mvneta.c 84 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121
  1. /*
  2. * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
  3. *
  4. * Copyright (C) 2012 Marvell
  5. *
  6. * Rami Rosen <rosenr@marvell.com>
  7. * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
  8. *
  9. * This file is licensed under the terms of the GNU General Public
  10. * License version 2. This program is licensed "as is" without any
  11. * warranty of any kind, whether express or implied.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/netdevice.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/platform_device.h>
  17. #include <linux/skbuff.h>
  18. #include <linux/inetdevice.h>
  19. #include <linux/mbus.h>
  20. #include <linux/module.h>
  21. #include <linux/interrupt.h>
  22. #include <net/ip.h>
  23. #include <net/ipv6.h>
  24. #include <linux/io.h>
  25. #include <net/tso.h>
  26. #include <linux/of.h>
  27. #include <linux/of_irq.h>
  28. #include <linux/of_mdio.h>
  29. #include <linux/of_net.h>
  30. #include <linux/of_address.h>
  31. #include <linux/phy.h>
  32. #include <linux/clk.h>
  33. /* Registers */
  34. #define MVNETA_RXQ_CONFIG_REG(q) (0x1400 + ((q) << 2))
  35. #define MVNETA_RXQ_HW_BUF_ALLOC BIT(1)
  36. #define MVNETA_RXQ_PKT_OFFSET_ALL_MASK (0xf << 8)
  37. #define MVNETA_RXQ_PKT_OFFSET_MASK(offs) ((offs) << 8)
  38. #define MVNETA_RXQ_THRESHOLD_REG(q) (0x14c0 + ((q) << 2))
  39. #define MVNETA_RXQ_NON_OCCUPIED(v) ((v) << 16)
  40. #define MVNETA_RXQ_BASE_ADDR_REG(q) (0x1480 + ((q) << 2))
  41. #define MVNETA_RXQ_SIZE_REG(q) (0x14a0 + ((q) << 2))
  42. #define MVNETA_RXQ_BUF_SIZE_SHIFT 19
  43. #define MVNETA_RXQ_BUF_SIZE_MASK (0x1fff << 19)
  44. #define MVNETA_RXQ_STATUS_REG(q) (0x14e0 + ((q) << 2))
  45. #define MVNETA_RXQ_OCCUPIED_ALL_MASK 0x3fff
  46. #define MVNETA_RXQ_STATUS_UPDATE_REG(q) (0x1500 + ((q) << 2))
  47. #define MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT 16
  48. #define MVNETA_RXQ_ADD_NON_OCCUPIED_MAX 255
  49. #define MVNETA_PORT_RX_RESET 0x1cc0
  50. #define MVNETA_PORT_RX_DMA_RESET BIT(0)
  51. #define MVNETA_PHY_ADDR 0x2000
  52. #define MVNETA_PHY_ADDR_MASK 0x1f
  53. #define MVNETA_MBUS_RETRY 0x2010
  54. #define MVNETA_UNIT_INTR_CAUSE 0x2080
  55. #define MVNETA_UNIT_CONTROL 0x20B0
  56. #define MVNETA_PHY_POLLING_ENABLE BIT(1)
  57. #define MVNETA_WIN_BASE(w) (0x2200 + ((w) << 3))
  58. #define MVNETA_WIN_SIZE(w) (0x2204 + ((w) << 3))
  59. #define MVNETA_WIN_REMAP(w) (0x2280 + ((w) << 2))
  60. #define MVNETA_BASE_ADDR_ENABLE 0x2290
  61. #define MVNETA_PORT_CONFIG 0x2400
  62. #define MVNETA_UNI_PROMISC_MODE BIT(0)
  63. #define MVNETA_DEF_RXQ(q) ((q) << 1)
  64. #define MVNETA_DEF_RXQ_ARP(q) ((q) << 4)
  65. #define MVNETA_TX_UNSET_ERR_SUM BIT(12)
  66. #define MVNETA_DEF_RXQ_TCP(q) ((q) << 16)
  67. #define MVNETA_DEF_RXQ_UDP(q) ((q) << 19)
  68. #define MVNETA_DEF_RXQ_BPDU(q) ((q) << 22)
  69. #define MVNETA_RX_CSUM_WITH_PSEUDO_HDR BIT(25)
  70. #define MVNETA_PORT_CONFIG_DEFL_VALUE(q) (MVNETA_DEF_RXQ(q) | \
  71. MVNETA_DEF_RXQ_ARP(q) | \
  72. MVNETA_DEF_RXQ_TCP(q) | \
  73. MVNETA_DEF_RXQ_UDP(q) | \
  74. MVNETA_DEF_RXQ_BPDU(q) | \
  75. MVNETA_TX_UNSET_ERR_SUM | \
  76. MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  77. #define MVNETA_PORT_CONFIG_EXTEND 0x2404
  78. #define MVNETA_MAC_ADDR_LOW 0x2414
  79. #define MVNETA_MAC_ADDR_HIGH 0x2418
  80. #define MVNETA_SDMA_CONFIG 0x241c
  81. #define MVNETA_SDMA_BRST_SIZE_16 4
  82. #define MVNETA_RX_BRST_SZ_MASK(burst) ((burst) << 1)
  83. #define MVNETA_RX_NO_DATA_SWAP BIT(4)
  84. #define MVNETA_TX_NO_DATA_SWAP BIT(5)
  85. #define MVNETA_DESC_SWAP BIT(6)
  86. #define MVNETA_TX_BRST_SZ_MASK(burst) ((burst) << 22)
  87. #define MVNETA_PORT_STATUS 0x2444
  88. #define MVNETA_TX_IN_PRGRS BIT(1)
  89. #define MVNETA_TX_FIFO_EMPTY BIT(8)
  90. #define MVNETA_RX_MIN_FRAME_SIZE 0x247c
  91. #define MVNETA_SERDES_CFG 0x24A0
  92. #define MVNETA_SGMII_SERDES_PROTO 0x0cc7
  93. #define MVNETA_QSGMII_SERDES_PROTO 0x0667
  94. #define MVNETA_TYPE_PRIO 0x24bc
  95. #define MVNETA_FORCE_UNI BIT(21)
  96. #define MVNETA_TXQ_CMD_1 0x24e4
  97. #define MVNETA_TXQ_CMD 0x2448
  98. #define MVNETA_TXQ_DISABLE_SHIFT 8
  99. #define MVNETA_TXQ_ENABLE_MASK 0x000000ff
  100. #define MVNETA_ACC_MODE 0x2500
  101. #define MVNETA_CPU_MAP(cpu) (0x2540 + ((cpu) << 2))
  102. #define MVNETA_CPU_RXQ_ACCESS_ALL_MASK 0x000000ff
  103. #define MVNETA_CPU_TXQ_ACCESS_ALL_MASK 0x0000ff00
  104. #define MVNETA_RXQ_TIME_COAL_REG(q) (0x2580 + ((q) << 2))
  105. /* Exception Interrupt Port/Queue Cause register */
  106. #define MVNETA_INTR_NEW_CAUSE 0x25a0
  107. #define MVNETA_INTR_NEW_MASK 0x25a4
  108. /* bits 0..7 = TXQ SENT, one bit per queue.
