base.c 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155
  1. /*-
  2. * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
  3. * Copyright (c) 2004-2005 Atheros Communications, Inc.
  4. * Copyright (c) 2006 Devicescape Software, Inc.
  5. * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
  6. * Copyright (c) 2007 Luis R. Rodriguez <mcgrof@winlab.rutgers.edu>
  7. *
  8. * All rights reserved.
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. * 1. Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer,
  15. * without modification.
  16. * 2. Redistributions in binary form must reproduce at minimum a disclaimer
  17. * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
  18. * redistribution must be conditioned upon including a substantially
  19. * similar Disclaimer requirement for further binary redistribution.
  20. * 3. Neither the names of the above-listed copyright holders nor the names
  21. * of any contributors may be used to endorse or promote products derived
  22. * from this software without specific prior written permission.
  23. *
  24. * Alternatively, this software may be distributed under the terms of the
  25. * GNU General Public License ("GPL") version 2 as published by the Free
  26. * Software Foundation.
  27. *
  28. * NO WARRANTY
  29. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30. * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31. * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
  32. * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
  33. * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
  34. * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  35. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
  36. * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
  37. * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  38. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
  39. * THE POSSIBILITY OF SUCH DAMAGES.
  40. *
  41. */
  42. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  43. #include <linux/module.h>
  44. #include <linux/delay.h>
  45. #include <linux/dma-mapping.h>
  46. #include <linux/hardirq.h>
  47. #include <linux/if.h>
  48. #include <linux/io.h>
  49. #include <linux/netdevice.h>
  50. #include <linux/cache.h>
  51. #include <linux/ethtool.h>
  52. #include <linux/uaccess.h>
  53. #include <linux/slab.h>
  54. #include <linux/etherdevice.h>
  55. #include <linux/nl80211.h>
  56. #include <net/cfg80211.h>
  57. #include <net/ieee80211_radiotap.h>
  58. #include <asm/unaligned.h>
  59. #include <net/mac80211.h>
  60. #include "base.h"
  61. #include "reg.h"
  62. #include "debug.h"
  63. #include "ani.h"
  64. #include "ath5k.h"
  65. #include "../regd.h"
  66. #define CREATE_TRACE_POINTS
  67. #include "trace.h"
  68. bool ath5k_modparam_nohwcrypt;
  69. module_param_named(nohwcrypt, ath5k_modparam_nohwcrypt, bool, S_IRUGO);
  70. MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
  71. static bool modparam_fastchanswitch;
  72. module_param_named(fastchanswitch, modparam_fastchanswitch, bool, S_IRUGO);
  73. MODULE_PARM_DESC(fastchanswitch, "Enable fast channel switching for AR2413/AR5413 radios.");
  74. static bool ath5k_modparam_no_hw_rfkill_switch;
  75. module_param_named(no_hw_rfkill_switch, ath5k_modparam_no_hw_rfkill_switch,
  76. bool, S_IRUGO);
  77. MODULE_PARM_DESC(no_hw_rfkill_switch, "Ignore the GPIO RFKill switch state");
  78. /* Module info */
  79. MODULE_AUTHOR("Jiri Slaby");
  80. MODULE_AUTHOR("Nick Kossifidis");
  81. MODULE_DESCRIPTION("Support for 5xxx series of Atheros 802.11 wireless LAN cards.");
  82. MODULE_SUPPORTED_DEVICE("Atheros 5xxx WLAN cards");
  83. MODULE_LICENSE("Dual BSD/GPL");
  84. static int ath5k_init(struct ieee80211_hw *hw);
  85. static int ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  86. bool skip_pcu);
  87. /* Known SREVs */
  88. static const struct ath5k_srev_name srev_names[] = {
  89. #ifdef CONFIG_ATHEROS_AR231X
  90. { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R2 },
  91. { "5312", AR5K_VERSION_MAC, AR5K_SREV_AR5312_R7 },
  92. { "2313", AR5K_VERSION_MAC, AR5K_SREV_AR2313_R8 },
  93. { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R6 },
  94. { "2315", AR5K_VERSION_MAC, AR5K_SREV_AR2315_R7 },
  95. { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R1 },
  96. { "2317", AR5K_VERSION_MAC, AR5K_SREV_AR2317_R2 },
  97. #else
  98. { "5210", AR5K_VERSION_MAC, AR5K_SREV_AR5210 },
  99. { "5311", AR5K_VERSION_MAC, AR5K_SREV_AR5311 },
  100. { "5311A", AR5K_VERSION_MAC, AR5K_SREV_AR5311A },
  101. { "5311B", AR5K_VERSION_MAC, AR5K_SREV_AR5311B },
  102. { "5211", AR5K_VERSION_MAC, AR5K_SREV_AR5211 },
  103. { "5212", AR5K_VERSION_MAC, AR5K_SREV_AR5212 },
  104. { "5213", AR5K_VERSION_MAC, AR5K_SREV_AR5213 },
  105. { "5213A", AR5K_VERSION_MAC, AR5K_SREV_AR5213A },
  106. { "2413", AR5K_VERSION_MAC, AR5K_SREV_AR2413 },
  107. { "2414", AR5K_VERSION_MAC, AR5K_SREV_AR2414 },
  108. { "5424", AR5K_VERSION_MAC, AR5K_SREV_AR5424 },
  109. { "5413", AR5K_VERSION_MAC, AR5K_SREV_AR5413 },
  110. { "5414", AR5K_VERSION_MAC, AR5K_SREV_AR5414 },
  111. { "2415", AR5K_VERSION_MAC, AR5K_SREV_AR2415 },
  112. { "5416", AR5K_VERSION_MAC, AR5K_SREV_AR5416 },
  113. { "5418", AR5K_VERSION_MAC, AR5K_SREV_AR5418 },
  114. { "2425", AR5K_VERSION_MAC, AR5K_SREV_AR2425 },
  115. { "2417", AR5K_VERSION_MAC, AR5K_SREV_AR2417 },
  116. #endif
  117. { "xxxxx", AR5K_VERSION_MAC, AR5K_SREV_UNKNOWN },
  118. { "5110", AR5K_VERSION_RAD, AR5K_SREV_RAD_5110 },
  119. { "5111", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111 },
  120. { "5111A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5111A },
  121. { "2111", AR5K_VERSION_RAD, AR5K_SREV_RAD_2111 },
  122. { "5112", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112 },
  123. { "5112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112A },
  124. { "5112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_5112B },
  125. { "2112", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112 },
  126. { "2112A", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112A },
  127. { "2112B", AR5K_VERSION_RAD, AR5K_SREV_RAD_2112B },
  128. { "2413", AR5K_VERSION_RAD, AR5K_SREV_RAD_2413 },
  129. { "5413", AR5K_VERSION_RAD, AR5K_SREV_RAD_5413 },
  130. { "5424", AR5K_VERSION_RAD, AR5K_SREV_RAD_5424 },
  131. { "5133", AR5K_VERSION_RAD, AR5K_SREV_RAD_5133 },
  132. #ifdef CONFIG_ATHEROS_AR231X
  133. { "2316", AR5K_VERSION_RAD, AR5K_SREV_RAD_2316 },
  134. { "2317", AR5K_VERSION_RAD, AR5K_SREV_RAD_2317 },
  135. #endif
  136. { "xxxxx", AR5K_VERSION_RAD, AR5K_SREV_UNKNOWN },
  137. };
  138. static const struct ieee80211_rate ath5k_rates[] = {
  139. { .bitrate = 10,
  140. .hw_value = ATH5K_RATE_CODE_1M, },
  141. { .bitrate = 20,
  142. .hw_value = ATH5K_RATE_CODE_2M,
  143. .hw_value_short = ATH5K_RATE_CODE_2M | AR5K_SET_SHORT_PREAMBLE,
  144. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  145. { .bitrate = 55,
  146. .hw_value = ATH5K_RATE_CODE_5_5M,
  147. .hw_value_short = ATH5K_RATE_CODE_5_5M | AR5K_SET_SHORT_PREAMBLE,
  148. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  149. { .bitrate = 110,
  150. .hw_value = ATH5K_RATE_CODE_11M,
  151. .hw_value_short = ATH5K_RATE_CODE_11M | AR5K_SET_SHORT_PREAMBLE,
  152. .flags = IEEE80211_RATE_SHORT_PREAMBLE },
  153. { .bitrate = 60,
  154. .hw_value = ATH5K_RATE_CODE_6M,
  155. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  156. IEEE80211_RATE_SUPPORTS_10MHZ },
  157. { .bitrate = 90,
  158. .hw_value = ATH5K_RATE_CODE_9M,
  159. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  160. IEEE80211_RATE_SUPPORTS_10MHZ },
  161. { .bitrate = 120,
  162. .hw_value = ATH5K_RATE_CODE_12M,
  163. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  164. IEEE80211_RATE_SUPPORTS_10MHZ },
  165. { .bitrate = 180,
  166. .hw_value = ATH5K_RATE_CODE_18M,
  167. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  168. IEEE80211_RATE_SUPPORTS_10MHZ },
  169. { .bitrate = 240,
  170. .hw_value = ATH5K_RATE_CODE_24M,
  171. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  172. IEEE80211_RATE_SUPPORTS_10MHZ },
  173. { .bitrate = 360,
  174. .hw_value = ATH5K_RATE_CODE_36M,
  175. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  176. IEEE80211_RATE_SUPPORTS_10MHZ },
  177. { .bitrate = 480,
  178. .hw_value = ATH5K_RATE_CODE_48M,
  179. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  180. IEEE80211_RATE_SUPPORTS_10MHZ },
  181. { .bitrate = 540,
  182. .hw_value = ATH5K_RATE_CODE_54M,
  183. .flags = IEEE80211_RATE_SUPPORTS_5MHZ |
  184. IEEE80211_RATE_SUPPORTS_10MHZ },
  185. };
  186. static inline u64 ath5k_extend_tsf(struct ath5k_hw *ah, u32 rstamp)
  187. {
  188. u64 tsf = ath5k_hw_get_tsf64(ah);
  189. if ((tsf & 0x7fff) < rstamp)
  190. tsf -= 0x8000;
  191. return (tsf & ~0x7fff) | rstamp;
  192. }
  193. const char *
  194. ath5k_chip_name(enum ath5k_srev_type type, u_int16_t val)
  195. {
  196. const char *name = "xxxxx";
  197. unsigned int i;
  198. for (i = 0; i < ARRAY_SIZE(srev_names); i++) {
  199. if (srev_names[i].sr_type != type)
  200. continue;
  201. if ((val & 0xf0) == srev_names[i].sr_val)
  202. name = srev_names[i].sr_name;
  203. if ((val & 0xff) == srev_names[i].sr_val) {
  204. name = srev_names[i].sr_name;
  205. break;
  206. }
  207. }
  208. return name;
  209. }
  210. static unsigned int ath5k_ioread32(void *hw_priv, u32 reg_offset)
  211. {
  212. struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
  213. return ath5k_hw_reg_read(ah, reg_offset);
  214. }
  215. static void ath5k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
  216. {
  217. struct ath5k_hw *ah = (struct ath5k_hw *) hw_priv;
  218. ath5k_hw_reg_write(ah, val, reg_offset);
  219. }
  220. static const struct ath_ops ath5k_common_ops = {
  221. .read = ath5k_ioread32,
  222. .write = ath5k_iowrite32,
  223. };
  224. /***********************\
  225. * Driver Initialization *
  226. \***********************/
  227. static void ath5k_reg_notifier(struct wiphy *wiphy,
  228. struct regulatory_request *request)
  229. {
  230. struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
  231. struct ath5k_hw *ah = hw->priv;
  232. struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
  233. ath_reg_notifier_apply(wiphy, request, regulatory);
  234. }
  235. /********************\
  236. * Channel/mode setup *
  237. \********************/
  238. /*
  239. * Returns true for the channel numbers used.
  240. */
  241. #ifdef CONFIG_ATH5K_TEST_CHANNELS
  242. static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
  243. {
  244. return true;
  245. }
  246. #else
  247. static bool ath5k_is_standard_channel(short chan, enum ieee80211_band band)
  248. {
  249. if (band == IEEE80211_BAND_2GHZ && chan <= 14)
  250. return true;
  251. return /* UNII 1,2 */
  252. (((chan & 3) == 0 && chan >= 36 && chan <= 64) ||
  253. /* midband */
  254. ((chan & 3) == 0 && chan >= 100 && chan <= 140) ||
  255. /* UNII-3 */
  256. ((chan & 3) == 1 && chan >= 149 && chan <= 165) ||
  257. /* 802.11j 5.030-5.080 GHz (20MHz) */
  258. (chan == 8 || chan == 12 || chan == 16) ||
  259. /* 802.11j 4.9GHz (20MHz) */
  260. (chan == 184 || chan == 188 || chan == 192 || chan == 196));
  261. }
  262. #endif
  263. static unsigned int
  264. ath5k_setup_channels(struct ath5k_hw *ah, struct ieee80211_channel *channels,
  265. unsigned int mode, unsigned int max)
  266. {
  267. unsigned int count, size, freq, ch;
  268. enum ieee80211_band band;
  269. switch (mode) {
  270. case AR5K_MODE_11A:
  271. /* 1..220, but 2GHz frequencies are filtered by check_channel */
  272. size = 220;
  273. band = IEEE80211_BAND_5GHZ;
  274. break;
  275. case AR5K_MODE_11B:
  276. case AR5K_MODE_11G:
  277. size = 26;
  278. band = IEEE80211_BAND_2GHZ;
  279. break;
  280. default:
  281. ATH5K_WARN(ah, "bad mode, not copying channels\n");
  282. return 0;
  283. }
  284. count = 0;
  285. for (ch = 1; ch <= size && count < max; ch++) {
  286. freq = ieee80211_channel_to_frequency(ch, band);
  287. if (freq == 0) /* mapping failed - not a standard channel */
  288. continue;
  289. /* Write channel info, needed for ath5k_channel_ok() */
  290. channels[count].center_freq = freq;
  291. channels[count].band = band;
  292. channels[count].hw_value = mode;
  293. /* Check if channel is supported by the chipset */
  294. if (!ath5k_channel_ok(ah, &channels[count]))
  295. continue;
  296. if (!ath5k_is_standard_channel(ch, band))
  297. continue;
  298. count++;
  299. }
  300. return count;
  301. }
  302. static void
  303. ath5k_setup_rate_idx(struct ath5k_hw *ah, struct ieee80211_supported_band *b)
  304. {
  305. u8 i;
  306. for (i = 0; i < AR5K_MAX_RATES; i++)
  307. ah->rate_idx[b->band][i] = -1;
  308. for (i = 0; i < b->n_bitrates; i++) {
  309. ah->rate_idx[b->band][b->bitrates[i].hw_value] = i;
  310. if (b->bitrates[i].hw_value_short)
  311. ah->rate_idx[b->band][b->bitrates[i].hw_value_short] = i;
  312. }
  313. }
  314. static int
  315. ath5k_setup_bands(struct ieee80211_hw *hw)
  316. {
  317. struct ath5k_hw *ah = hw->priv;
  318. struct ieee80211_supported_band *sband;
  319. int max_c, count_c = 0;
  320. int i;
  321. BUILD_BUG_ON(ARRAY_SIZE(ah->sbands) < IEEE80211_NUM_BANDS);
  322. max_c = ARRAY_SIZE(ah->channels);
  323. /* 2GHz band */
  324. sband = &ah->sbands[IEEE80211_BAND_2GHZ];
  325. sband->band = IEEE80211_BAND_2GHZ;
  326. sband->bitrates = &ah->rates[IEEE80211_BAND_2GHZ][0];
  327. if (test_bit(AR5K_MODE_11G, ah->ah_capabilities.cap_mode)) {
  328. /* G mode */
  329. memcpy(sband->bitrates, &ath5k_rates[0],
  330. sizeof(struct ieee80211_rate) * 12);
  331. sband->n_bitrates = 12;
  332. sband->channels = ah->channels;
  333. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  334. AR5K_MODE_11G, max_c);
  335. hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
  336. count_c = sband->n_channels;
  337. max_c -= count_c;
  338. } else if (test_bit(AR5K_MODE_11B, ah->ah_capabilities.cap_mode)) {
  339. /* B mode */
  340. memcpy(sband->bitrates, &ath5k_rates[0],
  341. sizeof(struct ieee80211_rate) * 4);
  342. sband->n_bitrates = 4;
  343. /* 5211 only supports B rates and uses 4bit rate codes
  344. * (e.g normally we have 0x1B for 1M, but on 5211 we have 0x0B)
  345. * fix them up here:
  346. */
  347. if (ah->ah_version == AR5K_AR5211) {
  348. for (i = 0; i < 4; i++) {
  349. sband->bitrates[i].hw_value =
  350. sband->bitrates[i].hw_value & 0xF;
  351. sband->bitrates[i].hw_value_short =
  352. sband->bitrates[i].hw_value_short & 0xF;
  353. }
  354. }
  355. sband->channels = ah->channels;
  356. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  357. AR5K_MODE_11B, max_c);
  358. hw->wiphy->bands[IEEE80211_BAND_2GHZ] = sband;
  359. count_c = sband->n_channels;
  360. max_c -= count_c;
  361. }
  362. ath5k_setup_rate_idx(ah, sband);
  363. /* 5GHz band, A mode */
  364. if (test_bit(AR5K_MODE_11A, ah->ah_capabilities.cap_mode)) {
  365. sband = &ah->sbands[IEEE80211_BAND_5GHZ];
  366. sband->band = IEEE80211_BAND_5GHZ;
  367. sband->bitrates = &ah->rates[IEEE80211_BAND_5GHZ][0];
  368. memcpy(sband->bitrates, &ath5k_rates[4],
  369. sizeof(struct ieee80211_rate) * 8);
  370. sband->n_bitrates = 8;
  371. sband->channels = &ah->channels[count_c];
  372. sband->n_channels = ath5k_setup_channels(ah, sband->channels,
  373. AR5K_MODE_11A, max_c);
  374. hw->wiphy->bands[IEEE80211_BAND_5GHZ] = sband;
  375. }
  376. ath5k_setup_rate_idx(ah, sband);
  377. ath5k_debug_dump_bands(ah);
  378. return 0;
  379. }
  380. /*
  381. * Set/change channels. We always reset the chip.
