",
  1724. modes[ah->power_mode], modes[mode]);
  1725. switch (mode) {
  1726. case ATH9K_PM_AWAKE:
  1727. status = ath9k_hw_set_power_awake(ah);
  1728. break;
  1729. case ATH9K_PM_FULL_SLEEP:
  1730. if (ath9k_hw_mci_is_enabled(ah))
  1731. ar9003_mci_set_full_sleep(ah);
  1732. ath9k_set_power_sleep(ah);
  1733. ah->chip_fullsleep = true;
  1734. break;
  1735. case ATH9K_PM_NETWORK_SLEEP:
  1736. ath9k_set_power_network_sleep(ah);
  1737. break;
  1738. default:
  1739. ath_err(common, "Unknown power mode %u\n", mode);
  1740. return false;
  1741. }
  1742. ah->power_mode = mode;
  1743. /*
  1744. * XXX: If this warning never comes up after a while then
  1745. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1746. * ath9k_hw_setpower() return type void.
  1747. */
  1748. if (!(ah->ah_flags & AH_UNPLUGGED))
  1749. ATH_DBG_WARN_ON_ONCE(!status);
  1750. return status;
  1751. }
  1752. EXPORT_SYMBOL(ath9k_hw_setpower);
  1753. /*******************/
  1754. /* Beacon Handling */
  1755. /*******************/
  1756. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1757. {
  1758. int flags = 0;
  1759. ENABLE_REGWRITE_BUFFER(ah);
  1760. switch (ah->opmode) {
  1761. case NL80211_IFTYPE_ADHOC:
  1762. REG_SET_BIT(ah, AR_TXCFG,
  1763. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1764. case NL80211_IFTYPE_MESH_POINT:
  1765. case NL80211_IFTYPE_AP:
  1766. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1767. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1768. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1769. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1770. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1771. flags |=
  1772. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1773. break;
  1774. default:
  1775. ath_dbg(ath9k_hw_common(ah), BEACON,
  1776. "%s: unsupported opmode: %d\n", __func__, ah->opmode);
  1777. return;
  1778. break;
  1779. }
  1780. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1781. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1782. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1783. REGWRITE_BUFFER_FLUSH(ah);
  1784. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1785. }
  1786. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1787. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1788. const struct ath9k_beacon_state *bs)
  1789. {
  1790. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1791. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1792. struct ath_common *common = ath9k_hw_common(ah);
  1793. ENABLE_REGWRITE_BUFFER(ah);
  1794. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
  1795. REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
  1796. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
  1797. REGWRITE_BUFFER_FLUSH(ah);
  1798. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1799. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1800. beaconintval = bs->bs_intval;
  1801. if (bs->bs_sleepduration > beaconintval)
  1802. beaconintval = bs->bs_sleepduration;
  1803. dtimperiod = bs->bs_dtimperiod;
  1804. if (bs->bs_sleepduration > dtimperiod)
  1805. dtimperiod = bs->bs_sleepduration;
  1806. if (beaconintval == dtimperiod)
  1807. nextTbtt = bs->bs_nextdtim;
  1808. else
  1809. nextTbtt = bs->bs_nexttbtt;
  1810. ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1811. ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
  1812. ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
  1813. ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
  1814. ENABLE_REGWRITE_BUFFER(ah);
  1815. REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
  1816. REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
  1817. REG_WRITE(ah, AR_SLEEP1,
  1818. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1819. | AR_SLEEP1_ASSUME_DTIM);
  1820. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1821. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1822. else
  1823. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1824. REG_WRITE(ah, AR_SLEEP2,
  1825. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1826. REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
  1827. REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
  1828. REGWRITE_BUFFER_FLUSH(ah);
  1829. REG_SET_BIT(ah, AR_TIMER_MODE,
  1830. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1831. AR_DTIM_TIMER_EN);
  1832. /* TSF Out of Range Threshold */
  1833. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1834. }
  1835. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1836. /*******************/
  1837. /* HW Capabilities */
  1838. /*******************/
  1839. static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
  1840. {
  1841. eeprom_chainmask &= chip_chainmask;
  1842. if (eeprom_chainmask)
  1843. return eeprom_chainmask;
  1844. else
  1845. return chip_chainmask;
  1846. }
  1847. /**
  1848. * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
  1849. * @ah: the atheros hardware data structure
  1850. *
  1851. * We enable DFS support upstream on chipsets which have passed a series
  1852. * of tests. The testing requirements are going to be documented. Desired
  1853. * test requirements are documented at:
  1854. *
  1855. * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
  1856. *
  1857. * Once a new chipset gets properly tested an individual commit can be used
  1858. * to document the testing for DFS for that chipset.