  109. * bits 8..15 = RXQ OCCUP, one bit per queue.
  110. * bits 16..23 = RXQ FREE, one bit per queue.
  111. * bit 29 = OLD_REG_SUM, see old reg ?
  112. * bit 30 = TX_ERR_SUM, one bit for 4 ports
  113. * bit 31 = MISC_SUM, one bit for 4 ports
  114. */
  115. #define MVNETA_TX_INTR_MASK(nr_txqs) (((1 << nr_txqs) - 1) << 0)
  116. #define MVNETA_TX_INTR_MASK_ALL (0xff << 0)
  117. #define MVNETA_RX_INTR_MASK(nr_rxqs) (((1 << nr_rxqs) - 1) << 8)
  118. #define MVNETA_RX_INTR_MASK_ALL (0xff << 8)
  119. #define MVNETA_INTR_OLD_CAUSE 0x25a8
  120. #define MVNETA_INTR_OLD_MASK 0x25ac
  121. /* Data Path Port/Queue Cause Register */
  122. #define MVNETA_INTR_MISC_CAUSE 0x25b0
  123. #define MVNETA_INTR_MISC_MASK 0x25b4
  124. #define MVNETA_CAUSE_PHY_STATUS_CHANGE BIT(0)
  125. #define MVNETA_CAUSE_LINK_CHANGE BIT(1)
  126. #define MVNETA_CAUSE_PTP BIT(4)
  127. #define MVNETA_CAUSE_INTERNAL_ADDR_ERR BIT(7)
  128. #define MVNETA_CAUSE_RX_OVERRUN BIT(8)
  129. #define MVNETA_CAUSE_RX_CRC_ERROR BIT(9)
  130. #define MVNETA_CAUSE_RX_LARGE_PKT BIT(10)
  131. #define MVNETA_CAUSE_TX_UNDERUN BIT(11)
  132. #define MVNETA_CAUSE_PRBS_ERR BIT(12)
  133. #define MVNETA_CAUSE_PSC_SYNC_CHANGE BIT(13)
  134. #define MVNETA_CAUSE_SERDES_SYNC_ERR BIT(14)
  135. #define MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT 16
  136. #define MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
  137. #define MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
  138. #define MVNETA_CAUSE_TXQ_ERROR_SHIFT 24
  139. #define MVNETA_CAUSE_TXQ_ERROR_ALL_MASK (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
  140. #define MVNETA_CAUSE_TXQ_ERROR_MASK(q) (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
  141. #define MVNETA_INTR_ENABLE 0x25b8
  142. #define MVNETA_TXQ_INTR_ENABLE_ALL_MASK 0x0000ff00
  143. #define MVNETA_RXQ_INTR_ENABLE_ALL_MASK 0xff000000 // note: neta says it's 0x000000FF
  144. #define MVNETA_RXQ_CMD 0x2680
  145. #define MVNETA_RXQ_DISABLE_SHIFT 8
  146. #define MVNETA_RXQ_ENABLE_MASK 0x000000ff
  147. #define MVETH_TXQ_TOKEN_COUNT_REG(q) (0x2700 + ((q) << 4))
  148. #define MVETH_TXQ_TOKEN_CFG_REG(q) (0x2704 + ((q) << 4))
  149. #define MVNETA_GMAC_CTRL_0 0x2c00
  150. #define MVNETA_GMAC_MAX_RX_SIZE_SHIFT 2
  151. #define MVNETA_GMAC_MAX_RX_SIZE_MASK 0x7ffc
  152. #define MVNETA_GMAC0_PORT_ENABLE BIT(0)
  153. #define MVNETA_GMAC_CTRL_2 0x2c08
  154. #define MVNETA_GMAC2_PCS_ENABLE BIT(3)
  155. #define MVNETA_GMAC2_PORT_RGMII BIT(4)
  156. #define MVNETA_GMAC2_PORT_RESET BIT(6)
  157. #define MVNETA_GMAC_STATUS 0x2c10
  158. #define MVNETA_GMAC_LINK_UP BIT(0)
  159. #define MVNETA_GMAC_SPEED_1000 BIT(1)
  160. #define MVNETA_GMAC_SPEED_100 BIT(2)
  161. #define MVNETA_GMAC_FULL_DUPLEX BIT(3)
  162. #define MVNETA_GMAC_RX_FLOW_CTRL_ENABLE BIT(4)
  163. #define MVNETA_GMAC_TX_FLOW_CTRL_ENABLE BIT(5)
  164. #define MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE BIT(6)
  165. #define MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE BIT(7)
  166. #define MVNETA_GMAC_AUTONEG_CONFIG 0x2c0c
  167. #define MVNETA_GMAC_FORCE_LINK_DOWN BIT(0)
  168. #define MVNETA_GMAC_FORCE_LINK_PASS BIT(1)
  169. #define MVNETA_GMAC_CONFIG_MII_SPEED BIT(5)
  170. #define MVNETA_GMAC_CONFIG_GMII_SPEED BIT(6)
  171. #define MVNETA_GMAC_AN_SPEED_EN BIT(7)
  172. #define MVNETA_GMAC_CONFIG_FULL_DUPLEX BIT(12)
  173. #define MVNETA_GMAC_AN_DUPLEX_EN BIT(13)
  174. #define MVNETA_MIB_COUNTERS_BASE 0x3080
  175. #define MVNETA_MIB_LATE_COLLISION 0x7c
  176. #define MVNETA_DA_FILT_SPEC_MCAST 0x3400
  177. #define MVNETA_DA_FILT_OTH_MCAST 0x3500
  178. #define MVNETA_DA_FILT_UCAST_BASE 0x3600
  179. #define MVNETA_TXQ_BASE_ADDR_REG(q) (0x3c00 + ((q) << 2))
  180. #define MVNETA_TXQ_SIZE_REG(q) (0x3c20 + ((q) << 2))
  181. #define MVNETA_TXQ_SENT_THRESH_ALL_MASK 0x3fff0000
  182. #define MVNETA_TXQ_SENT_THRESH_MASK(coal) ((coal) << 16)
  183. #define MVNETA_TXQ_UPDATE_REG(q) (0x3c60 + ((q) << 2))
  184. #define MVNETA_TXQ_DEC_SENT_SHIFT 16
  185. #define MVNETA_TXQ_STATUS_REG(q) (0x3c40 + ((q) << 2))
  186. #define MVNETA_TXQ_SENT_DESC_SHIFT 16
  187. #define MVNETA_TXQ_SENT_DESC_MASK 0x3fff0000
  188. #define MVNETA_PORT_TX_RESET 0x3cf0
  189. #define MVNETA_PORT_TX_DMA_RESET BIT(0)
  190. #define MVNETA_TX_MTU 0x3e0c
  191. #define MVNETA_TX_TOKEN_SIZE 0x3e14
  192. #define MVNETA_TX_TOKEN_SIZE_MAX 0xffffffff
  193. #define MVNETA_TXQ_TOKEN_SIZE_REG(q) (0x3e40 + ((q) << 2))
  194. #define MVNETA_TXQ_TOKEN_SIZE_MAX 0x7fffffff
  195. #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK 0xff
  196. /* Descriptor ring Macros */
  197. #define MVNETA_QUEUE_NEXT_DESC(q, index) \
  198. (((index) < (q)->last_desc) ? ((index) + 1) : 0)
  199. /* Various constants */
  200. /* Coalescing */
  201. #define MVNETA_TXDONE_COAL_PKTS 16
  202. #define MVNETA_RX_COAL_PKTS 32
  203. #define MVNETA_RX_COAL_USEC 100
  204. /* The two bytes Marvell header. Either contains a special value used
  205. * by Marvell switches when a specific hardware mode is enabled (not
  206. * supported by this driver) or is filled automatically by zeroes on
  207. * the RX side. Those two bytes being at the front of the Ethernet
  208. * header, they allow to have the IP header aligned on a 4 bytes
  209. * boundary automatically: the hardware skips those two bytes on its
  210. * own.
