siena.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017
  1. /****************************************************************************
  2. * Driver for Solarflare network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2006-2013 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/bitops.h>
  11. #include <linux/delay.h>
  12. #include <linux/pci.h>
  13. #include <linux/module.h>
  14. #include <linux/slab.h>
  15. #include <linux/random.h>
  16. #include "net_driver.h"
  17. #include "bitfield.h"
  18. #include "efx.h"
  19. #include "nic.h"
  20. #include "farch_regs.h"
  21. #include "io.h"
  22. #include "phy.h"
  23. #include "workarounds.h"
  24. #include "mcdi.h"
  25. #include "mcdi_pcol.h"
  26. #include "selftest.h"
  27. /* Hardware control for SFC9000 family including SFL9021 (aka Siena). */
  28. static void siena_init_wol(struct efx_nic *efx);
  29. static void siena_push_irq_moderation(struct efx_channel *channel)
  30. {
  31. efx_dword_t timer_cmd;
  32. if (channel->irq_moderation)
  33. EFX_POPULATE_DWORD_2(timer_cmd,
  34. FRF_CZ_TC_TIMER_MODE,
  35. FFE_CZ_TIMER_MODE_INT_HLDOFF,
  36. FRF_CZ_TC_TIMER_VAL,
  37. channel->irq_moderation - 1);
  38. else
  39. EFX_POPULATE_DWORD_2(timer_cmd,
  40. FRF_CZ_TC_TIMER_MODE,
  41. FFE_CZ_TIMER_MODE_DIS,
  42. FRF_CZ_TC_TIMER_VAL, 0);
  43. efx_writed_page_locked(channel->efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
  44. channel->channel);
  45. }
  46. void siena_prepare_flush(struct efx_nic *efx)
  47. {
  48. if (efx->fc_disable++ == 0)
  49. efx_mcdi_set_mac(efx);
  50. }
  51. void siena_finish_flush(struct efx_nic *efx)
  52. {
  53. if (--efx->fc_disable == 0)
  54. efx_mcdi_set_mac(efx);
  55. }
  56. static const struct efx_farch_register_test siena_register_tests[] = {
  57. { FR_AZ_ADR_REGION,
  58. EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
  59. { FR_CZ_USR_EV_CFG,
  60. EFX_OWORD32(0x000103FF, 0x00000000, 0x00000000, 0x00000000) },
  61. { FR_AZ_RX_CFG,
  62. EFX_OWORD32(0xFFFFFFFE, 0xFFFFFFFF, 0x0003FFFF, 0x00000000) },
  63. { FR_AZ_TX_CFG,
  64. EFX_OWORD32(0x7FFF0037, 0xFFFF8000, 0xFFFFFFFF, 0x03FFFFFF) },
  65. { FR_AZ_TX_RESERVED,
  66. EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
  67. { FR_AZ_SRM_TX_DC_CFG,
  68. EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
  69. { FR_AZ_RX_DC_CFG,
  70. EFX_OWORD32(0x00000003, 0x00000000, 0x00000000, 0x00000000) },
  71. { FR_AZ_RX_DC_PF_WM,
  72. EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
  73. { FR_BZ_DP_CTRL,
  74. EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
  75. { FR_BZ_RX_RSS_TKEY,
  76. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  77. { FR_CZ_RX_RSS_IPV6_REG1,
  78. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  79. { FR_CZ_RX_RSS_IPV6_REG2,
  80. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF) },
  81. { FR_CZ_RX_RSS_IPV6_REG3,
  82. EFX_OWORD32(0xFFFFFFFF, 0xFFFFFFFF, 0x00000007, 0x00000000) },
  83. };
  84. static int siena_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
  85. {
  86. enum reset_type reset_method = RESET_TYPE_ALL;
  87. int rc, rc2;
  88. efx_reset_down(efx, reset_method);
  89. /* Reset the chip immediately so that it is completely
  90. * quiescent regardless of what any VF driver does.
