qla3xxx.c 101 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951
  1. /*
  2. * QLogic QLA3xxx NIC HBA Driver
  3. * Copyright (c) 2003-2006 QLogic Corporation
  4. *
  5. * See LICENSE.qla3xxx for copyright and licensing details.
  6. */
  7. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  8. #include <linux/kernel.h>
  9. #include <linux/types.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <linux/pci.h>
  13. #include <linux/dma-mapping.h>
  14. #include <linux/sched.h>
  15. #include <linux/slab.h>
  16. #include <linux/dmapool.h>
  17. #include <linux/mempool.h>
  18. #include <linux/spinlock.h>
  19. #include <linux/kthread.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/errno.h>
  22. #include <linux/ioport.h>
  23. #include <linux/ip.h>
  24. #include <linux/in.h>
  25. #include <linux/if_arp.h>
  26. #include <linux/if_ether.h>
  27. #include <linux/netdevice.h>
  28. #include <linux/etherdevice.h>
  29. #include <linux/ethtool.h>
  30. #include <linux/skbuff.h>
  31. #include <linux/rtnetlink.h>
  32. #include <linux/if_vlan.h>
  33. #include <linux/delay.h>
  34. #include <linux/mm.h>
  35. #include <linux/prefetch.h>
  36. #include "qla3xxx.h"
  37. #define DRV_NAME "qla3xxx"
  38. #define DRV_STRING "QLogic ISP3XXX Network Driver"
  39. #define DRV_VERSION "v2.03.00-k5"
  40. static const char ql3xxx_driver_name[] = DRV_NAME;
  41. static const char ql3xxx_driver_version[] = DRV_VERSION;
  42. #define TIMED_OUT_MSG \
  43. "Timed out waiting for management port to get free before issuing command\n"
  44. MODULE_AUTHOR("QLogic Corporation");
  45. MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
  46. MODULE_LICENSE("GPL");
  47. MODULE_VERSION(DRV_VERSION);
  48. static const u32 default_msg
  49. = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
  50. | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
  51. static int debug = -1; /* defaults above */
  52. module_param(debug, int, 0);
  53. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  54. static int msi;
  55. module_param(msi, int, 0);
  56. MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
  57. static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
  58. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
  59. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
  60. /* required last entry */
  61. {0,}
  62. };
  63. MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
  64. /*
  65. * These are the known PHY's which are used
  66. */
  67. enum PHY_DEVICE_TYPE {
  68. PHY_TYPE_UNKNOWN = 0,
  69. PHY_VITESSE_VSC8211,
  70. PHY_AGERE_ET1011C,
  71. MAX_PHY_DEV_TYPES
  72. };
  73. struct PHY_DEVICE_INFO {
  74. const enum PHY_DEVICE_TYPE phyDevice;
  75. const u32 phyIdOUI;
  76. const u16 phyIdModel;
  77. const char *name;
  78. };
  79. static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
  80. {PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
  81. {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
  82. {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
  83. };
  84. /*
  85. * Caller must take hw_lock.
  86. */
  87. static int ql_sem_spinlock(struct ql3_adapter *qdev,
  88. u32 sem_mask, u32 sem_bits)
  89. {
  90. struct ql3xxx_port_registers __iomem *port_regs =
  91. qdev->mem_map_registers;
  92. u32 value;
  93. unsigned int seconds = 3;
  94. do {
  95. writel((sem_mask | sem_bits),
  96. &port_regs->CommonRegs.semaphoreReg);
  97. value = readl(&port_regs->CommonRegs.semaphoreReg);
  98. if ((value & (sem_mask >> 16)) == sem_bits)
  99. return 0;
  100. ssleep(1);
  101. } while (--seconds);
  102. return -1;
  103. }
  104. static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
  105. {
  106. struct ql3xxx_port_registers __iomem *port_regs =
  107. qdev->mem_map_registers;
  108. writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
  109. readl(&port_regs->CommonRegs.semaphoreReg);
  110. }
  111. static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
  112. {
  113. struct ql3xxx_port_registers __iomem *port_regs =
  114. qdev->mem_map_registers;
  115. u32 value;
  116. writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
  117. value = readl(&port_regs->CommonRegs.semaphoreReg);
  118. return ((value & (sem_mask >> 16)) == sem_bits);
  119. }
  120. /*
  121. * Caller holds hw_lock.
  122. */
  123. static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
  124. {
  125. int i = 0;
  126. while (i < 10) {
  127. if (i)
  128. ssleep(1);
  129. if (ql_sem_lock(qdev,
  130. QL_DRVR_SEM_MASK,
  131. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  132. * 2) << 1)) {
  133. netdev_printk(KERN_DEBUG, qdev->ndev,
  134. "driver lock acquired\n");
  135. return 1;
  136. }
  137. }
  138. netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
  139. return 0;
  140. }
  141. static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
  142. {
  143. struct ql3xxx_port_registers __iomem *port_regs =
  144. qdev->mem_map_registers;
  145. writel(((ISP_CONTROL_NP_MASK << 16) | page),
  146. &port_regs->CommonRegs.ispControlStatus);
  147. readl(&port_regs->CommonRegs.ispControlStatus);
  148. qdev->current_page = page;
  149. }
  150. static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  151. {
  152. u32 value;
  153. unsigned long hw_flags;
  154. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  155. value = readl(reg);
  156. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  157. return value;
  158. }
  159. static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  160. {
  161. return readl(reg);
  162. }
  163. static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
  164. {
  165. u32 value;
  166. unsigned long hw_flags;
  167. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  168. if (qdev->current_page != 0)
  169. ql_set_register_page(qdev, 0);
  170. value = readl(reg);
  171. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  172. return value;
  173. }
  174. static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
  175. {
  176. if (qdev->current_page != 0)
  177. ql_set_register_page(qdev, 0);
  178. return readl(reg);
  179. }
  180. static void ql_write_common_reg_l(struct ql3_adapter *qdev,
  181. u32 __iomem *reg, u32 value)
  182. {
  183. unsigned long hw_flags;
  184. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  185. writel(value, reg);
  186. readl(reg);
  187. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  188. }
  189. static void ql_write_common_reg(struct ql3_adapter *qdev,
  190. u32 __iomem *reg, u32 value)
  191. {
  192. writel(value, reg);
  193. readl(reg);
  194. }
  195. static void ql_write_nvram_reg(struct ql3_adapter *qdev,
  196. u32 __iomem *reg, u32 value)
  197. {
  198. writel(value, reg);
  199. readl(reg);
  200. udelay(1);
  201. }
  202. static void ql_write_page0_reg(struct ql3_adapter *qdev,
  203. u32 __iomem *reg, u32 value)
  204. {
  205. if (qdev->current_page != 0)
  206. ql_set_register_page(qdev, 0);
  207. writel(value, reg);
  208. readl(reg);
  209. }
  210. /*
  211. * Caller holds hw_lock. Only called during init.
  212. */
  213. static void ql_write_page1_reg(struct ql3_adapter *qdev,
  214. u32 __iomem *reg, u32 value)
  215. {
  216. if (qdev->current_page != 1)
  217. ql_set_register_page(qdev, 1);
  218. writel(value, reg);
  219. readl(reg);
  220. }
  221. /*
  222. * Caller holds hw_lock. Only called during init.
  223. */
  224. static void ql_write_page2_reg(struct ql3_adapter *qdev,
  225. u32 __iomem *reg, u32 value)
  226. {
  227. if (qdev->current_page != 2)
  228. ql_set_register_page(qdev, 2);
  229. writel(value, reg);
  230. readl(reg);
  231. }
  232. static void ql_disable_interrupts(struct ql3_adapter *qdev)
  233. {
  234. struct ql3xxx_port_registers __iomem *port_regs =
  235. qdev->mem_map_registers;
  236. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  237. (ISP_IMR_ENABLE_INT << 16));
  238. }
  239. static void ql_enable_interrupts(struct ql3_adapter *qdev)
  240. {
  241. struct ql3xxx_port_registers __iomem *port_regs =
  242. qdev->mem_map_registers;
  243. ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
  244. ((0xff << 16) | ISP_IMR_ENABLE_INT));
  245. }
  246. static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
  247. struct ql_rcv_buf_cb *lrg_buf_cb)
  248. {
  249. dma_addr_t map;
  250. int err;
  251. lrg_buf_cb->next = NULL;
  252. if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
  253. qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
  254. } else {
  255. qdev->lrg_buf_free_tail->next = lrg_buf_cb;
  256. qdev->lrg_buf_free_tail = lrg_buf_cb;
  257. }
  258. if (!lrg_buf_cb->skb) {
  259. lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
  260. qdev->lrg_buffer_len);
  261. if (unlikely(!lrg_buf_cb->skb)) {
  262. qdev->lrg_buf_skb_check++;
  263. } else {
  264. /*
  265. * We save some space to copy the ethhdr from first
  266. * buffer
  267. */
  268. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  269. map = pci_map_single(qdev->pdev,
  270. lrg_buf_cb->skb->data,
  271. qdev->lrg_buffer_len -
  272. QL_HEADER_SPACE,
  273. PCI_DMA_FROMDEVICE);
  274. err = pci_dma_mapping_error(qdev->pdev, map);
  275. if (err) {
  276. netdev_err(qdev->ndev,
  277. "PCI mapping failed with error: %d\n",
  278. err);
  279. dev_kfree_skb(lrg_buf_cb->skb);
  280. lrg_buf_cb->skb = NULL;
  281. qdev->lrg_buf_skb_check++;
  282. return;
  283. }
  284. lrg_buf_cb->buf_phy_addr_low =
  285. cpu_to_le32(LS_64BITS(map));
  286. lrg_buf_cb->buf_phy_addr_high =
  287. cpu_to_le32(MS_64BITS(map));
  288. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  289. dma_unmap_len_set(lrg_buf_cb, maplen,
  290. qdev->lrg_buffer_len -
  291. QL_HEADER_SPACE);
  292. }
  293. }
  294. qdev->lrg_buf_free_count++;
  295. }
  296. static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
  297. *qdev)
  298. {
  299. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  300. if (lrg_buf_cb != NULL) {
  301. qdev->lrg_buf_free_head = lrg_buf_cb->next;
  302. if (qdev->lrg_buf_free_head == NULL)
  303. qdev->lrg_buf_free_tail = NULL;
  304. qdev->lrg_buf_free_count--;
  305. }
  306. return lrg_buf_cb;
  307. }
  308. static u32 addrBits = EEPROM_NO_ADDR_BITS;
  309. static u32 dataBits = EEPROM_NO_DATA_BITS;
  310. static void fm93c56a_deselect(struct ql3_adapter *qdev);
  311. static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
  312. unsigned short *value);
  313. /*
  314. * Caller holds hw_lock.
  315. */
  316. static void fm93c56a_select(struct ql3_adapter *qdev)
  317. {
  318. struct ql3xxx_port_registers __iomem *port_regs =
  319. qdev->mem_map_registers;
  320. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  321. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
  322. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  323. ql_write_nvram_reg(qdev, spir,
  324. ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
  325. }
  326. /*
  327. * Caller holds hw_lock.
  328. */
  329. static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
  330. {
  331. int i;
  332. u32 mask;
  333. u32 dataBit;
  334. u32 previousBit;
  335. struct ql3xxx_port_registers __iomem *port_regs =
  336. qdev->mem_map_registers;
  337. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  338. /* Clock in a zero, then do the start bit */
  339. ql_write_nvram_reg(qdev, spir,
  340. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  341. AUBURN_EEPROM_DO_1));
  342. ql_write_nvram_reg(qdev, spir,
  343. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  344. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
  345. ql_write_nvram_reg(qdev, spir,
  346. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  347. AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
  348. mask = 1 << (FM93C56A_CMD_BITS - 1);
  349. /* Force the previous data bit to be different */
  350. previousBit = 0xffff;
  351. for (i = 0; i < FM93C56A_CMD_BITS; i++) {
  352. dataBit = (cmd & mask)
  353. ? AUBURN_EEPROM_DO_1
  354. : AUBURN_EEPROM_DO_0;
  355. if (previousBit != dataBit) {
  356. /* If the bit changed, change the DO state to match */
  357. ql_write_nvram_reg(qdev, spir,
  358. (ISP_NVRAM_MASK |
  359. qdev->eeprom_cmd_data | dataBit));
  360. previousBit = dataBit;
  361. }
  362. ql_write_nvram_reg(qdev, spir,
  363. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  364. dataBit | AUBURN_EEPROM_CLK_RISE));
  365. ql_write_nvram_reg(qdev, spir,
  366. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  367. dataBit | AUBURN_EEPROM_CLK_FALL));
  368. cmd = cmd << 1;
  369. }
  370. mask = 1 << (addrBits - 1);
  371. /* Force the previous data bit to be different */
  372. previousBit = 0xffff;
  373. for (i = 0; i < addrBits; i++) {
  374. dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
  375. : AUBURN_EEPROM_DO_0;
  376. if (previousBit != dataBit) {
  377. /*
  378. * If the bit changed, then change the DO state to
  379. * match
  380. */
  381. ql_write_nvram_reg(qdev, spir,
  382. (ISP_NVRAM_MASK |
  383. qdev->eeprom_cmd_data | dataBit));
  384. previousBit = dataBit;
  385. }
  386. ql_write_nvram_reg(qdev, spir,
  387. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  388. dataBit | AUBURN_EEPROM_CLK_RISE));
  389. ql_write_nvram_reg(qdev, spir,
  390. (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  391. dataBit | AUBURN_EEPROM_CLK_FALL));
  392. eepromAddr = eepromAddr << 1;
  393. }
  394. }
  395. /*
  396. * Caller holds hw_lock.
  397. */
  398. static void fm93c56a_deselect(struct ql3_adapter *qdev)
  399. {
  400. struct ql3xxx_port_registers __iomem *port_regs =
  401. qdev->mem_map_registers;
  402. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  403. qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
  404. ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
  405. }
  406. /*
  407. * Caller holds hw_lock.
  408. */
  409. static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
  410. {
  411. int i;
  412. u32 data = 0;
  413. u32 dataBit;
  414. struct ql3xxx_port_registers __iomem *port_regs =
  415. qdev->mem_map_registers;
  416. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  417. /* Read the data bits */
  418. /* The first bit is a dummy. Clock right over it. */
  419. for (i = 0; i < dataBits; i++) {
  420. ql_write_nvram_reg(qdev, spir,
  421. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  422. AUBURN_EEPROM_CLK_RISE);
  423. ql_write_nvram_reg(qdev, spir,
  424. ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
  425. AUBURN_EEPROM_CLK_FALL);
  426. dataBit = (ql_read_common_reg(qdev, spir) &
  427. AUBURN_EEPROM_DI_1) ? 1 : 0;
  428. data = (data << 1) | dataBit;
  429. }
  430. *value = (u16)data;
  431. }
  432. /*
  433. * Caller holds hw_lock.