  211. */
  212. #define MVNETA_MH_SIZE 2
  213. #define MVNETA_VLAN_TAG_LEN 4
  214. #define MVNETA_CPU_D_CACHE_LINE_SIZE 32
  215. #define MVNETA_TX_CSUM_MAX_SIZE 9800
  216. #define MVNETA_ACC_MODE_EXT 1
  217. /* Timeout constants */
  218. #define MVNETA_TX_DISABLE_TIMEOUT_MSEC 1000
  219. #define MVNETA_RX_DISABLE_TIMEOUT_MSEC 1000
  220. #define MVNETA_TX_FIFO_EMPTY_TIMEOUT 10000
  221. #define MVNETA_TX_MTU_MAX 0x3ffff
  222. /* TSO header size */
  223. #define TSO_HEADER_SIZE 128
  224. /* Max number of Rx descriptors */
  225. #define MVNETA_MAX_RXD 128
  226. /* Max number of Tx descriptors */
  227. #define MVNETA_MAX_TXD 532
  228. /* Max number of allowed TCP segments for software TSO */
  229. #define MVNETA_MAX_TSO_SEGS 100
  230. #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
  231. /* descriptor aligned size */
  232. #define MVNETA_DESC_ALIGNED_SIZE 32
  233. #define MVNETA_RX_PKT_SIZE(mtu) \
  234. ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
  235. ETH_HLEN + ETH_FCS_LEN, \
  236. MVNETA_CPU_D_CACHE_LINE_SIZE)
  237. #define IS_TSO_HEADER(txq, addr) \
  238. ((addr >= txq->tso_hdrs_phys) && \
  239. (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
  240. #define MVNETA_RX_BUF_SIZE(pkt_size) ((pkt_size) + NET_SKB_PAD)
  241. struct mvneta_pcpu_stats {
  242. struct u64_stats_sync syncp;
  243. u64 rx_packets;
  244. u64 rx_bytes;
  245. u64 tx_packets;
  246. u64 tx_bytes;
  247. };
  248. struct mvneta_port {
  249. int pkt_size;
  250. unsigned int frag_size;
  251. void __iomem *base;
  252. struct mvneta_rx_queue *rxqs;
  253. struct mvneta_tx_queue *txqs;
  254. struct net_device *dev;
  255. u32 cause_rx_tx;
  256. struct napi_struct napi;
  257. /* Core clock */
  258. struct clk *clk;
  259. u8 mcast_count[256];
  260. u16 tx_ring_size;
  261. u16 rx_ring_size;
  262. struct mvneta_pcpu_stats *stats;
  263. struct mii_bus *mii_bus;
  264. struct phy_device *phy_dev;
  265. phy_interface_t phy_interface;
  266. struct device_node *phy_node;
  267. unsigned int link;
  268. unsigned int duplex;
  269. unsigned int speed;
  270. };
  271. /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
  272. * layout of the transmit and reception DMA descriptors, and their
  273. * layout is therefore defined by the hardware design
  274. */
  275. #define MVNETA_TX_L3_OFF_SHIFT 0
  276. #define MVNETA_TX_IP_HLEN_SHIFT 8
  277. #define MVNETA_TX_L4_UDP BIT(16)
  278. #define MVNETA_TX_L3_IP6 BIT(17)
  279. #define MVNETA_TXD_IP_CSUM BIT(18)
  280. #define MVNETA_TXD_Z_PAD BIT(19)
  281. #define MVNETA_TXD_L_DESC BIT(20)
  282. #define MVNETA_TXD_F_DESC BIT(21)
  283. #define MVNETA_TXD_FLZ_DESC (MVNETA_TXD_Z_PAD | \
  284. MVNETA_TXD_L_DESC | \
  285. MVNETA_TXD_F_DESC)
  286. #define MVNETA_TX_L4_CSUM_FULL BIT(30)
  287. #define MVNETA_TX_L4_CSUM_NOT BIT(31)
  288. #define MVNETA_RXD_ERR_CRC 0x0
  289. #define MVNETA_RXD_ERR_SUMMARY BIT(16)
  290. #define MVNETA_RXD_ERR_OVERRUN BIT(17)
  291. #define MVNETA_RXD_ERR_LEN BIT(18)
  292. #define MVNETA_RXD_ERR_RESOURCE (BIT(17) | BIT(18))
  293. #define MVNETA_RXD_ERR_CODE_MASK (BIT(17) | BIT(18))
  294. #define MVNETA_RXD_L3_IP4 BIT(25)
  295. #define MVNETA_RXD_FIRST_LAST_DESC (BIT(26) | BIT(27))
  296. #define MVNETA_RXD_L4_CSUM_OK BIT(30)
  297. #if defined(__LITTLE_ENDIAN)
  298. struct mvneta_tx_desc {
  299. u32 command; /* Options used by HW for packet transmitting.*/
  300. u16 reserverd1; /* csum_l4 (for future use) */
  301. u16 data_size; /* Data size of transmitted packet in bytes */
  302. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  303. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  304. u32 reserved3[4]; /* Reserved - (for future use) */
  305. };
  306. struct mvneta_rx_desc {
  307. u32 status; /* Info about received packet */
  308. u16 reserved1; /* pnc_info - (for future use, PnC) */
  309. u16 data_size; /* Size of received packet in bytes */
  310. u32 buf_phys_addr; /* Physical address of the buffer */
  311. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  312. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  313. u16 reserved3; /* prefetch_cmd, for future use */
  314. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  315. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  316. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  317. };
  318. #else
  319. struct mvneta_tx_desc {
  320. u16 data_size; /* Data size of transmitted packet in bytes */
  321. u16 reserverd1; /* csum_l4 (for future use) */
  322. u32 command; /* Options used by HW for packet transmitting.*/
  323. u32 reserved2; /* hw_cmd - (for future use, PMT) */
  324. u32 buf_phys_addr; /* Physical addr of transmitted buffer */
  325. u32 reserved3[4]; /* Reserved - (for future use) */
  326. };
  327. struct mvneta_rx_desc {
  328. u16 data_size; /* Size of received packet in bytes */
  329. u16 reserved1; /* pnc_info - (for future use, PnC) */
  330. u32 status; /* Info about received packet */
  331. u32 reserved2; /* pnc_flow_id (for future use, PnC) */
  332. u32 buf_phys_addr; /* Physical address of the buffer */
  333. u16 reserved4; /* csum_l4 - (for future use, PnC) */
  334. u16 reserved3; /* prefetch_cmd, for future use */
  335. u32 buf_cookie; /* cookie for access to RX buffer in rx path */
  336. u32 reserved5; /* pnc_extra PnC (for future use, PnC) */
  337. u32 reserved6; /* hw_cmd (for future use, PnC and HWF) */
  338. };
  339. #endif
  340. struct mvneta_tx_queue {
  341. /* Number of this TX queue, in the range 0-7 */
  342. u8 id;
  343. /* Number of TX DMA descriptors in the descriptor ring */
  344. int size;
  345. /* Number of currently used TX DMA descriptor in the
  346. * descriptor ring
  347. */
  348. int count;
  349. int tx_stop_threshold;