  91. */
  92. rc = efx_mcdi_reset(efx, reset_method);
  93. if (rc)
  94. goto out;
  95. tests->registers =
  96. efx_farch_test_registers(efx, siena_register_tests,
  97. ARRAY_SIZE(siena_register_tests))
  98. ? -1 : 1;
  99. rc = efx_mcdi_reset(efx, reset_method);
  100. out:
  101. rc2 = efx_reset_up(efx, reset_method, rc == 0);
  102. return rc ? rc : rc2;
  103. }
  104. /**************************************************************************
  105. *
  106. * PTP
  107. *
  108. **************************************************************************
  109. */
  110. static void siena_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
  111. {
  112. _efx_writed(efx, cpu_to_le32(host_time),
  113. FR_CZ_MC_TREG_SMEM + MC_SMEM_P0_PTP_TIME_OFST);
  114. }
  115. static int siena_ptp_set_ts_config(struct efx_nic *efx,
  116. struct hwtstamp_config *init)
  117. {
  118. int rc;
  119. switch (init->rx_filter) {
  120. case HWTSTAMP_FILTER_NONE:
  121. /* if TX timestamping is still requested then leave PTP on */
  122. return efx_ptp_change_mode(efx,
  123. init->tx_type != HWTSTAMP_TX_OFF,
  124. efx_ptp_get_mode(efx));
  125. case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
  126. case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
  127. case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
  128. init->rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
  129. return efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V1);
  130. case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
  131. case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
  132. case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
  133. init->rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
  134. rc = efx_ptp_change_mode(efx, true,
  135. MC_CMD_PTP_MODE_V2_ENHANCED);
  136. /* bug 33070 - old versions of the firmware do not support the
  137. * improved UUID filtering option. Similarly old versions of the
  138. * application do not expect it to be enabled. If the firmware
  139. * does not accept the enhanced mode, fall back to the standard
  140. * PTP v2 UUID filtering. */
  141. if (rc != 0)
  142. rc = efx_ptp_change_mode(efx, true, MC_CMD_PTP_MODE_V2);
  143. return rc;
  144. default:
  145. return -ERANGE;
  146. }
  147. }
  148. /**************************************************************************
  149. *
  150. * Device reset
  151. *
  152. **************************************************************************
  153. */
  154. static int siena_map_reset_flags(u32 *flags)
  155. {
  156. enum {
  157. SIENA_RESET_PORT = (ETH_RESET_DMA | ETH_RESET_FILTER |
  158. ETH_RESET_OFFLOAD | ETH_RESET_MAC |
  159. ETH_RESET_PHY),
  160. SIENA_RESET_MC = (SIENA_RESET_PORT |
  161. ETH_RESET_MGMT << ETH_RESET_SHARED_SHIFT),
  162. };
  163. if ((*flags & SIENA_RESET_MC) == SIENA_RESET_MC) {
  164. *flags &= ~SIENA_RESET_MC;
  165. return RESET_TYPE_WORLD;
  166. }
  167. if ((*flags & SIENA_RESET_PORT) == SIENA_RESET_PORT) {
  168. *flags &= ~SIENA_RESET_PORT;
  169. return RESET_TYPE_ALL;
  170. }
  171. /* no invisible reset implemented */
  172. return -EINVAL;
  173. }
  174. #ifdef CONFIG_EEH
  175. /* When a PCI device is isolated from the bus, a subsequent MMIO read is
  176. * required for the kernel EEH mechanisms to notice. As the Solarflare driver
  177. * was written to minimise MMIO read (for latency) then a periodic call to check
  178. * the EEH status of the device is required so that device recovery can happen
  179. * in a timely fashion.
  180. */
  181. static void siena_monitor(struct efx_nic *efx)
  182. {
  183. struct eeh_dev *eehdev =
  184. of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
  185. eeh_dev_check_failure(eehdev);
  186. }
  187. #endif
  188. static int siena_probe_nvconfig(struct efx_nic *efx)
  189. {
  190. u32 caps = 0;
  191. int rc;
  192. rc = efx_mcdi_get_board_cfg(efx, efx->net_dev->perm_addr, NULL, &caps);
  193. efx->timer_quantum_ns =
  194. (caps & (1 << MC_CMD_CAPABILITIES_TURBO_ACTIVE_LBN)) ?
  195. 3072 : 6144; /* 768 cycles */
  196. return rc;
  197. }
  198. static int siena_dimension_resources(struct efx_nic *efx)
  199. {
  200. /* Each port has a small block of internal SRAM dedicated to
  201. * the buffer table and descriptor caches. In theory we can
  202. * map both blocks to one port, but we don't.
  203. */
  204. efx_farch_dimension_resources(efx, FR_CZ_BUF_FULL_TBL_ROWS / 2);
  205. return 0;
  206. }
  207. static unsigned int siena_mem_map_size(struct efx_nic *efx)
  208. {
  209. return FR_CZ_MC_TREG_SMEM +