  1859. */
  1860. static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
  1861. {
  1862. switch (ah->hw_version.macVersion) {
  1863. /* for temporary testing DFS with 9280 */
  1864. case AR_SREV_VERSION_9280:
  1865. /* AR9580 will likely be our first target to get testing on */
  1866. case AR_SREV_VERSION_9580:
  1867. return true;
  1868. default:
  1869. return false;
  1870. }
  1871. }
  1872. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1873. {
  1874. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1875. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1876. struct ath_common *common = ath9k_hw_common(ah);
  1877. unsigned int chip_chainmask;
  1878. u16 eeval;
  1879. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1880. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1881. regulatory->current_rd = eeval;
  1882. if (ah->opmode != NL80211_IFTYPE_AP &&
  1883. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1884. if (regulatory->current_rd == 0x64 ||
  1885. regulatory->current_rd == 0x65)
  1886. regulatory->current_rd += 5;
  1887. else if (regulatory->current_rd == 0x41)
  1888. regulatory->current_rd = 0x43;
  1889. ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
  1890. regulatory->current_rd);
  1891. }
  1892. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1893. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1894. ath_err(common,
  1895. "no band has been marked as supported in EEPROM\n");
  1896. return -EINVAL;
  1897. }
  1898. if (eeval & AR5416_OPFLAGS_11A)
  1899. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1900. if (eeval & AR5416_OPFLAGS_11G)
  1901. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1902. if (AR_SREV_9485(ah) ||
  1903. AR_SREV_9285(ah) ||
  1904. AR_SREV_9330(ah) ||
  1905. AR_SREV_9565(ah))
  1906. chip_chainmask = 1;
  1907. else if (AR_SREV_9462(ah))
  1908. chip_chainmask = 3;
  1909. else if (!AR_SREV_9280_20_OR_LATER(ah))
  1910. chip_chainmask = 7;
  1911. else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
  1912. chip_chainmask = 3;
  1913. else
  1914. chip_chainmask = 7;
  1915. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1916. /*
  1917. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1918. * the EEPROM.
  1919. */
  1920. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1921. !(eeval & AR5416_OPFLAGS_11A) &&
  1922. !(AR_SREV_9271(ah)))
  1923. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1924. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1925. else if (AR_SREV_9100(ah))
  1926. pCap->rx_chainmask = 0x7;
  1927. else
  1928. /* Use rx_chainmask from EEPROM. */
  1929. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1930. pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
  1931. pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
  1932. ah->txchainmask = pCap->tx_chainmask;
  1933. ah->rxchainmask = pCap->rx_chainmask;
  1934. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1935. /* enable key search for every frame in an aggregate */
  1936. if (AR_SREV_9300_20_OR_LATER(ah))
  1937. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1938. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1939. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1940. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1941. else
  1942. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1943. if (AR_SREV_9271(ah))
  1944. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1945. else if (AR_DEVID_7010(ah))
  1946. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1947. else if (AR_SREV_9300_20_OR_LATER(ah))
  1948. pCap->num_gpio_pins = AR9300_NUM_GPIO;
  1949. else if (AR_SREV_9287_11_OR_LATER(ah))
  1950. pCap->num_gpio_pins = AR9287_NUM_GPIO;
  1951. else if (AR_SREV_9285_12_OR_LATER(ah))
  1952. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1953. else if (AR_SREV_9280_20_OR_LATER(ah))
  1954. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1955. else
  1956. pCap->num_gpio_pins = AR_NUM_GPIO;
  1957. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
  1958. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1959. else
  1960. pCap->rts_aggr_limit = (8 * 1024);
  1961. #ifdef CONFIG_ATH9K_RFKILL
  1962. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1963. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1964. ah->rfkill_gpio =
  1965. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1966. ah->rfkill_polarity =