  434. */
  435. static void eeprom_readword(struct ql3_adapter *qdev,
  436. u32 eepromAddr, unsigned short *value)
  437. {
  438. fm93c56a_select(qdev);
  439. fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
  440. fm93c56a_datain(qdev, value);
  441. fm93c56a_deselect(qdev);
  442. }
  443. static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
  444. {
  445. __le16 *p = (__le16 *)ndev->dev_addr;
  446. p[0] = cpu_to_le16(addr[0]);
  447. p[1] = cpu_to_le16(addr[1]);
  448. p[2] = cpu_to_le16(addr[2]);
  449. }
  450. static int ql_get_nvram_params(struct ql3_adapter *qdev)
  451. {
  452. u16 *pEEPROMData;
  453. u16 checksum = 0;
  454. u32 index;
  455. unsigned long hw_flags;
  456. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  457. pEEPROMData = (u16 *)&qdev->nvram_data;
  458. qdev->eeprom_cmd_data = 0;
  459. if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
  460. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  461. 2) << 10)) {
  462. pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
  463. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  464. return -1;
  465. }
  466. for (index = 0; index < EEPROM_SIZE; index++) {
  467. eeprom_readword(qdev, index, pEEPROMData);
  468. checksum += *pEEPROMData;
  469. pEEPROMData++;
  470. }
  471. ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
  472. if (checksum != 0) {
  473. netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
  474. checksum);
  475. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  476. return -1;
  477. }
  478. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  479. return checksum;
  480. }
  481. static const u32 PHYAddr[2] = {
  482. PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
  483. };
  484. static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
  485. {
  486. struct ql3xxx_port_registers __iomem *port_regs =
  487. qdev->mem_map_registers;
  488. u32 temp;
  489. int count = 1000;
  490. while (count) {
  491. temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
  492. if (!(temp & MAC_MII_STATUS_BSY))
  493. return 0;
  494. udelay(10);
  495. count--;
  496. }
  497. return -1;
  498. }
  499. static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
  500. {
  501. struct ql3xxx_port_registers __iomem *port_regs =
  502. qdev->mem_map_registers;
  503. u32 scanControl;
  504. if (qdev->numPorts > 1) {
  505. /* Auto scan will cycle through multiple ports */
  506. scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
  507. } else {
  508. scanControl = MAC_MII_CONTROL_SC;
  509. }
  510. /*
  511. * Scan register 1 of PHY/PETBI,
  512. * Set up to scan both devices
  513. * The autoscan starts from the first register, completes
  514. * the last one before rolling over to the first
  515. */
  516. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  517. PHYAddr[0] | MII_SCAN_REGISTER);
  518. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  519. (scanControl) |
  520. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
  521. }
  522. static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
  523. {
  524. u8 ret;
  525. struct ql3xxx_port_registers __iomem *port_regs =
  526. qdev->mem_map_registers;
  527. /* See if scan mode is enabled before we turn it off */
  528. if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
  529. (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
  530. /* Scan is enabled */
  531. ret = 1;
  532. } else {
  533. /* Scan is disabled */
  534. ret = 0;
  535. }
  536. /*
  537. * When disabling scan mode you must first change the MII register
  538. * address
  539. */
  540. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  541. PHYAddr[0] | MII_SCAN_REGISTER);
  542. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  543. ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
  544. MAC_MII_CONTROL_RC) << 16));
  545. return ret;
  546. }
  547. static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
  548. u16 regAddr, u16 value, u32 phyAddr)
  549. {
  550. struct ql3xxx_port_registers __iomem *port_regs =
  551. qdev->mem_map_registers;
  552. u8 scanWasEnabled;
  553. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  554. if (ql_wait_for_mii_ready(qdev)) {
  555. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  556. return -1;
  557. }
  558. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  559. phyAddr | regAddr);
  560. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  561. /* Wait for write to complete 9/10/04 SJP */
  562. if (ql_wait_for_mii_ready(qdev)) {
  563. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  564. return -1;
  565. }
  566. if (scanWasEnabled)
  567. ql_mii_enable_scan_mode(qdev);
  568. return 0;
  569. }
  570. static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
  571. u16 *value, u32 phyAddr)
  572. {
  573. struct ql3xxx_port_registers __iomem *port_regs =
  574. qdev->mem_map_registers;
  575. u8 scanWasEnabled;
  576. u32 temp;
  577. scanWasEnabled = ql_mii_disable_scan_mode(qdev);
  578. if (ql_wait_for_mii_ready(qdev)) {
  579. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  580. return -1;
  581. }
  582. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  583. phyAddr | regAddr);
  584. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  585. (MAC_MII_CONTROL_RC << 16));
  586. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  587. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  588. /* Wait for the read to complete */
  589. if (ql_wait_for_mii_ready(qdev)) {
  590. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  591. return -1;
  592. }
  593. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  594. *value = (u16) temp;
  595. if (scanWasEnabled)
  596. ql_mii_enable_scan_mode(qdev);
  597. return 0;
  598. }
  599. static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
  600. {
  601. struct ql3xxx_port_registers __iomem *port_regs =
  602. qdev->mem_map_registers;
  603. ql_mii_disable_scan_mode(qdev);
  604. if (ql_wait_for_mii_ready(qdev)) {
  605. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  606. return -1;
  607. }
  608. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  609. qdev->PHYAddr | regAddr);
  610. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
  611. /* Wait for write to complete. */
  612. if (ql_wait_for_mii_ready(qdev)) {
  613. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  614. return -1;
  615. }
  616. ql_mii_enable_scan_mode(qdev);
  617. return 0;
  618. }
  619. static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
  620. {
  621. u32 temp;
  622. struct ql3xxx_port_registers __iomem *port_regs =
  623. qdev->mem_map_registers;
  624. ql_mii_disable_scan_mode(qdev);
  625. if (ql_wait_for_mii_ready(qdev)) {
  626. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  627. return -1;
  628. }
  629. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
  630. qdev->PHYAddr | regAddr);
  631. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  632. (MAC_MII_CONTROL_RC << 16));
  633. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  634. (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
  635. /* Wait for the read to complete */
  636. if (ql_wait_for_mii_ready(qdev)) {
  637. netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
  638. return -1;
  639. }
  640. temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
  641. *value = (u16) temp;
  642. ql_mii_enable_scan_mode(qdev);
  643. return 0;
  644. }
  645. static void ql_petbi_reset(struct ql3_adapter *qdev)
  646. {
  647. ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
  648. }
  649. static void ql_petbi_start_neg(struct ql3_adapter *qdev)
  650. {
  651. u16 reg;
  652. /* Enable Auto-negotiation sense */
  653. ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
  654. reg |= PETBI_TBI_AUTO_SENSE;
  655. ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
  656. ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
  657. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
  658. ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
  659. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  660. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
  661. }
  662. static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
  663. {
  664. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
  665. PHYAddr[qdev->mac_index]);
  666. }
  667. static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
  668. {
  669. u16 reg;
  670. /* Enable Auto-negotiation sense */
  671. ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
  672. PHYAddr[qdev->mac_index]);
  673. reg |= PETBI_TBI_AUTO_SENSE;
  674. ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
  675. PHYAddr[qdev->mac_index]);
  676. ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
  677. PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
  678. PHYAddr[qdev->mac_index]);
  679. ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
  680. PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
  681. PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
  682. PHYAddr[qdev->mac_index]);
  683. }
  684. static void ql_petbi_init(struct ql3_adapter *qdev)
  685. {
  686. ql_petbi_reset(qdev);
  687. ql_petbi_start_neg(qdev);
  688. }
  689. static void ql_petbi_init_ex(struct ql3_adapter *qdev)
  690. {
  691. ql_petbi_reset_ex(qdev);
  692. ql_petbi_start_neg_ex(qdev);
  693. }
  694. static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
  695. {
  696. u16 reg;
  697. if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
  698. return 0;
  699. return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
  700. }
  701. static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
  702. {
  703. netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
  704. /* power down device bit 11 = 1 */
  705. ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
  706. /* enable diagnostic mode bit 2 = 1 */
  707. ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
  708. /* 1000MB amplitude adjust (see Agere errata) */
  709. ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
  710. /* 1000MB amplitude adjust (see Agere errata) */
  711. ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
  712. /* 100MB amplitude adjust (see Agere errata) */
  713. ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
  714. /* 100MB amplitude adjust (see Agere errata) */
  715. ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
  716. /* 10MB amplitude adjust (see Agere errata) */
  717. ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
  718. /* 10MB amplitude adjust (see Agere errata) */
  719. ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
  720. /* point to hidden reg 0x2806 */
  721. ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
  722. /* Write new PHYAD w/bit 5 set */
  723. ql_mii_write_reg_ex(qdev, 0x11,
  724. 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
  725. /*
  726. * Disable diagnostic mode bit 2 = 0
  727. * Power up device bit 11 = 0
  728. * Link up (on) and activity (blink)
  729. */
  730. ql_mii_write_reg(qdev, 0x12, 0x840a);
  731. ql_mii_write_reg(qdev, 0x00, 0x1140);
  732. ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
  733. }
  734. static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
  735. u16 phyIdReg0, u16 phyIdReg1)
  736. {
  737. enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
  738. u32 oui;
  739. u16 model;
  740. int i;
  741. if (phyIdReg0 == 0xffff)
  742. return result;
  743. if (phyIdReg1 == 0xffff)
  744. return result;
  745. /* oui is split between two registers */
  746. oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
  747. model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
  748. /* Scan table for this PHY */
  749. for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
  750. if ((oui == PHY_DEVICES[i].phyIdOUI) &&
  751. (model == PHY_DEVICES[i].phyIdModel)) {
  752. netdev_info(qdev->ndev, "Phy: %s\n",
  753. PHY_DEVICES[i].name);
  754. result = PHY_DEVICES[i].phyDevice;
  755. break;
  756. }
  757. }
  758. return result;
  759. }
  760. static int ql_phy_get_speed(struct ql3_adapter *qdev)
  761. {
  762. u16 reg;
  763. switch (qdev->phyType) {
  764. case PHY_AGERE_ET1011C: {
  765. if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
  766. return 0;
  767. reg = (reg >> 8) & 3;
  768. break;
  769. }
  770. default:
  771. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  772. return 0;
  773. reg = (((reg & 0x18) >> 3) & 3);
  774. }
  775. switch (reg) {
  776. case 2:
  777. return SPEED_1000;
  778. case 1:
  779. return SPEED_100;
  780. case 0:
  781. return SPEED_10;
  782. default:
  783. return -1;
  784. }
  785. }
  786. static int ql_is_full_dup(struct ql3_adapter *qdev)
  787. {
  788. u16 reg;
  789. switch (qdev->phyType) {
  790. case PHY_AGERE_ET1011C: {
  791. if (ql_mii_read_reg(qdev, 0x1A, &reg))
  792. return 0;
  793. return ((reg & 0x0080) && (reg & 0x1000)) != 0;
  794. }
  795. case PHY_VITESSE_VSC8211:
  796. default: {
  797. if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
  798. return 0;
  799. return (reg & PHY_AUX_DUPLEX_STAT) != 0;
  800. }
  801. }
  802. }
  803. static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
  804. {
  805. u16 reg;
  806. if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
  807. return 0;
  808. return (reg & PHY_NEG_PAUSE) != 0;
  809. }
  810. static int PHY_Setup(struct ql3_adapter *qdev)
  811. {
  812. u16 reg1;
  813. u16 reg2;
  814. bool agereAddrChangeNeeded = false;
  815. u32 miiAddr = 0;
  816. int err;
  817. /* Determine the PHY we are using by reading the ID's */
  818. err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
  819. if (err != 0) {
  820. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
  821. return err;
  822. }
  823. err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
  824. if (err != 0) {
  825. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
  826. return err;
  827. }
  828. /* Check if we have a Agere PHY */
  829. if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
  830. /* Determine which MII address we should be using
  831. determined by the index of the card */
  832. if (qdev->mac_index == 0)
  833. miiAddr = MII_AGERE_ADDR_1;
  834. else
  835. miiAddr = MII_AGERE_ADDR_2;
  836. err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
  837. if (err != 0) {
  838. netdev_err(qdev->ndev,
  839. "Could not read from reg PHY_ID_0_REG after Agere detected\n");
  840. return err;
  841. }
  842. err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
  843. if (err != 0) {
  844. netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
  845. return err;
  846. }
  847. /* We need to remember to initialize the Agere PHY */
  848. agereAddrChangeNeeded = true;
  849. }
  850. /* Determine the particular PHY we have on board to apply
  851. PHY specific initializations */
  852. qdev->phyType = getPhyType(qdev, reg1, reg2);
  853. if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
  854. /* need this here so address gets changed */
  855. phyAgereSpecificInit(qdev, miiAddr);
  856. } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
  857. netdev_err(qdev->ndev, "PHY is unknown\n");
  858. return -EIO;
  859. }
  860. return 0;
  861. }
  862. /*
  863. * Caller holds hw_lock.
  864. */
  865. static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
  866. {
  867. struct ql3xxx_port_registers __iomem *port_regs =
  868. qdev->mem_map_registers;
  869. u32 value;
  870. if (enable)
  871. value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
  872. else
  873. value = (MAC_CONFIG_REG_PE << 16);
  874. if (qdev->mac_index)
  875. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  876. else
  877. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  878. }
  879. /*
  880. * Caller holds hw_lock.
  881. */
  882. static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
  883. {
  884. struct ql3xxx_port_registers __iomem *port_regs =
  885. qdev->mem_map_registers;
  886. u32 value;
  887. if (enable)
  888. value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
  889. else
  890. value = (MAC_CONFIG_REG_SR << 16);
  891. if (qdev->mac_index)
  892. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  893. else
  894. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  895. }
  896. /*
  897. * Caller holds hw_lock.
  898. */
  899. static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
  900. {
  901. struct ql3xxx_port_registers __iomem *port_regs =
  902. qdev->mem_map_registers;
  903. u32 value;
  904. if (enable)
  905. value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
  906. else
  907. value = (MAC_CONFIG_REG_GM << 16);
  908. if (qdev->mac_index)
  909. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  910. else
  911. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  912. }
  913. /*
  914. * Caller holds hw_lock.
  915. */
  916. static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
  917. {
  918. struct ql3xxx_port_registers __iomem *port_regs =
  919. qdev->mem_map_registers;
  920. u32 value;
  921. if (enable)
  922. value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
  923. else
  924. value = (MAC_CONFIG_REG_FD << 16);
  925. if (qdev->mac_index)
  926. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  927. else
  928. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  929. }
  930. /*
  931. * Caller holds hw_lock.
  932. */
  933. static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
  934. {
  935. struct ql3xxx_port_registers __iomem *port_regs =
  936. qdev->mem_map_registers;
  937. u32 value;
  938. if (enable)
  939. value =
  940. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
  941. ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
  942. else
  943. value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
  944. if (qdev->mac_index)
  945. ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
  946. else
  947. ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
  948. }
  949. /*
  950. * Caller holds hw_lock.
  951. */
  952. static int ql_is_fiber(struct ql3_adapter *qdev)
  953. {
  954. struct ql3xxx_port_registers __iomem *port_regs =
  955. qdev->mem_map_registers;
  956. u32 bitToCheck = 0;
  957. u32 temp;
  958. switch (qdev->mac_index) {
  959. case 0:
  960. bitToCheck = PORT_STATUS_SM0;
  961. break;
  962. case 1:
  963. bitToCheck = PORT_STATUS_SM1;
  964. break;
  965. }
  966. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  967. return (temp & bitToCheck) != 0;
  968. }
  969. static int ql_is_auto_cfg(struct ql3_adapter *qdev)
  970. {
  971. u16 reg;
  972. ql_mii_read_reg(qdev, 0x00, &reg);
  973. return (reg & 0x1000) != 0;
  974. }
  975. /*
  976. * Caller holds hw_lock.