  210. FR_CZ_MC_TREG_SMEM_STEP * FR_CZ_MC_TREG_SMEM_ROWS;
  211. }
  212. static int siena_probe_nic(struct efx_nic *efx)
  213. {
  214. struct siena_nic_data *nic_data;
  215. efx_oword_t reg;
  216. int rc;
  217. /* Allocate storage for hardware specific data */
  218. nic_data = kzalloc(sizeof(struct siena_nic_data), GFP_KERNEL);
  219. if (!nic_data)
  220. return -ENOMEM;
  221. efx->nic_data = nic_data;
  222. if (efx_farch_fpga_ver(efx) != 0) {
  223. netif_err(efx, probe, efx->net_dev,
  224. "Siena FPGA not supported\n");
  225. rc = -ENODEV;
  226. goto fail1;
  227. }
  228. efx->max_channels = EFX_MAX_CHANNELS;
  229. efx_reado(efx, &reg, FR_AZ_CS_DEBUG);
  230. efx->port_num = EFX_OWORD_FIELD(reg, FRF_CZ_CS_PORT_NUM) - 1;
  231. rc = efx_mcdi_init(efx);
  232. if (rc)
  233. goto fail1;
  234. /* Now we can reset the NIC */
  235. rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
  236. if (rc) {
  237. netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
  238. goto fail3;
  239. }
  240. siena_init_wol(efx);
  241. /* Allocate memory for INT_KER */
  242. rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
  243. GFP_KERNEL);
  244. if (rc)
  245. goto fail4;
  246. BUG_ON(efx->irq_status.dma_addr & 0x0f);
  247. netif_dbg(efx, probe, efx->net_dev,
  248. "INT_KER at %llx (virt %p phys %llx)\n",
  249. (unsigned long long)efx->irq_status.dma_addr,
  250. efx->irq_status.addr,
  251. (unsigned long long)virt_to_phys(efx->irq_status.addr));
  252. /* Read in the non-volatile configuration */
  253. rc = siena_probe_nvconfig(efx);
  254. if (rc == -EINVAL) {
  255. netif_err(efx, probe, efx->net_dev,
  256. "NVRAM is invalid therefore using defaults\n");
  257. efx->phy_type = PHY_TYPE_NONE;
  258. efx->mdio.prtad = MDIO_PRTAD_NONE;
  259. } else if (rc) {
  260. goto fail5;
  261. }
  262. rc = efx_mcdi_mon_probe(efx);
  263. if (rc)
  264. goto fail5;
  265. efx_sriov_probe(efx);
  266. efx_ptp_defer_probe_with_channel(efx);
  267. return 0;
  268. fail5:
  269. efx_nic_free_buffer(efx, &efx->irq_status);
  270. fail4:
  271. fail3:
  272. efx_mcdi_fini(efx);
  273. fail1:
  274. kfree(efx->nic_data);
  275. return rc;
  276. }
  277. static void siena_rx_push_rss_config(struct efx_nic *efx)
  278. {
  279. efx_oword_t temp;
  280. /* Set hash key for IPv4 */
  281. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  282. efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
  283. /* Enable IPv6 RSS */
  284. BUILD_BUG_ON(sizeof(efx->rx_hash_key) <
  285. 2 * sizeof(temp) + FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8 ||
  286. FRF_CZ_RX_RSS_IPV6_TKEY_HI_LBN != 0);
  287. memcpy(&temp, efx->rx_hash_key, sizeof(temp));
  288. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG1);
  289. memcpy(&temp, efx->rx_hash_key + sizeof(temp), sizeof(temp));
  290. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG2);
  291. EFX_POPULATE_OWORD_2(temp, FRF_CZ_RX_RSS_IPV6_THASH_ENABLE, 1,
  292. FRF_CZ_RX_RSS_IPV6_IP_THASH_ENABLE, 1);
  293. memcpy(&temp, efx->rx_hash_key + 2 * sizeof(temp),
  294. FRF_CZ_RX_RSS_IPV6_TKEY_HI_WIDTH / 8);
  295. efx_writeo(efx, &temp, FR_CZ_RX_RSS_IPV6_REG3);
  296. efx_farch_rx_push_indir_table(efx);
  297. }
  298. /* This call performs hardware-specific global initialisation, such as
  299. * defining the descriptor cache sizes and number of RSS channels.
  300. * It does not set up any buffers, descriptor rings or event queues.
  301. */
  302. static int siena_init_nic(struct efx_nic *efx)
  303. {
  304. efx_oword_t temp;
  305. int rc;
  306. /* Recover from a failed assertion post-reset */
  307. rc = efx_mcdi_handle_assertion(efx);
  308. if (rc)
  309. return rc;
  310. /* Squash TX of packets of 16 bytes or less */
  311. efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
  312. EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
  313. efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
  314. /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
  315. * descriptors (which is bad).
  316. */
  317. efx_reado(efx, &temp, FR_AZ_TX_CFG);
  318. EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
  319. EFX_SET_OWORD_FIELD(temp, FRF_CZ_TX_FILTER_EN_BIT, 1);
  320. efx_writeo(efx, &temp, FR_AZ_TX_CFG);
  321. efx_reado(efx, &temp, FR_AZ_RX_CFG);
  322. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_DESC_PUSH_EN, 0);
  323. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_INGR_EN, 1);
  324. /* Enable hash insertion. This is broken for the 'Falcon' hash
  325. * if IPv6 hashing is also enabled, so also select Toeplitz
  326. * TCP/IPv4 and IPv4 hashes. */