  1967. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1968. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1969. }
  1970. #endif
  1971. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1972. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1973. else
  1974. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1975. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1976. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1977. else
  1978. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1979. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1980. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1981. if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
  1982. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1983. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1984. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1985. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1986. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1987. pCap->txs_len = sizeof(struct ar9003_txs);
  1988. } else {
  1989. pCap->tx_desc_len = sizeof(struct ath_desc);
  1990. if (AR_SREV_9280_20(ah))
  1991. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1992. }
  1993. if (AR_SREV_9300_20_OR_LATER(ah))
  1994. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1995. if (AR_SREV_9300_20_OR_LATER(ah))
  1996. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1997. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1998. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1999. if (AR_SREV_9285(ah)) {
  2000. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  2001. ant_div_ctl1 =
  2002. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2003. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
  2004. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2005. ath_info(common, "Enable LNA combining\n");
  2006. }
  2007. }
  2008. }
  2009. if (AR_SREV_9300_20_OR_LATER(ah)) {
  2010. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  2011. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  2012. }
  2013. if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
  2014. ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  2015. if ((ant_div_ctl1 >> 0x6) == 0x3) {
  2016. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  2017. ath_info(common, "Enable LNA combining\n");
  2018. }
  2019. }
  2020. if (ath9k_hw_dfs_tested(ah))
  2021. pCap->hw_caps |= ATH9K_HW_CAP_DFS;
  2022. tx_chainmask = pCap->tx_chainmask;
  2023. rx_chainmask = pCap->rx_chainmask;
  2024. while (tx_chainmask || rx_chainmask) {
  2025. if (tx_chainmask & BIT(0))
  2026. pCap->max_txchains++;
  2027. if (rx_chainmask & BIT(0))
  2028. pCap->max_rxchains++;
  2029. tx_chainmask >>= 1;
  2030. rx_chainmask >>= 1;
  2031. }
  2032. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2033. if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
  2034. pCap->hw_caps |= ATH9K_HW_CAP_MCI;
  2035. if (AR_SREV_9462_20_OR_LATER(ah))
  2036. pCap->hw_caps |= ATH9K_HW_CAP_RTT;
  2037. }
  2038. if (AR_SREV_9462(ah))
  2039. pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
  2040. if (AR_SREV_9300_20_OR_LATER(ah) &&
  2041. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  2042. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  2043. return 0;
  2044. }
  2045. /****************************/
  2046. /* GPIO / RFKILL / Antennae */
  2047. /****************************/
  2048. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  2049. u32 gpio, u32 type)
  2050. {
  2051. int addr;
  2052. u32 gpio_shift, tmp;
  2053. if (gpio > 11)
  2054. addr = AR_GPIO_OUTPUT_MUX3;
  2055. else if (gpio > 5)
  2056. addr = AR_GPIO_OUTPUT_MUX2;
  2057. else
  2058. addr = AR_GPIO_OUTPUT_MUX1;
  2059. gpio_shift = (gpio % 6) * 5;
  2060. if (AR_SREV_9280_20_OR_LATER(ah)
  2061. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  2062. REG_RMW(ah, addr, (type << gpio_shift),
  2063. (0x1f << gpio_shift));
  2064. } else {
  2065. tmp = REG_READ(ah, addr);
  2066. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  2067. tmp &= ~(0x1f << gpio_shift);
  2068. tmp |= (type << gpio_shift);
  2069. REG_WRITE(ah, addr, tmp);
  2070. }
  2071. }
  2072. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  2073. {
  2074. u32 gpio_shift;
  2075. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  2076. if (AR_DEVID_7010(ah)) {
  2077. gpio_shift = gpio;
  2078. REG_RMW(ah, AR7010_GPIO_OE,
  2079. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  2080. (AR7010_GPIO_OE_MASK << gpio_shift));