  350. int tx_wake_threshold;
  351. /* Array of transmitted skb */
  352. struct sk_buff **tx_skb;
  353. /* Index of last TX DMA descriptor that was inserted */
  354. int txq_put_index;
  355. /* Index of the TX DMA descriptor to be cleaned up */
  356. int txq_get_index;
  357. u32 done_pkts_coal;
  358. /* Virtual address of the TX DMA descriptors array */
  359. struct mvneta_tx_desc *descs;
  360. /* DMA address of the TX DMA descriptors array */
  361. dma_addr_t descs_phys;
  362. /* Index of the last TX DMA descriptor */
  363. int last_desc;
  364. /* Index of the next TX DMA descriptor to process */
  365. int next_desc_to_proc;
  366. /* DMA buffers for TSO headers */
  367. char *tso_hdrs;
  368. /* DMA address of TSO headers */
  369. dma_addr_t tso_hdrs_phys;
  370. };
  371. struct mvneta_rx_queue {
  372. /* rx queue number, in the range 0-7 */
  373. u8 id;
  374. /* num of rx descriptors in the rx descriptor ring */
  375. int size;
  376. /* counter of times when mvneta_refill() failed */
  377. int missed;
  378. u32 pkts_coal;
  379. u32 time_coal;
  380. /* Virtual address of the RX DMA descriptors array */
  381. struct mvneta_rx_desc *descs;
  382. /* DMA address of the RX DMA descriptors array */
  383. dma_addr_t descs_phys;
  384. /* Index of the last RX DMA descriptor */
  385. int last_desc;
  386. /* Index of the next RX DMA descriptor to process */
  387. int next_desc_to_proc;
  388. };
  389. /* The hardware supports eight (8) rx queues, but we are only allowing
  390. * the first one to be used. Therefore, let's just allocate one queue.
  391. */
  392. static int rxq_number = 1;
  393. static int txq_number = 8;
  394. static int rxq_def;
  395. static int rx_copybreak __read_mostly = 256;
  396. #define MVNETA_DRIVER_NAME "mvneta"
  397. #define MVNETA_DRIVER_VERSION "1.0"
  398. /* Utility/helper methods */
  399. /* Write helper method */
  400. static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
  401. {
  402. writel(data, pp->base + offset);
  403. }
  404. /* Read helper method */
  405. static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
  406. {
  407. return readl(pp->base + offset);
  408. }
  409. /* Increment txq get counter */
  410. static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
  411. {
  412. txq->txq_get_index++;
  413. if (txq->txq_get_index == txq->size)
  414. txq->txq_get_index = 0;
  415. }
  416. /* Increment txq put counter */
  417. static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
  418. {
  419. txq->txq_put_index++;
  420. if (txq->txq_put_index == txq->size)
  421. txq->txq_put_index = 0;
  422. }
  423. /* Clear all MIB counters */
  424. static void mvneta_mib_counters_clear(struct mvneta_port *pp)
  425. {
  426. int i;
  427. u32 dummy;
  428. /* Perform dummy reads from MIB counters */
  429. for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
  430. dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
  431. }
  432. /* Get System Network Statistics */
  433. struct rtnl_link_stats64 *mvneta_get_stats64(struct net_device *dev,
  434. struct rtnl_link_stats64 *stats)
  435. {
  436. struct mvneta_port *pp = netdev_priv(dev);
  437. unsigned int start;
  438. int cpu;
  439. for_each_possible_cpu(cpu) {
  440. struct mvneta_pcpu_stats *cpu_stats;
  441. u64 rx_packets;
  442. u64 rx_bytes;
  443. u64 tx_packets;
  444. u64 tx_bytes;
  445. cpu_stats = per_cpu_ptr(pp->stats, cpu);
  446. do {
  447. start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
  448. rx_packets = cpu_stats->rx_packets;
  449. rx_bytes = cpu_stats->rx_bytes;
  450. tx_packets = cpu_stats->tx_packets;
  451. tx_bytes = cpu_stats->tx_bytes;
  452. } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
  453. stats->rx_packets += rx_packets;
  454. stats->rx_bytes += rx_bytes;
  455. stats->tx_packets += tx_packets;
  456. stats->tx_bytes += tx_bytes;
  457. }
  458. stats->rx_errors = dev->stats.rx_errors;
  459. stats->rx_dropped = dev->stats.rx_dropped;
  460. stats->tx_dropped = dev->stats.tx_dropped;
  461. return stats;
  462. }
  463. /* Rx descriptors helper methods */
  464. /* Checks whether the RX descriptor having this status is both the first
  465. * and the last descriptor for the RX packet. Each RX packet is currently
  466. * received through a single RX descriptor, so not having each RX
  467. * descriptor with its first and last bits set is an error
  468. */
  469. static int mvneta_rxq_desc_is_first_last(u32 status)
  470. {
  471. return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
  472. MVNETA_RXD_FIRST_LAST_DESC;
  473. }
  474. /* Add number of descriptors ready to receive new packets */
  475. static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
  476. struct mvneta_rx_queue *rxq,
  477. int ndescs)
  478. {
  479. /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
  480. * be added at once
  481. */
  482. while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
  483. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  484. (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
  485. MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  486. ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
  487. }
  488. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
  489. (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
  490. }
  491. /* Get number of RX descriptors occupied by received packets */
  492. static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
  493. struct mvneta_rx_queue *rxq)
  494. {
  495. u32 val;
  496. val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
  497. return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
  498. }
  499. /* Update num of rx desc called upon return from rx path or
  500. * from mvneta_rxq_drop_pkts().