  327. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_INSRT_HDR, 1);
  328. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_HASH_ALG, 1);
  329. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_IP_HASH, 1);
  330. EFX_SET_OWORD_FIELD(temp, FRF_BZ_RX_USR_BUF_SIZE,
  331. EFX_RX_USR_BUF_SIZE >> 5);
  332. efx_writeo(efx, &temp, FR_AZ_RX_CFG);
  333. siena_rx_push_rss_config(efx);
  334. /* Enable event logging */
  335. rc = efx_mcdi_log_ctrl(efx, true, false, 0);
  336. if (rc)
  337. return rc;
  338. /* Set destination of both TX and RX Flush events */
  339. EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
  340. efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
  341. EFX_POPULATE_OWORD_1(temp, FRF_CZ_USREV_DIS, 1);
  342. efx_writeo(efx, &temp, FR_CZ_USR_EV_CFG);
  343. efx_farch_init_common(efx);
  344. return 0;
  345. }
  346. static void siena_remove_nic(struct efx_nic *efx)
  347. {
  348. efx_mcdi_mon_remove(efx);
  349. efx_nic_free_buffer(efx, &efx->irq_status);
  350. efx_mcdi_reset(efx, RESET_TYPE_ALL);
  351. efx_mcdi_fini(efx);
  352. /* Tear down the private nic state */
  353. kfree(efx->nic_data);
  354. efx->nic_data = NULL;
  355. }
  356. #define SIENA_DMA_STAT(ext_name, mcdi_name) \
  357. [SIENA_STAT_ ## ext_name] = \
  358. { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
  359. #define SIENA_OTHER_STAT(ext_name) \
  360. [SIENA_STAT_ ## ext_name] = { #ext_name, 0, 0 }
  361. static const struct efx_hw_stat_desc siena_stat_desc[SIENA_STAT_COUNT] = {
  362. SIENA_DMA_STAT(tx_bytes, TX_BYTES),
  363. SIENA_OTHER_STAT(tx_good_bytes),
  364. SIENA_DMA_STAT(tx_bad_bytes, TX_BAD_BYTES),
  365. SIENA_DMA_STAT(tx_packets, TX_PKTS),
  366. SIENA_DMA_STAT(tx_bad, TX_BAD_FCS_PKTS),
  367. SIENA_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
  368. SIENA_DMA_STAT(tx_control, TX_CONTROL_PKTS),
  369. SIENA_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
  370. SIENA_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
  371. SIENA_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
  372. SIENA_DMA_STAT(tx_lt64, TX_LT64_PKTS),
  373. SIENA_DMA_STAT(tx_64, TX_64_PKTS),
  374. SIENA_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
  375. SIENA_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
  376. SIENA_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
  377. SIENA_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
  378. SIENA_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
  379. SIENA_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
  380. SIENA_DMA_STAT(tx_gtjumbo, TX_GTJUMBO_PKTS),
  381. SIENA_OTHER_STAT(tx_collision),
  382. SIENA_DMA_STAT(tx_single_collision, TX_SINGLE_COLLISION_PKTS),
  383. SIENA_DMA_STAT(tx_multiple_collision, TX_MULTIPLE_COLLISION_PKTS),
  384. SIENA_DMA_STAT(tx_excessive_collision, TX_EXCESSIVE_COLLISION_PKTS),
  385. SIENA_DMA_STAT(tx_deferred, TX_DEFERRED_PKTS),
  386. SIENA_DMA_STAT(tx_late_collision, TX_LATE_COLLISION_PKTS),
  387. SIENA_DMA_STAT(tx_excessive_deferred, TX_EXCESSIVE_DEFERRED_PKTS),
  388. SIENA_DMA_STAT(tx_non_tcpudp, TX_NON_TCPUDP_PKTS),
  389. SIENA_DMA_STAT(tx_mac_src_error, TX_MAC_SRC_ERR_PKTS),
  390. SIENA_DMA_STAT(tx_ip_src_error, TX_IP_SRC_ERR_PKTS),
  391. SIENA_DMA_STAT(rx_bytes, RX_BYTES),
  392. SIENA_OTHER_STAT(rx_good_bytes),
  393. SIENA_DMA_STAT(rx_bad_bytes, RX_BAD_BYTES),
  394. SIENA_DMA_STAT(rx_packets, RX_PKTS),
  395. SIENA_DMA_STAT(rx_good, RX_GOOD_PKTS),
  396. SIENA_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
  397. SIENA_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
  398. SIENA_DMA_STAT(rx_control, RX_CONTROL_PKTS),
  399. SIENA_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
  400. SIENA_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
  401. SIENA_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
  402. SIENA_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
  403. SIENA_DMA_STAT(rx_64, RX_64_PKTS),
  404. SIENA_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
  405. SIENA_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
  406. SIENA_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
  407. SIENA_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
  408. SIENA_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
  409. SIENA_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
  410. SIENA_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
  411. SIENA_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
  412. SIENA_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