  977. */
  978. static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
  979. {
  980. struct ql3xxx_port_registers __iomem *port_regs =
  981. qdev->mem_map_registers;
  982. u32 bitToCheck = 0;
  983. u32 temp;
  984. switch (qdev->mac_index) {
  985. case 0:
  986. bitToCheck = PORT_STATUS_AC0;
  987. break;
  988. case 1:
  989. bitToCheck = PORT_STATUS_AC1;
  990. break;
  991. }
  992. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  993. if (temp & bitToCheck) {
  994. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
  995. return 1;
  996. }
  997. netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
  998. return 0;
  999. }
  1000. /*
  1001. * ql_is_neg_pause() returns 1 if pause was negotiated to be on
  1002. */
  1003. static int ql_is_neg_pause(struct ql3_adapter *qdev)
  1004. {
  1005. if (ql_is_fiber(qdev))
  1006. return ql_is_petbi_neg_pause(qdev);
  1007. else
  1008. return ql_is_phy_neg_pause(qdev);
  1009. }
  1010. static int ql_auto_neg_error(struct ql3_adapter *qdev)
  1011. {
  1012. struct ql3xxx_port_registers __iomem *port_regs =
  1013. qdev->mem_map_registers;
  1014. u32 bitToCheck = 0;
  1015. u32 temp;
  1016. switch (qdev->mac_index) {
  1017. case 0:
  1018. bitToCheck = PORT_STATUS_AE0;
  1019. break;
  1020. case 1:
  1021. bitToCheck = PORT_STATUS_AE1;
  1022. break;
  1023. }
  1024. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1025. return (temp & bitToCheck) != 0;
  1026. }
  1027. static u32 ql_get_link_speed(struct ql3_adapter *qdev)
  1028. {
  1029. if (ql_is_fiber(qdev))
  1030. return SPEED_1000;
  1031. else
  1032. return ql_phy_get_speed(qdev);
  1033. }
  1034. static int ql_is_link_full_dup(struct ql3_adapter *qdev)
  1035. {
  1036. if (ql_is_fiber(qdev))
  1037. return 1;
  1038. else
  1039. return ql_is_full_dup(qdev);
  1040. }
  1041. /*
  1042. * Caller holds hw_lock.
  1043. */
  1044. static int ql_link_down_detect(struct ql3_adapter *qdev)
  1045. {
  1046. struct ql3xxx_port_registers __iomem *port_regs =
  1047. qdev->mem_map_registers;
  1048. u32 bitToCheck = 0;
  1049. u32 temp;
  1050. switch (qdev->mac_index) {
  1051. case 0:
  1052. bitToCheck = ISP_CONTROL_LINK_DN_0;
  1053. break;
  1054. case 1:
  1055. bitToCheck = ISP_CONTROL_LINK_DN_1;
  1056. break;
  1057. }
  1058. temp =
  1059. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  1060. return (temp & bitToCheck) != 0;
  1061. }
  1062. /*
  1063. * Caller holds hw_lock.
  1064. */
  1065. static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
  1066. {
  1067. struct ql3xxx_port_registers __iomem *port_regs =
  1068. qdev->mem_map_registers;
  1069. switch (qdev->mac_index) {
  1070. case 0:
  1071. ql_write_common_reg(qdev,
  1072. &port_regs->CommonRegs.ispControlStatus,
  1073. (ISP_CONTROL_LINK_DN_0) |
  1074. (ISP_CONTROL_LINK_DN_0 << 16));
  1075. break;
  1076. case 1:
  1077. ql_write_common_reg(qdev,
  1078. &port_regs->CommonRegs.ispControlStatus,
  1079. (ISP_CONTROL_LINK_DN_1) |
  1080. (ISP_CONTROL_LINK_DN_1 << 16));
  1081. break;
  1082. default:
  1083. return 1;
  1084. }
  1085. return 0;
  1086. }
  1087. /*
  1088. * Caller holds hw_lock.
  1089. */
  1090. static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
  1091. {
  1092. struct ql3xxx_port_registers __iomem *port_regs =
  1093. qdev->mem_map_registers;
  1094. u32 bitToCheck = 0;
  1095. u32 temp;
  1096. switch (qdev->mac_index) {
  1097. case 0:
  1098. bitToCheck = PORT_STATUS_F1_ENABLED;
  1099. break;
  1100. case 1:
  1101. bitToCheck = PORT_STATUS_F3_ENABLED;
  1102. break;
  1103. default:
  1104. break;
  1105. }
  1106. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1107. if (temp & bitToCheck) {
  1108. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1109. "not link master\n");
  1110. return 0;
  1111. }
  1112. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
  1113. return 1;
  1114. }
  1115. static void ql_phy_reset_ex(struct ql3_adapter *qdev)
  1116. {
  1117. ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
  1118. PHYAddr[qdev->mac_index]);
  1119. }
  1120. static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
  1121. {
  1122. u16 reg;
  1123. u16 portConfiguration;
  1124. if (qdev->phyType == PHY_AGERE_ET1011C)
  1125. ql_mii_write_reg(qdev, 0x13, 0x0000);
  1126. /* turn off external loopback */
  1127. if (qdev->mac_index == 0)
  1128. portConfiguration =
  1129. qdev->nvram_data.macCfg_port0.portConfiguration;
  1130. else
  1131. portConfiguration =
  1132. qdev->nvram_data.macCfg_port1.portConfiguration;
  1133. /* Some HBA's in the field are set to 0 and they need to
  1134. be reinterpreted with a default value */
  1135. if (portConfiguration == 0)
  1136. portConfiguration = PORT_CONFIG_DEFAULT;
  1137. /* Set the 1000 advertisements */
  1138. ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
  1139. PHYAddr[qdev->mac_index]);
  1140. reg &= ~PHY_GIG_ALL_PARAMS;
  1141. if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
  1142. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
  1143. reg |= PHY_GIG_ADV_1000F;
  1144. else
  1145. reg |= PHY_GIG_ADV_1000H;
  1146. }
  1147. ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
  1148. PHYAddr[qdev->mac_index]);
  1149. /* Set the 10/100 & pause negotiation advertisements */
  1150. ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
  1151. PHYAddr[qdev->mac_index]);
  1152. reg &= ~PHY_NEG_ALL_PARAMS;
  1153. if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
  1154. reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
  1155. if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
  1156. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1157. reg |= PHY_NEG_ADV_100F;
  1158. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1159. reg |= PHY_NEG_ADV_10F;
  1160. }
  1161. if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
  1162. if (portConfiguration & PORT_CONFIG_100MB_SPEED)
  1163. reg |= PHY_NEG_ADV_100H;
  1164. if (portConfiguration & PORT_CONFIG_10MB_SPEED)
  1165. reg |= PHY_NEG_ADV_10H;
  1166. }
  1167. if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
  1168. reg |= 1;
  1169. ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
  1170. PHYAddr[qdev->mac_index]);
  1171. ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
  1172. ql_mii_write_reg_ex(qdev, CONTROL_REG,
  1173. reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
  1174. PHYAddr[qdev->mac_index]);
  1175. }
  1176. static void ql_phy_init_ex(struct ql3_adapter *qdev)
  1177. {
  1178. ql_phy_reset_ex(qdev);
  1179. PHY_Setup(qdev);
  1180. ql_phy_start_neg_ex(qdev);
  1181. }
  1182. /*
  1183. * Caller holds hw_lock.
  1184. */
  1185. static u32 ql_get_link_state(struct ql3_adapter *qdev)
  1186. {
  1187. struct ql3xxx_port_registers __iomem *port_regs =
  1188. qdev->mem_map_registers;
  1189. u32 bitToCheck = 0;
  1190. u32 temp, linkState;
  1191. switch (qdev->mac_index) {
  1192. case 0:
  1193. bitToCheck = PORT_STATUS_UP0;
  1194. break;
  1195. case 1:
  1196. bitToCheck = PORT_STATUS_UP1;
  1197. break;
  1198. }
  1199. temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
  1200. if (temp & bitToCheck)
  1201. linkState = LS_UP;
  1202. else
  1203. linkState = LS_DOWN;
  1204. return linkState;
  1205. }
  1206. static int ql_port_start(struct ql3_adapter *qdev)
  1207. {
  1208. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1209. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1210. 2) << 7)) {
  1211. netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
  1212. return -1;
  1213. }
  1214. if (ql_is_fiber(qdev)) {
  1215. ql_petbi_init(qdev);
  1216. } else {
  1217. /* Copper port */
  1218. ql_phy_init_ex(qdev);
  1219. }
  1220. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1221. return 0;
  1222. }
  1223. static int ql_finish_auto_neg(struct ql3_adapter *qdev)
  1224. {
  1225. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1226. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1227. 2) << 7))
  1228. return -1;
  1229. if (!ql_auto_neg_error(qdev)) {
  1230. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1231. /* configure the MAC */
  1232. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1233. "Configuring link\n");
  1234. ql_mac_cfg_soft_reset(qdev, 1);
  1235. ql_mac_cfg_gig(qdev,
  1236. (ql_get_link_speed
  1237. (qdev) ==
  1238. SPEED_1000));
  1239. ql_mac_cfg_full_dup(qdev,
  1240. ql_is_link_full_dup
  1241. (qdev));
  1242. ql_mac_cfg_pause(qdev,
  1243. ql_is_neg_pause
  1244. (qdev));
  1245. ql_mac_cfg_soft_reset(qdev, 0);
  1246. /* enable the MAC */
  1247. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1248. "Enabling mac\n");
  1249. ql_mac_enable(qdev, 1);
  1250. }
  1251. qdev->port_link_state = LS_UP;
  1252. netif_start_queue(qdev->ndev);
  1253. netif_carrier_on(qdev->ndev);
  1254. netif_info(qdev, link, qdev->ndev,
  1255. "Link is up at %d Mbps, %s duplex\n",
  1256. ql_get_link_speed(qdev),
  1257. ql_is_link_full_dup(qdev) ? "full" : "half");
  1258. } else { /* Remote error detected */
  1259. if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
  1260. netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
  1261. "Remote error detected. Calling ql_port_start()\n");
  1262. /*
  1263. * ql_port_start() is shared code and needs
  1264. * to lock the PHY on it's own.
  1265. */
  1266. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1267. if (ql_port_start(qdev)) /* Restart port */
  1268. return -1;
  1269. return 0;
  1270. }
  1271. }
  1272. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1273. return 0;
  1274. }
  1275. static void ql_link_state_machine_work(struct work_struct *work)
  1276. {
  1277. struct ql3_adapter *qdev =
  1278. container_of(work, struct ql3_adapter, link_state_work.work);
  1279. u32 curr_link_state;
  1280. unsigned long hw_flags;
  1281. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1282. curr_link_state = ql_get_link_state(qdev);
  1283. if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
  1284. netif_info(qdev, link, qdev->ndev,
  1285. "Reset in progress, skip processing link state\n");
  1286. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1287. /* Restart timer on 2 second interval. */
  1288. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1289. return;
  1290. }
  1291. switch (qdev->port_link_state) {
  1292. default:
  1293. if (test_bit(QL_LINK_MASTER, &qdev->flags))
  1294. ql_port_start(qdev);
  1295. qdev->port_link_state = LS_DOWN;
  1296. /* Fall Through */
  1297. case LS_DOWN:
  1298. if (curr_link_state == LS_UP) {
  1299. netif_info(qdev, link, qdev->ndev, "Link is up\n");
  1300. if (ql_is_auto_neg_complete(qdev))
  1301. ql_finish_auto_neg(qdev);
  1302. if (qdev->port_link_state == LS_UP)
  1303. ql_link_down_detect_clear(qdev);
  1304. qdev->port_link_state = LS_UP;
  1305. }
  1306. break;
  1307. case LS_UP:
  1308. /*
  1309. * See if the link is currently down or went down and came
  1310. * back up
  1311. */
  1312. if (curr_link_state == LS_DOWN) {
  1313. netif_info(qdev, link, qdev->ndev, "Link is down\n");
  1314. qdev->port_link_state = LS_DOWN;
  1315. }
  1316. if (ql_link_down_detect(qdev))
  1317. qdev->port_link_state = LS_DOWN;
  1318. break;
  1319. }
  1320. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1321. /* Restart timer on 2 second interval. */
  1322. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  1323. }
  1324. /*
  1325. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1326. */
  1327. static void ql_get_phy_owner(struct ql3_adapter *qdev)
  1328. {
  1329. if (ql_this_adapter_controls_port(qdev))
  1330. set_bit(QL_LINK_MASTER, &qdev->flags);
  1331. else
  1332. clear_bit(QL_LINK_MASTER, &qdev->flags);
  1333. }
  1334. /*
  1335. * Caller must take hw_lock and QL_PHY_GIO_SEM.
  1336. */
  1337. static void ql_init_scan_mode(struct ql3_adapter *qdev)
  1338. {
  1339. ql_mii_enable_scan_mode(qdev);
  1340. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1341. if (ql_this_adapter_controls_port(qdev))
  1342. ql_petbi_init_ex(qdev);
  1343. } else {
  1344. if (ql_this_adapter_controls_port(qdev))
  1345. ql_phy_init_ex(qdev);
  1346. }
  1347. }
  1348. /*
  1349. * MII_Setup needs to be called before taking the PHY out of reset
  1350. * so that the management interface clock speed can be set properly.
  1351. * It would be better if we had a way to disable MDC until after the
  1352. * PHY is out of reset, but we don't have that capability.