  382. * To accomplish this we must first cleanup any pending DMA,
  383. * then restart stuff after a la ath5k_init.
  384. *
  385. * Called with ah->lock.
  386. */
  387. int
  388. ath5k_chan_set(struct ath5k_hw *ah, struct cfg80211_chan_def *chandef)
  389. {
  390. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  391. "channel set, resetting (%u -> %u MHz)\n",
  392. ah->curchan->center_freq, chandef->chan->center_freq);
  393. switch (chandef->width) {
  394. case NL80211_CHAN_WIDTH_20:
  395. case NL80211_CHAN_WIDTH_20_NOHT:
  396. ah->ah_bwmode = AR5K_BWMODE_DEFAULT;
  397. break;
  398. case NL80211_CHAN_WIDTH_5:
  399. ah->ah_bwmode = AR5K_BWMODE_5MHZ;
  400. break;
  401. case NL80211_CHAN_WIDTH_10:
  402. ah->ah_bwmode = AR5K_BWMODE_10MHZ;
  403. break;
  404. default:
  405. WARN_ON(1);
  406. return -EINVAL;
  407. }
  408. /*
  409. * To switch channels clear any pending DMA operations;
  410. * wait long enough for the RX fifo to drain, reset the
  411. * hardware at the new frequency, and then re-enable
  412. * the relevant bits of the h/w.
  413. */
  414. return ath5k_reset(ah, chandef->chan, true);
  415. }
  416. void ath5k_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
  417. {
  418. struct ath5k_vif_iter_data *iter_data = data;
  419. int i;
  420. struct ath5k_vif *avf = (void *)vif->drv_priv;
  421. if (iter_data->hw_macaddr)
  422. for (i = 0; i < ETH_ALEN; i++)
  423. iter_data->mask[i] &=
  424. ~(iter_data->hw_macaddr[i] ^ mac[i]);
  425. if (!iter_data->found_active) {
  426. iter_data->found_active = true;
  427. memcpy(iter_data->active_mac, mac, ETH_ALEN);
  428. }
  429. if (iter_data->need_set_hw_addr && iter_data->hw_macaddr)
  430. if (ether_addr_equal(iter_data->hw_macaddr, mac))
  431. iter_data->need_set_hw_addr = false;
  432. if (!iter_data->any_assoc) {
  433. if (avf->assoc)
  434. iter_data->any_assoc = true;
  435. }
  436. /* Calculate combined mode - when APs are active, operate in AP mode.
  437. * Otherwise use the mode of the new interface. This can currently
  438. * only deal with combinations of APs and STAs. Only one ad-hoc
  439. * interfaces is allowed.
  440. */
  441. if (avf->opmode == NL80211_IFTYPE_AP)
  442. iter_data->opmode = NL80211_IFTYPE_AP;
  443. else {
  444. if (avf->opmode == NL80211_IFTYPE_STATION)
  445. iter_data->n_stas++;
  446. if (iter_data->opmode == NL80211_IFTYPE_UNSPECIFIED)
  447. iter_data->opmode = avf->opmode;
  448. }
  449. }
  450. void
  451. ath5k_update_bssid_mask_and_opmode(struct ath5k_hw *ah,
  452. struct ieee80211_vif *vif)
  453. {
  454. struct ath_common *common = ath5k_hw_common(ah);
  455. struct ath5k_vif_iter_data iter_data;
  456. u32 rfilt;
  457. /*
  458. * Use the hardware MAC address as reference, the hardware uses it
  459. * together with the BSSID mask when matching addresses.
  460. */
  461. iter_data.hw_macaddr = common->macaddr;
  462. memset(&iter_data.mask, 0xff, ETH_ALEN);
  463. iter_data.found_active = false;
  464. iter_data.need_set_hw_addr = true;
  465. iter_data.opmode = NL80211_IFTYPE_UNSPECIFIED;
  466. iter_data.n_stas = 0;
  467. if (vif)
  468. ath5k_vif_iter(&iter_data, vif->addr, vif);
  469. /* Get list of all active MAC addresses */
  470. ieee80211_iterate_active_interfaces_atomic(
  471. ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  472. ath5k_vif_iter, &iter_data);
  473. memcpy(ah->bssidmask, iter_data.mask, ETH_ALEN);
  474. ah->opmode = iter_data.opmode;
  475. if (ah->opmode == NL80211_IFTYPE_UNSPECIFIED)
  476. /* Nothing active, default to station mode */
  477. ah->opmode = NL80211_IFTYPE_STATION;
  478. ath5k_hw_set_opmode(ah, ah->opmode);
  479. ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode setup opmode %d (%s)\n",
  480. ah->opmode, ath_opmode_to_string(ah->opmode));
  481. if (iter_data.need_set_hw_addr && iter_data.found_active)
  482. ath5k_hw_set_lladdr(ah, iter_data.active_mac);
  483. if (ath5k_hw_hasbssidmask(ah))
  484. ath5k_hw_set_bssid_mask(ah, ah->bssidmask);
  485. /* Set up RX Filter */
  486. if (iter_data.n_stas > 1) {
  487. /* If you have multiple STA interfaces connected to
  488. * different APs, ARPs are not received (most of the time?)
  489. * Enabling PROMISC appears to fix that problem.
  490. */
  491. ah->filter_flags |= AR5K_RX_FILTER_PROM;
  492. }
  493. rfilt = ah->filter_flags;
  494. ath5k_hw_set_rx_filter(ah, rfilt);
  495. ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "RX filter 0x%x\n", rfilt);
  496. }
  497. static inline int
  498. ath5k_hw_to_driver_rix(struct ath5k_hw *ah, int hw_rix)
  499. {
  500. int rix;
  501. /* return base rate on errors */
  502. if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
  503. "hw_rix out of bounds: %x\n", hw_rix))
  504. return 0;
  505. rix = ah->rate_idx[ah->curchan->band][hw_rix];
  506. if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
  507. rix = 0;
  508. return rix;
  509. }
  510. /***************\
  511. * Buffers setup *
  512. \***************/
  513. static
  514. struct sk_buff *ath5k_rx_skb_alloc(struct ath5k_hw *ah, dma_addr_t *skb_addr)
  515. {
  516. struct ath_common *common = ath5k_hw_common(ah);
  517. struct sk_buff *skb;
  518. /*
  519. * Allocate buffer with headroom_needed space for the
  520. * fake physical layer header at the start.
  521. */
  522. skb = ath_rxbuf_alloc(common,
  523. common->rx_bufsize,
  524. GFP_ATOMIC);
  525. if (!skb) {
  526. ATH5K_ERR(ah, "can't alloc skbuff of size %u\n",
  527. common->rx_bufsize);
  528. return NULL;
  529. }
  530. *skb_addr = dma_map_single(ah->dev,
  531. skb->data, common->rx_bufsize,
  532. DMA_FROM_DEVICE);
  533. if (unlikely(dma_mapping_error(ah->dev, *skb_addr))) {
  534. ATH5K_ERR(ah, "%s: DMA mapping failed\n", __func__);
  535. dev_kfree_skb(skb);
  536. return NULL;
  537. }
  538. return skb;
  539. }
  540. static int
  541. ath5k_rxbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
  542. {
  543. struct sk_buff *skb = bf->skb;
  544. struct ath5k_desc *ds;
  545. int ret;
  546. if (!skb) {
  547. skb = ath5k_rx_skb_alloc(ah, &bf->skbaddr);
  548. if (!skb)
  549. return -ENOMEM;
  550. bf->skb = skb;
  551. }
  552. /*
  553. * Setup descriptors. For receive we always terminate
  554. * the descriptor list with a self-linked entry so we'll
  555. * not get overrun under high load (as can happen with a
  556. * 5212 when ANI processing enables PHY error frames).
  557. *
  558. * To ensure the last descriptor is self-linked we create
  559. * each descriptor as self-linked and add it to the end. As
  560. * each additional descriptor is added the previous self-linked
  561. * entry is "fixed" naturally. This should be safe even
  562. * if DMA is happening. When processing RX interrupts we
  563. * never remove/process the last, self-linked, entry on the
  564. * descriptor list. This ensures the hardware always has
  565. * someplace to write a new frame.
  566. */
  567. ds = bf->desc;
  568. ds->ds_link = bf->daddr; /* link to self */
  569. ds->ds_data = bf->skbaddr;
  570. ret = ath5k_hw_setup_rx_desc(ah, ds, ah->common.rx_bufsize, 0);
  571. if (ret) {
  572. ATH5K_ERR(ah, "%s: could not setup RX desc\n", __func__);
  573. return ret;
  574. }
  575. if (ah->rxlink != NULL)
  576. *ah->rxlink = bf->daddr;
  577. ah->rxlink = &ds->ds_link;
  578. return 0;
  579. }
  580. static enum ath5k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  581. {
  582. struct ieee80211_hdr *hdr;
  583. enum ath5k_pkt_type htype;
  584. __le16 fc;
  585. hdr = (struct ieee80211_hdr *)skb->data;
  586. fc = hdr->frame_control;
  587. if (ieee80211_is_beacon(fc))
  588. htype = AR5K_PKT_TYPE_BEACON;
  589. else if (ieee80211_is_probe_resp(fc))
  590. htype = AR5K_PKT_TYPE_PROBE_RESP;
  591. else if (ieee80211_is_atim(fc))
  592. htype = AR5K_PKT_TYPE_ATIM;
  593. else if (ieee80211_is_pspoll(fc))
  594. htype = AR5K_PKT_TYPE_PSPOLL;
  595. else
  596. htype = AR5K_PKT_TYPE_NORMAL;
  597. return htype;
  598. }
  599. static struct ieee80211_rate *
  600. ath5k_get_rate(const struct ieee80211_hw *hw,
  601. const struct ieee80211_tx_info *info,
  602. struct ath5k_buf *bf, int idx)
  603. {
  604. /*
  605. * convert a ieee80211_tx_rate RC-table entry to
  606. * the respective ieee80211_rate struct
  607. */
  608. if (bf->rates[idx].idx < 0) {
  609. return NULL;
  610. }
  611. return &hw->wiphy->bands[info->band]->bitrates[ bf->rates[idx].idx ];
  612. }
  613. static u16
  614. ath5k_get_rate_hw_value(const struct ieee80211_hw *hw,
  615. const struct ieee80211_tx_info *info,
  616. struct ath5k_buf *bf, int idx)
  617. {
  618. struct ieee80211_rate *rate;
  619. u16 hw_rate;
  620. u8 rc_flags;
  621. rate = ath5k_get_rate(hw, info, bf, idx);
  622. if (!rate)
  623. return 0;
  624. rc_flags = bf->rates[idx].flags;
  625. hw_rate = (rc_flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) ?