  413. SIENA_DMA_STAT(rx_false_carrier, RX_FALSE_CARRIER_PKTS),
  414. SIENA_DMA_STAT(rx_symbol_error, RX_SYMBOL_ERROR_PKTS),
  415. SIENA_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
  416. SIENA_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
  417. SIENA_DMA_STAT(rx_internal_error, RX_INTERNAL_ERROR_PKTS),
  418. SIENA_DMA_STAT(rx_nodesc_drop_cnt, RX_NODESC_DROPS),
  419. };
  420. static const unsigned long siena_stat_mask[] = {
  421. [0 ... BITS_TO_LONGS(SIENA_STAT_COUNT) - 1] = ~0UL,
  422. };
  423. static size_t siena_describe_nic_stats(struct efx_nic *efx, u8 *names)
  424. {
  425. return efx_nic_describe_stats(siena_stat_desc, SIENA_STAT_COUNT,
  426. siena_stat_mask, names);
  427. }
  428. static int siena_try_update_nic_stats(struct efx_nic *efx)
  429. {
  430. struct siena_nic_data *nic_data = efx->nic_data;
  431. u64 *stats = nic_data->stats;
  432. __le64 *dma_stats;
  433. __le64 generation_start, generation_end;
  434. dma_stats = efx->stats_buffer.addr;
  435. generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
  436. if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
  437. return 0;
  438. rmb();
  439. efx_nic_update_stats(siena_stat_desc, SIENA_STAT_COUNT, siena_stat_mask,
  440. stats, efx->stats_buffer.addr, false);
  441. rmb();
  442. generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
  443. if (generation_end != generation_start)
  444. return -EAGAIN;
  445. /* Update derived statistics */
  446. efx_nic_fix_nodesc_drop_stat(efx,
  447. &stats[SIENA_STAT_rx_nodesc_drop_cnt]);
  448. efx_update_diff_stat(&stats[SIENA_STAT_tx_good_bytes],
  449. stats[SIENA_STAT_tx_bytes] -
  450. stats[SIENA_STAT_tx_bad_bytes]);
  451. stats[SIENA_STAT_tx_collision] =
  452. stats[SIENA_STAT_tx_single_collision] +
  453. stats[SIENA_STAT_tx_multiple_collision] +
  454. stats[SIENA_STAT_tx_excessive_collision] +
  455. stats[SIENA_STAT_tx_late_collision];
  456. efx_update_diff_stat(&stats[SIENA_STAT_rx_good_bytes],
  457. stats[SIENA_STAT_rx_bytes] -
  458. stats[SIENA_STAT_rx_bad_bytes]);
  459. return 0;
  460. }
  461. static size_t siena_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
  462. struct rtnl_link_stats64 *core_stats)
  463. {
  464. struct siena_nic_data *nic_data = efx->nic_data;
  465. u64 *stats = nic_data->stats;
  466. int retry;
  467. /* If we're unlucky enough to read statistics wduring the DMA, wait
  468. * up to 10ms for it to finish (typically takes <500us) */
  469. for (retry = 0; retry < 100; ++retry) {
  470. if (siena_try_update_nic_stats(efx) == 0)
  471. break;
  472. udelay(100);
  473. }
  474. if (full_stats)
  475. memcpy(full_stats, stats, sizeof(u64) * SIENA_STAT_COUNT);
  476. if (core_stats) {
  477. core_stats->rx_packets = stats[SIENA_STAT_rx_packets];
  478. core_stats->tx_packets = stats[SIENA_STAT_tx_packets];
  479. core_stats->rx_bytes = stats[SIENA_STAT_rx_bytes];
  480. core_stats->tx_bytes = stats[SIENA_STAT_tx_bytes];
  481. core_stats->rx_dropped = stats[SIENA_STAT_rx_nodesc_drop_cnt];
  482. core_stats->multicast = stats[SIENA_STAT_rx_multicast];
  483. core_stats->collisions = stats[SIENA_STAT_tx_collision];
  484. core_stats->rx_length_errors =
  485. stats[SIENA_STAT_rx_gtjumbo] +
  486. stats[SIENA_STAT_rx_length_error];
  487. core_stats->rx_crc_errors = stats[SIENA_STAT_rx_bad];
  488. core_stats->rx_frame_errors = stats[SIENA_STAT_rx_align_error];
  489. core_stats->rx_fifo_errors = stats[SIENA_STAT_rx_overflow];
  490. core_stats->tx_window_errors =
  491. stats[SIENA_STAT_tx_late_collision];
  492. core_stats->rx_errors = (core_stats->rx_length_errors +
  493. core_stats->rx_crc_errors +
  494. core_stats->rx_frame_errors +
  495. stats[SIENA_STAT_rx_symbol_error]);
  496. core_stats->tx_errors = (core_stats->tx_window_errors +
  497. stats[SIENA_STAT_tx_bad]);
  498. }
  499. return SIENA_STAT_COUNT;
  500. }
  501. static int siena_mac_reconfigure(struct efx_nic *efx)
  502. {
  503. MCDI_DECLARE_BUF(inbuf, MC_CMD_SET_MCAST_HASH_IN_LEN);
  504. int rc;
  505. BUILD_BUG_ON(MC_CMD_SET_MCAST_HASH_IN_LEN !=
  506. MC_CMD_SET_MCAST_HASH_IN_HASH0_OFST +
  507. sizeof(efx->multicast_hash));
  508. efx_farch_filter_sync_rx_mode(efx);
  509. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  510. rc = efx_mcdi_set_mac(efx);
  511. if (rc != 0)
  512. return rc;
  513. memcpy(MCDI_PTR(inbuf, SET_MCAST_HASH_IN_HASH0),
  514. efx->multicast_hash.byte, sizeof(efx->multicast_hash));
  515. return efx_mcdi_rpc(efx, MC_CMD_SET_MCAST_HASH,
  516. inbuf, sizeof(inbuf), NULL, 0, NULL);
  517. }
  518. /**************************************************************************