  1353. */
  1354. static int ql_mii_setup(struct ql3_adapter *qdev)
  1355. {
  1356. u32 reg;
  1357. struct ql3xxx_port_registers __iomem *port_regs =
  1358. qdev->mem_map_registers;
  1359. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1360. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  1361. 2) << 7))
  1362. return -1;
  1363. if (qdev->device_id == QL3032_DEVICE_ID)
  1364. ql_write_page0_reg(qdev,
  1365. &port_regs->macMIIMgmtControlReg, 0x0f00000);
  1366. /* Divide 125MHz clock by 28 to meet PHY timing requirements */
  1367. reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
  1368. ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
  1369. reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
  1370. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1371. return 0;
  1372. }
  1373. #define SUPPORTED_OPTICAL_MODES (SUPPORTED_1000baseT_Full | \
  1374. SUPPORTED_FIBRE | \
  1375. SUPPORTED_Autoneg)
  1376. #define SUPPORTED_TP_MODES (SUPPORTED_10baseT_Half | \
  1377. SUPPORTED_10baseT_Full | \
  1378. SUPPORTED_100baseT_Half | \
  1379. SUPPORTED_100baseT_Full | \
  1380. SUPPORTED_1000baseT_Half | \
  1381. SUPPORTED_1000baseT_Full | \
  1382. SUPPORTED_Autoneg | \
  1383. SUPPORTED_TP) \
  1384. static u32 ql_supported_modes(struct ql3_adapter *qdev)
  1385. {
  1386. if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
  1387. return SUPPORTED_OPTICAL_MODES;
  1388. return SUPPORTED_TP_MODES;
  1389. }
  1390. static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
  1391. {
  1392. int status;
  1393. unsigned long hw_flags;
  1394. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1395. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1396. (QL_RESOURCE_BITS_BASE_CODE |
  1397. (qdev->mac_index) * 2) << 7)) {
  1398. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1399. return 0;
  1400. }
  1401. status = ql_is_auto_cfg(qdev);
  1402. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1403. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1404. return status;
  1405. }
  1406. static u32 ql_get_speed(struct ql3_adapter *qdev)
  1407. {
  1408. u32 status;
  1409. unsigned long hw_flags;
  1410. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1411. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1412. (QL_RESOURCE_BITS_BASE_CODE |
  1413. (qdev->mac_index) * 2) << 7)) {
  1414. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1415. return 0;
  1416. }
  1417. status = ql_get_link_speed(qdev);
  1418. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1419. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1420. return status;
  1421. }
  1422. static int ql_get_full_dup(struct ql3_adapter *qdev)
  1423. {
  1424. int status;
  1425. unsigned long hw_flags;
  1426. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1427. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  1428. (QL_RESOURCE_BITS_BASE_CODE |
  1429. (qdev->mac_index) * 2) << 7)) {
  1430. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1431. return 0;
  1432. }
  1433. status = ql_is_link_full_dup(qdev);
  1434. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  1435. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1436. return status;
  1437. }
  1438. static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
  1439. {
  1440. struct ql3_adapter *qdev = netdev_priv(ndev);
  1441. ecmd->transceiver = XCVR_INTERNAL;
  1442. ecmd->supported = ql_supported_modes(qdev);
  1443. if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
  1444. ecmd->port = PORT_FIBRE;
  1445. } else {
  1446. ecmd->port = PORT_TP;
  1447. ecmd->phy_address = qdev->PHYAddr;
  1448. }
  1449. ecmd->advertising = ql_supported_modes(qdev);
  1450. ecmd->autoneg = ql_get_auto_cfg_status(qdev);
  1451. ethtool_cmd_speed_set(ecmd, ql_get_speed(qdev));
  1452. ecmd->duplex = ql_get_full_dup(qdev);
  1453. return 0;
  1454. }
  1455. static void ql_get_drvinfo(struct net_device *ndev,
  1456. struct ethtool_drvinfo *drvinfo)
  1457. {
  1458. struct ql3_adapter *qdev = netdev_priv(ndev);
  1459. strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
  1460. strlcpy(drvinfo->version, ql3xxx_driver_version,
  1461. sizeof(drvinfo->version));
  1462. strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
  1463. sizeof(drvinfo->bus_info));
  1464. drvinfo->regdump_len = 0;
  1465. drvinfo->eedump_len = 0;
  1466. }
  1467. static u32 ql_get_msglevel(struct net_device *ndev)
  1468. {
  1469. struct ql3_adapter *qdev = netdev_priv(ndev);
  1470. return qdev->msg_enable;
  1471. }
  1472. static void ql_set_msglevel(struct net_device *ndev, u32 value)
  1473. {
  1474. struct ql3_adapter *qdev = netdev_priv(ndev);
  1475. qdev->msg_enable = value;
  1476. }
  1477. static void ql_get_pauseparam(struct net_device *ndev,
  1478. struct ethtool_pauseparam *pause)
  1479. {
  1480. struct ql3_adapter *qdev = netdev_priv(ndev);
  1481. struct ql3xxx_port_registers __iomem *port_regs =
  1482. qdev->mem_map_registers;
  1483. u32 reg;
  1484. if (qdev->mac_index == 0)
  1485. reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
  1486. else
  1487. reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
  1488. pause->autoneg = ql_get_auto_cfg_status(qdev);
  1489. pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
  1490. pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
  1491. }
  1492. static const struct ethtool_ops ql3xxx_ethtool_ops = {
  1493. .get_settings = ql_get_settings,
  1494. .get_drvinfo = ql_get_drvinfo,
  1495. .get_link = ethtool_op_get_link,
  1496. .get_msglevel = ql_get_msglevel,
  1497. .set_msglevel = ql_set_msglevel,
  1498. .get_pauseparam = ql_get_pauseparam,
  1499. };
  1500. static int ql_populate_free_queue(struct ql3_adapter *qdev)
  1501. {
  1502. struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
  1503. dma_addr_t map;
  1504. int err;
  1505. while (lrg_buf_cb) {
  1506. if (!lrg_buf_cb->skb) {
  1507. lrg_buf_cb->skb =
  1508. netdev_alloc_skb(qdev->ndev,
  1509. qdev->lrg_buffer_len);
  1510. if (unlikely(!lrg_buf_cb->skb)) {
  1511. netdev_printk(KERN_DEBUG, qdev->ndev,
  1512. "Failed netdev_alloc_skb()\n");
  1513. break;
  1514. } else {
  1515. /*
  1516. * We save some space to copy the ethhdr from
  1517. * first buffer
  1518. */
  1519. skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
  1520. map = pci_map_single(qdev->pdev,
  1521. lrg_buf_cb->skb->data,
  1522. qdev->lrg_buffer_len -
  1523. QL_HEADER_SPACE,
  1524. PCI_DMA_FROMDEVICE);
  1525. err = pci_dma_mapping_error(qdev->pdev, map);
  1526. if (err) {
  1527. netdev_err(qdev->ndev,
  1528. "PCI mapping failed with error: %d\n",
  1529. err);
  1530. dev_kfree_skb(lrg_buf_cb->skb);
  1531. lrg_buf_cb->skb = NULL;
  1532. break;
  1533. }
  1534. lrg_buf_cb->buf_phy_addr_low =
  1535. cpu_to_le32(LS_64BITS(map));
  1536. lrg_buf_cb->buf_phy_addr_high =
  1537. cpu_to_le32(MS_64BITS(map));
  1538. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  1539. dma_unmap_len_set(lrg_buf_cb, maplen,
  1540. qdev->lrg_buffer_len -
  1541. QL_HEADER_SPACE);
  1542. --qdev->lrg_buf_skb_check;
  1543. if (!qdev->lrg_buf_skb_check)
  1544. return 1;
  1545. }
  1546. }
  1547. lrg_buf_cb = lrg_buf_cb->next;
  1548. }
  1549. return 0;
  1550. }
  1551. /*
  1552. * Caller holds hw_lock.
  1553. */
  1554. static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
  1555. {
  1556. struct ql3xxx_port_registers __iomem *port_regs =
  1557. qdev->mem_map_registers;
  1558. if (qdev->small_buf_release_cnt >= 16) {
  1559. while (qdev->small_buf_release_cnt >= 16) {
  1560. qdev->small_buf_q_producer_index++;
  1561. if (qdev->small_buf_q_producer_index ==
  1562. NUM_SBUFQ_ENTRIES)
  1563. qdev->small_buf_q_producer_index = 0;
  1564. qdev->small_buf_release_cnt -= 8;
  1565. }
  1566. wmb();
  1567. writel(qdev->small_buf_q_producer_index,
  1568. &port_regs->CommonRegs.rxSmallQProducerIndex);
  1569. }
  1570. }
  1571. /*
  1572. * Caller holds hw_lock.
  1573. */
  1574. static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
  1575. {
  1576. struct bufq_addr_element *lrg_buf_q_ele;
  1577. int i;
  1578. struct ql_rcv_buf_cb *lrg_buf_cb;
  1579. struct ql3xxx_port_registers __iomem *port_regs =
  1580. qdev->mem_map_registers;
  1581. if ((qdev->lrg_buf_free_count >= 8) &&
  1582. (qdev->lrg_buf_release_cnt >= 16)) {
  1583. if (qdev->lrg_buf_skb_check)
  1584. if (!ql_populate_free_queue(qdev))
  1585. return;
  1586. lrg_buf_q_ele = qdev->lrg_buf_next_free;
  1587. while ((qdev->lrg_buf_release_cnt >= 16) &&
  1588. (qdev->lrg_buf_free_count >= 8)) {
  1589. for (i = 0; i < 8; i++) {
  1590. lrg_buf_cb =
  1591. ql_get_from_lrg_buf_free_list(qdev);
  1592. lrg_buf_q_ele->addr_high =
  1593. lrg_buf_cb->buf_phy_addr_high;
  1594. lrg_buf_q_ele->addr_low =
  1595. lrg_buf_cb->buf_phy_addr_low;
  1596. lrg_buf_q_ele++;
  1597. qdev->lrg_buf_release_cnt--;
  1598. }
  1599. qdev->lrg_buf_q_producer_index++;
  1600. if (qdev->lrg_buf_q_producer_index ==
  1601. qdev->num_lbufq_entries)
  1602. qdev->lrg_buf_q_producer_index = 0;
  1603. if (qdev->lrg_buf_q_producer_index ==
  1604. (qdev->num_lbufq_entries - 1)) {
  1605. lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
  1606. }
  1607. }
  1608. wmb();
  1609. qdev->lrg_buf_next_free = lrg_buf_q_ele;
  1610. writel(qdev->lrg_buf_q_producer_index,
  1611. &port_regs->CommonRegs.rxLargeQProducerIndex);
  1612. }
  1613. }
  1614. static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
  1615. struct ob_mac_iocb_rsp *mac_rsp)
  1616. {
  1617. struct ql_tx_buf_cb *tx_cb;
  1618. int i;
  1619. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1620. netdev_warn(qdev->ndev,
  1621. "Frame too short but it was padded and sent\n");
  1622. }
  1623. tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
  1624. /* Check the transmit response flags for any errors */
  1625. if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
  1626. netdev_err(qdev->ndev,
  1627. "Frame too short to be legal, frame not sent\n");
  1628. qdev->ndev->stats.tx_errors++;
  1629. goto frame_not_sent;
  1630. }
  1631. if (tx_cb->seg_count == 0) {
  1632. netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
  1633. mac_rsp->transaction_id);
  1634. qdev->ndev->stats.tx_errors++;
  1635. goto invalid_seg_count;
  1636. }
  1637. pci_unmap_single(qdev->pdev,
  1638. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  1639. dma_unmap_len(&tx_cb->map[0], maplen),
  1640. PCI_DMA_TODEVICE);
  1641. tx_cb->seg_count--;
  1642. if (tx_cb->seg_count) {
  1643. for (i = 1; i < tx_cb->seg_count; i++) {
  1644. pci_unmap_page(qdev->pdev,
  1645. dma_unmap_addr(&tx_cb->map[i],
  1646. mapaddr),
  1647. dma_unmap_len(&tx_cb->map[i], maplen),
  1648. PCI_DMA_TODEVICE);
  1649. }
  1650. }
  1651. qdev->ndev->stats.tx_packets++;
  1652. qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
  1653. frame_not_sent:
  1654. dev_kfree_skb_irq(tx_cb->skb);
  1655. tx_cb->skb = NULL;
  1656. invalid_seg_count:
  1657. atomic_inc(&qdev->tx_count);
  1658. }
  1659. static void ql_get_sbuf(struct ql3_adapter *qdev)
  1660. {
  1661. if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
  1662. qdev->small_buf_index = 0;
  1663. qdev->small_buf_release_cnt++;
  1664. }
  1665. static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
  1666. {
  1667. struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
  1668. lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
  1669. qdev->lrg_buf_release_cnt++;
  1670. if (++qdev->lrg_buf_index == qdev->num_large_buffers)
  1671. qdev->lrg_buf_index = 0;
  1672. return lrg_buf_cb;
  1673. }
  1674. /*
  1675. * The difference between 3022 and 3032 for inbound completions:
  1676. * 3022 uses two buffers per completion. The first buffer contains
  1677. * (some) header info, the second the remainder of the headers plus
  1678. * the data. For this chip we reserve some space at the top of the
  1679. * receive buffer so that the header info in buffer one can be
  1680. * prepended to the buffer two. Buffer two is the sent up while
  1681. * buffer one is returned to the hardware to be reused.
  1682. * 3032 receives all of it's data and headers in one buffer for a
  1683. * simpler process. 3032 also supports checksum verification as
  1684. * can be seen in ql_process_macip_rx_intr().
  1685. */
  1686. static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
  1687. struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
  1688. {
  1689. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1690. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1691. struct sk_buff *skb;
  1692. u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
  1693. /*
  1694. * Get the inbound address list (small buffer).
  1695. */
  1696. ql_get_sbuf(qdev);
  1697. if (qdev->device_id == QL3022_DEVICE_ID)
  1698. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1699. /* start of second buffer */
  1700. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1701. skb = lrg_buf_cb2->skb;
  1702. qdev->ndev->stats.rx_packets++;
  1703. qdev->ndev->stats.rx_bytes += length;
  1704. skb_put(skb, length);
  1705. pci_unmap_single(qdev->pdev,
  1706. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1707. dma_unmap_len(lrg_buf_cb2, maplen),
  1708. PCI_DMA_FROMDEVICE);
  1709. prefetch(skb->data);
  1710. skb_checksum_none_assert(skb);
  1711. skb->protocol = eth_type_trans(skb, qdev->ndev);
  1712. netif_receive_skb(skb);
  1713. lrg_buf_cb2->skb = NULL;
  1714. if (qdev->device_id == QL3022_DEVICE_ID)
  1715. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1716. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1717. }
  1718. static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
  1719. struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
  1720. {
  1721. struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
  1722. struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
  1723. struct sk_buff *skb1 = NULL, *skb2;
  1724. struct net_device *ndev = qdev->ndev;
  1725. u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
  1726. u16 size = 0;
  1727. /*
  1728. * Get the inbound address list (small buffer).
  1729. */
  1730. ql_get_sbuf(qdev);
  1731. if (qdev->device_id == QL3022_DEVICE_ID) {
  1732. /* start of first buffer on 3022 */
  1733. lrg_buf_cb1 = ql_get_lbuf(qdev);
  1734. skb1 = lrg_buf_cb1->skb;
  1735. size = ETH_HLEN;
  1736. if (*((u16 *) skb1->data) != 0xFFFF)
  1737. size += VLAN_ETH_HLEN - ETH_HLEN;
  1738. }
  1739. /* start of second buffer */
  1740. lrg_buf_cb2 = ql_get_lbuf(qdev);
  1741. skb2 = lrg_buf_cb2->skb;
  1742. skb_put(skb2, length); /* Just the second buffer length here. */
  1743. pci_unmap_single(qdev->pdev,
  1744. dma_unmap_addr(lrg_buf_cb2, mapaddr),
  1745. dma_unmap_len(lrg_buf_cb2, maplen),
  1746. PCI_DMA_FROMDEVICE);
  1747. prefetch(skb2->data);
  1748. skb_checksum_none_assert(skb2);
  1749. if (qdev->device_id == QL3022_DEVICE_ID) {
  1750. /*
  1751. * Copy the ethhdr from first buffer to second. This
  1752. * is necessary for 3022 IP completions.
  1753. */
  1754. skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
  1755. skb_push(skb2, size), size);
  1756. } else {
  1757. u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
  1758. if (checksum &
  1759. (IB_IP_IOCB_RSP_3032_ICE |
  1760. IB_IP_IOCB_RSP_3032_CE)) {
  1761. netdev_err(ndev,
  1762. "%s: Bad checksum for this %s packet, checksum = %x\n",
  1763. __func__,
  1764. ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
  1765. "TCP" : "UDP"), checksum);
  1766. } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
  1767. (checksum & IB_IP_IOCB_RSP_3032_UDP &&
  1768. !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
  1769. skb2->ip_summed = CHECKSUM_UNNECESSARY;
  1770. }
  1771. }
  1772. skb2->protocol = eth_type_trans(skb2, qdev->ndev);
  1773. netif_receive_skb(skb2);
  1774. ndev->stats.rx_packets++;
  1775. ndev->stats.rx_bytes += length;
  1776. lrg_buf_cb2->skb = NULL;
  1777. if (qdev->device_id == QL3022_DEVICE_ID)
  1778. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
  1779. ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
  1780. }
  1781. static int ql_tx_rx_clean(struct ql3_adapter *qdev,
  1782. int *tx_cleaned, int *rx_cleaned, int work_to_do)
  1783. {
  1784. struct net_rsp_iocb *net_rsp;
  1785. struct net_device *ndev = qdev->ndev;
  1786. int work_done = 0;
  1787. /* While there are entries in the completion queue. */
  1788. while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
  1789. qdev->rsp_consumer_index) && (work_done < work_to_do)) {
  1790. net_rsp = qdev->rsp_current;
  1791. rmb();
  1792. /*
  1793. * Fix 4032 chip's undocumented "feature" where bit-8 is set
  1794. * if the inbound completion is for a VLAN.
