niu.c 229 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230
  1. /* niu.c: Neptune ethernet driver.
  2. *
  3. * Copyright (C) 2007, 2008 David S. Miller (davem@davemloft.net)
  4. */
  5. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  6. #include <linux/module.h>
  7. #include <linux/init.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/pci.h>
  10. #include <linux/dma-mapping.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/ethtool.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/delay.h>
  16. #include <linux/bitops.h>
  17. #include <linux/mii.h>
  18. #include <linux/if.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/if_vlan.h>
  21. #include <linux/ip.h>
  22. #include <linux/in.h>
  23. #include <linux/ipv6.h>
  24. #include <linux/log2.h>
  25. #include <linux/jiffies.h>
  26. #include <linux/crc32.h>
  27. #include <linux/list.h>
  28. #include <linux/slab.h>
  29. #include <linux/io.h>
  30. #include <linux/of_device.h>
  31. #include "niu.h"
  32. #define DRV_MODULE_NAME "niu"
  33. #define DRV_MODULE_VERSION "1.1"
  34. #define DRV_MODULE_RELDATE "Apr 22, 2010"
  35. static char version[] =
  36. DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  37. MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
  38. MODULE_DESCRIPTION("NIU ethernet driver");
  39. MODULE_LICENSE("GPL");
  40. MODULE_VERSION(DRV_MODULE_VERSION);
  41. #ifndef readq
  42. static u64 readq(void __iomem *reg)
  43. {
  44. return ((u64) readl(reg)) | (((u64) readl(reg + 4UL)) << 32);
  45. }
  46. static void writeq(u64 val, void __iomem *reg)
  47. {
  48. writel(val & 0xffffffff, reg);
  49. writel(val >> 32, reg + 0x4UL);
  50. }
  51. #endif
  52. static DEFINE_PCI_DEVICE_TABLE(niu_pci_tbl) = {
  53. {PCI_DEVICE(PCI_VENDOR_ID_SUN, 0xabcd)},
  54. {}
  55. };
  56. MODULE_DEVICE_TABLE(pci, niu_pci_tbl);
  57. #define NIU_TX_TIMEOUT (5 * HZ)
  58. #define nr64(reg) readq(np->regs + (reg))
  59. #define nw64(reg, val) writeq((val), np->regs + (reg))
  60. #define nr64_mac(reg) readq(np->mac_regs + (reg))
  61. #define nw64_mac(reg, val) writeq((val), np->mac_regs + (reg))
  62. #define nr64_ipp(reg) readq(np->regs + np->ipp_off + (reg))
  63. #define nw64_ipp(reg, val) writeq((val), np->regs + np->ipp_off + (reg))
  64. #define nr64_pcs(reg) readq(np->regs + np->pcs_off + (reg))
  65. #define nw64_pcs(reg, val) writeq((val), np->regs + np->pcs_off + (reg))
  66. #define nr64_xpcs(reg) readq(np->regs + np->xpcs_off + (reg))
  67. #define nw64_xpcs(reg, val) writeq((val), np->regs + np->xpcs_off + (reg))
  68. #define NIU_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  69. static int niu_debug;
  70. static int debug = -1;
  71. module_param(debug, int, 0);
  72. MODULE_PARM_DESC(debug, "NIU debug level");
  73. #define niu_lock_parent(np, flags) \
  74. spin_lock_irqsave(&np->parent->lock, flags)
  75. #define niu_unlock_parent(np, flags) \
  76. spin_unlock_irqrestore(&np->parent->lock, flags)
  77. static int serdes_init_10g_serdes(struct niu *np);
  78. static int __niu_wait_bits_clear_mac(struct niu *np, unsigned long reg,
  79. u64 bits, int limit, int delay)
  80. {
  81. while (--limit >= 0) {
  82. u64 val = nr64_mac(reg);
  83. if (!(val & bits))
  84. break;
  85. udelay(delay);
  86. }
  87. if (limit < 0)
  88. return -ENODEV;
  89. return 0;
  90. }
  91. static int __niu_set_and_wait_clear_mac(struct niu *np, unsigned long reg,
  92. u64 bits, int limit, int delay,
  93. const char *reg_name)
  94. {
  95. int err;
  96. nw64_mac(reg, bits);
  97. err = __niu_wait_bits_clear_mac(np, reg, bits, limit, delay);
  98. if (err)
  99. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  100. (unsigned long long)bits, reg_name,
  101. (unsigned long long)nr64_mac(reg));
  102. return err;
  103. }
  104. #define niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  105. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  106. __niu_set_and_wait_clear_mac(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  107. })
  108. static int __niu_wait_bits_clear_ipp(struct niu *np, unsigned long reg,
  109. u64 bits, int limit, int delay)
  110. {
  111. while (--limit >= 0) {
  112. u64 val = nr64_ipp(reg);
  113. if (!(val & bits))
  114. break;
  115. udelay(delay);
  116. }
  117. if (limit < 0)
  118. return -ENODEV;
  119. return 0;
  120. }
  121. static int __niu_set_and_wait_clear_ipp(struct niu *np, unsigned long reg,
  122. u64 bits, int limit, int delay,
  123. const char *reg_name)
  124. {
  125. int err;
  126. u64 val;
  127. val = nr64_ipp(reg);
  128. val |= bits;
  129. nw64_ipp(reg, val);
  130. err = __niu_wait_bits_clear_ipp(np, reg, bits, limit, delay);
  131. if (err)
  132. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  133. (unsigned long long)bits, reg_name,
  134. (unsigned long long)nr64_ipp(reg));
  135. return err;
  136. }
  137. #define niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  138. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  139. __niu_set_and_wait_clear_ipp(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  140. })
  141. static int __niu_wait_bits_clear(struct niu *np, unsigned long reg,
  142. u64 bits, int limit, int delay)
  143. {
  144. while (--limit >= 0) {
  145. u64 val = nr64(reg);
  146. if (!(val & bits))
  147. break;
  148. udelay(delay);
  149. }
  150. if (limit < 0)
  151. return -ENODEV;
  152. return 0;
  153. }
  154. #define niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY) \
  155. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  156. __niu_wait_bits_clear(NP, REG, BITS, LIMIT, DELAY); \
  157. })
  158. static int __niu_set_and_wait_clear(struct niu *np, unsigned long reg,
  159. u64 bits, int limit, int delay,
  160. const char *reg_name)
  161. {
  162. int err;
  163. nw64(reg, bits);
  164. err = __niu_wait_bits_clear(np, reg, bits, limit, delay);
  165. if (err)
  166. netdev_err(np->dev, "bits (%llx) of register %s would not clear, val[%llx]\n",
  167. (unsigned long long)bits, reg_name,
  168. (unsigned long long)nr64(reg));
  169. return err;
  170. }
  171. #define niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME) \
  172. ({ BUILD_BUG_ON(LIMIT <= 0 || DELAY < 0); \
  173. __niu_set_and_wait_clear(NP, REG, BITS, LIMIT, DELAY, REG_NAME); \
  174. })
  175. static void niu_ldg_rearm(struct niu *np, struct niu_ldg *lp, int on)
  176. {
  177. u64 val = (u64) lp->timer;
  178. if (on)
  179. val |= LDG_IMGMT_ARM;
  180. nw64(LDG_IMGMT(lp->ldg_num), val);
  181. }
  182. static int niu_ldn_irq_enable(struct niu *np, int ldn, int on)
  183. {
  184. unsigned long mask_reg, bits;
  185. u64 val;
  186. if (ldn < 0 || ldn > LDN_MAX)
  187. return -EINVAL;
  188. if (ldn < 64) {
  189. mask_reg = LD_IM0(ldn);
  190. bits = LD_IM0_MASK;
  191. } else {
  192. mask_reg = LD_IM1(ldn - 64);
  193. bits = LD_IM1_MASK;
  194. }
  195. val = nr64(mask_reg);
  196. if (on)
  197. val &= ~bits;
  198. else
  199. val |= bits;
  200. nw64(mask_reg, val);
  201. return 0;
  202. }
  203. static int niu_enable_ldn_in_ldg(struct niu *np, struct niu_ldg *lp, int on)
  204. {
  205. struct niu_parent *parent = np->parent;
  206. int i;
  207. for (i = 0; i <= LDN_MAX; i++) {
  208. int err;
  209. if (parent->ldg_map[i] != lp->ldg_num)
  210. continue;
  211. err = niu_ldn_irq_enable(np, i, on);
  212. if (err)
  213. return err;
  214. }
  215. return 0;
  216. }
  217. static int niu_enable_interrupts(struct niu *np, int on)
  218. {
  219. int i;
  220. for (i = 0; i < np->num_ldg; i++) {
  221. struct niu_ldg *lp = &np->ldg[i];
  222. int err;
  223. err = niu_enable_ldn_in_ldg(np, lp, on);
  224. if (err)
  225. return err;
  226. }
  227. for (i = 0; i < np->num_ldg; i++)
  228. niu_ldg_rearm(np, &np->ldg[i], on);
  229. return 0;
  230. }
  231. static u32 phy_encode(u32 type, int port)
  232. {
  233. return type << (port * 2);
  234. }
  235. static u32 phy_decode(u32 val, int port)
  236. {
  237. return (val >> (port * 2)) & PORT_TYPE_MASK;
  238. }
  239. static int mdio_wait(struct niu *np)
  240. {
  241. int limit = 1000;
  242. u64 val;
  243. while (--limit > 0) {
  244. val = nr64(MIF_FRAME_OUTPUT);
  245. if ((val >> MIF_FRAME_OUTPUT_TA_SHIFT) & 0x1)
  246. return val & MIF_FRAME_OUTPUT_DATA;
  247. udelay(10);
  248. }
  249. return -ENODEV;
  250. }
  251. static int mdio_read(struct niu *np, int port, int dev, int reg)
  252. {
  253. int err;
  254. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  255. err = mdio_wait(np);
  256. if (err < 0)
  257. return err;
  258. nw64(MIF_FRAME_OUTPUT, MDIO_READ_OP(port, dev));
  259. return mdio_wait(np);
  260. }
  261. static int mdio_write(struct niu *np, int port, int dev, int reg, int data)
  262. {
  263. int err;
  264. nw64(MIF_FRAME_OUTPUT, MDIO_ADDR_OP(port, dev, reg));
  265. err = mdio_wait(np);
  266. if (err < 0)
  267. return err;
  268. nw64(MIF_FRAME_OUTPUT, MDIO_WRITE_OP(port, dev, data));
  269. err = mdio_wait(np);
  270. if (err < 0)
  271. return err;
  272. return 0;
  273. }
  274. static int mii_read(struct niu *np, int port, int reg)
  275. {
  276. nw64(MIF_FRAME_OUTPUT, MII_READ_OP(port, reg));
  277. return mdio_wait(np);
  278. }
  279. static int mii_write(struct niu *np, int port, int reg, int data)
  280. {
  281. int err;
  282. nw64(MIF_FRAME_OUTPUT, MII_WRITE_OP(port, reg, data));
  283. err = mdio_wait(np);
  284. if (err < 0)
  285. return err;
  286. return 0;
  287. }
  288. static int esr2_set_tx_cfg(struct niu *np, unsigned long channel, u32 val)
  289. {
  290. int err;
  291. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  292. ESR2_TI_PLL_TX_CFG_L(channel),
  293. val & 0xffff);
  294. if (!err)
  295. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  296. ESR2_TI_PLL_TX_CFG_H(channel),
  297. val >> 16);
  298. return err;
  299. }
  300. static int esr2_set_rx_cfg(struct niu *np, unsigned long channel, u32 val)
  301. {
  302. int err;
  303. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  304. ESR2_TI_PLL_RX_CFG_L(channel),
  305. val & 0xffff);
  306. if (!err)
  307. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  308. ESR2_TI_PLL_RX_CFG_H(channel),
  309. val >> 16);
  310. return err;
  311. }
  312. /* Mode is always 10G fiber. */
  313. static int serdes_init_niu_10g_fiber(struct niu *np)
  314. {
  315. struct niu_link_config *lp = &np->link_config;
  316. u32 tx_cfg, rx_cfg;
  317. unsigned long i;
  318. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  319. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  320. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  321. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  322. if (lp->loopback_mode == LOOPBACK_PHY) {
  323. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  324. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  325. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  326. tx_cfg |= PLL_TX_CFG_ENTEST;
  327. rx_cfg |= PLL_RX_CFG_ENTEST;
  328. }
  329. /* Initialize all 4 lanes of the SERDES. */
  330. for (i = 0; i < 4; i++) {
  331. int err = esr2_set_tx_cfg(np, i, tx_cfg);
  332. if (err)
  333. return err;
  334. }
  335. for (i = 0; i < 4; i++) {
  336. int err = esr2_set_rx_cfg(np, i, rx_cfg);
  337. if (err)
  338. return err;
  339. }
  340. return 0;
  341. }
  342. static int serdes_init_niu_1g_serdes(struct niu *np)
  343. {
  344. struct niu_link_config *lp = &np->link_config;
  345. u16 pll_cfg, pll_sts;
  346. int max_retry = 100;
  347. u64 uninitialized_var(sig), mask, val;
  348. u32 tx_cfg, rx_cfg;
  349. unsigned long i;
  350. int err;
  351. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV |
  352. PLL_TX_CFG_RATE_HALF);
  353. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  354. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  355. PLL_RX_CFG_RATE_HALF);
  356. if (np->port == 0)
  357. rx_cfg |= PLL_RX_CFG_EQ_LP_ADAPTIVE;
  358. if (lp->loopback_mode == LOOPBACK_PHY) {
  359. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  360. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  361. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  362. tx_cfg |= PLL_TX_CFG_ENTEST;
  363. rx_cfg |= PLL_RX_CFG_ENTEST;
  364. }
  365. /* Initialize PLL for 1G */
  366. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_8X);
  367. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  368. ESR2_TI_PLL_CFG_L, pll_cfg);
  369. if (err) {
  370. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  371. np->port, __func__);
  372. return err;
  373. }
  374. pll_sts = PLL_CFG_ENPLL;
  375. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  376. ESR2_TI_PLL_STS_L, pll_sts);
  377. if (err) {
  378. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  379. np->port, __func__);
  380. return err;
  381. }
  382. udelay(200);
  383. /* Initialize all 4 lanes of the SERDES. */
  384. for (i = 0; i < 4; i++) {
  385. err = esr2_set_tx_cfg(np, i, tx_cfg);
  386. if (err)
  387. return err;
  388. }
  389. for (i = 0; i < 4; i++) {
  390. err = esr2_set_rx_cfg(np, i, rx_cfg);
  391. if (err)
  392. return err;
  393. }
  394. switch (np->port) {
  395. case 0:
  396. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  397. mask = val;
  398. break;
  399. case 1:
  400. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  401. mask = val;
  402. break;
  403. default:
  404. return -EINVAL;
  405. }
  406. while (max_retry--) {
  407. sig = nr64(ESR_INT_SIGNALS);
  408. if ((sig & mask) == val)
  409. break;
  410. mdelay(500);
  411. }
  412. if ((sig & mask) != val) {
  413. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  414. np->port, (int)(sig & mask), (int)val);
  415. return -ENODEV;
  416. }
  417. return 0;
  418. }
  419. static int serdes_init_niu_10g_serdes(struct niu *np)
  420. {
  421. struct niu_link_config *lp = &np->link_config;
  422. u32 tx_cfg, rx_cfg, pll_cfg, pll_sts;
  423. int max_retry = 100;
  424. u64 uninitialized_var(sig), mask, val;
  425. unsigned long i;
  426. int err;
  427. tx_cfg = (PLL_TX_CFG_ENTX | PLL_TX_CFG_SWING_1375MV);
  428. rx_cfg = (PLL_RX_CFG_ENRX | PLL_RX_CFG_TERM_0P8VDDT |
  429. PLL_RX_CFG_ALIGN_ENA | PLL_RX_CFG_LOS_LTHRESH |
  430. PLL_RX_CFG_EQ_LP_ADAPTIVE);
  431. if (lp->loopback_mode == LOOPBACK_PHY) {
  432. u16 test_cfg = PLL_TEST_CFG_LOOPBACK_CML_DIS;
  433. mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  434. ESR2_TI_PLL_TEST_CFG_L, test_cfg);
  435. tx_cfg |= PLL_TX_CFG_ENTEST;
  436. rx_cfg |= PLL_RX_CFG_ENTEST;
  437. }
  438. /* Initialize PLL for 10G */
  439. pll_cfg = (PLL_CFG_ENPLL | PLL_CFG_MPY_10X);
  440. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  441. ESR2_TI_PLL_CFG_L, pll_cfg & 0xffff);
  442. if (err) {
  443. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_CFG_L failed\n",
  444. np->port, __func__);
  445. return err;
  446. }
  447. pll_sts = PLL_CFG_ENPLL;
  448. err = mdio_write(np, np->port, NIU_ESR2_DEV_ADDR,
  449. ESR2_TI_PLL_STS_L, pll_sts & 0xffff);
  450. if (err) {
  451. netdev_err(np->dev, "NIU Port %d %s() mdio write to ESR2_TI_PLL_STS_L failed\n",
  452. np->port, __func__);
  453. return err;
  454. }
  455. udelay(200);
  456. /* Initialize all 4 lanes of the SERDES. */
  457. for (i = 0; i < 4; i++) {
  458. err = esr2_set_tx_cfg(np, i, tx_cfg);
  459. if (err)
  460. return err;
  461. }
  462. for (i = 0; i < 4; i++) {
  463. err = esr2_set_rx_cfg(np, i, rx_cfg);
  464. if (err)
  465. return err;
  466. }
  467. /* check if serdes is ready */
  468. switch (np->port) {
  469. case 0:
  470. mask = ESR_INT_SIGNALS_P0_BITS;
  471. val = (ESR_INT_SRDY0_P0 |
  472. ESR_INT_DET0_P0 |
  473. ESR_INT_XSRDY_P0 |
  474. ESR_INT_XDP_P0_CH3 |
  475. ESR_INT_XDP_P0_CH2 |
  476. ESR_INT_XDP_P0_CH1 |
  477. ESR_INT_XDP_P0_CH0);
  478. break;
  479. case 1:
  480. mask = ESR_INT_SIGNALS_P1_BITS;
  481. val = (ESR_INT_SRDY0_P1 |
  482. ESR_INT_DET0_P1 |
  483. ESR_INT_XSRDY_P1 |
  484. ESR_INT_XDP_P1_CH3 |
  485. ESR_INT_XDP_P1_CH2 |
  486. ESR_INT_XDP_P1_CH1 |
  487. ESR_INT_XDP_P1_CH0);
  488. break;
  489. default:
  490. return -EINVAL;
  491. }
  492. while (max_retry--) {
  493. sig = nr64(ESR_INT_SIGNALS);
  494. if ((sig & mask) == val)
  495. break;
  496. mdelay(500);
  497. }
  498. if ((sig & mask) != val) {
  499. pr_info("NIU Port %u signal bits [%08x] are not [%08x] for 10G...trying 1G\n",
  500. np->port, (int)(sig & mask), (int)val);
  501. /* 10G failed, try initializing at 1G */
  502. err = serdes_init_niu_1g_serdes(np);
  503. if (!err) {
  504. np->flags &= ~NIU_FLAGS_10G;
  505. np->mac_xcvr = MAC_XCVR_PCS;
  506. } else {
  507. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  508. np->port);
  509. return -ENODEV;
  510. }
  511. }
  512. return 0;
  513. }
  514. static int esr_read_rxtx_ctrl(struct niu *np, unsigned long chan, u32 *val)
  515. {
  516. int err;
  517. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR, ESR_RXTX_CTRL_L(chan));
  518. if (err >= 0) {
  519. *val = (err & 0xffff);
  520. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  521. ESR_RXTX_CTRL_H(chan));
  522. if (err >= 0)
  523. *val |= ((err & 0xffff) << 16);
  524. err = 0;
  525. }
  526. return err;
  527. }
  528. static int esr_read_glue0(struct niu *np, unsigned long chan, u32 *val)
  529. {
  530. int err;
  531. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  532. ESR_GLUE_CTRL0_L(chan));
  533. if (err >= 0) {
  534. *val = (err & 0xffff);
  535. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  536. ESR_GLUE_CTRL0_H(chan));
  537. if (err >= 0) {
  538. *val |= ((err & 0xffff) << 16);
  539. err = 0;
  540. }
  541. }
  542. return err;
  543. }
  544. static int esr_read_reset(struct niu *np, u32 *val)
  545. {
  546. int err;
  547. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  548. ESR_RXTX_RESET_CTRL_L);
  549. if (err >= 0) {
  550. *val = (err & 0xffff);
  551. err = mdio_read(np, np->port, NIU_ESR_DEV_ADDR,
  552. ESR_RXTX_RESET_CTRL_H);
  553. if (err >= 0) {
  554. *val |= ((err & 0xffff) << 16);
  555. err = 0;
  556. }
  557. }
  558. return err;
  559. }
  560. static int esr_write_rxtx_ctrl(struct niu *np, unsigned long chan, u32 val)
  561. {
  562. int err;
  563. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  564. ESR_RXTX_CTRL_L(chan), val & 0xffff);
  565. if (!err)
  566. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  567. ESR_RXTX_CTRL_H(chan), (val >> 16));
  568. return err;
  569. }
  570. static int esr_write_glue0(struct niu *np, unsigned long chan, u32 val)
  571. {
  572. int err;
  573. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  574. ESR_GLUE_CTRL0_L(chan), val & 0xffff);
  575. if (!err)
  576. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  577. ESR_GLUE_CTRL0_H(chan), (val >> 16));
  578. return err;
  579. }
  580. static int esr_reset(struct niu *np)
  581. {
  582. u32 uninitialized_var(reset);
  583. int err;
  584. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  585. ESR_RXTX_RESET_CTRL_L, 0x0000);
  586. if (err)
  587. return err;
  588. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  589. ESR_RXTX_RESET_CTRL_H, 0xffff);
  590. if (err)
  591. return err;
  592. udelay(200);
  593. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  594. ESR_RXTX_RESET_CTRL_L, 0xffff);
  595. if (err)
  596. return err;
  597. udelay(200);
  598. err = mdio_write(np, np->port, NIU_ESR_DEV_ADDR,
  599. ESR_RXTX_RESET_CTRL_H, 0x0000);
  600. if (err)
  601. return err;
  602. udelay(200);
  603. err = esr_read_reset(np, &reset);
  604. if (err)
  605. return err;
  606. if (reset != 0) {
  607. netdev_err(np->dev, "Port %u ESR_RESET did not clear [%08x]\n",
  608. np->port, reset);
  609. return -ENODEV;
  610. }
  611. return 0;
  612. }
  613. static int serdes_init_10g(struct niu *np)
  614. {
  615. struct niu_link_config *lp = &np->link_config;
  616. unsigned long ctrl_reg, test_cfg_reg, i;
  617. u64 ctrl_val, test_cfg_val, sig, mask, val;
  618. int err;
  619. switch (np->port) {
  620. case 0:
  621. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  622. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  623. break;
  624. case 1:
  625. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  626. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  627. break;
  628. default:
  629. return -EINVAL;
  630. }
  631. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  632. ENET_SERDES_CTRL_SDET_1 |
  633. ENET_SERDES_CTRL_SDET_2 |
  634. ENET_SERDES_CTRL_SDET_3 |
  635. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  636. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  637. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  638. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  639. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  640. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  641. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  642. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  643. test_cfg_val = 0;
  644. if (lp->loopback_mode == LOOPBACK_PHY) {
  645. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  646. ENET_SERDES_TEST_MD_0_SHIFT) |
  647. (ENET_TEST_MD_PAD_LOOPBACK <<
  648. ENET_SERDES_TEST_MD_1_SHIFT) |
  649. (ENET_TEST_MD_PAD_LOOPBACK <<
  650. ENET_SERDES_TEST_MD_2_SHIFT) |
  651. (ENET_TEST_MD_PAD_LOOPBACK <<
  652. ENET_SERDES_TEST_MD_3_SHIFT));
  653. }
  654. nw64(ctrl_reg, ctrl_val);
  655. nw64(test_cfg_reg, test_cfg_val);
  656. /* Initialize all 4 lanes of the SERDES. */
  657. for (i = 0; i < 4; i++) {
  658. u32 rxtx_ctrl, glue0;
  659. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  660. if (err)
  661. return err;
  662. err = esr_read_glue0(np, i, &glue0);
  663. if (err)
  664. return err;
  665. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  666. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  667. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  668. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  669. ESR_GLUE_CTRL0_THCNT |
  670. ESR_GLUE_CTRL0_BLTIME);
  671. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  672. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  673. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  674. (BLTIME_300_CYCLES <<
  675. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  676. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  677. if (err)
  678. return err;
  679. err = esr_write_glue0(np, i, glue0);
  680. if (err)
  681. return err;
  682. }
  683. err = esr_reset(np);
  684. if (err)
  685. return err;
  686. sig = nr64(ESR_INT_SIGNALS);
  687. switch (np->port) {
  688. case 0:
  689. mask = ESR_INT_SIGNALS_P0_BITS;
  690. val = (ESR_INT_SRDY0_P0 |
  691. ESR_INT_DET0_P0 |
  692. ESR_INT_XSRDY_P0 |
  693. ESR_INT_XDP_P0_CH3 |
  694. ESR_INT_XDP_P0_CH2 |
  695. ESR_INT_XDP_P0_CH1 |
  696. ESR_INT_XDP_P0_CH0);
  697. break;
  698. case 1:
  699. mask = ESR_INT_SIGNALS_P1_BITS;
  700. val = (ESR_INT_SRDY0_P1 |
  701. ESR_INT_DET0_P1 |
  702. ESR_INT_XSRDY_P1 |
  703. ESR_INT_XDP_P1_CH3 |
  704. ESR_INT_XDP_P1_CH2 |
  705. ESR_INT_XDP_P1_CH1 |
  706. ESR_INT_XDP_P1_CH0);
  707. break;
  708. default:
  709. return -EINVAL;
  710. }
  711. if ((sig & mask) != val) {
  712. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  713. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  714. return 0;
  715. }
  716. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  717. np->port, (int)(sig & mask), (int)val);
  718. return -ENODEV;
  719. }
  720. if (np->flags & NIU_FLAGS_HOTPLUG_PHY)
  721. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  722. return 0;
  723. }
  724. static int serdes_init_1g(struct niu *np)
  725. {
  726. u64 val;
  727. val = nr64(ENET_SERDES_1_PLL_CFG);
  728. val &= ~ENET_SERDES_PLL_FBDIV2;
  729. switch (np->port) {
  730. case 0:
  731. val |= ENET_SERDES_PLL_HRATE0;
  732. break;
  733. case 1:
  734. val |= ENET_SERDES_PLL_HRATE1;
  735. break;
  736. case 2:
  737. val |= ENET_SERDES_PLL_HRATE2;
  738. break;
  739. case 3:
  740. val |= ENET_SERDES_PLL_HRATE3;
  741. break;
  742. default:
  743. return -EINVAL;
  744. }
  745. nw64(ENET_SERDES_1_PLL_CFG, val);
  746. return 0;
  747. }
  748. static int serdes_init_1g_serdes(struct niu *np)
  749. {
  750. struct niu_link_config *lp = &np->link_config;
  751. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  752. u64 ctrl_val, test_cfg_val, sig, mask, val;
  753. int err;
  754. u64 reset_val, val_rd;
  755. val = ENET_SERDES_PLL_HRATE0 | ENET_SERDES_PLL_HRATE1 |
  756. ENET_SERDES_PLL_HRATE2 | ENET_SERDES_PLL_HRATE3 |
  757. ENET_SERDES_PLL_FBDIV0;
  758. switch (np->port) {
  759. case 0:
  760. reset_val = ENET_SERDES_RESET_0;
  761. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  762. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  763. pll_cfg = ENET_SERDES_0_PLL_CFG;
  764. break;
  765. case 1:
  766. reset_val = ENET_SERDES_RESET_1;
  767. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  768. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  769. pll_cfg = ENET_SERDES_1_PLL_CFG;
  770. break;
  771. default:
  772. return -EINVAL;
  773. }
  774. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  775. ENET_SERDES_CTRL_SDET_1 |
  776. ENET_SERDES_CTRL_SDET_2 |
  777. ENET_SERDES_CTRL_SDET_3 |
  778. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  779. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  780. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  781. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  782. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  783. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  784. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  785. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  786. test_cfg_val = 0;
  787. if (lp->loopback_mode == LOOPBACK_PHY) {
  788. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  789. ENET_SERDES_TEST_MD_0_SHIFT) |
  790. (ENET_TEST_MD_PAD_LOOPBACK <<
  791. ENET_SERDES_TEST_MD_1_SHIFT) |
  792. (ENET_TEST_MD_PAD_LOOPBACK <<
  793. ENET_SERDES_TEST_MD_2_SHIFT) |
  794. (ENET_TEST_MD_PAD_LOOPBACK <<
  795. ENET_SERDES_TEST_MD_3_SHIFT));
  796. }
  797. nw64(ENET_SERDES_RESET, reset_val);
  798. mdelay(20);
  799. val_rd = nr64(ENET_SERDES_RESET);
  800. val_rd &= ~reset_val;
  801. nw64(pll_cfg, val);
  802. nw64(ctrl_reg, ctrl_val);
  803. nw64(test_cfg_reg, test_cfg_val);
  804. nw64(ENET_SERDES_RESET, val_rd);
  805. mdelay(2000);
  806. /* Initialize all 4 lanes of the SERDES. */
  807. for (i = 0; i < 4; i++) {
  808. u32 rxtx_ctrl, glue0;
  809. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  810. if (err)
  811. return err;
  812. err = esr_read_glue0(np, i, &glue0);
  813. if (err)
  814. return err;
  815. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  816. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  817. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  818. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  819. ESR_GLUE_CTRL0_THCNT |
  820. ESR_GLUE_CTRL0_BLTIME);
  821. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  822. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  823. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  824. (BLTIME_300_CYCLES <<
  825. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  826. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  827. if (err)
  828. return err;
  829. err = esr_write_glue0(np, i, glue0);
  830. if (err)
  831. return err;
  832. }
  833. sig = nr64(ESR_INT_SIGNALS);
  834. switch (np->port) {
  835. case 0:
  836. val = (ESR_INT_SRDY0_P0 | ESR_INT_DET0_P0);
  837. mask = val;
  838. break;
  839. case 1:
  840. val = (ESR_INT_SRDY0_P1 | ESR_INT_DET0_P1);
  841. mask = val;
  842. break;
  843. default:
  844. return -EINVAL;
  845. }
  846. if ((sig & mask) != val) {
  847. netdev_err(np->dev, "Port %u signal bits [%08x] are not [%08x]\n",
  848. np->port, (int)(sig & mask), (int)val);
  849. return -ENODEV;
  850. }
  851. return 0;
  852. }
  853. static int link_status_1g_serdes(struct niu *np, int *link_up_p)
  854. {
  855. struct niu_link_config *lp = &np->link_config;
  856. int link_up;
  857. u64 val;
  858. u16 current_speed;
  859. unsigned long flags;
  860. u8 current_duplex;
  861. link_up = 0;
  862. current_speed = SPEED_INVALID;
  863. current_duplex = DUPLEX_INVALID;
  864. spin_lock_irqsave(&np->lock, flags);
  865. val = nr64_pcs(PCS_MII_STAT);
  866. if (val & PCS_MII_STAT_LINK_STATUS) {
  867. link_up = 1;
  868. current_speed = SPEED_1000;
  869. current_duplex = DUPLEX_FULL;
  870. }
  871. lp->active_speed = current_speed;
  872. lp->active_duplex = current_duplex;
  873. spin_unlock_irqrestore(&np->lock, flags);
  874. *link_up_p = link_up;
  875. return 0;
  876. }
  877. static int link_status_10g_serdes(struct niu *np, int *link_up_p)
  878. {
  879. unsigned long flags;
  880. struct niu_link_config *lp = &np->link_config;
  881. int link_up = 0;
  882. int link_ok = 1;
  883. u64 val, val2;
  884. u16 current_speed;
  885. u8 current_duplex;
  886. if (!(np->flags & NIU_FLAGS_10G))
  887. return link_status_1g_serdes(np, link_up_p);
  888. current_speed = SPEED_INVALID;
  889. current_duplex = DUPLEX_INVALID;
  890. spin_lock_irqsave(&np->lock, flags);
  891. val = nr64_xpcs(XPCS_STATUS(0));
  892. val2 = nr64_mac(XMAC_INTER2);
  893. if (val2 & 0x01000000)
  894. link_ok = 0;
  895. if ((val & 0x1000ULL) && link_ok) {
  896. link_up = 1;
  897. current_speed = SPEED_10000;
  898. current_duplex = DUPLEX_FULL;
  899. }
  900. lp->active_speed = current_speed;
  901. lp->active_duplex = current_duplex;
  902. spin_unlock_irqrestore(&np->lock, flags);
  903. *link_up_p = link_up;
  904. return 0;
  905. }
  906. static int link_status_mii(struct niu *np, int *link_up_p)
  907. {
  908. struct niu_link_config *lp = &np->link_config;
  909. int err;
  910. int bmsr, advert, ctrl1000, stat1000, lpa, bmcr, estatus;
  911. int supported, advertising, active_speed, active_duplex;
  912. err = mii_read(np, np->phy_addr, MII_BMCR);
  913. if (unlikely(err < 0))
  914. return err;
  915. bmcr = err;
  916. err = mii_read(np, np->phy_addr, MII_BMSR);
  917. if (unlikely(err < 0))
  918. return err;
  919. bmsr = err;
  920. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  921. if (unlikely(err < 0))
  922. return err;
  923. advert = err;
  924. err = mii_read(np, np->phy_addr, MII_LPA);
  925. if (unlikely(err < 0))
  926. return err;
  927. lpa = err;
  928. if (likely(bmsr & BMSR_ESTATEN)) {
  929. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  930. if (unlikely(err < 0))
  931. return err;
  932. estatus = err;
  933. err = mii_read(np, np->phy_addr, MII_CTRL1000);
  934. if (unlikely(err < 0))
  935. return err;
  936. ctrl1000 = err;
  937. err = mii_read(np, np->phy_addr, MII_STAT1000);
  938. if (unlikely(err < 0))
  939. return err;
  940. stat1000 = err;
  941. } else
  942. estatus = ctrl1000 = stat1000 = 0;
  943. supported = 0;
  944. if (bmsr & BMSR_ANEGCAPABLE)
  945. supported |= SUPPORTED_Autoneg;
  946. if (bmsr & BMSR_10HALF)
  947. supported |= SUPPORTED_10baseT_Half;
  948. if (bmsr & BMSR_10FULL)
  949. supported |= SUPPORTED_10baseT_Full;
  950. if (bmsr & BMSR_100HALF)
  951. supported |= SUPPORTED_100baseT_Half;
  952. if (bmsr & BMSR_100FULL)
  953. supported |= SUPPORTED_100baseT_Full;
  954. if (estatus & ESTATUS_1000_THALF)
  955. supported |= SUPPORTED_1000baseT_Half;
  956. if (estatus & ESTATUS_1000_TFULL)
  957. supported |= SUPPORTED_1000baseT_Full;
  958. lp->supported = supported;
  959. advertising = mii_adv_to_ethtool_adv_t(advert);
  960. advertising |= mii_ctrl1000_to_ethtool_adv_t(ctrl1000);
  961. if (bmcr & BMCR_ANENABLE) {
  962. int neg, neg1000;
  963. lp->active_autoneg = 1;
  964. advertising |= ADVERTISED_Autoneg;
  965. neg = advert & lpa;
  966. neg1000 = (ctrl1000 << 2) & stat1000;
  967. if (neg1000 & (LPA_1000FULL | LPA_1000HALF))
  968. active_speed = SPEED_1000;
  969. else if (neg & LPA_100)
  970. active_speed = SPEED_100;
  971. else if (neg & (LPA_10HALF | LPA_10FULL))
  972. active_speed = SPEED_10;
  973. else
  974. active_speed = SPEED_INVALID;
  975. if ((neg1000 & LPA_1000FULL) || (neg & LPA_DUPLEX))
  976. active_duplex = DUPLEX_FULL;
  977. else if (active_speed != SPEED_INVALID)
  978. active_duplex = DUPLEX_HALF;
  979. else
  980. active_duplex = DUPLEX_INVALID;
  981. } else {
  982. lp->active_autoneg = 0;
  983. if ((bmcr & BMCR_SPEED1000) && !(bmcr & BMCR_SPEED100))
  984. active_speed = SPEED_1000;
  985. else if (bmcr & BMCR_SPEED100)
  986. active_speed = SPEED_100;
  987. else
  988. active_speed = SPEED_10;
  989. if (bmcr & BMCR_FULLDPLX)
  990. active_duplex = DUPLEX_FULL;
  991. else
  992. active_duplex = DUPLEX_HALF;
  993. }
  994. lp->active_advertising = advertising;
  995. lp->active_speed = active_speed;
  996. lp->active_duplex = active_duplex;
  997. *link_up_p = !!(bmsr & BMSR_LSTATUS);
  998. return 0;
  999. }
  1000. static int link_status_1g_rgmii(struct niu *np, int *link_up_p)
  1001. {
  1002. struct niu_link_config *lp = &np->link_config;
  1003. u16 current_speed, bmsr;
  1004. unsigned long flags;
  1005. u8 current_duplex;
  1006. int err, link_up;
  1007. link_up = 0;
  1008. current_speed = SPEED_INVALID;
  1009. current_duplex = DUPLEX_INVALID;
  1010. spin_lock_irqsave(&np->lock, flags);
  1011. err = -EINVAL;
  1012. err = mii_read(np, np->phy_addr, MII_BMSR);
  1013. if (err < 0)
  1014. goto out;
  1015. bmsr = err;
  1016. if (bmsr & BMSR_LSTATUS) {
  1017. u16 adv, lpa;
  1018. err = mii_read(np, np->phy_addr, MII_ADVERTISE);
  1019. if (err < 0)
  1020. goto out;
  1021. adv = err;
  1022. err = mii_read(np, np->phy_addr, MII_LPA);
  1023. if (err < 0)
  1024. goto out;
  1025. lpa = err;
  1026. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1027. if (err < 0)
  1028. goto out;
  1029. link_up = 1;
  1030. current_speed = SPEED_1000;
  1031. current_duplex = DUPLEX_FULL;
  1032. }
  1033. lp->active_speed = current_speed;
  1034. lp->active_duplex = current_duplex;
  1035. err = 0;
  1036. out:
  1037. spin_unlock_irqrestore(&np->lock, flags);
  1038. *link_up_p = link_up;
  1039. return err;
  1040. }
  1041. static int link_status_1g(struct niu *np, int *link_up_p)
  1042. {
  1043. struct niu_link_config *lp = &np->link_config;
  1044. unsigned long flags;
  1045. int err;
  1046. spin_lock_irqsave(&np->lock, flags);
  1047. err = link_status_mii(np, link_up_p);
  1048. lp->supported |= SUPPORTED_TP;
  1049. lp->active_advertising |= ADVERTISED_TP;
  1050. spin_unlock_irqrestore(&np->lock, flags);
  1051. return err;
  1052. }
  1053. static int bcm8704_reset(struct niu *np)
  1054. {
  1055. int err, limit;
  1056. err = mdio_read(np, np->phy_addr,
  1057. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1058. if (err < 0 || err == 0xffff)
  1059. return err;
  1060. err |= BMCR_RESET;
  1061. err = mdio_write(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1062. MII_BMCR, err);
  1063. if (err)
  1064. return err;
  1065. limit = 1000;
  1066. while (--limit >= 0) {
  1067. err = mdio_read(np, np->phy_addr,
  1068. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1069. if (err < 0)
  1070. return err;
  1071. if (!(err & BMCR_RESET))
  1072. break;
  1073. }
  1074. if (limit < 0) {
  1075. netdev_err(np->dev, "Port %u PHY will not reset (bmcr=%04x)\n",
  1076. np->port, (err & 0xffff));
  1077. return -ENODEV;
  1078. }
  1079. return 0;
  1080. }
  1081. /* When written, certain PHY registers need to be read back twice
  1082. * in order for the bits to settle properly.