  626. rate->hw_value_short : rate->hw_value;
  627. return hw_rate;
  628. }
  629. static int
  630. ath5k_txbuf_setup(struct ath5k_hw *ah, struct ath5k_buf *bf,
  631. struct ath5k_txq *txq, int padsize,
  632. struct ieee80211_tx_control *control)
  633. {
  634. struct ath5k_desc *ds = bf->desc;
  635. struct sk_buff *skb = bf->skb;
  636. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  637. unsigned int pktlen, flags, keyidx = AR5K_TXKEYIX_INVALID;
  638. struct ieee80211_rate *rate;
  639. unsigned int mrr_rate[3], mrr_tries[3];
  640. int i, ret;
  641. u16 hw_rate;
  642. u16 cts_rate = 0;
  643. u16 duration = 0;
  644. u8 rc_flags;
  645. flags = AR5K_TXDESC_INTREQ | AR5K_TXDESC_CLRDMASK;
  646. /* XXX endianness */
  647. bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
  648. DMA_TO_DEVICE);
  649. if (dma_mapping_error(ah->dev, bf->skbaddr))
  650. return -ENOSPC;
  651. ieee80211_get_tx_rates(info->control.vif, (control) ? control->sta : NULL, skb, bf->rates,
  652. ARRAY_SIZE(bf->rates));
  653. rate = ath5k_get_rate(ah->hw, info, bf, 0);
  654. if (!rate) {
  655. ret = -EINVAL;
  656. goto err_unmap;
  657. }
  658. if (info->flags & IEEE80211_TX_CTL_NO_ACK)
  659. flags |= AR5K_TXDESC_NOACK;
  660. rc_flags = info->control.rates[0].flags;
  661. hw_rate = ath5k_get_rate_hw_value(ah->hw, info, bf, 0);
  662. pktlen = skb->len;
  663. /* FIXME: If we are in g mode and rate is a CCK rate
  664. * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
  665. * from tx power (value is in dB units already) */
  666. if (info->control.hw_key) {
  667. keyidx = info->control.hw_key->hw_key_idx;
  668. pktlen += info->control.hw_key->icv_len;
  669. }
  670. if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
  671. flags |= AR5K_TXDESC_RTSENA;
  672. cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
  673. duration = le16_to_cpu(ieee80211_rts_duration(ah->hw,
  674. info->control.vif, pktlen, info));
  675. }
  676. if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  677. flags |= AR5K_TXDESC_CTSENA;
  678. cts_rate = ieee80211_get_rts_cts_rate(ah->hw, info)->hw_value;
  679. duration = le16_to_cpu(ieee80211_ctstoself_duration(ah->hw,
  680. info->control.vif, pktlen, info));
  681. }
  682. ret = ah->ah_setup_tx_desc(ah, ds, pktlen,
  683. ieee80211_get_hdrlen_from_skb(skb), padsize,
  684. get_hw_packet_type(skb),
  685. (ah->ah_txpower.txp_requested * 2),
  686. hw_rate,
  687. bf->rates[0].count, keyidx, ah->ah_tx_ant, flags,
  688. cts_rate, duration);
  689. if (ret)
  690. goto err_unmap;
  691. /* Set up MRR descriptor */
  692. if (ah->ah_capabilities.cap_has_mrr_support) {
  693. memset(mrr_rate, 0, sizeof(mrr_rate));
  694. memset(mrr_tries, 0, sizeof(mrr_tries));
  695. for (i = 0; i < 3; i++) {
  696. rate = ath5k_get_rate(ah->hw, info, bf, i);
  697. if (!rate)
  698. break;
  699. mrr_rate[i] = ath5k_get_rate_hw_value(ah->hw, info, bf, i);
  700. mrr_tries[i] = bf->rates[i].count;
  701. }
  702. ath5k_hw_setup_mrr_tx_desc(ah, ds,
  703. mrr_rate[0], mrr_tries[0],
  704. mrr_rate[1], mrr_tries[1],
  705. mrr_rate[2], mrr_tries[2]);
  706. }
  707. ds->ds_link = 0;
  708. ds->ds_data = bf->skbaddr;
  709. spin_lock_bh(&txq->lock);
  710. list_add_tail(&bf->list, &txq->q);
  711. txq->txq_len++;
  712. if (txq->link == NULL) /* is this first packet? */
  713. ath5k_hw_set_txdp(ah, txq->qnum, bf->daddr);
  714. else /* no, so only link it */
  715. *txq->link = bf->daddr;
  716. txq->link = &ds->ds_link;
  717. ath5k_hw_start_tx_dma(ah, txq->qnum);
  718. mmiowb();
  719. spin_unlock_bh(&txq->lock);
  720. return 0;
  721. err_unmap:
  722. dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
  723. return ret;
  724. }
  725. /*******************\
  726. * Descriptors setup *
  727. \*******************/
  728. static int
  729. ath5k_desc_alloc(struct ath5k_hw *ah)
  730. {
  731. struct ath5k_desc *ds;
  732. struct ath5k_buf *bf;
  733. dma_addr_t da;
  734. unsigned int i;
  735. int ret;
  736. /* allocate descriptors */
  737. ah->desc_len = sizeof(struct ath5k_desc) *
  738. (ATH_TXBUF + ATH_RXBUF + ATH_BCBUF + 1);
  739. ah->desc = dma_alloc_coherent(ah->dev, ah->desc_len,
  740. &ah->desc_daddr, GFP_KERNEL);
  741. if (ah->desc == NULL) {
  742. ATH5K_ERR(ah, "can't allocate descriptors\n");
  743. ret = -ENOMEM;
  744. goto err;
  745. }
  746. ds = ah->desc;
  747. da = ah->desc_daddr;
  748. ATH5K_DBG(ah, ATH5K_DEBUG_ANY, "DMA map: %p (%zu) -> %llx\n",
  749. ds, ah->desc_len, (unsigned long long)ah->desc_daddr);
  750. bf = kcalloc(1 + ATH_TXBUF + ATH_RXBUF + ATH_BCBUF,
  751. sizeof(struct ath5k_buf), GFP_KERNEL);
  752. if (bf == NULL) {
  753. ATH5K_ERR(ah, "can't allocate bufptr\n");
  754. ret = -ENOMEM;
  755. goto err_free;
  756. }
  757. ah->bufptr = bf;
  758. INIT_LIST_HEAD(&ah->rxbuf);
  759. for (i = 0; i < ATH_RXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  760. bf->desc = ds;
  761. bf->daddr = da;
  762. list_add_tail(&bf->list, &ah->rxbuf);
  763. }
  764. INIT_LIST_HEAD(&ah->txbuf);
  765. ah->txbuf_len = ATH_TXBUF;
  766. for (i = 0; i < ATH_TXBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  767. bf->desc = ds;
  768. bf->daddr = da;
  769. list_add_tail(&bf->list, &ah->txbuf);
  770. }
  771. /* beacon buffers */
  772. INIT_LIST_HEAD(&ah->bcbuf);
  773. for (i = 0; i < ATH_BCBUF; i++, bf++, ds++, da += sizeof(*ds)) {
  774. bf->desc = ds;
  775. bf->daddr = da;
  776. list_add_tail(&bf->list, &ah->bcbuf);
  777. }
  778. return 0;
  779. err_free:
  780. dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
  781. err:
  782. ah->desc = NULL;
  783. return ret;
  784. }
  785. void
  786. ath5k_txbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
  787. {
  788. BUG_ON(!bf);
  789. if (!bf->skb)
  790. return;
  791. dma_unmap_single(ah->dev, bf->skbaddr, bf->skb->len,
  792. DMA_TO_DEVICE);
  793. ieee80211_free_txskb(ah->hw, bf->skb);
  794. bf->skb = NULL;
  795. bf->skbaddr = 0;
  796. bf->desc->ds_data = 0;
  797. }
  798. void
  799. ath5k_rxbuf_free_skb(struct ath5k_hw *ah, struct ath5k_buf *bf)
  800. {
  801. struct ath_common *common = ath5k_hw_common(ah);
  802. BUG_ON(!bf);
  803. if (!bf->skb)
  804. return;
  805. dma_unmap_single(ah->dev, bf->skbaddr, common->rx_bufsize,
  806. DMA_FROM_DEVICE);
  807. dev_kfree_skb_any(bf->skb);
  808. bf->skb = NULL;
  809. bf->skbaddr = 0;
  810. bf->desc->ds_data = 0;
  811. }
  812. static void
  813. ath5k_desc_free(struct ath5k_hw *ah)
  814. {
  815. struct ath5k_buf *bf;
  816. list_for_each_entry(bf, &ah->txbuf, list)
  817. ath5k_txbuf_free_skb(ah, bf);
  818. list_for_each_entry(bf, &ah->rxbuf, list)
  819. ath5k_rxbuf_free_skb(ah, bf);
  820. list_for_each_entry(bf, &ah->bcbuf, list)
  821. ath5k_txbuf_free_skb(ah, bf);
  822. /* Free memory associated with all descriptors */
  823. dma_free_coherent(ah->dev, ah->desc_len, ah->desc, ah->desc_daddr);
  824. ah->desc = NULL;
  825. ah->desc_daddr = 0;
  826. kfree(ah->bufptr);
  827. ah->bufptr = NULL;
  828. }
  829. /**************\
  830. * Queues setup *
  831. \**************/
  832. static struct ath5k_txq *
  833. ath5k_txq_setup(struct ath5k_hw *ah,
  834. int qtype, int subtype)
  835. {
  836. struct ath5k_txq *txq;
  837. struct ath5k_txq_info qi = {
  838. .tqi_subtype = subtype,
  839. /* XXX: default values not correct for B and XR channels,
  840. * but who cares? */
  841. .tqi_aifs = AR5K_TUNE_AIFS,
  842. .tqi_cw_min = AR5K_TUNE_CWMIN,
  843. .tqi_cw_max = AR5K_TUNE_CWMAX
  844. };
  845. int qnum;
  846. /*
  847. * Enable interrupts only for EOL and DESC conditions.
  848. * We mark tx descriptors to receive a DESC interrupt
  849. * when a tx queue gets deep; otherwise we wait for the
  850. * EOL to reap descriptors. Note that this is done to
  851. * reduce interrupt load and this only defers reaping
  852. * descriptors, never transmitting frames. Aside from
  853. * reducing interrupts this also permits more concurrency.
  854. * The only potential downside is if the tx queue backs
  855. * up in which case the top half of the kernel may backup
  856. * due to a lack of tx descriptors.
  857. */
  858. qi.tqi_flags = AR5K_TXQ_FLAG_TXEOLINT_ENABLE |
  859. AR5K_TXQ_FLAG_TXDESCINT_ENABLE;
  860. qnum = ath5k_hw_setup_tx_queue(ah, qtype, &qi);
  861. if (qnum < 0) {
  862. /*
  863. * NB: don't print a message, this happens
  864. * normally on parts with too few tx queues
  865. */
  866. return ERR_PTR(qnum);
  867. }
  868. txq = &ah->txqs[qnum];
  869. if (!txq->setup) {
  870. txq->qnum = qnum;
  871. txq->link = NULL;
  872. INIT_LIST_HEAD(&txq->q);
  873. spin_lock_init(&txq->lock);
  874. txq->setup = true;
  875. txq->txq_len = 0;
  876. txq->txq_max = ATH5K_TXQ_LEN_MAX;
  877. txq->txq_poll_mark = false;
  878. txq->txq_stuck = 0;
  879. }
  880. return &ah->txqs[qnum];
  881. }
  882. static int
  883. ath5k_beaconq_setup(struct ath5k_hw *ah)
  884. {
  885. struct ath5k_txq_info qi = {
  886. /* XXX: default values not correct for B and XR channels,
  887. * but who cares? */
  888. .tqi_aifs = AR5K_TUNE_AIFS,
  889. .tqi_cw_min = AR5K_TUNE_CWMIN,
  890. .tqi_cw_max = AR5K_TUNE_CWMAX,
  891. /* NB: for dynamic turbo, don't enable any other interrupts */
  892. .tqi_flags = AR5K_TXQ_FLAG_TXDESCINT_ENABLE
  893. };
  894. return ath5k_hw_setup_tx_queue(ah, AR5K_TX_QUEUE_BEACON, &qi);
  895. }
  896. static int
  897. ath5k_beaconq_config(struct ath5k_hw *ah)
  898. {
  899. struct ath5k_txq_info qi;
  900. int ret;
  901. ret = ath5k_hw_get_tx_queueprops(ah, ah->bhalq, &qi);
  902. if (ret)
  903. goto err;
  904. if (ah->opmode == NL80211_IFTYPE_AP ||
  905. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  906. /*
  907. * Always burst out beacon and CAB traffic
  908. * (aifs = cwmin = cwmax = 0)
  909. */
  910. qi.tqi_aifs = 0;
  911. qi.tqi_cw_min = 0;
  912. qi.tqi_cw_max = 0;
  913. } else if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  914. /*
  915. * Adhoc mode; backoff between 0 and (2 * cw_min).
  916. */
  917. qi.tqi_aifs = 0;
  918. qi.tqi_cw_min = 0;
  919. qi.tqi_cw_max = 2 * AR5K_TUNE_CWMIN;
  920. }
  921. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  922. "beacon queueprops tqi_aifs:%d tqi_cw_min:%d tqi_cw_max:%d\n",
  923. qi.tqi_aifs, qi.tqi_cw_min, qi.tqi_cw_max);
  924. ret = ath5k_hw_set_tx_queueprops(ah, ah->bhalq, &qi);
  925. if (ret) {
  926. ATH5K_ERR(ah, "%s: unable to update parameters for beacon "
  927. "hardware queue!\n", __func__);
  928. goto err;
  929. }
  930. ret = ath5k_hw_reset_tx_queue(ah, ah->bhalq); /* push to h/w */
  931. if (ret)
  932. goto err;
  933. /* reconfigure cabq with ready time to 80% of beacon_interval */
  934. ret = ath5k_hw_get_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
  935. if (ret)
  936. goto err;
  937. qi.tqi_ready_time = (ah->bintval * 80) / 100;
  938. ret = ath5k_hw_set_tx_queueprops(ah, AR5K_TX_QUEUE_ID_CAB, &qi);
  939. if (ret)
  940. goto err;
  941. ret = ath5k_hw_reset_tx_queue(ah, AR5K_TX_QUEUE_ID_CAB);
  942. err:
  943. return ret;
  944. }
  945. /**
  946. * ath5k_drain_tx_buffs - Empty tx buffers
  947. *
  948. * @ah The &struct ath5k_hw
  949. *
  950. * Empty tx buffers from all queues in preparation
  951. * of a reset or during shutdown.
  952. *
  953. * NB: this assumes output has been stopped and
  954. * we do not need to block ath5k_tx_tasklet
  955. */
  956. static void
  957. ath5k_drain_tx_buffs(struct ath5k_hw *ah)
  958. {
  959. struct ath5k_txq *txq;
  960. struct ath5k_buf *bf, *bf0;
  961. int i;
  962. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
  963. if (ah->txqs[i].setup) {
  964. txq = &ah->txqs[i];
  965. spin_lock_bh(&txq->lock);
  966. list_for_each_entry_safe(bf, bf0, &txq->q, list) {
  967. ath5k_debug_printtxbuf(ah, bf);
  968. ath5k_txbuf_free_skb(ah, bf);
  969. spin_lock(&ah->txbuflock);
  970. list_move_tail(&bf->list, &ah->txbuf);
  971. ah->txbuf_len++;
  972. txq->txq_len--;
  973. spin_unlock(&ah->txbuflock);
  974. }
  975. txq->link = NULL;
  976. txq->txq_poll_mark = false;
  977. spin_unlock_bh(&txq->lock);
  978. }
  979. }
  980. }
  981. static void
  982. ath5k_txq_release(struct ath5k_hw *ah)
  983. {
  984. struct ath5k_txq *txq = ah->txqs;
  985. unsigned int i;
  986. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++, txq++)
  987. if (txq->setup) {
  988. ath5k_hw_release_tx_queue(ah, txq->qnum);
  989. txq->setup = false;
  990. }
  991. }
  992. /*************\
  993. * RX Handling *
  994. \*************/
  995. /*
  996. * Enable the receive h/w following a reset.
  997. */
  998. static int
  999. ath5k_rx_start(struct ath5k_hw *ah)
  1000. {
  1001. struct ath_common *common = ath5k_hw_common(ah);
  1002. struct ath5k_buf *bf;
  1003. int ret;
  1004. common->rx_bufsize = roundup(IEEE80211_MAX_FRAME_LEN, common->cachelsz);
  1005. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "cachelsz %u rx_bufsize %u\n",
  1006. common->cachelsz, common->rx_bufsize);
  1007. spin_lock_bh(&ah->rxbuflock);
  1008. ah->rxlink = NULL;
  1009. list_for_each_entry(bf, &ah->rxbuf, list) {
  1010. ret = ath5k_rxbuf_setup(ah, bf);
  1011. if (ret != 0) {
  1012. spin_unlock_bh(&ah->rxbuflock);
  1013. goto err;
  1014. }
  1015. }
  1016. bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
  1017. ath5k_hw_set_rxdp(ah, bf->daddr);
  1018. spin_unlock_bh(&ah->rxbuflock);
  1019. ath5k_hw_start_rx_dma(ah); /* enable recv descriptors */
  1020. ath5k_update_bssid_mask_and_opmode(ah, NULL); /* set filters, etc. */
  1021. ath5k_hw_start_rx_pcu(ah); /* re-enable PCU/DMA engine */
  1022. return 0;
  1023. err:
  1024. return ret;
  1025. }
  1026. /*
  1027. * Disable the receive logic on PCU (DRU)
  1028. * In preparation for a shutdown.