  1795. */
  1796. if (qdev->device_id == QL3032_DEVICE_ID)
  1797. net_rsp->opcode &= 0x7f;
  1798. switch (net_rsp->opcode) {
  1799. case OPCODE_OB_MAC_IOCB_FN0:
  1800. case OPCODE_OB_MAC_IOCB_FN2:
  1801. ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
  1802. net_rsp);
  1803. (*tx_cleaned)++;
  1804. break;
  1805. case OPCODE_IB_MAC_IOCB:
  1806. case OPCODE_IB_3032_MAC_IOCB:
  1807. ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
  1808. net_rsp);
  1809. (*rx_cleaned)++;
  1810. break;
  1811. case OPCODE_IB_IP_IOCB:
  1812. case OPCODE_IB_3032_IP_IOCB:
  1813. ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
  1814. net_rsp);
  1815. (*rx_cleaned)++;
  1816. break;
  1817. default: {
  1818. u32 *tmp = (u32 *)net_rsp;
  1819. netdev_err(ndev,
  1820. "Hit default case, not handled!\n"
  1821. " dropping the packet, opcode = %x\n"
  1822. "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
  1823. net_rsp->opcode,
  1824. (unsigned long int)tmp[0],
  1825. (unsigned long int)tmp[1],
  1826. (unsigned long int)tmp[2],
  1827. (unsigned long int)tmp[3]);
  1828. }
  1829. }
  1830. qdev->rsp_consumer_index++;
  1831. if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
  1832. qdev->rsp_consumer_index = 0;
  1833. qdev->rsp_current = qdev->rsp_q_virt_addr;
  1834. } else {
  1835. qdev->rsp_current++;
  1836. }
  1837. work_done = *tx_cleaned + *rx_cleaned;
  1838. }
  1839. return work_done;
  1840. }
  1841. static int ql_poll(struct napi_struct *napi, int budget)
  1842. {
  1843. struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
  1844. int rx_cleaned = 0, tx_cleaned = 0;
  1845. unsigned long hw_flags;
  1846. struct ql3xxx_port_registers __iomem *port_regs =
  1847. qdev->mem_map_registers;
  1848. ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
  1849. if (tx_cleaned + rx_cleaned != budget) {
  1850. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  1851. __napi_complete(napi);
  1852. ql_update_small_bufq_prod_index(qdev);
  1853. ql_update_lrg_bufq_prod_index(qdev);
  1854. writel(qdev->rsp_consumer_index,
  1855. &port_regs->CommonRegs.rspQConsumerIndex);
  1856. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  1857. ql_enable_interrupts(qdev);
  1858. }
  1859. return tx_cleaned + rx_cleaned;
  1860. }
  1861. static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
  1862. {
  1863. struct net_device *ndev = dev_id;
  1864. struct ql3_adapter *qdev = netdev_priv(ndev);
  1865. struct ql3xxx_port_registers __iomem *port_regs =
  1866. qdev->mem_map_registers;
  1867. u32 value;
  1868. int handled = 1;
  1869. u32 var;
  1870. value = ql_read_common_reg_l(qdev,
  1871. &port_regs->CommonRegs.ispControlStatus);
  1872. if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
  1873. spin_lock(&qdev->adapter_lock);
  1874. netif_stop_queue(qdev->ndev);
  1875. netif_carrier_off(qdev->ndev);
  1876. ql_disable_interrupts(qdev);
  1877. qdev->port_link_state = LS_DOWN;
  1878. set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
  1879. if (value & ISP_CONTROL_FE) {
  1880. /*
  1881. * Chip Fatal Error.
  1882. */
  1883. var =
  1884. ql_read_page0_reg_l(qdev,
  1885. &port_regs->PortFatalErrStatus);
  1886. netdev_warn(ndev,
  1887. "Resetting chip. PortFatalErrStatus register = 0x%x\n",
  1888. var);
  1889. set_bit(QL_RESET_START, &qdev->flags) ;
  1890. } else {
  1891. /*
  1892. * Soft Reset Requested.
  1893. */
  1894. set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
  1895. netdev_err(ndev,
  1896. "Another function issued a reset to the chip. ISR value = %x\n",
  1897. value);
  1898. }
  1899. queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
  1900. spin_unlock(&qdev->adapter_lock);
  1901. } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
  1902. ql_disable_interrupts(qdev);
  1903. if (likely(napi_schedule_prep(&qdev->napi)))
  1904. __napi_schedule(&qdev->napi);
  1905. } else
  1906. return IRQ_NONE;
  1907. return IRQ_RETVAL(handled);
  1908. }
  1909. /*
  1910. * Get the total number of segments needed for the given number of fragments.
  1911. * This is necessary because outbound address lists (OAL) will be used when
  1912. * more than two frags are given. Each address list has 5 addr/len pairs.
  1913. * The 5th pair in each OAL is used to point to the next OAL if more frags
  1914. * are coming. That is why the frags:segment count ratio is not linear.
  1915. */
  1916. static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
  1917. {
  1918. if (qdev->device_id == QL3022_DEVICE_ID)
  1919. return 1;
  1920. if (frags <= 2)
  1921. return frags + 1;
  1922. else if (frags <= 6)
  1923. return frags + 2;
  1924. else if (frags <= 10)
  1925. return frags + 3;
  1926. else if (frags <= 14)
  1927. return frags + 4;
  1928. else if (frags <= 18)
  1929. return frags + 5;
  1930. return -1;
  1931. }
  1932. static void ql_hw_csum_setup(const struct sk_buff *skb,
  1933. struct ob_mac_iocb_req *mac_iocb_ptr)
  1934. {
  1935. const struct iphdr *ip = ip_hdr(skb);
  1936. mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
  1937. mac_iocb_ptr->ip_hdr_len = ip->ihl;
  1938. if (ip->protocol == IPPROTO_TCP) {
  1939. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
  1940. OB_3032MAC_IOCB_REQ_IC;
  1941. } else {
  1942. mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
  1943. OB_3032MAC_IOCB_REQ_IC;
  1944. }
  1945. }
  1946. /*
  1947. * Map the buffers for this transmit.
  1948. * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  1949. */
  1950. static int ql_send_map(struct ql3_adapter *qdev,
  1951. struct ob_mac_iocb_req *mac_iocb_ptr,
  1952. struct ql_tx_buf_cb *tx_cb,
  1953. struct sk_buff *skb)
  1954. {
  1955. struct oal *oal;
  1956. struct oal_entry *oal_entry;
  1957. int len = skb_headlen(skb);
  1958. dma_addr_t map;
  1959. int err;
  1960. int completed_segs, i;
  1961. int seg_cnt, seg = 0;
  1962. int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
  1963. seg_cnt = tx_cb->seg_count;
  1964. /*
  1965. * Map the skb buffer first.
  1966. */
  1967. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1968. err = pci_dma_mapping_error(qdev->pdev, map);
  1969. if (err) {
  1970. netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
  1971. err);
  1972. return NETDEV_TX_BUSY;
  1973. }
  1974. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  1975. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  1976. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  1977. oal_entry->len = cpu_to_le32(len);
  1978. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  1979. dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
  1980. seg++;
  1981. if (seg_cnt == 1) {
  1982. /* Terminate the last segment. */
  1983. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  1984. return NETDEV_TX_OK;
  1985. }
  1986. oal = tx_cb->oal;
  1987. for (completed_segs = 0;
  1988. completed_segs < frag_cnt;
  1989. completed_segs++, seg++) {
  1990. skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
  1991. oal_entry++;
  1992. /*
  1993. * Check for continuation requirements.
  1994. * It's strange but necessary.
  1995. * Continuation entry points to outbound address list.
  1996. */
  1997. if ((seg == 2 && seg_cnt > 3) ||
  1998. (seg == 7 && seg_cnt > 8) ||
  1999. (seg == 12 && seg_cnt > 13) ||
  2000. (seg == 17 && seg_cnt > 18)) {
  2001. map = pci_map_single(qdev->pdev, oal,
  2002. sizeof(struct oal),
  2003. PCI_DMA_TODEVICE);
  2004. err = pci_dma_mapping_error(qdev->pdev, map);
  2005. if (err) {
  2006. netdev_err(qdev->ndev,
  2007. "PCI mapping outbound address list with error: %d\n",
  2008. err);
  2009. goto map_error;
  2010. }
  2011. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2012. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2013. oal_entry->len = cpu_to_le32(sizeof(struct oal) |
  2014. OAL_CONT_ENTRY);
  2015. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2016. dma_unmap_len_set(&tx_cb->map[seg], maplen,
  2017. sizeof(struct oal));
  2018. oal_entry = (struct oal_entry *)oal;
  2019. oal++;
  2020. seg++;
  2021. }
  2022. map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
  2023. DMA_TO_DEVICE);
  2024. err = dma_mapping_error(&qdev->pdev->dev, map);
  2025. if (err) {
  2026. netdev_err(qdev->ndev,
  2027. "PCI mapping frags failed with error: %d\n",
  2028. err);
  2029. goto map_error;
  2030. }
  2031. oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
  2032. oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
  2033. oal_entry->len = cpu_to_le32(skb_frag_size(frag));
  2034. dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
  2035. dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
  2036. }
  2037. /* Terminate the last segment. */
  2038. oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
  2039. return NETDEV_TX_OK;
  2040. map_error:
  2041. /* A PCI mapping failed and now we will need to back out
  2042. * We need to traverse through the oal's and associated pages which
  2043. * have been mapped and now we must unmap them to clean up properly
  2044. */
  2045. seg = 1;
  2046. oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
  2047. oal = tx_cb->oal;
  2048. for (i = 0; i < completed_segs; i++, seg++) {
  2049. oal_entry++;
  2050. /*
  2051. * Check for continuation requirements.
  2052. * It's strange but necessary.
  2053. */
  2054. if ((seg == 2 && seg_cnt > 3) ||
  2055. (seg == 7 && seg_cnt > 8) ||
  2056. (seg == 12 && seg_cnt > 13) ||
  2057. (seg == 17 && seg_cnt > 18)) {
  2058. pci_unmap_single(qdev->pdev,
  2059. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2060. dma_unmap_len(&tx_cb->map[seg], maplen),
  2061. PCI_DMA_TODEVICE);
  2062. oal++;
  2063. seg++;
  2064. }
  2065. pci_unmap_page(qdev->pdev,
  2066. dma_unmap_addr(&tx_cb->map[seg], mapaddr),
  2067. dma_unmap_len(&tx_cb->map[seg], maplen),
  2068. PCI_DMA_TODEVICE);
  2069. }
  2070. pci_unmap_single(qdev->pdev,
  2071. dma_unmap_addr(&tx_cb->map[0], mapaddr),
  2072. dma_unmap_addr(&tx_cb->map[0], maplen),
  2073. PCI_DMA_TODEVICE);
  2074. return NETDEV_TX_BUSY;
  2075. }
  2076. /*
  2077. * The difference between 3022 and 3032 sends:
  2078. * 3022 only supports a simple single segment transmission.
  2079. * 3032 supports checksumming and scatter/gather lists (fragments).
  2080. * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
  2081. * in the IOCB plus a chain of outbound address lists (OAL) that
  2082. * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
  2083. * will be used to point to an OAL when more ALP entries are required.
  2084. * The IOCB is always the top of the chain followed by one or more
  2085. * OALs (when necessary).
  2086. */
  2087. static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
  2088. struct net_device *ndev)
  2089. {
  2090. struct ql3_adapter *qdev = netdev_priv(ndev);
  2091. struct ql3xxx_port_registers __iomem *port_regs =
  2092. qdev->mem_map_registers;
  2093. struct ql_tx_buf_cb *tx_cb;
  2094. u32 tot_len = skb->len;
  2095. struct ob_mac_iocb_req *mac_iocb_ptr;
  2096. if (unlikely(atomic_read(&qdev->tx_count) < 2))
  2097. return NETDEV_TX_BUSY;
  2098. tx_cb = &qdev->tx_buf[qdev->req_producer_index];
  2099. tx_cb->seg_count = ql_get_seg_count(qdev,
  2100. skb_shinfo(skb)->nr_frags);
  2101. if (tx_cb->seg_count == -1) {
  2102. netdev_err(ndev, "%s: invalid segment count!\n", __func__);
  2103. return NETDEV_TX_OK;
  2104. }
  2105. mac_iocb_ptr = tx_cb->queue_entry;
  2106. memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
  2107. mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
  2108. mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
  2109. mac_iocb_ptr->flags |= qdev->mb_bit_mask;
  2110. mac_iocb_ptr->transaction_id = qdev->req_producer_index;
  2111. mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
  2112. tx_cb->skb = skb;
  2113. if (qdev->device_id == QL3032_DEVICE_ID &&
  2114. skb->ip_summed == CHECKSUM_PARTIAL)
  2115. ql_hw_csum_setup(skb, mac_iocb_ptr);
  2116. if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
  2117. netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
  2118. return NETDEV_TX_BUSY;
  2119. }
  2120. wmb();
  2121. qdev->req_producer_index++;
  2122. if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
  2123. qdev->req_producer_index = 0;
  2124. wmb();
  2125. ql_write_common_reg_l(qdev,
  2126. &port_regs->CommonRegs.reqQProducerIndex,
  2127. qdev->req_producer_index);
  2128. netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
  2129. "tx queued, slot %d, len %d\n",
  2130. qdev->req_producer_index, skb->len);
  2131. atomic_dec(&qdev->tx_count);
  2132. return NETDEV_TX_OK;
  2133. }
  2134. static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
  2135. {
  2136. qdev->req_q_size =
  2137. (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
  2138. qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
  2139. /* The barrier is required to ensure request and response queue
  2140. * addr writes to the registers.