  2081. return;
  2082. }
  2083. gpio_shift = gpio << 1;
  2084. REG_RMW(ah,
  2085. AR_GPIO_OE_OUT,
  2086. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  2087. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2088. }
  2089. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  2090. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  2091. {
  2092. #define MS_REG_READ(x, y) \
  2093. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  2094. if (gpio >= ah->caps.num_gpio_pins)
  2095. return 0xffffffff;
  2096. if (AR_DEVID_7010(ah)) {
  2097. u32 val;
  2098. val = REG_READ(ah, AR7010_GPIO_IN);
  2099. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  2100. } else if (AR_SREV_9300_20_OR_LATER(ah))
  2101. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  2102. AR_GPIO_BIT(gpio)) != 0;
  2103. else if (AR_SREV_9271(ah))
  2104. return MS_REG_READ(AR9271, gpio) != 0;
  2105. else if (AR_SREV_9287_11_OR_LATER(ah))
  2106. return MS_REG_READ(AR9287, gpio) != 0;
  2107. else if (AR_SREV_9285_12_OR_LATER(ah))
  2108. return MS_REG_READ(AR9285, gpio) != 0;
  2109. else if (AR_SREV_9280_20_OR_LATER(ah))
  2110. return MS_REG_READ(AR928X, gpio) != 0;
  2111. else
  2112. return MS_REG_READ(AR, gpio) != 0;
  2113. }
  2114. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  2115. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  2116. u32 ah_signal_type)
  2117. {
  2118. u32 gpio_shift;
  2119. if (AR_DEVID_7010(ah)) {
  2120. gpio_shift = gpio;
  2121. REG_RMW(ah, AR7010_GPIO_OE,
  2122. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  2123. (AR7010_GPIO_OE_MASK << gpio_shift));
  2124. return;
  2125. }
  2126. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  2127. gpio_shift = 2 * gpio;
  2128. REG_RMW(ah,
  2129. AR_GPIO_OE_OUT,
  2130. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  2131. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  2132. }
  2133. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  2134. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  2135. {
  2136. if (AR_DEVID_7010(ah)) {
  2137. val = val ? 0 : 1;
  2138. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  2139. AR_GPIO_BIT(gpio));
  2140. return;
  2141. }
  2142. if (AR_SREV_9271(ah))
  2143. val = ~val;
  2144. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  2145. AR_GPIO_BIT(gpio));
  2146. }
  2147. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  2148. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  2149. {
  2150. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  2151. }
  2152. EXPORT_SYMBOL(ath9k_hw_setantenna);
  2153. /*********************/
  2154. /* General Operation */
  2155. /*********************/
  2156. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  2157. {
  2158. u32 bits = REG_READ(ah, AR_RX_FILTER);
  2159. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  2160. if (phybits & AR_PHY_ERR_RADAR)
  2161. bits |= ATH9K_RX_FILTER_PHYRADAR;
  2162. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  2163. bits |= ATH9K_RX_FILTER_PHYERR;
  2164. return bits;
  2165. }
  2166. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  2167. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  2168. {
  2169. u32 phybits;
  2170. ENABLE_REGWRITE_BUFFER(ah);
  2171. if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
  2172. bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
  2173. REG_WRITE(ah, AR_RX_FILTER, bits);
  2174. phybits = 0;
  2175. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  2176. phybits |= AR_PHY_ERR_RADAR;
  2177. if (bits & ATH9K_RX_FILTER_PHYERR)
  2178. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  2179. REG_WRITE(ah, AR_PHY_ERR, phybits);
  2180. if (phybits)
  2181. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2182. else
  2183. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  2184. REGWRITE_BUFFER_FLUSH(ah);
  2185. }
  2186. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  2187. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  2188. {
  2189. if (ath9k_hw_mci_is_enabled(ah))
  2190. ar9003_mci_bt_gain_ctrl(ah);
  2191. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  2192. return false;
  2193. ath9k_hw_init_pll(ah, NULL);
  2194. ah->htc_reset_init = true;
  2195. return true;
  2196. }
  2197. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  2198. bool ath9k_hw_disable(struct ath_hw *ah)
  2199. {