  1029. *
  1030. * Note: Doesn't stop rx DMA, ath5k_hw_dma_stop
  1031. * does.
  1032. */
  1033. static void
  1034. ath5k_rx_stop(struct ath5k_hw *ah)
  1035. {
  1036. ath5k_hw_set_rx_filter(ah, 0); /* clear recv filter */
  1037. ath5k_hw_stop_rx_pcu(ah); /* disable PCU */
  1038. ath5k_debug_printrxbuffs(ah);
  1039. }
  1040. static unsigned int
  1041. ath5k_rx_decrypted(struct ath5k_hw *ah, struct sk_buff *skb,
  1042. struct ath5k_rx_status *rs)
  1043. {
  1044. struct ath_common *common = ath5k_hw_common(ah);
  1045. struct ieee80211_hdr *hdr = (void *)skb->data;
  1046. unsigned int keyix, hlen;
  1047. if (!(rs->rs_status & AR5K_RXERR_DECRYPT) &&
  1048. rs->rs_keyix != AR5K_RXKEYIX_INVALID)
  1049. return RX_FLAG_DECRYPTED;
  1050. /* Apparently when a default key is used to decrypt the packet
  1051. the hw does not set the index used to decrypt. In such cases
  1052. get the index from the packet. */
  1053. hlen = ieee80211_hdrlen(hdr->frame_control);
  1054. if (ieee80211_has_protected(hdr->frame_control) &&
  1055. !(rs->rs_status & AR5K_RXERR_DECRYPT) &&
  1056. skb->len >= hlen + 4) {
  1057. keyix = skb->data[hlen + 3] >> 6;
  1058. if (test_bit(keyix, common->keymap))
  1059. return RX_FLAG_DECRYPTED;
  1060. }
  1061. return 0;
  1062. }
  1063. static void
  1064. ath5k_check_ibss_tsf(struct ath5k_hw *ah, struct sk_buff *skb,
  1065. struct ieee80211_rx_status *rxs)
  1066. {
  1067. u64 tsf, bc_tstamp;
  1068. u32 hw_tu;
  1069. struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)skb->data;
  1070. if (le16_to_cpu(mgmt->u.beacon.capab_info) & WLAN_CAPABILITY_IBSS) {
  1071. /*
  1072. * Received an IBSS beacon with the same BSSID. Hardware *must*
  1073. * have updated the local TSF. We have to work around various
  1074. * hardware bugs, though...
  1075. */
  1076. tsf = ath5k_hw_get_tsf64(ah);
  1077. bc_tstamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  1078. hw_tu = TSF_TO_TU(tsf);
  1079. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1080. "beacon %llx mactime %llx (diff %lld) tsf now %llx\n",
  1081. (unsigned long long)bc_tstamp,
  1082. (unsigned long long)rxs->mactime,
  1083. (unsigned long long)(rxs->mactime - bc_tstamp),
  1084. (unsigned long long)tsf);
  1085. /*
  1086. * Sometimes the HW will give us a wrong tstamp in the rx
  1087. * status, causing the timestamp extension to go wrong.
  1088. * (This seems to happen especially with beacon frames bigger
  1089. * than 78 byte (incl. FCS))
  1090. * But we know that the receive timestamp must be later than the
  1091. * timestamp of the beacon since HW must have synced to that.
  1092. *
  1093. * NOTE: here we assume mactime to be after the frame was
  1094. * received, not like mac80211 which defines it at the start.
  1095. */
  1096. if (bc_tstamp > rxs->mactime) {
  1097. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1098. "fixing mactime from %llx to %llx\n",
  1099. (unsigned long long)rxs->mactime,
  1100. (unsigned long long)tsf);
  1101. rxs->mactime = tsf;
  1102. }
  1103. /*
  1104. * Local TSF might have moved higher than our beacon timers,
  1105. * in that case we have to update them to continue sending
  1106. * beacons. This also takes care of synchronizing beacon sending
  1107. * times with other stations.
  1108. */
  1109. if (hw_tu >= ah->nexttbtt)
  1110. ath5k_beacon_update_timers(ah, bc_tstamp);
  1111. /* Check if the beacon timers are still correct, because a TSF
  1112. * update might have created a window between them - for a
  1113. * longer description see the comment of this function: */
  1114. if (!ath5k_hw_check_beacon_timers(ah, ah->bintval)) {
  1115. ath5k_beacon_update_timers(ah, bc_tstamp);
  1116. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1117. "fixed beacon timers after beacon receive\n");
  1118. }
  1119. }
  1120. }
  1121. /*
  1122. * Compute padding position. skb must contain an IEEE 802.11 frame
  1123. */
  1124. static int ath5k_common_padpos(struct sk_buff *skb)
  1125. {
  1126. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1127. __le16 frame_control = hdr->frame_control;
  1128. int padpos = 24;
  1129. if (ieee80211_has_a4(frame_control))
  1130. padpos += ETH_ALEN;
  1131. if (ieee80211_is_data_qos(frame_control))
  1132. padpos += IEEE80211_QOS_CTL_LEN;
  1133. return padpos;
  1134. }
  1135. /*
  1136. * This function expects an 802.11 frame and returns the number of
  1137. * bytes added, or -1 if we don't have enough header room.
  1138. */
  1139. static int ath5k_add_padding(struct sk_buff *skb)
  1140. {
  1141. int padpos = ath5k_common_padpos(skb);
  1142. int padsize = padpos & 3;
  1143. if (padsize && skb->len > padpos) {
  1144. if (skb_headroom(skb) < padsize)
  1145. return -1;
  1146. skb_push(skb, padsize);
  1147. memmove(skb->data, skb->data + padsize, padpos);
  1148. return padsize;
  1149. }
  1150. return 0;
  1151. }
  1152. /*
  1153. * The MAC header is padded to have 32-bit boundary if the
  1154. * packet payload is non-zero. The general calculation for
  1155. * padsize would take into account odd header lengths:
  1156. * padsize = 4 - (hdrlen & 3); however, since only
  1157. * even-length headers are used, padding can only be 0 or 2
  1158. * bytes and we can optimize this a bit. We must not try to
  1159. * remove padding from short control frames that do not have a
  1160. * payload.
  1161. *
  1162. * This function expects an 802.11 frame and returns the number of
  1163. * bytes removed.
  1164. */
  1165. static int ath5k_remove_padding(struct sk_buff *skb)
  1166. {
  1167. int padpos = ath5k_common_padpos(skb);
  1168. int padsize = padpos & 3;
  1169. if (padsize && skb->len >= padpos + padsize) {
  1170. memmove(skb->data + padsize, skb->data, padpos);
  1171. skb_pull(skb, padsize);
  1172. return padsize;
  1173. }
  1174. return 0;
  1175. }
  1176. static void
  1177. ath5k_receive_frame(struct ath5k_hw *ah, struct sk_buff *skb,
  1178. struct ath5k_rx_status *rs)
  1179. {
  1180. struct ieee80211_rx_status *rxs;
  1181. struct ath_common *common = ath5k_hw_common(ah);
  1182. ath5k_remove_padding(skb);
  1183. rxs = IEEE80211_SKB_RXCB(skb);
  1184. rxs->flag = 0;
  1185. if (unlikely(rs->rs_status & AR5K_RXERR_MIC))
  1186. rxs->flag |= RX_FLAG_MMIC_ERROR;
  1187. /*
  1188. * always extend the mac timestamp, since this information is
  1189. * also needed for proper IBSS merging.
  1190. *
  1191. * XXX: it might be too late to do it here, since rs_tstamp is
  1192. * 15bit only. that means TSF extension has to be done within
  1193. * 32768usec (about 32ms). it might be necessary to move this to
  1194. * the interrupt handler, like it is done in madwifi.
  1195. */
  1196. rxs->mactime = ath5k_extend_tsf(ah, rs->rs_tstamp);
  1197. rxs->flag |= RX_FLAG_MACTIME_END;
  1198. rxs->freq = ah->curchan->center_freq;
  1199. rxs->band = ah->curchan->band;
  1200. rxs->signal = ah->ah_noise_floor + rs->rs_rssi;
  1201. rxs->antenna = rs->rs_antenna;
  1202. if (rs->rs_antenna > 0 && rs->rs_antenna < 5)
  1203. ah->stats.antenna_rx[rs->rs_antenna]++;
  1204. else
  1205. ah->stats.antenna_rx[0]++; /* invalid */
  1206. rxs->rate_idx = ath5k_hw_to_driver_rix(ah, rs->rs_rate);
  1207. rxs->flag |= ath5k_rx_decrypted(ah, skb, rs);
  1208. switch (ah->ah_bwmode) {
  1209. case AR5K_BWMODE_5MHZ:
  1210. rxs->flag |= RX_FLAG_5MHZ;
  1211. break;
  1212. case AR5K_BWMODE_10MHZ:
  1213. rxs->flag |= RX_FLAG_10MHZ;
  1214. break;
  1215. default:
  1216. break;
  1217. }
  1218. if (rxs->rate_idx >= 0 && rs->rs_rate ==
  1219. ah->sbands[ah->curchan->band].bitrates[rxs->rate_idx].hw_value_short)
  1220. rxs->flag |= RX_FLAG_SHORTPRE;
  1221. trace_ath5k_rx(ah, skb);
  1222. if (ath_is_mybeacon(common, (struct ieee80211_hdr *)skb->data)) {
  1223. ewma_add(&ah->ah_beacon_rssi_avg, rs->rs_rssi);
  1224. /* check beacons in IBSS mode */
  1225. if (ah->opmode == NL80211_IFTYPE_ADHOC)
  1226. ath5k_check_ibss_tsf(ah, skb, rxs);
  1227. }
  1228. ieee80211_rx(ah->hw, skb);
  1229. }
  1230. /** ath5k_frame_receive_ok() - Do we want to receive this frame or not?
  1231. *
  1232. * Check if we want to further process this frame or not. Also update
  1233. * statistics. Return true if we want this frame, false if not.
  1234. */
  1235. static bool
  1236. ath5k_receive_frame_ok(struct ath5k_hw *ah, struct ath5k_rx_status *rs)
  1237. {
  1238. ah->stats.rx_all_count++;
  1239. ah->stats.rx_bytes_count += rs->rs_datalen;
  1240. if (unlikely(rs->rs_status)) {
  1241. if (rs->rs_status & AR5K_RXERR_CRC)
  1242. ah->stats.rxerr_crc++;
  1243. if (rs->rs_status & AR5K_RXERR_FIFO)
  1244. ah->stats.rxerr_fifo++;
  1245. if (rs->rs_status & AR5K_RXERR_PHY) {
  1246. ah->stats.rxerr_phy++;
  1247. if (rs->rs_phyerr > 0 && rs->rs_phyerr < 32)
  1248. ah->stats.rxerr_phy_code[rs->rs_phyerr]++;
  1249. return false;
  1250. }
  1251. if (rs->rs_status & AR5K_RXERR_DECRYPT) {
  1252. /*
  1253. * Decrypt error. If the error occurred
  1254. * because there was no hardware key, then
  1255. * let the frame through so the upper layers
  1256. * can process it. This is necessary for 5210
  1257. * parts which have no way to setup a ``clear''
  1258. * key cache entry.
  1259. *
  1260. * XXX do key cache faulting
  1261. */
  1262. ah->stats.rxerr_decrypt++;
  1263. if (rs->rs_keyix == AR5K_RXKEYIX_INVALID &&
  1264. !(rs->rs_status & AR5K_RXERR_CRC))
  1265. return true;
  1266. }
  1267. if (rs->rs_status & AR5K_RXERR_MIC) {
  1268. ah->stats.rxerr_mic++;
  1269. return true;
  1270. }
  1271. /* reject any frames with non-crypto errors */
  1272. if (rs->rs_status & ~(AR5K_RXERR_DECRYPT))
  1273. return false;
  1274. }
  1275. if (unlikely(rs->rs_more)) {
  1276. ah->stats.rxerr_jumbo++;
  1277. return false;
  1278. }
  1279. return true;
  1280. }
  1281. static void
  1282. ath5k_set_current_imask(struct ath5k_hw *ah)
  1283. {
  1284. enum ath5k_int imask;
  1285. unsigned long flags;
  1286. spin_lock_irqsave(&ah->irqlock, flags);
  1287. imask = ah->imask;
  1288. if (ah->rx_pending)
  1289. imask &= ~AR5K_INT_RX_ALL;
  1290. if (ah->tx_pending)
  1291. imask &= ~AR5K_INT_TX_ALL;
  1292. ath5k_hw_set_imr(ah, imask);
  1293. spin_unlock_irqrestore(&ah->irqlock, flags);
  1294. }
  1295. static void
  1296. ath5k_tasklet_rx(unsigned long data)
  1297. {
  1298. struct ath5k_rx_status rs = {};
  1299. struct sk_buff *skb, *next_skb;
  1300. dma_addr_t next_skb_addr;
  1301. struct ath5k_hw *ah = (void *)data;
  1302. struct ath_common *common = ath5k_hw_common(ah);
  1303. struct ath5k_buf *bf;
  1304. struct ath5k_desc *ds;
  1305. int ret;
  1306. spin_lock(&ah->rxbuflock);
  1307. if (list_empty(&ah->rxbuf)) {
  1308. ATH5K_WARN(ah, "empty rx buf pool\n");
  1309. goto unlock;
  1310. }
  1311. do {
  1312. bf = list_first_entry(&ah->rxbuf, struct ath5k_buf, list);
  1313. BUG_ON(bf->skb == NULL);
  1314. skb = bf->skb;
  1315. ds = bf->desc;
  1316. /* bail if HW is still using self-linked descriptor */
  1317. if (ath5k_hw_get_rxdp(ah) == bf->daddr)
  1318. break;
  1319. ret = ah->ah_proc_rx_desc(ah, ds, &rs);
  1320. if (unlikely(ret == -EINPROGRESS))
  1321. break;
  1322. else if (unlikely(ret)) {
  1323. ATH5K_ERR(ah, "error in processing rx descriptor\n");
  1324. ah->stats.rxerr_proc++;
  1325. break;
  1326. }
  1327. if (ath5k_receive_frame_ok(ah, &rs)) {
  1328. next_skb = ath5k_rx_skb_alloc(ah, &next_skb_addr);
  1329. /*
  1330. * If we can't replace bf->skb with a new skb under
  1331. * memory pressure, just skip this packet
  1332. */
  1333. if (!next_skb)
  1334. goto next;
  1335. dma_unmap_single(ah->dev, bf->skbaddr,
  1336. common->rx_bufsize,
  1337. DMA_FROM_DEVICE);
  1338. skb_put(skb, rs.rs_datalen);
  1339. ath5k_receive_frame(ah, skb, &rs);
  1340. bf->skb = next_skb;
  1341. bf->skbaddr = next_skb_addr;
  1342. }
  1343. next:
  1344. list_move_tail(&bf->list, &ah->rxbuf);
  1345. } while (ath5k_rxbuf_setup(ah, bf) == 0);
  1346. unlock:
  1347. spin_unlock(&ah->rxbuflock);
  1348. ah->rx_pending = false;
  1349. ath5k_set_current_imask(ah);
  1350. }
  1351. /*************\
  1352. * TX Handling *
  1353. \*************/
  1354. void
  1355. ath5k_tx_queue(struct ieee80211_hw *hw, struct sk_buff *skb,
  1356. struct ath5k_txq *txq, struct ieee80211_tx_control *control)
  1357. {
  1358. struct ath5k_hw *ah = hw->priv;
  1359. struct ath5k_buf *bf;
  1360. unsigned long flags;
  1361. int padsize;
  1362. trace_ath5k_tx(ah, skb, txq);
  1363. /*
  1364. * The hardware expects the header padded to 4 byte boundaries.