  1083. */
  1084. static int bcm8704_user_dev3_readback(struct niu *np, int reg)
  1085. {
  1086. int err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1087. if (err < 0)
  1088. return err;
  1089. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, reg);
  1090. if (err < 0)
  1091. return err;
  1092. return 0;
  1093. }
  1094. static int bcm8706_init_user_dev3(struct niu *np)
  1095. {
  1096. int err;
  1097. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1098. BCM8704_USER_OPT_DIGITAL_CTRL);
  1099. if (err < 0)
  1100. return err;
  1101. err &= ~USER_ODIG_CTRL_GPIOS;
  1102. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1103. err |= USER_ODIG_CTRL_RESV2;
  1104. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1105. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1106. if (err)
  1107. return err;
  1108. mdelay(1000);
  1109. return 0;
  1110. }
  1111. static int bcm8704_init_user_dev3(struct niu *np)
  1112. {
  1113. int err;
  1114. err = mdio_write(np, np->phy_addr,
  1115. BCM8704_USER_DEV3_ADDR, BCM8704_USER_CONTROL,
  1116. (USER_CONTROL_OPTXRST_LVL |
  1117. USER_CONTROL_OPBIASFLT_LVL |
  1118. USER_CONTROL_OBTMPFLT_LVL |
  1119. USER_CONTROL_OPPRFLT_LVL |
  1120. USER_CONTROL_OPTXFLT_LVL |
  1121. USER_CONTROL_OPRXLOS_LVL |
  1122. USER_CONTROL_OPRXFLT_LVL |
  1123. USER_CONTROL_OPTXON_LVL |
  1124. (0x3f << USER_CONTROL_RES1_SHIFT)));
  1125. if (err)
  1126. return err;
  1127. err = mdio_write(np, np->phy_addr,
  1128. BCM8704_USER_DEV3_ADDR, BCM8704_USER_PMD_TX_CONTROL,
  1129. (USER_PMD_TX_CTL_XFP_CLKEN |
  1130. (1 << USER_PMD_TX_CTL_TX_DAC_TXD_SH) |
  1131. (2 << USER_PMD_TX_CTL_TX_DAC_TXCK_SH) |
  1132. USER_PMD_TX_CTL_TSCK_LPWREN));
  1133. if (err)
  1134. return err;
  1135. err = bcm8704_user_dev3_readback(np, BCM8704_USER_CONTROL);
  1136. if (err)
  1137. return err;
  1138. err = bcm8704_user_dev3_readback(np, BCM8704_USER_PMD_TX_CONTROL);
  1139. if (err)
  1140. return err;
  1141. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1142. BCM8704_USER_OPT_DIGITAL_CTRL);
  1143. if (err < 0)
  1144. return err;
  1145. err &= ~USER_ODIG_CTRL_GPIOS;
  1146. err |= (0x3 << USER_ODIG_CTRL_GPIOS_SHIFT);
  1147. err = mdio_write(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1148. BCM8704_USER_OPT_DIGITAL_CTRL, err);
  1149. if (err)
  1150. return err;
  1151. mdelay(1000);
  1152. return 0;
  1153. }
  1154. static int mrvl88x2011_act_led(struct niu *np, int val)
  1155. {
  1156. int err;
  1157. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1158. MRVL88X2011_LED_8_TO_11_CTL);
  1159. if (err < 0)
  1160. return err;
  1161. err &= ~MRVL88X2011_LED(MRVL88X2011_LED_ACT,MRVL88X2011_LED_CTL_MASK);
  1162. err |= MRVL88X2011_LED(MRVL88X2011_LED_ACT,val);
  1163. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1164. MRVL88X2011_LED_8_TO_11_CTL, err);
  1165. }
  1166. static int mrvl88x2011_led_blink_rate(struct niu *np, int rate)
  1167. {
  1168. int err;
  1169. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1170. MRVL88X2011_LED_BLINK_CTL);
  1171. if (err >= 0) {
  1172. err &= ~MRVL88X2011_LED_BLKRATE_MASK;
  1173. err |= (rate << 4);
  1174. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV2_ADDR,
  1175. MRVL88X2011_LED_BLINK_CTL, err);
  1176. }
  1177. return err;
  1178. }
  1179. static int xcvr_init_10g_mrvl88x2011(struct niu *np)
  1180. {
  1181. int err;
  1182. /* Set LED functions */
  1183. err = mrvl88x2011_led_blink_rate(np, MRVL88X2011_LED_BLKRATE_134MS);
  1184. if (err)
  1185. return err;
  1186. /* led activity */
  1187. err = mrvl88x2011_act_led(np, MRVL88X2011_LED_CTL_OFF);
  1188. if (err)
  1189. return err;
  1190. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1191. MRVL88X2011_GENERAL_CTL);
  1192. if (err < 0)
  1193. return err;
  1194. err |= MRVL88X2011_ENA_XFPREFCLK;
  1195. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1196. MRVL88X2011_GENERAL_CTL, err);
  1197. if (err < 0)
  1198. return err;
  1199. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1200. MRVL88X2011_PMA_PMD_CTL_1);
  1201. if (err < 0)
  1202. return err;
  1203. if (np->link_config.loopback_mode == LOOPBACK_MAC)
  1204. err |= MRVL88X2011_LOOPBACK;
  1205. else
  1206. err &= ~MRVL88X2011_LOOPBACK;
  1207. err = mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1208. MRVL88X2011_PMA_PMD_CTL_1, err);
  1209. if (err < 0)
  1210. return err;
  1211. /* Enable PMD */
  1212. return mdio_write(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1213. MRVL88X2011_10G_PMD_TX_DIS, MRVL88X2011_ENA_PMDTX);
  1214. }
  1215. static int xcvr_diag_bcm870x(struct niu *np)
  1216. {
  1217. u16 analog_stat0, tx_alarm_status;
  1218. int err = 0;
  1219. #if 1
  1220. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1221. MII_STAT1000);
  1222. if (err < 0)
  1223. return err;
  1224. pr_info("Port %u PMA_PMD(MII_STAT1000) [%04x]\n", np->port, err);
  1225. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR, 0x20);
  1226. if (err < 0)
  1227. return err;
  1228. pr_info("Port %u USER_DEV3(0x20) [%04x]\n", np->port, err);
  1229. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1230. MII_NWAYTEST);
  1231. if (err < 0)
  1232. return err;
  1233. pr_info("Port %u PHYXS(MII_NWAYTEST) [%04x]\n", np->port, err);
  1234. #endif
  1235. /* XXX dig this out it might not be so useful XXX */
  1236. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1237. BCM8704_USER_ANALOG_STATUS0);
  1238. if (err < 0)
  1239. return err;
  1240. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1241. BCM8704_USER_ANALOG_STATUS0);
  1242. if (err < 0)
  1243. return err;
  1244. analog_stat0 = err;
  1245. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1246. BCM8704_USER_TX_ALARM_STATUS);
  1247. if (err < 0)
  1248. return err;
  1249. err = mdio_read(np, np->phy_addr, BCM8704_USER_DEV3_ADDR,
  1250. BCM8704_USER_TX_ALARM_STATUS);
  1251. if (err < 0)
  1252. return err;
  1253. tx_alarm_status = err;
  1254. if (analog_stat0 != 0x03fc) {
  1255. if ((analog_stat0 == 0x43bc) && (tx_alarm_status != 0)) {
  1256. pr_info("Port %u cable not connected or bad cable\n",
  1257. np->port);
  1258. } else if (analog_stat0 == 0x639c) {
  1259. pr_info("Port %u optical module is bad or missing\n",
  1260. np->port);
  1261. }
  1262. }
  1263. return 0;
  1264. }
  1265. static int xcvr_10g_set_lb_bcm870x(struct niu *np)
  1266. {
  1267. struct niu_link_config *lp = &np->link_config;
  1268. int err;
  1269. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1270. MII_BMCR);
  1271. if (err < 0)
  1272. return err;
  1273. err &= ~BMCR_LOOPBACK;
  1274. if (lp->loopback_mode == LOOPBACK_MAC)
  1275. err |= BMCR_LOOPBACK;
  1276. err = mdio_write(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1277. MII_BMCR, err);
  1278. if (err)
  1279. return err;
  1280. return 0;
  1281. }
  1282. static int xcvr_init_10g_bcm8706(struct niu *np)
  1283. {
  1284. int err = 0;
  1285. u64 val;
  1286. if ((np->flags & NIU_FLAGS_HOTPLUG_PHY) &&
  1287. (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) == 0)
  1288. return err;
  1289. val = nr64_mac(XMAC_CONFIG);
  1290. val &= ~XMAC_CONFIG_LED_POLARITY;
  1291. val |= XMAC_CONFIG_FORCE_LED_ON;
  1292. nw64_mac(XMAC_CONFIG, val);
  1293. val = nr64(MIF_CONFIG);
  1294. val |= MIF_CONFIG_INDIRECT_MODE;
  1295. nw64(MIF_CONFIG, val);
  1296. err = bcm8704_reset(np);
  1297. if (err)
  1298. return err;
  1299. err = xcvr_10g_set_lb_bcm870x(np);
  1300. if (err)
  1301. return err;
  1302. err = bcm8706_init_user_dev3(np);
  1303. if (err)
  1304. return err;
  1305. err = xcvr_diag_bcm870x(np);
  1306. if (err)
  1307. return err;
  1308. return 0;
  1309. }
  1310. static int xcvr_init_10g_bcm8704(struct niu *np)
  1311. {
  1312. int err;
  1313. err = bcm8704_reset(np);
  1314. if (err)
  1315. return err;
  1316. err = bcm8704_init_user_dev3(np);
  1317. if (err)
  1318. return err;
  1319. err = xcvr_10g_set_lb_bcm870x(np);
  1320. if (err)
  1321. return err;
  1322. err = xcvr_diag_bcm870x(np);
  1323. if (err)
  1324. return err;
  1325. return 0;
  1326. }
  1327. static int xcvr_init_10g(struct niu *np)
  1328. {
  1329. int phy_id, err;
  1330. u64 val;
  1331. val = nr64_mac(XMAC_CONFIG);
  1332. val &= ~XMAC_CONFIG_LED_POLARITY;
  1333. val |= XMAC_CONFIG_FORCE_LED_ON;
  1334. nw64_mac(XMAC_CONFIG, val);
  1335. /* XXX shared resource, lock parent XXX */
  1336. val = nr64(MIF_CONFIG);
  1337. val |= MIF_CONFIG_INDIRECT_MODE;
  1338. nw64(MIF_CONFIG, val);
  1339. phy_id = phy_decode(np->parent->port_phy, np->port);
  1340. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1341. /* handle different phy types */
  1342. switch (phy_id & NIU_PHY_ID_MASK) {
  1343. case NIU_PHY_ID_MRVL88X2011:
  1344. err = xcvr_init_10g_mrvl88x2011(np);
  1345. break;
  1346. default: /* bcom 8704 */
  1347. err = xcvr_init_10g_bcm8704(np);
  1348. break;
  1349. }
  1350. return err;
  1351. }
  1352. static int mii_reset(struct niu *np)
  1353. {
  1354. int limit, err;
  1355. err = mii_write(np, np->phy_addr, MII_BMCR, BMCR_RESET);
  1356. if (err)
  1357. return err;
  1358. limit = 1000;
  1359. while (--limit >= 0) {
  1360. udelay(500);
  1361. err = mii_read(np, np->phy_addr, MII_BMCR);
  1362. if (err < 0)
  1363. return err;
  1364. if (!(err & BMCR_RESET))
  1365. break;
  1366. }
  1367. if (limit < 0) {
  1368. netdev_err(np->dev, "Port %u MII would not reset, bmcr[%04x]\n",
  1369. np->port, err);
  1370. return -ENODEV;
  1371. }
  1372. return 0;
  1373. }
  1374. static int xcvr_init_1g_rgmii(struct niu *np)
  1375. {
  1376. int err;
  1377. u64 val;
  1378. u16 bmcr, bmsr, estat;
  1379. val = nr64(MIF_CONFIG);
  1380. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1381. nw64(MIF_CONFIG, val);
  1382. err = mii_reset(np);
  1383. if (err)
  1384. return err;
  1385. err = mii_read(np, np->phy_addr, MII_BMSR);
  1386. if (err < 0)
  1387. return err;
  1388. bmsr = err;
  1389. estat = 0;
  1390. if (bmsr & BMSR_ESTATEN) {
  1391. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1392. if (err < 0)
  1393. return err;
  1394. estat = err;
  1395. }
  1396. bmcr = 0;
  1397. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1398. if (err)
  1399. return err;
  1400. if (bmsr & BMSR_ESTATEN) {
  1401. u16 ctrl1000 = 0;
  1402. if (estat & ESTATUS_1000_TFULL)
  1403. ctrl1000 |= ADVERTISE_1000FULL;
  1404. err = mii_write(np, np->phy_addr, MII_CTRL1000, ctrl1000);
  1405. if (err)
  1406. return err;
  1407. }
  1408. bmcr = (BMCR_SPEED1000 | BMCR_FULLDPLX);
  1409. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1410. if (err)
  1411. return err;
  1412. err = mii_read(np, np->phy_addr, MII_BMCR);
  1413. if (err < 0)
  1414. return err;
  1415. bmcr = mii_read(np, np->phy_addr, MII_BMCR);
  1416. err = mii_read(np, np->phy_addr, MII_BMSR);
  1417. if (err < 0)
  1418. return err;
  1419. return 0;
  1420. }
  1421. static int mii_init_common(struct niu *np)
  1422. {
  1423. struct niu_link_config *lp = &np->link_config;
  1424. u16 bmcr, bmsr, adv, estat;
  1425. int err;
  1426. err = mii_reset(np);
  1427. if (err)
  1428. return err;
  1429. err = mii_read(np, np->phy_addr, MII_BMSR);
  1430. if (err < 0)
  1431. return err;
  1432. bmsr = err;
  1433. estat = 0;
  1434. if (bmsr & BMSR_ESTATEN) {
  1435. err = mii_read(np, np->phy_addr, MII_ESTATUS);
  1436. if (err < 0)
  1437. return err;
  1438. estat = err;
  1439. }
  1440. bmcr = 0;
  1441. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1442. if (err)
  1443. return err;
  1444. if (lp->loopback_mode == LOOPBACK_MAC) {
  1445. bmcr |= BMCR_LOOPBACK;
  1446. if (lp->active_speed == SPEED_1000)
  1447. bmcr |= BMCR_SPEED1000;
  1448. if (lp->active_duplex == DUPLEX_FULL)
  1449. bmcr |= BMCR_FULLDPLX;
  1450. }
  1451. if (lp->loopback_mode == LOOPBACK_PHY) {
  1452. u16 aux;
  1453. aux = (BCM5464R_AUX_CTL_EXT_LB |
  1454. BCM5464R_AUX_CTL_WRITE_1);
  1455. err = mii_write(np, np->phy_addr, BCM5464R_AUX_CTL, aux);
  1456. if (err)
  1457. return err;
  1458. }
  1459. if (lp->autoneg) {
  1460. u16 ctrl1000;
  1461. adv = ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP;
  1462. if ((bmsr & BMSR_10HALF) &&
  1463. (lp->advertising & ADVERTISED_10baseT_Half))
  1464. adv |= ADVERTISE_10HALF;
  1465. if ((bmsr & BMSR_10FULL) &&
  1466. (lp->advertising & ADVERTISED_10baseT_Full))
  1467. adv |= ADVERTISE_10FULL;
  1468. if ((bmsr & BMSR_100HALF) &&
  1469. (lp->advertising & ADVERTISED_100baseT_Half))
  1470. adv |= ADVERTISE_100HALF;
  1471. if ((bmsr & BMSR_100FULL) &&
  1472. (lp->advertising & ADVERTISED_100baseT_Full))
  1473. adv |= ADVERTISE_100FULL;
  1474. err = mii_write(np, np->phy_addr, MII_ADVERTISE, adv);
  1475. if (err)
  1476. return err;
  1477. if (likely(bmsr & BMSR_ESTATEN)) {
  1478. ctrl1000 = 0;
  1479. if ((estat & ESTATUS_1000_THALF) &&
  1480. (lp->advertising & ADVERTISED_1000baseT_Half))
  1481. ctrl1000 |= ADVERTISE_1000HALF;
  1482. if ((estat & ESTATUS_1000_TFULL) &&
  1483. (lp->advertising & ADVERTISED_1000baseT_Full))
  1484. ctrl1000 |= ADVERTISE_1000FULL;
  1485. err = mii_write(np, np->phy_addr,
  1486. MII_CTRL1000, ctrl1000);
  1487. if (err)
  1488. return err;
  1489. }
  1490. bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
  1491. } else {
  1492. /* !lp->autoneg */
  1493. int fulldpx;
  1494. if (lp->duplex == DUPLEX_FULL) {
  1495. bmcr |= BMCR_FULLDPLX;
  1496. fulldpx = 1;
  1497. } else if (lp->duplex == DUPLEX_HALF)
  1498. fulldpx = 0;
  1499. else
  1500. return -EINVAL;
  1501. if (lp->speed == SPEED_1000) {
  1502. /* if X-full requested while not supported, or
  1503. X-half requested while not supported... */
  1504. if ((fulldpx && !(estat & ESTATUS_1000_TFULL)) ||
  1505. (!fulldpx && !(estat & ESTATUS_1000_THALF)))
  1506. return -EINVAL;
  1507. bmcr |= BMCR_SPEED1000;
  1508. } else if (lp->speed == SPEED_100) {
  1509. if ((fulldpx && !(bmsr & BMSR_100FULL)) ||
  1510. (!fulldpx && !(bmsr & BMSR_100HALF)))
  1511. return -EINVAL;
  1512. bmcr |= BMCR_SPEED100;
  1513. } else if (lp->speed == SPEED_10) {
  1514. if ((fulldpx && !(bmsr & BMSR_10FULL)) ||
  1515. (!fulldpx && !(bmsr & BMSR_10HALF)))
  1516. return -EINVAL;
  1517. } else
  1518. return -EINVAL;
  1519. }
  1520. err = mii_write(np, np->phy_addr, MII_BMCR, bmcr);
  1521. if (err)
  1522. return err;
  1523. #if 0
  1524. err = mii_read(np, np->phy_addr, MII_BMCR);
  1525. if (err < 0)
  1526. return err;
  1527. bmcr = err;
  1528. err = mii_read(np, np->phy_addr, MII_BMSR);
  1529. if (err < 0)
  1530. return err;
  1531. bmsr = err;
  1532. pr_info("Port %u after MII init bmcr[%04x] bmsr[%04x]\n",
  1533. np->port, bmcr, bmsr);
  1534. #endif
  1535. return 0;
  1536. }
  1537. static int xcvr_init_1g(struct niu *np)
  1538. {
  1539. u64 val;
  1540. /* XXX shared resource, lock parent XXX */
  1541. val = nr64(MIF_CONFIG);
  1542. val &= ~MIF_CONFIG_INDIRECT_MODE;
  1543. nw64(MIF_CONFIG, val);
  1544. return mii_init_common(np);
  1545. }
  1546. static int niu_xcvr_init(struct niu *np)
  1547. {
  1548. const struct niu_phy_ops *ops = np->phy_ops;
  1549. int err;
  1550. err = 0;
  1551. if (ops->xcvr_init)
  1552. err = ops->xcvr_init(np);
  1553. return err;
  1554. }
  1555. static int niu_serdes_init(struct niu *np)
  1556. {
  1557. const struct niu_phy_ops *ops = np->phy_ops;
  1558. int err;
  1559. err = 0;
  1560. if (ops->serdes_init)
  1561. err = ops->serdes_init(np);
  1562. return err;
  1563. }
  1564. static void niu_init_xif(struct niu *);
  1565. static void niu_handle_led(struct niu *, int status);
  1566. static int niu_link_status_common(struct niu *np, int link_up)
  1567. {
  1568. struct niu_link_config *lp = &np->link_config;
  1569. struct net_device *dev = np->dev;
  1570. unsigned long flags;
  1571. if (!netif_carrier_ok(dev) && link_up) {
  1572. netif_info(np, link, dev, "Link is up at %s, %s duplex\n",
  1573. lp->active_speed == SPEED_10000 ? "10Gb/sec" :
  1574. lp->active_speed == SPEED_1000 ? "1Gb/sec" :
  1575. lp->active_speed == SPEED_100 ? "100Mbit/sec" :
  1576. "10Mbit/sec",
  1577. lp->active_duplex == DUPLEX_FULL ? "full" : "half");
  1578. spin_lock_irqsave(&np->lock, flags);
  1579. niu_init_xif(np);
  1580. niu_handle_led(np, 1);
  1581. spin_unlock_irqrestore(&np->lock, flags);
  1582. netif_carrier_on(dev);
  1583. } else if (netif_carrier_ok(dev) && !link_up) {
  1584. netif_warn(np, link, dev, "Link is down\n");
  1585. spin_lock_irqsave(&np->lock, flags);
  1586. niu_handle_led(np, 0);
  1587. spin_unlock_irqrestore(&np->lock, flags);
  1588. netif_carrier_off(dev);
  1589. }
  1590. return 0;
  1591. }
  1592. static int link_status_10g_mrvl(struct niu *np, int *link_up_p)
  1593. {
  1594. int err, link_up, pma_status, pcs_status;
  1595. link_up = 0;
  1596. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1597. MRVL88X2011_10G_PMD_STATUS_2);
  1598. if (err < 0)
  1599. goto out;
  1600. /* Check PMA/PMD Register: 1.0001.2 == 1 */
  1601. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV1_ADDR,
  1602. MRVL88X2011_PMA_PMD_STATUS_1);
  1603. if (err < 0)
  1604. goto out;
  1605. pma_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1606. /* Check PMC Register : 3.0001.2 == 1: read twice */
  1607. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1608. MRVL88X2011_PMA_PMD_STATUS_1);
  1609. if (err < 0)
  1610. goto out;
  1611. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV3_ADDR,
  1612. MRVL88X2011_PMA_PMD_STATUS_1);
  1613. if (err < 0)
  1614. goto out;
  1615. pcs_status = ((err & MRVL88X2011_LNK_STATUS_OK) ? 1 : 0);
  1616. /* Check XGXS Register : 4.0018.[0-3,12] */
  1617. err = mdio_read(np, np->phy_addr, MRVL88X2011_USER_DEV4_ADDR,
  1618. MRVL88X2011_10G_XGXS_LANE_STAT);
  1619. if (err < 0)
  1620. goto out;
  1621. if (err == (PHYXS_XGXS_LANE_STAT_ALINGED | PHYXS_XGXS_LANE_STAT_LANE3 |
  1622. PHYXS_XGXS_LANE_STAT_LANE2 | PHYXS_XGXS_LANE_STAT_LANE1 |
  1623. PHYXS_XGXS_LANE_STAT_LANE0 | PHYXS_XGXS_LANE_STAT_MAGIC |
  1624. 0x800))
  1625. link_up = (pma_status && pcs_status) ? 1 : 0;
  1626. np->link_config.active_speed = SPEED_10000;
  1627. np->link_config.active_duplex = DUPLEX_FULL;
  1628. err = 0;
  1629. out:
  1630. mrvl88x2011_act_led(np, (link_up ?
  1631. MRVL88X2011_LED_CTL_PCS_ACT :
  1632. MRVL88X2011_LED_CTL_OFF));
  1633. *link_up_p = link_up;
  1634. return err;
  1635. }
  1636. static int link_status_10g_bcm8706(struct niu *np, int *link_up_p)
  1637. {
  1638. int err, link_up;
  1639. link_up = 0;
  1640. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1641. BCM8704_PMD_RCV_SIGDET);
  1642. if (err < 0 || err == 0xffff)
  1643. goto out;
  1644. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1645. err = 0;
  1646. goto out;
  1647. }
  1648. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1649. BCM8704_PCS_10G_R_STATUS);
  1650. if (err < 0)
  1651. goto out;
  1652. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1653. err = 0;
  1654. goto out;
  1655. }
  1656. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1657. BCM8704_PHYXS_XGXS_LANE_STAT);
  1658. if (err < 0)
  1659. goto out;
  1660. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1661. PHYXS_XGXS_LANE_STAT_MAGIC |
  1662. PHYXS_XGXS_LANE_STAT_PATTEST |
  1663. PHYXS_XGXS_LANE_STAT_LANE3 |
  1664. PHYXS_XGXS_LANE_STAT_LANE2 |
  1665. PHYXS_XGXS_LANE_STAT_LANE1 |
  1666. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1667. err = 0;
  1668. np->link_config.active_speed = SPEED_INVALID;
  1669. np->link_config.active_duplex = DUPLEX_INVALID;
  1670. goto out;
  1671. }
  1672. link_up = 1;
  1673. np->link_config.active_speed = SPEED_10000;
  1674. np->link_config.active_duplex = DUPLEX_FULL;
  1675. err = 0;
  1676. out:
  1677. *link_up_p = link_up;
  1678. return err;
  1679. }
  1680. static int link_status_10g_bcom(struct niu *np, int *link_up_p)
  1681. {
  1682. int err, link_up;
  1683. link_up = 0;
  1684. err = mdio_read(np, np->phy_addr, BCM8704_PMA_PMD_DEV_ADDR,
  1685. BCM8704_PMD_RCV_SIGDET);
  1686. if (err < 0)
  1687. goto out;
  1688. if (!(err & PMD_RCV_SIGDET_GLOBAL)) {
  1689. err = 0;
  1690. goto out;
  1691. }
  1692. err = mdio_read(np, np->phy_addr, BCM8704_PCS_DEV_ADDR,
  1693. BCM8704_PCS_10G_R_STATUS);
  1694. if (err < 0)
  1695. goto out;
  1696. if (!(err & PCS_10G_R_STATUS_BLK_LOCK)) {
  1697. err = 0;
  1698. goto out;
  1699. }
  1700. err = mdio_read(np, np->phy_addr, BCM8704_PHYXS_DEV_ADDR,
  1701. BCM8704_PHYXS_XGXS_LANE_STAT);
  1702. if (err < 0)
  1703. goto out;
  1704. if (err != (PHYXS_XGXS_LANE_STAT_ALINGED |
  1705. PHYXS_XGXS_LANE_STAT_MAGIC |
  1706. PHYXS_XGXS_LANE_STAT_LANE3 |
  1707. PHYXS_XGXS_LANE_STAT_LANE2 |
  1708. PHYXS_XGXS_LANE_STAT_LANE1 |
  1709. PHYXS_XGXS_LANE_STAT_LANE0)) {
  1710. err = 0;
  1711. goto out;
  1712. }
  1713. link_up = 1;
  1714. np->link_config.active_speed = SPEED_10000;
  1715. np->link_config.active_duplex = DUPLEX_FULL;
  1716. err = 0;
  1717. out:
  1718. *link_up_p = link_up;
  1719. return err;
  1720. }
  1721. static int link_status_10g(struct niu *np, int *link_up_p)
  1722. {
  1723. unsigned long flags;
  1724. int err = -EINVAL;
  1725. spin_lock_irqsave(&np->lock, flags);
  1726. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1727. int phy_id;
  1728. phy_id = phy_decode(np->parent->port_phy, np->port);
  1729. phy_id = np->parent->phy_probe_info.phy_id[phy_id][np->port];
  1730. /* handle different phy types */
  1731. switch (phy_id & NIU_PHY_ID_MASK) {
  1732. case NIU_PHY_ID_MRVL88X2011:
  1733. err = link_status_10g_mrvl(np, link_up_p);
  1734. break;
  1735. default: /* bcom 8704 */
  1736. err = link_status_10g_bcom(np, link_up_p);
  1737. break;
  1738. }
  1739. }
  1740. spin_unlock_irqrestore(&np->lock, flags);
  1741. return err;
  1742. }
  1743. static int niu_10g_phy_present(struct niu *np)
  1744. {
  1745. u64 sig, mask, val;
  1746. sig = nr64(ESR_INT_SIGNALS);
  1747. switch (np->port) {
  1748. case 0:
  1749. mask = ESR_INT_SIGNALS_P0_BITS;
  1750. val = (ESR_INT_SRDY0_P0 |
  1751. ESR_INT_DET0_P0 |
  1752. ESR_INT_XSRDY_P0 |
  1753. ESR_INT_XDP_P0_CH3 |
  1754. ESR_INT_XDP_P0_CH2 |
  1755. ESR_INT_XDP_P0_CH1 |
  1756. ESR_INT_XDP_P0_CH0);
  1757. break;
  1758. case 1:
  1759. mask = ESR_INT_SIGNALS_P1_BITS;
  1760. val = (ESR_INT_SRDY0_P1 |
  1761. ESR_INT_DET0_P1 |
  1762. ESR_INT_XSRDY_P1 |
  1763. ESR_INT_XDP_P1_CH3 |
  1764. ESR_INT_XDP_P1_CH2 |
  1765. ESR_INT_XDP_P1_CH1 |
  1766. ESR_INT_XDP_P1_CH0);
  1767. break;
  1768. default:
  1769. return 0;
  1770. }
  1771. if ((sig & mask) != val)
  1772. return 0;
  1773. return 1;
  1774. }
  1775. static int link_status_10g_hotplug(struct niu *np, int *link_up_p)
  1776. {
  1777. unsigned long flags;
  1778. int err = 0;
  1779. int phy_present;
  1780. int phy_present_prev;
  1781. spin_lock_irqsave(&np->lock, flags);
  1782. if (np->link_config.loopback_mode == LOOPBACK_DISABLED) {
  1783. phy_present_prev = (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) ?
  1784. 1 : 0;
  1785. phy_present = niu_10g_phy_present(np);
  1786. if (phy_present != phy_present_prev) {
  1787. /* state change */
  1788. if (phy_present) {
  1789. /* A NEM was just plugged in */
  1790. np->flags |= NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1791. if (np->phy_ops->xcvr_init)
  1792. err = np->phy_ops->xcvr_init(np);
  1793. if (err) {
  1794. err = mdio_read(np, np->phy_addr,
  1795. BCM8704_PHYXS_DEV_ADDR, MII_BMCR);
  1796. if (err == 0xffff) {
  1797. /* No mdio, back-to-back XAUI */
  1798. goto out;
  1799. }
  1800. /* debounce */
  1801. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1802. }
  1803. } else {
  1804. np->flags &= ~NIU_FLAGS_HOTPLUG_PHY_PRESENT;
  1805. *link_up_p = 0;
  1806. netif_warn(np, link, np->dev,
  1807. "Hotplug PHY Removed\n");
  1808. }
  1809. }
  1810. out:
  1811. if (np->flags & NIU_FLAGS_HOTPLUG_PHY_PRESENT) {
  1812. err = link_status_10g_bcm8706(np, link_up_p);
  1813. if (err == 0xffff) {
  1814. /* No mdio, back-to-back XAUI: it is C10NEM */
  1815. *link_up_p = 1;
  1816. np->link_config.active_speed = SPEED_10000;
  1817. np->link_config.active_duplex = DUPLEX_FULL;
  1818. }
  1819. }
  1820. }
  1821. spin_unlock_irqrestore(&np->lock, flags);
  1822. return 0;
  1823. }
  1824. static int niu_link_status(struct niu *np, int *link_up_p)
  1825. {
  1826. const struct niu_phy_ops *ops = np->phy_ops;
  1827. int err;
  1828. err = 0;
  1829. if (ops->link_status)
  1830. err = ops->link_status(np, link_up_p);
  1831. return err;
  1832. }
  1833. static void niu_timer(unsigned long __opaque)
  1834. {
  1835. struct niu *np = (struct niu *) __opaque;
  1836. unsigned long off;
  1837. int err, link_up;
  1838. err = niu_link_status(np, &link_up);
  1839. if (!err)
  1840. niu_link_status_common(np, link_up);
  1841. if (netif_carrier_ok(np->dev))
  1842. off = 5 * HZ;
  1843. else
  1844. off = 1 * HZ;
  1845. np->timer.expires = jiffies + off;
  1846. add_timer(&np->timer);
  1847. }
  1848. static const struct niu_phy_ops phy_ops_10g_serdes = {
  1849. .serdes_init = serdes_init_10g_serdes,
  1850. .link_status = link_status_10g_serdes,
  1851. };
  1852. static const struct niu_phy_ops phy_ops_10g_serdes_niu = {
  1853. .serdes_init = serdes_init_niu_10g_serdes,
  1854. .link_status = link_status_10g_serdes,
  1855. };
  1856. static const struct niu_phy_ops phy_ops_1g_serdes_niu = {
  1857. .serdes_init = serdes_init_niu_1g_serdes,
  1858. .link_status = link_status_1g_serdes,
  1859. };
  1860. static const struct niu_phy_ops phy_ops_1g_rgmii = {
  1861. .xcvr_init = xcvr_init_1g_rgmii,
  1862. .link_status = link_status_1g_rgmii,
  1863. };
  1864. static const struct niu_phy_ops phy_ops_10g_fiber_niu = {
  1865. .serdes_init = serdes_init_niu_10g_fiber,
  1866. .xcvr_init = xcvr_init_10g,
  1867. .link_status = link_status_10g,
  1868. };
  1869. static const struct niu_phy_ops phy_ops_10g_fiber = {
  1870. .serdes_init = serdes_init_10g,
  1871. .xcvr_init = xcvr_init_10g,
  1872. .link_status = link_status_10g,
  1873. };
  1874. static const struct niu_phy_ops phy_ops_10g_fiber_hotplug = {
  1875. .serdes_init = serdes_init_10g,
  1876. .xcvr_init = xcvr_init_10g_bcm8706,
  1877. .link_status = link_status_10g_hotplug,
  1878. };
  1879. static const struct niu_phy_ops phy_ops_niu_10g_hotplug = {
  1880. .serdes_init = serdes_init_niu_10g_fiber,
  1881. .xcvr_init = xcvr_init_10g_bcm8706,
  1882. .link_status = link_status_10g_hotplug,
  1883. };
  1884. static const struct niu_phy_ops phy_ops_10g_copper = {
  1885. .serdes_init = serdes_init_10g,
  1886. .link_status = link_status_10g, /* XXX */
  1887. };
  1888. static const struct niu_phy_ops phy_ops_1g_fiber = {
  1889. .serdes_init = serdes_init_1g,
  1890. .xcvr_init = xcvr_init_1g,
  1891. .link_status = link_status_1g,
  1892. };
  1893. static const struct niu_phy_ops phy_ops_1g_copper = {
  1894. .xcvr_init = xcvr_init_1g,
  1895. .link_status = link_status_1g,
  1896. };
  1897. struct niu_phy_template {
  1898. const struct niu_phy_ops *ops;
  1899. u32 phy_addr_base;
  1900. };
  1901. static const struct niu_phy_template phy_template_niu_10g_fiber = {
  1902. .ops = &phy_ops_10g_fiber_niu,
  1903. .phy_addr_base = 16,
  1904. };
  1905. static const struct niu_phy_template phy_template_niu_10g_serdes = {
  1906. .ops = &phy_ops_10g_serdes_niu,
  1907. .phy_addr_base = 0,
  1908. };
  1909. static const struct niu_phy_template phy_template_niu_1g_serdes = {
  1910. .ops = &phy_ops_1g_serdes_niu,
  1911. .phy_addr_base = 0,
  1912. };
  1913. static const struct niu_phy_template phy_template_10g_fiber = {
  1914. .ops = &phy_ops_10g_fiber,
  1915. .phy_addr_base = 8,
  1916. };
  1917. static const struct niu_phy_template phy_template_10g_fiber_hotplug = {
  1918. .ops = &phy_ops_10g_fiber_hotplug,
  1919. .phy_addr_base = 8,
  1920. };
  1921. static const struct niu_phy_template phy_template_niu_10g_hotplug = {
  1922. .ops = &phy_ops_niu_10g_hotplug,
  1923. .phy_addr_base = 8,
  1924. };
  1925. static const struct niu_phy_template phy_template_10g_copper = {
  1926. .ops = &phy_ops_10g_copper,
  1927. .phy_addr_base = 10,
  1928. };
  1929. static const struct niu_phy_template phy_template_1g_fiber = {
  1930. .ops = &phy_ops_1g_fiber,
  1931. .phy_addr_base = 0,
  1932. };
  1933. static const struct niu_phy_template phy_template_1g_copper = {
  1934. .ops = &phy_ops_1g_copper,
  1935. .phy_addr_base = 0,
  1936. };
  1937. static const struct niu_phy_template phy_template_1g_rgmii = {
  1938. .ops = &phy_ops_1g_rgmii,
  1939. .phy_addr_base = 0,
  1940. };
  1941. static const struct niu_phy_template phy_template_10g_serdes = {
  1942. .ops = &phy_ops_10g_serdes,
  1943. .phy_addr_base = 0,
  1944. };
  1945. static int niu_atca_port_num[4] = {
  1946. 0, 0, 11, 10
  1947. };
  1948. static int serdes_init_10g_serdes(struct niu *np)
  1949. {
  1950. struct niu_link_config *lp = &np->link_config;
  1951. unsigned long ctrl_reg, test_cfg_reg, pll_cfg, i;
  1952. u64 ctrl_val, test_cfg_val, sig, mask, val;
  1953. switch (np->port) {
  1954. case 0:
  1955. ctrl_reg = ENET_SERDES_0_CTRL_CFG;
  1956. test_cfg_reg = ENET_SERDES_0_TEST_CFG;
  1957. pll_cfg = ENET_SERDES_0_PLL_CFG;
  1958. break;
  1959. case 1:
  1960. ctrl_reg = ENET_SERDES_1_CTRL_CFG;
  1961. test_cfg_reg = ENET_SERDES_1_TEST_CFG;
  1962. pll_cfg = ENET_SERDES_1_PLL_CFG;
  1963. break;
  1964. default:
  1965. return -EINVAL;
  1966. }
  1967. ctrl_val = (ENET_SERDES_CTRL_SDET_0 |
  1968. ENET_SERDES_CTRL_SDET_1 |
  1969. ENET_SERDES_CTRL_SDET_2 |
  1970. ENET_SERDES_CTRL_SDET_3 |
  1971. (0x5 << ENET_SERDES_CTRL_EMPH_0_SHIFT) |
  1972. (0x5 << ENET_SERDES_CTRL_EMPH_1_SHIFT) |
  1973. (0x5 << ENET_SERDES_CTRL_EMPH_2_SHIFT) |
  1974. (0x5 << ENET_SERDES_CTRL_EMPH_3_SHIFT) |
  1975. (0x1 << ENET_SERDES_CTRL_LADJ_0_SHIFT) |
  1976. (0x1 << ENET_SERDES_CTRL_LADJ_1_SHIFT) |
  1977. (0x1 << ENET_SERDES_CTRL_LADJ_2_SHIFT) |
  1978. (0x1 << ENET_SERDES_CTRL_LADJ_3_SHIFT));
  1979. test_cfg_val = 0;
  1980. if (lp->loopback_mode == LOOPBACK_PHY) {
  1981. test_cfg_val |= ((ENET_TEST_MD_PAD_LOOPBACK <<
  1982. ENET_SERDES_TEST_MD_0_SHIFT) |
  1983. (ENET_TEST_MD_PAD_LOOPBACK <<
  1984. ENET_SERDES_TEST_MD_1_SHIFT) |
  1985. (ENET_TEST_MD_PAD_LOOPBACK <<
  1986. ENET_SERDES_TEST_MD_2_SHIFT) |
  1987. (ENET_TEST_MD_PAD_LOOPBACK <<
  1988. ENET_SERDES_TEST_MD_3_SHIFT));
  1989. }
  1990. esr_reset(np);
  1991. nw64(pll_cfg, ENET_SERDES_PLL_FBDIV2);
  1992. nw64(ctrl_reg, ctrl_val);
  1993. nw64(test_cfg_reg, test_cfg_val);
  1994. /* Initialize all 4 lanes of the SERDES. */
  1995. for (i = 0; i < 4; i++) {
  1996. u32 rxtx_ctrl, glue0;
  1997. int err;
  1998. err = esr_read_rxtx_ctrl(np, i, &rxtx_ctrl);
  1999. if (err)
  2000. return err;
  2001. err = esr_read_glue0(np, i, &glue0);
  2002. if (err)
  2003. return err;
  2004. rxtx_ctrl &= ~(ESR_RXTX_CTRL_VMUXLO);
  2005. rxtx_ctrl |= (ESR_RXTX_CTRL_ENSTRETCH |
  2006. (2 << ESR_RXTX_CTRL_VMUXLO_SHIFT));
  2007. glue0 &= ~(ESR_GLUE_CTRL0_SRATE |
  2008. ESR_GLUE_CTRL0_THCNT |
  2009. ESR_GLUE_CTRL0_BLTIME);
  2010. glue0 |= (ESR_GLUE_CTRL0_RXLOSENAB |
  2011. (0xf << ESR_GLUE_CTRL0_SRATE_SHIFT) |
  2012. (0xff << ESR_GLUE_CTRL0_THCNT_SHIFT) |
  2013. (BLTIME_300_CYCLES <<
  2014. ESR_GLUE_CTRL0_BLTIME_SHIFT));
  2015. err = esr_write_rxtx_ctrl(np, i, rxtx_ctrl);
  2016. if (err)
  2017. return err;
  2018. err = esr_write_glue0(np, i, glue0);
  2019. if (err)
  2020. return err;
  2021. }
  2022. sig = nr64(ESR_INT_SIGNALS);
  2023. switch (np->port) {
  2024. case 0:
  2025. mask = ESR_INT_SIGNALS_P0_BITS;
  2026. val = (ESR_INT_SRDY0_P0 |
  2027. ESR_INT_DET0_P0 |
  2028. ESR_INT_XSRDY_P0 |
  2029. ESR_INT_XDP_P0_CH3 |
  2030. ESR_INT_XDP_P0_CH2 |
  2031. ESR_INT_XDP_P0_CH1 |
  2032. ESR_INT_XDP_P0_CH0);
  2033. break;
  2034. case 1:
  2035. mask = ESR_INT_SIGNALS_P1_BITS;
  2036. val = (ESR_INT_SRDY0_P1 |
  2037. ESR_INT_DET0_P1 |
  2038. ESR_INT_XSRDY_P1 |
  2039. ESR_INT_XDP_P1_CH3 |
  2040. ESR_INT_XDP_P1_CH2 |
  2041. ESR_INT_XDP_P1_CH1 |
  2042. ESR_INT_XDP_P1_CH0);
  2043. break;
  2044. default:
  2045. return -EINVAL;
  2046. }
  2047. if ((sig & mask) != val) {
  2048. int err;
  2049. err = serdes_init_1g_serdes(np);
  2050. if (!err) {
  2051. np->flags &= ~NIU_FLAGS_10G;
  2052. np->mac_xcvr = MAC_XCVR_PCS;
  2053. } else {
  2054. netdev_err(np->dev, "Port %u 10G/1G SERDES Link Failed\n",
  2055. np->port);
  2056. return -ENODEV;
  2057. }
  2058. }
  2059. return 0;
  2060. }
  2061. static int niu_determine_phy_disposition(struct niu *np)
  2062. {
  2063. struct niu_parent *parent = np->parent;
  2064. u8 plat_type = parent->plat_type;
  2065. const struct niu_phy_template *tp;
  2066. u32 phy_addr_off = 0;
  2067. if (plat_type == PLAT_TYPE_NIU) {
  2068. switch (np->flags &
  2069. (NIU_FLAGS_10G |
  2070. NIU_FLAGS_FIBER |
  2071. NIU_FLAGS_XCVR_SERDES)) {
  2072. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2073. /* 10G Serdes */
  2074. tp = &phy_template_niu_10g_serdes;
  2075. break;
  2076. case NIU_FLAGS_XCVR_SERDES:
  2077. /* 1G Serdes */
  2078. tp = &phy_template_niu_1g_serdes;
  2079. break;
  2080. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2081. /* 10G Fiber */
  2082. default:
  2083. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2084. tp = &phy_template_niu_10g_hotplug;
  2085. if (np->port == 0)
  2086. phy_addr_off = 8;
  2087. if (np->port == 1)
  2088. phy_addr_off = 12;
  2089. } else {
  2090. tp = &phy_template_niu_10g_fiber;
  2091. phy_addr_off += np->port;
  2092. }
  2093. break;
  2094. }
  2095. } else {
  2096. switch (np->flags &
  2097. (NIU_FLAGS_10G |
  2098. NIU_FLAGS_FIBER |
  2099. NIU_FLAGS_XCVR_SERDES)) {
  2100. case 0:
  2101. /* 1G copper */
  2102. tp = &phy_template_1g_copper;
  2103. if (plat_type == PLAT_TYPE_VF_P0)
  2104. phy_addr_off = 10;
  2105. else if (plat_type == PLAT_TYPE_VF_P1)
  2106. phy_addr_off = 26;
  2107. phy_addr_off += (np->port ^ 0x3);
  2108. break;
  2109. case NIU_FLAGS_10G:
  2110. /* 10G copper */
  2111. tp = &phy_template_10g_copper;
  2112. break;
  2113. case NIU_FLAGS_FIBER:
  2114. /* 1G fiber */
  2115. tp = &phy_template_1g_fiber;
  2116. break;
  2117. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  2118. /* 10G fiber */
  2119. tp = &phy_template_10g_fiber;
  2120. if (plat_type == PLAT_TYPE_VF_P0 ||
  2121. plat_type == PLAT_TYPE_VF_P1)
  2122. phy_addr_off = 8;
  2123. phy_addr_off += np->port;
  2124. if (np->flags & NIU_FLAGS_HOTPLUG_PHY) {
  2125. tp = &phy_template_10g_fiber_hotplug;
  2126. if (np->port == 0)
  2127. phy_addr_off = 8;
  2128. if (np->port == 1)
  2129. phy_addr_off = 12;
  2130. }
  2131. break;