  2141. */
  2142. wmb();
  2143. qdev->req_q_virt_addr =
  2144. pci_alloc_consistent(qdev->pdev,
  2145. (size_t) qdev->req_q_size,
  2146. &qdev->req_q_phy_addr);
  2147. if ((qdev->req_q_virt_addr == NULL) ||
  2148. LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
  2149. netdev_err(qdev->ndev, "reqQ failed\n");
  2150. return -ENOMEM;
  2151. }
  2152. qdev->rsp_q_virt_addr =
  2153. pci_alloc_consistent(qdev->pdev,
  2154. (size_t) qdev->rsp_q_size,
  2155. &qdev->rsp_q_phy_addr);
  2156. if ((qdev->rsp_q_virt_addr == NULL) ||
  2157. LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
  2158. netdev_err(qdev->ndev, "rspQ allocation failed\n");
  2159. pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
  2160. qdev->req_q_virt_addr,
  2161. qdev->req_q_phy_addr);
  2162. return -ENOMEM;
  2163. }
  2164. set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2165. return 0;
  2166. }
  2167. static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
  2168. {
  2169. if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
  2170. netdev_info(qdev->ndev, "Already done\n");
  2171. return;
  2172. }
  2173. pci_free_consistent(qdev->pdev,
  2174. qdev->req_q_size,
  2175. qdev->req_q_virt_addr, qdev->req_q_phy_addr);
  2176. qdev->req_q_virt_addr = NULL;
  2177. pci_free_consistent(qdev->pdev,
  2178. qdev->rsp_q_size,
  2179. qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
  2180. qdev->rsp_q_virt_addr = NULL;
  2181. clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
  2182. }
  2183. static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
  2184. {
  2185. /* Create Large Buffer Queue */
  2186. qdev->lrg_buf_q_size =
  2187. qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
  2188. if (qdev->lrg_buf_q_size < PAGE_SIZE)
  2189. qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
  2190. else
  2191. qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
  2192. qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
  2193. sizeof(struct ql_rcv_buf_cb),
  2194. GFP_KERNEL);
  2195. if (qdev->lrg_buf == NULL)
  2196. return -ENOMEM;
  2197. qdev->lrg_buf_q_alloc_virt_addr =
  2198. pci_alloc_consistent(qdev->pdev,
  2199. qdev->lrg_buf_q_alloc_size,
  2200. &qdev->lrg_buf_q_alloc_phy_addr);
  2201. if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
  2202. netdev_err(qdev->ndev, "lBufQ failed\n");
  2203. return -ENOMEM;
  2204. }
  2205. qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
  2206. qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
  2207. /* Create Small Buffer Queue */
  2208. qdev->small_buf_q_size =
  2209. NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
  2210. if (qdev->small_buf_q_size < PAGE_SIZE)
  2211. qdev->small_buf_q_alloc_size = PAGE_SIZE;
  2212. else
  2213. qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
  2214. qdev->small_buf_q_alloc_virt_addr =
  2215. pci_alloc_consistent(qdev->pdev,
  2216. qdev->small_buf_q_alloc_size,
  2217. &qdev->small_buf_q_alloc_phy_addr);
  2218. if (qdev->small_buf_q_alloc_virt_addr == NULL) {
  2219. netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
  2220. pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
  2221. qdev->lrg_buf_q_alloc_virt_addr,
  2222. qdev->lrg_buf_q_alloc_phy_addr);
  2223. return -ENOMEM;
  2224. }
  2225. qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
  2226. qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
  2227. set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2228. return 0;
  2229. }
  2230. static void ql_free_buffer_queues(struct ql3_adapter *qdev)
  2231. {
  2232. if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
  2233. netdev_info(qdev->ndev, "Already done\n");
  2234. return;
  2235. }
  2236. kfree(qdev->lrg_buf);
  2237. pci_free_consistent(qdev->pdev,
  2238. qdev->lrg_buf_q_alloc_size,
  2239. qdev->lrg_buf_q_alloc_virt_addr,
  2240. qdev->lrg_buf_q_alloc_phy_addr);
  2241. qdev->lrg_buf_q_virt_addr = NULL;
  2242. pci_free_consistent(qdev->pdev,
  2243. qdev->small_buf_q_alloc_size,
  2244. qdev->small_buf_q_alloc_virt_addr,
  2245. qdev->small_buf_q_alloc_phy_addr);
  2246. qdev->small_buf_q_virt_addr = NULL;
  2247. clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
  2248. }
  2249. static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
  2250. {
  2251. int i;
  2252. struct bufq_addr_element *small_buf_q_entry;
  2253. /* Currently we allocate on one of memory and use it for smallbuffers */
  2254. qdev->small_buf_total_size =
  2255. (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
  2256. QL_SMALL_BUFFER_SIZE);
  2257. qdev->small_buf_virt_addr =
  2258. pci_alloc_consistent(qdev->pdev,
  2259. qdev->small_buf_total_size,
  2260. &qdev->small_buf_phy_addr);
  2261. if (qdev->small_buf_virt_addr == NULL) {
  2262. netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
  2263. return -ENOMEM;
  2264. }
  2265. qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
  2266. qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
  2267. small_buf_q_entry = qdev->small_buf_q_virt_addr;
  2268. /* Initialize the small buffer queue. */
  2269. for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
  2270. small_buf_q_entry->addr_high =
  2271. cpu_to_le32(qdev->small_buf_phy_addr_high);
  2272. small_buf_q_entry->addr_low =
  2273. cpu_to_le32(qdev->small_buf_phy_addr_low +
  2274. (i * QL_SMALL_BUFFER_SIZE));
  2275. small_buf_q_entry++;
  2276. }
  2277. qdev->small_buf_index = 0;
  2278. set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
  2279. return 0;
  2280. }
  2281. static void ql_free_small_buffers(struct ql3_adapter *qdev)
  2282. {
  2283. if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
  2284. netdev_info(qdev->ndev, "Already done\n");
  2285. return;
  2286. }
  2287. if (qdev->small_buf_virt_addr != NULL) {
  2288. pci_free_consistent(qdev->pdev,
  2289. qdev->small_buf_total_size,
  2290. qdev->small_buf_virt_addr,
  2291. qdev->small_buf_phy_addr);
  2292. qdev->small_buf_virt_addr = NULL;
  2293. }
  2294. }
  2295. static void ql_free_large_buffers(struct ql3_adapter *qdev)
  2296. {
  2297. int i = 0;
  2298. struct ql_rcv_buf_cb *lrg_buf_cb;
  2299. for (i = 0; i < qdev->num_large_buffers; i++) {
  2300. lrg_buf_cb = &qdev->lrg_buf[i];
  2301. if (lrg_buf_cb->skb) {
  2302. dev_kfree_skb(lrg_buf_cb->skb);
  2303. pci_unmap_single(qdev->pdev,
  2304. dma_unmap_addr(lrg_buf_cb, mapaddr),
  2305. dma_unmap_len(lrg_buf_cb, maplen),
  2306. PCI_DMA_FROMDEVICE);
  2307. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2308. } else {
  2309. break;
  2310. }
  2311. }
  2312. }
  2313. static void ql_init_large_buffers(struct ql3_adapter *qdev)
  2314. {
  2315. int i;
  2316. struct ql_rcv_buf_cb *lrg_buf_cb;
  2317. struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
  2318. for (i = 0; i < qdev->num_large_buffers; i++) {
  2319. lrg_buf_cb = &qdev->lrg_buf[i];
  2320. buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
  2321. buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
  2322. buf_addr_ele++;
  2323. }
  2324. qdev->lrg_buf_index = 0;
  2325. qdev->lrg_buf_skb_check = 0;
  2326. }
  2327. static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
  2328. {
  2329. int i;
  2330. struct ql_rcv_buf_cb *lrg_buf_cb;
  2331. struct sk_buff *skb;
  2332. dma_addr_t map;
  2333. int err;
  2334. for (i = 0; i < qdev->num_large_buffers; i++) {
  2335. skb = netdev_alloc_skb(qdev->ndev,
  2336. qdev->lrg_buffer_len);
  2337. if (unlikely(!skb)) {
  2338. /* Better luck next round */
  2339. netdev_err(qdev->ndev,
  2340. "large buff alloc failed for %d bytes at index %d\n",
  2341. qdev->lrg_buffer_len * 2, i);
  2342. ql_free_large_buffers(qdev);
  2343. return -ENOMEM;
  2344. } else {
  2345. lrg_buf_cb = &qdev->lrg_buf[i];
  2346. memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
  2347. lrg_buf_cb->index = i;
  2348. lrg_buf_cb->skb = skb;
  2349. /*
  2350. * We save some space to copy the ethhdr from first
  2351. * buffer
  2352. */
  2353. skb_reserve(skb, QL_HEADER_SPACE);
  2354. map = pci_map_single(qdev->pdev,
  2355. skb->data,
  2356. qdev->lrg_buffer_len -
  2357. QL_HEADER_SPACE,
  2358. PCI_DMA_FROMDEVICE);
  2359. err = pci_dma_mapping_error(qdev->pdev, map);
  2360. if (err) {
  2361. netdev_err(qdev->ndev,
  2362. "PCI mapping failed with error: %d\n",
  2363. err);
  2364. ql_free_large_buffers(qdev);
  2365. return -ENOMEM;
  2366. }
  2367. dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
  2368. dma_unmap_len_set(lrg_buf_cb, maplen,
  2369. qdev->lrg_buffer_len -
  2370. QL_HEADER_SPACE);
  2371. lrg_buf_cb->buf_phy_addr_low =
  2372. cpu_to_le32(LS_64BITS(map));
  2373. lrg_buf_cb->buf_phy_addr_high =
  2374. cpu_to_le32(MS_64BITS(map));
  2375. }
  2376. }
  2377. return 0;
  2378. }
  2379. static void ql_free_send_free_list(struct ql3_adapter *qdev)
  2380. {
  2381. struct ql_tx_buf_cb *tx_cb;
  2382. int i;
  2383. tx_cb = &qdev->tx_buf[0];
  2384. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2385. kfree(tx_cb->oal);
  2386. tx_cb->oal = NULL;
  2387. tx_cb++;
  2388. }
  2389. }
  2390. static int ql_create_send_free_list(struct ql3_adapter *qdev)
  2391. {
  2392. struct ql_tx_buf_cb *tx_cb;
  2393. int i;
  2394. struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
  2395. /* Create free list of transmit buffers */
  2396. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  2397. tx_cb = &qdev->tx_buf[i];
  2398. tx_cb->skb = NULL;
  2399. tx_cb->queue_entry = req_q_curr;
  2400. req_q_curr++;
  2401. tx_cb->oal = kmalloc(512, GFP_KERNEL);
  2402. if (tx_cb->oal == NULL)
  2403. return -ENOMEM;
  2404. }
  2405. return 0;
  2406. }
  2407. static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
  2408. {
  2409. if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
  2410. qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
  2411. qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
  2412. } else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
  2413. /*
  2414. * Bigger buffers, so less of them.
  2415. */
  2416. qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
  2417. qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
  2418. } else {
  2419. netdev_err(qdev->ndev, "Invalid mtu size: %d. Only %d and %d are accepted.\n",
  2420. qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
  2421. return -ENOMEM;
  2422. }
  2423. qdev->num_large_buffers =
  2424. qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
  2425. qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
  2426. qdev->max_frame_size =
  2427. (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
  2428. /*
  2429. * First allocate a page of shared memory and use it for shadow
  2430. * locations of Network Request Queue Consumer Address Register and
  2431. * Network Completion Queue Producer Index Register
  2432. */
  2433. qdev->shadow_reg_virt_addr =
  2434. pci_alloc_consistent(qdev->pdev,
  2435. PAGE_SIZE, &qdev->shadow_reg_phy_addr);
  2436. if (qdev->shadow_reg_virt_addr != NULL) {
  2437. qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
  2438. qdev->req_consumer_index_phy_addr_high =
  2439. MS_64BITS(qdev->shadow_reg_phy_addr);
  2440. qdev->req_consumer_index_phy_addr_low =
  2441. LS_64BITS(qdev->shadow_reg_phy_addr);
  2442. qdev->prsp_producer_index =
  2443. (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
  2444. qdev->rsp_producer_index_phy_addr_high =
  2445. qdev->req_consumer_index_phy_addr_high;
  2446. qdev->rsp_producer_index_phy_addr_low =
  2447. qdev->req_consumer_index_phy_addr_low + 8;
  2448. } else {
  2449. netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
  2450. return -ENOMEM;
  2451. }
  2452. if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
  2453. netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
  2454. goto err_req_rsp;
  2455. }
  2456. if (ql_alloc_buffer_queues(qdev) != 0) {
  2457. netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
  2458. goto err_buffer_queues;
  2459. }
  2460. if (ql_alloc_small_buffers(qdev) != 0) {
  2461. netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
  2462. goto err_small_buffers;
  2463. }
  2464. if (ql_alloc_large_buffers(qdev) != 0) {
  2465. netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
  2466. goto err_small_buffers;
  2467. }
  2468. /* Initialize the large buffer queue. */
  2469. ql_init_large_buffers(qdev);
  2470. if (ql_create_send_free_list(qdev))
  2471. goto err_free_list;
  2472. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2473. return 0;
  2474. err_free_list:
  2475. ql_free_send_free_list(qdev);
  2476. err_small_buffers:
  2477. ql_free_buffer_queues(qdev);
  2478. err_buffer_queues:
  2479. ql_free_net_req_rsp_queues(qdev);
  2480. err_req_rsp:
  2481. pci_free_consistent(qdev->pdev,
  2482. PAGE_SIZE,
  2483. qdev->shadow_reg_virt_addr,
  2484. qdev->shadow_reg_phy_addr);
  2485. return -ENOMEM;
  2486. }
  2487. static void ql_free_mem_resources(struct ql3_adapter *qdev)
  2488. {
  2489. ql_free_send_free_list(qdev);
  2490. ql_free_large_buffers(qdev);
  2491. ql_free_small_buffers(qdev);
  2492. ql_free_buffer_queues(qdev);
  2493. ql_free_net_req_rsp_queues(qdev);
  2494. if (qdev->shadow_reg_virt_addr != NULL) {
  2495. pci_free_consistent(qdev->pdev,
  2496. PAGE_SIZE,
  2497. qdev->shadow_reg_virt_addr,
  2498. qdev->shadow_reg_phy_addr);
  2499. qdev->shadow_reg_virt_addr = NULL;
  2500. }
  2501. }
  2502. static int ql_init_misc_registers(struct ql3_adapter *qdev)
  2503. {
  2504. struct ql3xxx_local_ram_registers __iomem *local_ram =
  2505. (void __iomem *)qdev->mem_map_registers;
  2506. if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
  2507. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2508. 2) << 4))
  2509. return -1;
  2510. ql_write_page2_reg(qdev,
  2511. &local_ram->bufletSize, qdev->nvram_data.bufletSize);
  2512. ql_write_page2_reg(qdev,
  2513. &local_ram->maxBufletCount,
  2514. qdev->nvram_data.bufletCount);
  2515. ql_write_page2_reg(qdev,
  2516. &local_ram->freeBufletThresholdLow,
  2517. (qdev->nvram_data.tcpWindowThreshold25 << 16) |
  2518. (qdev->nvram_data.tcpWindowThreshold0));