  1365. * If this is not the case, we add the padding after the header.
  1366. */
  1367. padsize = ath5k_add_padding(skb);
  1368. if (padsize < 0) {
  1369. ATH5K_ERR(ah, "tx hdrlen not %%4: not enough"
  1370. " headroom to pad");
  1371. goto drop_packet;
  1372. }
  1373. if (txq->txq_len >= txq->txq_max &&
  1374. txq->qnum <= AR5K_TX_QUEUE_ID_DATA_MAX)
  1375. ieee80211_stop_queue(hw, txq->qnum);
  1376. spin_lock_irqsave(&ah->txbuflock, flags);
  1377. if (list_empty(&ah->txbuf)) {
  1378. ATH5K_ERR(ah, "no further txbuf available, dropping packet\n");
  1379. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1380. ieee80211_stop_queues(hw);
  1381. goto drop_packet;
  1382. }
  1383. bf = list_first_entry(&ah->txbuf, struct ath5k_buf, list);
  1384. list_del(&bf->list);
  1385. ah->txbuf_len--;
  1386. if (list_empty(&ah->txbuf))
  1387. ieee80211_stop_queues(hw);
  1388. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1389. bf->skb = skb;
  1390. if (ath5k_txbuf_setup(ah, bf, txq, padsize, control)) {
  1391. bf->skb = NULL;
  1392. spin_lock_irqsave(&ah->txbuflock, flags);
  1393. list_add_tail(&bf->list, &ah->txbuf);
  1394. ah->txbuf_len++;
  1395. spin_unlock_irqrestore(&ah->txbuflock, flags);
  1396. goto drop_packet;
  1397. }
  1398. return;
  1399. drop_packet:
  1400. ieee80211_free_txskb(hw, skb);
  1401. }
  1402. static void
  1403. ath5k_tx_frame_completed(struct ath5k_hw *ah, struct sk_buff *skb,
  1404. struct ath5k_txq *txq, struct ath5k_tx_status *ts,
  1405. struct ath5k_buf *bf)
  1406. {
  1407. struct ieee80211_tx_info *info;
  1408. u8 tries[3];
  1409. int i;
  1410. int size = 0;
  1411. ah->stats.tx_all_count++;
  1412. ah->stats.tx_bytes_count += skb->len;
  1413. info = IEEE80211_SKB_CB(skb);
  1414. size = min_t(int, sizeof(info->status.rates), sizeof(bf->rates));
  1415. memcpy(info->status.rates, bf->rates, size);
  1416. tries[0] = info->status.rates[0].count;
  1417. tries[1] = info->status.rates[1].count;
  1418. tries[2] = info->status.rates[2].count;
  1419. ieee80211_tx_info_clear_status(info);
  1420. for (i = 0; i < ts->ts_final_idx; i++) {
  1421. struct ieee80211_tx_rate *r =
  1422. &info->status.rates[i];
  1423. r->count = tries[i];
  1424. }
  1425. info->status.rates[ts->ts_final_idx].count = ts->ts_final_retry;
  1426. info->status.rates[ts->ts_final_idx + 1].idx = -1;
  1427. if (unlikely(ts->ts_status)) {
  1428. ah->stats.ack_fail++;
  1429. if (ts->ts_status & AR5K_TXERR_FILT) {
  1430. info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1431. ah->stats.txerr_filt++;
  1432. }
  1433. if (ts->ts_status & AR5K_TXERR_XRETRY)
  1434. ah->stats.txerr_retry++;
  1435. if (ts->ts_status & AR5K_TXERR_FIFO)
  1436. ah->stats.txerr_fifo++;
  1437. } else {
  1438. info->flags |= IEEE80211_TX_STAT_ACK;
  1439. info->status.ack_signal = ts->ts_rssi;
  1440. /* count the successful attempt as well */
  1441. info->status.rates[ts->ts_final_idx].count++;
  1442. }
  1443. /*
  1444. * Remove MAC header padding before giving the frame
  1445. * back to mac80211.
  1446. */
  1447. ath5k_remove_padding(skb);
  1448. if (ts->ts_antenna > 0 && ts->ts_antenna < 5)
  1449. ah->stats.antenna_tx[ts->ts_antenna]++;
  1450. else
  1451. ah->stats.antenna_tx[0]++; /* invalid */
  1452. trace_ath5k_tx_complete(ah, skb, txq, ts);
  1453. ieee80211_tx_status(ah->hw, skb);
  1454. }
  1455. static void
  1456. ath5k_tx_processq(struct ath5k_hw *ah, struct ath5k_txq *txq)
  1457. {
  1458. struct ath5k_tx_status ts = {};
  1459. struct ath5k_buf *bf, *bf0;
  1460. struct ath5k_desc *ds;
  1461. struct sk_buff *skb;
  1462. int ret;
  1463. spin_lock(&txq->lock);
  1464. list_for_each_entry_safe(bf, bf0, &txq->q, list) {
  1465. txq->txq_poll_mark = false;
  1466. /* skb might already have been processed last time. */
  1467. if (bf->skb != NULL) {
  1468. ds = bf->desc;
  1469. ret = ah->ah_proc_tx_desc(ah, ds, &ts);
  1470. if (unlikely(ret == -EINPROGRESS))
  1471. break;
  1472. else if (unlikely(ret)) {
  1473. ATH5K_ERR(ah,
  1474. "error %d while processing "
  1475. "queue %u\n", ret, txq->qnum);
  1476. break;
  1477. }
  1478. skb = bf->skb;
  1479. bf->skb = NULL;
  1480. dma_unmap_single(ah->dev, bf->skbaddr, skb->len,
  1481. DMA_TO_DEVICE);
  1482. ath5k_tx_frame_completed(ah, skb, txq, &ts, bf);
  1483. }
  1484. /*
  1485. * It's possible that the hardware can say the buffer is
  1486. * completed when it hasn't yet loaded the ds_link from
  1487. * host memory and moved on.
  1488. * Always keep the last descriptor to avoid HW races...
  1489. */
  1490. if (ath5k_hw_get_txdp(ah, txq->qnum) != bf->daddr) {
  1491. spin_lock(&ah->txbuflock);
  1492. list_move_tail(&bf->list, &ah->txbuf);
  1493. ah->txbuf_len++;
  1494. txq->txq_len--;
  1495. spin_unlock(&ah->txbuflock);
  1496. }
  1497. }
  1498. spin_unlock(&txq->lock);
  1499. if (txq->txq_len < ATH5K_TXQ_LEN_LOW && txq->qnum < 4)
  1500. ieee80211_wake_queue(ah->hw, txq->qnum);
  1501. }
  1502. static void
  1503. ath5k_tasklet_tx(unsigned long data)
  1504. {
  1505. int i;
  1506. struct ath5k_hw *ah = (void *)data;
  1507. for (i = 0; i < AR5K_NUM_TX_QUEUES; i++)
  1508. if (ah->txqs[i].setup && (ah->ah_txq_isr_txok_all & BIT(i)))
  1509. ath5k_tx_processq(ah, &ah->txqs[i]);
  1510. ah->tx_pending = false;
  1511. ath5k_set_current_imask(ah);
  1512. }
  1513. /*****************\
  1514. * Beacon handling *
  1515. \*****************/
  1516. /*
  1517. * Setup the beacon frame for transmit.
  1518. */
  1519. static int
  1520. ath5k_beacon_setup(struct ath5k_hw *ah, struct ath5k_buf *bf)
  1521. {
  1522. struct sk_buff *skb = bf->skb;
  1523. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1524. struct ath5k_desc *ds;
  1525. int ret = 0;
  1526. u8 antenna;
  1527. u32 flags;
  1528. const int padsize = 0;
  1529. bf->skbaddr = dma_map_single(ah->dev, skb->data, skb->len,
  1530. DMA_TO_DEVICE);
  1531. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "skb %p [data %p len %u] "
  1532. "skbaddr %llx\n", skb, skb->data, skb->len,
  1533. (unsigned long long)bf->skbaddr);
  1534. if (dma_mapping_error(ah->dev, bf->skbaddr)) {
  1535. ATH5K_ERR(ah, "beacon DMA mapping failed\n");
  1536. dev_kfree_skb_any(skb);
  1537. bf->skb = NULL;
  1538. return -EIO;
  1539. }
  1540. ds = bf->desc;
  1541. antenna = ah->ah_tx_ant;
  1542. flags = AR5K_TXDESC_NOACK;
  1543. if (ah->opmode == NL80211_IFTYPE_ADHOC && ath5k_hw_hasveol(ah)) {
  1544. ds->ds_link = bf->daddr; /* self-linked */
  1545. flags |= AR5K_TXDESC_VEOL;
  1546. } else
  1547. ds->ds_link = 0;
  1548. /*
  1549. * If we use multiple antennas on AP and use
  1550. * the Sectored AP scenario, switch antenna every
  1551. * 4 beacons to make sure everybody hears our AP.
  1552. * When a client tries to associate, hw will keep
  1553. * track of the tx antenna to be used for this client
  1554. * automatically, based on ACKed packets.
  1555. *
  1556. * Note: AP still listens and transmits RTS on the
  1557. * default antenna which is supposed to be an omni.
  1558. *
  1559. * Note2: On sectored scenarios it's possible to have
  1560. * multiple antennas (1 omni -- the default -- and 14
  1561. * sectors), so if we choose to actually support this
  1562. * mode, we need to allow the user to set how many antennas
  1563. * we have and tweak the code below to send beacons
  1564. * on all of them.
  1565. */
  1566. if (ah->ah_ant_mode == AR5K_ANTMODE_SECTOR_AP)
  1567. antenna = ah->bsent & 4 ? 2 : 1;
  1568. /* FIXME: If we are in g mode and rate is a CCK rate
  1569. * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
  1570. * from tx power (value is in dB units already) */
  1571. ds->ds_data = bf->skbaddr;
  1572. ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
  1573. ieee80211_get_hdrlen_from_skb(skb), padsize,
  1574. AR5K_PKT_TYPE_BEACON,
  1575. (ah->ah_txpower.txp_requested * 2),
  1576. ieee80211_get_tx_rate(ah->hw, info)->hw_value,
  1577. 1, AR5K_TXKEYIX_INVALID,
  1578. antenna, flags, 0, 0);
  1579. if (ret)
  1580. goto err_unmap;
  1581. return 0;
  1582. err_unmap:
  1583. dma_unmap_single(ah->dev, bf->skbaddr, skb->len, DMA_TO_DEVICE);
  1584. return ret;
  1585. }
  1586. /*
  1587. * Updates the beacon that is sent by ath5k_beacon_send. For adhoc,
  1588. * this is called only once at config_bss time, for AP we do it every
  1589. * SWBA interrupt so that the TIM will reflect buffered frames.
  1590. *
  1591. * Called with the beacon lock.
  1592. */
  1593. int
  1594. ath5k_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
  1595. {
  1596. int ret;
  1597. struct ath5k_hw *ah = hw->priv;
  1598. struct ath5k_vif *avf;
  1599. struct sk_buff *skb;
  1600. if (WARN_ON(!vif)) {
  1601. ret = -EINVAL;
  1602. goto out;
  1603. }
  1604. skb = ieee80211_beacon_get(hw, vif);
  1605. if (!skb) {
  1606. ret = -ENOMEM;
  1607. goto out;
  1608. }
  1609. avf = (void *)vif->drv_priv;
  1610. ath5k_txbuf_free_skb(ah, avf->bbuf);
  1611. avf->bbuf->skb = skb;
  1612. ret = ath5k_beacon_setup(ah, avf->bbuf);
  1613. out:
  1614. return ret;
  1615. }
  1616. /*
  1617. * Transmit a beacon frame at SWBA. Dynamic updates to the
  1618. * frame contents are done as needed and the slot time is
  1619. * also adjusted based on current state.
  1620. *
  1621. * This is called from software irq context (beacontq tasklets)
  1622. * or user context from ath5k_beacon_config.
  1623. */
  1624. static void
  1625. ath5k_beacon_send(struct ath5k_hw *ah)
  1626. {
  1627. struct ieee80211_vif *vif;
  1628. struct ath5k_vif *avf;
  1629. struct ath5k_buf *bf;
  1630. struct sk_buff *skb;
  1631. int err;
  1632. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "in beacon_send\n");
  1633. /*
  1634. * Check if the previous beacon has gone out. If
  1635. * not, don't don't try to post another: skip this
  1636. * period and wait for the next. Missed beacons
  1637. * indicate a problem and should not occur. If we
  1638. * miss too many consecutive beacons reset the device.
  1639. */
  1640. if (unlikely(ath5k_hw_num_tx_pending(ah, ah->bhalq) != 0)) {
  1641. ah->bmisscount++;
  1642. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1643. "missed %u consecutive beacons\n", ah->bmisscount);
  1644. if (ah->bmisscount > 10) { /* NB: 10 is a guess */
  1645. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1646. "stuck beacon time (%u missed)\n",
  1647. ah->bmisscount);
  1648. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1649. "stuck beacon, resetting\n");
  1650. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1651. }
  1652. return;
  1653. }
  1654. if (unlikely(ah->bmisscount != 0)) {
  1655. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1656. "resume beacon xmit after %u misses\n",
  1657. ah->bmisscount);
  1658. ah->bmisscount = 0;
  1659. }
  1660. if ((ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs +
  1661. ah->num_mesh_vifs > 1) ||
  1662. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  1663. u64 tsf = ath5k_hw_get_tsf64(ah);
  1664. u32 tsftu = TSF_TO_TU(tsf);
  1665. int slot = ((tsftu % ah->bintval) * ATH_BCBUF) / ah->bintval;
  1666. vif = ah->bslot[(slot + 1) % ATH_BCBUF];
  1667. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1668. "tsf %llx tsftu %x intval %u slot %u vif %p\n",
  1669. (unsigned long long)tsf, tsftu, ah->bintval, slot, vif);
  1670. } else /* only one interface */
  1671. vif = ah->bslot[0];
  1672. if (!vif)
  1673. return;
  1674. avf = (void *)vif->drv_priv;
  1675. bf = avf->bbuf;
  1676. /*
  1677. * Stop any current dma and put the new frame on the queue.
  1678. * This should never fail since we check above that no frames
  1679. * are still pending on the queue.