  2132. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  2133. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  2134. case NIU_FLAGS_XCVR_SERDES:
  2135. switch(np->port) {
  2136. case 0:
  2137. case 1:
  2138. tp = &phy_template_10g_serdes;
  2139. break;
  2140. case 2:
  2141. case 3:
  2142. tp = &phy_template_1g_rgmii;
  2143. break;
  2144. default:
  2145. return -EINVAL;
  2146. break;
  2147. }
  2148. phy_addr_off = niu_atca_port_num[np->port];
  2149. break;
  2150. default:
  2151. return -EINVAL;
  2152. }
  2153. }
  2154. np->phy_ops = tp->ops;
  2155. np->phy_addr = tp->phy_addr_base + phy_addr_off;
  2156. return 0;
  2157. }
  2158. static int niu_init_link(struct niu *np)
  2159. {
  2160. struct niu_parent *parent = np->parent;
  2161. int err, ignore;
  2162. if (parent->plat_type == PLAT_TYPE_NIU) {
  2163. err = niu_xcvr_init(np);
  2164. if (err)
  2165. return err;
  2166. msleep(200);
  2167. }
  2168. err = niu_serdes_init(np);
  2169. if (err && !(np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2170. return err;
  2171. msleep(200);
  2172. err = niu_xcvr_init(np);
  2173. if (!err || (np->flags & NIU_FLAGS_HOTPLUG_PHY))
  2174. niu_link_status(np, &ignore);
  2175. return 0;
  2176. }
  2177. static void niu_set_primary_mac(struct niu *np, unsigned char *addr)
  2178. {
  2179. u16 reg0 = addr[4] << 8 | addr[5];
  2180. u16 reg1 = addr[2] << 8 | addr[3];
  2181. u16 reg2 = addr[0] << 8 | addr[1];
  2182. if (np->flags & NIU_FLAGS_XMAC) {
  2183. nw64_mac(XMAC_ADDR0, reg0);
  2184. nw64_mac(XMAC_ADDR1, reg1);
  2185. nw64_mac(XMAC_ADDR2, reg2);
  2186. } else {
  2187. nw64_mac(BMAC_ADDR0, reg0);
  2188. nw64_mac(BMAC_ADDR1, reg1);
  2189. nw64_mac(BMAC_ADDR2, reg2);
  2190. }
  2191. }
  2192. static int niu_num_alt_addr(struct niu *np)
  2193. {
  2194. if (np->flags & NIU_FLAGS_XMAC)
  2195. return XMAC_NUM_ALT_ADDR;
  2196. else
  2197. return BMAC_NUM_ALT_ADDR;
  2198. }
  2199. static int niu_set_alt_mac(struct niu *np, int index, unsigned char *addr)
  2200. {
  2201. u16 reg0 = addr[4] << 8 | addr[5];
  2202. u16 reg1 = addr[2] << 8 | addr[3];
  2203. u16 reg2 = addr[0] << 8 | addr[1];
  2204. if (index >= niu_num_alt_addr(np))
  2205. return -EINVAL;
  2206. if (np->flags & NIU_FLAGS_XMAC) {
  2207. nw64_mac(XMAC_ALT_ADDR0(index), reg0);
  2208. nw64_mac(XMAC_ALT_ADDR1(index), reg1);
  2209. nw64_mac(XMAC_ALT_ADDR2(index), reg2);
  2210. } else {
  2211. nw64_mac(BMAC_ALT_ADDR0(index), reg0);
  2212. nw64_mac(BMAC_ALT_ADDR1(index), reg1);
  2213. nw64_mac(BMAC_ALT_ADDR2(index), reg2);
  2214. }
  2215. return 0;
  2216. }
  2217. static int niu_enable_alt_mac(struct niu *np, int index, int on)
  2218. {
  2219. unsigned long reg;
  2220. u64 val, mask;
  2221. if (index >= niu_num_alt_addr(np))
  2222. return -EINVAL;
  2223. if (np->flags & NIU_FLAGS_XMAC) {
  2224. reg = XMAC_ADDR_CMPEN;
  2225. mask = 1 << index;
  2226. } else {
  2227. reg = BMAC_ADDR_CMPEN;
  2228. mask = 1 << (index + 1);
  2229. }
  2230. val = nr64_mac(reg);
  2231. if (on)
  2232. val |= mask;
  2233. else
  2234. val &= ~mask;
  2235. nw64_mac(reg, val);
  2236. return 0;
  2237. }
  2238. static void __set_rdc_table_num_hw(struct niu *np, unsigned long reg,
  2239. int num, int mac_pref)
  2240. {
  2241. u64 val = nr64_mac(reg);
  2242. val &= ~(HOST_INFO_MACRDCTBLN | HOST_INFO_MPR);
  2243. val |= num;
  2244. if (mac_pref)
  2245. val |= HOST_INFO_MPR;
  2246. nw64_mac(reg, val);
  2247. }
  2248. static int __set_rdc_table_num(struct niu *np,
  2249. int xmac_index, int bmac_index,
  2250. int rdc_table_num, int mac_pref)
  2251. {
  2252. unsigned long reg;
  2253. if (rdc_table_num & ~HOST_INFO_MACRDCTBLN)
  2254. return -EINVAL;
  2255. if (np->flags & NIU_FLAGS_XMAC)
  2256. reg = XMAC_HOST_INFO(xmac_index);
  2257. else
  2258. reg = BMAC_HOST_INFO(bmac_index);
  2259. __set_rdc_table_num_hw(np, reg, rdc_table_num, mac_pref);
  2260. return 0;
  2261. }
  2262. static int niu_set_primary_mac_rdc_table(struct niu *np, int table_num,
  2263. int mac_pref)
  2264. {
  2265. return __set_rdc_table_num(np, 17, 0, table_num, mac_pref);
  2266. }
  2267. static int niu_set_multicast_mac_rdc_table(struct niu *np, int table_num,
  2268. int mac_pref)
  2269. {
  2270. return __set_rdc_table_num(np, 16, 8, table_num, mac_pref);
  2271. }
  2272. static int niu_set_alt_mac_rdc_table(struct niu *np, int idx,
  2273. int table_num, int mac_pref)
  2274. {
  2275. if (idx >= niu_num_alt_addr(np))
  2276. return -EINVAL;
  2277. return __set_rdc_table_num(np, idx, idx + 1, table_num, mac_pref);
  2278. }
  2279. static u64 vlan_entry_set_parity(u64 reg_val)
  2280. {
  2281. u64 port01_mask;
  2282. u64 port23_mask;
  2283. port01_mask = 0x00ff;
  2284. port23_mask = 0xff00;
  2285. if (hweight64(reg_val & port01_mask) & 1)
  2286. reg_val |= ENET_VLAN_TBL_PARITY0;
  2287. else
  2288. reg_val &= ~ENET_VLAN_TBL_PARITY0;
  2289. if (hweight64(reg_val & port23_mask) & 1)
  2290. reg_val |= ENET_VLAN_TBL_PARITY1;
  2291. else
  2292. reg_val &= ~ENET_VLAN_TBL_PARITY1;
  2293. return reg_val;
  2294. }
  2295. static void vlan_tbl_write(struct niu *np, unsigned long index,
  2296. int port, int vpr, int rdc_table)
  2297. {
  2298. u64 reg_val = nr64(ENET_VLAN_TBL(index));
  2299. reg_val &= ~((ENET_VLAN_TBL_VPR |
  2300. ENET_VLAN_TBL_VLANRDCTBLN) <<
  2301. ENET_VLAN_TBL_SHIFT(port));
  2302. if (vpr)
  2303. reg_val |= (ENET_VLAN_TBL_VPR <<
  2304. ENET_VLAN_TBL_SHIFT(port));
  2305. reg_val |= (rdc_table << ENET_VLAN_TBL_SHIFT(port));
  2306. reg_val = vlan_entry_set_parity(reg_val);
  2307. nw64(ENET_VLAN_TBL(index), reg_val);
  2308. }
  2309. static void vlan_tbl_clear(struct niu *np)
  2310. {
  2311. int i;
  2312. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++)
  2313. nw64(ENET_VLAN_TBL(i), 0);
  2314. }
  2315. static int tcam_wait_bit(struct niu *np, u64 bit)
  2316. {
  2317. int limit = 1000;
  2318. while (--limit > 0) {
  2319. if (nr64(TCAM_CTL) & bit)
  2320. break;
  2321. udelay(1);
  2322. }
  2323. if (limit <= 0)
  2324. return -ENODEV;
  2325. return 0;
  2326. }
  2327. static int tcam_flush(struct niu *np, int index)
  2328. {
  2329. nw64(TCAM_KEY_0, 0x00);
  2330. nw64(TCAM_KEY_MASK_0, 0xff);
  2331. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2332. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2333. }
  2334. #if 0
  2335. static int tcam_read(struct niu *np, int index,
  2336. u64 *key, u64 *mask)
  2337. {
  2338. int err;
  2339. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_READ | index));
  2340. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2341. if (!err) {
  2342. key[0] = nr64(TCAM_KEY_0);
  2343. key[1] = nr64(TCAM_KEY_1);
  2344. key[2] = nr64(TCAM_KEY_2);
  2345. key[3] = nr64(TCAM_KEY_3);
  2346. mask[0] = nr64(TCAM_KEY_MASK_0);
  2347. mask[1] = nr64(TCAM_KEY_MASK_1);
  2348. mask[2] = nr64(TCAM_KEY_MASK_2);
  2349. mask[3] = nr64(TCAM_KEY_MASK_3);
  2350. }
  2351. return err;
  2352. }
  2353. #endif
  2354. static int tcam_write(struct niu *np, int index,
  2355. u64 *key, u64 *mask)
  2356. {
  2357. nw64(TCAM_KEY_0, key[0]);
  2358. nw64(TCAM_KEY_1, key[1]);
  2359. nw64(TCAM_KEY_2, key[2]);
  2360. nw64(TCAM_KEY_3, key[3]);
  2361. nw64(TCAM_KEY_MASK_0, mask[0]);
  2362. nw64(TCAM_KEY_MASK_1, mask[1]);
  2363. nw64(TCAM_KEY_MASK_2, mask[2]);
  2364. nw64(TCAM_KEY_MASK_3, mask[3]);
  2365. nw64(TCAM_CTL, (TCAM_CTL_RWC_TCAM_WRITE | index));
  2366. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2367. }
  2368. #if 0
  2369. static int tcam_assoc_read(struct niu *np, int index, u64 *data)
  2370. {
  2371. int err;
  2372. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_READ | index));
  2373. err = tcam_wait_bit(np, TCAM_CTL_STAT);
  2374. if (!err)
  2375. *data = nr64(TCAM_KEY_1);
  2376. return err;
  2377. }
  2378. #endif
  2379. static int tcam_assoc_write(struct niu *np, int index, u64 assoc_data)
  2380. {
  2381. nw64(TCAM_KEY_1, assoc_data);
  2382. nw64(TCAM_CTL, (TCAM_CTL_RWC_RAM_WRITE | index));
  2383. return tcam_wait_bit(np, TCAM_CTL_STAT);
  2384. }
  2385. static void tcam_enable(struct niu *np, int on)
  2386. {
  2387. u64 val = nr64(FFLP_CFG_1);
  2388. if (on)
  2389. val &= ~FFLP_CFG_1_TCAM_DIS;
  2390. else
  2391. val |= FFLP_CFG_1_TCAM_DIS;
  2392. nw64(FFLP_CFG_1, val);
  2393. }
  2394. static void tcam_set_lat_and_ratio(struct niu *np, u64 latency, u64 ratio)
  2395. {
  2396. u64 val = nr64(FFLP_CFG_1);
  2397. val &= ~(FFLP_CFG_1_FFLPINITDONE |
  2398. FFLP_CFG_1_CAMLAT |
  2399. FFLP_CFG_1_CAMRATIO);
  2400. val |= (latency << FFLP_CFG_1_CAMLAT_SHIFT);
  2401. val |= (ratio << FFLP_CFG_1_CAMRATIO_SHIFT);
  2402. nw64(FFLP_CFG_1, val);
  2403. val = nr64(FFLP_CFG_1);
  2404. val |= FFLP_CFG_1_FFLPINITDONE;
  2405. nw64(FFLP_CFG_1, val);
  2406. }
  2407. static int tcam_user_eth_class_enable(struct niu *np, unsigned long class,
  2408. int on)
  2409. {
  2410. unsigned long reg;
  2411. u64 val;
  2412. if (class < CLASS_CODE_ETHERTYPE1 ||
  2413. class > CLASS_CODE_ETHERTYPE2)
  2414. return -EINVAL;
  2415. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2416. val = nr64(reg);
  2417. if (on)
  2418. val |= L2_CLS_VLD;
  2419. else
  2420. val &= ~L2_CLS_VLD;
  2421. nw64(reg, val);
  2422. return 0;
  2423. }
  2424. #if 0
  2425. static int tcam_user_eth_class_set(struct niu *np, unsigned long class,
  2426. u64 ether_type)
  2427. {
  2428. unsigned long reg;
  2429. u64 val;
  2430. if (class < CLASS_CODE_ETHERTYPE1 ||
  2431. class > CLASS_CODE_ETHERTYPE2 ||
  2432. (ether_type & ~(u64)0xffff) != 0)
  2433. return -EINVAL;
  2434. reg = L2_CLS(class - CLASS_CODE_ETHERTYPE1);
  2435. val = nr64(reg);
  2436. val &= ~L2_CLS_ETYPE;
  2437. val |= (ether_type << L2_CLS_ETYPE_SHIFT);
  2438. nw64(reg, val);
  2439. return 0;
  2440. }
  2441. #endif
  2442. static int tcam_user_ip_class_enable(struct niu *np, unsigned long class,
  2443. int on)
  2444. {
  2445. unsigned long reg;
  2446. u64 val;
  2447. if (class < CLASS_CODE_USER_PROG1 ||
  2448. class > CLASS_CODE_USER_PROG4)
  2449. return -EINVAL;
  2450. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2451. val = nr64(reg);
  2452. if (on)
  2453. val |= L3_CLS_VALID;
  2454. else
  2455. val &= ~L3_CLS_VALID;
  2456. nw64(reg, val);
  2457. return 0;
  2458. }
  2459. static int tcam_user_ip_class_set(struct niu *np, unsigned long class,
  2460. int ipv6, u64 protocol_id,
  2461. u64 tos_mask, u64 tos_val)
  2462. {
  2463. unsigned long reg;
  2464. u64 val;
  2465. if (class < CLASS_CODE_USER_PROG1 ||
  2466. class > CLASS_CODE_USER_PROG4 ||
  2467. (protocol_id & ~(u64)0xff) != 0 ||
  2468. (tos_mask & ~(u64)0xff) != 0 ||
  2469. (tos_val & ~(u64)0xff) != 0)
  2470. return -EINVAL;
  2471. reg = L3_CLS(class - CLASS_CODE_USER_PROG1);
  2472. val = nr64(reg);
  2473. val &= ~(L3_CLS_IPVER | L3_CLS_PID |
  2474. L3_CLS_TOSMASK | L3_CLS_TOS);
  2475. if (ipv6)
  2476. val |= L3_CLS_IPVER;
  2477. val |= (protocol_id << L3_CLS_PID_SHIFT);
  2478. val |= (tos_mask << L3_CLS_TOSMASK_SHIFT);
  2479. val |= (tos_val << L3_CLS_TOS_SHIFT);
  2480. nw64(reg, val);
  2481. return 0;
  2482. }
  2483. static int tcam_early_init(struct niu *np)
  2484. {
  2485. unsigned long i;
  2486. int err;
  2487. tcam_enable(np, 0);
  2488. tcam_set_lat_and_ratio(np,
  2489. DEFAULT_TCAM_LATENCY,
  2490. DEFAULT_TCAM_ACCESS_RATIO);
  2491. for (i = CLASS_CODE_ETHERTYPE1; i <= CLASS_CODE_ETHERTYPE2; i++) {
  2492. err = tcam_user_eth_class_enable(np, i, 0);
  2493. if (err)
  2494. return err;
  2495. }
  2496. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_USER_PROG4; i++) {
  2497. err = tcam_user_ip_class_enable(np, i, 0);
  2498. if (err)
  2499. return err;
  2500. }
  2501. return 0;
  2502. }
  2503. static int tcam_flush_all(struct niu *np)
  2504. {
  2505. unsigned long i;
  2506. for (i = 0; i < np->parent->tcam_num_entries; i++) {
  2507. int err = tcam_flush(np, i);
  2508. if (err)
  2509. return err;
  2510. }
  2511. return 0;
  2512. }
  2513. static u64 hash_addr_regval(unsigned long index, unsigned long num_entries)
  2514. {
  2515. return (u64)index | (num_entries == 1 ? HASH_TBL_ADDR_AUTOINC : 0);
  2516. }
  2517. #if 0
  2518. static int hash_read(struct niu *np, unsigned long partition,
  2519. unsigned long index, unsigned long num_entries,
  2520. u64 *data)
  2521. {
  2522. u64 val = hash_addr_regval(index, num_entries);
  2523. unsigned long i;
  2524. if (partition >= FCRAM_NUM_PARTITIONS ||
  2525. index + num_entries > FCRAM_SIZE)
  2526. return -EINVAL;
  2527. nw64(HASH_TBL_ADDR(partition), val);
  2528. for (i = 0; i < num_entries; i++)
  2529. data[i] = nr64(HASH_TBL_DATA(partition));
  2530. return 0;
  2531. }
  2532. #endif
  2533. static int hash_write(struct niu *np, unsigned long partition,
  2534. unsigned long index, unsigned long num_entries,
  2535. u64 *data)
  2536. {
  2537. u64 val = hash_addr_regval(index, num_entries);
  2538. unsigned long i;
  2539. if (partition >= FCRAM_NUM_PARTITIONS ||
  2540. index + (num_entries * 8) > FCRAM_SIZE)
  2541. return -EINVAL;
  2542. nw64(HASH_TBL_ADDR(partition), val);
  2543. for (i = 0; i < num_entries; i++)
  2544. nw64(HASH_TBL_DATA(partition), data[i]);
  2545. return 0;
  2546. }
  2547. static void fflp_reset(struct niu *np)
  2548. {
  2549. u64 val;
  2550. nw64(FFLP_CFG_1, FFLP_CFG_1_PIO_FIO_RST);
  2551. udelay(10);
  2552. nw64(FFLP_CFG_1, 0);
  2553. val = FFLP_CFG_1_FCRAMOUTDR_NORMAL | FFLP_CFG_1_FFLPINITDONE;
  2554. nw64(FFLP_CFG_1, val);
  2555. }
  2556. static void fflp_set_timings(struct niu *np)
  2557. {
  2558. u64 val = nr64(FFLP_CFG_1);
  2559. val &= ~FFLP_CFG_1_FFLPINITDONE;
  2560. val |= (DEFAULT_FCRAMRATIO << FFLP_CFG_1_FCRAMRATIO_SHIFT);
  2561. nw64(FFLP_CFG_1, val);
  2562. val = nr64(FFLP_CFG_1);
  2563. val |= FFLP_CFG_1_FFLPINITDONE;
  2564. nw64(FFLP_CFG_1, val);
  2565. val = nr64(FCRAM_REF_TMR);
  2566. val &= ~(FCRAM_REF_TMR_MAX | FCRAM_REF_TMR_MIN);
  2567. val |= (DEFAULT_FCRAM_REFRESH_MAX << FCRAM_REF_TMR_MAX_SHIFT);
  2568. val |= (DEFAULT_FCRAM_REFRESH_MIN << FCRAM_REF_TMR_MIN_SHIFT);
  2569. nw64(FCRAM_REF_TMR, val);
  2570. }
  2571. static int fflp_set_partition(struct niu *np, u64 partition,
  2572. u64 mask, u64 base, int enable)
  2573. {
  2574. unsigned long reg;
  2575. u64 val;
  2576. if (partition >= FCRAM_NUM_PARTITIONS ||
  2577. (mask & ~(u64)0x1f) != 0 ||
  2578. (base & ~(u64)0x1f) != 0)
  2579. return -EINVAL;
  2580. reg = FLW_PRT_SEL(partition);
  2581. val = nr64(reg);
  2582. val &= ~(FLW_PRT_SEL_EXT | FLW_PRT_SEL_MASK | FLW_PRT_SEL_BASE);
  2583. val |= (mask << FLW_PRT_SEL_MASK_SHIFT);
  2584. val |= (base << FLW_PRT_SEL_BASE_SHIFT);
  2585. if (enable)
  2586. val |= FLW_PRT_SEL_EXT;
  2587. nw64(reg, val);
  2588. return 0;
  2589. }
  2590. static int fflp_disable_all_partitions(struct niu *np)
  2591. {
  2592. unsigned long i;
  2593. for (i = 0; i < FCRAM_NUM_PARTITIONS; i++) {
  2594. int err = fflp_set_partition(np, 0, 0, 0, 0);
  2595. if (err)
  2596. return err;
  2597. }
  2598. return 0;
  2599. }
  2600. static void fflp_llcsnap_enable(struct niu *np, int on)
  2601. {
  2602. u64 val = nr64(FFLP_CFG_1);
  2603. if (on)
  2604. val |= FFLP_CFG_1_LLCSNAP;
  2605. else
  2606. val &= ~FFLP_CFG_1_LLCSNAP;
  2607. nw64(FFLP_CFG_1, val);
  2608. }
  2609. static void fflp_errors_enable(struct niu *np, int on)
  2610. {
  2611. u64 val = nr64(FFLP_CFG_1);
  2612. if (on)
  2613. val &= ~FFLP_CFG_1_ERRORDIS;
  2614. else
  2615. val |= FFLP_CFG_1_ERRORDIS;
  2616. nw64(FFLP_CFG_1, val);
  2617. }
  2618. static int fflp_hash_clear(struct niu *np)
  2619. {
  2620. struct fcram_hash_ipv4 ent;
  2621. unsigned long i;
  2622. /* IPV4 hash entry with valid bit clear, rest is don't care. */
  2623. memset(&ent, 0, sizeof(ent));
  2624. ent.header = HASH_HEADER_EXT;
  2625. for (i = 0; i < FCRAM_SIZE; i += sizeof(ent)) {
  2626. int err = hash_write(np, 0, i, 1, (u64 *) &ent);
  2627. if (err)
  2628. return err;
  2629. }
  2630. return 0;
  2631. }
  2632. static int fflp_early_init(struct niu *np)
  2633. {
  2634. struct niu_parent *parent;
  2635. unsigned long flags;
  2636. int err;
  2637. niu_lock_parent(np, flags);
  2638. parent = np->parent;
  2639. err = 0;
  2640. if (!(parent->flags & PARENT_FLGS_CLS_HWINIT)) {
  2641. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2642. fflp_reset(np);
  2643. fflp_set_timings(np);
  2644. err = fflp_disable_all_partitions(np);
  2645. if (err) {
  2646. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2647. "fflp_disable_all_partitions failed, err=%d\n",
  2648. err);
  2649. goto out;
  2650. }
  2651. }
  2652. err = tcam_early_init(np);
  2653. if (err) {
  2654. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2655. "tcam_early_init failed, err=%d\n", err);
  2656. goto out;
  2657. }
  2658. fflp_llcsnap_enable(np, 1);
  2659. fflp_errors_enable(np, 0);
  2660. nw64(H1POLY, 0);
  2661. nw64(H2POLY, 0);
  2662. err = tcam_flush_all(np);
  2663. if (err) {
  2664. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2665. "tcam_flush_all failed, err=%d\n", err);
  2666. goto out;
  2667. }
  2668. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  2669. err = fflp_hash_clear(np);
  2670. if (err) {
  2671. netif_printk(np, probe, KERN_DEBUG, np->dev,
  2672. "fflp_hash_clear failed, err=%d\n",
  2673. err);
  2674. goto out;
  2675. }
  2676. }
  2677. vlan_tbl_clear(np);
  2678. parent->flags |= PARENT_FLGS_CLS_HWINIT;
  2679. }
  2680. out:
  2681. niu_unlock_parent(np, flags);
  2682. return err;
  2683. }
  2684. static int niu_set_flow_key(struct niu *np, unsigned long class_code, u64 key)
  2685. {
  2686. if (class_code < CLASS_CODE_USER_PROG1 ||
  2687. class_code > CLASS_CODE_SCTP_IPV6)
  2688. return -EINVAL;
  2689. nw64(FLOW_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2690. return 0;
  2691. }
  2692. static int niu_set_tcam_key(struct niu *np, unsigned long class_code, u64 key)
  2693. {
  2694. if (class_code < CLASS_CODE_USER_PROG1 ||
  2695. class_code > CLASS_CODE_SCTP_IPV6)
  2696. return -EINVAL;
  2697. nw64(TCAM_KEY(class_code - CLASS_CODE_USER_PROG1), key);
  2698. return 0;
  2699. }
  2700. /* Entries for the ports are interleaved in the TCAM */
  2701. static u16 tcam_get_index(struct niu *np, u16 idx)
  2702. {
  2703. /* One entry reserved for IP fragment rule */
  2704. if (idx >= (np->clas.tcam_sz - 1))
  2705. idx = 0;
  2706. return np->clas.tcam_top + ((idx+1) * np->parent->num_ports);
  2707. }
  2708. static u16 tcam_get_size(struct niu *np)
  2709. {
  2710. /* One entry reserved for IP fragment rule */
  2711. return np->clas.tcam_sz - 1;
  2712. }
  2713. static u16 tcam_get_valid_entry_cnt(struct niu *np)
  2714. {
  2715. /* One entry reserved for IP fragment rule */
  2716. return np->clas.tcam_valid_entries - 1;
  2717. }
  2718. static void niu_rx_skb_append(struct sk_buff *skb, struct page *page,
  2719. u32 offset, u32 size, u32 truesize)
  2720. {
  2721. skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags, page, offset, size);
  2722. skb->len += size;
  2723. skb->data_len += size;
  2724. skb->truesize += truesize;
  2725. }
  2726. static unsigned int niu_hash_rxaddr(struct rx_ring_info *rp, u64 a)
  2727. {
  2728. a >>= PAGE_SHIFT;
  2729. a ^= (a >> ilog2(MAX_RBR_RING_SIZE));
  2730. return a & (MAX_RBR_RING_SIZE - 1);
  2731. }
  2732. static struct page *niu_find_rxpage(struct rx_ring_info *rp, u64 addr,
  2733. struct page ***link)
  2734. {
  2735. unsigned int h = niu_hash_rxaddr(rp, addr);
  2736. struct page *p, **pp;
  2737. addr &= PAGE_MASK;
  2738. pp = &rp->rxhash[h];
  2739. for (; (p = *pp) != NULL; pp = (struct page **) &p->mapping) {
  2740. if (p->index == addr) {
  2741. *link = pp;
  2742. goto found;
  2743. }
  2744. }
  2745. BUG();
  2746. found:
  2747. return p;
  2748. }
  2749. static void niu_hash_page(struct rx_ring_info *rp, struct page *page, u64 base)
  2750. {
  2751. unsigned int h = niu_hash_rxaddr(rp, base);
  2752. page->index = base;
  2753. page->mapping = (struct address_space *) rp->rxhash[h];
  2754. rp->rxhash[h] = page;
  2755. }
  2756. static int niu_rbr_add_page(struct niu *np, struct rx_ring_info *rp,
  2757. gfp_t mask, int start_index)
  2758. {
  2759. struct page *page;
  2760. u64 addr;
  2761. int i;
  2762. page = alloc_page(mask);
  2763. if (!page)
  2764. return -ENOMEM;
  2765. addr = np->ops->map_page(np->device, page, 0,
  2766. PAGE_SIZE, DMA_FROM_DEVICE);
  2767. if (!addr) {
  2768. __free_page(page);
  2769. return -ENOMEM;
  2770. }
  2771. niu_hash_page(rp, page, addr);
  2772. if (rp->rbr_blocks_per_page > 1)
  2773. atomic_add(rp->rbr_blocks_per_page - 1,
  2774. &compound_head(page)->_count);
  2775. for (i = 0; i < rp->rbr_blocks_per_page; i++) {
  2776. __le32 *rbr = &rp->rbr[start_index + i];
  2777. *rbr = cpu_to_le32(addr >> RBR_DESCR_ADDR_SHIFT);
  2778. addr += rp->rbr_block_size;
  2779. }
  2780. return 0;
  2781. }
  2782. static void niu_rbr_refill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2783. {
  2784. int index = rp->rbr_index;
  2785. rp->rbr_pending++;
  2786. if ((rp->rbr_pending % rp->rbr_blocks_per_page) == 0) {
  2787. int err = niu_rbr_add_page(np, rp, mask, index);
  2788. if (unlikely(err)) {
  2789. rp->rbr_pending--;
  2790. return;
  2791. }
  2792. rp->rbr_index += rp->rbr_blocks_per_page;
  2793. BUG_ON(rp->rbr_index > rp->rbr_table_size);
  2794. if (rp->rbr_index == rp->rbr_table_size)
  2795. rp->rbr_index = 0;
  2796. if (rp->rbr_pending >= rp->rbr_kick_thresh) {
  2797. nw64(RBR_KICK(rp->rx_channel), rp->rbr_pending);
  2798. rp->rbr_pending = 0;
  2799. }
  2800. }
  2801. }
  2802. static int niu_rx_pkt_ignore(struct niu *np, struct rx_ring_info *rp)
  2803. {
  2804. unsigned int index = rp->rcr_index;
  2805. int num_rcr = 0;
  2806. rp->rx_dropped++;
  2807. while (1) {
  2808. struct page *page, **link;
  2809. u64 addr, val;
  2810. u32 rcr_size;
  2811. num_rcr++;
  2812. val = le64_to_cpup(&rp->rcr[index]);
  2813. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2814. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2815. page = niu_find_rxpage(rp, addr, &link);
  2816. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2817. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2818. if ((page->index + PAGE_SIZE) - rcr_size == addr) {
  2819. *link = (struct page *) page->mapping;
  2820. np->ops->unmap_page(np->device, page->index,
  2821. PAGE_SIZE, DMA_FROM_DEVICE);
  2822. page->index = 0;
  2823. page->mapping = NULL;
  2824. __free_page(page);
  2825. rp->rbr_refill_pending++;
  2826. }
  2827. index = NEXT_RCR(rp, index);
  2828. if (!(val & RCR_ENTRY_MULTI))
  2829. break;
  2830. }
  2831. rp->rcr_index = index;
  2832. return num_rcr;
  2833. }
  2834. static int niu_process_rx_pkt(struct napi_struct *napi, struct niu *np,
  2835. struct rx_ring_info *rp)
  2836. {
  2837. unsigned int index = rp->rcr_index;
  2838. struct rx_pkt_hdr1 *rh;
  2839. struct sk_buff *skb;
  2840. int len, num_rcr;
  2841. skb = netdev_alloc_skb(np->dev, RX_SKB_ALLOC_SIZE);
  2842. if (unlikely(!skb))
  2843. return niu_rx_pkt_ignore(np, rp);
  2844. num_rcr = 0;
  2845. while (1) {
  2846. struct page *page, **link;
  2847. u32 rcr_size, append_size;
  2848. u64 addr, val, off;
  2849. num_rcr++;
  2850. val = le64_to_cpup(&rp->rcr[index]);
  2851. len = (val & RCR_ENTRY_L2_LEN) >>
  2852. RCR_ENTRY_L2_LEN_SHIFT;
  2853. len -= ETH_FCS_LEN;
  2854. addr = (val & RCR_ENTRY_PKT_BUF_ADDR) <<
  2855. RCR_ENTRY_PKT_BUF_ADDR_SHIFT;
  2856. page = niu_find_rxpage(rp, addr, &link);
  2857. rcr_size = rp->rbr_sizes[(val & RCR_ENTRY_PKTBUFSZ) >>
  2858. RCR_ENTRY_PKTBUFSZ_SHIFT];
  2859. off = addr & ~PAGE_MASK;
  2860. append_size = rcr_size;
  2861. if (num_rcr == 1) {
  2862. int ptype;
  2863. ptype = (val >> RCR_ENTRY_PKT_TYPE_SHIFT);
  2864. if ((ptype == RCR_PKT_TYPE_TCP ||
  2865. ptype == RCR_PKT_TYPE_UDP) &&
  2866. !(val & (RCR_ENTRY_NOPORT |
  2867. RCR_ENTRY_ERROR)))
  2868. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2869. else
  2870. skb_checksum_none_assert(skb);
  2871. } else if (!(val & RCR_ENTRY_MULTI))
  2872. append_size = len - skb->len;
  2873. niu_rx_skb_append(skb, page, off, append_size, rcr_size);
  2874. if ((page->index + rp->rbr_block_size) - rcr_size == addr) {
  2875. *link = (struct page *) page->mapping;
  2876. np->ops->unmap_page(np->device, page->index,
  2877. PAGE_SIZE, DMA_FROM_DEVICE);
  2878. page->index = 0;
  2879. page->mapping = NULL;
  2880. rp->rbr_refill_pending++;
  2881. } else
  2882. get_page(page);
  2883. index = NEXT_RCR(rp, index);
  2884. if (!(val & RCR_ENTRY_MULTI))
  2885. break;
  2886. }
  2887. rp->rcr_index = index;
  2888. len += sizeof(*rh);
  2889. len = min_t(int, len, sizeof(*rh) + VLAN_ETH_HLEN);
  2890. __pskb_pull_tail(skb, len);
  2891. rh = (struct rx_pkt_hdr1 *) skb->data;
  2892. if (np->dev->features & NETIF_F_RXHASH)
  2893. skb_set_hash(skb,
  2894. ((u32)rh->hashval2_0 << 24 |
  2895. (u32)rh->hashval2_1 << 16 |
  2896. (u32)rh->hashval1_1 << 8 |
  2897. (u32)rh->hashval1_2 << 0),
  2898. PKT_HASH_TYPE_L3);
  2899. skb_pull(skb, sizeof(*rh));
  2900. rp->rx_packets++;
  2901. rp->rx_bytes += skb->len;
  2902. skb->protocol = eth_type_trans(skb, np->dev);
  2903. skb_record_rx_queue(skb, rp->rx_channel);
  2904. napi_gro_receive(napi, skb);
  2905. return num_rcr;
  2906. }
  2907. static int niu_rbr_fill(struct niu *np, struct rx_ring_info *rp, gfp_t mask)
  2908. {
  2909. int blocks_per_page = rp->rbr_blocks_per_page;
  2910. int err, index = rp->rbr_index;
  2911. err = 0;
  2912. while (index < (rp->rbr_table_size - blocks_per_page)) {
  2913. err = niu_rbr_add_page(np, rp, mask, index);
  2914. if (unlikely(err))
  2915. break;
  2916. index += blocks_per_page;
  2917. }
  2918. rp->rbr_index = index;
  2919. return err;
  2920. }
  2921. static void niu_rbr_free(struct niu *np, struct rx_ring_info *rp)
  2922. {
  2923. int i;
  2924. for (i = 0; i < MAX_RBR_RING_SIZE; i++) {
  2925. struct page *page;
  2926. page = rp->rxhash[i];
  2927. while (page) {
  2928. struct page *next = (struct page *) page->mapping;
  2929. u64 base = page->index;
  2930. np->ops->unmap_page(np->device, base, PAGE_SIZE,
  2931. DMA_FROM_DEVICE);
  2932. page->index = 0;
  2933. page->mapping = NULL;
  2934. __free_page(page);
  2935. page = next;
  2936. }
  2937. }
  2938. for (i = 0; i < rp->rbr_table_size; i++)
  2939. rp->rbr[i] = cpu_to_le32(0);
  2940. rp->rbr_index = 0;
  2941. }
  2942. static int release_tx_packet(struct niu *np, struct tx_ring_info *rp, int idx)
  2943. {
  2944. struct tx_buff_info *tb = &rp->tx_buffs[idx];
  2945. struct sk_buff *skb = tb->skb;
  2946. struct tx_pkt_hdr *tp;
  2947. u64 tx_flags;
  2948. int i, len;
  2949. tp = (struct tx_pkt_hdr *) skb->data;
  2950. tx_flags = le64_to_cpup(&tp->flags);
  2951. rp->tx_packets++;
  2952. rp->tx_bytes += (((tx_flags & TXHDR_LEN) >> TXHDR_LEN_SHIFT) -
  2953. ((tx_flags & TXHDR_PAD) / 2));
  2954. len = skb_headlen(skb);
  2955. np->ops->unmap_single(np->device, tb->mapping,
  2956. len, DMA_TO_DEVICE);
  2957. if (le64_to_cpu(rp->descr[idx]) & TX_DESC_MARK)
  2958. rp->mark_pending--;
  2959. tb->skb = NULL;
  2960. do {
  2961. idx = NEXT_TX(rp, idx);
  2962. len -= MAX_TX_DESC_LEN;
  2963. } while (len > 0);
  2964. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  2965. tb = &rp->tx_buffs[idx];
  2966. BUG_ON(tb->skb != NULL);
  2967. np->ops->unmap_page(np->device, tb->mapping,
  2968. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2969. DMA_TO_DEVICE);
  2970. idx = NEXT_TX(rp, idx);
  2971. }
  2972. dev_kfree_skb(skb);
  2973. return idx;
  2974. }
  2975. #define NIU_TX_WAKEUP_THRESH(rp) ((rp)->pending / 4)
  2976. static void niu_tx_work(struct niu *np, struct tx_ring_info *rp)
  2977. {
  2978. struct netdev_queue *txq;
  2979. u16 pkt_cnt, tmp;
  2980. int cons, index;
  2981. u64 cs;
  2982. index = (rp - np->tx_rings);
  2983. txq = netdev_get_tx_queue(np->dev, index);
  2984. cs = rp->tx_cs;
  2985. if (unlikely(!(cs & (TX_CS_MK | TX_CS_MMK))))
  2986. goto out;
  2987. tmp = pkt_cnt = (cs & TX_CS_PKT_CNT) >> TX_CS_PKT_CNT_SHIFT;
  2988. pkt_cnt = (pkt_cnt - rp->last_pkt_cnt) &
  2989. (TX_CS_PKT_CNT >> TX_CS_PKT_CNT_SHIFT);
  2990. rp->last_pkt_cnt = tmp;
  2991. cons = rp->cons;
  2992. netif_printk(np, tx_done, KERN_DEBUG, np->dev,
  2993. "%s() pkt_cnt[%u] cons[%d]\n", __func__, pkt_cnt, cons);
  2994. while (pkt_cnt--)
  2995. cons = release_tx_packet(np, rp, cons);
  2996. rp->cons = cons;
  2997. smp_mb();
  2998. out:
  2999. if (unlikely(netif_tx_queue_stopped(txq) &&
  3000. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))) {
  3001. __netif_tx_lock(txq, smp_processor_id());
  3002. if (netif_tx_queue_stopped(txq) &&
  3003. (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp)))
  3004. netif_tx_wake_queue(txq);
  3005. __netif_tx_unlock(txq);
  3006. }
  3007. }
  3008. static inline void niu_sync_rx_discard_stats(struct niu *np,
  3009. struct rx_ring_info *rp,
  3010. const int limit)
  3011. {
  3012. /* This elaborate scheme is needed for reading the RX discard
  3013. * counters, as they are only 16-bit and can overflow quickly,
  3014. * and because the overflow indication bit is not usable as
  3015. * the counter value does not wrap, but remains at max value
  3016. * 0xFFFF.
  3017. *
  3018. * In theory and in practice counters can be lost in between
  3019. * reading nr64() and clearing the counter nw64(). For this
  3020. * reason, the number of counter clearings nw64() is
  3021. * limited/reduced though the limit parameter.
  3022. */
  3023. int rx_channel = rp->rx_channel;
  3024. u32 misc, wred;
  3025. /* RXMISC (Receive Miscellaneous Discard Count), covers the
  3026. * following discard events: IPP (Input Port Process),
  3027. * FFLP/TCAM, Full RCR (Receive Completion Ring) RBR (Receive
  3028. * Block Ring) prefetch buffer is empty.
  3029. */
  3030. misc = nr64(RXMISC(rx_channel));
  3031. if (unlikely((misc & RXMISC_COUNT) > limit)) {
  3032. nw64(RXMISC(rx_channel), 0);
  3033. rp->rx_errors += misc & RXMISC_COUNT;
  3034. if (unlikely(misc & RXMISC_OFLOW))
  3035. dev_err(np->device, "rx-%d: Counter overflow RXMISC discard\n",
  3036. rx_channel);
  3037. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3038. "rx-%d: MISC drop=%u over=%u\n",
  3039. rx_channel, misc, misc-limit);
  3040. }
  3041. /* WRED (Weighted Random Early Discard) by hardware */
  3042. wred = nr64(RED_DIS_CNT(rx_channel));
  3043. if (unlikely((wred & RED_DIS_CNT_COUNT) > limit)) {
  3044. nw64(RED_DIS_CNT(rx_channel), 0);
  3045. rp->rx_dropped += wred & RED_DIS_CNT_COUNT;
  3046. if (unlikely(wred & RED_DIS_CNT_OFLOW))
  3047. dev_err(np->device, "rx-%d: Counter overflow WRED discard\n", rx_channel);
  3048. netif_printk(np, rx_err, KERN_DEBUG, np->dev,
  3049. "rx-%d: WRED drop=%u over=%u\n",
  3050. rx_channel, wred, wred-limit);
  3051. }
  3052. }
  3053. static int niu_rx_work(struct napi_struct *napi, struct niu *np,
  3054. struct rx_ring_info *rp, int budget)
  3055. {
  3056. int qlen, rcr_done = 0, work_done = 0;
  3057. struct rxdma_mailbox *mbox = rp->mbox;
  3058. u64 stat;
  3059. #if 1
  3060. stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3061. qlen = nr64(RCRSTAT_A(rp->rx_channel)) & RCRSTAT_A_QLEN;
  3062. #else
  3063. stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3064. qlen = (le64_to_cpup(&mbox->rcrstat_a) & RCRSTAT_A_QLEN);
  3065. #endif
  3066. mbox->rx_dma_ctl_stat = 0;
  3067. mbox->rcrstat_a = 0;
  3068. netif_printk(np, rx_status, KERN_DEBUG, np->dev,
  3069. "%s(chan[%d]), stat[%llx] qlen=%d\n",
  3070. __func__, rp->rx_channel, (unsigned long long)stat, qlen);
  3071. rcr_done = work_done = 0;
  3072. qlen = min(qlen, budget);
  3073. while (work_done < qlen) {
  3074. rcr_done += niu_process_rx_pkt(napi, np, rp);
  3075. work_done++;
  3076. }
  3077. if (rp->rbr_refill_pending >= rp->rbr_kick_thresh) {
  3078. unsigned int i;
  3079. for (i = 0; i < rp->rbr_refill_pending; i++)
  3080. niu_rbr_refill(np, rp, GFP_ATOMIC);
  3081. rp->rbr_refill_pending = 0;
  3082. }
  3083. stat = (RX_DMA_CTL_STAT_MEX |
  3084. ((u64)work_done << RX_DMA_CTL_STAT_PKTREAD_SHIFT) |
  3085. ((u64)rcr_done << RX_DMA_CTL_STAT_PTRREAD_SHIFT));
  3086. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat);
  3087. /* Only sync discards stats when qlen indicate potential for drops */
  3088. if (qlen > 10)
  3089. niu_sync_rx_discard_stats(np, rp, 0x7FFF);
  3090. return work_done;
  3091. }
  3092. static int niu_poll_core(struct niu *np, struct niu_ldg *lp, int budget)
  3093. {
  3094. u64 v0 = lp->v0;
  3095. u32 tx_vec = (v0 >> 32);
  3096. u32 rx_vec = (v0 & 0xffffffff);
  3097. int i, work_done = 0;
  3098. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3099. "%s() v0[%016llx]\n", __func__, (unsigned long long)v0);
  3100. for (i = 0; i < np->num_tx_rings; i++) {
  3101. struct tx_ring_info *rp = &np->tx_rings[i];
  3102. if (tx_vec & (1 << rp->tx_channel))
  3103. niu_tx_work(np, rp);
  3104. nw64(LD_IM0(LDN_TXDMA(rp->tx_channel)), 0);
  3105. }
  3106. for (i = 0; i < np->num_rx_rings; i++) {
  3107. struct rx_ring_info *rp = &np->rx_rings[i];
  3108. if (rx_vec & (1 << rp->rx_channel)) {
  3109. int this_work_done;
  3110. this_work_done = niu_rx_work(&lp->napi, np, rp,
  3111. budget);
  3112. budget -= this_work_done;
  3113. work_done += this_work_done;
  3114. }
  3115. nw64(LD_IM0(LDN_RXDMA(rp->rx_channel)), 0);
  3116. }
  3117. return work_done;
  3118. }
  3119. static int niu_poll(struct napi_struct *napi, int budget)
  3120. {
  3121. struct niu_ldg *lp = container_of(napi, struct niu_ldg, napi);
  3122. struct niu *np = lp->np;
  3123. int work_done;
  3124. work_done = niu_poll_core(np, lp, budget);
  3125. if (work_done < budget) {
  3126. napi_complete(napi);
  3127. niu_ldg_rearm(np, lp, 1);
  3128. }
  3129. return work_done;
  3130. }
  3131. static void niu_log_rxchan_errors(struct niu *np, struct rx_ring_info *rp,
  3132. u64 stat)
  3133. {
  3134. netdev_err(np->dev, "RX channel %u errors ( ", rp->rx_channel);
  3135. if (stat & RX_DMA_CTL_STAT_RBR_TMOUT)
  3136. pr_cont("RBR_TMOUT ");
  3137. if (stat & RX_DMA_CTL_STAT_RSP_CNT_ERR)
  3138. pr_cont("RSP_CNT ");
  3139. if (stat & RX_DMA_CTL_STAT_BYTE_EN_BUS)
  3140. pr_cont("BYTE_EN_BUS ");
  3141. if (stat & RX_DMA_CTL_STAT_RSP_DAT_ERR)
  3142. pr_cont("RSP_DAT ");
  3143. if (stat & RX_DMA_CTL_STAT_RCR_ACK_ERR)
  3144. pr_cont("RCR_ACK ");
  3145. if (stat & RX_DMA_CTL_STAT_RCR_SHA_PAR)
  3146. pr_cont("RCR_SHA_PAR ");
  3147. if (stat & RX_DMA_CTL_STAT_RBR_PRE_PAR)
  3148. pr_cont("RBR_PRE_PAR ");
  3149. if (stat & RX_DMA_CTL_STAT_CONFIG_ERR)