  2519. ql_write_page2_reg(qdev,
  2520. &local_ram->freeBufletThresholdHigh,
  2521. qdev->nvram_data.tcpWindowThreshold50);
  2522. ql_write_page2_reg(qdev,
  2523. &local_ram->ipHashTableBase,
  2524. (qdev->nvram_data.ipHashTableBaseHi << 16) |
  2525. qdev->nvram_data.ipHashTableBaseLo);
  2526. ql_write_page2_reg(qdev,
  2527. &local_ram->ipHashTableCount,
  2528. qdev->nvram_data.ipHashTableSize);
  2529. ql_write_page2_reg(qdev,
  2530. &local_ram->tcpHashTableBase,
  2531. (qdev->nvram_data.tcpHashTableBaseHi << 16) |
  2532. qdev->nvram_data.tcpHashTableBaseLo);
  2533. ql_write_page2_reg(qdev,
  2534. &local_ram->tcpHashTableCount,
  2535. qdev->nvram_data.tcpHashTableSize);
  2536. ql_write_page2_reg(qdev,
  2537. &local_ram->ncbBase,
  2538. (qdev->nvram_data.ncbTableBaseHi << 16) |
  2539. qdev->nvram_data.ncbTableBaseLo);
  2540. ql_write_page2_reg(qdev,
  2541. &local_ram->maxNcbCount,
  2542. qdev->nvram_data.ncbTableSize);
  2543. ql_write_page2_reg(qdev,
  2544. &local_ram->drbBase,
  2545. (qdev->nvram_data.drbTableBaseHi << 16) |
  2546. qdev->nvram_data.drbTableBaseLo);
  2547. ql_write_page2_reg(qdev,
  2548. &local_ram->maxDrbCount,
  2549. qdev->nvram_data.drbTableSize);
  2550. ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
  2551. return 0;
  2552. }
  2553. static int ql_adapter_initialize(struct ql3_adapter *qdev)
  2554. {
  2555. u32 value;
  2556. struct ql3xxx_port_registers __iomem *port_regs =
  2557. qdev->mem_map_registers;
  2558. __iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
  2559. struct ql3xxx_host_memory_registers __iomem *hmem_regs =
  2560. (void __iomem *)port_regs;
  2561. u32 delay = 10;
  2562. int status = 0;
  2563. if (ql_mii_setup(qdev))
  2564. return -1;
  2565. /* Bring out PHY out of reset */
  2566. ql_write_common_reg(qdev, spir,
  2567. (ISP_SERIAL_PORT_IF_WE |
  2568. (ISP_SERIAL_PORT_IF_WE << 16)));
  2569. /* Give the PHY time to come out of reset. */
  2570. mdelay(100);
  2571. qdev->port_link_state = LS_DOWN;
  2572. netif_carrier_off(qdev->ndev);
  2573. /* V2 chip fix for ARS-39168. */
  2574. ql_write_common_reg(qdev, spir,
  2575. (ISP_SERIAL_PORT_IF_SDE |
  2576. (ISP_SERIAL_PORT_IF_SDE << 16)));
  2577. /* Request Queue Registers */
  2578. *((u32 *)(qdev->preq_consumer_index)) = 0;
  2579. atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
  2580. qdev->req_producer_index = 0;
  2581. ql_write_page1_reg(qdev,
  2582. &hmem_regs->reqConsumerIndexAddrHigh,
  2583. qdev->req_consumer_index_phy_addr_high);
  2584. ql_write_page1_reg(qdev,
  2585. &hmem_regs->reqConsumerIndexAddrLow,
  2586. qdev->req_consumer_index_phy_addr_low);
  2587. ql_write_page1_reg(qdev,
  2588. &hmem_regs->reqBaseAddrHigh,
  2589. MS_64BITS(qdev->req_q_phy_addr));
  2590. ql_write_page1_reg(qdev,
  2591. &hmem_regs->reqBaseAddrLow,
  2592. LS_64BITS(qdev->req_q_phy_addr));
  2593. ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
  2594. /* Response Queue Registers */
  2595. *((__le16 *) (qdev->prsp_producer_index)) = 0;
  2596. qdev->rsp_consumer_index = 0;
  2597. qdev->rsp_current = qdev->rsp_q_virt_addr;
  2598. ql_write_page1_reg(qdev,
  2599. &hmem_regs->rspProducerIndexAddrHigh,
  2600. qdev->rsp_producer_index_phy_addr_high);
  2601. ql_write_page1_reg(qdev,
  2602. &hmem_regs->rspProducerIndexAddrLow,
  2603. qdev->rsp_producer_index_phy_addr_low);
  2604. ql_write_page1_reg(qdev,
  2605. &hmem_regs->rspBaseAddrHigh,
  2606. MS_64BITS(qdev->rsp_q_phy_addr));
  2607. ql_write_page1_reg(qdev,
  2608. &hmem_regs->rspBaseAddrLow,
  2609. LS_64BITS(qdev->rsp_q_phy_addr));
  2610. ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
  2611. /* Large Buffer Queue */
  2612. ql_write_page1_reg(qdev,
  2613. &hmem_regs->rxLargeQBaseAddrHigh,
  2614. MS_64BITS(qdev->lrg_buf_q_phy_addr));
  2615. ql_write_page1_reg(qdev,
  2616. &hmem_regs->rxLargeQBaseAddrLow,
  2617. LS_64BITS(qdev->lrg_buf_q_phy_addr));
  2618. ql_write_page1_reg(qdev,
  2619. &hmem_regs->rxLargeQLength,
  2620. qdev->num_lbufq_entries);
  2621. ql_write_page1_reg(qdev,
  2622. &hmem_regs->rxLargeBufferLength,
  2623. qdev->lrg_buffer_len);
  2624. /* Small Buffer Queue */
  2625. ql_write_page1_reg(qdev,
  2626. &hmem_regs->rxSmallQBaseAddrHigh,
  2627. MS_64BITS(qdev->small_buf_q_phy_addr));
  2628. ql_write_page1_reg(qdev,
  2629. &hmem_regs->rxSmallQBaseAddrLow,
  2630. LS_64BITS(qdev->small_buf_q_phy_addr));
  2631. ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
  2632. ql_write_page1_reg(qdev,
  2633. &hmem_regs->rxSmallBufferLength,
  2634. QL_SMALL_BUFFER_SIZE);
  2635. qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
  2636. qdev->small_buf_release_cnt = 8;
  2637. qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
  2638. qdev->lrg_buf_release_cnt = 8;
  2639. qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
  2640. qdev->small_buf_index = 0;
  2641. qdev->lrg_buf_index = 0;
  2642. qdev->lrg_buf_free_count = 0;
  2643. qdev->lrg_buf_free_head = NULL;
  2644. qdev->lrg_buf_free_tail = NULL;
  2645. ql_write_common_reg(qdev,
  2646. &port_regs->CommonRegs.
  2647. rxSmallQProducerIndex,
  2648. qdev->small_buf_q_producer_index);
  2649. ql_write_common_reg(qdev,
  2650. &port_regs->CommonRegs.
  2651. rxLargeQProducerIndex,
  2652. qdev->lrg_buf_q_producer_index);
  2653. /*
  2654. * Find out if the chip has already been initialized. If it has, then
  2655. * we skip some of the initialization.
  2656. */
  2657. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2658. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2659. if ((value & PORT_STATUS_IC) == 0) {
  2660. /* Chip has not been configured yet, so let it rip. */
  2661. if (ql_init_misc_registers(qdev)) {
  2662. status = -1;
  2663. goto out;
  2664. }
  2665. value = qdev->nvram_data.tcpMaxWindowSize;
  2666. ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
  2667. value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
  2668. if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
  2669. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
  2670. * 2) << 13)) {
  2671. status = -1;
  2672. goto out;
  2673. }
  2674. ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
  2675. ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
  2676. (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
  2677. 16) | (INTERNAL_CHIP_SD |
  2678. INTERNAL_CHIP_WE)));
  2679. ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
  2680. }
  2681. if (qdev->mac_index)
  2682. ql_write_page0_reg(qdev,
  2683. &port_regs->mac1MaxFrameLengthReg,
  2684. qdev->max_frame_size);
  2685. else
  2686. ql_write_page0_reg(qdev,
  2687. &port_regs->mac0MaxFrameLengthReg,
  2688. qdev->max_frame_size);
  2689. if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
  2690. (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
  2691. 2) << 7)) {
  2692. status = -1;
  2693. goto out;
  2694. }
  2695. PHY_Setup(qdev);
  2696. ql_init_scan_mode(qdev);
  2697. ql_get_phy_owner(qdev);
  2698. /* Load the MAC Configuration */
  2699. /* Program lower 32 bits of the MAC address */
  2700. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2701. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  2702. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2703. ((qdev->ndev->dev_addr[2] << 24)
  2704. | (qdev->ndev->dev_addr[3] << 16)
  2705. | (qdev->ndev->dev_addr[4] << 8)
  2706. | qdev->ndev->dev_addr[5]));
  2707. /* Program top 16 bits of the MAC address */
  2708. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2709. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  2710. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  2711. ((qdev->ndev->dev_addr[0] << 8)
  2712. | qdev->ndev->dev_addr[1]));
  2713. /* Enable Primary MAC */
  2714. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  2715. ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
  2716. MAC_ADDR_INDIRECT_PTR_REG_PE));
  2717. /* Clear Primary and Secondary IP addresses */
  2718. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2719. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2720. (qdev->mac_index << 2)));
  2721. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2722. ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
  2723. ((IP_ADDR_INDEX_REG_MASK << 16) |
  2724. ((qdev->mac_index << 2) + 1)));
  2725. ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
  2726. ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
  2727. /* Indicate Configuration Complete */
  2728. ql_write_page0_reg(qdev,
  2729. &port_regs->portControl,
  2730. ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
  2731. do {
  2732. value = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2733. if (value & PORT_STATUS_IC)
  2734. break;
  2735. spin_unlock_irq(&qdev->hw_lock);
  2736. msleep(500);
  2737. spin_lock_irq(&qdev->hw_lock);
  2738. } while (--delay);
  2739. if (delay == 0) {
  2740. netdev_err(qdev->ndev, "Hw Initialization timeout\n");
  2741. status = -1;
  2742. goto out;
  2743. }
  2744. /* Enable Ethernet Function */
  2745. if (qdev->device_id == QL3032_DEVICE_ID) {
  2746. value =
  2747. (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
  2748. QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
  2749. QL3032_PORT_CONTROL_ET);
  2750. ql_write_page0_reg(qdev, &port_regs->functionControl,
  2751. ((value << 16) | value));
  2752. } else {
  2753. value =
  2754. (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
  2755. PORT_CONTROL_HH);
  2756. ql_write_page0_reg(qdev, &port_regs->portControl,
  2757. ((value << 16) | value));
  2758. }
  2759. out:
  2760. return status;
  2761. }
  2762. /*
  2763. * Caller holds hw_lock.
  2764. */
  2765. static int ql_adapter_reset(struct ql3_adapter *qdev)
  2766. {
  2767. struct ql3xxx_port_registers __iomem *port_regs =
  2768. qdev->mem_map_registers;
  2769. int status = 0;
  2770. u16 value;
  2771. int max_wait_time;
  2772. set_bit(QL_RESET_ACTIVE, &qdev->flags);
  2773. clear_bit(QL_RESET_DONE, &qdev->flags);
  2774. /*
  2775. * Issue soft reset to chip.
  2776. */
  2777. netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
  2778. ql_write_common_reg(qdev,
  2779. &port_regs->CommonRegs.ispControlStatus,
  2780. ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
  2781. /* Wait 3 seconds for reset to complete. */
  2782. netdev_printk(KERN_DEBUG, qdev->ndev,
  2783. "Wait 10 milliseconds for reset to complete\n");
  2784. /* Wait until the firmware tells us the Soft Reset is done */
  2785. max_wait_time = 5;
  2786. do {
  2787. value =
  2788. ql_read_common_reg(qdev,
  2789. &port_regs->CommonRegs.ispControlStatus);
  2790. if ((value & ISP_CONTROL_SR) == 0)
  2791. break;
  2792. ssleep(1);
  2793. } while ((--max_wait_time));
  2794. /*
  2795. * Also, make sure that the Network Reset Interrupt bit has been
  2796. * cleared after the soft reset has taken place.
  2797. */
  2798. value =
  2799. ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
  2800. if (value & ISP_CONTROL_RI) {
  2801. netdev_printk(KERN_DEBUG, qdev->ndev,
  2802. "clearing RI after reset\n");
  2803. ql_write_common_reg(qdev,
  2804. &port_regs->CommonRegs.
  2805. ispControlStatus,
  2806. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  2807. }
  2808. if (max_wait_time == 0) {
  2809. /* Issue Force Soft Reset */
  2810. ql_write_common_reg(qdev,
  2811. &port_regs->CommonRegs.
  2812. ispControlStatus,
  2813. ((ISP_CONTROL_FSR << 16) |
  2814. ISP_CONTROL_FSR));
  2815. /*
  2816. * Wait until the firmware tells us the Force Soft Reset is
  2817. * done
  2818. */
  2819. max_wait_time = 5;
  2820. do {
  2821. value = ql_read_common_reg(qdev,
  2822. &port_regs->CommonRegs.
  2823. ispControlStatus);
  2824. if ((value & ISP_CONTROL_FSR) == 0)
  2825. break;
  2826. ssleep(1);
  2827. } while ((--max_wait_time));
  2828. }
  2829. if (max_wait_time == 0)
  2830. status = 1;
  2831. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  2832. set_bit(QL_RESET_DONE, &qdev->flags);
  2833. return status;
  2834. }
  2835. static void ql_set_mac_info(struct ql3_adapter *qdev)
  2836. {
  2837. struct ql3xxx_port_registers __iomem *port_regs =
  2838. qdev->mem_map_registers;
  2839. u32 value, port_status;
  2840. u8 func_number;
  2841. /* Get the function number */
  2842. value =
  2843. ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
  2844. func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
  2845. port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
  2846. switch (value & ISP_CONTROL_FN_MASK) {
  2847. case ISP_CONTROL_FN0_NET:
  2848. qdev->mac_index = 0;
  2849. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2850. qdev->mb_bit_mask = FN0_MA_BITS_MASK;
  2851. qdev->PHYAddr = PORT0_PHY_ADDRESS;
  2852. if (port_status & PORT_STATUS_SM0)
  2853. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2854. else
  2855. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2856. break;
  2857. case ISP_CONTROL_FN1_NET:
  2858. qdev->mac_index = 1;
  2859. qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
  2860. qdev->mb_bit_mask = FN1_MA_BITS_MASK;
  2861. qdev->PHYAddr = PORT1_PHY_ADDRESS;
  2862. if (port_status & PORT_STATUS_SM1)
  2863. set_bit(QL_LINK_OPTICAL, &qdev->flags);
  2864. else
  2865. clear_bit(QL_LINK_OPTICAL, &qdev->flags);
  2866. break;
  2867. case ISP_CONTROL_FN0_SCSI:
  2868. case ISP_CONTROL_FN1_SCSI:
  2869. default:
  2870. netdev_printk(KERN_DEBUG, qdev->ndev,
  2871. "Invalid function number, ispControlStatus = 0x%x\n",
  2872. value);
  2873. break;
  2874. }
  2875. qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
  2876. }
  2877. static void ql_display_dev_info(struct net_device *ndev)
  2878. {
  2879. struct ql3_adapter *qdev = netdev_priv(ndev);
  2880. struct pci_dev *pdev = qdev->pdev;
  2881. netdev_info(ndev,
  2882. "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
  2883. DRV_NAME, qdev->index, qdev->chip_rev_id,
  2884. qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
  2885. qdev->pci_slot);
  2886. netdev_info(ndev, "%s Interface\n",
  2887. test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
  2888. /*
  2889. * Print PCI bus width/type.