  1680. */
  1681. if (unlikely(ath5k_hw_stop_beacon_queue(ah, ah->bhalq))) {
  1682. ATH5K_WARN(ah, "beacon queue %u didn't start/stop ?\n", ah->bhalq);
  1683. /* NB: hw still stops DMA, so proceed */
  1684. }
  1685. /* refresh the beacon for AP or MESH mode */
  1686. if (ah->opmode == NL80211_IFTYPE_AP ||
  1687. ah->opmode == NL80211_IFTYPE_MESH_POINT) {
  1688. err = ath5k_beacon_update(ah->hw, vif);
  1689. if (err)
  1690. return;
  1691. }
  1692. if (unlikely(bf->skb == NULL || ah->opmode == NL80211_IFTYPE_STATION ||
  1693. ah->opmode == NL80211_IFTYPE_MONITOR)) {
  1694. ATH5K_WARN(ah, "bf=%p bf_skb=%p\n", bf, bf->skb);
  1695. return;
  1696. }
  1697. trace_ath5k_tx(ah, bf->skb, &ah->txqs[ah->bhalq]);
  1698. ath5k_hw_set_txdp(ah, ah->bhalq, bf->daddr);
  1699. ath5k_hw_start_tx_dma(ah, ah->bhalq);
  1700. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON, "TXDP[%u] = %llx (%p)\n",
  1701. ah->bhalq, (unsigned long long)bf->daddr, bf->desc);
  1702. skb = ieee80211_get_buffered_bc(ah->hw, vif);
  1703. while (skb) {
  1704. ath5k_tx_queue(ah->hw, skb, ah->cabq, NULL);
  1705. if (ah->cabq->txq_len >= ah->cabq->txq_max)
  1706. break;
  1707. skb = ieee80211_get_buffered_bc(ah->hw, vif);
  1708. }
  1709. ah->bsent++;
  1710. }
  1711. /**
  1712. * ath5k_beacon_update_timers - update beacon timers
  1713. *
  1714. * @ah: struct ath5k_hw pointer we are operating on
  1715. * @bc_tsf: the timestamp of the beacon. 0 to reset the TSF. -1 to perform a
  1716. * beacon timer update based on the current HW TSF.
  1717. *
  1718. * Calculate the next target beacon transmit time (TBTT) based on the timestamp
  1719. * of a received beacon or the current local hardware TSF and write it to the
  1720. * beacon timer registers.
  1721. *
  1722. * This is called in a variety of situations, e.g. when a beacon is received,
  1723. * when a TSF update has been detected, but also when an new IBSS is created or
  1724. * when we otherwise know we have to update the timers, but we keep it in this
  1725. * function to have it all together in one place.
  1726. */
  1727. void
  1728. ath5k_beacon_update_timers(struct ath5k_hw *ah, u64 bc_tsf)
  1729. {
  1730. u32 nexttbtt, intval, hw_tu, bc_tu;
  1731. u64 hw_tsf;
  1732. intval = ah->bintval & AR5K_BEACON_PERIOD;
  1733. if (ah->opmode == NL80211_IFTYPE_AP && ah->num_ap_vifs
  1734. + ah->num_mesh_vifs > 1) {
  1735. intval /= ATH_BCBUF; /* staggered multi-bss beacons */
  1736. if (intval < 15)
  1737. ATH5K_WARN(ah, "intval %u is too low, min 15\n",
  1738. intval);
  1739. }
  1740. if (WARN_ON(!intval))
  1741. return;
  1742. /* beacon TSF converted to TU */
  1743. bc_tu = TSF_TO_TU(bc_tsf);
  1744. /* current TSF converted to TU */
  1745. hw_tsf = ath5k_hw_get_tsf64(ah);
  1746. hw_tu = TSF_TO_TU(hw_tsf);
  1747. #define FUDGE (AR5K_TUNE_SW_BEACON_RESP + 3)
  1748. /* We use FUDGE to make sure the next TBTT is ahead of the current TU.
  1749. * Since we later subtract AR5K_TUNE_SW_BEACON_RESP (10) in the timer
  1750. * configuration we need to make sure it is bigger than that. */
  1751. if (bc_tsf == -1) {
  1752. /*
  1753. * no beacons received, called internally.
  1754. * just need to refresh timers based on HW TSF.
  1755. */
  1756. nexttbtt = roundup(hw_tu + FUDGE, intval);
  1757. } else if (bc_tsf == 0) {
  1758. /*
  1759. * no beacon received, probably called by ath5k_reset_tsf().
  1760. * reset TSF to start with 0.
  1761. */
  1762. nexttbtt = intval;
  1763. intval |= AR5K_BEACON_RESET_TSF;
  1764. } else if (bc_tsf > hw_tsf) {
  1765. /*
  1766. * beacon received, SW merge happened but HW TSF not yet updated.
  1767. * not possible to reconfigure timers yet, but next time we
  1768. * receive a beacon with the same BSSID, the hardware will
  1769. * automatically update the TSF and then we need to reconfigure
  1770. * the timers.
  1771. */
  1772. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1773. "need to wait for HW TSF sync\n");
  1774. return;
  1775. } else {
  1776. /*
  1777. * most important case for beacon synchronization between STA.
  1778. *
  1779. * beacon received and HW TSF has been already updated by HW.
  1780. * update next TBTT based on the TSF of the beacon, but make
  1781. * sure it is ahead of our local TSF timer.
  1782. */
  1783. nexttbtt = bc_tu + roundup(hw_tu + FUDGE - bc_tu, intval);
  1784. }
  1785. #undef FUDGE
  1786. ah->nexttbtt = nexttbtt;
  1787. intval |= AR5K_BEACON_ENA;
  1788. ath5k_hw_init_beacon_timers(ah, nexttbtt, intval);
  1789. /*
  1790. * debugging output last in order to preserve the time critical aspect
  1791. * of this function
  1792. */
  1793. if (bc_tsf == -1)
  1794. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1795. "reconfigured timers based on HW TSF\n");
  1796. else if (bc_tsf == 0)
  1797. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1798. "reset HW TSF and timers\n");
  1799. else
  1800. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1801. "updated timers based on beacon TSF\n");
  1802. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON,
  1803. "bc_tsf %llx hw_tsf %llx bc_tu %u hw_tu %u nexttbtt %u\n",
  1804. (unsigned long long) bc_tsf,
  1805. (unsigned long long) hw_tsf, bc_tu, hw_tu, nexttbtt);
  1806. ATH5K_DBG_UNLIMIT(ah, ATH5K_DEBUG_BEACON, "intval %u %s %s\n",
  1807. intval & AR5K_BEACON_PERIOD,
  1808. intval & AR5K_BEACON_ENA ? "AR5K_BEACON_ENA" : "",
  1809. intval & AR5K_BEACON_RESET_TSF ? "AR5K_BEACON_RESET_TSF" : "");
  1810. }
  1811. /**
  1812. * ath5k_beacon_config - Configure the beacon queues and interrupts
  1813. *
  1814. * @ah: struct ath5k_hw pointer we are operating on
  1815. *
  1816. * In IBSS mode we use a self-linked tx descriptor if possible. We enable SWBA
  1817. * interrupts to detect TSF updates only.
  1818. */
  1819. void
  1820. ath5k_beacon_config(struct ath5k_hw *ah)
  1821. {
  1822. spin_lock_bh(&ah->block);
  1823. ah->bmisscount = 0;
  1824. ah->imask &= ~(AR5K_INT_BMISS | AR5K_INT_SWBA);
  1825. if (ah->enable_beacon) {
  1826. /*
  1827. * In IBSS mode we use a self-linked tx descriptor and let the
  1828. * hardware send the beacons automatically. We have to load it
  1829. * only once here.
  1830. * We use the SWBA interrupt only to keep track of the beacon
  1831. * timers in order to detect automatic TSF updates.
  1832. */
  1833. ath5k_beaconq_config(ah);
  1834. ah->imask |= AR5K_INT_SWBA;
  1835. if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  1836. if (ath5k_hw_hasveol(ah))
  1837. ath5k_beacon_send(ah);
  1838. } else
  1839. ath5k_beacon_update_timers(ah, -1);
  1840. } else {
  1841. ath5k_hw_stop_beacon_queue(ah, ah->bhalq);
  1842. }
  1843. ath5k_hw_set_imr(ah, ah->imask);
  1844. mmiowb();
  1845. spin_unlock_bh(&ah->block);
  1846. }
  1847. static void ath5k_tasklet_beacon(unsigned long data)
  1848. {
  1849. struct ath5k_hw *ah = (struct ath5k_hw *) data;
  1850. /*
  1851. * Software beacon alert--time to send a beacon.
  1852. *
  1853. * In IBSS mode we use this interrupt just to
  1854. * keep track of the next TBTT (target beacon
  1855. * transmission time) in order to detect whether
  1856. * automatic TSF updates happened.
  1857. */
  1858. if (ah->opmode == NL80211_IFTYPE_ADHOC) {
  1859. /* XXX: only if VEOL supported */
  1860. u64 tsf = ath5k_hw_get_tsf64(ah);
  1861. ah->nexttbtt += ah->bintval;
  1862. ATH5K_DBG(ah, ATH5K_DEBUG_BEACON,
  1863. "SWBA nexttbtt: %x hw_tu: %x "
  1864. "TSF: %llx\n",
  1865. ah->nexttbtt,
  1866. TSF_TO_TU(tsf),
  1867. (unsigned long long) tsf);
  1868. } else {
  1869. spin_lock(&ah->block);
  1870. ath5k_beacon_send(ah);
  1871. spin_unlock(&ah->block);
  1872. }
  1873. }
  1874. /********************\
  1875. * Interrupt handling *
  1876. \********************/
  1877. static void
  1878. ath5k_intr_calibration_poll(struct ath5k_hw *ah)
  1879. {
  1880. if (time_is_before_eq_jiffies(ah->ah_cal_next_ani) &&
  1881. !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
  1882. !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
  1883. /* Run ANI only when calibration is not active */
  1884. ah->ah_cal_next_ani = jiffies +
  1885. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
  1886. tasklet_schedule(&ah->ani_tasklet);
  1887. } else if (time_is_before_eq_jiffies(ah->ah_cal_next_short) &&
  1888. !(ah->ah_cal_mask & AR5K_CALIBRATION_FULL) &&
  1889. !(ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)) {
  1890. /* Run calibration only when another calibration
  1891. * is not running.
  1892. *
  1893. * Note: This is for both full/short calibration,
  1894. * if it's time for a full one, ath5k_calibrate_work will deal
  1895. * with it. */
  1896. ah->ah_cal_next_short = jiffies +
  1897. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
  1898. ieee80211_queue_work(ah->hw, &ah->calib_work);
  1899. }
  1900. /* we could use SWI to generate enough interrupts to meet our
  1901. * calibration interval requirements, if necessary:
  1902. * AR5K_REG_ENABLE_BITS(ah, AR5K_CR, AR5K_CR_SWI); */
  1903. }
  1904. static void
  1905. ath5k_schedule_rx(struct ath5k_hw *ah)
  1906. {
  1907. ah->rx_pending = true;
  1908. tasklet_schedule(&ah->rxtq);
  1909. }
  1910. static void
  1911. ath5k_schedule_tx(struct ath5k_hw *ah)
  1912. {
  1913. ah->tx_pending = true;
  1914. tasklet_schedule(&ah->txtq);
  1915. }
  1916. static irqreturn_t
  1917. ath5k_intr(int irq, void *dev_id)
  1918. {
  1919. struct ath5k_hw *ah = dev_id;
  1920. enum ath5k_int status;
  1921. unsigned int counter = 1000;
  1922. /*
  1923. * If hw is not ready (or detached) and we get an
  1924. * interrupt, or if we have no interrupts pending
  1925. * (that means it's not for us) skip it.
  1926. *
  1927. * NOTE: Group 0/1 PCI interface registers are not
  1928. * supported on WiSOCs, so we can't check for pending
  1929. * interrupts (ISR belongs to another register group
  1930. * so we are ok).
  1931. */
  1932. if (unlikely(test_bit(ATH_STAT_INVALID, ah->status) ||
  1933. ((ath5k_get_bus_type(ah) != ATH_AHB) &&
  1934. !ath5k_hw_is_intr_pending(ah))))
  1935. return IRQ_NONE;
  1936. /** Main loop **/
  1937. do {
  1938. ath5k_hw_get_isr(ah, &status); /* NB: clears IRQ too */
  1939. ATH5K_DBG(ah, ATH5K_DEBUG_INTR, "status 0x%x/0x%x\n",
  1940. status, ah->imask);
  1941. /*
  1942. * Fatal hw error -> Log and reset
  1943. *
  1944. * Fatal errors are unrecoverable so we have to
  1945. * reset the card. These errors include bus and
  1946. * dma errors.
  1947. */
  1948. if (unlikely(status & AR5K_INT_FATAL)) {
  1949. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1950. "fatal int, resetting\n");
  1951. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1952. /*
  1953. * RX Overrun -> Count and reset if needed
  1954. *
  1955. * Receive buffers are full. Either the bus is busy or
  1956. * the CPU is not fast enough to process all received
  1957. * frames.
  1958. */
  1959. } else if (unlikely(status & AR5K_INT_RXORN)) {
  1960. /*
  1961. * Older chipsets need a reset to come out of this
  1962. * condition, but we treat it as RX for newer chips.
  1963. * We don't know exactly which versions need a reset
  1964. * this guess is copied from the HAL.
  1965. */
  1966. ah->stats.rxorn_intr++;
  1967. if (ah->ah_mac_srev < AR5K_SREV_AR5212) {
  1968. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  1969. "rx overrun, resetting\n");
  1970. ieee80211_queue_work(ah->hw, &ah->reset_work);
  1971. } else
  1972. ath5k_schedule_rx(ah);
  1973. } else {
  1974. /* Software Beacon Alert -> Schedule beacon tasklet */
  1975. if (status & AR5K_INT_SWBA)
  1976. tasklet_hi_schedule(&ah->beacontq);
  1977. /*
  1978. * No more RX descriptors -> Just count
  1979. *
  1980. * NB: the hardware should re-read the link when
  1981. * RXE bit is written, but it doesn't work at
  1982. * least on older hardware revs.
  1983. */
  1984. if (status & AR5K_INT_RXEOL)
  1985. ah->stats.rxeol_intr++;
  1986. /* TX Underrun -> Bump tx trigger level */
  1987. if (status & AR5K_INT_TXURN)
  1988. ath5k_hw_update_tx_triglevel(ah, true);
  1989. /* RX -> Schedule rx tasklet */
  1990. if (status & (AR5K_INT_RXOK | AR5K_INT_RXERR))
  1991. ath5k_schedule_rx(ah);
  1992. /* TX -> Schedule tx tasklet */
  1993. if (status & (AR5K_INT_TXOK
  1994. | AR5K_INT_TXDESC
  1995. | AR5K_INT_TXERR
  1996. | AR5K_INT_TXEOL))
  1997. ath5k_schedule_tx(ah);
  1998. /* Missed beacon -> TODO
  1999. if (status & AR5K_INT_BMISS)
  2000. */
  2001. /* MIB event -> Update counters and notify ANI */
  2002. if (status & AR5K_INT_MIB) {
  2003. ah->stats.mib_intr++;
  2004. ath5k_hw_update_mib_counters(ah);
  2005. ath5k_ani_mib_intr(ah);
  2006. }
  2007. /* GPIO -> Notify RFKill layer */
  2008. if (status & AR5K_INT_GPIO)
  2009. tasklet_schedule(&ah->rf_kill.toggleq);
  2010. }
  2011. if (ath5k_get_bus_type(ah) == ATH_AHB)
  2012. break;
  2013. } while (ath5k_hw_is_intr_pending(ah) && --counter > 0);
  2014. /*
  2015. * Until we handle rx/tx interrupts mask them on IMR
  2016. *
  2017. * NOTE: ah->(rx/tx)_pending are set when scheduling the tasklets
  2018. * and unset after we 've handled the interrupts.