  3150. pr_cont("CONFIG ");
  3151. if (stat & RX_DMA_CTL_STAT_RCRINCON)
  3152. pr_cont("RCRINCON ");
  3153. if (stat & RX_DMA_CTL_STAT_RCRFULL)
  3154. pr_cont("RCRFULL ");
  3155. if (stat & RX_DMA_CTL_STAT_RBRFULL)
  3156. pr_cont("RBRFULL ");
  3157. if (stat & RX_DMA_CTL_STAT_RBRLOGPAGE)
  3158. pr_cont("RBRLOGPAGE ");
  3159. if (stat & RX_DMA_CTL_STAT_CFIGLOGPAGE)
  3160. pr_cont("CFIGLOGPAGE ");
  3161. if (stat & RX_DMA_CTL_STAT_DC_FIFO_ERR)
  3162. pr_cont("DC_FIDO ");
  3163. pr_cont(")\n");
  3164. }
  3165. static int niu_rx_error(struct niu *np, struct rx_ring_info *rp)
  3166. {
  3167. u64 stat = nr64(RX_DMA_CTL_STAT(rp->rx_channel));
  3168. int err = 0;
  3169. if (stat & (RX_DMA_CTL_STAT_CHAN_FATAL |
  3170. RX_DMA_CTL_STAT_PORT_FATAL))
  3171. err = -EINVAL;
  3172. if (err) {
  3173. netdev_err(np->dev, "RX channel %u error, stat[%llx]\n",
  3174. rp->rx_channel,
  3175. (unsigned long long) stat);
  3176. niu_log_rxchan_errors(np, rp, stat);
  3177. }
  3178. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3179. stat & RX_DMA_CTL_WRITE_CLEAR_ERRS);
  3180. return err;
  3181. }
  3182. static void niu_log_txchan_errors(struct niu *np, struct tx_ring_info *rp,
  3183. u64 cs)
  3184. {
  3185. netdev_err(np->dev, "TX channel %u errors ( ", rp->tx_channel);
  3186. if (cs & TX_CS_MBOX_ERR)
  3187. pr_cont("MBOX ");
  3188. if (cs & TX_CS_PKT_SIZE_ERR)
  3189. pr_cont("PKT_SIZE ");
  3190. if (cs & TX_CS_TX_RING_OFLOW)
  3191. pr_cont("TX_RING_OFLOW ");
  3192. if (cs & TX_CS_PREF_BUF_PAR_ERR)
  3193. pr_cont("PREF_BUF_PAR ");
  3194. if (cs & TX_CS_NACK_PREF)
  3195. pr_cont("NACK_PREF ");
  3196. if (cs & TX_CS_NACK_PKT_RD)
  3197. pr_cont("NACK_PKT_RD ");
  3198. if (cs & TX_CS_CONF_PART_ERR)
  3199. pr_cont("CONF_PART ");
  3200. if (cs & TX_CS_PKT_PRT_ERR)
  3201. pr_cont("PKT_PTR ");
  3202. pr_cont(")\n");
  3203. }
  3204. static int niu_tx_error(struct niu *np, struct tx_ring_info *rp)
  3205. {
  3206. u64 cs, logh, logl;
  3207. cs = nr64(TX_CS(rp->tx_channel));
  3208. logh = nr64(TX_RNG_ERR_LOGH(rp->tx_channel));
  3209. logl = nr64(TX_RNG_ERR_LOGL(rp->tx_channel));
  3210. netdev_err(np->dev, "TX channel %u error, cs[%llx] logh[%llx] logl[%llx]\n",
  3211. rp->tx_channel,
  3212. (unsigned long long)cs,
  3213. (unsigned long long)logh,
  3214. (unsigned long long)logl);
  3215. niu_log_txchan_errors(np, rp, cs);
  3216. return -ENODEV;
  3217. }
  3218. static int niu_mif_interrupt(struct niu *np)
  3219. {
  3220. u64 mif_status = nr64(MIF_STATUS);
  3221. int phy_mdint = 0;
  3222. if (np->flags & NIU_FLAGS_XMAC) {
  3223. u64 xrxmac_stat = nr64_mac(XRXMAC_STATUS);
  3224. if (xrxmac_stat & XRXMAC_STATUS_PHY_MDINT)
  3225. phy_mdint = 1;
  3226. }
  3227. netdev_err(np->dev, "MIF interrupt, stat[%llx] phy_mdint(%d)\n",
  3228. (unsigned long long)mif_status, phy_mdint);
  3229. return -ENODEV;
  3230. }
  3231. static void niu_xmac_interrupt(struct niu *np)
  3232. {
  3233. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  3234. u64 val;
  3235. val = nr64_mac(XTXMAC_STATUS);
  3236. if (val & XTXMAC_STATUS_FRAME_CNT_EXP)
  3237. mp->tx_frames += TXMAC_FRM_CNT_COUNT;
  3238. if (val & XTXMAC_STATUS_BYTE_CNT_EXP)
  3239. mp->tx_bytes += TXMAC_BYTE_CNT_COUNT;
  3240. if (val & XTXMAC_STATUS_TXFIFO_XFR_ERR)
  3241. mp->tx_fifo_errors++;
  3242. if (val & XTXMAC_STATUS_TXMAC_OFLOW)
  3243. mp->tx_overflow_errors++;
  3244. if (val & XTXMAC_STATUS_MAX_PSIZE_ERR)
  3245. mp->tx_max_pkt_size_errors++;
  3246. if (val & XTXMAC_STATUS_TXMAC_UFLOW)
  3247. mp->tx_underflow_errors++;
  3248. val = nr64_mac(XRXMAC_STATUS);
  3249. if (val & XRXMAC_STATUS_LCL_FLT_STATUS)
  3250. mp->rx_local_faults++;
  3251. if (val & XRXMAC_STATUS_RFLT_DET)
  3252. mp->rx_remote_faults++;
  3253. if (val & XRXMAC_STATUS_LFLT_CNT_EXP)
  3254. mp->rx_link_faults += LINK_FAULT_CNT_COUNT;
  3255. if (val & XRXMAC_STATUS_ALIGNERR_CNT_EXP)
  3256. mp->rx_align_errors += RXMAC_ALIGN_ERR_CNT_COUNT;
  3257. if (val & XRXMAC_STATUS_RXFRAG_CNT_EXP)
  3258. mp->rx_frags += RXMAC_FRAG_CNT_COUNT;
  3259. if (val & XRXMAC_STATUS_RXMULTF_CNT_EXP)
  3260. mp->rx_mcasts += RXMAC_MC_FRM_CNT_COUNT;
  3261. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3262. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3263. if (val & XRXMAC_STATUS_RXBCAST_CNT_EXP)
  3264. mp->rx_bcasts += RXMAC_BC_FRM_CNT_COUNT;
  3265. if (val & XRXMAC_STATUS_RXHIST1_CNT_EXP)
  3266. mp->rx_hist_cnt1 += RXMAC_HIST_CNT1_COUNT;
  3267. if (val & XRXMAC_STATUS_RXHIST2_CNT_EXP)
  3268. mp->rx_hist_cnt2 += RXMAC_HIST_CNT2_COUNT;
  3269. if (val & XRXMAC_STATUS_RXHIST3_CNT_EXP)
  3270. mp->rx_hist_cnt3 += RXMAC_HIST_CNT3_COUNT;
  3271. if (val & XRXMAC_STATUS_RXHIST4_CNT_EXP)
  3272. mp->rx_hist_cnt4 += RXMAC_HIST_CNT4_COUNT;
  3273. if (val & XRXMAC_STATUS_RXHIST5_CNT_EXP)
  3274. mp->rx_hist_cnt5 += RXMAC_HIST_CNT5_COUNT;
  3275. if (val & XRXMAC_STATUS_RXHIST6_CNT_EXP)
  3276. mp->rx_hist_cnt6 += RXMAC_HIST_CNT6_COUNT;
  3277. if (val & XRXMAC_STATUS_RXHIST7_CNT_EXP)
  3278. mp->rx_hist_cnt7 += RXMAC_HIST_CNT7_COUNT;
  3279. if (val & XRXMAC_STATUS_RXOCTET_CNT_EXP)
  3280. mp->rx_octets += RXMAC_BT_CNT_COUNT;
  3281. if (val & XRXMAC_STATUS_CVIOLERR_CNT_EXP)
  3282. mp->rx_code_violations += RXMAC_CD_VIO_CNT_COUNT;
  3283. if (val & XRXMAC_STATUS_LENERR_CNT_EXP)
  3284. mp->rx_len_errors += RXMAC_MPSZER_CNT_COUNT;
  3285. if (val & XRXMAC_STATUS_CRCERR_CNT_EXP)
  3286. mp->rx_crc_errors += RXMAC_CRC_ER_CNT_COUNT;
  3287. if (val & XRXMAC_STATUS_RXUFLOW)
  3288. mp->rx_underflows++;
  3289. if (val & XRXMAC_STATUS_RXOFLOW)
  3290. mp->rx_overflows++;
  3291. val = nr64_mac(XMAC_FC_STAT);
  3292. if (val & XMAC_FC_STAT_TX_MAC_NPAUSE)
  3293. mp->pause_off_state++;
  3294. if (val & XMAC_FC_STAT_TX_MAC_PAUSE)
  3295. mp->pause_on_state++;
  3296. if (val & XMAC_FC_STAT_RX_MAC_RPAUSE)
  3297. mp->pause_received++;
  3298. }
  3299. static void niu_bmac_interrupt(struct niu *np)
  3300. {
  3301. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  3302. u64 val;
  3303. val = nr64_mac(BTXMAC_STATUS);
  3304. if (val & BTXMAC_STATUS_UNDERRUN)
  3305. mp->tx_underflow_errors++;
  3306. if (val & BTXMAC_STATUS_MAX_PKT_ERR)
  3307. mp->tx_max_pkt_size_errors++;
  3308. if (val & BTXMAC_STATUS_BYTE_CNT_EXP)
  3309. mp->tx_bytes += BTXMAC_BYTE_CNT_COUNT;
  3310. if (val & BTXMAC_STATUS_FRAME_CNT_EXP)
  3311. mp->tx_frames += BTXMAC_FRM_CNT_COUNT;
  3312. val = nr64_mac(BRXMAC_STATUS);
  3313. if (val & BRXMAC_STATUS_OVERFLOW)
  3314. mp->rx_overflows++;
  3315. if (val & BRXMAC_STATUS_FRAME_CNT_EXP)
  3316. mp->rx_frames += BRXMAC_FRAME_CNT_COUNT;
  3317. if (val & BRXMAC_STATUS_ALIGN_ERR_EXP)
  3318. mp->rx_align_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3319. if (val & BRXMAC_STATUS_CRC_ERR_EXP)
  3320. mp->rx_crc_errors += BRXMAC_ALIGN_ERR_CNT_COUNT;
  3321. if (val & BRXMAC_STATUS_LEN_ERR_EXP)
  3322. mp->rx_len_errors += BRXMAC_CODE_VIOL_ERR_CNT_COUNT;
  3323. val = nr64_mac(BMAC_CTRL_STATUS);
  3324. if (val & BMAC_CTRL_STATUS_NOPAUSE)
  3325. mp->pause_off_state++;
  3326. if (val & BMAC_CTRL_STATUS_PAUSE)
  3327. mp->pause_on_state++;
  3328. if (val & BMAC_CTRL_STATUS_PAUSE_RECV)
  3329. mp->pause_received++;
  3330. }
  3331. static int niu_mac_interrupt(struct niu *np)
  3332. {
  3333. if (np->flags & NIU_FLAGS_XMAC)
  3334. niu_xmac_interrupt(np);
  3335. else
  3336. niu_bmac_interrupt(np);
  3337. return 0;
  3338. }
  3339. static void niu_log_device_error(struct niu *np, u64 stat)
  3340. {
  3341. netdev_err(np->dev, "Core device errors ( ");
  3342. if (stat & SYS_ERR_MASK_META2)
  3343. pr_cont("META2 ");
  3344. if (stat & SYS_ERR_MASK_META1)
  3345. pr_cont("META1 ");
  3346. if (stat & SYS_ERR_MASK_PEU)
  3347. pr_cont("PEU ");
  3348. if (stat & SYS_ERR_MASK_TXC)
  3349. pr_cont("TXC ");
  3350. if (stat & SYS_ERR_MASK_RDMC)
  3351. pr_cont("RDMC ");
  3352. if (stat & SYS_ERR_MASK_TDMC)
  3353. pr_cont("TDMC ");
  3354. if (stat & SYS_ERR_MASK_ZCP)
  3355. pr_cont("ZCP ");
  3356. if (stat & SYS_ERR_MASK_FFLP)
  3357. pr_cont("FFLP ");
  3358. if (stat & SYS_ERR_MASK_IPP)
  3359. pr_cont("IPP ");
  3360. if (stat & SYS_ERR_MASK_MAC)
  3361. pr_cont("MAC ");
  3362. if (stat & SYS_ERR_MASK_SMX)
  3363. pr_cont("SMX ");
  3364. pr_cont(")\n");
  3365. }
  3366. static int niu_device_error(struct niu *np)
  3367. {
  3368. u64 stat = nr64(SYS_ERR_STAT);
  3369. netdev_err(np->dev, "Core device error, stat[%llx]\n",
  3370. (unsigned long long)stat);
  3371. niu_log_device_error(np, stat);
  3372. return -ENODEV;
  3373. }
  3374. static int niu_slowpath_interrupt(struct niu *np, struct niu_ldg *lp,
  3375. u64 v0, u64 v1, u64 v2)
  3376. {
  3377. int i, err = 0;
  3378. lp->v0 = v0;
  3379. lp->v1 = v1;
  3380. lp->v2 = v2;
  3381. if (v1 & 0x00000000ffffffffULL) {
  3382. u32 rx_vec = (v1 & 0xffffffff);
  3383. for (i = 0; i < np->num_rx_rings; i++) {
  3384. struct rx_ring_info *rp = &np->rx_rings[i];
  3385. if (rx_vec & (1 << rp->rx_channel)) {
  3386. int r = niu_rx_error(np, rp);
  3387. if (r) {
  3388. err = r;
  3389. } else {
  3390. if (!v0)
  3391. nw64(RX_DMA_CTL_STAT(rp->rx_channel),
  3392. RX_DMA_CTL_STAT_MEX);
  3393. }
  3394. }
  3395. }
  3396. }
  3397. if (v1 & 0x7fffffff00000000ULL) {
  3398. u32 tx_vec = (v1 >> 32) & 0x7fffffff;
  3399. for (i = 0; i < np->num_tx_rings; i++) {
  3400. struct tx_ring_info *rp = &np->tx_rings[i];
  3401. if (tx_vec & (1 << rp->tx_channel)) {
  3402. int r = niu_tx_error(np, rp);
  3403. if (r)
  3404. err = r;
  3405. }
  3406. }
  3407. }
  3408. if ((v0 | v1) & 0x8000000000000000ULL) {
  3409. int r = niu_mif_interrupt(np);
  3410. if (r)
  3411. err = r;
  3412. }
  3413. if (v2) {
  3414. if (v2 & 0x01ef) {
  3415. int r = niu_mac_interrupt(np);
  3416. if (r)
  3417. err = r;
  3418. }
  3419. if (v2 & 0x0210) {
  3420. int r = niu_device_error(np);
  3421. if (r)
  3422. err = r;
  3423. }
  3424. }
  3425. if (err)
  3426. niu_enable_interrupts(np, 0);
  3427. return err;
  3428. }
  3429. static void niu_rxchan_intr(struct niu *np, struct rx_ring_info *rp,
  3430. int ldn)
  3431. {
  3432. struct rxdma_mailbox *mbox = rp->mbox;
  3433. u64 stat_write, stat = le64_to_cpup(&mbox->rx_dma_ctl_stat);
  3434. stat_write = (RX_DMA_CTL_STAT_RCRTHRES |
  3435. RX_DMA_CTL_STAT_RCRTO);
  3436. nw64(RX_DMA_CTL_STAT(rp->rx_channel), stat_write);
  3437. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3438. "%s() stat[%llx]\n", __func__, (unsigned long long)stat);
  3439. }
  3440. static void niu_txchan_intr(struct niu *np, struct tx_ring_info *rp,
  3441. int ldn)
  3442. {
  3443. rp->tx_cs = nr64(TX_CS(rp->tx_channel));
  3444. netif_printk(np, intr, KERN_DEBUG, np->dev,
  3445. "%s() cs[%llx]\n", __func__, (unsigned long long)rp->tx_cs);
  3446. }
  3447. static void __niu_fastpath_interrupt(struct niu *np, int ldg, u64 v0)
  3448. {
  3449. struct niu_parent *parent = np->parent;
  3450. u32 rx_vec, tx_vec;
  3451. int i;
  3452. tx_vec = (v0 >> 32);
  3453. rx_vec = (v0 & 0xffffffff);
  3454. for (i = 0; i < np->num_rx_rings; i++) {
  3455. struct rx_ring_info *rp = &np->rx_rings[i];
  3456. int ldn = LDN_RXDMA(rp->rx_channel);
  3457. if (parent->ldg_map[ldn] != ldg)
  3458. continue;
  3459. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3460. if (rx_vec & (1 << rp->rx_channel))
  3461. niu_rxchan_intr(np, rp, ldn);
  3462. }
  3463. for (i = 0; i < np->num_tx_rings; i++) {
  3464. struct tx_ring_info *rp = &np->tx_rings[i];
  3465. int ldn = LDN_TXDMA(rp->tx_channel);
  3466. if (parent->ldg_map[ldn] != ldg)
  3467. continue;
  3468. nw64(LD_IM0(ldn), LD_IM0_MASK);
  3469. if (tx_vec & (1 << rp->tx_channel))
  3470. niu_txchan_intr(np, rp, ldn);
  3471. }
  3472. }
  3473. static void niu_schedule_napi(struct niu *np, struct niu_ldg *lp,
  3474. u64 v0, u64 v1, u64 v2)
  3475. {
  3476. if (likely(napi_schedule_prep(&lp->napi))) {
  3477. lp->v0 = v0;
  3478. lp->v1 = v1;
  3479. lp->v2 = v2;
  3480. __niu_fastpath_interrupt(np, lp->ldg_num, v0);
  3481. __napi_schedule(&lp->napi);
  3482. }
  3483. }
  3484. static irqreturn_t niu_interrupt(int irq, void *dev_id)
  3485. {
  3486. struct niu_ldg *lp = dev_id;
  3487. struct niu *np = lp->np;
  3488. int ldg = lp->ldg_num;
  3489. unsigned long flags;
  3490. u64 v0, v1, v2;
  3491. if (netif_msg_intr(np))
  3492. printk(KERN_DEBUG KBUILD_MODNAME ": " "%s() ldg[%p](%d)",
  3493. __func__, lp, ldg);
  3494. spin_lock_irqsave(&np->lock, flags);
  3495. v0 = nr64(LDSV0(ldg));
  3496. v1 = nr64(LDSV1(ldg));
  3497. v2 = nr64(LDSV2(ldg));
  3498. if (netif_msg_intr(np))
  3499. pr_cont(" v0[%llx] v1[%llx] v2[%llx]\n",
  3500. (unsigned long long) v0,
  3501. (unsigned long long) v1,
  3502. (unsigned long long) v2);
  3503. if (unlikely(!v0 && !v1 && !v2)) {
  3504. spin_unlock_irqrestore(&np->lock, flags);
  3505. return IRQ_NONE;
  3506. }
  3507. if (unlikely((v0 & ((u64)1 << LDN_MIF)) || v1 || v2)) {
  3508. int err = niu_slowpath_interrupt(np, lp, v0, v1, v2);
  3509. if (err)
  3510. goto out;
  3511. }
  3512. if (likely(v0 & ~((u64)1 << LDN_MIF)))
  3513. niu_schedule_napi(np, lp, v0, v1, v2);
  3514. else
  3515. niu_ldg_rearm(np, lp, 1);
  3516. out:
  3517. spin_unlock_irqrestore(&np->lock, flags);
  3518. return IRQ_HANDLED;
  3519. }
  3520. static void niu_free_rx_ring_info(struct niu *np, struct rx_ring_info *rp)
  3521. {
  3522. if (rp->mbox) {
  3523. np->ops->free_coherent(np->device,
  3524. sizeof(struct rxdma_mailbox),
  3525. rp->mbox, rp->mbox_dma);
  3526. rp->mbox = NULL;
  3527. }
  3528. if (rp->rcr) {
  3529. np->ops->free_coherent(np->device,
  3530. MAX_RCR_RING_SIZE * sizeof(__le64),
  3531. rp->rcr, rp->rcr_dma);
  3532. rp->rcr = NULL;
  3533. rp->rcr_table_size = 0;
  3534. rp->rcr_index = 0;
  3535. }
  3536. if (rp->rbr) {
  3537. niu_rbr_free(np, rp);
  3538. np->ops->free_coherent(np->device,
  3539. MAX_RBR_RING_SIZE * sizeof(__le32),
  3540. rp->rbr, rp->rbr_dma);
  3541. rp->rbr = NULL;
  3542. rp->rbr_table_size = 0;
  3543. rp->rbr_index = 0;
  3544. }
  3545. kfree(rp->rxhash);
  3546. rp->rxhash = NULL;
  3547. }
  3548. static void niu_free_tx_ring_info(struct niu *np, struct tx_ring_info *rp)
  3549. {
  3550. if (rp->mbox) {
  3551. np->ops->free_coherent(np->device,
  3552. sizeof(struct txdma_mailbox),
  3553. rp->mbox, rp->mbox_dma);
  3554. rp->mbox = NULL;
  3555. }
  3556. if (rp->descr) {
  3557. int i;
  3558. for (i = 0; i < MAX_TX_RING_SIZE; i++) {
  3559. if (rp->tx_buffs[i].skb)
  3560. (void) release_tx_packet(np, rp, i);
  3561. }
  3562. np->ops->free_coherent(np->device,
  3563. MAX_TX_RING_SIZE * sizeof(__le64),
  3564. rp->descr, rp->descr_dma);
  3565. rp->descr = NULL;
  3566. rp->pending = 0;
  3567. rp->prod = 0;
  3568. rp->cons = 0;
  3569. rp->wrap_bit = 0;
  3570. }
  3571. }
  3572. static void niu_free_channels(struct niu *np)
  3573. {
  3574. int i;
  3575. if (np->rx_rings) {
  3576. for (i = 0; i < np->num_rx_rings; i++) {
  3577. struct rx_ring_info *rp = &np->rx_rings[i];
  3578. niu_free_rx_ring_info(np, rp);
  3579. }
  3580. kfree(np->rx_rings);
  3581. np->rx_rings = NULL;
  3582. np->num_rx_rings = 0;
  3583. }
  3584. if (np->tx_rings) {
  3585. for (i = 0; i < np->num_tx_rings; i++) {
  3586. struct tx_ring_info *rp = &np->tx_rings[i];
  3587. niu_free_tx_ring_info(np, rp);
  3588. }
  3589. kfree(np->tx_rings);
  3590. np->tx_rings = NULL;
  3591. np->num_tx_rings = 0;
  3592. }
  3593. }
  3594. static int niu_alloc_rx_ring_info(struct niu *np,
  3595. struct rx_ring_info *rp)
  3596. {
  3597. BUILD_BUG_ON(sizeof(struct rxdma_mailbox) != 64);
  3598. rp->rxhash = kcalloc(MAX_RBR_RING_SIZE, sizeof(struct page *),
  3599. GFP_KERNEL);
  3600. if (!rp->rxhash)
  3601. return -ENOMEM;
  3602. rp->mbox = np->ops->alloc_coherent(np->device,
  3603. sizeof(struct rxdma_mailbox),
  3604. &rp->mbox_dma, GFP_KERNEL);
  3605. if (!rp->mbox)
  3606. return -ENOMEM;
  3607. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3608. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA mailbox %p\n",
  3609. rp->mbox);
  3610. return -EINVAL;
  3611. }
  3612. rp->rcr = np->ops->alloc_coherent(np->device,
  3613. MAX_RCR_RING_SIZE * sizeof(__le64),
  3614. &rp->rcr_dma, GFP_KERNEL);
  3615. if (!rp->rcr)
  3616. return -ENOMEM;
  3617. if ((unsigned long)rp->rcr & (64UL - 1)) {
  3618. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RCR table %p\n",
  3619. rp->rcr);
  3620. return -EINVAL;
  3621. }
  3622. rp->rcr_table_size = MAX_RCR_RING_SIZE;
  3623. rp->rcr_index = 0;
  3624. rp->rbr = np->ops->alloc_coherent(np->device,
  3625. MAX_RBR_RING_SIZE * sizeof(__le32),
  3626. &rp->rbr_dma, GFP_KERNEL);
  3627. if (!rp->rbr)
  3628. return -ENOMEM;
  3629. if ((unsigned long)rp->rbr & (64UL - 1)) {
  3630. netdev_err(np->dev, "Coherent alloc gives misaligned RXDMA RBR table %p\n",
  3631. rp->rbr);
  3632. return -EINVAL;
  3633. }
  3634. rp->rbr_table_size = MAX_RBR_RING_SIZE;
  3635. rp->rbr_index = 0;
  3636. rp->rbr_pending = 0;
  3637. return 0;
  3638. }
  3639. static void niu_set_max_burst(struct niu *np, struct tx_ring_info *rp)
  3640. {
  3641. int mtu = np->dev->mtu;
  3642. /* These values are recommended by the HW designers for fair
  3643. * utilization of DRR amongst the rings.
  3644. */
  3645. rp->max_burst = mtu + 32;
  3646. if (rp->max_burst > 4096)
  3647. rp->max_burst = 4096;
  3648. }
  3649. static int niu_alloc_tx_ring_info(struct niu *np,
  3650. struct tx_ring_info *rp)
  3651. {
  3652. BUILD_BUG_ON(sizeof(struct txdma_mailbox) != 64);
  3653. rp->mbox = np->ops->alloc_coherent(np->device,
  3654. sizeof(struct txdma_mailbox),
  3655. &rp->mbox_dma, GFP_KERNEL);
  3656. if (!rp->mbox)
  3657. return -ENOMEM;
  3658. if ((unsigned long)rp->mbox & (64UL - 1)) {
  3659. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA mailbox %p\n",
  3660. rp->mbox);
  3661. return -EINVAL;
  3662. }
  3663. rp->descr = np->ops->alloc_coherent(np->device,
  3664. MAX_TX_RING_SIZE * sizeof(__le64),
  3665. &rp->descr_dma, GFP_KERNEL);
  3666. if (!rp->descr)
  3667. return -ENOMEM;
  3668. if ((unsigned long)rp->descr & (64UL - 1)) {
  3669. netdev_err(np->dev, "Coherent alloc gives misaligned TXDMA descr table %p\n",
  3670. rp->descr);
  3671. return -EINVAL;
  3672. }
  3673. rp->pending = MAX_TX_RING_SIZE;
  3674. rp->prod = 0;
  3675. rp->cons = 0;
  3676. rp->wrap_bit = 0;
  3677. /* XXX make these configurable... XXX */
  3678. rp->mark_freq = rp->pending / 4;
  3679. niu_set_max_burst(np, rp);
  3680. return 0;
  3681. }
  3682. static void niu_size_rbr(struct niu *np, struct rx_ring_info *rp)
  3683. {
  3684. u16 bss;
  3685. bss = min(PAGE_SHIFT, 15);
  3686. rp->rbr_block_size = 1 << bss;
  3687. rp->rbr_blocks_per_page = 1 << (PAGE_SHIFT-bss);
  3688. rp->rbr_sizes[0] = 256;
  3689. rp->rbr_sizes[1] = 1024;
  3690. if (np->dev->mtu > ETH_DATA_LEN) {
  3691. switch (PAGE_SIZE) {
  3692. case 4 * 1024:
  3693. rp->rbr_sizes[2] = 4096;
  3694. break;
  3695. default:
  3696. rp->rbr_sizes[2] = 8192;
  3697. break;
  3698. }
  3699. } else {
  3700. rp->rbr_sizes[2] = 2048;
  3701. }
  3702. rp->rbr_sizes[3] = rp->rbr_block_size;
  3703. }
  3704. static int niu_alloc_channels(struct niu *np)
  3705. {
  3706. struct niu_parent *parent = np->parent;
  3707. int first_rx_channel, first_tx_channel;
  3708. int num_rx_rings, num_tx_rings;
  3709. struct rx_ring_info *rx_rings;
  3710. struct tx_ring_info *tx_rings;
  3711. int i, port, err;
  3712. port = np->port;
  3713. first_rx_channel = first_tx_channel = 0;
  3714. for (i = 0; i < port; i++) {
  3715. first_rx_channel += parent->rxchan_per_port[i];
  3716. first_tx_channel += parent->txchan_per_port[i];
  3717. }
  3718. num_rx_rings = parent->rxchan_per_port[port];
  3719. num_tx_rings = parent->txchan_per_port[port];
  3720. rx_rings = kcalloc(num_rx_rings, sizeof(struct rx_ring_info),
  3721. GFP_KERNEL);
  3722. err = -ENOMEM;
  3723. if (!rx_rings)
  3724. goto out_err;
  3725. np->num_rx_rings = num_rx_rings;
  3726. smp_wmb();
  3727. np->rx_rings = rx_rings;
  3728. netif_set_real_num_rx_queues(np->dev, num_rx_rings);
  3729. for (i = 0; i < np->num_rx_rings; i++) {
  3730. struct rx_ring_info *rp = &np->rx_rings[i];
  3731. rp->np = np;
  3732. rp->rx_channel = first_rx_channel + i;
  3733. err = niu_alloc_rx_ring_info(np, rp);
  3734. if (err)
  3735. goto out_err;
  3736. niu_size_rbr(np, rp);
  3737. /* XXX better defaults, configurable, etc... XXX */
  3738. rp->nonsyn_window = 64;
  3739. rp->nonsyn_threshold = rp->rcr_table_size - 64;
  3740. rp->syn_window = 64;
  3741. rp->syn_threshold = rp->rcr_table_size - 64;
  3742. rp->rcr_pkt_threshold = 16;
  3743. rp->rcr_timeout = 8;
  3744. rp->rbr_kick_thresh = RBR_REFILL_MIN;
  3745. if (rp->rbr_kick_thresh < rp->rbr_blocks_per_page)
  3746. rp->rbr_kick_thresh = rp->rbr_blocks_per_page;
  3747. err = niu_rbr_fill(np, rp, GFP_KERNEL);
  3748. if (err)
  3749. return err;
  3750. }
  3751. tx_rings = kcalloc(num_tx_rings, sizeof(struct tx_ring_info),
  3752. GFP_KERNEL);
  3753. err = -ENOMEM;
  3754. if (!tx_rings)
  3755. goto out_err;
  3756. np->num_tx_rings = num_tx_rings;
  3757. smp_wmb();
  3758. np->tx_rings = tx_rings;
  3759. netif_set_real_num_tx_queues(np->dev, num_tx_rings);
  3760. for (i = 0; i < np->num_tx_rings; i++) {
  3761. struct tx_ring_info *rp = &np->tx_rings[i];
  3762. rp->np = np;
  3763. rp->tx_channel = first_tx_channel + i;
  3764. err = niu_alloc_tx_ring_info(np, rp);
  3765. if (err)
  3766. goto out_err;
  3767. }
  3768. return 0;
  3769. out_err:
  3770. niu_free_channels(np);
  3771. return err;
  3772. }
  3773. static int niu_tx_cs_sng_poll(struct niu *np, int channel)
  3774. {
  3775. int limit = 1000;
  3776. while (--limit > 0) {
  3777. u64 val = nr64(TX_CS(channel));
  3778. if (val & TX_CS_SNG_STATE)
  3779. return 0;
  3780. }
  3781. return -ENODEV;
  3782. }
  3783. static int niu_tx_channel_stop(struct niu *np, int channel)
  3784. {
  3785. u64 val = nr64(TX_CS(channel));
  3786. val |= TX_CS_STOP_N_GO;
  3787. nw64(TX_CS(channel), val);
  3788. return niu_tx_cs_sng_poll(np, channel);
  3789. }
  3790. static int niu_tx_cs_reset_poll(struct niu *np, int channel)
  3791. {
  3792. int limit = 1000;
  3793. while (--limit > 0) {
  3794. u64 val = nr64(TX_CS(channel));
  3795. if (!(val & TX_CS_RST))
  3796. return 0;
  3797. }
  3798. return -ENODEV;
  3799. }
  3800. static int niu_tx_channel_reset(struct niu *np, int channel)
  3801. {
  3802. u64 val = nr64(TX_CS(channel));
  3803. int err;
  3804. val |= TX_CS_RST;
  3805. nw64(TX_CS(channel), val);
  3806. err = niu_tx_cs_reset_poll(np, channel);
  3807. if (!err)
  3808. nw64(TX_RING_KICK(channel), 0);
  3809. return err;
  3810. }
  3811. static int niu_tx_channel_lpage_init(struct niu *np, int channel)
  3812. {
  3813. u64 val;
  3814. nw64(TX_LOG_MASK1(channel), 0);
  3815. nw64(TX_LOG_VAL1(channel), 0);
  3816. nw64(TX_LOG_MASK2(channel), 0);
  3817. nw64(TX_LOG_VAL2(channel), 0);
  3818. nw64(TX_LOG_PAGE_RELO1(channel), 0);
  3819. nw64(TX_LOG_PAGE_RELO2(channel), 0);
  3820. nw64(TX_LOG_PAGE_HDL(channel), 0);
  3821. val = (u64)np->port << TX_LOG_PAGE_VLD_FUNC_SHIFT;
  3822. val |= (TX_LOG_PAGE_VLD_PAGE0 | TX_LOG_PAGE_VLD_PAGE1);
  3823. nw64(TX_LOG_PAGE_VLD(channel), val);
  3824. /* XXX TXDMA 32bit mode? XXX */
  3825. return 0;
  3826. }
  3827. static void niu_txc_enable_port(struct niu *np, int on)
  3828. {
  3829. unsigned long flags;
  3830. u64 val, mask;
  3831. niu_lock_parent(np, flags);
  3832. val = nr64(TXC_CONTROL);
  3833. mask = (u64)1 << np->port;
  3834. if (on) {
  3835. val |= TXC_CONTROL_ENABLE | mask;
  3836. } else {
  3837. val &= ~mask;
  3838. if ((val & ~TXC_CONTROL_ENABLE) == 0)
  3839. val &= ~TXC_CONTROL_ENABLE;
  3840. }
  3841. nw64(TXC_CONTROL, val);
  3842. niu_unlock_parent(np, flags);
  3843. }
  3844. static void niu_txc_set_imask(struct niu *np, u64 imask)
  3845. {
  3846. unsigned long flags;
  3847. u64 val;
  3848. niu_lock_parent(np, flags);
  3849. val = nr64(TXC_INT_MASK);
  3850. val &= ~TXC_INT_MASK_VAL(np->port);
  3851. val |= (imask << TXC_INT_MASK_VAL_SHIFT(np->port));
  3852. niu_unlock_parent(np, flags);
  3853. }
  3854. static void niu_txc_port_dma_enable(struct niu *np, int on)
  3855. {
  3856. u64 val = 0;
  3857. if (on) {
  3858. int i;
  3859. for (i = 0; i < np->num_tx_rings; i++)
  3860. val |= (1 << np->tx_rings[i].tx_channel);
  3861. }
  3862. nw64(TXC_PORT_DMA(np->port), val);
  3863. }
  3864. static int niu_init_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  3865. {
  3866. int err, channel = rp->tx_channel;
  3867. u64 val, ring_len;
  3868. err = niu_tx_channel_stop(np, channel);
  3869. if (err)
  3870. return err;
  3871. err = niu_tx_channel_reset(np, channel);
  3872. if (err)
  3873. return err;
  3874. err = niu_tx_channel_lpage_init(np, channel);
  3875. if (err)
  3876. return err;
  3877. nw64(TXC_DMA_MAX(channel), rp->max_burst);
  3878. nw64(TX_ENT_MSK(channel), 0);
  3879. if (rp->descr_dma & ~(TX_RNG_CFIG_STADDR_BASE |
  3880. TX_RNG_CFIG_STADDR)) {
  3881. netdev_err(np->dev, "TX ring channel %d DMA addr (%llx) is not aligned\n",
  3882. channel, (unsigned long long)rp->descr_dma);
  3883. return -EINVAL;
  3884. }
  3885. /* The length field in TX_RNG_CFIG is measured in 64-byte
  3886. * blocks. rp->pending is the number of TX descriptors in
  3887. * our ring, 8 bytes each, thus we divide by 8 bytes more
  3888. * to get the proper value the chip wants.
  3889. */
  3890. ring_len = (rp->pending / 8);
  3891. val = ((ring_len << TX_RNG_CFIG_LEN_SHIFT) |
  3892. rp->descr_dma);
  3893. nw64(TX_RNG_CFIG(channel), val);
  3894. if (((rp->mbox_dma >> 32) & ~TXDMA_MBH_MBADDR) ||
  3895. ((u32)rp->mbox_dma & ~TXDMA_MBL_MBADDR)) {
  3896. netdev_err(np->dev, "TX ring channel %d MBOX addr (%llx) has invalid bits\n",
  3897. channel, (unsigned long long)rp->mbox_dma);
  3898. return -EINVAL;
  3899. }
  3900. nw64(TXDMA_MBH(channel), rp->mbox_dma >> 32);
  3901. nw64(TXDMA_MBL(channel), rp->mbox_dma & TXDMA_MBL_MBADDR);
  3902. nw64(TX_CS(channel), 0);
  3903. rp->last_pkt_cnt = 0;
  3904. return 0;
  3905. }
  3906. static void niu_init_rdc_groups(struct niu *np)
  3907. {
  3908. struct niu_rdc_tables *tp = &np->parent->rdc_group_cfg[np->port];
  3909. int i, first_table_num = tp->first_table_num;
  3910. for (i = 0; i < tp->num_tables; i++) {
  3911. struct rdc_table *tbl = &tp->tables[i];
  3912. int this_table = first_table_num + i;
  3913. int slot;
  3914. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++)
  3915. nw64(RDC_TBL(this_table, slot),
  3916. tbl->rxdma_channel[slot]);
  3917. }
  3918. nw64(DEF_RDC(np->port), np->parent->rdc_default[np->port]);
  3919. }
  3920. static void niu_init_drr_weight(struct niu *np)
  3921. {
  3922. int type = phy_decode(np->parent->port_phy, np->port);
  3923. u64 val;
  3924. switch (type) {
  3925. case PORT_TYPE_10G:
  3926. val = PT_DRR_WEIGHT_DEFAULT_10G;
  3927. break;
  3928. case PORT_TYPE_1G:
  3929. default:
  3930. val = PT_DRR_WEIGHT_DEFAULT_1G;
  3931. break;
  3932. }
  3933. nw64(PT_DRR_WT(np->port), val);
  3934. }
  3935. static int niu_init_hostinfo(struct niu *np)
  3936. {
  3937. struct niu_parent *parent = np->parent;
  3938. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  3939. int i, err, num_alt = niu_num_alt_addr(np);
  3940. int first_rdc_table = tp->first_table_num;
  3941. err = niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  3942. if (err)
  3943. return err;
  3944. err = niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  3945. if (err)
  3946. return err;
  3947. for (i = 0; i < num_alt; i++) {
  3948. err = niu_set_alt_mac_rdc_table(np, i, first_rdc_table, 1);
  3949. if (err)
  3950. return err;
  3951. }
  3952. return 0;
  3953. }
  3954. static int niu_rx_channel_reset(struct niu *np, int channel)
  3955. {
  3956. return niu_set_and_wait_clear(np, RXDMA_CFIG1(channel),
  3957. RXDMA_CFIG1_RST, 1000, 10,
  3958. "RXDMA_CFIG1");
  3959. }
  3960. static int niu_rx_channel_lpage_init(struct niu *np, int channel)
  3961. {
  3962. u64 val;
  3963. nw64(RX_LOG_MASK1(channel), 0);
  3964. nw64(RX_LOG_VAL1(channel), 0);
  3965. nw64(RX_LOG_MASK2(channel), 0);
  3966. nw64(RX_LOG_VAL2(channel), 0);
  3967. nw64(RX_LOG_PAGE_RELO1(channel), 0);
  3968. nw64(RX_LOG_PAGE_RELO2(channel), 0);
  3969. nw64(RX_LOG_PAGE_HDL(channel), 0);
  3970. val = (u64)np->port << RX_LOG_PAGE_VLD_FUNC_SHIFT;
  3971. val |= (RX_LOG_PAGE_VLD_PAGE0 | RX_LOG_PAGE_VLD_PAGE1);
  3972. nw64(RX_LOG_PAGE_VLD(channel), val);
  3973. return 0;
  3974. }
  3975. static void niu_rx_channel_wred_init(struct niu *np, struct rx_ring_info *rp)
  3976. {
  3977. u64 val;
  3978. val = (((u64)rp->nonsyn_window << RDC_RED_PARA_WIN_SHIFT) |
  3979. ((u64)rp->nonsyn_threshold << RDC_RED_PARA_THRE_SHIFT) |
  3980. ((u64)rp->syn_window << RDC_RED_PARA_WIN_SYN_SHIFT) |
  3981. ((u64)rp->syn_threshold << RDC_RED_PARA_THRE_SYN_SHIFT));
  3982. nw64(RDC_RED_PARA(rp->rx_channel), val);
  3983. }
  3984. static int niu_compute_rbr_cfig_b(struct rx_ring_info *rp, u64 *ret)
  3985. {
  3986. u64 val = 0;
  3987. *ret = 0;
  3988. switch (rp->rbr_block_size) {
  3989. case 4 * 1024:
  3990. val |= (RBR_BLKSIZE_4K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3991. break;
  3992. case 8 * 1024:
  3993. val |= (RBR_BLKSIZE_8K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3994. break;
  3995. case 16 * 1024:
  3996. val |= (RBR_BLKSIZE_16K << RBR_CFIG_B_BLKSIZE_SHIFT);
  3997. break;
  3998. case 32 * 1024:
  3999. val |= (RBR_BLKSIZE_32K << RBR_CFIG_B_BLKSIZE_SHIFT);
  4000. break;
  4001. default:
  4002. return -EINVAL;
  4003. }
  4004. val |= RBR_CFIG_B_VLD2;
  4005. switch (rp->rbr_sizes[2]) {
  4006. case 2 * 1024:
  4007. val |= (RBR_BUFSZ2_2K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4008. break;
  4009. case 4 * 1024:
  4010. val |= (RBR_BUFSZ2_4K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4011. break;
  4012. case 8 * 1024:
  4013. val |= (RBR_BUFSZ2_8K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4014. break;
  4015. case 16 * 1024:
  4016. val |= (RBR_BUFSZ2_16K << RBR_CFIG_B_BUFSZ2_SHIFT);
  4017. break;
  4018. default:
  4019. return -EINVAL;
  4020. }
  4021. val |= RBR_CFIG_B_VLD1;
  4022. switch (rp->rbr_sizes[1]) {
  4023. case 1 * 1024:
  4024. val |= (RBR_BUFSZ1_1K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4025. break;
  4026. case 2 * 1024:
  4027. val |= (RBR_BUFSZ1_2K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4028. break;
  4029. case 4 * 1024:
  4030. val |= (RBR_BUFSZ1_4K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4031. break;
  4032. case 8 * 1024:
  4033. val |= (RBR_BUFSZ1_8K << RBR_CFIG_B_BUFSZ1_SHIFT);
  4034. break;
  4035. default:
  4036. return -EINVAL;
  4037. }
  4038. val |= RBR_CFIG_B_VLD0;
  4039. switch (rp->rbr_sizes[0]) {
  4040. case 256:
  4041. val |= (RBR_BUFSZ0_256 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4042. break;
  4043. case 512:
  4044. val |= (RBR_BUFSZ0_512 << RBR_CFIG_B_BUFSZ0_SHIFT);
  4045. break;
  4046. case 1 * 1024:
  4047. val |= (RBR_BUFSZ0_1K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4048. break;
  4049. case 2 * 1024:
  4050. val |= (RBR_BUFSZ0_2K << RBR_CFIG_B_BUFSZ0_SHIFT);
  4051. break;
  4052. default:
  4053. return -EINVAL;
  4054. }
  4055. *ret = val;
  4056. return 0;
  4057. }
  4058. static int niu_enable_rx_channel(struct niu *np, int channel, int on)
  4059. {
  4060. u64 val = nr64(RXDMA_CFIG1(channel));
  4061. int limit;
  4062. if (on)
  4063. val |= RXDMA_CFIG1_EN;
  4064. else
  4065. val &= ~RXDMA_CFIG1_EN;
  4066. nw64(RXDMA_CFIG1(channel), val);
  4067. limit = 1000;
  4068. while (--limit > 0) {
  4069. if (nr64(RXDMA_CFIG1(channel)) & RXDMA_CFIG1_QST)
  4070. break;
  4071. udelay(10);
  4072. }
  4073. if (limit <= 0)
  4074. return -ENODEV;
  4075. return 0;
  4076. }
  4077. static int niu_init_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4078. {
  4079. int err, channel = rp->rx_channel;
  4080. u64 val;
  4081. err = niu_rx_channel_reset(np, channel);
  4082. if (err)
  4083. return err;
  4084. err = niu_rx_channel_lpage_init(np, channel);
  4085. if (err)
  4086. return err;
  4087. niu_rx_channel_wred_init(np, rp);
  4088. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_RBR_EMPTY);
  4089. nw64(RX_DMA_CTL_STAT(channel),
  4090. (RX_DMA_CTL_STAT_MEX |
  4091. RX_DMA_CTL_STAT_RCRTHRES |
  4092. RX_DMA_CTL_STAT_RCRTO |
  4093. RX_DMA_CTL_STAT_RBR_EMPTY));
  4094. nw64(RXDMA_CFIG1(channel), rp->mbox_dma >> 32);
  4095. nw64(RXDMA_CFIG2(channel),
  4096. ((rp->mbox_dma & RXDMA_CFIG2_MBADDR_L) |
  4097. RXDMA_CFIG2_FULL_HDR));
  4098. nw64(RBR_CFIG_A(channel),
  4099. ((u64)rp->rbr_table_size << RBR_CFIG_A_LEN_SHIFT) |
  4100. (rp->rbr_dma & (RBR_CFIG_A_STADDR_BASE | RBR_CFIG_A_STADDR)));
  4101. err = niu_compute_rbr_cfig_b(rp, &val);
  4102. if (err)
  4103. return err;
  4104. nw64(RBR_CFIG_B(channel), val);
  4105. nw64(RCRCFIG_A(channel),
  4106. ((u64)rp->rcr_table_size << RCRCFIG_A_LEN_SHIFT) |
  4107. (rp->rcr_dma & (RCRCFIG_A_STADDR_BASE | RCRCFIG_A_STADDR)));
  4108. nw64(RCRCFIG_B(channel),
  4109. ((u64)rp->rcr_pkt_threshold << RCRCFIG_B_PTHRES_SHIFT) |
  4110. RCRCFIG_B_ENTOUT |
  4111. ((u64)rp->rcr_timeout << RCRCFIG_B_TIMEOUT_SHIFT));
  4112. err = niu_enable_rx_channel(np, channel, 1);
  4113. if (err)
  4114. return err;
  4115. nw64(RBR_KICK(channel), rp->rbr_index);
  4116. val = nr64(RX_DMA_CTL_STAT(channel));
  4117. val |= RX_DMA_CTL_STAT_RBR_EMPTY;
  4118. nw64(RX_DMA_CTL_STAT(channel), val);
  4119. return 0;
  4120. }
  4121. static int niu_init_rx_channels(struct niu *np)
  4122. {
  4123. unsigned long flags;
  4124. u64 seed = jiffies_64;
  4125. int err, i;
  4126. niu_lock_parent(np, flags);
  4127. nw64(RX_DMA_CK_DIV, np->parent->rxdma_clock_divider);
  4128. nw64(RED_RAN_INIT, RED_RAN_INIT_OPMODE | (seed & RED_RAN_INIT_VAL));
  4129. niu_unlock_parent(np, flags);
  4130. /* XXX RXDMA 32bit mode? XXX */
  4131. niu_init_rdc_groups(np);
  4132. niu_init_drr_weight(np);
  4133. err = niu_init_hostinfo(np);
  4134. if (err)
  4135. return err;
  4136. for (i = 0; i < np->num_rx_rings; i++) {
  4137. struct rx_ring_info *rp = &np->rx_rings[i];
  4138. err = niu_init_one_rx_channel(np, rp);
  4139. if (err)
  4140. return err;
  4141. }
  4142. return 0;
  4143. }
  4144. static int niu_set_ip_frag_rule(struct niu *np)
  4145. {
  4146. struct niu_parent *parent = np->parent;
  4147. struct niu_classifier *cp = &np->clas;
  4148. struct niu_tcam_entry *tp;
  4149. int index, err;
  4150. index = cp->tcam_top;
  4151. tp = &parent->tcam[index];
  4152. /* Note that the noport bit is the same in both ipv4 and
  4153. * ipv6 format TCAM entries.