  501. */
  502. static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
  503. struct mvneta_rx_queue *rxq,
  504. int rx_done, int rx_filled)
  505. {
  506. u32 val;
  507. if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
  508. val = rx_done |
  509. (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
  510. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  511. return;
  512. }
  513. /* Only 255 descriptors can be added at once */
  514. while ((rx_done > 0) || (rx_filled > 0)) {
  515. if (rx_done <= 0xff) {
  516. val = rx_done;
  517. rx_done = 0;
  518. } else {
  519. val = 0xff;
  520. rx_done -= 0xff;
  521. }
  522. if (rx_filled <= 0xff) {
  523. val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  524. rx_filled = 0;
  525. } else {
  526. val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
  527. rx_filled -= 0xff;
  528. }
  529. mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
  530. }
  531. }
  532. /* Get pointer to next RX descriptor to be processed by SW */
  533. static struct mvneta_rx_desc *
  534. mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
  535. {
  536. int rx_desc = rxq->next_desc_to_proc;
  537. rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
  538. prefetch(rxq->descs + rxq->next_desc_to_proc);
  539. return rxq->descs + rx_desc;
  540. }
  541. /* Change maximum receive size of the port. */
  542. static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
  543. {
  544. u32 val;
  545. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  546. val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
  547. val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
  548. MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
  549. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  550. }
  551. /* Set rx queue offset */
  552. static void mvneta_rxq_offset_set(struct mvneta_port *pp,
  553. struct mvneta_rx_queue *rxq,
  554. int offset)
  555. {
  556. u32 val;
  557. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  558. val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
  559. /* Offset is in */
  560. val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
  561. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  562. }
  563. /* Tx descriptors helper methods */
  564. /* Update HW with number of TX descriptors to be sent */
  565. static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
  566. struct mvneta_tx_queue *txq,
  567. int pend_desc)
  568. {
  569. u32 val;
  570. /* Only 255 descriptors can be added at once ; Assume caller
  571. * process TX desriptors in quanta less than 256
  572. */
  573. val = pend_desc;
  574. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  575. }
  576. /* Get pointer to next TX descriptor to be processed (send) by HW */
  577. static struct mvneta_tx_desc *
  578. mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
  579. {
  580. int tx_desc = txq->next_desc_to_proc;
  581. txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
  582. return txq->descs + tx_desc;
  583. }
  584. /* Release the last allocated TX descriptor. Useful to handle DMA
  585. * mapping failures in the TX path.
  586. */
  587. static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
  588. {
  589. if (txq->next_desc_to_proc == 0)
  590. txq->next_desc_to_proc = txq->last_desc - 1;
  591. else
  592. txq->next_desc_to_proc--;
  593. }
  594. /* Set rxq buf size */
  595. static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
  596. struct mvneta_rx_queue *rxq,
  597. int buf_size)
  598. {
  599. u32 val;
  600. val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
  601. val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
  602. val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
  603. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
  604. }
  605. /* Disable buffer management (BM) */
  606. static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
  607. struct mvneta_rx_queue *rxq)
  608. {
  609. u32 val;
  610. val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
  611. val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
  612. mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
  613. }
  614. /* Start the Ethernet port RX and TX activity */
  615. static void mvneta_port_up(struct mvneta_port *pp)
  616. {
  617. int queue;
  618. u32 q_map;
  619. /* Enable all initialized TXs. */
  620. mvneta_mib_counters_clear(pp);
  621. q_map = 0;
  622. for (queue = 0; queue < txq_number; queue++) {
  623. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  624. if (txq->descs != NULL)
  625. q_map |= (1 << queue);
  626. }
  627. mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
  628. /* Enable all initialized RXQs. */
  629. q_map = 0;
  630. for (queue = 0; queue < rxq_number; queue++) {
  631. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  632. if (rxq->descs != NULL)
  633. q_map |= (1 << queue);
  634. }
  635. mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
  636. }
  637. /* Stop the Ethernet port activity */
  638. static void mvneta_port_down(struct mvneta_port *pp)
  639. {
  640. u32 val;
  641. int count;
  642. /* Stop Rx port activity. Check port Rx activity. */
  643. val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
  644. /* Issue stop command for active channels only */
  645. if (val != 0)
  646. mvreg_write(pp, MVNETA_RXQ_CMD,
  647. val << MVNETA_RXQ_DISABLE_SHIFT);
  648. /* Wait for all Rx activity to terminate. */
  649. count = 0;
  650. do {
  651. if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
  652. netdev_warn(pp->dev,
  653. "TIMEOUT for RX stopped ! rx_queue_cmd: 0x08%x\n",
  654. val);
  655. break;
  656. }
  657. mdelay(1);
  658. val = mvreg_read(pp, MVNETA_RXQ_CMD);
  659. } while (val & 0xff);
  660. /* Stop Tx port activity. Check port Tx activity. Issue stop
  661. * command for active channels only
  662. */
  663. val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
  664. if (val != 0)
  665. mvreg_write(pp, MVNETA_TXQ_CMD,
  666. (val << MVNETA_TXQ_DISABLE_SHIFT));
  667. /* Wait for all Tx activity to terminate. */
  668. count = 0;
  669. do {
  670. if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
  671. netdev_warn(pp->dev,
  672. "TIMEOUT for TX stopped status=0x%08x\n",
  673. val);
  674. break;
  675. }
  676. mdelay(1);
  677. /* Check TX Command reg that all Txqs are stopped */
  678. val = mvreg_read(pp, MVNETA_TXQ_CMD);
  679. } while (val & 0xff);
  680. /* Double check to verify that TX FIFO is empty */
  681. count = 0;
  682. do {
  683. if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
  684. netdev_warn(pp->dev,
  685. "TX FIFO empty timeout status=0x08%x\n",
  686. val);
  687. break;
  688. }
  689. mdelay(1);
  690. val = mvreg_read(pp, MVNETA_PORT_STATUS);
  691. } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
  692. (val & MVNETA_TX_IN_PRGRS));
  693. udelay(200);
  694. }
  695. /* Enable the port by setting the port enable bit of the MAC control register */
  696. static void mvneta_port_enable(struct mvneta_port *pp)
  697. {
  698. u32 val;
  699. /* Enable port */
  700. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  701. val |= MVNETA_GMAC0_PORT_ENABLE;
  702. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  703. }
  704. /* Disable the port and wait for about 200 usec before retuning */
  705. static void mvneta_port_disable(struct mvneta_port *pp)
  706. {
  707. u32 val;
  708. /* Reset the Enable bit in the Serial Control Register */
  709. val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
  710. val &= ~MVNETA_GMAC0_PORT_ENABLE;
  711. mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
  712. udelay(200);
  713. }
  714. /* Multicast tables methods */
  715. /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
  716. static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
  717. {
  718. int offset;
  719. u32 val;
  720. if (queue == -1) {
  721. val = 0;
  722. } else {
  723. val = 0x1 | (queue << 1);
  724. val |= (val << 24) | (val << 16) | (val << 8);
  725. }
  726. for (offset = 0; offset <= 0xc; offset += 4)
  727. mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
  728. }
  729. /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
  730. static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
  731. {
  732. int offset;
  733. u32 val;
  734. if (queue == -1) {
  735. val = 0;
  736. } else {
  737. val = 0x1 | (queue << 1);
  738. val |= (val << 24) | (val << 16) | (val << 8);
  739. }
  740. for (offset = 0; offset <= 0xfc; offset += 4)
  741. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
  742. }
  743. /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
  744. static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
  745. {
  746. int offset;
  747. u32 val;
  748. if (queue == -1) {
  749. memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
  750. val = 0;
  751. } else {
  752. memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
  753. val = 0x1 | (queue << 1);
  754. val |= (val << 24) | (val << 16) | (val << 8);
  755. }
  756. for (offset = 0; offset <= 0xfc; offset += 4)
  757. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
  758. }
  759. /* This method sets defaults to the NETA port:
  760. * Clears interrupt Cause and Mask registers.
  761. * Clears all MAC tables.
  762. * Sets defaults to all registers.
  763. * Resets RX and TX descriptor rings.
  764. * Resets PHY.
  765. * This method can be called after mvneta_port_down() to return the port
  766. * settings to defaults.