  519. *
  520. * Wake on LAN
  521. *
  522. **************************************************************************
  523. */
  524. static void siena_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
  525. {
  526. struct siena_nic_data *nic_data = efx->nic_data;
  527. wol->supported = WAKE_MAGIC;
  528. if (nic_data->wol_filter_id != -1)
  529. wol->wolopts = WAKE_MAGIC;
  530. else
  531. wol->wolopts = 0;
  532. memset(&wol->sopass, 0, sizeof(wol->sopass));
  533. }
  534. static int siena_set_wol(struct efx_nic *efx, u32 type)
  535. {
  536. struct siena_nic_data *nic_data = efx->nic_data;
  537. int rc;
  538. if (type & ~WAKE_MAGIC)
  539. return -EINVAL;
  540. if (type & WAKE_MAGIC) {
  541. if (nic_data->wol_filter_id != -1)
  542. efx_mcdi_wol_filter_remove(efx,
  543. nic_data->wol_filter_id);
  544. rc = efx_mcdi_wol_filter_set_magic(efx, efx->net_dev->dev_addr,
  545. &nic_data->wol_filter_id);
  546. if (rc)
  547. goto fail;
  548. pci_wake_from_d3(efx->pci_dev, true);
  549. } else {
  550. rc = efx_mcdi_wol_filter_reset(efx);
  551. nic_data->wol_filter_id = -1;
  552. pci_wake_from_d3(efx->pci_dev, false);
  553. if (rc)
  554. goto fail;
  555. }
  556. return 0;
  557. fail:
  558. netif_err(efx, hw, efx->net_dev, "%s failed: type=%d rc=%d\n",
  559. __func__, type, rc);
  560. return rc;
  561. }
  562. static void siena_init_wol(struct efx_nic *efx)
  563. {
  564. struct siena_nic_data *nic_data = efx->nic_data;
  565. int rc;
  566. rc = efx_mcdi_wol_filter_get_magic(efx, &nic_data->wol_filter_id);
  567. if (rc != 0) {
  568. /* If it failed, attempt to get into a synchronised
  569. * state with MC by resetting any set WoL filters */
  570. efx_mcdi_wol_filter_reset(efx);
  571. nic_data->wol_filter_id = -1;
  572. } else if (nic_data->wol_filter_id != -1) {
  573. pci_wake_from_d3(efx->pci_dev, true);
  574. }
  575. }
  576. /**************************************************************************
  577. *
  578. * MCDI
  579. *
  580. **************************************************************************
  581. */
  582. #define MCDI_PDU(efx) \
  583. (efx_port_num(efx) ? MC_SMEM_P1_PDU_OFST : MC_SMEM_P0_PDU_OFST)
  584. #define MCDI_DOORBELL(efx) \
  585. (efx_port_num(efx) ? MC_SMEM_P1_DOORBELL_OFST : MC_SMEM_P0_DOORBELL_OFST)
  586. #define MCDI_STATUS(efx) \
  587. (efx_port_num(efx) ? MC_SMEM_P1_STATUS_OFST : MC_SMEM_P0_STATUS_OFST)
  588. static void siena_mcdi_request(struct efx_nic *efx,
  589. const efx_dword_t *hdr, size_t hdr_len,
  590. const efx_dword_t *sdu, size_t sdu_len)
  591. {
  592. unsigned pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  593. unsigned doorbell = FR_CZ_MC_TREG_SMEM + MCDI_DOORBELL(efx);
  594. unsigned int i;
  595. unsigned int inlen_dw = DIV_ROUND_UP(sdu_len, 4);
  596. EFX_BUG_ON_PARANOID(hdr_len != 4);
  597. efx_writed(efx, hdr, pdu);
  598. for (i = 0; i < inlen_dw; i++)
  599. efx_writed(efx, &sdu[i], pdu + hdr_len + 4 * i);
  600. /* Ensure the request is written out before the doorbell */
  601. wmb();
  602. /* ring the doorbell with a distinctive value */
  603. _efx_writed(efx, (__force __le32) 0x45789abc, doorbell);
  604. }
  605. static bool siena_mcdi_poll_response(struct efx_nic *efx)
  606. {
  607. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  608. efx_dword_t hdr;
  609. efx_readd(efx, &hdr, pdu);
  610. /* All 1's indicates that shared memory is in reset (and is
  611. * not a valid hdr). Wait for it to come out reset before
  612. * completing the command
  613. */
  614. return EFX_DWORD_FIELD(hdr, EFX_DWORD_0) != 0xffffffff &&
  615. EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
  616. }
  617. static void siena_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
  618. size_t offset, size_t outlen)
  619. {
  620. unsigned int pdu = FR_CZ_MC_TREG_SMEM + MCDI_PDU(efx);
  621. unsigned int outlen_dw = DIV_ROUND_UP(outlen, 4);
  622. int i;
  623. for (i = 0; i < outlen_dw; i++)
  624. efx_readd(efx, &outbuf[i], pdu + offset + 4 * i);
  625. }
  626. static int siena_mcdi_poll_reboot(struct efx_nic *efx)
  627. {
  628. struct siena_nic_data *nic_data = efx->nic_data;
  629. unsigned int addr = FR_CZ_MC_TREG_SMEM + MCDI_STATUS(efx);
  630. efx_dword_t reg;
  631. u32 value;
  632. efx_readd(efx, &reg, addr);
  633. value = EFX_DWORD_FIELD(reg, EFX_DWORD_0);
  634. if (value == 0)
  635. return 0;
  636. EFX_ZERO_DWORD(reg);
  637. efx_writed(efx, &reg, addr);
  638. /* MAC statistics have been cleared on the NIC; clear the local
  639. * copies that we update with efx_update_diff_stat().