  4154. */
  4155. memset(tp, 0, sizeof(*tp));
  4156. tp->key[1] = TCAM_V4KEY1_NOPORT;
  4157. tp->key_mask[1] = TCAM_V4KEY1_NOPORT;
  4158. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  4159. ((u64)0 << TCAM_ASSOCDATA_OFFSET_SHIFT));
  4160. err = tcam_write(np, index, tp->key, tp->key_mask);
  4161. if (err)
  4162. return err;
  4163. err = tcam_assoc_write(np, index, tp->assoc_data);
  4164. if (err)
  4165. return err;
  4166. tp->valid = 1;
  4167. cp->tcam_valid_entries++;
  4168. return 0;
  4169. }
  4170. static int niu_init_classifier_hw(struct niu *np)
  4171. {
  4172. struct niu_parent *parent = np->parent;
  4173. struct niu_classifier *cp = &np->clas;
  4174. int i, err;
  4175. nw64(H1POLY, cp->h1_init);
  4176. nw64(H2POLY, cp->h2_init);
  4177. err = niu_init_hostinfo(np);
  4178. if (err)
  4179. return err;
  4180. for (i = 0; i < ENET_VLAN_TBL_NUM_ENTRIES; i++) {
  4181. struct niu_vlan_rdc *vp = &cp->vlan_mappings[i];
  4182. vlan_tbl_write(np, i, np->port,
  4183. vp->vlan_pref, vp->rdc_num);
  4184. }
  4185. for (i = 0; i < cp->num_alt_mac_mappings; i++) {
  4186. struct niu_altmac_rdc *ap = &cp->alt_mac_mappings[i];
  4187. err = niu_set_alt_mac_rdc_table(np, ap->alt_mac_num,
  4188. ap->rdc_num, ap->mac_pref);
  4189. if (err)
  4190. return err;
  4191. }
  4192. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  4193. int index = i - CLASS_CODE_USER_PROG1;
  4194. err = niu_set_tcam_key(np, i, parent->tcam_key[index]);
  4195. if (err)
  4196. return err;
  4197. err = niu_set_flow_key(np, i, parent->flow_key[index]);
  4198. if (err)
  4199. return err;
  4200. }
  4201. err = niu_set_ip_frag_rule(np);
  4202. if (err)
  4203. return err;
  4204. tcam_enable(np, 1);
  4205. return 0;
  4206. }
  4207. static int niu_zcp_write(struct niu *np, int index, u64 *data)
  4208. {
  4209. nw64(ZCP_RAM_DATA0, data[0]);
  4210. nw64(ZCP_RAM_DATA1, data[1]);
  4211. nw64(ZCP_RAM_DATA2, data[2]);
  4212. nw64(ZCP_RAM_DATA3, data[3]);
  4213. nw64(ZCP_RAM_DATA4, data[4]);
  4214. nw64(ZCP_RAM_BE, ZCP_RAM_BE_VAL);
  4215. nw64(ZCP_RAM_ACC,
  4216. (ZCP_RAM_ACC_WRITE |
  4217. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4218. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4219. return niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4220. 1000, 100);
  4221. }
  4222. static int niu_zcp_read(struct niu *np, int index, u64 *data)
  4223. {
  4224. int err;
  4225. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4226. 1000, 100);
  4227. if (err) {
  4228. netdev_err(np->dev, "ZCP read busy won't clear, ZCP_RAM_ACC[%llx]\n",
  4229. (unsigned long long)nr64(ZCP_RAM_ACC));
  4230. return err;
  4231. }
  4232. nw64(ZCP_RAM_ACC,
  4233. (ZCP_RAM_ACC_READ |
  4234. (0 << ZCP_RAM_ACC_ZFCID_SHIFT) |
  4235. (ZCP_RAM_SEL_CFIFO(np->port) << ZCP_RAM_ACC_RAM_SEL_SHIFT)));
  4236. err = niu_wait_bits_clear(np, ZCP_RAM_ACC, ZCP_RAM_ACC_BUSY,
  4237. 1000, 100);
  4238. if (err) {
  4239. netdev_err(np->dev, "ZCP read busy2 won't clear, ZCP_RAM_ACC[%llx]\n",
  4240. (unsigned long long)nr64(ZCP_RAM_ACC));
  4241. return err;
  4242. }
  4243. data[0] = nr64(ZCP_RAM_DATA0);
  4244. data[1] = nr64(ZCP_RAM_DATA1);
  4245. data[2] = nr64(ZCP_RAM_DATA2);
  4246. data[3] = nr64(ZCP_RAM_DATA3);
  4247. data[4] = nr64(ZCP_RAM_DATA4);
  4248. return 0;
  4249. }
  4250. static void niu_zcp_cfifo_reset(struct niu *np)
  4251. {
  4252. u64 val = nr64(RESET_CFIFO);
  4253. val |= RESET_CFIFO_RST(np->port);
  4254. nw64(RESET_CFIFO, val);
  4255. udelay(10);
  4256. val &= ~RESET_CFIFO_RST(np->port);
  4257. nw64(RESET_CFIFO, val);
  4258. }
  4259. static int niu_init_zcp(struct niu *np)
  4260. {
  4261. u64 data[5], rbuf[5];
  4262. int i, max, err;
  4263. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4264. if (np->port == 0 || np->port == 1)
  4265. max = ATLAS_P0_P1_CFIFO_ENTRIES;
  4266. else
  4267. max = ATLAS_P2_P3_CFIFO_ENTRIES;
  4268. } else
  4269. max = NIU_CFIFO_ENTRIES;
  4270. data[0] = 0;
  4271. data[1] = 0;
  4272. data[2] = 0;
  4273. data[3] = 0;
  4274. data[4] = 0;
  4275. for (i = 0; i < max; i++) {
  4276. err = niu_zcp_write(np, i, data);
  4277. if (err)
  4278. return err;
  4279. err = niu_zcp_read(np, i, rbuf);
  4280. if (err)
  4281. return err;
  4282. }
  4283. niu_zcp_cfifo_reset(np);
  4284. nw64(CFIFO_ECC(np->port), 0);
  4285. nw64(ZCP_INT_STAT, ZCP_INT_STAT_ALL);
  4286. (void) nr64(ZCP_INT_STAT);
  4287. nw64(ZCP_INT_MASK, ZCP_INT_MASK_ALL);
  4288. return 0;
  4289. }
  4290. static void niu_ipp_write(struct niu *np, int index, u64 *data)
  4291. {
  4292. u64 val = nr64_ipp(IPP_CFIG);
  4293. nw64_ipp(IPP_CFIG, val | IPP_CFIG_DFIFO_PIO_W);
  4294. nw64_ipp(IPP_DFIFO_WR_PTR, index);
  4295. nw64_ipp(IPP_DFIFO_WR0, data[0]);
  4296. nw64_ipp(IPP_DFIFO_WR1, data[1]);
  4297. nw64_ipp(IPP_DFIFO_WR2, data[2]);
  4298. nw64_ipp(IPP_DFIFO_WR3, data[3]);
  4299. nw64_ipp(IPP_DFIFO_WR4, data[4]);
  4300. nw64_ipp(IPP_CFIG, val & ~IPP_CFIG_DFIFO_PIO_W);
  4301. }
  4302. static void niu_ipp_read(struct niu *np, int index, u64 *data)
  4303. {
  4304. nw64_ipp(IPP_DFIFO_RD_PTR, index);
  4305. data[0] = nr64_ipp(IPP_DFIFO_RD0);
  4306. data[1] = nr64_ipp(IPP_DFIFO_RD1);
  4307. data[2] = nr64_ipp(IPP_DFIFO_RD2);
  4308. data[3] = nr64_ipp(IPP_DFIFO_RD3);
  4309. data[4] = nr64_ipp(IPP_DFIFO_RD4);
  4310. }
  4311. static int niu_ipp_reset(struct niu *np)
  4312. {
  4313. return niu_set_and_wait_clear_ipp(np, IPP_CFIG, IPP_CFIG_SOFT_RST,
  4314. 1000, 100, "IPP_CFIG");
  4315. }
  4316. static int niu_init_ipp(struct niu *np)
  4317. {
  4318. u64 data[5], rbuf[5], val;
  4319. int i, max, err;
  4320. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  4321. if (np->port == 0 || np->port == 1)
  4322. max = ATLAS_P0_P1_DFIFO_ENTRIES;
  4323. else
  4324. max = ATLAS_P2_P3_DFIFO_ENTRIES;
  4325. } else
  4326. max = NIU_DFIFO_ENTRIES;
  4327. data[0] = 0;
  4328. data[1] = 0;
  4329. data[2] = 0;
  4330. data[3] = 0;
  4331. data[4] = 0;
  4332. for (i = 0; i < max; i++) {
  4333. niu_ipp_write(np, i, data);
  4334. niu_ipp_read(np, i, rbuf);
  4335. }
  4336. (void) nr64_ipp(IPP_INT_STAT);
  4337. (void) nr64_ipp(IPP_INT_STAT);
  4338. err = niu_ipp_reset(np);
  4339. if (err)
  4340. return err;
  4341. (void) nr64_ipp(IPP_PKT_DIS);
  4342. (void) nr64_ipp(IPP_BAD_CS_CNT);
  4343. (void) nr64_ipp(IPP_ECC);
  4344. (void) nr64_ipp(IPP_INT_STAT);
  4345. nw64_ipp(IPP_MSK, ~IPP_MSK_ALL);
  4346. val = nr64_ipp(IPP_CFIG);
  4347. val &= ~IPP_CFIG_IP_MAX_PKT;
  4348. val |= (IPP_CFIG_IPP_ENABLE |
  4349. IPP_CFIG_DFIFO_ECC_EN |
  4350. IPP_CFIG_DROP_BAD_CRC |
  4351. IPP_CFIG_CKSUM_EN |
  4352. (0x1ffff << IPP_CFIG_IP_MAX_PKT_SHIFT));
  4353. nw64_ipp(IPP_CFIG, val);
  4354. return 0;
  4355. }
  4356. static void niu_handle_led(struct niu *np, int status)
  4357. {
  4358. u64 val;
  4359. val = nr64_mac(XMAC_CONFIG);
  4360. if ((np->flags & NIU_FLAGS_10G) != 0 &&
  4361. (np->flags & NIU_FLAGS_FIBER) != 0) {
  4362. if (status) {
  4363. val |= XMAC_CONFIG_LED_POLARITY;
  4364. val &= ~XMAC_CONFIG_FORCE_LED_ON;
  4365. } else {
  4366. val |= XMAC_CONFIG_FORCE_LED_ON;
  4367. val &= ~XMAC_CONFIG_LED_POLARITY;
  4368. }
  4369. }
  4370. nw64_mac(XMAC_CONFIG, val);
  4371. }
  4372. static void niu_init_xif_xmac(struct niu *np)
  4373. {
  4374. struct niu_link_config *lp = &np->link_config;
  4375. u64 val;
  4376. if (np->flags & NIU_FLAGS_XCVR_SERDES) {
  4377. val = nr64(MIF_CONFIG);
  4378. val |= MIF_CONFIG_ATCA_GE;
  4379. nw64(MIF_CONFIG, val);
  4380. }
  4381. val = nr64_mac(XMAC_CONFIG);
  4382. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4383. val |= XMAC_CONFIG_TX_OUTPUT_EN;
  4384. if (lp->loopback_mode == LOOPBACK_MAC) {
  4385. val &= ~XMAC_CONFIG_SEL_POR_CLK_SRC;
  4386. val |= XMAC_CONFIG_LOOPBACK;
  4387. } else {
  4388. val &= ~XMAC_CONFIG_LOOPBACK;
  4389. }
  4390. if (np->flags & NIU_FLAGS_10G) {
  4391. val &= ~XMAC_CONFIG_LFS_DISABLE;
  4392. } else {
  4393. val |= XMAC_CONFIG_LFS_DISABLE;
  4394. if (!(np->flags & NIU_FLAGS_FIBER) &&
  4395. !(np->flags & NIU_FLAGS_XCVR_SERDES))
  4396. val |= XMAC_CONFIG_1G_PCS_BYPASS;
  4397. else
  4398. val &= ~XMAC_CONFIG_1G_PCS_BYPASS;
  4399. }
  4400. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4401. if (lp->active_speed == SPEED_100)
  4402. val |= XMAC_CONFIG_SEL_CLK_25MHZ;
  4403. else
  4404. val &= ~XMAC_CONFIG_SEL_CLK_25MHZ;
  4405. nw64_mac(XMAC_CONFIG, val);
  4406. val = nr64_mac(XMAC_CONFIG);
  4407. val &= ~XMAC_CONFIG_MODE_MASK;
  4408. if (np->flags & NIU_FLAGS_10G) {
  4409. val |= XMAC_CONFIG_MODE_XGMII;
  4410. } else {
  4411. if (lp->active_speed == SPEED_1000)
  4412. val |= XMAC_CONFIG_MODE_GMII;
  4413. else
  4414. val |= XMAC_CONFIG_MODE_MII;
  4415. }
  4416. nw64_mac(XMAC_CONFIG, val);
  4417. }
  4418. static void niu_init_xif_bmac(struct niu *np)
  4419. {
  4420. struct niu_link_config *lp = &np->link_config;
  4421. u64 val;
  4422. val = BMAC_XIF_CONFIG_TX_OUTPUT_EN;
  4423. if (lp->loopback_mode == LOOPBACK_MAC)
  4424. val |= BMAC_XIF_CONFIG_MII_LOOPBACK;
  4425. else
  4426. val &= ~BMAC_XIF_CONFIG_MII_LOOPBACK;
  4427. if (lp->active_speed == SPEED_1000)
  4428. val |= BMAC_XIF_CONFIG_GMII_MODE;
  4429. else
  4430. val &= ~BMAC_XIF_CONFIG_GMII_MODE;
  4431. val &= ~(BMAC_XIF_CONFIG_LINK_LED |
  4432. BMAC_XIF_CONFIG_LED_POLARITY);
  4433. if (!(np->flags & NIU_FLAGS_10G) &&
  4434. !(np->flags & NIU_FLAGS_FIBER) &&
  4435. lp->active_speed == SPEED_100)
  4436. val |= BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4437. else
  4438. val &= ~BMAC_XIF_CONFIG_25MHZ_CLOCK;
  4439. nw64_mac(BMAC_XIF_CONFIG, val);
  4440. }
  4441. static void niu_init_xif(struct niu *np)
  4442. {
  4443. if (np->flags & NIU_FLAGS_XMAC)
  4444. niu_init_xif_xmac(np);
  4445. else
  4446. niu_init_xif_bmac(np);
  4447. }
  4448. static void niu_pcs_mii_reset(struct niu *np)
  4449. {
  4450. int limit = 1000;
  4451. u64 val = nr64_pcs(PCS_MII_CTL);
  4452. val |= PCS_MII_CTL_RST;
  4453. nw64_pcs(PCS_MII_CTL, val);
  4454. while ((--limit >= 0) && (val & PCS_MII_CTL_RST)) {
  4455. udelay(100);
  4456. val = nr64_pcs(PCS_MII_CTL);
  4457. }
  4458. }
  4459. static void niu_xpcs_reset(struct niu *np)
  4460. {
  4461. int limit = 1000;
  4462. u64 val = nr64_xpcs(XPCS_CONTROL1);
  4463. val |= XPCS_CONTROL1_RESET;
  4464. nw64_xpcs(XPCS_CONTROL1, val);
  4465. while ((--limit >= 0) && (val & XPCS_CONTROL1_RESET)) {
  4466. udelay(100);
  4467. val = nr64_xpcs(XPCS_CONTROL1);
  4468. }
  4469. }
  4470. static int niu_init_pcs(struct niu *np)
  4471. {
  4472. struct niu_link_config *lp = &np->link_config;
  4473. u64 val;
  4474. switch (np->flags & (NIU_FLAGS_10G |
  4475. NIU_FLAGS_FIBER |
  4476. NIU_FLAGS_XCVR_SERDES)) {
  4477. case NIU_FLAGS_FIBER:
  4478. /* 1G fiber */
  4479. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4480. nw64_pcs(PCS_DPATH_MODE, 0);
  4481. niu_pcs_mii_reset(np);
  4482. break;
  4483. case NIU_FLAGS_10G:
  4484. case NIU_FLAGS_10G | NIU_FLAGS_FIBER:
  4485. case NIU_FLAGS_10G | NIU_FLAGS_XCVR_SERDES:
  4486. /* 10G SERDES */
  4487. if (!(np->flags & NIU_FLAGS_XMAC))
  4488. return -EINVAL;
  4489. /* 10G copper or fiber */
  4490. val = nr64_mac(XMAC_CONFIG);
  4491. val &= ~XMAC_CONFIG_10G_XPCS_BYPASS;
  4492. nw64_mac(XMAC_CONFIG, val);
  4493. niu_xpcs_reset(np);
  4494. val = nr64_xpcs(XPCS_CONTROL1);
  4495. if (lp->loopback_mode == LOOPBACK_PHY)
  4496. val |= XPCS_CONTROL1_LOOPBACK;
  4497. else
  4498. val &= ~XPCS_CONTROL1_LOOPBACK;
  4499. nw64_xpcs(XPCS_CONTROL1, val);
  4500. nw64_xpcs(XPCS_DESKEW_ERR_CNT, 0);
  4501. (void) nr64_xpcs(XPCS_SYMERR_CNT01);
  4502. (void) nr64_xpcs(XPCS_SYMERR_CNT23);
  4503. break;
  4504. case NIU_FLAGS_XCVR_SERDES:
  4505. /* 1G SERDES */
  4506. niu_pcs_mii_reset(np);
  4507. nw64_pcs(PCS_CONF, PCS_CONF_MASK | PCS_CONF_ENABLE);
  4508. nw64_pcs(PCS_DPATH_MODE, 0);
  4509. break;
  4510. case 0:
  4511. /* 1G copper */
  4512. case NIU_FLAGS_XCVR_SERDES | NIU_FLAGS_FIBER:
  4513. /* 1G RGMII FIBER */
  4514. nw64_pcs(PCS_DPATH_MODE, PCS_DPATH_MODE_MII);
  4515. niu_pcs_mii_reset(np);
  4516. break;
  4517. default:
  4518. return -EINVAL;
  4519. }
  4520. return 0;
  4521. }
  4522. static int niu_reset_tx_xmac(struct niu *np)
  4523. {
  4524. return niu_set_and_wait_clear_mac(np, XTXMAC_SW_RST,
  4525. (XTXMAC_SW_RST_REG_RS |
  4526. XTXMAC_SW_RST_SOFT_RST),
  4527. 1000, 100, "XTXMAC_SW_RST");
  4528. }
  4529. static int niu_reset_tx_bmac(struct niu *np)
  4530. {
  4531. int limit;
  4532. nw64_mac(BTXMAC_SW_RST, BTXMAC_SW_RST_RESET);
  4533. limit = 1000;
  4534. while (--limit >= 0) {
  4535. if (!(nr64_mac(BTXMAC_SW_RST) & BTXMAC_SW_RST_RESET))
  4536. break;
  4537. udelay(100);
  4538. }
  4539. if (limit < 0) {
  4540. dev_err(np->device, "Port %u TX BMAC would not reset, BTXMAC_SW_RST[%llx]\n",
  4541. np->port,
  4542. (unsigned long long) nr64_mac(BTXMAC_SW_RST));
  4543. return -ENODEV;
  4544. }
  4545. return 0;
  4546. }
  4547. static int niu_reset_tx_mac(struct niu *np)
  4548. {
  4549. if (np->flags & NIU_FLAGS_XMAC)
  4550. return niu_reset_tx_xmac(np);
  4551. else
  4552. return niu_reset_tx_bmac(np);
  4553. }
  4554. static void niu_init_tx_xmac(struct niu *np, u64 min, u64 max)
  4555. {
  4556. u64 val;
  4557. val = nr64_mac(XMAC_MIN);
  4558. val &= ~(XMAC_MIN_TX_MIN_PKT_SIZE |
  4559. XMAC_MIN_RX_MIN_PKT_SIZE);
  4560. val |= (min << XMAC_MIN_RX_MIN_PKT_SIZE_SHFT);
  4561. val |= (min << XMAC_MIN_TX_MIN_PKT_SIZE_SHFT);
  4562. nw64_mac(XMAC_MIN, val);
  4563. nw64_mac(XMAC_MAX, max);
  4564. nw64_mac(XTXMAC_STAT_MSK, ~(u64)0);
  4565. val = nr64_mac(XMAC_IPG);
  4566. if (np->flags & NIU_FLAGS_10G) {
  4567. val &= ~XMAC_IPG_IPG_XGMII;
  4568. val |= (IPG_12_15_XGMII << XMAC_IPG_IPG_XGMII_SHIFT);
  4569. } else {
  4570. val &= ~XMAC_IPG_IPG_MII_GMII;
  4571. val |= (IPG_12_MII_GMII << XMAC_IPG_IPG_MII_GMII_SHIFT);
  4572. }
  4573. nw64_mac(XMAC_IPG, val);
  4574. val = nr64_mac(XMAC_CONFIG);
  4575. val &= ~(XMAC_CONFIG_ALWAYS_NO_CRC |
  4576. XMAC_CONFIG_STRETCH_MODE |
  4577. XMAC_CONFIG_VAR_MIN_IPG_EN |
  4578. XMAC_CONFIG_TX_ENABLE);
  4579. nw64_mac(XMAC_CONFIG, val);
  4580. nw64_mac(TXMAC_FRM_CNT, 0);
  4581. nw64_mac(TXMAC_BYTE_CNT, 0);
  4582. }
  4583. static void niu_init_tx_bmac(struct niu *np, u64 min, u64 max)
  4584. {
  4585. u64 val;
  4586. nw64_mac(BMAC_MIN_FRAME, min);
  4587. nw64_mac(BMAC_MAX_FRAME, max);
  4588. nw64_mac(BTXMAC_STATUS_MASK, ~(u64)0);
  4589. nw64_mac(BMAC_CTRL_TYPE, 0x8808);
  4590. nw64_mac(BMAC_PREAMBLE_SIZE, 7);
  4591. val = nr64_mac(BTXMAC_CONFIG);
  4592. val &= ~(BTXMAC_CONFIG_FCS_DISABLE |
  4593. BTXMAC_CONFIG_ENABLE);
  4594. nw64_mac(BTXMAC_CONFIG, val);
  4595. }
  4596. static void niu_init_tx_mac(struct niu *np)
  4597. {
  4598. u64 min, max;
  4599. min = 64;
  4600. if (np->dev->mtu > ETH_DATA_LEN)
  4601. max = 9216;
  4602. else
  4603. max = 1522;
  4604. /* The XMAC_MIN register only accepts values for TX min which
  4605. * have the low 3 bits cleared.
  4606. */
  4607. BUG_ON(min & 0x7);
  4608. if (np->flags & NIU_FLAGS_XMAC)
  4609. niu_init_tx_xmac(np, min, max);
  4610. else
  4611. niu_init_tx_bmac(np, min, max);
  4612. }
  4613. static int niu_reset_rx_xmac(struct niu *np)
  4614. {
  4615. int limit;
  4616. nw64_mac(XRXMAC_SW_RST,
  4617. XRXMAC_SW_RST_REG_RS | XRXMAC_SW_RST_SOFT_RST);
  4618. limit = 1000;
  4619. while (--limit >= 0) {
  4620. if (!(nr64_mac(XRXMAC_SW_RST) & (XRXMAC_SW_RST_REG_RS |
  4621. XRXMAC_SW_RST_SOFT_RST)))
  4622. break;
  4623. udelay(100);
  4624. }
  4625. if (limit < 0) {
  4626. dev_err(np->device, "Port %u RX XMAC would not reset, XRXMAC_SW_RST[%llx]\n",
  4627. np->port,
  4628. (unsigned long long) nr64_mac(XRXMAC_SW_RST));
  4629. return -ENODEV;
  4630. }
  4631. return 0;
  4632. }
  4633. static int niu_reset_rx_bmac(struct niu *np)
  4634. {
  4635. int limit;
  4636. nw64_mac(BRXMAC_SW_RST, BRXMAC_SW_RST_RESET);
  4637. limit = 1000;
  4638. while (--limit >= 0) {
  4639. if (!(nr64_mac(BRXMAC_SW_RST) & BRXMAC_SW_RST_RESET))
  4640. break;
  4641. udelay(100);
  4642. }
  4643. if (limit < 0) {
  4644. dev_err(np->device, "Port %u RX BMAC would not reset, BRXMAC_SW_RST[%llx]\n",
  4645. np->port,
  4646. (unsigned long long) nr64_mac(BRXMAC_SW_RST));
  4647. return -ENODEV;
  4648. }
  4649. return 0;
  4650. }
  4651. static int niu_reset_rx_mac(struct niu *np)
  4652. {
  4653. if (np->flags & NIU_FLAGS_XMAC)
  4654. return niu_reset_rx_xmac(np);
  4655. else
  4656. return niu_reset_rx_bmac(np);
  4657. }
  4658. static void niu_init_rx_xmac(struct niu *np)
  4659. {
  4660. struct niu_parent *parent = np->parent;
  4661. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4662. int first_rdc_table = tp->first_table_num;
  4663. unsigned long i;
  4664. u64 val;
  4665. nw64_mac(XMAC_ADD_FILT0, 0);
  4666. nw64_mac(XMAC_ADD_FILT1, 0);
  4667. nw64_mac(XMAC_ADD_FILT2, 0);
  4668. nw64_mac(XMAC_ADD_FILT12_MASK, 0);
  4669. nw64_mac(XMAC_ADD_FILT00_MASK, 0);
  4670. for (i = 0; i < MAC_NUM_HASH; i++)
  4671. nw64_mac(XMAC_HASH_TBL(i), 0);
  4672. nw64_mac(XRXMAC_STAT_MSK, ~(u64)0);
  4673. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4674. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4675. val = nr64_mac(XMAC_CONFIG);
  4676. val &= ~(XMAC_CONFIG_RX_MAC_ENABLE |
  4677. XMAC_CONFIG_PROMISCUOUS |
  4678. XMAC_CONFIG_PROMISC_GROUP |
  4679. XMAC_CONFIG_ERR_CHK_DIS |
  4680. XMAC_CONFIG_RX_CRC_CHK_DIS |
  4681. XMAC_CONFIG_RESERVED_MULTICAST |
  4682. XMAC_CONFIG_RX_CODEV_CHK_DIS |
  4683. XMAC_CONFIG_ADDR_FILTER_EN |
  4684. XMAC_CONFIG_RCV_PAUSE_ENABLE |
  4685. XMAC_CONFIG_STRIP_CRC |
  4686. XMAC_CONFIG_PASS_FLOW_CTRL |
  4687. XMAC_CONFIG_MAC2IPP_PKT_CNT_EN);
  4688. val |= (XMAC_CONFIG_HASH_FILTER_EN);
  4689. nw64_mac(XMAC_CONFIG, val);
  4690. nw64_mac(RXMAC_BT_CNT, 0);
  4691. nw64_mac(RXMAC_BC_FRM_CNT, 0);
  4692. nw64_mac(RXMAC_MC_FRM_CNT, 0);
  4693. nw64_mac(RXMAC_FRAG_CNT, 0);
  4694. nw64_mac(RXMAC_HIST_CNT1, 0);
  4695. nw64_mac(RXMAC_HIST_CNT2, 0);
  4696. nw64_mac(RXMAC_HIST_CNT3, 0);
  4697. nw64_mac(RXMAC_HIST_CNT4, 0);
  4698. nw64_mac(RXMAC_HIST_CNT5, 0);
  4699. nw64_mac(RXMAC_HIST_CNT6, 0);
  4700. nw64_mac(RXMAC_HIST_CNT7, 0);
  4701. nw64_mac(RXMAC_MPSZER_CNT, 0);
  4702. nw64_mac(RXMAC_CRC_ER_CNT, 0);
  4703. nw64_mac(RXMAC_CD_VIO_CNT, 0);
  4704. nw64_mac(LINK_FAULT_CNT, 0);
  4705. }
  4706. static void niu_init_rx_bmac(struct niu *np)
  4707. {
  4708. struct niu_parent *parent = np->parent;
  4709. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[np->port];
  4710. int first_rdc_table = tp->first_table_num;
  4711. unsigned long i;
  4712. u64 val;
  4713. nw64_mac(BMAC_ADD_FILT0, 0);
  4714. nw64_mac(BMAC_ADD_FILT1, 0);
  4715. nw64_mac(BMAC_ADD_FILT2, 0);
  4716. nw64_mac(BMAC_ADD_FILT12_MASK, 0);
  4717. nw64_mac(BMAC_ADD_FILT00_MASK, 0);
  4718. for (i = 0; i < MAC_NUM_HASH; i++)
  4719. nw64_mac(BMAC_HASH_TBL(i), 0);
  4720. niu_set_primary_mac_rdc_table(np, first_rdc_table, 1);
  4721. niu_set_multicast_mac_rdc_table(np, first_rdc_table, 1);
  4722. nw64_mac(BRXMAC_STATUS_MASK, ~(u64)0);
  4723. val = nr64_mac(BRXMAC_CONFIG);
  4724. val &= ~(BRXMAC_CONFIG_ENABLE |
  4725. BRXMAC_CONFIG_STRIP_PAD |
  4726. BRXMAC_CONFIG_STRIP_FCS |
  4727. BRXMAC_CONFIG_PROMISC |
  4728. BRXMAC_CONFIG_PROMISC_GRP |
  4729. BRXMAC_CONFIG_ADDR_FILT_EN |
  4730. BRXMAC_CONFIG_DISCARD_DIS);
  4731. val |= (BRXMAC_CONFIG_HASH_FILT_EN);
  4732. nw64_mac(BRXMAC_CONFIG, val);
  4733. val = nr64_mac(BMAC_ADDR_CMPEN);
  4734. val |= BMAC_ADDR_CMPEN_EN0;
  4735. nw64_mac(BMAC_ADDR_CMPEN, val);
  4736. }
  4737. static void niu_init_rx_mac(struct niu *np)
  4738. {
  4739. niu_set_primary_mac(np, np->dev->dev_addr);
  4740. if (np->flags & NIU_FLAGS_XMAC)
  4741. niu_init_rx_xmac(np);
  4742. else
  4743. niu_init_rx_bmac(np);
  4744. }
  4745. static void niu_enable_tx_xmac(struct niu *np, int on)
  4746. {
  4747. u64 val = nr64_mac(XMAC_CONFIG);
  4748. if (on)
  4749. val |= XMAC_CONFIG_TX_ENABLE;
  4750. else
  4751. val &= ~XMAC_CONFIG_TX_ENABLE;
  4752. nw64_mac(XMAC_CONFIG, val);
  4753. }
  4754. static void niu_enable_tx_bmac(struct niu *np, int on)
  4755. {
  4756. u64 val = nr64_mac(BTXMAC_CONFIG);
  4757. if (on)
  4758. val |= BTXMAC_CONFIG_ENABLE;
  4759. else
  4760. val &= ~BTXMAC_CONFIG_ENABLE;
  4761. nw64_mac(BTXMAC_CONFIG, val);
  4762. }
  4763. static void niu_enable_tx_mac(struct niu *np, int on)
  4764. {
  4765. if (np->flags & NIU_FLAGS_XMAC)
  4766. niu_enable_tx_xmac(np, on);
  4767. else
  4768. niu_enable_tx_bmac(np, on);
  4769. }
  4770. static void niu_enable_rx_xmac(struct niu *np, int on)
  4771. {
  4772. u64 val = nr64_mac(XMAC_CONFIG);
  4773. val &= ~(XMAC_CONFIG_HASH_FILTER_EN |
  4774. XMAC_CONFIG_PROMISCUOUS);
  4775. if (np->flags & NIU_FLAGS_MCAST)
  4776. val |= XMAC_CONFIG_HASH_FILTER_EN;
  4777. if (np->flags & NIU_FLAGS_PROMISC)
  4778. val |= XMAC_CONFIG_PROMISCUOUS;
  4779. if (on)
  4780. val |= XMAC_CONFIG_RX_MAC_ENABLE;
  4781. else
  4782. val &= ~XMAC_CONFIG_RX_MAC_ENABLE;
  4783. nw64_mac(XMAC_CONFIG, val);
  4784. }
  4785. static void niu_enable_rx_bmac(struct niu *np, int on)
  4786. {
  4787. u64 val = nr64_mac(BRXMAC_CONFIG);
  4788. val &= ~(BRXMAC_CONFIG_HASH_FILT_EN |
  4789. BRXMAC_CONFIG_PROMISC);
  4790. if (np->flags & NIU_FLAGS_MCAST)
  4791. val |= BRXMAC_CONFIG_HASH_FILT_EN;
  4792. if (np->flags & NIU_FLAGS_PROMISC)
  4793. val |= BRXMAC_CONFIG_PROMISC;
  4794. if (on)
  4795. val |= BRXMAC_CONFIG_ENABLE;
  4796. else
  4797. val &= ~BRXMAC_CONFIG_ENABLE;
  4798. nw64_mac(BRXMAC_CONFIG, val);
  4799. }
  4800. static void niu_enable_rx_mac(struct niu *np, int on)
  4801. {
  4802. if (np->flags & NIU_FLAGS_XMAC)
  4803. niu_enable_rx_xmac(np, on);
  4804. else
  4805. niu_enable_rx_bmac(np, on);
  4806. }
  4807. static int niu_init_mac(struct niu *np)
  4808. {
  4809. int err;
  4810. niu_init_xif(np);
  4811. err = niu_init_pcs(np);
  4812. if (err)
  4813. return err;
  4814. err = niu_reset_tx_mac(np);
  4815. if (err)
  4816. return err;
  4817. niu_init_tx_mac(np);
  4818. err = niu_reset_rx_mac(np);
  4819. if (err)
  4820. return err;
  4821. niu_init_rx_mac(np);
  4822. /* This looks hookey but the RX MAC reset we just did will
  4823. * undo some of the state we setup in niu_init_tx_mac() so we
  4824. * have to call it again. In particular, the RX MAC reset will
  4825. * set the XMAC_MAX register back to it's default value.
  4826. */
  4827. niu_init_tx_mac(np);
  4828. niu_enable_tx_mac(np, 1);
  4829. niu_enable_rx_mac(np, 1);
  4830. return 0;
  4831. }
  4832. static void niu_stop_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4833. {
  4834. (void) niu_tx_channel_stop(np, rp->tx_channel);
  4835. }
  4836. static void niu_stop_tx_channels(struct niu *np)
  4837. {
  4838. int i;
  4839. for (i = 0; i < np->num_tx_rings; i++) {
  4840. struct tx_ring_info *rp = &np->tx_rings[i];
  4841. niu_stop_one_tx_channel(np, rp);
  4842. }
  4843. }
  4844. static void niu_reset_one_tx_channel(struct niu *np, struct tx_ring_info *rp)
  4845. {
  4846. (void) niu_tx_channel_reset(np, rp->tx_channel);
  4847. }
  4848. static void niu_reset_tx_channels(struct niu *np)
  4849. {
  4850. int i;
  4851. for (i = 0; i < np->num_tx_rings; i++) {
  4852. struct tx_ring_info *rp = &np->tx_rings[i];
  4853. niu_reset_one_tx_channel(np, rp);
  4854. }
  4855. }
  4856. static void niu_stop_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4857. {
  4858. (void) niu_enable_rx_channel(np, rp->rx_channel, 0);
  4859. }
  4860. static void niu_stop_rx_channels(struct niu *np)
  4861. {
  4862. int i;
  4863. for (i = 0; i < np->num_rx_rings; i++) {
  4864. struct rx_ring_info *rp = &np->rx_rings[i];
  4865. niu_stop_one_rx_channel(np, rp);
  4866. }
  4867. }
  4868. static void niu_reset_one_rx_channel(struct niu *np, struct rx_ring_info *rp)
  4869. {
  4870. int channel = rp->rx_channel;
  4871. (void) niu_rx_channel_reset(np, channel);
  4872. nw64(RX_DMA_ENT_MSK(channel), RX_DMA_ENT_MSK_ALL);
  4873. nw64(RX_DMA_CTL_STAT(channel), 0);
  4874. (void) niu_enable_rx_channel(np, channel, 0);
  4875. }
  4876. static void niu_reset_rx_channels(struct niu *np)
  4877. {
  4878. int i;
  4879. for (i = 0; i < np->num_rx_rings; i++) {
  4880. struct rx_ring_info *rp = &np->rx_rings[i];
  4881. niu_reset_one_rx_channel(np, rp);
  4882. }
  4883. }
  4884. static void niu_disable_ipp(struct niu *np)
  4885. {
  4886. u64 rd, wr, val;
  4887. int limit;
  4888. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4889. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4890. limit = 100;
  4891. while (--limit >= 0 && (rd != wr)) {
  4892. rd = nr64_ipp(IPP_DFIFO_RD_PTR);
  4893. wr = nr64_ipp(IPP_DFIFO_WR_PTR);
  4894. }
  4895. if (limit < 0 &&
  4896. (rd != 0 && wr != 1)) {
  4897. netdev_err(np->dev, "IPP would not quiesce, rd_ptr[%llx] wr_ptr[%llx]\n",
  4898. (unsigned long long)nr64_ipp(IPP_DFIFO_RD_PTR),
  4899. (unsigned long long)nr64_ipp(IPP_DFIFO_WR_PTR));
  4900. }
  4901. val = nr64_ipp(IPP_CFIG);
  4902. val &= ~(IPP_CFIG_IPP_ENABLE |
  4903. IPP_CFIG_DFIFO_ECC_EN |
  4904. IPP_CFIG_DROP_BAD_CRC |
  4905. IPP_CFIG_CKSUM_EN);
  4906. nw64_ipp(IPP_CFIG, val);
  4907. (void) niu_ipp_reset(np);
  4908. }
  4909. static int niu_init_hw(struct niu *np)
  4910. {
  4911. int i, err;
  4912. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TXC\n");
  4913. niu_txc_enable_port(np, 1);
  4914. niu_txc_port_dma_enable(np, 1);
  4915. niu_txc_set_imask(np, 0);
  4916. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize TX channels\n");
  4917. for (i = 0; i < np->num_tx_rings; i++) {
  4918. struct tx_ring_info *rp = &np->tx_rings[i];
  4919. err = niu_init_one_tx_channel(np, rp);
  4920. if (err)
  4921. return err;
  4922. }
  4923. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize RX channels\n");
  4924. err = niu_init_rx_channels(np);
  4925. if (err)
  4926. goto out_uninit_tx_channels;
  4927. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize classifier\n");
  4928. err = niu_init_classifier_hw(np);
  4929. if (err)
  4930. goto out_uninit_rx_channels;
  4931. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize ZCP\n");
  4932. err = niu_init_zcp(np);
  4933. if (err)
  4934. goto out_uninit_rx_channels;
  4935. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize IPP\n");
  4936. err = niu_init_ipp(np);
  4937. if (err)
  4938. goto out_uninit_rx_channels;
  4939. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Initialize MAC\n");
  4940. err = niu_init_mac(np);
  4941. if (err)
  4942. goto out_uninit_ipp;
  4943. return 0;
  4944. out_uninit_ipp:
  4945. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit IPP\n");
  4946. niu_disable_ipp(np);
  4947. out_uninit_rx_channels:
  4948. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit RX channels\n");
  4949. niu_stop_rx_channels(np);
  4950. niu_reset_rx_channels(np);
  4951. out_uninit_tx_channels:
  4952. netif_printk(np, ifup, KERN_DEBUG, np->dev, "Uninit TX channels\n");
  4953. niu_stop_tx_channels(np);
  4954. niu_reset_tx_channels(np);
  4955. return err;
  4956. }
  4957. static void niu_stop_hw(struct niu *np)
  4958. {
  4959. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable interrupts\n");
  4960. niu_enable_interrupts(np, 0);
  4961. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable RX MAC\n");
  4962. niu_enable_rx_mac(np, 0);
  4963. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Disable IPP\n");
  4964. niu_disable_ipp(np);
  4965. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop TX channels\n");
  4966. niu_stop_tx_channels(np);
  4967. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Stop RX channels\n");
  4968. niu_stop_rx_channels(np);
  4969. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset TX channels\n");
  4970. niu_reset_tx_channels(np);
  4971. netif_printk(np, ifdown, KERN_DEBUG, np->dev, "Reset RX channels\n");
  4972. niu_reset_rx_channels(np);
  4973. }
  4974. static void niu_set_irq_name(struct niu *np)
  4975. {
  4976. int port = np->port;
  4977. int i, j = 1;
  4978. sprintf(np->irq_name[0], "%s:MAC", np->dev->name);
  4979. if (port == 0) {
  4980. sprintf(np->irq_name[1], "%s:MIF", np->dev->name);
  4981. sprintf(np->irq_name[2], "%s:SYSERR", np->dev->name);
  4982. j = 3;
  4983. }
  4984. for (i = 0; i < np->num_ldg - j; i++) {
  4985. if (i < np->num_rx_rings)
  4986. sprintf(np->irq_name[i+j], "%s-rx-%d",
  4987. np->dev->name, i);
  4988. else if (i < np->num_tx_rings + np->num_rx_rings)
  4989. sprintf(np->irq_name[i+j], "%s-tx-%d", np->dev->name,
  4990. i - np->num_rx_rings);
  4991. }
  4992. }
  4993. static int niu_request_irq(struct niu *np)
  4994. {
  4995. int i, j, err;
  4996. niu_set_irq_name(np);
  4997. err = 0;
  4998. for (i = 0; i < np->num_ldg; i++) {
  4999. struct niu_ldg *lp = &np->ldg[i];
  5000. err = request_irq(lp->irq, niu_interrupt, IRQF_SHARED,
  5001. np->irq_name[i], lp);
  5002. if (err)
  5003. goto out_free_irqs;
  5004. }
  5005. return 0;
  5006. out_free_irqs:
  5007. for (j = 0; j < i; j++) {
  5008. struct niu_ldg *lp = &np->ldg[j];
  5009. free_irq(lp->irq, lp);
  5010. }
  5011. return err;
  5012. }
  5013. static void niu_free_irq(struct niu *np)
  5014. {
  5015. int i;
  5016. for (i = 0; i < np->num_ldg; i++) {
  5017. struct niu_ldg *lp = &np->ldg[i];
  5018. free_irq(lp->irq, lp);
  5019. }
  5020. }
  5021. static void niu_enable_napi(struct niu *np)
  5022. {
  5023. int i;
  5024. for (i = 0; i < np->num_ldg; i++)
  5025. napi_enable(&np->ldg[i].napi);
  5026. }
  5027. static void niu_disable_napi(struct niu *np)
  5028. {
  5029. int i;
  5030. for (i = 0; i < np->num_ldg; i++)
  5031. napi_disable(&np->ldg[i].napi);
  5032. }
  5033. static int niu_open(struct net_device *dev)
  5034. {
  5035. struct niu *np = netdev_priv(dev);
  5036. int err;
  5037. netif_carrier_off(dev);
  5038. err = niu_alloc_channels(np);
  5039. if (err)
  5040. goto out_err;
  5041. err = niu_enable_interrupts(np, 0);
  5042. if (err)
  5043. goto out_free_channels;
  5044. err = niu_request_irq(np);
  5045. if (err)
  5046. goto out_free_channels;
  5047. niu_enable_napi(np);
  5048. spin_lock_irq(&np->lock);
  5049. err = niu_init_hw(np);
  5050. if (!err) {
  5051. init_timer(&np->timer);
  5052. np->timer.expires = jiffies + HZ;
  5053. np->timer.data = (unsigned long) np;
  5054. np->timer.function = niu_timer;
  5055. err = niu_enable_interrupts(np, 1);
  5056. if (err)
  5057. niu_stop_hw(np);
  5058. }
  5059. spin_unlock_irq(&np->lock);
  5060. if (err) {
  5061. niu_disable_napi(np);
  5062. goto out_free_irq;
  5063. }
  5064. netif_tx_start_all_queues(dev);
  5065. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5066. netif_carrier_on(dev);
  5067. add_timer(&np->timer);
  5068. return 0;
  5069. out_free_irq:
  5070. niu_free_irq(np);
  5071. out_free_channels:
  5072. niu_free_channels(np);
  5073. out_err:
  5074. return err;
  5075. }
  5076. static void niu_full_shutdown(struct niu *np, struct net_device *dev)
  5077. {
  5078. cancel_work_sync(&np->reset_task);
  5079. niu_disable_napi(np);
  5080. netif_tx_stop_all_queues(dev);
  5081. del_timer_sync(&np->timer);
  5082. spin_lock_irq(&np->lock);
  5083. niu_stop_hw(np);
  5084. spin_unlock_irq(&np->lock);
  5085. }
  5086. static int niu_close(struct net_device *dev)
  5087. {
  5088. struct niu *np = netdev_priv(dev);
  5089. niu_full_shutdown(np, dev);
  5090. niu_free_irq(np);
  5091. niu_free_channels(np);
  5092. niu_handle_led(np, 0);
  5093. return 0;
  5094. }
  5095. static void niu_sync_xmac_stats(struct niu *np)
  5096. {
  5097. struct niu_xmac_stats *mp = &np->mac_stats.xmac;
  5098. mp->tx_frames += nr64_mac(TXMAC_FRM_CNT);
  5099. mp->tx_bytes += nr64_mac(TXMAC_BYTE_CNT);
  5100. mp->rx_link_faults += nr64_mac(LINK_FAULT_CNT);
  5101. mp->rx_align_errors += nr64_mac(RXMAC_ALIGN_ERR_CNT);
  5102. mp->rx_frags += nr64_mac(RXMAC_FRAG_CNT);
  5103. mp->rx_mcasts += nr64_mac(RXMAC_MC_FRM_CNT);
  5104. mp->rx_bcasts += nr64_mac(RXMAC_BC_FRM_CNT);
  5105. mp->rx_hist_cnt1 += nr64_mac(RXMAC_HIST_CNT1);
  5106. mp->rx_hist_cnt2 += nr64_mac(RXMAC_HIST_CNT2);
  5107. mp->rx_hist_cnt3 += nr64_mac(RXMAC_HIST_CNT3);
  5108. mp->rx_hist_cnt4 += nr64_mac(RXMAC_HIST_CNT4);
  5109. mp->rx_hist_cnt5 += nr64_mac(RXMAC_HIST_CNT5);
  5110. mp->rx_hist_cnt6 += nr64_mac(RXMAC_HIST_CNT6);
  5111. mp->rx_hist_cnt7 += nr64_mac(RXMAC_HIST_CNT7);
  5112. mp->rx_octets += nr64_mac(RXMAC_BT_CNT);
  5113. mp->rx_code_violations += nr64_mac(RXMAC_CD_VIO_CNT);
  5114. mp->rx_len_errors += nr64_mac(RXMAC_MPSZER_CNT);
  5115. mp->rx_crc_errors += nr64_mac(RXMAC_CRC_ER_CNT);
  5116. }
  5117. static void niu_sync_bmac_stats(struct niu *np)
  5118. {
  5119. struct niu_bmac_stats *mp = &np->mac_stats.bmac;
  5120. mp->tx_bytes += nr64_mac(BTXMAC_BYTE_CNT);
  5121. mp->tx_frames += nr64_mac(BTXMAC_FRM_CNT);
  5122. mp->rx_frames += nr64_mac(BRXMAC_FRAME_CNT);
  5123. mp->rx_align_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5124. mp->rx_crc_errors += nr64_mac(BRXMAC_ALIGN_ERR_CNT);
  5125. mp->rx_len_errors += nr64_mac(BRXMAC_CODE_VIOL_ERR_CNT);
  5126. }
  5127. static void niu_sync_mac_stats(struct niu *np)
  5128. {
  5129. if (np->flags & NIU_FLAGS_XMAC)
  5130. niu_sync_xmac_stats(np);
  5131. else
  5132. niu_sync_bmac_stats(np);
  5133. }
  5134. static void niu_get_rx_stats(struct niu *np,
  5135. struct rtnl_link_stats64 *stats)
  5136. {
  5137. u64 pkts, dropped, errors, bytes;
  5138. struct rx_ring_info *rx_rings;
  5139. int i;
  5140. pkts = dropped = errors = bytes = 0;
  5141. rx_rings = ACCESS_ONCE(np->rx_rings);
  5142. if (!rx_rings)
  5143. goto no_rings;
  5144. for (i = 0; i < np->num_rx_rings; i++) {
  5145. struct rx_ring_info *rp = &rx_rings[i];
  5146. niu_sync_rx_discard_stats(np, rp, 0);
  5147. pkts += rp->rx_packets;
  5148. bytes += rp->rx_bytes;
  5149. dropped += rp->rx_dropped;
  5150. errors += rp->rx_errors;
  5151. }
  5152. no_rings:
  5153. stats->rx_packets = pkts;
  5154. stats->rx_bytes = bytes;
  5155. stats->rx_dropped = dropped;
  5156. stats->rx_errors = errors;
  5157. }
  5158. static void niu_get_tx_stats(struct niu *np,
  5159. struct rtnl_link_stats64 *stats)
  5160. {
  5161. u64 pkts, errors, bytes;
  5162. struct tx_ring_info *tx_rings;
  5163. int i;
  5164. pkts = errors = bytes = 0;
  5165. tx_rings = ACCESS_ONCE(np->tx_rings);
  5166. if (!tx_rings)
  5167. goto no_rings;
  5168. for (i = 0; i < np->num_tx_rings; i++) {
  5169. struct tx_ring_info *rp = &tx_rings[i];
  5170. pkts += rp->tx_packets;
  5171. bytes += rp->tx_bytes;
  5172. errors += rp->tx_errors;
  5173. }
  5174. no_rings:
  5175. stats->tx_packets = pkts;
  5176. stats->tx_bytes = bytes;
  5177. stats->tx_errors = errors;
  5178. }
  5179. static struct rtnl_link_stats64 *niu_get_stats(struct net_device *dev,
  5180. struct rtnl_link_stats64 *stats)
  5181. {
  5182. struct niu *np = netdev_priv(dev);
  5183. if (netif_running(dev)) {
  5184. niu_get_rx_stats(np, stats);
  5185. niu_get_tx_stats(np, stats);
  5186. }
  5187. return stats;
  5188. }
  5189. static void niu_load_hash_xmac(struct niu *np, u16 *hash)
  5190. {
  5191. int i;
  5192. for (i = 0; i < 16; i++)
  5193. nw64_mac(XMAC_HASH_TBL(i), hash[i]);
  5194. }
  5195. static void niu_load_hash_bmac(struct niu *np, u16 *hash)
  5196. {
  5197. int i;
  5198. for (i = 0; i < 16; i++)
  5199. nw64_mac(BMAC_HASH_TBL(i), hash[i]);
  5200. }
  5201. static void niu_load_hash(struct niu *np, u16 *hash)
  5202. {
  5203. if (np->flags & NIU_FLAGS_XMAC)
  5204. niu_load_hash_xmac(np, hash);
  5205. else
  5206. niu_load_hash_bmac(np, hash);
  5207. }
  5208. static void niu_set_rx_mode(struct net_device *dev)
  5209. {
  5210. struct niu *np = netdev_priv(dev);
  5211. int i, alt_cnt, err;
  5212. struct netdev_hw_addr *ha;
  5213. unsigned long flags;
  5214. u16 hash[16] = { 0, };
  5215. spin_lock_irqsave(&np->lock, flags);
  5216. niu_enable_rx_mac(np, 0);
  5217. np->flags &= ~(NIU_FLAGS_MCAST | NIU_FLAGS_PROMISC);
  5218. if (dev->flags & IFF_PROMISC)
  5219. np->flags |= NIU_FLAGS_PROMISC;
  5220. if ((dev->flags & IFF_ALLMULTI) || (!netdev_mc_empty(dev)))
  5221. np->flags |= NIU_FLAGS_MCAST;
  5222. alt_cnt = netdev_uc_count(dev);
  5223. if (alt_cnt > niu_num_alt_addr(np)) {
  5224. alt_cnt = 0;
  5225. np->flags |= NIU_FLAGS_PROMISC;
  5226. }
  5227. if (alt_cnt) {
  5228. int index = 0;
  5229. netdev_for_each_uc_addr(ha, dev) {
  5230. err = niu_set_alt_mac(np, index, ha->addr);
  5231. if (err)
  5232. netdev_warn(dev, "Error %d adding alt mac %d\n",
  5233. err, index);
  5234. err = niu_enable_alt_mac(np, index, 1);
  5235. if (err)
  5236. netdev_warn(dev, "Error %d enabling alt mac %d\n",
  5237. err, index);
  5238. index++;
  5239. }
  5240. } else {
  5241. int alt_start;
  5242. if (np->flags & NIU_FLAGS_XMAC)
  5243. alt_start = 0;
  5244. else
  5245. alt_start = 1;
  5246. for (i = alt_start; i < niu_num_alt_addr(np); i++) {
  5247. err = niu_enable_alt_mac(np, i, 0);
  5248. if (err)
  5249. netdev_warn(dev, "Error %d disabling alt mac %d\n",
  5250. err, i);
  5251. }
  5252. }
  5253. if (dev->flags & IFF_ALLMULTI) {
  5254. for (i = 0; i < 16; i++)
  5255. hash[i] = 0xffff;
  5256. } else if (!netdev_mc_empty(dev)) {
  5257. netdev_for_each_mc_addr(ha, dev) {
  5258. u32 crc = ether_crc_le(ETH_ALEN, ha->addr);
  5259. crc >>= 24;
  5260. hash[crc >> 4] |= (1 << (15 - (crc & 0xf)));
  5261. }
  5262. }
  5263. if (np->flags & NIU_FLAGS_MCAST)
  5264. niu_load_hash(np, hash);
  5265. niu_enable_rx_mac(np, 1);
  5266. spin_unlock_irqrestore(&np->lock, flags);
  5267. }
  5268. static int niu_set_mac_addr(struct net_device *dev, void *p)
  5269. {
  5270. struct niu *np = netdev_priv(dev);
  5271. struct sockaddr *addr = p;
  5272. unsigned long flags;
  5273. if (!is_valid_ether_addr(addr->sa_data))
  5274. return -EADDRNOTAVAIL;
  5275. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  5276. if (!netif_running(dev))
  5277. return 0;
  5278. spin_lock_irqsave(&np->lock, flags);
  5279. niu_enable_rx_mac(np, 0);
  5280. niu_set_primary_mac(np, dev->dev_addr);
  5281. niu_enable_rx_mac(np, 1);
  5282. spin_unlock_irqrestore(&np->lock, flags);
  5283. return 0;
  5284. }
  5285. static int niu_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  5286. {
  5287. return -EOPNOTSUPP;
  5288. }
  5289. static void niu_netif_stop(struct niu *np)
  5290. {
  5291. np->dev->trans_start = jiffies; /* prevent tx timeout */
  5292. niu_disable_napi(np);
  5293. netif_tx_disable(np->dev);
  5294. }
  5295. static void niu_netif_start(struct niu *np)
  5296. {
  5297. /* NOTE: unconditional netif_wake_queue is only appropriate
  5298. * so long as all callers are assured to have free tx slots
  5299. * (such as after niu_init_hw).