  2019. */
  2020. if (ah->rx_pending || ah->tx_pending)
  2021. ath5k_set_current_imask(ah);
  2022. if (unlikely(!counter))
  2023. ATH5K_WARN(ah, "too many interrupts, giving up for now\n");
  2024. /* Fire up calibration poll */
  2025. ath5k_intr_calibration_poll(ah);
  2026. return IRQ_HANDLED;
  2027. }
  2028. /*
  2029. * Periodically recalibrate the PHY to account
  2030. * for temperature/environment changes.
  2031. */
  2032. static void
  2033. ath5k_calibrate_work(struct work_struct *work)
  2034. {
  2035. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2036. calib_work);
  2037. /* Should we run a full calibration ? */
  2038. if (time_is_before_eq_jiffies(ah->ah_cal_next_full)) {
  2039. ah->ah_cal_next_full = jiffies +
  2040. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
  2041. ah->ah_cal_mask |= AR5K_CALIBRATION_FULL;
  2042. ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE,
  2043. "running full calibration\n");
  2044. if (ath5k_hw_gainf_calibrate(ah) == AR5K_RFGAIN_NEED_CHANGE) {
  2045. /*
  2046. * Rfgain is out of bounds, reset the chip
  2047. * to load new gain values.
  2048. */
  2049. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2050. "got new rfgain, resetting\n");
  2051. ieee80211_queue_work(ah->hw, &ah->reset_work);
  2052. }
  2053. } else
  2054. ah->ah_cal_mask |= AR5K_CALIBRATION_SHORT;
  2055. ATH5K_DBG(ah, ATH5K_DEBUG_CALIBRATE, "channel %u/%x\n",
  2056. ieee80211_frequency_to_channel(ah->curchan->center_freq),
  2057. ah->curchan->hw_value);
  2058. if (ath5k_hw_phy_calibrate(ah, ah->curchan))
  2059. ATH5K_ERR(ah, "calibration of channel %u failed\n",
  2060. ieee80211_frequency_to_channel(
  2061. ah->curchan->center_freq));
  2062. /* Clear calibration flags */
  2063. if (ah->ah_cal_mask & AR5K_CALIBRATION_FULL)
  2064. ah->ah_cal_mask &= ~AR5K_CALIBRATION_FULL;
  2065. else if (ah->ah_cal_mask & AR5K_CALIBRATION_SHORT)
  2066. ah->ah_cal_mask &= ~AR5K_CALIBRATION_SHORT;
  2067. }
  2068. static void
  2069. ath5k_tasklet_ani(unsigned long data)
  2070. {
  2071. struct ath5k_hw *ah = (void *)data;
  2072. ah->ah_cal_mask |= AR5K_CALIBRATION_ANI;
  2073. ath5k_ani_calibration(ah);
  2074. ah->ah_cal_mask &= ~AR5K_CALIBRATION_ANI;
  2075. }
  2076. static void
  2077. ath5k_tx_complete_poll_work(struct work_struct *work)
  2078. {
  2079. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2080. tx_complete_work.work);
  2081. struct ath5k_txq *txq;
  2082. int i;
  2083. bool needreset = false;
  2084. if (!test_bit(ATH_STAT_STARTED, ah->status))
  2085. return;
  2086. mutex_lock(&ah->lock);
  2087. for (i = 0; i < ARRAY_SIZE(ah->txqs); i++) {
  2088. if (ah->txqs[i].setup) {
  2089. txq = &ah->txqs[i];
  2090. spin_lock_bh(&txq->lock);
  2091. if (txq->txq_len > 1) {
  2092. if (txq->txq_poll_mark) {
  2093. ATH5K_DBG(ah, ATH5K_DEBUG_XMIT,
  2094. "TX queue stuck %d\n",
  2095. txq->qnum);
  2096. needreset = true;
  2097. txq->txq_stuck++;
  2098. spin_unlock_bh(&txq->lock);
  2099. break;
  2100. } else {
  2101. txq->txq_poll_mark = true;
  2102. }
  2103. }
  2104. spin_unlock_bh(&txq->lock);
  2105. }
  2106. }
  2107. if (needreset) {
  2108. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2109. "TX queues stuck, resetting\n");
  2110. ath5k_reset(ah, NULL, true);
  2111. }
  2112. mutex_unlock(&ah->lock);
  2113. ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
  2114. msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
  2115. }
  2116. /*************************\
  2117. * Initialization routines *
  2118. \*************************/
  2119. static const struct ieee80211_iface_limit if_limits[] = {
  2120. { .max = 2048, .types = BIT(NL80211_IFTYPE_STATION) },
  2121. { .max = 4, .types =
  2122. #ifdef CONFIG_MAC80211_MESH
  2123. BIT(NL80211_IFTYPE_MESH_POINT) |
  2124. #endif
  2125. BIT(NL80211_IFTYPE_AP) },
  2126. };
  2127. static const struct ieee80211_iface_combination if_comb = {
  2128. .limits = if_limits,
  2129. .n_limits = ARRAY_SIZE(if_limits),
  2130. .max_interfaces = 2048,
  2131. .num_different_channels = 1,
  2132. };
  2133. int
  2134. ath5k_init_ah(struct ath5k_hw *ah, const struct ath_bus_ops *bus_ops)
  2135. {
  2136. struct ieee80211_hw *hw = ah->hw;
  2137. struct ath_common *common;
  2138. int ret;
  2139. int csz;
  2140. /* Initialize driver private data */
  2141. SET_IEEE80211_DEV(hw, ah->dev);
  2142. hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
  2143. IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
  2144. IEEE80211_HW_SIGNAL_DBM |
  2145. IEEE80211_HW_MFP_CAPABLE |
  2146. IEEE80211_HW_REPORTS_TX_ACK_STATUS |
  2147. IEEE80211_HW_SUPPORTS_RC_TABLE;
  2148. hw->wiphy->interface_modes =
  2149. BIT(NL80211_IFTYPE_AP) |
  2150. BIT(NL80211_IFTYPE_STATION) |
  2151. BIT(NL80211_IFTYPE_ADHOC) |
  2152. BIT(NL80211_IFTYPE_MESH_POINT);
  2153. hw->wiphy->iface_combinations = &if_comb;
  2154. hw->wiphy->n_iface_combinations = 1;
  2155. /* SW support for IBSS_RSN is provided by mac80211 */
  2156. hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
  2157. hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
  2158. /* both antennas can be configured as RX or TX */
  2159. hw->wiphy->available_antennas_tx = 0x3;
  2160. hw->wiphy->available_antennas_rx = 0x3;
  2161. hw->extra_tx_headroom = 2;
  2162. /*
  2163. * Mark the device as detached to avoid processing
  2164. * interrupts until setup is complete.
  2165. */
  2166. __set_bit(ATH_STAT_INVALID, ah->status);
  2167. ah->opmode = NL80211_IFTYPE_STATION;
  2168. ah->bintval = 1000;
  2169. mutex_init(&ah->lock);
  2170. spin_lock_init(&ah->rxbuflock);
  2171. spin_lock_init(&ah->txbuflock);
  2172. spin_lock_init(&ah->block);
  2173. spin_lock_init(&ah->irqlock);
  2174. /* Setup interrupt handler */
  2175. ret = request_irq(ah->irq, ath5k_intr, IRQF_SHARED, "ath", ah);
  2176. if (ret) {
  2177. ATH5K_ERR(ah, "request_irq failed\n");
  2178. goto err;
  2179. }
  2180. common = ath5k_hw_common(ah);
  2181. common->ops = &ath5k_common_ops;
  2182. common->bus_ops = bus_ops;
  2183. common->ah = ah;
  2184. common->hw = hw;
  2185. common->priv = ah;
  2186. common->clockrate = 40;
  2187. /*
  2188. * Cache line size is used to size and align various
  2189. * structures used to communicate with the hardware.
  2190. */
  2191. ath5k_read_cachesize(common, &csz);
  2192. common->cachelsz = csz << 2; /* convert to bytes */
  2193. spin_lock_init(&common->cc_lock);
  2194. /* Initialize device */
  2195. ret = ath5k_hw_init(ah);
  2196. if (ret)
  2197. goto err_irq;
  2198. /* Set up multi-rate retry capabilities */
  2199. if (ah->ah_capabilities.cap_has_mrr_support) {
  2200. hw->max_rates = 4;
  2201. hw->max_rate_tries = max(AR5K_INIT_RETRY_SHORT,
  2202. AR5K_INIT_RETRY_LONG);
  2203. }
  2204. hw->vif_data_size = sizeof(struct ath5k_vif);
  2205. /* Finish private driver data initialization */
  2206. ret = ath5k_init(hw);
  2207. if (ret)
  2208. goto err_ah;
  2209. ATH5K_INFO(ah, "Atheros AR%s chip found (MAC: 0x%x, PHY: 0x%x)\n",
  2210. ath5k_chip_name(AR5K_VERSION_MAC, ah->ah_mac_srev),
  2211. ah->ah_mac_srev,
  2212. ah->ah_phy_revision);
  2213. if (!ah->ah_single_chip) {
  2214. /* Single chip radio (!RF5111) */
  2215. if (ah->ah_radio_5ghz_revision &&
  2216. !ah->ah_radio_2ghz_revision) {
  2217. /* No 5GHz support -> report 2GHz radio */
  2218. if (!test_bit(AR5K_MODE_11A,
  2219. ah->ah_capabilities.cap_mode)) {
  2220. ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
  2221. ath5k_chip_name(AR5K_VERSION_RAD,
  2222. ah->ah_radio_5ghz_revision),
  2223. ah->ah_radio_5ghz_revision);
  2224. /* No 2GHz support (5110 and some
  2225. * 5GHz only cards) -> report 5GHz radio */
  2226. } else if (!test_bit(AR5K_MODE_11B,
  2227. ah->ah_capabilities.cap_mode)) {
  2228. ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
  2229. ath5k_chip_name(AR5K_VERSION_RAD,
  2230. ah->ah_radio_5ghz_revision),
  2231. ah->ah_radio_5ghz_revision);
  2232. /* Multiband radio */
  2233. } else {
  2234. ATH5K_INFO(ah, "RF%s multiband radio found"
  2235. " (0x%x)\n",
  2236. ath5k_chip_name(AR5K_VERSION_RAD,
  2237. ah->ah_radio_5ghz_revision),
  2238. ah->ah_radio_5ghz_revision);
  2239. }
  2240. }
  2241. /* Multi chip radio (RF5111 - RF2111) ->
  2242. * report both 2GHz/5GHz radios */
  2243. else if (ah->ah_radio_5ghz_revision &&
  2244. ah->ah_radio_2ghz_revision) {
  2245. ATH5K_INFO(ah, "RF%s 5GHz radio found (0x%x)\n",
  2246. ath5k_chip_name(AR5K_VERSION_RAD,
  2247. ah->ah_radio_5ghz_revision),
  2248. ah->ah_radio_5ghz_revision);
  2249. ATH5K_INFO(ah, "RF%s 2GHz radio found (0x%x)\n",
  2250. ath5k_chip_name(AR5K_VERSION_RAD,
  2251. ah->ah_radio_2ghz_revision),
  2252. ah->ah_radio_2ghz_revision);
  2253. }
  2254. }
  2255. ath5k_debug_init_device(ah);
  2256. /* ready to process interrupts */
  2257. __clear_bit(ATH_STAT_INVALID, ah->status);
  2258. return 0;
  2259. err_ah:
  2260. ath5k_hw_deinit(ah);
  2261. err_irq:
  2262. free_irq(ah->irq, ah);
  2263. err:
  2264. return ret;
  2265. }
  2266. static int
  2267. ath5k_stop_locked(struct ath5k_hw *ah)
  2268. {
  2269. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "invalid %u\n",
  2270. test_bit(ATH_STAT_INVALID, ah->status));
  2271. /*
  2272. * Shutdown the hardware and driver:
  2273. * stop output from above
  2274. * disable interrupts
  2275. * turn off timers
  2276. * turn off the radio
  2277. * clear transmit machinery
  2278. * clear receive machinery
  2279. * drain and release tx queues
  2280. * reclaim beacon resources
  2281. * power down hardware
  2282. *
  2283. * Note that some of this work is not possible if the
  2284. * hardware is gone (invalid).
  2285. */
  2286. ieee80211_stop_queues(ah->hw);
  2287. if (!test_bit(ATH_STAT_INVALID, ah->status)) {
  2288. ath5k_led_off(ah);
  2289. ath5k_hw_set_imr(ah, 0);
  2290. synchronize_irq(ah->irq);
  2291. ath5k_rx_stop(ah);
  2292. ath5k_hw_dma_stop(ah);
  2293. ath5k_drain_tx_buffs(ah);
  2294. ath5k_hw_phy_disable(ah);
  2295. }
  2296. return 0;
  2297. }
  2298. int ath5k_start(struct ieee80211_hw *hw)
  2299. {
  2300. struct ath5k_hw *ah = hw->priv;
  2301. struct ath_common *common = ath5k_hw_common(ah);
  2302. int ret, i;
  2303. mutex_lock(&ah->lock);
  2304. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "mode %d\n", ah->opmode);
  2305. /*
  2306. * Stop anything previously setup. This is safe
  2307. * no matter this is the first time through or not.
  2308. */
  2309. ath5k_stop_locked(ah);
  2310. /*
  2311. * The basic interface to setting the hardware in a good
  2312. * state is ``reset''. On return the hardware is known to
  2313. * be powered up and with interrupts disabled. This must
  2314. * be followed by initialization of the appropriate bits
  2315. * and then setup of the interrupt mask.
  2316. */
  2317. ah->curchan = ah->hw->conf.chandef.chan;
  2318. ah->imask = AR5K_INT_RXOK
  2319. | AR5K_INT_RXERR
  2320. | AR5K_INT_RXEOL
  2321. | AR5K_INT_RXORN
  2322. | AR5K_INT_TXDESC
  2323. | AR5K_INT_TXEOL
  2324. | AR5K_INT_FATAL
  2325. | AR5K_INT_GLOBAL
  2326. | AR5K_INT_MIB;
  2327. ret = ath5k_reset(ah, NULL, false);
  2328. if (ret)
  2329. goto done;
  2330. if (!ath5k_modparam_no_hw_rfkill_switch)
  2331. ath5k_rfkill_hw_start(ah);
  2332. /*
  2333. * Reset the key cache since some parts do not reset the
  2334. * contents on initial power up or resume from suspend.
  2335. */
  2336. for (i = 0; i < common->keymax; i++)
  2337. ath_hw_keyreset(common, (u16) i);
  2338. /* Use higher rates for acks instead of base
  2339. * rate */
  2340. ah->ah_ack_bitrate_high = true;
  2341. for (i = 0; i < ARRAY_SIZE(ah->bslot); i++)
  2342. ah->bslot[i] = NULL;
  2343. ret = 0;
  2344. done:
  2345. mmiowb();
  2346. mutex_unlock(&ah->lock);
  2347. set_bit(ATH_STAT_STARTED, ah->status);
  2348. ieee80211_queue_delayed_work(ah->hw, &ah->tx_complete_work,
  2349. msecs_to_jiffies(ATH5K_TX_COMPLETE_POLL_INT));
  2350. return ret;
  2351. }
  2352. static void ath5k_stop_tasklets(struct ath5k_hw *ah)
  2353. {
  2354. ah->rx_pending = false;
  2355. ah->tx_pending = false;
  2356. tasklet_kill(&ah->rxtq);
  2357. tasklet_kill(&ah->txtq);
  2358. tasklet_kill(&ah->beacontq);
  2359. tasklet_kill(&ah->ani_tasklet);
  2360. }
  2361. /*
  2362. * Stop the device, grabbing the top-level lock to protect
  2363. * against concurrent entry through ath5k_init (which can happen
  2364. * if another thread does a system call and the thread doing the
  2365. * stop is preempted).