  2890. */
  2891. netdev_info(ndev, "Bus interface is %s %s\n",
  2892. ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
  2893. ((qdev->pci_x) ? "PCI-X" : "PCI"));
  2894. netdev_info(ndev, "mem IO base address adjusted = 0x%p\n",
  2895. qdev->mem_map_registers);
  2896. netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
  2897. netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
  2898. }
  2899. static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
  2900. {
  2901. struct net_device *ndev = qdev->ndev;
  2902. int retval = 0;
  2903. netif_stop_queue(ndev);
  2904. netif_carrier_off(ndev);
  2905. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2906. clear_bit(QL_LINK_MASTER, &qdev->flags);
  2907. ql_disable_interrupts(qdev);
  2908. free_irq(qdev->pdev->irq, ndev);
  2909. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2910. netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
  2911. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2912. pci_disable_msi(qdev->pdev);
  2913. }
  2914. del_timer_sync(&qdev->adapter_timer);
  2915. napi_disable(&qdev->napi);
  2916. if (do_reset) {
  2917. int soft_reset;
  2918. unsigned long hw_flags;
  2919. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2920. if (ql_wait_for_drvr_lock(qdev)) {
  2921. soft_reset = ql_adapter_reset(qdev);
  2922. if (soft_reset) {
  2923. netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
  2924. qdev->index);
  2925. }
  2926. netdev_err(ndev,
  2927. "Releasing driver lock via chip reset\n");
  2928. } else {
  2929. netdev_err(ndev,
  2930. "Could not acquire driver lock to do reset!\n");
  2931. retval = -1;
  2932. }
  2933. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2934. }
  2935. ql_free_mem_resources(qdev);
  2936. return retval;
  2937. }
  2938. static int ql_adapter_up(struct ql3_adapter *qdev)
  2939. {
  2940. struct net_device *ndev = qdev->ndev;
  2941. int err;
  2942. unsigned long irq_flags = IRQF_SHARED;
  2943. unsigned long hw_flags;
  2944. if (ql_alloc_mem_resources(qdev)) {
  2945. netdev_err(ndev, "Unable to allocate buffers\n");
  2946. return -ENOMEM;
  2947. }
  2948. if (qdev->msi) {
  2949. if (pci_enable_msi(qdev->pdev)) {
  2950. netdev_err(ndev,
  2951. "User requested MSI, but MSI failed to initialize. Continuing without MSI.\n");
  2952. qdev->msi = 0;
  2953. } else {
  2954. netdev_info(ndev, "MSI Enabled...\n");
  2955. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2956. irq_flags &= ~IRQF_SHARED;
  2957. }
  2958. }
  2959. err = request_irq(qdev->pdev->irq, ql3xxx_isr,
  2960. irq_flags, ndev->name, ndev);
  2961. if (err) {
  2962. netdev_err(ndev,
  2963. "Failed to reserve interrupt %d - already in use\n",
  2964. qdev->pdev->irq);
  2965. goto err_irq;
  2966. }
  2967. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  2968. err = ql_wait_for_drvr_lock(qdev);
  2969. if (err) {
  2970. err = ql_adapter_initialize(qdev);
  2971. if (err) {
  2972. netdev_err(ndev, "Unable to initialize adapter\n");
  2973. goto err_init;
  2974. }
  2975. netdev_err(ndev, "Releasing driver lock\n");
  2976. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2977. } else {
  2978. netdev_err(ndev, "Could not acquire driver lock\n");
  2979. goto err_lock;
  2980. }
  2981. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2982. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2983. mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
  2984. napi_enable(&qdev->napi);
  2985. ql_enable_interrupts(qdev);
  2986. return 0;
  2987. err_init:
  2988. ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
  2989. err_lock:
  2990. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  2991. free_irq(qdev->pdev->irq, ndev);
  2992. err_irq:
  2993. if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2994. netdev_info(ndev, "calling pci_disable_msi()\n");
  2995. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2996. pci_disable_msi(qdev->pdev);
  2997. }
  2998. return err;
  2999. }
  3000. static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
  3001. {
  3002. if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
  3003. netdev_err(qdev->ndev,
  3004. "Driver up/down cycle failed, closing device\n");
  3005. rtnl_lock();
  3006. dev_close(qdev->ndev);
  3007. rtnl_unlock();
  3008. return -1;
  3009. }
  3010. return 0;
  3011. }
  3012. static int ql3xxx_close(struct net_device *ndev)
  3013. {
  3014. struct ql3_adapter *qdev = netdev_priv(ndev);
  3015. /*
  3016. * Wait for device to recover from a reset.
  3017. * (Rarely happens, but possible.)
  3018. */
  3019. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  3020. msleep(50);
  3021. ql_adapter_down(qdev, QL_DO_RESET);
  3022. return 0;
  3023. }
  3024. static int ql3xxx_open(struct net_device *ndev)
  3025. {
  3026. struct ql3_adapter *qdev = netdev_priv(ndev);
  3027. return ql_adapter_up(qdev);
  3028. }
  3029. static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
  3030. {
  3031. struct ql3_adapter *qdev = netdev_priv(ndev);
  3032. struct ql3xxx_port_registers __iomem *port_regs =
  3033. qdev->mem_map_registers;
  3034. struct sockaddr *addr = p;
  3035. unsigned long hw_flags;
  3036. if (netif_running(ndev))
  3037. return -EBUSY;
  3038. if (!is_valid_ether_addr(addr->sa_data))
  3039. return -EADDRNOTAVAIL;
  3040. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3041. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3042. /* Program lower 32 bits of the MAC address */
  3043. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3044. (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
  3045. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3046. ((ndev->dev_addr[2] << 24) | (ndev->
  3047. dev_addr[3] << 16) |
  3048. (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
  3049. /* Program top 16 bits of the MAC address */
  3050. ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
  3051. ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
  3052. ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
  3053. ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
  3054. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3055. return 0;
  3056. }
  3057. static void ql3xxx_tx_timeout(struct net_device *ndev)
  3058. {
  3059. struct ql3_adapter *qdev = netdev_priv(ndev);
  3060. netdev_err(ndev, "Resetting...\n");
  3061. /*
  3062. * Stop the queues, we've got a problem.
  3063. */
  3064. netif_stop_queue(ndev);
  3065. /*
  3066. * Wake up the worker to process this event.
  3067. */
  3068. queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
  3069. }
  3070. static void ql_reset_work(struct work_struct *work)
  3071. {
  3072. struct ql3_adapter *qdev =
  3073. container_of(work, struct ql3_adapter, reset_work.work);
  3074. struct net_device *ndev = qdev->ndev;
  3075. u32 value;
  3076. struct ql_tx_buf_cb *tx_cb;
  3077. int max_wait_time, i;
  3078. struct ql3xxx_port_registers __iomem *port_regs =
  3079. qdev->mem_map_registers;
  3080. unsigned long hw_flags;
  3081. if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
  3082. clear_bit(QL_LINK_MASTER, &qdev->flags);
  3083. /*
  3084. * Loop through the active list and return the skb.
  3085. */
  3086. for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
  3087. int j;
  3088. tx_cb = &qdev->tx_buf[i];
  3089. if (tx_cb->skb) {
  3090. netdev_printk(KERN_DEBUG, ndev,
  3091. "Freeing lost SKB\n");
  3092. pci_unmap_single(qdev->pdev,
  3093. dma_unmap_addr(&tx_cb->map[0],
  3094. mapaddr),
  3095. dma_unmap_len(&tx_cb->map[0], maplen),
  3096. PCI_DMA_TODEVICE);
  3097. for (j = 1; j < tx_cb->seg_count; j++) {
  3098. pci_unmap_page(qdev->pdev,
  3099. dma_unmap_addr(&tx_cb->map[j],
  3100. mapaddr),
  3101. dma_unmap_len(&tx_cb->map[j],
  3102. maplen),
  3103. PCI_DMA_TODEVICE);
  3104. }
  3105. dev_kfree_skb(tx_cb->skb);
  3106. tx_cb->skb = NULL;
  3107. }
  3108. }
  3109. netdev_err(ndev, "Clearing NRI after reset\n");
  3110. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3111. ql_write_common_reg(qdev,
  3112. &port_regs->CommonRegs.
  3113. ispControlStatus,
  3114. ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
  3115. /*
  3116. * Wait the for Soft Reset to Complete.
  3117. */
  3118. max_wait_time = 10;
  3119. do {
  3120. value = ql_read_common_reg(qdev,
  3121. &port_regs->CommonRegs.
  3122. ispControlStatus);
  3123. if ((value & ISP_CONTROL_SR) == 0) {
  3124. netdev_printk(KERN_DEBUG, ndev,
  3125. "reset completed\n");
  3126. break;
  3127. }
  3128. if (value & ISP_CONTROL_RI) {
  3129. netdev_printk(KERN_DEBUG, ndev,
  3130. "clearing NRI after reset\n");
  3131. ql_write_common_reg(qdev,
  3132. &port_regs->
  3133. CommonRegs.
  3134. ispControlStatus,
  3135. ((ISP_CONTROL_RI <<
  3136. 16) | ISP_CONTROL_RI));
  3137. }
  3138. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3139. ssleep(1);
  3140. spin_lock_irqsave(&qdev->hw_lock, hw_flags);
  3141. } while (--max_wait_time);
  3142. spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
  3143. if (value & ISP_CONTROL_SR) {
  3144. /*
  3145. * Set the reset flags and clear the board again.
  3146. * Nothing else to do...
  3147. */
  3148. netdev_err(ndev,
  3149. "Timed out waiting for reset to complete\n");
  3150. netdev_err(ndev, "Do a reset\n");
  3151. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3152. clear_bit(QL_RESET_START, &qdev->flags);
  3153. ql_cycle_adapter(qdev, QL_DO_RESET);
  3154. return;
  3155. }
  3156. clear_bit(QL_RESET_ACTIVE, &qdev->flags);
  3157. clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
  3158. clear_bit(QL_RESET_START, &qdev->flags);
  3159. ql_cycle_adapter(qdev, QL_NO_RESET);
  3160. }
  3161. }
  3162. static void ql_tx_timeout_work(struct work_struct *work)
  3163. {
  3164. struct ql3_adapter *qdev =
  3165. container_of(work, struct ql3_adapter, tx_timeout_work.work);
  3166. ql_cycle_adapter(qdev, QL_DO_RESET);
  3167. }
  3168. static void ql_get_board_info(struct ql3_adapter *qdev)
  3169. {
  3170. struct ql3xxx_port_registers __iomem *port_regs =
  3171. qdev->mem_map_registers;
  3172. u32 value;
  3173. value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
  3174. qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
  3175. if (value & PORT_STATUS_64)
  3176. qdev->pci_width = 64;
  3177. else
  3178. qdev->pci_width = 32;
  3179. if (value & PORT_STATUS_X)
  3180. qdev->pci_x = 1;
  3181. else
  3182. qdev->pci_x = 0;
  3183. qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
  3184. }
  3185. static void ql3xxx_timer(unsigned long ptr)
  3186. {
  3187. struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
  3188. queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
  3189. }
  3190. static const struct net_device_ops ql3xxx_netdev_ops = {
  3191. .ndo_open = ql3xxx_open,
  3192. .ndo_start_xmit = ql3xxx_send,
  3193. .ndo_stop = ql3xxx_close,
  3194. .ndo_change_mtu = eth_change_mtu,
  3195. .ndo_validate_addr = eth_validate_addr,
  3196. .ndo_set_mac_address = ql3xxx_set_mac_address,
  3197. .ndo_tx_timeout = ql3xxx_tx_timeout,
  3198. };
  3199. static int ql3xxx_probe(struct pci_dev *pdev,
  3200. const struct pci_device_id *pci_entry)
  3201. {
  3202. struct net_device *ndev = NULL;
  3203. struct ql3_adapter *qdev = NULL;
  3204. static int cards_found;
  3205. int uninitialized_var(pci_using_dac), err;
  3206. err = pci_enable_device(pdev);
  3207. if (err) {
  3208. pr_err("%s cannot enable PCI device\n", pci_name(pdev));
  3209. goto err_out;
  3210. }
  3211. err = pci_request_regions(pdev, DRV_NAME);
  3212. if (err) {
  3213. pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
  3214. goto err_out_disable_pdev;
  3215. }
  3216. pci_set_master(pdev);
  3217. if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
  3218. pci_using_dac = 1;
  3219. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
  3220. } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
  3221. pci_using_dac = 0;
  3222. err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
  3223. }
  3224. if (err) {
  3225. pr_err("%s no usable DMA configuration\n", pci_name(pdev));
  3226. goto err_out_free_regions;
  3227. }
  3228. ndev = alloc_etherdev(sizeof(struct ql3_adapter));
  3229. if (!ndev) {
  3230. err = -ENOMEM;
  3231. goto err_out_free_regions;
  3232. }
  3233. SET_NETDEV_DEV(ndev, &pdev->dev);
  3234. pci_set_drvdata(pdev, ndev);
  3235. qdev = netdev_priv(ndev);
  3236. qdev->index = cards_found;
  3237. qdev->ndev = ndev;
  3238. qdev->pdev = pdev;
  3239. qdev->device_id = pci_entry->device;
  3240. qdev->port_link_state = LS_DOWN;
  3241. if (msi)
  3242. qdev->msi = 1;
  3243. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3244. if (pci_using_dac)
  3245. ndev->features |= NETIF_F_HIGHDMA;
  3246. if (qdev->device_id == QL3032_DEVICE_ID)
  3247. ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  3248. qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
  3249. if (!qdev->mem_map_registers) {
  3250. pr_err("%s: cannot map device registers\n", pci_name(pdev));
  3251. err = -EIO;
  3252. goto err_out_free_ndev;
  3253. }
  3254. spin_lock_init(&qdev->adapter_lock);
  3255. spin_lock_init(&qdev->hw_lock);
  3256. /* Set driver entry points */
  3257. ndev->netdev_ops = &ql3xxx_netdev_ops;
  3258. ndev->ethtool_ops = &ql3xxx_ethtool_ops;
  3259. ndev->watchdog_timeo = 5 * HZ;
  3260. netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
  3261. ndev->irq = pdev->irq;
  3262. /* make sure the EEPROM is good */
  3263. if (ql_get_nvram_params(qdev)) {
  3264. pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
  3265. __func__, qdev->index);
  3266. err = -EIO;
  3267. goto err_out_iounmap;
  3268. }
  3269. ql_set_mac_info(qdev);
  3270. /* Validate and set parameters */
  3271. if (qdev->mac_index) {
  3272. ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
  3273. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
  3274. } else {
  3275. ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
  3276. ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
  3277. }
  3278. ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
  3279. /* Record PCI bus information. */
  3280. ql_get_board_info(qdev);
  3281. /*
  3282. * Set the Maximum Memory Read Byte Count value. We do this to handle
  3283. * jumbo frames.
  3284. */
  3285. if (qdev->pci_x)
  3286. pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
  3287. err = register_netdev(ndev);
  3288. if (err) {
  3289. pr_err("%s: cannot register net device\n", pci_name(pdev));
  3290. goto err_out_iounmap;
  3291. }
  3292. /* we're going to reset, so assume we have no link for now */
  3293. netif_carrier_off(ndev);
  3294. netif_stop_queue(ndev);
  3295. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3296. INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
  3297. INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
  3298. INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
  3299. init_timer(&qdev->adapter_timer);
  3300. qdev->adapter_timer.function = ql3xxx_timer;
  3301. qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
  3302. qdev->adapter_timer.data = (unsigned long)qdev;
  3303. if (!cards_found) {
  3304. pr_alert("%s\n", DRV_STRING);
  3305. pr_alert("Driver name: %s, Version: %s\n",
  3306. DRV_NAME, DRV_VERSION);
  3307. }
  3308. ql_display_dev_info(ndev);
  3309. cards_found++;
  3310. return 0;
  3311. err_out_iounmap:
  3312. iounmap(qdev->mem_map_registers);
  3313. err_out_free_ndev:
  3314. free_netdev(ndev);
  3315. err_out_free_regions:
  3316. pci_release_regions(pdev);
  3317. err_out_disable_pdev:
  3318. pci_disable_device(pdev);
  3319. err_out:
  3320. return err;
  3321. }
  3322. static void ql3xxx_remove(struct pci_dev *pdev)
  3323. {
  3324. struct net_device *ndev = pci_get_drvdata(pdev);
  3325. struct ql3_adapter *qdev = netdev_priv(ndev);
  3326. unregister_netdev(ndev);
  3327. ql_disable_interrupts(qdev);
  3328. if (qdev->workqueue) {
  3329. cancel_delayed_work(&qdev->reset_work);
  3330. cancel_delayed_work(&qdev->tx_timeout_work);
  3331. destroy_workqueue(qdev->workqueue);
  3332. qdev->workqueue = NULL;
  3333. }
  3334. iounmap(qdev->mem_map_registers);
  3335. pci_release_regions(pdev);
  3336. free_netdev(ndev);
  3337. }
  3338. static struct pci_driver ql3xxx_driver = {
  3339. .name = DRV_NAME,
  3340. .id_table = ql3xxx_pci_tbl,
  3341. .probe = ql3xxx_probe,
  3342. .remove = ql3xxx_remove,
  3343. };
  3344. module_pci_driver(ql3xxx_driver);