  5300. */
  5301. netif_tx_wake_all_queues(np->dev);
  5302. niu_enable_napi(np);
  5303. niu_enable_interrupts(np, 1);
  5304. }
  5305. static void niu_reset_buffers(struct niu *np)
  5306. {
  5307. int i, j, k, err;
  5308. if (np->rx_rings) {
  5309. for (i = 0; i < np->num_rx_rings; i++) {
  5310. struct rx_ring_info *rp = &np->rx_rings[i];
  5311. for (j = 0, k = 0; j < MAX_RBR_RING_SIZE; j++) {
  5312. struct page *page;
  5313. page = rp->rxhash[j];
  5314. while (page) {
  5315. struct page *next =
  5316. (struct page *) page->mapping;
  5317. u64 base = page->index;
  5318. base = base >> RBR_DESCR_ADDR_SHIFT;
  5319. rp->rbr[k++] = cpu_to_le32(base);
  5320. page = next;
  5321. }
  5322. }
  5323. for (; k < MAX_RBR_RING_SIZE; k++) {
  5324. err = niu_rbr_add_page(np, rp, GFP_ATOMIC, k);
  5325. if (unlikely(err))
  5326. break;
  5327. }
  5328. rp->rbr_index = rp->rbr_table_size - 1;
  5329. rp->rcr_index = 0;
  5330. rp->rbr_pending = 0;
  5331. rp->rbr_refill_pending = 0;
  5332. }
  5333. }
  5334. if (np->tx_rings) {
  5335. for (i = 0; i < np->num_tx_rings; i++) {
  5336. struct tx_ring_info *rp = &np->tx_rings[i];
  5337. for (j = 0; j < MAX_TX_RING_SIZE; j++) {
  5338. if (rp->tx_buffs[j].skb)
  5339. (void) release_tx_packet(np, rp, j);
  5340. }
  5341. rp->pending = MAX_TX_RING_SIZE;
  5342. rp->prod = 0;
  5343. rp->cons = 0;
  5344. rp->wrap_bit = 0;
  5345. }
  5346. }
  5347. }
  5348. static void niu_reset_task(struct work_struct *work)
  5349. {
  5350. struct niu *np = container_of(work, struct niu, reset_task);
  5351. unsigned long flags;
  5352. int err;
  5353. spin_lock_irqsave(&np->lock, flags);
  5354. if (!netif_running(np->dev)) {
  5355. spin_unlock_irqrestore(&np->lock, flags);
  5356. return;
  5357. }
  5358. spin_unlock_irqrestore(&np->lock, flags);
  5359. del_timer_sync(&np->timer);
  5360. niu_netif_stop(np);
  5361. spin_lock_irqsave(&np->lock, flags);
  5362. niu_stop_hw(np);
  5363. spin_unlock_irqrestore(&np->lock, flags);
  5364. niu_reset_buffers(np);
  5365. spin_lock_irqsave(&np->lock, flags);
  5366. err = niu_init_hw(np);
  5367. if (!err) {
  5368. np->timer.expires = jiffies + HZ;
  5369. add_timer(&np->timer);
  5370. niu_netif_start(np);
  5371. }
  5372. spin_unlock_irqrestore(&np->lock, flags);
  5373. }
  5374. static void niu_tx_timeout(struct net_device *dev)
  5375. {
  5376. struct niu *np = netdev_priv(dev);
  5377. dev_err(np->device, "%s: Transmit timed out, resetting\n",
  5378. dev->name);
  5379. schedule_work(&np->reset_task);
  5380. }
  5381. static void niu_set_txd(struct tx_ring_info *rp, int index,
  5382. u64 mapping, u64 len, u64 mark,
  5383. u64 n_frags)
  5384. {
  5385. __le64 *desc = &rp->descr[index];
  5386. *desc = cpu_to_le64(mark |
  5387. (n_frags << TX_DESC_NUM_PTR_SHIFT) |
  5388. (len << TX_DESC_TR_LEN_SHIFT) |
  5389. (mapping & TX_DESC_SAD));
  5390. }
  5391. static u64 niu_compute_tx_flags(struct sk_buff *skb, struct ethhdr *ehdr,
  5392. u64 pad_bytes, u64 len)
  5393. {
  5394. u16 eth_proto, eth_proto_inner;
  5395. u64 csum_bits, l3off, ihl, ret;
  5396. u8 ip_proto;
  5397. int ipv6;
  5398. eth_proto = be16_to_cpu(ehdr->h_proto);
  5399. eth_proto_inner = eth_proto;
  5400. if (eth_proto == ETH_P_8021Q) {
  5401. struct vlan_ethhdr *vp = (struct vlan_ethhdr *) ehdr;
  5402. __be16 val = vp->h_vlan_encapsulated_proto;
  5403. eth_proto_inner = be16_to_cpu(val);
  5404. }
  5405. ipv6 = ihl = 0;
  5406. switch (skb->protocol) {
  5407. case cpu_to_be16(ETH_P_IP):
  5408. ip_proto = ip_hdr(skb)->protocol;
  5409. ihl = ip_hdr(skb)->ihl;
  5410. break;
  5411. case cpu_to_be16(ETH_P_IPV6):
  5412. ip_proto = ipv6_hdr(skb)->nexthdr;
  5413. ihl = (40 >> 2);
  5414. ipv6 = 1;
  5415. break;
  5416. default:
  5417. ip_proto = ihl = 0;
  5418. break;
  5419. }
  5420. csum_bits = TXHDR_CSUM_NONE;
  5421. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5422. u64 start, stuff;
  5423. csum_bits = (ip_proto == IPPROTO_TCP ?
  5424. TXHDR_CSUM_TCP :
  5425. (ip_proto == IPPROTO_UDP ?
  5426. TXHDR_CSUM_UDP : TXHDR_CSUM_SCTP));
  5427. start = skb_checksum_start_offset(skb) -
  5428. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5429. stuff = start + skb->csum_offset;
  5430. csum_bits |= (start / 2) << TXHDR_L4START_SHIFT;
  5431. csum_bits |= (stuff / 2) << TXHDR_L4STUFF_SHIFT;
  5432. }
  5433. l3off = skb_network_offset(skb) -
  5434. (pad_bytes + sizeof(struct tx_pkt_hdr));
  5435. ret = (((pad_bytes / 2) << TXHDR_PAD_SHIFT) |
  5436. (len << TXHDR_LEN_SHIFT) |
  5437. ((l3off / 2) << TXHDR_L3START_SHIFT) |
  5438. (ihl << TXHDR_IHL_SHIFT) |
  5439. ((eth_proto_inner < ETH_P_802_3_MIN) ? TXHDR_LLC : 0) |
  5440. ((eth_proto == ETH_P_8021Q) ? TXHDR_VLAN : 0) |
  5441. (ipv6 ? TXHDR_IP_VER : 0) |
  5442. csum_bits);
  5443. return ret;
  5444. }
  5445. static netdev_tx_t niu_start_xmit(struct sk_buff *skb,
  5446. struct net_device *dev)
  5447. {
  5448. struct niu *np = netdev_priv(dev);
  5449. unsigned long align, headroom;
  5450. struct netdev_queue *txq;
  5451. struct tx_ring_info *rp;
  5452. struct tx_pkt_hdr *tp;
  5453. unsigned int len, nfg;
  5454. struct ethhdr *ehdr;
  5455. int prod, i, tlen;
  5456. u64 mapping, mrk;
  5457. i = skb_get_queue_mapping(skb);
  5458. rp = &np->tx_rings[i];
  5459. txq = netdev_get_tx_queue(dev, i);
  5460. if (niu_tx_avail(rp) <= (skb_shinfo(skb)->nr_frags + 1)) {
  5461. netif_tx_stop_queue(txq);
  5462. dev_err(np->device, "%s: BUG! Tx ring full when queue awake!\n", dev->name);
  5463. rp->tx_errors++;
  5464. return NETDEV_TX_BUSY;
  5465. }
  5466. if (skb->len < ETH_ZLEN) {
  5467. unsigned int pad_bytes = ETH_ZLEN - skb->len;
  5468. if (skb_pad(skb, pad_bytes))
  5469. goto out;
  5470. skb_put(skb, pad_bytes);
  5471. }
  5472. len = sizeof(struct tx_pkt_hdr) + 15;
  5473. if (skb_headroom(skb) < len) {
  5474. struct sk_buff *skb_new;
  5475. skb_new = skb_realloc_headroom(skb, len);
  5476. if (!skb_new) {
  5477. rp->tx_errors++;
  5478. goto out_drop;
  5479. }
  5480. kfree_skb(skb);
  5481. skb = skb_new;
  5482. } else
  5483. skb_orphan(skb);
  5484. align = ((unsigned long) skb->data & (16 - 1));
  5485. headroom = align + sizeof(struct tx_pkt_hdr);
  5486. ehdr = (struct ethhdr *) skb->data;
  5487. tp = (struct tx_pkt_hdr *) skb_push(skb, headroom);
  5488. len = skb->len - sizeof(struct tx_pkt_hdr);
  5489. tp->flags = cpu_to_le64(niu_compute_tx_flags(skb, ehdr, align, len));
  5490. tp->resv = 0;
  5491. len = skb_headlen(skb);
  5492. mapping = np->ops->map_single(np->device, skb->data,
  5493. len, DMA_TO_DEVICE);
  5494. prod = rp->prod;
  5495. rp->tx_buffs[prod].skb = skb;
  5496. rp->tx_buffs[prod].mapping = mapping;
  5497. mrk = TX_DESC_SOP;
  5498. if (++rp->mark_counter == rp->mark_freq) {
  5499. rp->mark_counter = 0;
  5500. mrk |= TX_DESC_MARK;
  5501. rp->mark_pending++;
  5502. }
  5503. tlen = len;
  5504. nfg = skb_shinfo(skb)->nr_frags;
  5505. while (tlen > 0) {
  5506. tlen -= MAX_TX_DESC_LEN;
  5507. nfg++;
  5508. }
  5509. while (len > 0) {
  5510. unsigned int this_len = len;
  5511. if (this_len > MAX_TX_DESC_LEN)
  5512. this_len = MAX_TX_DESC_LEN;
  5513. niu_set_txd(rp, prod, mapping, this_len, mrk, nfg);
  5514. mrk = nfg = 0;
  5515. prod = NEXT_TX(rp, prod);
  5516. mapping += this_len;
  5517. len -= this_len;
  5518. }
  5519. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  5520. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5521. len = skb_frag_size(frag);
  5522. mapping = np->ops->map_page(np->device, skb_frag_page(frag),
  5523. frag->page_offset, len,
  5524. DMA_TO_DEVICE);
  5525. rp->tx_buffs[prod].skb = NULL;
  5526. rp->tx_buffs[prod].mapping = mapping;
  5527. niu_set_txd(rp, prod, mapping, len, 0, 0);
  5528. prod = NEXT_TX(rp, prod);
  5529. }
  5530. if (prod < rp->prod)
  5531. rp->wrap_bit ^= TX_RING_KICK_WRAP;
  5532. rp->prod = prod;
  5533. nw64(TX_RING_KICK(rp->tx_channel), rp->wrap_bit | (prod << 3));
  5534. if (unlikely(niu_tx_avail(rp) <= (MAX_SKB_FRAGS + 1))) {
  5535. netif_tx_stop_queue(txq);
  5536. if (niu_tx_avail(rp) > NIU_TX_WAKEUP_THRESH(rp))
  5537. netif_tx_wake_queue(txq);
  5538. }
  5539. out:
  5540. return NETDEV_TX_OK;
  5541. out_drop:
  5542. rp->tx_errors++;
  5543. kfree_skb(skb);
  5544. goto out;
  5545. }
  5546. static int niu_change_mtu(struct net_device *dev, int new_mtu)
  5547. {
  5548. struct niu *np = netdev_priv(dev);
  5549. int err, orig_jumbo, new_jumbo;
  5550. if (new_mtu < 68 || new_mtu > NIU_MAX_MTU)
  5551. return -EINVAL;
  5552. orig_jumbo = (dev->mtu > ETH_DATA_LEN);
  5553. new_jumbo = (new_mtu > ETH_DATA_LEN);
  5554. dev->mtu = new_mtu;
  5555. if (!netif_running(dev) ||
  5556. (orig_jumbo == new_jumbo))
  5557. return 0;
  5558. niu_full_shutdown(np, dev);
  5559. niu_free_channels(np);
  5560. niu_enable_napi(np);
  5561. err = niu_alloc_channels(np);
  5562. if (err)
  5563. return err;
  5564. spin_lock_irq(&np->lock);
  5565. err = niu_init_hw(np);
  5566. if (!err) {
  5567. init_timer(&np->timer);
  5568. np->timer.expires = jiffies + HZ;
  5569. np->timer.data = (unsigned long) np;
  5570. np->timer.function = niu_timer;
  5571. err = niu_enable_interrupts(np, 1);
  5572. if (err)
  5573. niu_stop_hw(np);
  5574. }
  5575. spin_unlock_irq(&np->lock);
  5576. if (!err) {
  5577. netif_tx_start_all_queues(dev);
  5578. if (np->link_config.loopback_mode != LOOPBACK_DISABLED)
  5579. netif_carrier_on(dev);
  5580. add_timer(&np->timer);
  5581. }
  5582. return err;
  5583. }
  5584. static void niu_get_drvinfo(struct net_device *dev,
  5585. struct ethtool_drvinfo *info)
  5586. {
  5587. struct niu *np = netdev_priv(dev);
  5588. struct niu_vpd *vpd = &np->vpd;
  5589. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5590. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5591. snprintf(info->fw_version, sizeof(info->fw_version), "%d.%d",
  5592. vpd->fcode_major, vpd->fcode_minor);
  5593. if (np->parent->plat_type != PLAT_TYPE_NIU)
  5594. strlcpy(info->bus_info, pci_name(np->pdev),
  5595. sizeof(info->bus_info));
  5596. }
  5597. static int niu_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5598. {
  5599. struct niu *np = netdev_priv(dev);
  5600. struct niu_link_config *lp;
  5601. lp = &np->link_config;
  5602. memset(cmd, 0, sizeof(*cmd));
  5603. cmd->phy_address = np->phy_addr;
  5604. cmd->supported = lp->supported;
  5605. cmd->advertising = lp->active_advertising;
  5606. cmd->autoneg = lp->active_autoneg;
  5607. ethtool_cmd_speed_set(cmd, lp->active_speed);
  5608. cmd->duplex = lp->active_duplex;
  5609. cmd->port = (np->flags & NIU_FLAGS_FIBER) ? PORT_FIBRE : PORT_TP;
  5610. cmd->transceiver = (np->flags & NIU_FLAGS_XCVR_SERDES) ?
  5611. XCVR_EXTERNAL : XCVR_INTERNAL;
  5612. return 0;
  5613. }
  5614. static int niu_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5615. {
  5616. struct niu *np = netdev_priv(dev);
  5617. struct niu_link_config *lp = &np->link_config;
  5618. lp->advertising = cmd->advertising;
  5619. lp->speed = ethtool_cmd_speed(cmd);
  5620. lp->duplex = cmd->duplex;
  5621. lp->autoneg = cmd->autoneg;
  5622. return niu_init_link(np);
  5623. }
  5624. static u32 niu_get_msglevel(struct net_device *dev)
  5625. {
  5626. struct niu *np = netdev_priv(dev);
  5627. return np->msg_enable;
  5628. }
  5629. static void niu_set_msglevel(struct net_device *dev, u32 value)
  5630. {
  5631. struct niu *np = netdev_priv(dev);
  5632. np->msg_enable = value;
  5633. }
  5634. static int niu_nway_reset(struct net_device *dev)
  5635. {
  5636. struct niu *np = netdev_priv(dev);
  5637. if (np->link_config.autoneg)
  5638. return niu_init_link(np);
  5639. return 0;
  5640. }
  5641. static int niu_get_eeprom_len(struct net_device *dev)
  5642. {
  5643. struct niu *np = netdev_priv(dev);
  5644. return np->eeprom_len;
  5645. }
  5646. static int niu_get_eeprom(struct net_device *dev,
  5647. struct ethtool_eeprom *eeprom, u8 *data)
  5648. {
  5649. struct niu *np = netdev_priv(dev);
  5650. u32 offset, len, val;
  5651. offset = eeprom->offset;
  5652. len = eeprom->len;
  5653. if (offset + len < offset)
  5654. return -EINVAL;
  5655. if (offset >= np->eeprom_len)
  5656. return -EINVAL;
  5657. if (offset + len > np->eeprom_len)
  5658. len = eeprom->len = np->eeprom_len - offset;
  5659. if (offset & 3) {
  5660. u32 b_offset, b_count;
  5661. b_offset = offset & 3;
  5662. b_count = 4 - b_offset;
  5663. if (b_count > len)
  5664. b_count = len;
  5665. val = nr64(ESPC_NCR((offset - b_offset) / 4));
  5666. memcpy(data, ((char *)&val) + b_offset, b_count);
  5667. data += b_count;
  5668. len -= b_count;
  5669. offset += b_count;
  5670. }
  5671. while (len >= 4) {
  5672. val = nr64(ESPC_NCR(offset / 4));
  5673. memcpy(data, &val, 4);
  5674. data += 4;
  5675. len -= 4;
  5676. offset += 4;
  5677. }
  5678. if (len) {
  5679. val = nr64(ESPC_NCR(offset / 4));
  5680. memcpy(data, &val, len);
  5681. }
  5682. return 0;
  5683. }
  5684. static void niu_ethflow_to_l3proto(int flow_type, u8 *pid)
  5685. {
  5686. switch (flow_type) {
  5687. case TCP_V4_FLOW:
  5688. case TCP_V6_FLOW:
  5689. *pid = IPPROTO_TCP;
  5690. break;
  5691. case UDP_V4_FLOW:
  5692. case UDP_V6_FLOW:
  5693. *pid = IPPROTO_UDP;
  5694. break;
  5695. case SCTP_V4_FLOW:
  5696. case SCTP_V6_FLOW:
  5697. *pid = IPPROTO_SCTP;
  5698. break;
  5699. case AH_V4_FLOW:
  5700. case AH_V6_FLOW:
  5701. *pid = IPPROTO_AH;
  5702. break;
  5703. case ESP_V4_FLOW:
  5704. case ESP_V6_FLOW:
  5705. *pid = IPPROTO_ESP;
  5706. break;
  5707. default:
  5708. *pid = 0;
  5709. break;
  5710. }
  5711. }
  5712. static int niu_class_to_ethflow(u64 class, int *flow_type)
  5713. {
  5714. switch (class) {
  5715. case CLASS_CODE_TCP_IPV4:
  5716. *flow_type = TCP_V4_FLOW;
  5717. break;
  5718. case CLASS_CODE_UDP_IPV4:
  5719. *flow_type = UDP_V4_FLOW;
  5720. break;
  5721. case CLASS_CODE_AH_ESP_IPV4:
  5722. *flow_type = AH_V4_FLOW;
  5723. break;
  5724. case CLASS_CODE_SCTP_IPV4:
  5725. *flow_type = SCTP_V4_FLOW;
  5726. break;
  5727. case CLASS_CODE_TCP_IPV6:
  5728. *flow_type = TCP_V6_FLOW;
  5729. break;
  5730. case CLASS_CODE_UDP_IPV6:
  5731. *flow_type = UDP_V6_FLOW;
  5732. break;
  5733. case CLASS_CODE_AH_ESP_IPV6:
  5734. *flow_type = AH_V6_FLOW;
  5735. break;
  5736. case CLASS_CODE_SCTP_IPV6:
  5737. *flow_type = SCTP_V6_FLOW;
  5738. break;
  5739. case CLASS_CODE_USER_PROG1:
  5740. case CLASS_CODE_USER_PROG2:
  5741. case CLASS_CODE_USER_PROG3:
  5742. case CLASS_CODE_USER_PROG4:
  5743. *flow_type = IP_USER_FLOW;
  5744. break;
  5745. default:
  5746. return 0;
  5747. }
  5748. return 1;
  5749. }
  5750. static int niu_ethflow_to_class(int flow_type, u64 *class)
  5751. {
  5752. switch (flow_type) {
  5753. case TCP_V4_FLOW:
  5754. *class = CLASS_CODE_TCP_IPV4;
  5755. break;
  5756. case UDP_V4_FLOW:
  5757. *class = CLASS_CODE_UDP_IPV4;
  5758. break;
  5759. case AH_ESP_V4_FLOW:
  5760. case AH_V4_FLOW:
  5761. case ESP_V4_FLOW:
  5762. *class = CLASS_CODE_AH_ESP_IPV4;
  5763. break;
  5764. case SCTP_V4_FLOW:
  5765. *class = CLASS_CODE_SCTP_IPV4;
  5766. break;
  5767. case TCP_V6_FLOW:
  5768. *class = CLASS_CODE_TCP_IPV6;
  5769. break;
  5770. case UDP_V6_FLOW:
  5771. *class = CLASS_CODE_UDP_IPV6;
  5772. break;
  5773. case AH_ESP_V6_FLOW:
  5774. case AH_V6_FLOW:
  5775. case ESP_V6_FLOW:
  5776. *class = CLASS_CODE_AH_ESP_IPV6;
  5777. break;
  5778. case SCTP_V6_FLOW:
  5779. *class = CLASS_CODE_SCTP_IPV6;
  5780. break;
  5781. default:
  5782. return 0;
  5783. }
  5784. return 1;
  5785. }
  5786. static u64 niu_flowkey_to_ethflow(u64 flow_key)
  5787. {
  5788. u64 ethflow = 0;
  5789. if (flow_key & FLOW_KEY_L2DA)
  5790. ethflow |= RXH_L2DA;
  5791. if (flow_key & FLOW_KEY_VLAN)
  5792. ethflow |= RXH_VLAN;
  5793. if (flow_key & FLOW_KEY_IPSA)
  5794. ethflow |= RXH_IP_SRC;
  5795. if (flow_key & FLOW_KEY_IPDA)
  5796. ethflow |= RXH_IP_DST;
  5797. if (flow_key & FLOW_KEY_PROTO)
  5798. ethflow |= RXH_L3_PROTO;
  5799. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT))
  5800. ethflow |= RXH_L4_B_0_1;
  5801. if (flow_key & (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT))
  5802. ethflow |= RXH_L4_B_2_3;
  5803. return ethflow;
  5804. }
  5805. static int niu_ethflow_to_flowkey(u64 ethflow, u64 *flow_key)
  5806. {
  5807. u64 key = 0;
  5808. if (ethflow & RXH_L2DA)
  5809. key |= FLOW_KEY_L2DA;
  5810. if (ethflow & RXH_VLAN)
  5811. key |= FLOW_KEY_VLAN;
  5812. if (ethflow & RXH_IP_SRC)
  5813. key |= FLOW_KEY_IPSA;
  5814. if (ethflow & RXH_IP_DST)
  5815. key |= FLOW_KEY_IPDA;
  5816. if (ethflow & RXH_L3_PROTO)
  5817. key |= FLOW_KEY_PROTO;
  5818. if (ethflow & RXH_L4_B_0_1)
  5819. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_0_SHIFT);
  5820. if (ethflow & RXH_L4_B_2_3)
  5821. key |= (FLOW_KEY_L4_BYTE12 << FLOW_KEY_L4_1_SHIFT);
  5822. *flow_key = key;
  5823. return 1;
  5824. }
  5825. static int niu_get_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  5826. {
  5827. u64 class;
  5828. nfc->data = 0;
  5829. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  5830. return -EINVAL;
  5831. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  5832. TCAM_KEY_DISC)
  5833. nfc->data = RXH_DISCARD;
  5834. else
  5835. nfc->data = niu_flowkey_to_ethflow(np->parent->flow_key[class -
  5836. CLASS_CODE_USER_PROG1]);
  5837. return 0;
  5838. }
  5839. static void niu_get_ip4fs_from_tcam_key(struct niu_tcam_entry *tp,
  5840. struct ethtool_rx_flow_spec *fsp)
  5841. {
  5842. u32 tmp;
  5843. u16 prt;
  5844. tmp = (tp->key[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5845. fsp->h_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5846. tmp = (tp->key[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5847. fsp->h_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5848. tmp = (tp->key_mask[3] & TCAM_V4KEY3_SADDR) >> TCAM_V4KEY3_SADDR_SHIFT;
  5849. fsp->m_u.tcp_ip4_spec.ip4src = cpu_to_be32(tmp);
  5850. tmp = (tp->key_mask[3] & TCAM_V4KEY3_DADDR) >> TCAM_V4KEY3_DADDR_SHIFT;
  5851. fsp->m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(tmp);
  5852. fsp->h_u.tcp_ip4_spec.tos = (tp->key[2] & TCAM_V4KEY2_TOS) >>
  5853. TCAM_V4KEY2_TOS_SHIFT;
  5854. fsp->m_u.tcp_ip4_spec.tos = (tp->key_mask[2] & TCAM_V4KEY2_TOS) >>
  5855. TCAM_V4KEY2_TOS_SHIFT;
  5856. switch (fsp->flow_type) {
  5857. case TCP_V4_FLOW:
  5858. case UDP_V4_FLOW:
  5859. case SCTP_V4_FLOW:
  5860. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5861. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5862. fsp->h_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5863. prt = ((tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5864. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5865. fsp->h_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5866. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5867. TCAM_V4KEY2_PORT_SPI_SHIFT) >> 16;
  5868. fsp->m_u.tcp_ip4_spec.psrc = cpu_to_be16(prt);
  5869. prt = ((tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5870. TCAM_V4KEY2_PORT_SPI_SHIFT) & 0xffff;
  5871. fsp->m_u.tcp_ip4_spec.pdst = cpu_to_be16(prt);
  5872. break;
  5873. case AH_V4_FLOW:
  5874. case ESP_V4_FLOW:
  5875. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5876. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5877. fsp->h_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5878. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5879. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5880. fsp->m_u.ah_ip4_spec.spi = cpu_to_be32(tmp);
  5881. break;
  5882. case IP_USER_FLOW:
  5883. tmp = (tp->key[2] & TCAM_V4KEY2_PORT_SPI) >>
  5884. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5885. fsp->h_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5886. tmp = (tp->key_mask[2] & TCAM_V4KEY2_PORT_SPI) >>
  5887. TCAM_V4KEY2_PORT_SPI_SHIFT;
  5888. fsp->m_u.usr_ip4_spec.l4_4_bytes = cpu_to_be32(tmp);
  5889. fsp->h_u.usr_ip4_spec.proto =
  5890. (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5891. TCAM_V4KEY2_PROTO_SHIFT;
  5892. fsp->m_u.usr_ip4_spec.proto =
  5893. (tp->key_mask[2] & TCAM_V4KEY2_PROTO) >>
  5894. TCAM_V4KEY2_PROTO_SHIFT;
  5895. fsp->h_u.usr_ip4_spec.ip_ver = ETH_RX_NFC_IP4;
  5896. break;
  5897. default:
  5898. break;
  5899. }
  5900. }
  5901. static int niu_get_ethtool_tcam_entry(struct niu *np,
  5902. struct ethtool_rxnfc *nfc)
  5903. {
  5904. struct niu_parent *parent = np->parent;
  5905. struct niu_tcam_entry *tp;
  5906. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  5907. u16 idx;
  5908. u64 class;
  5909. int ret = 0;
  5910. idx = tcam_get_index(np, (u16)nfc->fs.location);
  5911. tp = &parent->tcam[idx];
  5912. if (!tp->valid) {
  5913. netdev_info(np->dev, "niu%d: entry [%d] invalid for idx[%d]\n",
  5914. parent->index, (u16)nfc->fs.location, idx);
  5915. return -EINVAL;
  5916. }
  5917. /* fill the flow spec entry */
  5918. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  5919. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  5920. ret = niu_class_to_ethflow(class, &fsp->flow_type);
  5921. if (ret < 0) {
  5922. netdev_info(np->dev, "niu%d: niu_class_to_ethflow failed\n",
  5923. parent->index);
  5924. ret = -EINVAL;
  5925. goto out;
  5926. }
  5927. if (fsp->flow_type == AH_V4_FLOW || fsp->flow_type == AH_V6_FLOW) {
  5928. u32 proto = (tp->key[2] & TCAM_V4KEY2_PROTO) >>
  5929. TCAM_V4KEY2_PROTO_SHIFT;
  5930. if (proto == IPPROTO_ESP) {
  5931. if (fsp->flow_type == AH_V4_FLOW)
  5932. fsp->flow_type = ESP_V4_FLOW;
  5933. else
  5934. fsp->flow_type = ESP_V6_FLOW;
  5935. }
  5936. }
  5937. switch (fsp->flow_type) {
  5938. case TCP_V4_FLOW:
  5939. case UDP_V4_FLOW:
  5940. case SCTP_V4_FLOW:
  5941. case AH_V4_FLOW:
  5942. case ESP_V4_FLOW:
  5943. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5944. break;
  5945. case TCP_V6_FLOW:
  5946. case UDP_V6_FLOW:
  5947. case SCTP_V6_FLOW:
  5948. case AH_V6_FLOW:
  5949. case ESP_V6_FLOW:
  5950. /* Not yet implemented */
  5951. ret = -EINVAL;
  5952. break;
  5953. case IP_USER_FLOW:
  5954. niu_get_ip4fs_from_tcam_key(tp, fsp);
  5955. break;
  5956. default:
  5957. ret = -EINVAL;
  5958. break;
  5959. }
  5960. if (ret < 0)
  5961. goto out;
  5962. if (tp->assoc_data & TCAM_ASSOCDATA_DISC)
  5963. fsp->ring_cookie = RX_CLS_FLOW_DISC;
  5964. else
  5965. fsp->ring_cookie = (tp->assoc_data & TCAM_ASSOCDATA_OFFSET) >>
  5966. TCAM_ASSOCDATA_OFFSET_SHIFT;
  5967. /* put the tcam size here */
  5968. nfc->data = tcam_get_size(np);
  5969. out:
  5970. return ret;
  5971. }
  5972. static int niu_get_ethtool_tcam_all(struct niu *np,
  5973. struct ethtool_rxnfc *nfc,
  5974. u32 *rule_locs)
  5975. {
  5976. struct niu_parent *parent = np->parent;
  5977. struct niu_tcam_entry *tp;
  5978. int i, idx, cnt;
  5979. unsigned long flags;
  5980. int ret = 0;
  5981. /* put the tcam size here */
  5982. nfc->data = tcam_get_size(np);
  5983. niu_lock_parent(np, flags);
  5984. for (cnt = 0, i = 0; i < nfc->data; i++) {
  5985. idx = tcam_get_index(np, i);
  5986. tp = &parent->tcam[idx];
  5987. if (!tp->valid)
  5988. continue;
  5989. if (cnt == nfc->rule_cnt) {
  5990. ret = -EMSGSIZE;
  5991. break;
  5992. }
  5993. rule_locs[cnt] = i;
  5994. cnt++;
  5995. }
  5996. niu_unlock_parent(np, flags);
  5997. nfc->rule_cnt = cnt;
  5998. return ret;
  5999. }
  6000. static int niu_get_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
  6001. u32 *rule_locs)
  6002. {
  6003. struct niu *np = netdev_priv(dev);
  6004. int ret = 0;
  6005. switch (cmd->cmd) {
  6006. case ETHTOOL_GRXFH:
  6007. ret = niu_get_hash_opts(np, cmd);
  6008. break;
  6009. case ETHTOOL_GRXRINGS:
  6010. cmd->data = np->num_rx_rings;
  6011. break;
  6012. case ETHTOOL_GRXCLSRLCNT:
  6013. cmd->rule_cnt = tcam_get_valid_entry_cnt(np);
  6014. break;
  6015. case ETHTOOL_GRXCLSRULE:
  6016. ret = niu_get_ethtool_tcam_entry(np, cmd);
  6017. break;
  6018. case ETHTOOL_GRXCLSRLALL:
  6019. ret = niu_get_ethtool_tcam_all(np, cmd, rule_locs);
  6020. break;
  6021. default:
  6022. ret = -EINVAL;
  6023. break;
  6024. }
  6025. return ret;
  6026. }
  6027. static int niu_set_hash_opts(struct niu *np, struct ethtool_rxnfc *nfc)
  6028. {
  6029. u64 class;
  6030. u64 flow_key = 0;
  6031. unsigned long flags;
  6032. if (!niu_ethflow_to_class(nfc->flow_type, &class))
  6033. return -EINVAL;
  6034. if (class < CLASS_CODE_USER_PROG1 ||
  6035. class > CLASS_CODE_SCTP_IPV6)
  6036. return -EINVAL;
  6037. if (nfc->data & RXH_DISCARD) {
  6038. niu_lock_parent(np, flags);
  6039. flow_key = np->parent->tcam_key[class -
  6040. CLASS_CODE_USER_PROG1];
  6041. flow_key |= TCAM_KEY_DISC;
  6042. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6043. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6044. niu_unlock_parent(np, flags);
  6045. return 0;
  6046. } else {
  6047. /* Discard was set before, but is not set now */
  6048. if (np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] &
  6049. TCAM_KEY_DISC) {
  6050. niu_lock_parent(np, flags);
  6051. flow_key = np->parent->tcam_key[class -
  6052. CLASS_CODE_USER_PROG1];
  6053. flow_key &= ~TCAM_KEY_DISC;
  6054. nw64(TCAM_KEY(class - CLASS_CODE_USER_PROG1),
  6055. flow_key);
  6056. np->parent->tcam_key[class - CLASS_CODE_USER_PROG1] =
  6057. flow_key;
  6058. niu_unlock_parent(np, flags);
  6059. }
  6060. }
  6061. if (!niu_ethflow_to_flowkey(nfc->data, &flow_key))
  6062. return -EINVAL;
  6063. niu_lock_parent(np, flags);
  6064. nw64(FLOW_KEY(class - CLASS_CODE_USER_PROG1), flow_key);
  6065. np->parent->flow_key[class - CLASS_CODE_USER_PROG1] = flow_key;
  6066. niu_unlock_parent(np, flags);
  6067. return 0;
  6068. }
  6069. static void niu_get_tcamkey_from_ip4fs(struct ethtool_rx_flow_spec *fsp,
  6070. struct niu_tcam_entry *tp,
  6071. int l2_rdc_tab, u64 class)
  6072. {
  6073. u8 pid = 0;
  6074. u32 sip, dip, sipm, dipm, spi, spim;
  6075. u16 sport, dport, spm, dpm;
  6076. sip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4src);
  6077. sipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4src);
  6078. dip = be32_to_cpu(fsp->h_u.tcp_ip4_spec.ip4dst);
  6079. dipm = be32_to_cpu(fsp->m_u.tcp_ip4_spec.ip4dst);
  6080. tp->key[0] = class << TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6081. tp->key_mask[0] = TCAM_V4KEY0_CLASS_CODE;
  6082. tp->key[1] = (u64)l2_rdc_tab << TCAM_V4KEY1_L2RDCNUM_SHIFT;
  6083. tp->key_mask[1] = TCAM_V4KEY1_L2RDCNUM;
  6084. tp->key[3] = (u64)sip << TCAM_V4KEY3_SADDR_SHIFT;
  6085. tp->key[3] |= dip;
  6086. tp->key_mask[3] = (u64)sipm << TCAM_V4KEY3_SADDR_SHIFT;
  6087. tp->key_mask[3] |= dipm;
  6088. tp->key[2] |= ((u64)fsp->h_u.tcp_ip4_spec.tos <<
  6089. TCAM_V4KEY2_TOS_SHIFT);
  6090. tp->key_mask[2] |= ((u64)fsp->m_u.tcp_ip4_spec.tos <<
  6091. TCAM_V4KEY2_TOS_SHIFT);
  6092. switch (fsp->flow_type) {
  6093. case TCP_V4_FLOW:
  6094. case UDP_V4_FLOW:
  6095. case SCTP_V4_FLOW:
  6096. sport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.psrc);
  6097. spm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.psrc);
  6098. dport = be16_to_cpu(fsp->h_u.tcp_ip4_spec.pdst);
  6099. dpm = be16_to_cpu(fsp->m_u.tcp_ip4_spec.pdst);
  6100. tp->key[2] |= (((u64)sport << 16) | dport);
  6101. tp->key_mask[2] |= (((u64)spm << 16) | dpm);
  6102. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6103. break;
  6104. case AH_V4_FLOW:
  6105. case ESP_V4_FLOW:
  6106. spi = be32_to_cpu(fsp->h_u.ah_ip4_spec.spi);
  6107. spim = be32_to_cpu(fsp->m_u.ah_ip4_spec.spi);
  6108. tp->key[2] |= spi;
  6109. tp->key_mask[2] |= spim;
  6110. niu_ethflow_to_l3proto(fsp->flow_type, &pid);
  6111. break;
  6112. case IP_USER_FLOW:
  6113. spi = be32_to_cpu(fsp->h_u.usr_ip4_spec.l4_4_bytes);
  6114. spim = be32_to_cpu(fsp->m_u.usr_ip4_spec.l4_4_bytes);
  6115. tp->key[2] |= spi;
  6116. tp->key_mask[2] |= spim;
  6117. pid = fsp->h_u.usr_ip4_spec.proto;
  6118. break;
  6119. default:
  6120. break;
  6121. }
  6122. tp->key[2] |= ((u64)pid << TCAM_V4KEY2_PROTO_SHIFT);
  6123. if (pid) {
  6124. tp->key_mask[2] |= TCAM_V4KEY2_PROTO;
  6125. }
  6126. }
  6127. static int niu_add_ethtool_tcam_entry(struct niu *np,
  6128. struct ethtool_rxnfc *nfc)
  6129. {
  6130. struct niu_parent *parent = np->parent;
  6131. struct niu_tcam_entry *tp;
  6132. struct ethtool_rx_flow_spec *fsp = &nfc->fs;
  6133. struct niu_rdc_tables *rdc_table = &parent->rdc_group_cfg[np->port];
  6134. int l2_rdc_table = rdc_table->first_table_num;
  6135. u16 idx;
  6136. u64 class;
  6137. unsigned long flags;
  6138. int err, ret;
  6139. ret = 0;
  6140. idx = nfc->fs.location;
  6141. if (idx >= tcam_get_size(np))
  6142. return -EINVAL;
  6143. if (fsp->flow_type == IP_USER_FLOW) {
  6144. int i;
  6145. int add_usr_cls = 0;
  6146. struct ethtool_usrip4_spec *uspec = &fsp->h_u.usr_ip4_spec;
  6147. struct ethtool_usrip4_spec *umask = &fsp->m_u.usr_ip4_spec;
  6148. if (uspec->ip_ver != ETH_RX_NFC_IP4)
  6149. return -EINVAL;
  6150. niu_lock_parent(np, flags);
  6151. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6152. if (parent->l3_cls[i]) {
  6153. if (uspec->proto == parent->l3_cls_pid[i]) {
  6154. class = parent->l3_cls[i];
  6155. parent->l3_cls_refcnt[i]++;
  6156. add_usr_cls = 1;
  6157. break;
  6158. }
  6159. } else {
  6160. /* Program new user IP class */
  6161. switch (i) {
  6162. case 0:
  6163. class = CLASS_CODE_USER_PROG1;
  6164. break;
  6165. case 1:
  6166. class = CLASS_CODE_USER_PROG2;
  6167. break;
  6168. case 2:
  6169. class = CLASS_CODE_USER_PROG3;
  6170. break;
  6171. case 3:
  6172. class = CLASS_CODE_USER_PROG4;
  6173. break;
  6174. default:
  6175. break;
  6176. }
  6177. ret = tcam_user_ip_class_set(np, class, 0,
  6178. uspec->proto,
  6179. uspec->tos,
  6180. umask->tos);
  6181. if (ret)
  6182. goto out;
  6183. ret = tcam_user_ip_class_enable(np, class, 1);
  6184. if (ret)
  6185. goto out;
  6186. parent->l3_cls[i] = class;
  6187. parent->l3_cls_pid[i] = uspec->proto;
  6188. parent->l3_cls_refcnt[i]++;
  6189. add_usr_cls = 1;
  6190. break;
  6191. }
  6192. }
  6193. if (!add_usr_cls) {
  6194. netdev_info(np->dev, "niu%d: %s(): Could not find/insert class for pid %d\n",
  6195. parent->index, __func__, uspec->proto);
  6196. ret = -EINVAL;
  6197. goto out;
  6198. }
  6199. niu_unlock_parent(np, flags);
  6200. } else {
  6201. if (!niu_ethflow_to_class(fsp->flow_type, &class)) {
  6202. return -EINVAL;
  6203. }
  6204. }
  6205. niu_lock_parent(np, flags);
  6206. idx = tcam_get_index(np, idx);
  6207. tp = &parent->tcam[idx];
  6208. memset(tp, 0, sizeof(*tp));
  6209. /* fill in the tcam key and mask */
  6210. switch (fsp->flow_type) {
  6211. case TCP_V4_FLOW:
  6212. case UDP_V4_FLOW:
  6213. case SCTP_V4_FLOW:
  6214. case AH_V4_FLOW:
  6215. case ESP_V4_FLOW:
  6216. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6217. break;
  6218. case TCP_V6_FLOW:
  6219. case UDP_V6_FLOW:
  6220. case SCTP_V6_FLOW:
  6221. case AH_V6_FLOW:
  6222. case ESP_V6_FLOW:
  6223. /* Not yet implemented */
  6224. netdev_info(np->dev, "niu%d: In %s(): flow %d for IPv6 not implemented\n",
  6225. parent->index, __func__, fsp->flow_type);
  6226. ret = -EINVAL;
  6227. goto out;
  6228. case IP_USER_FLOW:
  6229. niu_get_tcamkey_from_ip4fs(fsp, tp, l2_rdc_table, class);
  6230. break;
  6231. default:
  6232. netdev_info(np->dev, "niu%d: In %s(): Unknown flow type %d\n",
  6233. parent->index, __func__, fsp->flow_type);
  6234. ret = -EINVAL;
  6235. goto out;
  6236. }
  6237. /* fill in the assoc data */
  6238. if (fsp->ring_cookie == RX_CLS_FLOW_DISC) {
  6239. tp->assoc_data = TCAM_ASSOCDATA_DISC;
  6240. } else {
  6241. if (fsp->ring_cookie >= np->num_rx_rings) {
  6242. netdev_info(np->dev, "niu%d: In %s(): Invalid RX ring %lld\n",
  6243. parent->index, __func__,
  6244. (long long)fsp->ring_cookie);
  6245. ret = -EINVAL;
  6246. goto out;
  6247. }
  6248. tp->assoc_data = (TCAM_ASSOCDATA_TRES_USE_OFFSET |
  6249. (fsp->ring_cookie <<
  6250. TCAM_ASSOCDATA_OFFSET_SHIFT));
  6251. }
  6252. err = tcam_write(np, idx, tp->key, tp->key_mask);
  6253. if (err) {
  6254. ret = -EINVAL;
  6255. goto out;
  6256. }
  6257. err = tcam_assoc_write(np, idx, tp->assoc_data);
  6258. if (err) {
  6259. ret = -EINVAL;
  6260. goto out;
  6261. }
  6262. /* validate the entry */
  6263. tp->valid = 1;
  6264. np->clas.tcam_valid_entries++;
  6265. out:
  6266. niu_unlock_parent(np, flags);
  6267. return ret;
  6268. }
  6269. static int niu_del_ethtool_tcam_entry(struct niu *np, u32 loc)
  6270. {
  6271. struct niu_parent *parent = np->parent;
  6272. struct niu_tcam_entry *tp;
  6273. u16 idx;
  6274. unsigned long flags;
  6275. u64 class;
  6276. int ret = 0;
  6277. if (loc >= tcam_get_size(np))
  6278. return -EINVAL;
  6279. niu_lock_parent(np, flags);
  6280. idx = tcam_get_index(np, loc);
  6281. tp = &parent->tcam[idx];
  6282. /* if the entry is of a user defined class, then update*/
  6283. class = (tp->key[0] & TCAM_V4KEY0_CLASS_CODE) >>
  6284. TCAM_V4KEY0_CLASS_CODE_SHIFT;
  6285. if (class >= CLASS_CODE_USER_PROG1 && class <= CLASS_CODE_USER_PROG4) {
  6286. int i;
  6287. for (i = 0; i < NIU_L3_PROG_CLS; i++) {
  6288. if (parent->l3_cls[i] == class) {
  6289. parent->l3_cls_refcnt[i]--;
  6290. if (!parent->l3_cls_refcnt[i]) {
  6291. /* disable class */
  6292. ret = tcam_user_ip_class_enable(np,
  6293. class,
  6294. 0);
  6295. if (ret)
  6296. goto out;
  6297. parent->l3_cls[i] = 0;
  6298. parent->l3_cls_pid[i] = 0;
  6299. }
  6300. break;
  6301. }
  6302. }
  6303. if (i == NIU_L3_PROG_CLS) {
  6304. netdev_info(np->dev, "niu%d: In %s(): Usr class 0x%llx not found\n",
  6305. parent->index, __func__,
  6306. (unsigned long long)class);
  6307. ret = -EINVAL;
  6308. goto out;
  6309. }
  6310. }
  6311. ret = tcam_flush(np, idx);
  6312. if (ret)
  6313. goto out;
  6314. /* invalidate the entry */
  6315. tp->valid = 0;
  6316. np->clas.tcam_valid_entries--;
  6317. out:
  6318. niu_unlock_parent(np, flags);
  6319. return ret;
  6320. }
  6321. static int niu_set_nfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
  6322. {
  6323. struct niu *np = netdev_priv(dev);
  6324. int ret = 0;
  6325. switch (cmd->cmd) {
  6326. case ETHTOOL_SRXFH:
  6327. ret = niu_set_hash_opts(np, cmd);
  6328. break;
  6329. case ETHTOOL_SRXCLSRLINS:
  6330. ret = niu_add_ethtool_tcam_entry(np, cmd);
  6331. break;
  6332. case ETHTOOL_SRXCLSRLDEL:
  6333. ret = niu_del_ethtool_tcam_entry(np, cmd->fs.location);
  6334. break;
  6335. default:
  6336. ret = -EINVAL;
  6337. break;
  6338. }
  6339. return ret;
  6340. }
  6341. static const struct {
  6342. const char string[ETH_GSTRING_LEN];
  6343. } niu_xmac_stat_keys[] = {
  6344. { "tx_frames" },
  6345. { "tx_bytes" },
  6346. { "tx_fifo_errors" },
  6347. { "tx_overflow_errors" },
  6348. { "tx_max_pkt_size_errors" },
  6349. { "tx_underflow_errors" },
  6350. { "rx_local_faults" },
  6351. { "rx_remote_faults" },
  6352. { "rx_link_faults" },
  6353. { "rx_align_errors" },
  6354. { "rx_frags" },
  6355. { "rx_mcasts" },
  6356. { "rx_bcasts" },
  6357. { "rx_hist_cnt1" },
  6358. { "rx_hist_cnt2" },
  6359. { "rx_hist_cnt3" },
  6360. { "rx_hist_cnt4" },
  6361. { "rx_hist_cnt5" },
  6362. { "rx_hist_cnt6" },
  6363. { "rx_hist_cnt7" },
  6364. { "rx_octets" },
  6365. { "rx_code_violations" },
  6366. { "rx_len_errors" },
  6367. { "rx_crc_errors" },
  6368. { "rx_underflows" },
  6369. { "rx_overflows" },
  6370. { "pause_off_state" },
  6371. { "pause_on_state" },
  6372. { "pause_received" },
  6373. };
  6374. #define NUM_XMAC_STAT_KEYS ARRAY_SIZE(niu_xmac_stat_keys)
  6375. static const struct {
  6376. const char string[ETH_GSTRING_LEN];
  6377. } niu_bmac_stat_keys[] = {
  6378. { "tx_underflow_errors" },
  6379. { "tx_max_pkt_size_errors" },
  6380. { "tx_bytes" },
  6381. { "tx_frames" },
  6382. { "rx_overflows" },
  6383. { "rx_frames" },
  6384. { "rx_align_errors" },
  6385. { "rx_crc_errors" },
  6386. { "rx_len_errors" },
  6387. { "pause_off_state" },
  6388. { "pause_on_state" },
  6389. { "pause_received" },
  6390. };
  6391. #define NUM_BMAC_STAT_KEYS ARRAY_SIZE(niu_bmac_stat_keys)
  6392. static const struct {
  6393. const char string[ETH_GSTRING_LEN];
  6394. } niu_rxchan_stat_keys[] = {
  6395. { "rx_channel" },
  6396. { "rx_packets" },
  6397. { "rx_bytes" },
  6398. { "rx_dropped" },
  6399. { "rx_errors" },
  6400. };
  6401. #define NUM_RXCHAN_STAT_KEYS ARRAY_SIZE(niu_rxchan_stat_keys)
  6402. static const struct {
  6403. const char string[ETH_GSTRING_LEN];
  6404. } niu_txchan_stat_keys[] = {
  6405. { "tx_channel" },
  6406. { "tx_packets" },
  6407. { "tx_bytes" },
  6408. { "tx_errors" },
  6409. };
  6410. #define NUM_TXCHAN_STAT_KEYS ARRAY_SIZE(niu_txchan_stat_keys)
  6411. static void niu_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  6412. {
  6413. struct niu *np = netdev_priv(dev);
  6414. int i;
  6415. if (stringset != ETH_SS_STATS)
  6416. return;
  6417. if (np->flags & NIU_FLAGS_XMAC) {
  6418. memcpy(data, niu_xmac_stat_keys,
  6419. sizeof(niu_xmac_stat_keys));
  6420. data += sizeof(niu_xmac_stat_keys);
  6421. } else {
  6422. memcpy(data, niu_bmac_stat_keys,
  6423. sizeof(niu_bmac_stat_keys));
  6424. data += sizeof(niu_bmac_stat_keys);
  6425. }
  6426. for (i = 0; i < np->num_rx_rings; i++) {
  6427. memcpy(data, niu_rxchan_stat_keys,
  6428. sizeof(niu_rxchan_stat_keys));
  6429. data += sizeof(niu_rxchan_stat_keys);
  6430. }
  6431. for (i = 0; i < np->num_tx_rings; i++) {
  6432. memcpy(data, niu_txchan_stat_keys,
  6433. sizeof(niu_txchan_stat_keys));
  6434. data += sizeof(niu_txchan_stat_keys);
  6435. }
  6436. }
  6437. static int niu_get_sset_count(struct net_device *dev, int stringset)
  6438. {
  6439. struct niu *np = netdev_priv(dev);
  6440. if (stringset != ETH_SS_STATS)
  6441. return -EINVAL;
  6442. return (np->flags & NIU_FLAGS_XMAC ?