  767. */
  768. static void mvneta_defaults_set(struct mvneta_port *pp)
  769. {
  770. int cpu;
  771. int queue;
  772. u32 val;
  773. /* Clear all Cause registers */
  774. mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
  775. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  776. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  777. /* Mask all interrupts */
  778. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  779. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  780. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  781. mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
  782. /* Enable MBUS Retry bit16 */
  783. mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
  784. /* Set CPU queue access map - all CPUs have access to all RX
  785. * queues and to all TX queues
  786. */
  787. for (cpu = 0; cpu < CONFIG_NR_CPUS; cpu++)
  788. mvreg_write(pp, MVNETA_CPU_MAP(cpu),
  789. (MVNETA_CPU_RXQ_ACCESS_ALL_MASK |
  790. MVNETA_CPU_TXQ_ACCESS_ALL_MASK));
  791. /* Reset RX and TX DMAs */
  792. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  793. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  794. /* Disable Legacy WRR, Disable EJP, Release from reset */
  795. mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
  796. for (queue = 0; queue < txq_number; queue++) {
  797. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
  798. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
  799. }
  800. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  801. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  802. /* Set Port Acceleration Mode */
  803. val = MVNETA_ACC_MODE_EXT;
  804. mvreg_write(pp, MVNETA_ACC_MODE, val);
  805. /* Update val of portCfg register accordingly with all RxQueue types */
  806. val = MVNETA_PORT_CONFIG_DEFL_VALUE(rxq_def);
  807. mvreg_write(pp, MVNETA_PORT_CONFIG, val);
  808. val = 0;
  809. mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
  810. mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
  811. /* Build PORT_SDMA_CONFIG_REG */
  812. val = 0;
  813. /* Default burst size */
  814. val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  815. val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
  816. val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
  817. #if defined(__BIG_ENDIAN)
  818. val |= MVNETA_DESC_SWAP;
  819. #endif
  820. /* Assign port SDMA configuration */
  821. mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
  822. /* Disable PHY polling in hardware, since we're using the
  823. * kernel phylib to do this.
  824. */
  825. val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
  826. val &= ~MVNETA_PHY_POLLING_ENABLE;
  827. mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
  828. mvneta_set_ucast_table(pp, -1);
  829. mvneta_set_special_mcast_table(pp, -1);
  830. mvneta_set_other_mcast_table(pp, -1);
  831. /* Set port interrupt enable register - default enable all */
  832. mvreg_write(pp, MVNETA_INTR_ENABLE,
  833. (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
  834. | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
  835. }
  836. /* Set max sizes for tx queues */
  837. static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
  838. {
  839. u32 val, size, mtu;
  840. int queue;
  841. mtu = max_tx_size * 8;
  842. if (mtu > MVNETA_TX_MTU_MAX)
  843. mtu = MVNETA_TX_MTU_MAX;
  844. /* Set MTU */
  845. val = mvreg_read(pp, MVNETA_TX_MTU);
  846. val &= ~MVNETA_TX_MTU_MAX;
  847. val |= mtu;
  848. mvreg_write(pp, MVNETA_TX_MTU, val);
  849. /* TX token size and all TXQs token size must be larger that MTU */
  850. val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
  851. size = val & MVNETA_TX_TOKEN_SIZE_MAX;
  852. if (size < mtu) {
  853. size = mtu;
  854. val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
  855. val |= size;
  856. mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
  857. }
  858. for (queue = 0; queue < txq_number; queue++) {
  859. val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
  860. size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
  861. if (size < mtu) {
  862. size = mtu;
  863. val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
  864. val |= size;
  865. mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
  866. }
  867. }
  868. }
  869. /* Set unicast address */
  870. static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
  871. int queue)
  872. {
  873. unsigned int unicast_reg;
  874. unsigned int tbl_offset;
  875. unsigned int reg_offset;
  876. /* Locate the Unicast table entry */
  877. last_nibble = (0xf & last_nibble);
  878. /* offset from unicast tbl base */
  879. tbl_offset = (last_nibble / 4) * 4;
  880. /* offset within the above reg */
  881. reg_offset = last_nibble % 4;
  882. unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
  883. if (queue == -1) {
  884. /* Clear accepts frame bit at specified unicast DA tbl entry */
  885. unicast_reg &= ~(0xff << (8 * reg_offset));
  886. } else {
  887. unicast_reg &= ~(0xff << (8 * reg_offset));
  888. unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  889. }
  890. mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
  891. }
  892. /* Set mac address */
  893. static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
  894. int queue)
  895. {
  896. unsigned int mac_h;
  897. unsigned int mac_l;
  898. if (queue != -1) {
  899. mac_l = (addr[4] << 8) | (addr[5]);
  900. mac_h = (addr[0] << 24) | (addr[1] << 16) |
  901. (addr[2] << 8) | (addr[3] << 0);
  902. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
  903. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
  904. }
  905. /* Accept frames of this address */
  906. mvneta_set_ucast_addr(pp, addr[5], queue);
  907. }
  908. /* Set the number of packets that will be received before RX interrupt
  909. * will be generated by HW.
  910. */
  911. static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
  912. struct mvneta_rx_queue *rxq, u32 value)
  913. {
  914. mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
  915. value | MVNETA_RXQ_NON_OCCUPIED(0));
  916. rxq->pkts_coal = value;
  917. }
  918. /* Set the time delay in usec before RX interrupt will be generated by
  919. * HW.
  920. */
  921. static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
  922. struct mvneta_rx_queue *rxq, u32 value)
  923. {
  924. u32 val;
  925. unsigned long clk_rate;
  926. clk_rate = clk_get_rate(pp->clk);
  927. val = (clk_rate / 1000000) * value;
  928. mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
  929. rxq->time_coal = value;
  930. }
  931. /* Set threshold for TX_DONE pkts coalescing */
  932. static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
  933. struct mvneta_tx_queue *txq, u32 value)
  934. {
  935. u32 val;
  936. val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
  937. val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
  938. val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
  939. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
  940. txq->done_pkts_coal = value;
  941. }
  942. /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
  943. static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
  944. u32 phys_addr, u32 cookie)
  945. {
  946. rx_desc->buf_cookie = cookie;
  947. rx_desc->buf_phys_addr = phys_addr;
  948. }
  949. /* Decrement sent descriptors counter */
  950. static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
  951. struct mvneta_tx_queue *txq,
  952. int sent_desc)
  953. {
  954. u32 val;
  955. /* Only 255 TX descriptors can be updated at once */
  956. while (sent_desc > 0xff) {
  957. val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
  958. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  959. sent_desc = sent_desc - 0xff;
  960. }
  961. val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
  962. mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
  963. }
  964. /* Get number of TX descriptors already sent by HW */
  965. static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
  966. struct mvneta_tx_queue *txq)
  967. {
  968. u32 val;
  969. int sent_desc;
  970. val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
  971. sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
  972. MVNETA_TXQ_SENT_DESC_SHIFT;
  973. return sent_desc;
  974. }
  975. /* Get number of sent descriptors and decrement counter.
  976. * The number of sent descriptors is returned.