  2200. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  2201. return false;
  2202. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  2203. return false;
  2204. ath9k_hw_init_pll(ah, NULL);
  2205. return true;
  2206. }
  2207. EXPORT_SYMBOL(ath9k_hw_disable);
  2208. static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
  2209. {
  2210. enum eeprom_param gain_param;
  2211. if (IS_CHAN_2GHZ(chan))
  2212. gain_param = EEP_ANTENNA_GAIN_2G;
  2213. else
  2214. gain_param = EEP_ANTENNA_GAIN_5G;
  2215. return ah->eep_ops->get_eeprom(ah, gain_param);
  2216. }
  2217. void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
  2218. bool test)
  2219. {
  2220. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2221. struct ieee80211_channel *channel;
  2222. int chan_pwr, new_pwr, max_gain;
  2223. int ant_gain, ant_reduction = 0;
  2224. if (!chan)
  2225. return;
  2226. channel = chan->chan;
  2227. chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
  2228. new_pwr = min_t(int, chan_pwr, reg->power_limit);
  2229. max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
  2230. ant_gain = get_antenna_gain(ah, chan);
  2231. if (ant_gain > max_gain)
  2232. ant_reduction = ant_gain - max_gain;
  2233. ah->eep_ops->set_txpower(ah, chan,
  2234. ath9k_regd_get_ctl(reg, chan),
  2235. ant_reduction, new_pwr, test);
  2236. }
  2237. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  2238. {
  2239. struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
  2240. struct ath9k_channel *chan = ah->curchan;
  2241. struct ieee80211_channel *channel = chan->chan;
  2242. reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
  2243. if (test)
  2244. channel->max_power = MAX_RATE_POWER / 2;
  2245. ath9k_hw_apply_txpower(ah, chan, test);
  2246. if (test)
  2247. channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
  2248. }
  2249. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  2250. void ath9k_hw_setopmode(struct ath_hw *ah)
  2251. {
  2252. ath9k_hw_set_operating_mode(ah, ah->opmode);
  2253. }
  2254. EXPORT_SYMBOL(ath9k_hw_setopmode);
  2255. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  2256. {
  2257. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  2258. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  2259. }
  2260. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  2261. void ath9k_hw_write_associd(struct ath_hw *ah)
  2262. {
  2263. struct ath_common *common = ath9k_hw_common(ah);
  2264. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  2265. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  2266. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  2267. }
  2268. EXPORT_SYMBOL(ath9k_hw_write_associd);
  2269. #define ATH9K_MAX_TSF_READ 10
  2270. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  2271. {
  2272. u32 tsf_lower, tsf_upper1, tsf_upper2;
  2273. int i;
  2274. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  2275. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  2276. tsf_lower = REG_READ(ah, AR_TSF_L32);
  2277. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  2278. if (tsf_upper2 == tsf_upper1)
  2279. break;
  2280. tsf_upper1 = tsf_upper2;
  2281. }
  2282. WARN_ON( i == ATH9K_MAX_TSF_READ );
  2283. return (((u64)tsf_upper1 << 32) | tsf_lower);
  2284. }
  2285. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  2286. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  2287. {
  2288. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  2289. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  2290. }
  2291. EXPORT_SYMBOL(ath9k_hw_settsf64);
  2292. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  2293. {
  2294. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  2295. AH_TSF_WRITE_TIMEOUT))
  2296. ath_dbg(ath9k_hw_common(ah), RESET,
  2297. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  2298. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  2299. }
  2300. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  2301. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
  2302. {
  2303. if (set)
  2304. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  2305. else
  2306. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  2307. }
  2308. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  2309. void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
  2310. {
  2311. u32 macmode;
  2312. if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
  2313. macmode = AR_2040_JOINED_RX_CLEAR;