  6443. NUM_XMAC_STAT_KEYS :
  6444. NUM_BMAC_STAT_KEYS) +
  6445. (np->num_rx_rings * NUM_RXCHAN_STAT_KEYS) +
  6446. (np->num_tx_rings * NUM_TXCHAN_STAT_KEYS);
  6447. }
  6448. static void niu_get_ethtool_stats(struct net_device *dev,
  6449. struct ethtool_stats *stats, u64 *data)
  6450. {
  6451. struct niu *np = netdev_priv(dev);
  6452. int i;
  6453. niu_sync_mac_stats(np);
  6454. if (np->flags & NIU_FLAGS_XMAC) {
  6455. memcpy(data, &np->mac_stats.xmac,
  6456. sizeof(struct niu_xmac_stats));
  6457. data += (sizeof(struct niu_xmac_stats) / sizeof(u64));
  6458. } else {
  6459. memcpy(data, &np->mac_stats.bmac,
  6460. sizeof(struct niu_bmac_stats));
  6461. data += (sizeof(struct niu_bmac_stats) / sizeof(u64));
  6462. }
  6463. for (i = 0; i < np->num_rx_rings; i++) {
  6464. struct rx_ring_info *rp = &np->rx_rings[i];
  6465. niu_sync_rx_discard_stats(np, rp, 0);
  6466. data[0] = rp->rx_channel;
  6467. data[1] = rp->rx_packets;
  6468. data[2] = rp->rx_bytes;
  6469. data[3] = rp->rx_dropped;
  6470. data[4] = rp->rx_errors;
  6471. data += 5;
  6472. }
  6473. for (i = 0; i < np->num_tx_rings; i++) {
  6474. struct tx_ring_info *rp = &np->tx_rings[i];
  6475. data[0] = rp->tx_channel;
  6476. data[1] = rp->tx_packets;
  6477. data[2] = rp->tx_bytes;
  6478. data[3] = rp->tx_errors;
  6479. data += 4;
  6480. }
  6481. }
  6482. static u64 niu_led_state_save(struct niu *np)
  6483. {
  6484. if (np->flags & NIU_FLAGS_XMAC)
  6485. return nr64_mac(XMAC_CONFIG);
  6486. else
  6487. return nr64_mac(BMAC_XIF_CONFIG);
  6488. }
  6489. static void niu_led_state_restore(struct niu *np, u64 val)
  6490. {
  6491. if (np->flags & NIU_FLAGS_XMAC)
  6492. nw64_mac(XMAC_CONFIG, val);
  6493. else
  6494. nw64_mac(BMAC_XIF_CONFIG, val);
  6495. }
  6496. static void niu_force_led(struct niu *np, int on)
  6497. {
  6498. u64 val, reg, bit;
  6499. if (np->flags & NIU_FLAGS_XMAC) {
  6500. reg = XMAC_CONFIG;
  6501. bit = XMAC_CONFIG_FORCE_LED_ON;
  6502. } else {
  6503. reg = BMAC_XIF_CONFIG;
  6504. bit = BMAC_XIF_CONFIG_LINK_LED;
  6505. }
  6506. val = nr64_mac(reg);
  6507. if (on)
  6508. val |= bit;
  6509. else
  6510. val &= ~bit;
  6511. nw64_mac(reg, val);
  6512. }
  6513. static int niu_set_phys_id(struct net_device *dev,
  6514. enum ethtool_phys_id_state state)
  6515. {
  6516. struct niu *np = netdev_priv(dev);
  6517. if (!netif_running(dev))
  6518. return -EAGAIN;
  6519. switch (state) {
  6520. case ETHTOOL_ID_ACTIVE:
  6521. np->orig_led_state = niu_led_state_save(np);
  6522. return 1; /* cycle on/off once per second */
  6523. case ETHTOOL_ID_ON:
  6524. niu_force_led(np, 1);
  6525. break;
  6526. case ETHTOOL_ID_OFF:
  6527. niu_force_led(np, 0);
  6528. break;
  6529. case ETHTOOL_ID_INACTIVE:
  6530. niu_led_state_restore(np, np->orig_led_state);
  6531. }
  6532. return 0;
  6533. }
  6534. static const struct ethtool_ops niu_ethtool_ops = {
  6535. .get_drvinfo = niu_get_drvinfo,
  6536. .get_link = ethtool_op_get_link,
  6537. .get_msglevel = niu_get_msglevel,
  6538. .set_msglevel = niu_set_msglevel,
  6539. .nway_reset = niu_nway_reset,
  6540. .get_eeprom_len = niu_get_eeprom_len,
  6541. .get_eeprom = niu_get_eeprom,
  6542. .get_settings = niu_get_settings,
  6543. .set_settings = niu_set_settings,
  6544. .get_strings = niu_get_strings,
  6545. .get_sset_count = niu_get_sset_count,
  6546. .get_ethtool_stats = niu_get_ethtool_stats,
  6547. .set_phys_id = niu_set_phys_id,
  6548. .get_rxnfc = niu_get_nfc,
  6549. .set_rxnfc = niu_set_nfc,
  6550. };
  6551. static int niu_ldg_assign_ldn(struct niu *np, struct niu_parent *parent,
  6552. int ldg, int ldn)
  6553. {
  6554. if (ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX)
  6555. return -EINVAL;
  6556. if (ldn < 0 || ldn > LDN_MAX)
  6557. return -EINVAL;
  6558. parent->ldg_map[ldn] = ldg;
  6559. if (np->parent->plat_type == PLAT_TYPE_NIU) {
  6560. /* On N2 NIU, the ldn-->ldg assignments are setup and fixed by
  6561. * the firmware, and we're not supposed to change them.
  6562. * Validate the mapping, because if it's wrong we probably
  6563. * won't get any interrupts and that's painful to debug.
  6564. */
  6565. if (nr64(LDG_NUM(ldn)) != ldg) {
  6566. dev_err(np->device, "Port %u, mis-matched LDG assignment for ldn %d, should be %d is %llu\n",
  6567. np->port, ldn, ldg,
  6568. (unsigned long long) nr64(LDG_NUM(ldn)));
  6569. return -EINVAL;
  6570. }
  6571. } else
  6572. nw64(LDG_NUM(ldn), ldg);
  6573. return 0;
  6574. }
  6575. static int niu_set_ldg_timer_res(struct niu *np, int res)
  6576. {
  6577. if (res < 0 || res > LDG_TIMER_RES_VAL)
  6578. return -EINVAL;
  6579. nw64(LDG_TIMER_RES, res);
  6580. return 0;
  6581. }
  6582. static int niu_set_ldg_sid(struct niu *np, int ldg, int func, int vector)
  6583. {
  6584. if ((ldg < NIU_LDG_MIN || ldg > NIU_LDG_MAX) ||
  6585. (func < 0 || func > 3) ||
  6586. (vector < 0 || vector > 0x1f))
  6587. return -EINVAL;
  6588. nw64(SID(ldg), (func << SID_FUNC_SHIFT) | vector);
  6589. return 0;
  6590. }
  6591. static int niu_pci_eeprom_read(struct niu *np, u32 addr)
  6592. {
  6593. u64 frame, frame_base = (ESPC_PIO_STAT_READ_START |
  6594. (addr << ESPC_PIO_STAT_ADDR_SHIFT));
  6595. int limit;
  6596. if (addr > (ESPC_PIO_STAT_ADDR >> ESPC_PIO_STAT_ADDR_SHIFT))
  6597. return -EINVAL;
  6598. frame = frame_base;
  6599. nw64(ESPC_PIO_STAT, frame);
  6600. limit = 64;
  6601. do {
  6602. udelay(5);
  6603. frame = nr64(ESPC_PIO_STAT);
  6604. if (frame & ESPC_PIO_STAT_READ_END)
  6605. break;
  6606. } while (limit--);
  6607. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6608. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6609. (unsigned long long) frame);
  6610. return -ENODEV;
  6611. }
  6612. frame = frame_base;
  6613. nw64(ESPC_PIO_STAT, frame);
  6614. limit = 64;
  6615. do {
  6616. udelay(5);
  6617. frame = nr64(ESPC_PIO_STAT);
  6618. if (frame & ESPC_PIO_STAT_READ_END)
  6619. break;
  6620. } while (limit--);
  6621. if (!(frame & ESPC_PIO_STAT_READ_END)) {
  6622. dev_err(np->device, "EEPROM read timeout frame[%llx]\n",
  6623. (unsigned long long) frame);
  6624. return -ENODEV;
  6625. }
  6626. frame = nr64(ESPC_PIO_STAT);
  6627. return (frame & ESPC_PIO_STAT_DATA) >> ESPC_PIO_STAT_DATA_SHIFT;
  6628. }
  6629. static int niu_pci_eeprom_read16(struct niu *np, u32 off)
  6630. {
  6631. int err = niu_pci_eeprom_read(np, off);
  6632. u16 val;
  6633. if (err < 0)
  6634. return err;
  6635. val = (err << 8);
  6636. err = niu_pci_eeprom_read(np, off + 1);
  6637. if (err < 0)
  6638. return err;
  6639. val |= (err & 0xff);
  6640. return val;
  6641. }
  6642. static int niu_pci_eeprom_read16_swp(struct niu *np, u32 off)
  6643. {
  6644. int err = niu_pci_eeprom_read(np, off);
  6645. u16 val;
  6646. if (err < 0)
  6647. return err;
  6648. val = (err & 0xff);
  6649. err = niu_pci_eeprom_read(np, off + 1);
  6650. if (err < 0)
  6651. return err;
  6652. val |= (err & 0xff) << 8;
  6653. return val;
  6654. }
  6655. static int niu_pci_vpd_get_propname(struct niu *np, u32 off, char *namebuf,
  6656. int namebuf_len)
  6657. {
  6658. int i;
  6659. for (i = 0; i < namebuf_len; i++) {
  6660. int err = niu_pci_eeprom_read(np, off + i);
  6661. if (err < 0)
  6662. return err;
  6663. *namebuf++ = err;
  6664. if (!err)
  6665. break;
  6666. }
  6667. if (i >= namebuf_len)
  6668. return -EINVAL;
  6669. return i + 1;
  6670. }
  6671. static void niu_vpd_parse_version(struct niu *np)
  6672. {
  6673. struct niu_vpd *vpd = &np->vpd;
  6674. int len = strlen(vpd->version) + 1;
  6675. const char *s = vpd->version;
  6676. int i;
  6677. for (i = 0; i < len - 5; i++) {
  6678. if (!strncmp(s + i, "FCode ", 6))
  6679. break;
  6680. }
  6681. if (i >= len - 5)
  6682. return;
  6683. s += i + 5;
  6684. sscanf(s, "%d.%d", &vpd->fcode_major, &vpd->fcode_minor);
  6685. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6686. "VPD_SCAN: FCODE major(%d) minor(%d)\n",
  6687. vpd->fcode_major, vpd->fcode_minor);
  6688. if (vpd->fcode_major > NIU_VPD_MIN_MAJOR ||
  6689. (vpd->fcode_major == NIU_VPD_MIN_MAJOR &&
  6690. vpd->fcode_minor >= NIU_VPD_MIN_MINOR))
  6691. np->flags |= NIU_FLAGS_VPD_VALID;
  6692. }
  6693. /* ESPC_PIO_EN_ENABLE must be set */
  6694. static int niu_pci_vpd_scan_props(struct niu *np, u32 start, u32 end)
  6695. {
  6696. unsigned int found_mask = 0;
  6697. #define FOUND_MASK_MODEL 0x00000001
  6698. #define FOUND_MASK_BMODEL 0x00000002
  6699. #define FOUND_MASK_VERS 0x00000004
  6700. #define FOUND_MASK_MAC 0x00000008
  6701. #define FOUND_MASK_NMAC 0x00000010
  6702. #define FOUND_MASK_PHY 0x00000020
  6703. #define FOUND_MASK_ALL 0x0000003f
  6704. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6705. "VPD_SCAN: start[%x] end[%x]\n", start, end);
  6706. while (start < end) {
  6707. int len, err, prop_len;
  6708. char namebuf[64];
  6709. u8 *prop_buf;
  6710. int max_len;
  6711. if (found_mask == FOUND_MASK_ALL) {
  6712. niu_vpd_parse_version(np);
  6713. return 1;
  6714. }
  6715. err = niu_pci_eeprom_read(np, start + 2);
  6716. if (err < 0)
  6717. return err;
  6718. len = err;
  6719. start += 3;
  6720. prop_len = niu_pci_eeprom_read(np, start + 4);
  6721. err = niu_pci_vpd_get_propname(np, start + 5, namebuf, 64);
  6722. if (err < 0)
  6723. return err;
  6724. prop_buf = NULL;
  6725. max_len = 0;
  6726. if (!strcmp(namebuf, "model")) {
  6727. prop_buf = np->vpd.model;
  6728. max_len = NIU_VPD_MODEL_MAX;
  6729. found_mask |= FOUND_MASK_MODEL;
  6730. } else if (!strcmp(namebuf, "board-model")) {
  6731. prop_buf = np->vpd.board_model;
  6732. max_len = NIU_VPD_BD_MODEL_MAX;
  6733. found_mask |= FOUND_MASK_BMODEL;
  6734. } else if (!strcmp(namebuf, "version")) {
  6735. prop_buf = np->vpd.version;
  6736. max_len = NIU_VPD_VERSION_MAX;
  6737. found_mask |= FOUND_MASK_VERS;
  6738. } else if (!strcmp(namebuf, "local-mac-address")) {
  6739. prop_buf = np->vpd.local_mac;
  6740. max_len = ETH_ALEN;
  6741. found_mask |= FOUND_MASK_MAC;
  6742. } else if (!strcmp(namebuf, "num-mac-addresses")) {
  6743. prop_buf = &np->vpd.mac_num;
  6744. max_len = 1;
  6745. found_mask |= FOUND_MASK_NMAC;
  6746. } else if (!strcmp(namebuf, "phy-type")) {
  6747. prop_buf = np->vpd.phy_type;
  6748. max_len = NIU_VPD_PHY_TYPE_MAX;
  6749. found_mask |= FOUND_MASK_PHY;
  6750. }
  6751. if (max_len && prop_len > max_len) {
  6752. dev_err(np->device, "Property '%s' length (%d) is too long\n", namebuf, prop_len);
  6753. return -EINVAL;
  6754. }
  6755. if (prop_buf) {
  6756. u32 off = start + 5 + err;
  6757. int i;
  6758. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6759. "VPD_SCAN: Reading in property [%s] len[%d]\n",
  6760. namebuf, prop_len);
  6761. for (i = 0; i < prop_len; i++)
  6762. *prop_buf++ = niu_pci_eeprom_read(np, off + i);
  6763. }
  6764. start += len;
  6765. }
  6766. return 0;
  6767. }
  6768. /* ESPC_PIO_EN_ENABLE must be set */
  6769. static void niu_pci_vpd_fetch(struct niu *np, u32 start)
  6770. {
  6771. u32 offset;
  6772. int err;
  6773. err = niu_pci_eeprom_read16_swp(np, start + 1);
  6774. if (err < 0)
  6775. return;
  6776. offset = err + 3;
  6777. while (start + offset < ESPC_EEPROM_SIZE) {
  6778. u32 here = start + offset;
  6779. u32 end;
  6780. err = niu_pci_eeprom_read(np, here);
  6781. if (err != 0x90)
  6782. return;
  6783. err = niu_pci_eeprom_read16_swp(np, here + 1);
  6784. if (err < 0)
  6785. return;
  6786. here = start + offset + 3;
  6787. end = start + offset + err;
  6788. offset += err;
  6789. err = niu_pci_vpd_scan_props(np, here, end);
  6790. if (err < 0 || err == 1)
  6791. return;
  6792. }
  6793. }
  6794. /* ESPC_PIO_EN_ENABLE must be set */
  6795. static u32 niu_pci_vpd_offset(struct niu *np)
  6796. {
  6797. u32 start = 0, end = ESPC_EEPROM_SIZE, ret;
  6798. int err;
  6799. while (start < end) {
  6800. ret = start;
  6801. /* ROM header signature? */
  6802. err = niu_pci_eeprom_read16(np, start + 0);
  6803. if (err != 0x55aa)
  6804. return 0;
  6805. /* Apply offset to PCI data structure. */
  6806. err = niu_pci_eeprom_read16(np, start + 23);
  6807. if (err < 0)
  6808. return 0;
  6809. start += err;
  6810. /* Check for "PCIR" signature. */
  6811. err = niu_pci_eeprom_read16(np, start + 0);
  6812. if (err != 0x5043)
  6813. return 0;
  6814. err = niu_pci_eeprom_read16(np, start + 2);
  6815. if (err != 0x4952)
  6816. return 0;
  6817. /* Check for OBP image type. */
  6818. err = niu_pci_eeprom_read(np, start + 20);
  6819. if (err < 0)
  6820. return 0;
  6821. if (err != 0x01) {
  6822. err = niu_pci_eeprom_read(np, ret + 2);
  6823. if (err < 0)
  6824. return 0;
  6825. start = ret + (err * 512);
  6826. continue;
  6827. }
  6828. err = niu_pci_eeprom_read16_swp(np, start + 8);
  6829. if (err < 0)
  6830. return err;
  6831. ret += err;
  6832. err = niu_pci_eeprom_read(np, ret + 0);
  6833. if (err != 0x82)
  6834. return 0;
  6835. return ret;
  6836. }
  6837. return 0;
  6838. }
  6839. static int niu_phy_type_prop_decode(struct niu *np, const char *phy_prop)
  6840. {
  6841. if (!strcmp(phy_prop, "mif")) {
  6842. /* 1G copper, MII */
  6843. np->flags &= ~(NIU_FLAGS_FIBER |
  6844. NIU_FLAGS_10G);
  6845. np->mac_xcvr = MAC_XCVR_MII;
  6846. } else if (!strcmp(phy_prop, "xgf")) {
  6847. /* 10G fiber, XPCS */
  6848. np->flags |= (NIU_FLAGS_10G |
  6849. NIU_FLAGS_FIBER);
  6850. np->mac_xcvr = MAC_XCVR_XPCS;
  6851. } else if (!strcmp(phy_prop, "pcs")) {
  6852. /* 1G fiber, PCS */
  6853. np->flags &= ~NIU_FLAGS_10G;
  6854. np->flags |= NIU_FLAGS_FIBER;
  6855. np->mac_xcvr = MAC_XCVR_PCS;
  6856. } else if (!strcmp(phy_prop, "xgc")) {
  6857. /* 10G copper, XPCS */
  6858. np->flags |= NIU_FLAGS_10G;
  6859. np->flags &= ~NIU_FLAGS_FIBER;
  6860. np->mac_xcvr = MAC_XCVR_XPCS;
  6861. } else if (!strcmp(phy_prop, "xgsd") || !strcmp(phy_prop, "gsd")) {
  6862. /* 10G Serdes or 1G Serdes, default to 10G */
  6863. np->flags |= NIU_FLAGS_10G;
  6864. np->flags &= ~NIU_FLAGS_FIBER;
  6865. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6866. np->mac_xcvr = MAC_XCVR_XPCS;
  6867. } else {
  6868. return -EINVAL;
  6869. }
  6870. return 0;
  6871. }
  6872. static int niu_pci_vpd_get_nports(struct niu *np)
  6873. {
  6874. int ports = 0;
  6875. if ((!strcmp(np->vpd.model, NIU_QGC_LP_MDL_STR)) ||
  6876. (!strcmp(np->vpd.model, NIU_QGC_PEM_MDL_STR)) ||
  6877. (!strcmp(np->vpd.model, NIU_MARAMBA_MDL_STR)) ||
  6878. (!strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) ||
  6879. (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR))) {
  6880. ports = 4;
  6881. } else if ((!strcmp(np->vpd.model, NIU_2XGF_LP_MDL_STR)) ||
  6882. (!strcmp(np->vpd.model, NIU_2XGF_PEM_MDL_STR)) ||
  6883. (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) ||
  6884. (!strcmp(np->vpd.model, NIU_2XGF_MRVL_MDL_STR))) {
  6885. ports = 2;
  6886. }
  6887. return ports;
  6888. }
  6889. static void niu_pci_vpd_validate(struct niu *np)
  6890. {
  6891. struct net_device *dev = np->dev;
  6892. struct niu_vpd *vpd = &np->vpd;
  6893. u8 val8;
  6894. if (!is_valid_ether_addr(&vpd->local_mac[0])) {
  6895. dev_err(np->device, "VPD MAC invalid, falling back to SPROM\n");
  6896. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6897. return;
  6898. }
  6899. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  6900. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  6901. np->flags |= NIU_FLAGS_10G;
  6902. np->flags &= ~NIU_FLAGS_FIBER;
  6903. np->flags |= NIU_FLAGS_XCVR_SERDES;
  6904. np->mac_xcvr = MAC_XCVR_PCS;
  6905. if (np->port > 1) {
  6906. np->flags |= NIU_FLAGS_FIBER;
  6907. np->flags &= ~NIU_FLAGS_10G;
  6908. }
  6909. if (np->flags & NIU_FLAGS_10G)
  6910. np->mac_xcvr = MAC_XCVR_XPCS;
  6911. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  6912. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  6913. NIU_FLAGS_HOTPLUG_PHY);
  6914. } else if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  6915. dev_err(np->device, "Illegal phy string [%s]\n",
  6916. np->vpd.phy_type);
  6917. dev_err(np->device, "Falling back to SPROM\n");
  6918. np->flags &= ~NIU_FLAGS_VPD_VALID;
  6919. return;
  6920. }
  6921. memcpy(dev->dev_addr, vpd->local_mac, ETH_ALEN);
  6922. val8 = dev->dev_addr[5];
  6923. dev->dev_addr[5] += np->port;
  6924. if (dev->dev_addr[5] < val8)
  6925. dev->dev_addr[4]++;
  6926. }
  6927. static int niu_pci_probe_sprom(struct niu *np)
  6928. {
  6929. struct net_device *dev = np->dev;
  6930. int len, i;
  6931. u64 val, sum;
  6932. u8 val8;
  6933. val = (nr64(ESPC_VER_IMGSZ) & ESPC_VER_IMGSZ_IMGSZ);
  6934. val >>= ESPC_VER_IMGSZ_IMGSZ_SHIFT;
  6935. len = val / 4;
  6936. np->eeprom_len = len;
  6937. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6938. "SPROM: Image size %llu\n", (unsigned long long)val);
  6939. sum = 0;
  6940. for (i = 0; i < len; i++) {
  6941. val = nr64(ESPC_NCR(i));
  6942. sum += (val >> 0) & 0xff;
  6943. sum += (val >> 8) & 0xff;
  6944. sum += (val >> 16) & 0xff;
  6945. sum += (val >> 24) & 0xff;
  6946. }
  6947. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6948. "SPROM: Checksum %x\n", (int)(sum & 0xff));
  6949. if ((sum & 0xff) != 0xab) {
  6950. dev_err(np->device, "Bad SPROM checksum (%x, should be 0xab)\n", (int)(sum & 0xff));
  6951. return -EINVAL;
  6952. }
  6953. val = nr64(ESPC_PHY_TYPE);
  6954. switch (np->port) {
  6955. case 0:
  6956. val8 = (val & ESPC_PHY_TYPE_PORT0) >>
  6957. ESPC_PHY_TYPE_PORT0_SHIFT;
  6958. break;
  6959. case 1:
  6960. val8 = (val & ESPC_PHY_TYPE_PORT1) >>
  6961. ESPC_PHY_TYPE_PORT1_SHIFT;
  6962. break;
  6963. case 2:
  6964. val8 = (val & ESPC_PHY_TYPE_PORT2) >>
  6965. ESPC_PHY_TYPE_PORT2_SHIFT;
  6966. break;
  6967. case 3:
  6968. val8 = (val & ESPC_PHY_TYPE_PORT3) >>
  6969. ESPC_PHY_TYPE_PORT3_SHIFT;
  6970. break;
  6971. default:
  6972. dev_err(np->device, "Bogus port number %u\n",
  6973. np->port);
  6974. return -EINVAL;
  6975. }
  6976. netif_printk(np, probe, KERN_DEBUG, np->dev,
  6977. "SPROM: PHY type %x\n", val8);
  6978. switch (val8) {
  6979. case ESPC_PHY_TYPE_1G_COPPER:
  6980. /* 1G copper, MII */
  6981. np->flags &= ~(NIU_FLAGS_FIBER |
  6982. NIU_FLAGS_10G);
  6983. np->mac_xcvr = MAC_XCVR_MII;
  6984. break;
  6985. case ESPC_PHY_TYPE_1G_FIBER:
  6986. /* 1G fiber, PCS */
  6987. np->flags &= ~NIU_FLAGS_10G;
  6988. np->flags |= NIU_FLAGS_FIBER;
  6989. np->mac_xcvr = MAC_XCVR_PCS;
  6990. break;
  6991. case ESPC_PHY_TYPE_10G_COPPER:
  6992. /* 10G copper, XPCS */
  6993. np->flags |= NIU_FLAGS_10G;
  6994. np->flags &= ~NIU_FLAGS_FIBER;
  6995. np->mac_xcvr = MAC_XCVR_XPCS;
  6996. break;
  6997. case ESPC_PHY_TYPE_10G_FIBER:
  6998. /* 10G fiber, XPCS */
  6999. np->flags |= (NIU_FLAGS_10G |
  7000. NIU_FLAGS_FIBER);
  7001. np->mac_xcvr = MAC_XCVR_XPCS;
  7002. break;
  7003. default:
  7004. dev_err(np->device, "Bogus SPROM phy type %u\n", val8);
  7005. return -EINVAL;
  7006. }
  7007. val = nr64(ESPC_MAC_ADDR0);
  7008. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7009. "SPROM: MAC_ADDR0[%08llx]\n", (unsigned long long)val);
  7010. dev->dev_addr[0] = (val >> 0) & 0xff;
  7011. dev->dev_addr[1] = (val >> 8) & 0xff;
  7012. dev->dev_addr[2] = (val >> 16) & 0xff;
  7013. dev->dev_addr[3] = (val >> 24) & 0xff;
  7014. val = nr64(ESPC_MAC_ADDR1);
  7015. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7016. "SPROM: MAC_ADDR1[%08llx]\n", (unsigned long long)val);
  7017. dev->dev_addr[4] = (val >> 0) & 0xff;
  7018. dev->dev_addr[5] = (val >> 8) & 0xff;
  7019. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7020. dev_err(np->device, "SPROM MAC address invalid [ %pM ]\n",
  7021. dev->dev_addr);
  7022. return -EINVAL;
  7023. }
  7024. val8 = dev->dev_addr[5];
  7025. dev->dev_addr[5] += np->port;
  7026. if (dev->dev_addr[5] < val8)
  7027. dev->dev_addr[4]++;
  7028. val = nr64(ESPC_MOD_STR_LEN);
  7029. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7030. "SPROM: MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7031. if (val >= 8 * 4)
  7032. return -EINVAL;
  7033. for (i = 0; i < val; i += 4) {
  7034. u64 tmp = nr64(ESPC_NCR(5 + (i / 4)));
  7035. np->vpd.model[i + 3] = (tmp >> 0) & 0xff;
  7036. np->vpd.model[i + 2] = (tmp >> 8) & 0xff;
  7037. np->vpd.model[i + 1] = (tmp >> 16) & 0xff;
  7038. np->vpd.model[i + 0] = (tmp >> 24) & 0xff;
  7039. }
  7040. np->vpd.model[val] = '\0';
  7041. val = nr64(ESPC_BD_MOD_STR_LEN);
  7042. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7043. "SPROM: BD_MOD_STR_LEN[%llu]\n", (unsigned long long)val);
  7044. if (val >= 4 * 4)
  7045. return -EINVAL;
  7046. for (i = 0; i < val; i += 4) {
  7047. u64 tmp = nr64(ESPC_NCR(14 + (i / 4)));
  7048. np->vpd.board_model[i + 3] = (tmp >> 0) & 0xff;
  7049. np->vpd.board_model[i + 2] = (tmp >> 8) & 0xff;
  7050. np->vpd.board_model[i + 1] = (tmp >> 16) & 0xff;
  7051. np->vpd.board_model[i + 0] = (tmp >> 24) & 0xff;
  7052. }
  7053. np->vpd.board_model[val] = '\0';
  7054. np->vpd.mac_num =
  7055. nr64(ESPC_NUM_PORTS_MACS) & ESPC_NUM_PORTS_MACS_VAL;
  7056. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7057. "SPROM: NUM_PORTS_MACS[%d]\n", np->vpd.mac_num);
  7058. return 0;
  7059. }
  7060. static int niu_get_and_validate_port(struct niu *np)
  7061. {
  7062. struct niu_parent *parent = np->parent;
  7063. if (np->port <= 1)
  7064. np->flags |= NIU_FLAGS_XMAC;
  7065. if (!parent->num_ports) {
  7066. if (parent->plat_type == PLAT_TYPE_NIU) {
  7067. parent->num_ports = 2;
  7068. } else {
  7069. parent->num_ports = niu_pci_vpd_get_nports(np);
  7070. if (!parent->num_ports) {
  7071. /* Fall back to SPROM as last resort.
  7072. * This will fail on most cards.
  7073. */
  7074. parent->num_ports = nr64(ESPC_NUM_PORTS_MACS) &
  7075. ESPC_NUM_PORTS_MACS_VAL;
  7076. /* All of the current probing methods fail on
  7077. * Maramba on-board parts.
  7078. */
  7079. if (!parent->num_ports)
  7080. parent->num_ports = 4;
  7081. }
  7082. }
  7083. }
  7084. if (np->port >= parent->num_ports)
  7085. return -ENODEV;
  7086. return 0;
  7087. }
  7088. static int phy_record(struct niu_parent *parent, struct phy_probe_info *p,
  7089. int dev_id_1, int dev_id_2, u8 phy_port, int type)
  7090. {
  7091. u32 id = (dev_id_1 << 16) | dev_id_2;
  7092. u8 idx;
  7093. if (dev_id_1 < 0 || dev_id_2 < 0)
  7094. return 0;
  7095. if (type == PHY_TYPE_PMA_PMD || type == PHY_TYPE_PCS) {
  7096. /* Because of the NIU_PHY_ID_MASK being applied, the 8704
  7097. * test covers the 8706 as well.
  7098. */
  7099. if (((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM8704) &&
  7100. ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_MRVL88X2011))
  7101. return 0;
  7102. } else {
  7103. if ((id & NIU_PHY_ID_MASK) != NIU_PHY_ID_BCM5464R)
  7104. return 0;
  7105. }
  7106. pr_info("niu%d: Found PHY %08x type %s at phy_port %u\n",
  7107. parent->index, id,
  7108. type == PHY_TYPE_PMA_PMD ? "PMA/PMD" :
  7109. type == PHY_TYPE_PCS ? "PCS" : "MII",
  7110. phy_port);
  7111. if (p->cur[type] >= NIU_MAX_PORTS) {
  7112. pr_err("Too many PHY ports\n");
  7113. return -EINVAL;
  7114. }
  7115. idx = p->cur[type];
  7116. p->phy_id[type][idx] = id;
  7117. p->phy_port[type][idx] = phy_port;
  7118. p->cur[type] = idx + 1;
  7119. return 0;
  7120. }
  7121. static int port_has_10g(struct phy_probe_info *p, int port)
  7122. {
  7123. int i;
  7124. for (i = 0; i < p->cur[PHY_TYPE_PMA_PMD]; i++) {
  7125. if (p->phy_port[PHY_TYPE_PMA_PMD][i] == port)
  7126. return 1;
  7127. }
  7128. for (i = 0; i < p->cur[PHY_TYPE_PCS]; i++) {
  7129. if (p->phy_port[PHY_TYPE_PCS][i] == port)
  7130. return 1;
  7131. }
  7132. return 0;
  7133. }
  7134. static int count_10g_ports(struct phy_probe_info *p, int *lowest)
  7135. {
  7136. int port, cnt;
  7137. cnt = 0;
  7138. *lowest = 32;
  7139. for (port = 8; port < 32; port++) {
  7140. if (port_has_10g(p, port)) {
  7141. if (!cnt)
  7142. *lowest = port;
  7143. cnt++;
  7144. }
  7145. }
  7146. return cnt;
  7147. }
  7148. static int count_1g_ports(struct phy_probe_info *p, int *lowest)
  7149. {
  7150. *lowest = 32;
  7151. if (p->cur[PHY_TYPE_MII])
  7152. *lowest = p->phy_port[PHY_TYPE_MII][0];
  7153. return p->cur[PHY_TYPE_MII];
  7154. }
  7155. static void niu_n2_divide_channels(struct niu_parent *parent)
  7156. {
  7157. int num_ports = parent->num_ports;
  7158. int i;
  7159. for (i = 0; i < num_ports; i++) {
  7160. parent->rxchan_per_port[i] = (16 / num_ports);
  7161. parent->txchan_per_port[i] = (16 / num_ports);
  7162. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7163. parent->index, i,
  7164. parent->rxchan_per_port[i],
  7165. parent->txchan_per_port[i]);
  7166. }
  7167. }
  7168. static void niu_divide_channels(struct niu_parent *parent,
  7169. int num_10g, int num_1g)
  7170. {
  7171. int num_ports = parent->num_ports;
  7172. int rx_chans_per_10g, rx_chans_per_1g;
  7173. int tx_chans_per_10g, tx_chans_per_1g;
  7174. int i, tot_rx, tot_tx;
  7175. if (!num_10g || !num_1g) {
  7176. rx_chans_per_10g = rx_chans_per_1g =
  7177. (NIU_NUM_RXCHAN / num_ports);
  7178. tx_chans_per_10g = tx_chans_per_1g =
  7179. (NIU_NUM_TXCHAN / num_ports);
  7180. } else {
  7181. rx_chans_per_1g = NIU_NUM_RXCHAN / 8;
  7182. rx_chans_per_10g = (NIU_NUM_RXCHAN -
  7183. (rx_chans_per_1g * num_1g)) /
  7184. num_10g;
  7185. tx_chans_per_1g = NIU_NUM_TXCHAN / 6;
  7186. tx_chans_per_10g = (NIU_NUM_TXCHAN -
  7187. (tx_chans_per_1g * num_1g)) /
  7188. num_10g;
  7189. }
  7190. tot_rx = tot_tx = 0;
  7191. for (i = 0; i < num_ports; i++) {
  7192. int type = phy_decode(parent->port_phy, i);
  7193. if (type == PORT_TYPE_10G) {
  7194. parent->rxchan_per_port[i] = rx_chans_per_10g;
  7195. parent->txchan_per_port[i] = tx_chans_per_10g;
  7196. } else {
  7197. parent->rxchan_per_port[i] = rx_chans_per_1g;
  7198. parent->txchan_per_port[i] = tx_chans_per_1g;
  7199. }
  7200. pr_info("niu%d: Port %u [%u RX chans] [%u TX chans]\n",
  7201. parent->index, i,
  7202. parent->rxchan_per_port[i],
  7203. parent->txchan_per_port[i]);
  7204. tot_rx += parent->rxchan_per_port[i];
  7205. tot_tx += parent->txchan_per_port[i];
  7206. }
  7207. if (tot_rx > NIU_NUM_RXCHAN) {
  7208. pr_err("niu%d: Too many RX channels (%d), resetting to one per port\n",
  7209. parent->index, tot_rx);
  7210. for (i = 0; i < num_ports; i++)
  7211. parent->rxchan_per_port[i] = 1;
  7212. }
  7213. if (tot_tx > NIU_NUM_TXCHAN) {
  7214. pr_err("niu%d: Too many TX channels (%d), resetting to one per port\n",
  7215. parent->index, tot_tx);
  7216. for (i = 0; i < num_ports; i++)
  7217. parent->txchan_per_port[i] = 1;
  7218. }
  7219. if (tot_rx < NIU_NUM_RXCHAN || tot_tx < NIU_NUM_TXCHAN) {
  7220. pr_warning("niu%d: Driver bug, wasted channels, RX[%d] TX[%d]\n",
  7221. parent->index, tot_rx, tot_tx);
  7222. }
  7223. }
  7224. static void niu_divide_rdc_groups(struct niu_parent *parent,
  7225. int num_10g, int num_1g)
  7226. {
  7227. int i, num_ports = parent->num_ports;
  7228. int rdc_group, rdc_groups_per_port;
  7229. int rdc_channel_base;
  7230. rdc_group = 0;
  7231. rdc_groups_per_port = NIU_NUM_RDC_TABLES / num_ports;
  7232. rdc_channel_base = 0;
  7233. for (i = 0; i < num_ports; i++) {
  7234. struct niu_rdc_tables *tp = &parent->rdc_group_cfg[i];
  7235. int grp, num_channels = parent->rxchan_per_port[i];
  7236. int this_channel_offset;
  7237. tp->first_table_num = rdc_group;
  7238. tp->num_tables = rdc_groups_per_port;
  7239. this_channel_offset = 0;
  7240. for (grp = 0; grp < tp->num_tables; grp++) {
  7241. struct rdc_table *rt = &tp->tables[grp];
  7242. int slot;
  7243. pr_info("niu%d: Port %d RDC tbl(%d) [ ",
  7244. parent->index, i, tp->first_table_num + grp);
  7245. for (slot = 0; slot < NIU_RDC_TABLE_SLOTS; slot++) {
  7246. rt->rxdma_channel[slot] =
  7247. rdc_channel_base + this_channel_offset;
  7248. pr_cont("%d ", rt->rxdma_channel[slot]);
  7249. if (++this_channel_offset == num_channels)
  7250. this_channel_offset = 0;
  7251. }
  7252. pr_cont("]\n");
  7253. }
  7254. parent->rdc_default[i] = rdc_channel_base;
  7255. rdc_channel_base += num_channels;
  7256. rdc_group += rdc_groups_per_port;
  7257. }
  7258. }
  7259. static int fill_phy_probe_info(struct niu *np, struct niu_parent *parent,
  7260. struct phy_probe_info *info)
  7261. {
  7262. unsigned long flags;
  7263. int port, err;
  7264. memset(info, 0, sizeof(*info));
  7265. /* Port 0 to 7 are reserved for onboard Serdes, probe the rest. */
  7266. niu_lock_parent(np, flags);
  7267. err = 0;
  7268. for (port = 8; port < 32; port++) {
  7269. int dev_id_1, dev_id_2;
  7270. dev_id_1 = mdio_read(np, port,
  7271. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID1);
  7272. dev_id_2 = mdio_read(np, port,
  7273. NIU_PMA_PMD_DEV_ADDR, MII_PHYSID2);
  7274. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7275. PHY_TYPE_PMA_PMD);
  7276. if (err)
  7277. break;
  7278. dev_id_1 = mdio_read(np, port,
  7279. NIU_PCS_DEV_ADDR, MII_PHYSID1);
  7280. dev_id_2 = mdio_read(np, port,
  7281. NIU_PCS_DEV_ADDR, MII_PHYSID2);
  7282. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7283. PHY_TYPE_PCS);
  7284. if (err)
  7285. break;
  7286. dev_id_1 = mii_read(np, port, MII_PHYSID1);
  7287. dev_id_2 = mii_read(np, port, MII_PHYSID2);
  7288. err = phy_record(parent, info, dev_id_1, dev_id_2, port,
  7289. PHY_TYPE_MII);
  7290. if (err)
  7291. break;
  7292. }
  7293. niu_unlock_parent(np, flags);
  7294. return err;
  7295. }
  7296. static int walk_phys(struct niu *np, struct niu_parent *parent)
  7297. {
  7298. struct phy_probe_info *info = &parent->phy_probe_info;
  7299. int lowest_10g, lowest_1g;
  7300. int num_10g, num_1g;
  7301. u32 val;
  7302. int err;
  7303. num_10g = num_1g = 0;
  7304. if (!strcmp(np->vpd.model, NIU_ALONSO_MDL_STR) ||
  7305. !strcmp(np->vpd.model, NIU_KIMI_MDL_STR)) {
  7306. num_10g = 0;
  7307. num_1g = 2;
  7308. parent->plat_type = PLAT_TYPE_ATCA_CP3220;
  7309. parent->num_ports = 4;
  7310. val = (phy_encode(PORT_TYPE_1G, 0) |
  7311. phy_encode(PORT_TYPE_1G, 1) |
  7312. phy_encode(PORT_TYPE_1G, 2) |
  7313. phy_encode(PORT_TYPE_1G, 3));
  7314. } else if (!strcmp(np->vpd.model, NIU_FOXXY_MDL_STR)) {
  7315. num_10g = 2;
  7316. num_1g = 0;
  7317. parent->num_ports = 2;
  7318. val = (phy_encode(PORT_TYPE_10G, 0) |
  7319. phy_encode(PORT_TYPE_10G, 1));
  7320. } else if ((np->flags & NIU_FLAGS_XCVR_SERDES) &&
  7321. (parent->plat_type == PLAT_TYPE_NIU)) {
  7322. /* this is the Monza case */
  7323. if (np->flags & NIU_FLAGS_10G) {
  7324. val = (phy_encode(PORT_TYPE_10G, 0) |
  7325. phy_encode(PORT_TYPE_10G, 1));
  7326. } else {
  7327. val = (phy_encode(PORT_TYPE_1G, 0) |
  7328. phy_encode(PORT_TYPE_1G, 1));
  7329. }
  7330. } else {
  7331. err = fill_phy_probe_info(np, parent, info);
  7332. if (err)
  7333. return err;
  7334. num_10g = count_10g_ports(info, &lowest_10g);
  7335. num_1g = count_1g_ports(info, &lowest_1g);
  7336. switch ((num_10g << 4) | num_1g) {
  7337. case 0x24:
  7338. if (lowest_1g == 10)
  7339. parent->plat_type = PLAT_TYPE_VF_P0;
  7340. else if (lowest_1g == 26)
  7341. parent->plat_type = PLAT_TYPE_VF_P1;
  7342. else
  7343. goto unknown_vg_1g_port;
  7344. /* fallthru */
  7345. case 0x22:
  7346. val = (phy_encode(PORT_TYPE_10G, 0) |
  7347. phy_encode(PORT_TYPE_10G, 1) |
  7348. phy_encode(PORT_TYPE_1G, 2) |
  7349. phy_encode(PORT_TYPE_1G, 3));
  7350. break;
  7351. case 0x20:
  7352. val = (phy_encode(PORT_TYPE_10G, 0) |
  7353. phy_encode(PORT_TYPE_10G, 1));
  7354. break;
  7355. case 0x10:
  7356. val = phy_encode(PORT_TYPE_10G, np->port);
  7357. break;
  7358. case 0x14:
  7359. if (lowest_1g == 10)
  7360. parent->plat_type = PLAT_TYPE_VF_P0;
  7361. else if (lowest_1g == 26)
  7362. parent->plat_type = PLAT_TYPE_VF_P1;
  7363. else
  7364. goto unknown_vg_1g_port;
  7365. /* fallthru */
  7366. case 0x13:
  7367. if ((lowest_10g & 0x7) == 0)
  7368. val = (phy_encode(PORT_TYPE_10G, 0) |
  7369. phy_encode(PORT_TYPE_1G, 1) |
  7370. phy_encode(PORT_TYPE_1G, 2) |
  7371. phy_encode(PORT_TYPE_1G, 3));
  7372. else
  7373. val = (phy_encode(PORT_TYPE_1G, 0) |
  7374. phy_encode(PORT_TYPE_10G, 1) |
  7375. phy_encode(PORT_TYPE_1G, 2) |
  7376. phy_encode(PORT_TYPE_1G, 3));
  7377. break;
  7378. case 0x04:
  7379. if (lowest_1g == 10)
  7380. parent->plat_type = PLAT_TYPE_VF_P0;
  7381. else if (lowest_1g == 26)
  7382. parent->plat_type = PLAT_TYPE_VF_P1;
  7383. else
  7384. goto unknown_vg_1g_port;
  7385. val = (phy_encode(PORT_TYPE_1G, 0) |
  7386. phy_encode(PORT_TYPE_1G, 1) |
  7387. phy_encode(PORT_TYPE_1G, 2) |
  7388. phy_encode(PORT_TYPE_1G, 3));
  7389. break;
  7390. default:
  7391. pr_err("Unsupported port config 10G[%d] 1G[%d]\n",
  7392. num_10g, num_1g);
  7393. return -EINVAL;
  7394. }
  7395. }
  7396. parent->port_phy = val;
  7397. if (parent->plat_type == PLAT_TYPE_NIU)
  7398. niu_n2_divide_channels(parent);
  7399. else
  7400. niu_divide_channels(parent, num_10g, num_1g);
  7401. niu_divide_rdc_groups(parent, num_10g, num_1g);
  7402. return 0;
  7403. unknown_vg_1g_port:
  7404. pr_err("Cannot identify platform type, 1gport=%d\n", lowest_1g);
  7405. return -EINVAL;
  7406. }
  7407. static int niu_probe_ports(struct niu *np)
  7408. {
  7409. struct niu_parent *parent = np->parent;
  7410. int err, i;
  7411. if (parent->port_phy == PORT_PHY_UNKNOWN) {
  7412. err = walk_phys(np, parent);
  7413. if (err)
  7414. return err;
  7415. niu_set_ldg_timer_res(np, 2);
  7416. for (i = 0; i <= LDN_MAX; i++)
  7417. niu_ldn_irq_enable(np, i, 0);
  7418. }
  7419. if (parent->port_phy == PORT_PHY_INVALID)
  7420. return -EINVAL;
  7421. return 0;
  7422. }
  7423. static int niu_classifier_swstate_init(struct niu *np)
  7424. {
  7425. struct niu_classifier *cp = &np->clas;
  7426. cp->tcam_top = (u16) np->port;
  7427. cp->tcam_sz = np->parent->tcam_num_entries / np->parent->num_ports;
  7428. cp->h1_init = 0xffffffff;
  7429. cp->h2_init = 0xffff;
  7430. return fflp_early_init(np);
  7431. }
  7432. static void niu_link_config_init(struct niu *np)
  7433. {
  7434. struct niu_link_config *lp = &np->link_config;
  7435. lp->advertising = (ADVERTISED_10baseT_Half |
  7436. ADVERTISED_10baseT_Full |
  7437. ADVERTISED_100baseT_Half |
  7438. ADVERTISED_100baseT_Full |
  7439. ADVERTISED_1000baseT_Half |
  7440. ADVERTISED_1000baseT_Full |
  7441. ADVERTISED_10000baseT_Full |
  7442. ADVERTISED_Autoneg);
  7443. lp->speed = lp->active_speed = SPEED_INVALID;
  7444. lp->duplex = DUPLEX_FULL;
  7445. lp->active_duplex = DUPLEX_INVALID;
  7446. lp->autoneg = 1;
  7447. #if 0
  7448. lp->loopback_mode = LOOPBACK_MAC;
  7449. lp->active_speed = SPEED_10000;
  7450. lp->active_duplex = DUPLEX_FULL;
  7451. #else
  7452. lp->loopback_mode = LOOPBACK_DISABLED;
  7453. #endif
  7454. }
  7455. static int niu_init_mac_ipp_pcs_base(struct niu *np)
  7456. {
  7457. switch (np->port) {
  7458. case 0:
  7459. np->mac_regs = np->regs + XMAC_PORT0_OFF;
  7460. np->ipp_off = 0x00000;
  7461. np->pcs_off = 0x04000;
  7462. np->xpcs_off = 0x02000;
  7463. break;
  7464. case 1:
  7465. np->mac_regs = np->regs + XMAC_PORT1_OFF;
  7466. np->ipp_off = 0x08000;
  7467. np->pcs_off = 0x0a000;
  7468. np->xpcs_off = 0x08000;
  7469. break;
  7470. case 2:
  7471. np->mac_regs = np->regs + BMAC_PORT2_OFF;
  7472. np->ipp_off = 0x04000;
  7473. np->pcs_off = 0x0e000;
  7474. np->xpcs_off = ~0UL;
  7475. break;
  7476. case 3:
  7477. np->mac_regs = np->regs + BMAC_PORT3_OFF;
  7478. np->ipp_off = 0x0c000;
  7479. np->pcs_off = 0x12000;
  7480. np->xpcs_off = ~0UL;
  7481. break;
  7482. default:
  7483. dev_err(np->device, "Port %u is invalid, cannot compute MAC block offset\n", np->port);
  7484. return -EINVAL;
  7485. }
  7486. return 0;
  7487. }
  7488. static void niu_try_msix(struct niu *np, u8 *ldg_num_map)
  7489. {
  7490. struct msix_entry msi_vec[NIU_NUM_LDG];
  7491. struct niu_parent *parent = np->parent;
  7492. struct pci_dev *pdev = np->pdev;
  7493. int i, num_irqs;
  7494. u8 first_ldg;
  7495. first_ldg = (NIU_NUM_LDG / parent->num_ports) * np->port;
  7496. for (i = 0; i < (NIU_NUM_LDG / parent->num_ports); i++)
  7497. ldg_num_map[i] = first_ldg + i;
  7498. num_irqs = (parent->rxchan_per_port[np->port] +
  7499. parent->txchan_per_port[np->port] +
  7500. (np->port == 0 ? 3 : 1));
  7501. BUG_ON(num_irqs > (NIU_NUM_LDG / parent->num_ports));
  7502. for (i = 0; i < num_irqs; i++) {
  7503. msi_vec[i].vector = 0;
  7504. msi_vec[i].entry = i;
  7505. }
  7506. num_irqs = pci_enable_msix_range(pdev, msi_vec, 1, num_irqs);
  7507. if (num_irqs < 0) {
  7508. np->flags &= ~NIU_FLAGS_MSIX;
  7509. return;
  7510. }
  7511. np->flags |= NIU_FLAGS_MSIX;
  7512. for (i = 0; i < num_irqs; i++)
  7513. np->ldg[i].irq = msi_vec[i].vector;
  7514. np->num_ldg = num_irqs;
  7515. }
  7516. static int niu_n2_irq_init(struct niu *np, u8 *ldg_num_map)
  7517. {
  7518. #ifdef CONFIG_SPARC64
  7519. struct platform_device *op = np->op;
  7520. const u32 *int_prop;
  7521. int i;
  7522. int_prop = of_get_property(op->dev.of_node, "interrupts", NULL);
  7523. if (!int_prop)
  7524. return -ENODEV;
  7525. for (i = 0; i < op->archdata.num_irqs; i++) {
  7526. ldg_num_map[i] = int_prop[i];
  7527. np->ldg[i].irq = op->archdata.irqs[i];
  7528. }
  7529. np->num_ldg = op->archdata.num_irqs;
  7530. return 0;
  7531. #else
  7532. return -EINVAL;
  7533. #endif
  7534. }
  7535. static int niu_ldg_init(struct niu *np)
  7536. {
  7537. struct niu_parent *parent = np->parent;
  7538. u8 ldg_num_map[NIU_NUM_LDG];
  7539. int first_chan, num_chan;
  7540. int i, err, ldg_rotor;
  7541. u8 port;
  7542. np->num_ldg = 1;
  7543. np->ldg[0].irq = np->dev->irq;
  7544. if (parent->plat_type == PLAT_TYPE_NIU) {
  7545. err = niu_n2_irq_init(np, ldg_num_map);
  7546. if (err)
  7547. return err;
  7548. } else
  7549. niu_try_msix(np, ldg_num_map);
  7550. port = np->port;
  7551. for (i = 0; i < np->num_ldg; i++) {
  7552. struct niu_ldg *lp = &np->ldg[i];
  7553. netif_napi_add(np->dev, &lp->napi, niu_poll, 64);
  7554. lp->np = np;
  7555. lp->ldg_num = ldg_num_map[i];
  7556. lp->timer = 2; /* XXX */
  7557. /* On N2 NIU the firmware has setup the SID mappings so they go
  7558. * to the correct values that will route the LDG to the proper
  7559. * interrupt in the NCU interrupt table.