  977. */
  978. static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
  979. struct mvneta_tx_queue *txq)
  980. {
  981. int sent_desc;
  982. /* Get number of sent descriptors */
  983. sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
  984. /* Decrement sent descriptors counter */
  985. if (sent_desc)
  986. mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
  987. return sent_desc;
  988. }
  989. /* Set TXQ descriptors fields relevant for CSUM calculation */
  990. static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
  991. int ip_hdr_len, int l4_proto)
  992. {
  993. u32 command;
  994. /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
  995. * G_L4_chk, L4_type; required only for checksum
  996. * calculation
  997. */
  998. command = l3_offs << MVNETA_TX_L3_OFF_SHIFT;
  999. command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
  1000. if (l3_proto == htons(ETH_P_IP))
  1001. command |= MVNETA_TXD_IP_CSUM;
  1002. else
  1003. command |= MVNETA_TX_L3_IP6;
  1004. if (l4_proto == IPPROTO_TCP)
  1005. command |= MVNETA_TX_L4_CSUM_FULL;
  1006. else if (l4_proto == IPPROTO_UDP)
  1007. command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
  1008. else
  1009. command |= MVNETA_TX_L4_CSUM_NOT;
  1010. return command;
  1011. }
  1012. /* Display more error info */
  1013. static void mvneta_rx_error(struct mvneta_port *pp,
  1014. struct mvneta_rx_desc *rx_desc)
  1015. {
  1016. u32 status = rx_desc->status;
  1017. if (!mvneta_rxq_desc_is_first_last(status)) {
  1018. netdev_err(pp->dev,
  1019. "bad rx status %08x (buffer oversize), size=%d\n",
  1020. status, rx_desc->data_size);
  1021. return;
  1022. }
  1023. switch (status & MVNETA_RXD_ERR_CODE_MASK) {
  1024. case MVNETA_RXD_ERR_CRC:
  1025. netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
  1026. status, rx_desc->data_size);
  1027. break;
  1028. case MVNETA_RXD_ERR_OVERRUN:
  1029. netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
  1030. status, rx_desc->data_size);
  1031. break;
  1032. case MVNETA_RXD_ERR_LEN:
  1033. netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
  1034. status, rx_desc->data_size);
  1035. break;
  1036. case MVNETA_RXD_ERR_RESOURCE:
  1037. netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
  1038. status, rx_desc->data_size);
  1039. break;
  1040. }
  1041. }
  1042. /* Handle RX checksum offload based on the descriptor's status */
  1043. static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
  1044. struct sk_buff *skb)
  1045. {
  1046. if ((status & MVNETA_RXD_L3_IP4) &&
  1047. (status & MVNETA_RXD_L4_CSUM_OK)) {
  1048. skb->csum = 0;
  1049. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1050. return;
  1051. }
  1052. skb->ip_summed = CHECKSUM_NONE;
  1053. }
  1054. /* Return tx queue pointer (find last set bit) according to <cause> returned
  1055. * form tx_done reg. <cause> must not be null. The return value is always a
  1056. * valid queue for matching the first one found in <cause>.
  1057. */
  1058. static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
  1059. u32 cause)
  1060. {
  1061. int queue = fls(cause) - 1;
  1062. return &pp->txqs[queue];
  1063. }
  1064. /* Free tx queue skbuffs */
  1065. static void mvneta_txq_bufs_free(struct mvneta_port *pp,
  1066. struct mvneta_tx_queue *txq, int num)
  1067. {
  1068. int i;
  1069. for (i = 0; i < num; i++) {
  1070. struct mvneta_tx_desc *tx_desc = txq->descs +
  1071. txq->txq_get_index;
  1072. struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
  1073. mvneta_txq_inc_get(txq);
  1074. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1075. dma_unmap_single(pp->dev->dev.parent,
  1076. tx_desc->buf_phys_addr,
  1077. tx_desc->data_size, DMA_TO_DEVICE);
  1078. if (!skb)
  1079. continue;
  1080. dev_kfree_skb_any(skb);
  1081. }
  1082. }
  1083. /* Handle end of transmission */
  1084. static void mvneta_txq_done(struct mvneta_port *pp,
  1085. struct mvneta_tx_queue *txq)
  1086. {
  1087. struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
  1088. int tx_done;
  1089. tx_done = mvneta_txq_sent_desc_proc(pp, txq);
  1090. if (!tx_done)
  1091. return;
  1092. mvneta_txq_bufs_free(pp, txq, tx_done);
  1093. txq->count -= tx_done;
  1094. if (netif_tx_queue_stopped(nq)) {
  1095. if (txq->count <= txq->tx_wake_threshold)
  1096. netif_tx_wake_queue(nq);
  1097. }
  1098. }
  1099. static void *mvneta_frag_alloc(const struct mvneta_port *pp)
  1100. {
  1101. if (likely(pp->frag_size <= PAGE_SIZE))
  1102. return netdev_alloc_frag(pp->frag_size);
  1103. else
  1104. return kmalloc(pp->frag_size, GFP_ATOMIC);
  1105. }
  1106. static void mvneta_frag_free(const struct mvneta_port *pp, void *data)
  1107. {
  1108. if (likely(pp->frag_size <= PAGE_SIZE))
  1109. put_page(virt_to_head_page(data));
  1110. else
  1111. kfree(data);
  1112. }
  1113. /* Refill processing */
  1114. static int mvneta_rx_refill(struct mvneta_port *pp,
  1115. struct mvneta_rx_desc *rx_desc)
  1116. {
  1117. dma_addr_t phys_addr;
  1118. void *data;
  1119. data = mvneta_frag_alloc(pp);
  1120. if (!data)
  1121. return -ENOMEM;
  1122. phys_addr = dma_map_single(pp->dev->dev.parent, data,
  1123. MVNETA_RX_BUF_SIZE(pp->pkt_size),
  1124. DMA_FROM_DEVICE);
  1125. if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
  1126. mvneta_frag_free(pp, data);
  1127. return -ENOMEM;
  1128. }
  1129. mvneta_rx_desc_fill(rx_desc, phys_addr, (u32)data);
  1130. return 0;
  1131. }
  1132. /* Handle tx checksum */
  1133. static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
  1134. {
  1135. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  1136. int ip_hdr_len = 0;
  1137. u8 l4_proto;
  1138. if (skb->protocol == htons(ETH_P_IP)) {
  1139. struct iphdr *ip4h = ip_hdr(skb);
  1140. /* Calculate IPv4 checksum and L4 checksum */
  1141. ip_hdr_len = ip4h->ihl;
  1142. l4_proto = ip4h->protocol;
  1143. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1144. struct ipv6hdr *ip6h = ipv6_hdr(skb);
  1145. /* Read l4_protocol from one of IPv6 extra headers */
  1146. if (skb_network_header_len(skb) > 0)
  1147. ip_hdr_len = (skb_network_header_len(skb) >> 2);
  1148. l4_proto = ip6h->nexthdr;
  1149. } else
  1150. return MVNETA_TX_L4_CSUM_NOT;
  1151. return mvneta_txq_desc_csum(skb_network_offset(skb),
  1152. skb->protocol, ip_hdr_len, l4_proto);
  1153. }
  1154. return MVNETA_TX_L4_CSUM_NOT;
  1155. }