  640. */
  641. nic_data->stats[SIENA_STAT_tx_good_bytes] = 0;
  642. nic_data->stats[SIENA_STAT_rx_good_bytes] = 0;
  643. if (value == MC_STATUS_DWORD_ASSERT)
  644. return -EINTR;
  645. else
  646. return -EIO;
  647. }
  648. /**************************************************************************
  649. *
  650. * MTD
  651. *
  652. **************************************************************************
  653. */
  654. #ifdef CONFIG_SFC_MTD
  655. struct siena_nvram_type_info {
  656. int port;
  657. const char *name;
  658. };
  659. static const struct siena_nvram_type_info siena_nvram_types[] = {
  660. [MC_CMD_NVRAM_TYPE_DISABLED_CALLISTO] = { 0, "sfc_dummy_phy" },
  661. [MC_CMD_NVRAM_TYPE_MC_FW] = { 0, "sfc_mcfw" },
  662. [MC_CMD_NVRAM_TYPE_MC_FW_BACKUP] = { 0, "sfc_mcfw_backup" },
  663. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT0] = { 0, "sfc_static_cfg" },
  664. [MC_CMD_NVRAM_TYPE_STATIC_CFG_PORT1] = { 1, "sfc_static_cfg" },
  665. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT0] = { 0, "sfc_dynamic_cfg" },
  666. [MC_CMD_NVRAM_TYPE_DYNAMIC_CFG_PORT1] = { 1, "sfc_dynamic_cfg" },
  667. [MC_CMD_NVRAM_TYPE_EXP_ROM] = { 0, "sfc_exp_rom" },
  668. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT0] = { 0, "sfc_exp_rom_cfg" },
  669. [MC_CMD_NVRAM_TYPE_EXP_ROM_CFG_PORT1] = { 1, "sfc_exp_rom_cfg" },
  670. [MC_CMD_NVRAM_TYPE_PHY_PORT0] = { 0, "sfc_phy_fw" },
  671. [MC_CMD_NVRAM_TYPE_PHY_PORT1] = { 1, "sfc_phy_fw" },
  672. [MC_CMD_NVRAM_TYPE_FPGA] = { 0, "sfc_fpga" },
  673. };
  674. static int siena_mtd_probe_partition(struct efx_nic *efx,
  675. struct efx_mcdi_mtd_partition *part,
  676. unsigned int type)
  677. {
  678. const struct siena_nvram_type_info *info;
  679. size_t size, erase_size;
  680. bool protected;
  681. int rc;
  682. if (type >= ARRAY_SIZE(siena_nvram_types) ||
  683. siena_nvram_types[type].name == NULL)
  684. return -ENODEV;
  685. info = &siena_nvram_types[type];
  686. if (info->port != efx_port_num(efx))
  687. return -ENODEV;
  688. rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
  689. if (rc)
  690. return rc;
  691. if (protected)
  692. return -ENODEV; /* hide it */
  693. part->nvram_type = type;
  694. part->common.dev_type_name = "Siena NVRAM manager";
  695. part->common.type_name = info->name;
  696. part->common.mtd.type = MTD_NORFLASH;
  697. part->common.mtd.flags = MTD_CAP_NORFLASH;
  698. part->common.mtd.size = size;
  699. part->common.mtd.erasesize = erase_size;
  700. return 0;
  701. }
  702. static int siena_mtd_get_fw_subtypes(struct efx_nic *efx,
  703. struct efx_mcdi_mtd_partition *parts,
  704. size_t n_parts)
  705. {
  706. uint16_t fw_subtype_list[
  707. MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM];
  708. size_t i;
  709. int rc;
  710. rc = efx_mcdi_get_board_cfg(efx, NULL, fw_subtype_list, NULL);
  711. if (rc)
  712. return rc;
  713. for (i = 0; i < n_parts; i++)
  714. parts[i].fw_subtype = fw_subtype_list[parts[i].nvram_type];
  715. return 0;
  716. }
  717. static int siena_mtd_probe(struct efx_nic *efx)
  718. {
  719. struct efx_mcdi_mtd_partition *parts;
  720. u32 nvram_types;
  721. unsigned int type;
  722. size_t n_parts;
  723. int rc;
  724. ASSERT_RTNL();
  725. rc = efx_mcdi_nvram_types(efx, &nvram_types);
  726. if (rc)
  727. return rc;
  728. parts = kcalloc(hweight32(nvram_types), sizeof(*parts), GFP_KERNEL);
  729. if (!parts)
  730. return -ENOMEM;
  731. type = 0;
  732. n_parts = 0;
  733. while (nvram_types != 0) {
  734. if (nvram_types & 1) {
  735. rc = siena_mtd_probe_partition(efx, &parts[n_parts],
  736. type);
  737. if (rc == 0)
  738. n_parts++;
  739. else if (rc != -ENODEV)
  740. goto fail;
  741. }
  742. type++;
  743. nvram_types >>= 1;
  744. }
  745. rc = siena_mtd_get_fw_subtypes(efx, parts, n_parts);
  746. if (rc)
  747. goto fail;
  748. rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
  749. fail:
  750. if (rc)
  751. kfree(parts);
  752. return rc;
  753. }
  754. #endif /* CONFIG_SFC_MTD */
  755. /**************************************************************************
  756. *
  757. * Revision-dependent attributes used by efx.c and nic.c
  758. *
  759. **************************************************************************
  760. */
  761. const struct efx_nic_type siena_a0_nic_type = {
  762. .mem_map_size = siena_mem_map_size,
  763. .probe = siena_probe_nic,
  764. .remove = siena_remove_nic,
  765. .init = siena_init_nic,
  766. .dimension_resources = siena_dimension_resources,
  767. .fini = efx_port_dummy_op_void,
  768. #ifdef CONFIG_EEH
  769. .monitor = siena_monitor,
  770. #else
  771. .monitor = NULL,
  772. #endif
  773. .map_reset_reason = efx_mcdi_map_reset_reason,