  2314. else
  2315. macmode = 0;
  2316. REG_WRITE(ah, AR_2040_MODE, macmode);
  2317. }
  2318. /* HW Generic timers configuration */
  2319. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  2320. {
  2321. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2322. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2323. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2324. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2325. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2326. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2327. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2328. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  2329. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  2330. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  2331. AR_NDP2_TIMER_MODE, 0x0002},
  2332. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  2333. AR_NDP2_TIMER_MODE, 0x0004},
  2334. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  2335. AR_NDP2_TIMER_MODE, 0x0008},
  2336. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  2337. AR_NDP2_TIMER_MODE, 0x0010},
  2338. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  2339. AR_NDP2_TIMER_MODE, 0x0020},
  2340. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  2341. AR_NDP2_TIMER_MODE, 0x0040},
  2342. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  2343. AR_NDP2_TIMER_MODE, 0x0080}
  2344. };
  2345. /* HW generic timer primitives */
  2346. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  2347. {
  2348. return REG_READ(ah, AR_TSF_L32);
  2349. }
  2350. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  2351. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  2352. void (*trigger)(void *),
  2353. void (*overflow)(void *),
  2354. void *arg,
  2355. u8 timer_index)
  2356. {
  2357. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2358. struct ath_gen_timer *timer;
  2359. if ((timer_index < AR_FIRST_NDP_TIMER) ||
  2360. (timer_index >= ATH_MAX_GEN_TIMER))
  2361. return NULL;
  2362. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  2363. if (timer == NULL)
  2364. return NULL;
  2365. /* allocate a hardware generic timer slot */
  2366. timer_table->timers[timer_index] = timer;
  2367. timer->index = timer_index;
  2368. timer->trigger = trigger;
  2369. timer->overflow = overflow;
  2370. timer->arg = arg;
  2371. return timer;
  2372. }
  2373. EXPORT_SYMBOL(ath_gen_timer_alloc);
  2374. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  2375. struct ath_gen_timer *timer,
  2376. u32 timer_next,
  2377. u32 timer_period)
  2378. {
  2379. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2380. u32 mask = 0;
  2381. timer_table->timer_mask |= BIT(timer->index);
  2382. /*
  2383. * Program generic timer registers
  2384. */
  2385. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2386. timer_next);
  2387. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2388. timer_period);
  2389. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2390. gen_tmr_configuration[timer->index].mode_mask);
  2391. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2392. /*
  2393. * Starting from AR9462, each generic timer can select which tsf
  2394. * to use. But we still follow the old rule, 0 - 7 use tsf and
  2395. * 8 - 15 use tsf2.
  2396. */
  2397. if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
  2398. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2399. (1 << timer->index));
  2400. else
  2401. REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2402. (1 << timer->index));
  2403. }
  2404. if (timer->trigger)
  2405. mask |= SM(AR_GENTMR_BIT(timer->index),
  2406. AR_IMR_S5_GENTIMER_TRIG);
  2407. if (timer->overflow)
  2408. mask |= SM(AR_GENTMR_BIT(timer->index),
  2409. AR_IMR_S5_GENTIMER_THRESH);
  2410. REG_SET_BIT(ah, AR_IMR_S5, mask);
  2411. if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
  2412. ah->imask |= ATH9K_INT_GENTIMER;
  2413. ath9k_hw_set_interrupts(ah);
  2414. }
  2415. }
  2416. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2417. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2418. {
  2419. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2420. /* Clear generic timer enable bits. */
  2421. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2422. gen_tmr_configuration[timer->index].mode_mask);
  2423. if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
  2424. /*
  2425. * Need to switch back to TSF if it was using TSF2.