  2366. */
  2367. void ath5k_stop(struct ieee80211_hw *hw)
  2368. {
  2369. struct ath5k_hw *ah = hw->priv;
  2370. int ret;
  2371. mutex_lock(&ah->lock);
  2372. ret = ath5k_stop_locked(ah);
  2373. if (ret == 0 && !test_bit(ATH_STAT_INVALID, ah->status)) {
  2374. /*
  2375. * Don't set the card in full sleep mode!
  2376. *
  2377. * a) When the device is in this state it must be carefully
  2378. * woken up or references to registers in the PCI clock
  2379. * domain may freeze the bus (and system). This varies
  2380. * by chip and is mostly an issue with newer parts
  2381. * (madwifi sources mentioned srev >= 0x78) that go to
  2382. * sleep more quickly.
  2383. *
  2384. * b) On older chips full sleep results a weird behaviour
  2385. * during wakeup. I tested various cards with srev < 0x78
  2386. * and they don't wake up after module reload, a second
  2387. * module reload is needed to bring the card up again.
  2388. *
  2389. * Until we figure out what's going on don't enable
  2390. * full chip reset on any chip (this is what Legacy HAL
  2391. * and Sam's HAL do anyway). Instead Perform a full reset
  2392. * on the device (same as initial state after attach) and
  2393. * leave it idle (keep MAC/BB on warm reset) */
  2394. ret = ath5k_hw_on_hold(ah);
  2395. ATH5K_DBG(ah, ATH5K_DEBUG_RESET,
  2396. "putting device to sleep\n");
  2397. }
  2398. mmiowb();
  2399. mutex_unlock(&ah->lock);
  2400. ath5k_stop_tasklets(ah);
  2401. clear_bit(ATH_STAT_STARTED, ah->status);
  2402. cancel_delayed_work_sync(&ah->tx_complete_work);
  2403. if (!ath5k_modparam_no_hw_rfkill_switch)
  2404. ath5k_rfkill_hw_stop(ah);
  2405. }
  2406. /*
  2407. * Reset the hardware. If chan is not NULL, then also pause rx/tx
  2408. * and change to the given channel.
  2409. *
  2410. * This should be called with ah->lock.
  2411. */
  2412. static int
  2413. ath5k_reset(struct ath5k_hw *ah, struct ieee80211_channel *chan,
  2414. bool skip_pcu)
  2415. {
  2416. struct ath_common *common = ath5k_hw_common(ah);
  2417. int ret, ani_mode;
  2418. bool fast;
  2419. ATH5K_DBG(ah, ATH5K_DEBUG_RESET, "resetting\n");
  2420. ath5k_hw_set_imr(ah, 0);
  2421. synchronize_irq(ah->irq);
  2422. ath5k_stop_tasklets(ah);
  2423. /* Save ani mode and disable ANI during
  2424. * reset. If we don't we might get false
  2425. * PHY error interrupts. */
  2426. ani_mode = ah->ani_state.ani_mode;
  2427. ath5k_ani_init(ah, ATH5K_ANI_MODE_OFF);
  2428. /* We are going to empty hw queues
  2429. * so we should also free any remaining
  2430. * tx buffers */
  2431. ath5k_drain_tx_buffs(ah);
  2432. if (chan)
  2433. ah->curchan = chan;
  2434. fast = ((chan != NULL) && modparam_fastchanswitch) ? 1 : 0;
  2435. ret = ath5k_hw_reset(ah, ah->opmode, ah->curchan, fast, skip_pcu);
  2436. if (ret) {
  2437. ATH5K_ERR(ah, "can't reset hardware (%d)\n", ret);
  2438. goto err;
  2439. }
  2440. ret = ath5k_rx_start(ah);
  2441. if (ret) {
  2442. ATH5K_ERR(ah, "can't start recv logic\n");
  2443. goto err;
  2444. }
  2445. ath5k_ani_init(ah, ani_mode);
  2446. /*
  2447. * Set calibration intervals
  2448. *
  2449. * Note: We don't need to run calibration imediately
  2450. * since some initial calibration is done on reset
  2451. * even for fast channel switching. Also on scanning
  2452. * this will get set again and again and it won't get
  2453. * executed unless we connect somewhere and spend some
  2454. * time on the channel (that's what calibration needs
  2455. * anyway to be accurate).
  2456. */
  2457. ah->ah_cal_next_full = jiffies +
  2458. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_FULL);
  2459. ah->ah_cal_next_ani = jiffies +
  2460. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_ANI);
  2461. ah->ah_cal_next_short = jiffies +
  2462. msecs_to_jiffies(ATH5K_TUNE_CALIBRATION_INTERVAL_SHORT);
  2463. ewma_init(&ah->ah_beacon_rssi_avg, 1024, 8);
  2464. /* clear survey data and cycle counters */
  2465. memset(&ah->survey, 0, sizeof(ah->survey));
  2466. spin_lock_bh(&common->cc_lock);
  2467. ath_hw_cycle_counters_update(common);
  2468. memset(&common->cc_survey, 0, sizeof(common->cc_survey));
  2469. memset(&common->cc_ani, 0, sizeof(common->cc_ani));
  2470. spin_unlock_bh(&common->cc_lock);
  2471. /*
  2472. * Change channels and update the h/w rate map if we're switching;
  2473. * e.g. 11a to 11b/g.
  2474. *
  2475. * We may be doing a reset in response to an ioctl that changes the
  2476. * channel so update any state that might change as a result.
  2477. *
  2478. * XXX needed?
  2479. */
  2480. /* ath5k_chan_change(ah, c); */
  2481. ath5k_beacon_config(ah);
  2482. /* intrs are enabled by ath5k_beacon_config */
  2483. ieee80211_wake_queues(ah->hw);
  2484. return 0;
  2485. err:
  2486. return ret;
  2487. }
  2488. static void ath5k_reset_work(struct work_struct *work)
  2489. {
  2490. struct ath5k_hw *ah = container_of(work, struct ath5k_hw,
  2491. reset_work);
  2492. mutex_lock(&ah->lock);
  2493. ath5k_reset(ah, NULL, true);
  2494. mutex_unlock(&ah->lock);
  2495. }
  2496. static int
  2497. ath5k_init(struct ieee80211_hw *hw)
  2498. {
  2499. struct ath5k_hw *ah = hw->priv;
  2500. struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
  2501. struct ath5k_txq *txq;
  2502. u8 mac[ETH_ALEN] = {};
  2503. int ret;
  2504. /*
  2505. * Collect the channel list. The 802.11 layer
  2506. * is responsible for filtering this list based
  2507. * on settings like the phy mode and regulatory
  2508. * domain restrictions.
  2509. */
  2510. ret = ath5k_setup_bands(hw);
  2511. if (ret) {
  2512. ATH5K_ERR(ah, "can't get channels\n");
  2513. goto err;
  2514. }
  2515. /*
  2516. * Allocate tx+rx descriptors and populate the lists.
  2517. */
  2518. ret = ath5k_desc_alloc(ah);
  2519. if (ret) {
  2520. ATH5K_ERR(ah, "can't allocate descriptors\n");
  2521. goto err;
  2522. }
  2523. /*
  2524. * Allocate hardware transmit queues: one queue for
  2525. * beacon frames and one data queue for each QoS
  2526. * priority. Note that hw functions handle resetting
  2527. * these queues at the needed time.
  2528. */
  2529. ret = ath5k_beaconq_setup(ah);
  2530. if (ret < 0) {
  2531. ATH5K_ERR(ah, "can't setup a beacon xmit queue\n");
  2532. goto err_desc;
  2533. }
  2534. ah->bhalq = ret;
  2535. ah->cabq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_CAB, 0);
  2536. if (IS_ERR(ah->cabq)) {
  2537. ATH5K_ERR(ah, "can't setup cab queue\n");
  2538. ret = PTR_ERR(ah->cabq);
  2539. goto err_bhal;
  2540. }
  2541. /* 5211 and 5212 usually support 10 queues but we better rely on the
  2542. * capability information */
  2543. if (ah->ah_capabilities.cap_queues.q_tx_num >= 6) {
  2544. /* This order matches mac80211's queue priority, so we can
  2545. * directly use the mac80211 queue number without any mapping */
  2546. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VO);
  2547. if (IS_ERR(txq)) {
  2548. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2549. ret = PTR_ERR(txq);
  2550. goto err_queues;
  2551. }
  2552. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_VI);
  2553. if (IS_ERR(txq)) {
  2554. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2555. ret = PTR_ERR(txq);
  2556. goto err_queues;
  2557. }
  2558. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
  2559. if (IS_ERR(txq)) {
  2560. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2561. ret = PTR_ERR(txq);
  2562. goto err_queues;
  2563. }
  2564. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BK);
  2565. if (IS_ERR(txq)) {
  2566. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2567. ret = PTR_ERR(txq);
  2568. goto err_queues;
  2569. }
  2570. hw->queues = 4;
  2571. } else {
  2572. /* older hardware (5210) can only support one data queue */
  2573. txq = ath5k_txq_setup(ah, AR5K_TX_QUEUE_DATA, AR5K_WME_AC_BE);
  2574. if (IS_ERR(txq)) {
  2575. ATH5K_ERR(ah, "can't setup xmit queue\n");
  2576. ret = PTR_ERR(txq);
  2577. goto err_queues;
  2578. }
  2579. hw->queues = 1;
  2580. }
  2581. tasklet_init(&ah->rxtq, ath5k_tasklet_rx, (unsigned long)ah);
  2582. tasklet_init(&ah->txtq, ath5k_tasklet_tx, (unsigned long)ah);
  2583. tasklet_init(&ah->beacontq, ath5k_tasklet_beacon, (unsigned long)ah);
  2584. tasklet_init(&ah->ani_tasklet, ath5k_tasklet_ani, (unsigned long)ah);
  2585. INIT_WORK(&ah->reset_work, ath5k_reset_work);
  2586. INIT_WORK(&ah->calib_work, ath5k_calibrate_work);
  2587. INIT_DELAYED_WORK(&ah->tx_complete_work, ath5k_tx_complete_poll_work);
  2588. ret = ath5k_hw_common(ah)->bus_ops->eeprom_read_mac(ah, mac);
  2589. if (ret) {
  2590. ATH5K_ERR(ah, "unable to read address from EEPROM\n");
  2591. goto err_queues;
  2592. }
  2593. SET_IEEE80211_PERM_ADDR(hw, mac);
  2594. /* All MAC address bits matter for ACKs */
  2595. ath5k_update_bssid_mask_and_opmode(ah, NULL);
  2596. regulatory->current_rd = ah->ah_capabilities.cap_eeprom.ee_regdomain;
  2597. ret = ath_regd_init(regulatory, hw->wiphy, ath5k_reg_notifier);
  2598. if (ret) {
  2599. ATH5K_ERR(ah, "can't initialize regulatory system\n");
  2600. goto err_queues;
  2601. }
  2602. ret = ieee80211_register_hw(hw);
  2603. if (ret) {
  2604. ATH5K_ERR(ah, "can't register ieee80211 hw\n");
  2605. goto err_queues;
  2606. }
  2607. if (!ath_is_world_regd(regulatory))
  2608. regulatory_hint(hw->wiphy, regulatory->alpha2);
  2609. ath5k_init_leds(ah);
  2610. ath5k_sysfs_register(ah);
  2611. return 0;
  2612. err_queues:
  2613. ath5k_txq_release(ah);
  2614. err_bhal:
  2615. ath5k_hw_release_tx_queue(ah, ah->bhalq);
  2616. err_desc:
  2617. ath5k_desc_free(ah);
  2618. err:
  2619. return ret;
  2620. }
  2621. void
  2622. ath5k_deinit_ah(struct ath5k_hw *ah)
  2623. {
  2624. struct ieee80211_hw *hw = ah->hw;
  2625. /*
  2626. * NB: the order of these is important:
  2627. * o call the 802.11 layer before detaching ath5k_hw to
  2628. * ensure callbacks into the driver to delete global
  2629. * key cache entries can be handled
  2630. * o reclaim the tx queue data structures after calling
  2631. * the 802.11 layer as we'll get called back to reclaim
  2632. * node state and potentially want to use them
  2633. * o to cleanup the tx queues the hal is called, so detach
  2634. * it last
  2635. * XXX: ??? detach ath5k_hw ???
  2636. * Other than that, it's straightforward...
  2637. */
  2638. ieee80211_unregister_hw(hw);
  2639. ath5k_desc_free(ah);
  2640. ath5k_txq_release(ah);
  2641. ath5k_hw_release_tx_queue(ah, ah->bhalq);
  2642. ath5k_unregister_leds(ah);
  2643. ath5k_sysfs_unregister(ah);
  2644. /*
  2645. * NB: can't reclaim these until after ieee80211_ifdetach
  2646. * returns because we'll get called back to reclaim node
  2647. * state and potentially want to use them.
  2648. */
  2649. ath5k_hw_deinit(ah);
  2650. free_irq(ah->irq, ah);
  2651. }
  2652. bool
  2653. ath5k_any_vif_assoc(struct ath5k_hw *ah)
  2654. {
  2655. struct ath5k_vif_iter_data iter_data;
  2656. iter_data.hw_macaddr = NULL;
  2657. iter_data.any_assoc = false;
  2658. iter_data.need_set_hw_addr = false;
  2659. iter_data.found_active = true;
  2660. ieee80211_iterate_active_interfaces_atomic(
  2661. ah->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
  2662. ath5k_vif_iter, &iter_data);
  2663. return iter_data.any_assoc;
  2664. }
  2665. void
  2666. ath5k_set_beacon_filter(struct ieee80211_hw *hw, bool enable)
  2667. {
  2668. struct ath5k_hw *ah = hw->priv;
  2669. u32 rfilt;
  2670. rfilt = ath5k_hw_get_rx_filter(ah);
  2671. if (enable)
  2672. rfilt |= AR5K_RX_FILTER_BEACON;
  2673. else
  2674. rfilt &= ~AR5K_RX_FILTER_BEACON;
  2675. ath5k_hw_set_rx_filter(ah, rfilt);
  2676. ah->filter_flags = rfilt;
  2677. }
  2678. void _ath5k_printk(const struct ath5k_hw *ah, const char *level,
  2679. const char *fmt, ...)
  2680. {
  2681. struct va_format vaf;
  2682. va_list args;
  2683. va_start(args, fmt);
  2684. vaf.fmt = fmt;
  2685. vaf.va = &args;
  2686. if (ah && ah->hw)
  2687. printk("%s" pr_fmt("%s: %pV"),
  2688. level, wiphy_name(ah->hw->wiphy), &vaf);
  2689. else
  2690. printk("%s" pr_fmt("%pV"), level, &vaf);
  2691. va_end(args);
  2692. }