  774. .map_reset_flags = siena_map_reset_flags,
  775. .reset = efx_mcdi_reset,
  776. .probe_port = efx_mcdi_port_probe,
  777. .remove_port = efx_mcdi_port_remove,
  778. .fini_dmaq = efx_farch_fini_dmaq,
  779. .prepare_flush = siena_prepare_flush,
  780. .finish_flush = siena_finish_flush,
  781. .prepare_flr = efx_port_dummy_op_void,
  782. .finish_flr = efx_farch_finish_flr,
  783. .describe_stats = siena_describe_nic_stats,
  784. .update_stats = siena_update_nic_stats,
  785. .start_stats = efx_mcdi_mac_start_stats,
  786. .pull_stats = efx_mcdi_mac_pull_stats,
  787. .stop_stats = efx_mcdi_mac_stop_stats,
  788. .set_id_led = efx_mcdi_set_id_led,
  789. .push_irq_moderation = siena_push_irq_moderation,
  790. .reconfigure_mac = siena_mac_reconfigure,
  791. .check_mac_fault = efx_mcdi_mac_check_fault,
  792. .reconfigure_port = efx_mcdi_port_reconfigure,
  793. .get_wol = siena_get_wol,
  794. .set_wol = siena_set_wol,
  795. .resume_wol = siena_init_wol,
  796. .test_chip = siena_test_chip,
  797. .test_nvram = efx_mcdi_nvram_test_all,
  798. .mcdi_request = siena_mcdi_request,
  799. .mcdi_poll_response = siena_mcdi_poll_response,
  800. .mcdi_read_response = siena_mcdi_read_response,
  801. .mcdi_poll_reboot = siena_mcdi_poll_reboot,
  802. .irq_enable_master = efx_farch_irq_enable_master,
  803. .irq_test_generate = efx_farch_irq_test_generate,
  804. .irq_disable_non_ev = efx_farch_irq_disable_master,
  805. .irq_handle_msi = efx_farch_msi_interrupt,
  806. .irq_handle_legacy = efx_farch_legacy_interrupt,
  807. .tx_probe = efx_farch_tx_probe,
  808. .tx_init = efx_farch_tx_init,
  809. .tx_remove = efx_farch_tx_remove,
  810. .tx_write = efx_farch_tx_write,
  811. .rx_push_rss_config = siena_rx_push_rss_config,
  812. .rx_probe = efx_farch_rx_probe,
  813. .rx_init = efx_farch_rx_init,
  814. .rx_remove = efx_farch_rx_remove,
  815. .rx_write = efx_farch_rx_write,
  816. .rx_defer_refill = efx_farch_rx_defer_refill,
  817. .ev_probe = efx_farch_ev_probe,
  818. .ev_init = efx_farch_ev_init,
  819. .ev_fini = efx_farch_ev_fini,
  820. .ev_remove = efx_farch_ev_remove,
  821. .ev_process = efx_farch_ev_process,
  822. .ev_read_ack = efx_farch_ev_read_ack,
  823. .ev_test_generate = efx_farch_ev_test_generate,
  824. .filter_table_probe = efx_farch_filter_table_probe,
  825. .filter_table_restore = efx_farch_filter_table_restore,
  826. .filter_table_remove = efx_farch_filter_table_remove,
  827. .filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
  828. .filter_insert = efx_farch_filter_insert,
  829. .filter_remove_safe = efx_farch_filter_remove_safe,
  830. .filter_get_safe = efx_farch_filter_get_safe,
  831. .filter_clear_rx = efx_farch_filter_clear_rx,
  832. .filter_count_rx_used = efx_farch_filter_count_rx_used,
  833. .filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
  834. .filter_get_rx_ids = efx_farch_filter_get_rx_ids,
  835. #ifdef CONFIG_RFS_ACCEL
  836. .filter_rfs_insert = efx_farch_filter_rfs_insert,
  837. .filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
  838. #endif
  839. #ifdef CONFIG_SFC_MTD
  840. .mtd_probe = siena_mtd_probe,
  841. .mtd_rename = efx_mcdi_mtd_rename,
  842. .mtd_read = efx_mcdi_mtd_read,
  843. .mtd_erase = efx_mcdi_mtd_erase,
  844. .mtd_write = efx_mcdi_mtd_write,
  845. .mtd_sync = efx_mcdi_mtd_sync,
  846. #endif
  847. .ptp_write_host_time = siena_ptp_write_host_time,
  848. .ptp_set_ts_config = siena_ptp_set_ts_config,
  849. .revision = EFX_REV_SIENA_A0,
  850. .txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
  851. .rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
  852. .buf_tbl_base = FR_BZ_BUF_FULL_TBL,
  853. .evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
  854. .evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
  855. .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
  856. .rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
  857. .rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
  858. .rx_buffer_padding = 0,
  859. .can_rx_scatter = true,
  860. .max_interrupt_mode = EFX_INT_MODE_MSIX,
  861. .timer_period_max = 1 << FRF_CZ_TC_TIMER_VAL_WIDTH,
  862. .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
  863. NETIF_F_RXHASH | NETIF_F_NTUPLE),
  864. .mcdi_max_ver = 1,
  865. .max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
  866. .hwtstamp_filters = (1 << HWTSTAMP_FILTER_NONE |
  867. 1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT |
  868. 1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC |
  869. 1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ |
  870. 1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT |
  871. 1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC |
  872. 1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ),
  873. };