  2426. */
  2427. if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
  2428. REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
  2429. (1 << timer->index));
  2430. }
  2431. }
  2432. /* Disable both trigger and thresh interrupt masks */
  2433. REG_CLR_BIT(ah, AR_IMR_S5,
  2434. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2435. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2436. timer_table->timer_mask &= ~BIT(timer->index);
  2437. if (timer_table->timer_mask == 0) {
  2438. ah->imask &= ~ATH9K_INT_GENTIMER;
  2439. ath9k_hw_set_interrupts(ah);
  2440. }
  2441. }
  2442. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2443. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2444. {
  2445. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2446. /* free the hardware generic timer slot */
  2447. timer_table->timers[timer->index] = NULL;
  2448. kfree(timer);
  2449. }
  2450. EXPORT_SYMBOL(ath_gen_timer_free);
  2451. /*
  2452. * Generic Timer Interrupts handling
  2453. */
  2454. void ath_gen_timer_isr(struct ath_hw *ah)
  2455. {
  2456. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2457. struct ath_gen_timer *timer;
  2458. unsigned long trigger_mask, thresh_mask;
  2459. unsigned int index;
  2460. /* get hardware generic timer interrupt status */
  2461. trigger_mask = ah->intr_gen_timer_trigger;
  2462. thresh_mask = ah->intr_gen_timer_thresh;
  2463. trigger_mask &= timer_table->timer_mask;
  2464. thresh_mask &= timer_table->timer_mask;
  2465. for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
  2466. timer = timer_table->timers[index];
  2467. if (!timer)
  2468. continue;
  2469. if (!timer->overflow)
  2470. continue;
  2471. trigger_mask &= ~BIT(index);
  2472. timer->overflow(timer->arg);
  2473. }
  2474. for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
  2475. timer = timer_table->timers[index];
  2476. if (!timer)
  2477. continue;
  2478. if (!timer->trigger)
  2479. continue;
  2480. timer->trigger(timer->arg);
  2481. }
  2482. }
  2483. EXPORT_SYMBOL(ath_gen_timer_isr);
  2484. /********/
  2485. /* HTC */
  2486. /********/
  2487. static struct {
  2488. u32 version;
  2489. const char * name;
  2490. } ath_mac_bb_names[] = {
  2491. /* Devices with external radios */
  2492. { AR_SREV_VERSION_5416_PCI, "5416" },
  2493. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2494. { AR_SREV_VERSION_9100, "9100" },
  2495. { AR_SREV_VERSION_9160, "9160" },
  2496. /* Single-chip solutions */
  2497. { AR_SREV_VERSION_9280, "9280" },
  2498. { AR_SREV_VERSION_9285, "9285" },
  2499. { AR_SREV_VERSION_9287, "9287" },
  2500. { AR_SREV_VERSION_9271, "9271" },
  2501. { AR_SREV_VERSION_9300, "9300" },
  2502. { AR_SREV_VERSION_9330, "9330" },
  2503. { AR_SREV_VERSION_9340, "9340" },
  2504. { AR_SREV_VERSION_9485, "9485" },
  2505. { AR_SREV_VERSION_9462, "9462" },
  2506. { AR_SREV_VERSION_9550, "9550" },
  2507. { AR_SREV_VERSION_9565, "9565" },
  2508. { AR_SREV_VERSION_9531, "9531" },
  2509. };
  2510. /* For devices with external radios */
  2511. static struct {
  2512. u16 version;
  2513. const char * name;
  2514. } ath_rf_names[] = {
  2515. { 0, "5133" },
  2516. { AR_RAD5133_SREV_MAJOR, "5133" },
  2517. { AR_RAD5122_SREV_MAJOR, "5122" },
  2518. { AR_RAD2133_SREV_MAJOR, "2133" },
  2519. { AR_RAD2122_SREV_MAJOR, "2122" }
  2520. };
  2521. /*
  2522. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2523. */
  2524. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2525. {
  2526. int i;
  2527. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2528. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2529. return ath_mac_bb_names[i].name;
  2530. }
  2531. }
  2532. return "????";
  2533. }
  2534. /*
  2535. * Return the RF name. "????" is returned if the RF is unknown.
  2536. * Used for devices with external radios.
  2537. */
  2538. static const char *ath9k_hw_rf_name(u16 rf_version)
  2539. {
  2540. int i;
  2541. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2542. if (ath_rf_names[i].version == rf_version) {
  2543. return ath_rf_names[i].name;
  2544. }
  2545. }
  2546. return "????";
  2547. }
  2548. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2549. {
  2550. int used;
  2551. /* chipsets >= AR9280 are single-chip */
  2552. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2553. used = scnprintf(hw_name, len,
  2554. "Atheros AR%s Rev:%x",
  2555. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2556. ah->hw_version.macRev);
  2557. }
  2558. else {
  2559. used = scnprintf(hw_name, len,
  2560. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2561. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2562. ah->hw_version.macRev,
  2563. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
  2564. & AR_RADIO_SREV_MAJOR)),
  2565. ah->hw_version.phyRev);
  2566. }
  2567. hw_name[used] = '\0';
  2568. }
  2569. EXPORT_SYMBOL(ath9k_hw_name);