  7560. */
  7561. if (np->parent->plat_type != PLAT_TYPE_NIU) {
  7562. err = niu_set_ldg_sid(np, lp->ldg_num, port, i);
  7563. if (err)
  7564. return err;
  7565. }
  7566. }
  7567. /* We adopt the LDG assignment ordering used by the N2 NIU
  7568. * 'interrupt' properties because that simplifies a lot of
  7569. * things. This ordering is:
  7570. *
  7571. * MAC
  7572. * MIF (if port zero)
  7573. * SYSERR (if port zero)
  7574. * RX channels
  7575. * TX channels
  7576. */
  7577. ldg_rotor = 0;
  7578. err = niu_ldg_assign_ldn(np, parent, ldg_num_map[ldg_rotor],
  7579. LDN_MAC(port));
  7580. if (err)
  7581. return err;
  7582. ldg_rotor++;
  7583. if (ldg_rotor == np->num_ldg)
  7584. ldg_rotor = 0;
  7585. if (port == 0) {
  7586. err = niu_ldg_assign_ldn(np, parent,
  7587. ldg_num_map[ldg_rotor],
  7588. LDN_MIF);
  7589. if (err)
  7590. return err;
  7591. ldg_rotor++;
  7592. if (ldg_rotor == np->num_ldg)
  7593. ldg_rotor = 0;
  7594. err = niu_ldg_assign_ldn(np, parent,
  7595. ldg_num_map[ldg_rotor],
  7596. LDN_DEVICE_ERROR);
  7597. if (err)
  7598. return err;
  7599. ldg_rotor++;
  7600. if (ldg_rotor == np->num_ldg)
  7601. ldg_rotor = 0;
  7602. }
  7603. first_chan = 0;
  7604. for (i = 0; i < port; i++)
  7605. first_chan += parent->rxchan_per_port[i];
  7606. num_chan = parent->rxchan_per_port[port];
  7607. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7608. err = niu_ldg_assign_ldn(np, parent,
  7609. ldg_num_map[ldg_rotor],
  7610. LDN_RXDMA(i));
  7611. if (err)
  7612. return err;
  7613. ldg_rotor++;
  7614. if (ldg_rotor == np->num_ldg)
  7615. ldg_rotor = 0;
  7616. }
  7617. first_chan = 0;
  7618. for (i = 0; i < port; i++)
  7619. first_chan += parent->txchan_per_port[i];
  7620. num_chan = parent->txchan_per_port[port];
  7621. for (i = first_chan; i < (first_chan + num_chan); i++) {
  7622. err = niu_ldg_assign_ldn(np, parent,
  7623. ldg_num_map[ldg_rotor],
  7624. LDN_TXDMA(i));
  7625. if (err)
  7626. return err;
  7627. ldg_rotor++;
  7628. if (ldg_rotor == np->num_ldg)
  7629. ldg_rotor = 0;
  7630. }
  7631. return 0;
  7632. }
  7633. static void niu_ldg_free(struct niu *np)
  7634. {
  7635. if (np->flags & NIU_FLAGS_MSIX)
  7636. pci_disable_msix(np->pdev);
  7637. }
  7638. static int niu_get_of_props(struct niu *np)
  7639. {
  7640. #ifdef CONFIG_SPARC64
  7641. struct net_device *dev = np->dev;
  7642. struct device_node *dp;
  7643. const char *phy_type;
  7644. const u8 *mac_addr;
  7645. const char *model;
  7646. int prop_len;
  7647. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7648. dp = np->op->dev.of_node;
  7649. else
  7650. dp = pci_device_to_OF_node(np->pdev);
  7651. phy_type = of_get_property(dp, "phy-type", &prop_len);
  7652. if (!phy_type) {
  7653. netdev_err(dev, "%s: OF node lacks phy-type property\n",
  7654. dp->full_name);
  7655. return -EINVAL;
  7656. }
  7657. if (!strcmp(phy_type, "none"))
  7658. return -ENODEV;
  7659. strcpy(np->vpd.phy_type, phy_type);
  7660. if (niu_phy_type_prop_decode(np, np->vpd.phy_type)) {
  7661. netdev_err(dev, "%s: Illegal phy string [%s]\n",
  7662. dp->full_name, np->vpd.phy_type);
  7663. return -EINVAL;
  7664. }
  7665. mac_addr = of_get_property(dp, "local-mac-address", &prop_len);
  7666. if (!mac_addr) {
  7667. netdev_err(dev, "%s: OF node lacks local-mac-address property\n",
  7668. dp->full_name);
  7669. return -EINVAL;
  7670. }
  7671. if (prop_len != dev->addr_len) {
  7672. netdev_err(dev, "%s: OF MAC address prop len (%d) is wrong\n",
  7673. dp->full_name, prop_len);
  7674. }
  7675. memcpy(dev->dev_addr, mac_addr, dev->addr_len);
  7676. if (!is_valid_ether_addr(&dev->dev_addr[0])) {
  7677. netdev_err(dev, "%s: OF MAC address is invalid\n",
  7678. dp->full_name);
  7679. netdev_err(dev, "%s: [ %pM ]\n", dp->full_name, dev->dev_addr);
  7680. return -EINVAL;
  7681. }
  7682. model = of_get_property(dp, "model", &prop_len);
  7683. if (model)
  7684. strcpy(np->vpd.model, model);
  7685. if (of_find_property(dp, "hot-swappable-phy", &prop_len)) {
  7686. np->flags |= (NIU_FLAGS_10G | NIU_FLAGS_FIBER |
  7687. NIU_FLAGS_HOTPLUG_PHY);
  7688. }
  7689. return 0;
  7690. #else
  7691. return -EINVAL;
  7692. #endif
  7693. }
  7694. static int niu_get_invariants(struct niu *np)
  7695. {
  7696. int err, have_props;
  7697. u32 offset;
  7698. err = niu_get_of_props(np);
  7699. if (err == -ENODEV)
  7700. return err;
  7701. have_props = !err;
  7702. err = niu_init_mac_ipp_pcs_base(np);
  7703. if (err)
  7704. return err;
  7705. if (have_props) {
  7706. err = niu_get_and_validate_port(np);
  7707. if (err)
  7708. return err;
  7709. } else {
  7710. if (np->parent->plat_type == PLAT_TYPE_NIU)
  7711. return -EINVAL;
  7712. nw64(ESPC_PIO_EN, ESPC_PIO_EN_ENABLE);
  7713. offset = niu_pci_vpd_offset(np);
  7714. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7715. "%s() VPD offset [%08x]\n", __func__, offset);
  7716. if (offset)
  7717. niu_pci_vpd_fetch(np, offset);
  7718. nw64(ESPC_PIO_EN, 0);
  7719. if (np->flags & NIU_FLAGS_VPD_VALID) {
  7720. niu_pci_vpd_validate(np);
  7721. err = niu_get_and_validate_port(np);
  7722. if (err)
  7723. return err;
  7724. }
  7725. if (!(np->flags & NIU_FLAGS_VPD_VALID)) {
  7726. err = niu_get_and_validate_port(np);
  7727. if (err)
  7728. return err;
  7729. err = niu_pci_probe_sprom(np);
  7730. if (err)
  7731. return err;
  7732. }
  7733. }
  7734. err = niu_probe_ports(np);
  7735. if (err)
  7736. return err;
  7737. niu_ldg_init(np);
  7738. niu_classifier_swstate_init(np);
  7739. niu_link_config_init(np);
  7740. err = niu_determine_phy_disposition(np);
  7741. if (!err)
  7742. err = niu_init_link(np);
  7743. return err;
  7744. }
  7745. static LIST_HEAD(niu_parent_list);
  7746. static DEFINE_MUTEX(niu_parent_lock);
  7747. static int niu_parent_index;
  7748. static ssize_t show_port_phy(struct device *dev,
  7749. struct device_attribute *attr, char *buf)
  7750. {
  7751. struct platform_device *plat_dev = to_platform_device(dev);
  7752. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7753. u32 port_phy = p->port_phy;
  7754. char *orig_buf = buf;
  7755. int i;
  7756. if (port_phy == PORT_PHY_UNKNOWN ||
  7757. port_phy == PORT_PHY_INVALID)
  7758. return 0;
  7759. for (i = 0; i < p->num_ports; i++) {
  7760. const char *type_str;
  7761. int type;
  7762. type = phy_decode(port_phy, i);
  7763. if (type == PORT_TYPE_10G)
  7764. type_str = "10G";
  7765. else
  7766. type_str = "1G";
  7767. buf += sprintf(buf,
  7768. (i == 0) ? "%s" : " %s",
  7769. type_str);
  7770. }
  7771. buf += sprintf(buf, "\n");
  7772. return buf - orig_buf;
  7773. }
  7774. static ssize_t show_plat_type(struct device *dev,
  7775. struct device_attribute *attr, char *buf)
  7776. {
  7777. struct platform_device *plat_dev = to_platform_device(dev);
  7778. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7779. const char *type_str;
  7780. switch (p->plat_type) {
  7781. case PLAT_TYPE_ATLAS:
  7782. type_str = "atlas";
  7783. break;
  7784. case PLAT_TYPE_NIU:
  7785. type_str = "niu";
  7786. break;
  7787. case PLAT_TYPE_VF_P0:
  7788. type_str = "vf_p0";
  7789. break;
  7790. case PLAT_TYPE_VF_P1:
  7791. type_str = "vf_p1";
  7792. break;
  7793. default:
  7794. type_str = "unknown";
  7795. break;
  7796. }
  7797. return sprintf(buf, "%s\n", type_str);
  7798. }
  7799. static ssize_t __show_chan_per_port(struct device *dev,
  7800. struct device_attribute *attr, char *buf,
  7801. int rx)
  7802. {
  7803. struct platform_device *plat_dev = to_platform_device(dev);
  7804. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7805. char *orig_buf = buf;
  7806. u8 *arr;
  7807. int i;
  7808. arr = (rx ? p->rxchan_per_port : p->txchan_per_port);
  7809. for (i = 0; i < p->num_ports; i++) {
  7810. buf += sprintf(buf,
  7811. (i == 0) ? "%d" : " %d",
  7812. arr[i]);
  7813. }
  7814. buf += sprintf(buf, "\n");
  7815. return buf - orig_buf;
  7816. }
  7817. static ssize_t show_rxchan_per_port(struct device *dev,
  7818. struct device_attribute *attr, char *buf)
  7819. {
  7820. return __show_chan_per_port(dev, attr, buf, 1);
  7821. }
  7822. static ssize_t show_txchan_per_port(struct device *dev,
  7823. struct device_attribute *attr, char *buf)
  7824. {
  7825. return __show_chan_per_port(dev, attr, buf, 1);
  7826. }
  7827. static ssize_t show_num_ports(struct device *dev,
  7828. struct device_attribute *attr, char *buf)
  7829. {
  7830. struct platform_device *plat_dev = to_platform_device(dev);
  7831. struct niu_parent *p = dev_get_platdata(&plat_dev->dev);
  7832. return sprintf(buf, "%d\n", p->num_ports);
  7833. }
  7834. static struct device_attribute niu_parent_attributes[] = {
  7835. __ATTR(port_phy, S_IRUGO, show_port_phy, NULL),
  7836. __ATTR(plat_type, S_IRUGO, show_plat_type, NULL),
  7837. __ATTR(rxchan_per_port, S_IRUGO, show_rxchan_per_port, NULL),
  7838. __ATTR(txchan_per_port, S_IRUGO, show_txchan_per_port, NULL),
  7839. __ATTR(num_ports, S_IRUGO, show_num_ports, NULL),
  7840. {}
  7841. };
  7842. static struct niu_parent *niu_new_parent(struct niu *np,
  7843. union niu_parent_id *id, u8 ptype)
  7844. {
  7845. struct platform_device *plat_dev;
  7846. struct niu_parent *p;
  7847. int i;
  7848. plat_dev = platform_device_register_simple("niu-board", niu_parent_index,
  7849. NULL, 0);
  7850. if (IS_ERR(plat_dev))
  7851. return NULL;
  7852. for (i = 0; niu_parent_attributes[i].attr.name; i++) {
  7853. int err = device_create_file(&plat_dev->dev,
  7854. &niu_parent_attributes[i]);
  7855. if (err)
  7856. goto fail_unregister;
  7857. }
  7858. p = kzalloc(sizeof(*p), GFP_KERNEL);
  7859. if (!p)
  7860. goto fail_unregister;
  7861. p->index = niu_parent_index++;
  7862. plat_dev->dev.platform_data = p;
  7863. p->plat_dev = plat_dev;
  7864. memcpy(&p->id, id, sizeof(*id));
  7865. p->plat_type = ptype;
  7866. INIT_LIST_HEAD(&p->list);
  7867. atomic_set(&p->refcnt, 0);
  7868. list_add(&p->list, &niu_parent_list);
  7869. spin_lock_init(&p->lock);
  7870. p->rxdma_clock_divider = 7500;
  7871. p->tcam_num_entries = NIU_PCI_TCAM_ENTRIES;
  7872. if (p->plat_type == PLAT_TYPE_NIU)
  7873. p->tcam_num_entries = NIU_NONPCI_TCAM_ENTRIES;
  7874. for (i = CLASS_CODE_USER_PROG1; i <= CLASS_CODE_SCTP_IPV6; i++) {
  7875. int index = i - CLASS_CODE_USER_PROG1;
  7876. p->tcam_key[index] = TCAM_KEY_TSEL;
  7877. p->flow_key[index] = (FLOW_KEY_IPSA |
  7878. FLOW_KEY_IPDA |
  7879. FLOW_KEY_PROTO |
  7880. (FLOW_KEY_L4_BYTE12 <<
  7881. FLOW_KEY_L4_0_SHIFT) |
  7882. (FLOW_KEY_L4_BYTE12 <<
  7883. FLOW_KEY_L4_1_SHIFT));
  7884. }
  7885. for (i = 0; i < LDN_MAX + 1; i++)
  7886. p->ldg_map[i] = LDG_INVALID;
  7887. return p;
  7888. fail_unregister:
  7889. platform_device_unregister(plat_dev);
  7890. return NULL;
  7891. }
  7892. static struct niu_parent *niu_get_parent(struct niu *np,
  7893. union niu_parent_id *id, u8 ptype)
  7894. {
  7895. struct niu_parent *p, *tmp;
  7896. int port = np->port;
  7897. mutex_lock(&niu_parent_lock);
  7898. p = NULL;
  7899. list_for_each_entry(tmp, &niu_parent_list, list) {
  7900. if (!memcmp(id, &tmp->id, sizeof(*id))) {
  7901. p = tmp;
  7902. break;
  7903. }
  7904. }
  7905. if (!p)
  7906. p = niu_new_parent(np, id, ptype);
  7907. if (p) {
  7908. char port_name[6];
  7909. int err;
  7910. sprintf(port_name, "port%d", port);
  7911. err = sysfs_create_link(&p->plat_dev->dev.kobj,
  7912. &np->device->kobj,
  7913. port_name);
  7914. if (!err) {
  7915. p->ports[port] = np;
  7916. atomic_inc(&p->refcnt);
  7917. }
  7918. }
  7919. mutex_unlock(&niu_parent_lock);
  7920. return p;
  7921. }
  7922. static void niu_put_parent(struct niu *np)
  7923. {
  7924. struct niu_parent *p = np->parent;
  7925. u8 port = np->port;
  7926. char port_name[6];
  7927. BUG_ON(!p || p->ports[port] != np);
  7928. netif_printk(np, probe, KERN_DEBUG, np->dev,
  7929. "%s() port[%u]\n", __func__, port);
  7930. sprintf(port_name, "port%d", port);
  7931. mutex_lock(&niu_parent_lock);
  7932. sysfs_remove_link(&p->plat_dev->dev.kobj, port_name);
  7933. p->ports[port] = NULL;
  7934. np->parent = NULL;
  7935. if (atomic_dec_and_test(&p->refcnt)) {
  7936. list_del(&p->list);
  7937. platform_device_unregister(p->plat_dev);
  7938. }
  7939. mutex_unlock(&niu_parent_lock);
  7940. }
  7941. static void *niu_pci_alloc_coherent(struct device *dev, size_t size,
  7942. u64 *handle, gfp_t flag)
  7943. {
  7944. dma_addr_t dh;
  7945. void *ret;
  7946. ret = dma_alloc_coherent(dev, size, &dh, flag);
  7947. if (ret)
  7948. *handle = dh;
  7949. return ret;
  7950. }
  7951. static void niu_pci_free_coherent(struct device *dev, size_t size,
  7952. void *cpu_addr, u64 handle)
  7953. {
  7954. dma_free_coherent(dev, size, cpu_addr, handle);
  7955. }
  7956. static u64 niu_pci_map_page(struct device *dev, struct page *page,
  7957. unsigned long offset, size_t size,
  7958. enum dma_data_direction direction)
  7959. {
  7960. return dma_map_page(dev, page, offset, size, direction);
  7961. }
  7962. static void niu_pci_unmap_page(struct device *dev, u64 dma_address,
  7963. size_t size, enum dma_data_direction direction)
  7964. {
  7965. dma_unmap_page(dev, dma_address, size, direction);
  7966. }
  7967. static u64 niu_pci_map_single(struct device *dev, void *cpu_addr,
  7968. size_t size,
  7969. enum dma_data_direction direction)
  7970. {
  7971. return dma_map_single(dev, cpu_addr, size, direction);
  7972. }
  7973. static void niu_pci_unmap_single(struct device *dev, u64 dma_address,
  7974. size_t size,
  7975. enum dma_data_direction direction)
  7976. {
  7977. dma_unmap_single(dev, dma_address, size, direction);
  7978. }
  7979. static const struct niu_ops niu_pci_ops = {
  7980. .alloc_coherent = niu_pci_alloc_coherent,
  7981. .free_coherent = niu_pci_free_coherent,
  7982. .map_page = niu_pci_map_page,
  7983. .unmap_page = niu_pci_unmap_page,
  7984. .map_single = niu_pci_map_single,
  7985. .unmap_single = niu_pci_unmap_single,
  7986. };
  7987. static void niu_driver_version(void)
  7988. {
  7989. static int niu_version_printed;
  7990. if (niu_version_printed++ == 0)
  7991. pr_info("%s", version);
  7992. }
  7993. static struct net_device *niu_alloc_and_init(struct device *gen_dev,
  7994. struct pci_dev *pdev,
  7995. struct platform_device *op,
  7996. const struct niu_ops *ops, u8 port)
  7997. {
  7998. struct net_device *dev;
  7999. struct niu *np;
  8000. dev = alloc_etherdev_mq(sizeof(struct niu), NIU_NUM_TXCHAN);
  8001. if (!dev)
  8002. return NULL;
  8003. SET_NETDEV_DEV(dev, gen_dev);
  8004. np = netdev_priv(dev);
  8005. np->dev = dev;
  8006. np->pdev = pdev;
  8007. np->op = op;
  8008. np->device = gen_dev;
  8009. np->ops = ops;
  8010. np->msg_enable = niu_debug;
  8011. spin_lock_init(&np->lock);
  8012. INIT_WORK(&np->reset_task, niu_reset_task);
  8013. np->port = port;
  8014. return dev;
  8015. }
  8016. static const struct net_device_ops niu_netdev_ops = {
  8017. .ndo_open = niu_open,
  8018. .ndo_stop = niu_close,
  8019. .ndo_start_xmit = niu_start_xmit,
  8020. .ndo_get_stats64 = niu_get_stats,
  8021. .ndo_set_rx_mode = niu_set_rx_mode,
  8022. .ndo_validate_addr = eth_validate_addr,
  8023. .ndo_set_mac_address = niu_set_mac_addr,
  8024. .ndo_do_ioctl = niu_ioctl,
  8025. .ndo_tx_timeout = niu_tx_timeout,
  8026. .ndo_change_mtu = niu_change_mtu,
  8027. };
  8028. static void niu_assign_netdev_ops(struct net_device *dev)
  8029. {
  8030. dev->netdev_ops = &niu_netdev_ops;
  8031. dev->ethtool_ops = &niu_ethtool_ops;
  8032. dev->watchdog_timeo = NIU_TX_TIMEOUT;
  8033. }
  8034. static void niu_device_announce(struct niu *np)
  8035. {
  8036. struct net_device *dev = np->dev;
  8037. pr_info("%s: NIU Ethernet %pM\n", dev->name, dev->dev_addr);
  8038. if (np->parent->plat_type == PLAT_TYPE_ATCA_CP3220) {
  8039. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8040. dev->name,
  8041. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8042. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8043. (np->flags & NIU_FLAGS_FIBER ? "RGMII FIBER" : "SERDES"),
  8044. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8045. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8046. np->vpd.phy_type);
  8047. } else {
  8048. pr_info("%s: Port type[%s] mode[%s:%s] XCVR[%s] phy[%s]\n",
  8049. dev->name,
  8050. (np->flags & NIU_FLAGS_XMAC ? "XMAC" : "BMAC"),
  8051. (np->flags & NIU_FLAGS_10G ? "10G" : "1G"),
  8052. (np->flags & NIU_FLAGS_FIBER ? "FIBER" :
  8053. (np->flags & NIU_FLAGS_XCVR_SERDES ? "SERDES" :
  8054. "COPPER")),
  8055. (np->mac_xcvr == MAC_XCVR_MII ? "MII" :
  8056. (np->mac_xcvr == MAC_XCVR_PCS ? "PCS" : "XPCS")),
  8057. np->vpd.phy_type);
  8058. }
  8059. }
  8060. static void niu_set_basic_features(struct net_device *dev)
  8061. {
  8062. dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_RXHASH;
  8063. dev->features |= dev->hw_features | NETIF_F_RXCSUM;
  8064. }
  8065. static int niu_pci_init_one(struct pci_dev *pdev,
  8066. const struct pci_device_id *ent)
  8067. {
  8068. union niu_parent_id parent_id;
  8069. struct net_device *dev;
  8070. struct niu *np;
  8071. int err;
  8072. u64 dma_mask;
  8073. niu_driver_version();
  8074. err = pci_enable_device(pdev);
  8075. if (err) {
  8076. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  8077. return err;
  8078. }
  8079. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM) ||
  8080. !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
  8081. dev_err(&pdev->dev, "Cannot find proper PCI device base addresses, aborting\n");
  8082. err = -ENODEV;
  8083. goto err_out_disable_pdev;
  8084. }
  8085. err = pci_request_regions(pdev, DRV_MODULE_NAME);
  8086. if (err) {
  8087. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  8088. goto err_out_disable_pdev;
  8089. }
  8090. if (!pci_is_pcie(pdev)) {
  8091. dev_err(&pdev->dev, "Cannot find PCI Express capability, aborting\n");
  8092. err = -ENODEV;
  8093. goto err_out_free_res;
  8094. }
  8095. dev = niu_alloc_and_init(&pdev->dev, pdev, NULL,
  8096. &niu_pci_ops, PCI_FUNC(pdev->devfn));
  8097. if (!dev) {
  8098. err = -ENOMEM;
  8099. goto err_out_free_res;
  8100. }
  8101. np = netdev_priv(dev);
  8102. memset(&parent_id, 0, sizeof(parent_id));
  8103. parent_id.pci.domain = pci_domain_nr(pdev->bus);
  8104. parent_id.pci.bus = pdev->bus->number;
  8105. parent_id.pci.device = PCI_SLOT(pdev->devfn);
  8106. np->parent = niu_get_parent(np, &parent_id,
  8107. PLAT_TYPE_ATLAS);
  8108. if (!np->parent) {
  8109. err = -ENOMEM;
  8110. goto err_out_free_dev;
  8111. }
  8112. pcie_capability_clear_and_set_word(pdev, PCI_EXP_DEVCTL,
  8113. PCI_EXP_DEVCTL_NOSNOOP_EN,
  8114. PCI_EXP_DEVCTL_CERE | PCI_EXP_DEVCTL_NFERE |
  8115. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE |
  8116. PCI_EXP_DEVCTL_RELAX_EN);
  8117. dma_mask = DMA_BIT_MASK(44);
  8118. err = pci_set_dma_mask(pdev, dma_mask);
  8119. if (!err) {
  8120. dev->features |= NETIF_F_HIGHDMA;
  8121. err = pci_set_consistent_dma_mask(pdev, dma_mask);
  8122. if (err) {
  8123. dev_err(&pdev->dev, "Unable to obtain 44 bit DMA for consistent allocations, aborting\n");
  8124. goto err_out_release_parent;
  8125. }
  8126. }
  8127. if (err) {
  8128. err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
  8129. if (err) {
  8130. dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
  8131. goto err_out_release_parent;
  8132. }
  8133. }
  8134. niu_set_basic_features(dev);
  8135. dev->priv_flags |= IFF_UNICAST_FLT;
  8136. np->regs = pci_ioremap_bar(pdev, 0);
  8137. if (!np->regs) {
  8138. dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
  8139. err = -ENOMEM;
  8140. goto err_out_release_parent;
  8141. }
  8142. pci_set_master(pdev);
  8143. pci_save_state(pdev);
  8144. dev->irq = pdev->irq;
  8145. niu_assign_netdev_ops(dev);
  8146. err = niu_get_invariants(np);
  8147. if (err) {
  8148. if (err != -ENODEV)
  8149. dev_err(&pdev->dev, "Problem fetching invariants of chip, aborting\n");
  8150. goto err_out_iounmap;
  8151. }
  8152. err = register_netdev(dev);
  8153. if (err) {
  8154. dev_err(&pdev->dev, "Cannot register net device, aborting\n");
  8155. goto err_out_iounmap;
  8156. }
  8157. pci_set_drvdata(pdev, dev);
  8158. niu_device_announce(np);
  8159. return 0;
  8160. err_out_iounmap:
  8161. if (np->regs) {
  8162. iounmap(np->regs);
  8163. np->regs = NULL;
  8164. }
  8165. err_out_release_parent:
  8166. niu_put_parent(np);
  8167. err_out_free_dev:
  8168. free_netdev(dev);
  8169. err_out_free_res:
  8170. pci_release_regions(pdev);
  8171. err_out_disable_pdev:
  8172. pci_disable_device(pdev);
  8173. return err;
  8174. }
  8175. static void niu_pci_remove_one(struct pci_dev *pdev)
  8176. {
  8177. struct net_device *dev = pci_get_drvdata(pdev);
  8178. if (dev) {
  8179. struct niu *np = netdev_priv(dev);
  8180. unregister_netdev(dev);
  8181. if (np->regs) {
  8182. iounmap(np->regs);
  8183. np->regs = NULL;
  8184. }
  8185. niu_ldg_free(np);
  8186. niu_put_parent(np);
  8187. free_netdev(dev);
  8188. pci_release_regions(pdev);
  8189. pci_disable_device(pdev);
  8190. }
  8191. }
  8192. static int niu_suspend(struct pci_dev *pdev, pm_message_t state)
  8193. {
  8194. struct net_device *dev = pci_get_drvdata(pdev);
  8195. struct niu *np = netdev_priv(dev);
  8196. unsigned long flags;
  8197. if (!netif_running(dev))
  8198. return 0;
  8199. flush_work(&np->reset_task);
  8200. niu_netif_stop(np);
  8201. del_timer_sync(&np->timer);
  8202. spin_lock_irqsave(&np->lock, flags);
  8203. niu_enable_interrupts(np, 0);
  8204. spin_unlock_irqrestore(&np->lock, flags);
  8205. netif_device_detach(dev);
  8206. spin_lock_irqsave(&np->lock, flags);
  8207. niu_stop_hw(np);
  8208. spin_unlock_irqrestore(&np->lock, flags);
  8209. pci_save_state(pdev);
  8210. return 0;
  8211. }
  8212. static int niu_resume(struct pci_dev *pdev)
  8213. {
  8214. struct net_device *dev = pci_get_drvdata(pdev);
  8215. struct niu *np = netdev_priv(dev);
  8216. unsigned long flags;
  8217. int err;
  8218. if (!netif_running(dev))
  8219. return 0;
  8220. pci_restore_state(pdev);
  8221. netif_device_attach(dev);
  8222. spin_lock_irqsave(&np->lock, flags);
  8223. err = niu_init_hw(np);
  8224. if (!err) {
  8225. np->timer.expires = jiffies + HZ;
  8226. add_timer(&np->timer);
  8227. niu_netif_start(np);
  8228. }
  8229. spin_unlock_irqrestore(&np->lock, flags);
  8230. return err;
  8231. }
  8232. static struct pci_driver niu_pci_driver = {
  8233. .name = DRV_MODULE_NAME,
  8234. .id_table = niu_pci_tbl,
  8235. .probe = niu_pci_init_one,
  8236. .remove = niu_pci_remove_one,
  8237. .suspend = niu_suspend,
  8238. .resume = niu_resume,
  8239. };
  8240. #ifdef CONFIG_SPARC64
  8241. static void *niu_phys_alloc_coherent(struct device *dev, size_t size,
  8242. u64 *dma_addr, gfp_t flag)
  8243. {
  8244. unsigned long order = get_order(size);
  8245. unsigned long page = __get_free_pages(flag, order);
  8246. if (page == 0UL)
  8247. return NULL;
  8248. memset((char *)page, 0, PAGE_SIZE << order);
  8249. *dma_addr = __pa(page);
  8250. return (void *) page;
  8251. }
  8252. static void niu_phys_free_coherent(struct device *dev, size_t size,
  8253. void *cpu_addr, u64 handle)
  8254. {
  8255. unsigned long order = get_order(size);
  8256. free_pages((unsigned long) cpu_addr, order);
  8257. }
  8258. static u64 niu_phys_map_page(struct device *dev, struct page *page,
  8259. unsigned long offset, size_t size,
  8260. enum dma_data_direction direction)
  8261. {
  8262. return page_to_phys(page) + offset;
  8263. }
  8264. static void niu_phys_unmap_page(struct device *dev, u64 dma_address,
  8265. size_t size, enum dma_data_direction direction)
  8266. {
  8267. /* Nothing to do. */
  8268. }
  8269. static u64 niu_phys_map_single(struct device *dev, void *cpu_addr,
  8270. size_t size,
  8271. enum dma_data_direction direction)
  8272. {
  8273. return __pa(cpu_addr);
  8274. }
  8275. static void niu_phys_unmap_single(struct device *dev, u64 dma_address,
  8276. size_t size,
  8277. enum dma_data_direction direction)
  8278. {
  8279. /* Nothing to do. */
  8280. }
  8281. static const struct niu_ops niu_phys_ops = {
  8282. .alloc_coherent = niu_phys_alloc_coherent,
  8283. .free_coherent = niu_phys_free_coherent,
  8284. .map_page = niu_phys_map_page,
  8285. .unmap_page = niu_phys_unmap_page,
  8286. .map_single = niu_phys_map_single,
  8287. .unmap_single = niu_phys_unmap_single,
  8288. };
  8289. static int niu_of_probe(struct platform_device *op)
  8290. {
  8291. union niu_parent_id parent_id;
  8292. struct net_device *dev;
  8293. struct niu *np;
  8294. const u32 *reg;
  8295. int err;
  8296. niu_driver_version();
  8297. reg = of_get_property(op->dev.of_node, "reg", NULL);
  8298. if (!reg) {
  8299. dev_err(&op->dev, "%s: No 'reg' property, aborting\n",
  8300. op->dev.of_node->full_name);
  8301. return -ENODEV;
  8302. }
  8303. dev = niu_alloc_and_init(&op->dev, NULL, op,
  8304. &niu_phys_ops, reg[0] & 0x1);
  8305. if (!dev) {
  8306. err = -ENOMEM;
  8307. goto err_out;
  8308. }
  8309. np = netdev_priv(dev);
  8310. memset(&parent_id, 0, sizeof(parent_id));
  8311. parent_id.of = of_get_parent(op->dev.of_node);
  8312. np->parent = niu_get_parent(np, &parent_id,
  8313. PLAT_TYPE_NIU);
  8314. if (!np->parent) {
  8315. err = -ENOMEM;
  8316. goto err_out_free_dev;
  8317. }
  8318. niu_set_basic_features(dev);
  8319. np->regs = of_ioremap(&op->resource[1], 0,
  8320. resource_size(&op->resource[1]),
  8321. "niu regs");
  8322. if (!np->regs) {
  8323. dev_err(&op->dev, "Cannot map device registers, aborting\n");
  8324. err = -ENOMEM;
  8325. goto err_out_release_parent;
  8326. }
  8327. np->vir_regs_1 = of_ioremap(&op->resource[2], 0,
  8328. resource_size(&op->resource[2]),
  8329. "niu vregs-1");
  8330. if (!np->vir_regs_1) {
  8331. dev_err(&op->dev, "Cannot map device vir registers 1, aborting\n");
  8332. err = -ENOMEM;
  8333. goto err_out_iounmap;
  8334. }
  8335. np->vir_regs_2 = of_ioremap(&op->resource[3], 0,
  8336. resource_size(&op->resource[3]),
  8337. "niu vregs-2");
  8338. if (!np->vir_regs_2) {
  8339. dev_err(&op->dev, "Cannot map device vir registers 2, aborting\n");
  8340. err = -ENOMEM;
  8341. goto err_out_iounmap;
  8342. }
  8343. niu_assign_netdev_ops(dev);
  8344. err = niu_get_invariants(np);
  8345. if (err) {
  8346. if (err != -ENODEV)
  8347. dev_err(&op->dev, "Problem fetching invariants of chip, aborting\n");
  8348. goto err_out_iounmap;
  8349. }
  8350. err = register_netdev(dev);
  8351. if (err) {
  8352. dev_err(&op->dev, "Cannot register net device, aborting\n");
  8353. goto err_out_iounmap;
  8354. }
  8355. platform_set_drvdata(op, dev);
  8356. niu_device_announce(np);
  8357. return 0;
  8358. err_out_iounmap:
  8359. if (np->vir_regs_1) {
  8360. of_iounmap(&op->resource[2], np->vir_regs_1,
  8361. resource_size(&op->resource[2]));
  8362. np->vir_regs_1 = NULL;
  8363. }
  8364. if (np->vir_regs_2) {
  8365. of_iounmap(&op->resource[3], np->vir_regs_2,
  8366. resource_size(&op->resource[3]));
  8367. np->vir_regs_2 = NULL;
  8368. }
  8369. if (np->regs) {
  8370. of_iounmap(&op->resource[1], np->regs,
  8371. resource_size(&op->resource[1]));
  8372. np->regs = NULL;
  8373. }
  8374. err_out_release_parent:
  8375. niu_put_parent(np);
  8376. err_out_free_dev:
  8377. free_netdev(dev);
  8378. err_out:
  8379. return err;
  8380. }
  8381. static int niu_of_remove(struct platform_device *op)
  8382. {
  8383. struct net_device *dev = platform_get_drvdata(op);
  8384. if (dev) {
  8385. struct niu *np = netdev_priv(dev);
  8386. unregister_netdev(dev);
  8387. if (np->vir_regs_1) {
  8388. of_iounmap(&op->resource[2], np->vir_regs_1,
  8389. resource_size(&op->resource[2]));
  8390. np->vir_regs_1 = NULL;
  8391. }
  8392. if (np->vir_regs_2) {
  8393. of_iounmap(&op->resource[3], np->vir_regs_2,
  8394. resource_size(&op->resource[3]));
  8395. np->vir_regs_2 = NULL;
  8396. }
  8397. if (np->regs) {
  8398. of_iounmap(&op->resource[1], np->regs,
  8399. resource_size(&op->resource[1]));
  8400. np->regs = NULL;
  8401. }
  8402. niu_ldg_free(np);
  8403. niu_put_parent(np);
  8404. free_netdev(dev);
  8405. }
  8406. return 0;
  8407. }
  8408. static const struct of_device_id niu_match[] = {
  8409. {
  8410. .name = "network",
  8411. .compatible = "SUNW,niusl",
  8412. },
  8413. {},
  8414. };
  8415. MODULE_DEVICE_TABLE(of, niu_match);
  8416. static struct platform_driver niu_of_driver = {
  8417. .driver = {
  8418. .name = "niu",
  8419. .owner = THIS_MODULE,
  8420. .of_match_table = niu_match,
  8421. },
  8422. .probe = niu_of_probe,
  8423. .remove = niu_of_remove,
  8424. };
  8425. #endif /* CONFIG_SPARC64 */
  8426. static int __init niu_init(void)
  8427. {
  8428. int err = 0;
  8429. BUILD_BUG_ON(PAGE_SIZE < 4 * 1024);
  8430. niu_debug = netif_msg_init(debug, NIU_MSG_DEFAULT);
  8431. #ifdef CONFIG_SPARC64
  8432. err = platform_driver_register(&niu_of_driver);
  8433. #endif
  8434. if (!err) {
  8435. err = pci_register_driver(&niu_pci_driver);
  8436. #ifdef CONFIG_SPARC64
  8437. if (err)
  8438. platform_driver_unregister(&niu_of_driver);
  8439. #endif
  8440. }
  8441. return err;
  8442. }
  8443. static void __exit niu_exit(void)
  8444. {
  8445. pci_unregister_driver(&niu_pci_driver);
  8446. #ifdef CONFIG_SPARC64
  8447. platform_driver_unregister(&niu_of_driver);
  8448. #endif
  8449. }
  8450. module_init(niu_init);
  8451. module_exit(niu_exit);