  1156. /* Returns rx queue pointer (find last set bit) according to causeRxTx
  1157. * value
  1158. */
  1159. static struct mvneta_rx_queue *mvneta_rx_policy(struct mvneta_port *pp,
  1160. u32 cause)
  1161. {
  1162. int queue = fls(cause >> 8) - 1;
  1163. return (queue < 0 || queue >= rxq_number) ? NULL : &pp->rxqs[queue];
  1164. }
  1165. /* Drop packets received by the RXQ and free buffers */
  1166. static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
  1167. struct mvneta_rx_queue *rxq)
  1168. {
  1169. int rx_done, i;
  1170. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1171. for (i = 0; i < rxq->size; i++) {
  1172. struct mvneta_rx_desc *rx_desc = rxq->descs + i;
  1173. void *data = (void *)rx_desc->buf_cookie;
  1174. mvneta_frag_free(pp, data);
  1175. dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
  1176. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1177. }
  1178. if (rx_done)
  1179. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
  1180. }
  1181. /* Main rx processing */
  1182. static int mvneta_rx(struct mvneta_port *pp, int rx_todo,
  1183. struct mvneta_rx_queue *rxq)
  1184. {
  1185. struct net_device *dev = pp->dev;
  1186. int rx_done, rx_filled;
  1187. u32 rcvd_pkts = 0;
  1188. u32 rcvd_bytes = 0;
  1189. /* Get number of received packets */
  1190. rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
  1191. if (rx_todo > rx_done)
  1192. rx_todo = rx_done;
  1193. rx_done = 0;
  1194. rx_filled = 0;
  1195. /* Fairness NAPI loop */
  1196. while (rx_done < rx_todo) {
  1197. struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
  1198. struct sk_buff *skb;
  1199. unsigned char *data;
  1200. u32 rx_status;
  1201. int rx_bytes, err;
  1202. rx_done++;
  1203. rx_filled++;
  1204. rx_status = rx_desc->status;
  1205. rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
  1206. data = (unsigned char *)rx_desc->buf_cookie;
  1207. if (!mvneta_rxq_desc_is_first_last(rx_status) ||
  1208. (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
  1209. err_drop_frame:
  1210. dev->stats.rx_errors++;
  1211. mvneta_rx_error(pp, rx_desc);
  1212. /* leave the descriptor untouched */
  1213. continue;
  1214. }
  1215. if (rx_bytes <= rx_copybreak) {
  1216. /* better copy a small frame and not unmap the DMA region */
  1217. skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
  1218. if (unlikely(!skb))
  1219. goto err_drop_frame;
  1220. dma_sync_single_range_for_cpu(dev->dev.parent,
  1221. rx_desc->buf_phys_addr,
  1222. MVNETA_MH_SIZE + NET_SKB_PAD,
  1223. rx_bytes,
  1224. DMA_FROM_DEVICE);
  1225. memcpy(skb_put(skb, rx_bytes),
  1226. data + MVNETA_MH_SIZE + NET_SKB_PAD,
  1227. rx_bytes);
  1228. skb->protocol = eth_type_trans(skb, dev);
  1229. mvneta_rx_csum(pp, rx_status, skb);
  1230. napi_gro_receive(&pp->napi, skb);
  1231. rcvd_pkts++;
  1232. rcvd_bytes += rx_bytes;
  1233. /* leave the descriptor and buffer untouched */
  1234. continue;
  1235. }
  1236. skb = build_skb(data, pp->frag_size > PAGE_SIZE ? 0 : pp->frag_size);
  1237. if (!skb)
  1238. goto err_drop_frame;
  1239. dma_unmap_single(dev->dev.parent, rx_desc->buf_phys_addr,
  1240. MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
  1241. rcvd_pkts++;
  1242. rcvd_bytes += rx_bytes;
  1243. /* Linux processing */
  1244. skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
  1245. skb_put(skb, rx_bytes);
  1246. skb->protocol = eth_type_trans(skb, dev);
  1247. mvneta_rx_csum(pp, rx_status, skb);
  1248. napi_gro_receive(&pp->napi, skb);
  1249. /* Refill processing */
  1250. err = mvneta_rx_refill(pp, rx_desc);
  1251. if (err) {
  1252. netdev_err(dev, "Linux processing - Can't refill\n");
  1253. rxq->missed++;
  1254. rx_filled--;
  1255. }
  1256. }
  1257. if (rcvd_pkts) {
  1258. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1259. u64_stats_update_begin(&stats->syncp);
  1260. stats->rx_packets += rcvd_pkts;
  1261. stats->rx_bytes += rcvd_bytes;
  1262. u64_stats_update_end(&stats->syncp);
  1263. }
  1264. /* Update rxq management counters */
  1265. mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_filled);
  1266. return rx_done;
  1267. }
  1268. static inline void
  1269. mvneta_tso_put_hdr(struct sk_buff *skb,
  1270. struct mvneta_port *pp, struct mvneta_tx_queue *txq)
  1271. {
  1272. struct mvneta_tx_desc *tx_desc;
  1273. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1274. txq->tx_skb[txq->txq_put_index] = NULL;
  1275. tx_desc = mvneta_txq_next_desc_get(txq);
  1276. tx_desc->data_size = hdr_len;
  1277. tx_desc->command = mvneta_skb_tx_csum(pp, skb);
  1278. tx_desc->command |= MVNETA_TXD_F_DESC;
  1279. tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
  1280. txq->txq_put_index * TSO_HEADER_SIZE;
  1281. mvneta_txq_inc_put(txq);
  1282. }
  1283. static inline int
  1284. mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
  1285. struct sk_buff *skb, char *data, int size,
  1286. bool last_tcp, bool is_last)
  1287. {
  1288. struct mvneta_tx_desc *tx_desc;
  1289. tx_desc = mvneta_txq_next_desc_get(txq);
  1290. tx_desc->data_size = size;
  1291. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
  1292. size, DMA_TO_DEVICE);
  1293. if (unlikely(dma_mapping_error(dev->dev.parent,
  1294. tx_desc->buf_phys_addr))) {
  1295. mvneta_txq_desc_put(txq);
  1296. return -ENOMEM;
  1297. }
  1298. tx_desc->command = 0;
  1299. txq->tx_skb[txq->txq_put_index] = NULL;
  1300. if (last_tcp) {
  1301. /* last descriptor in the TCP packet */
  1302. tx_desc->command = MVNETA_TXD_L_DESC;
  1303. /* last descriptor in SKB */
  1304. if (is_last)
  1305. txq->tx_skb[txq->txq_put_index] = skb;
  1306. }
  1307. mvneta_txq_inc_put(txq);
  1308. return 0;
  1309. }
  1310. static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
  1311. struct mvneta_tx_queue *txq)
  1312. {
  1313. int total_len, data_left;
  1314. int desc_count = 0;
  1315. struct mvneta_port *pp = netdev_priv(dev);
  1316. struct tso_t tso;
  1317. int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
  1318. int i;
  1319. /* Count needed descriptors */
  1320. if ((txq->count + tso_count_descs(skb)) >= txq->size)
  1321. return 0;
  1322. if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
  1323. pr_info("*** Is this even possible???!?!?\n");
  1324. return 0;
  1325. }
  1326. /* Initialize the TSO handler, and prepare the first payload */
  1327. tso_start(skb, &tso);
  1328. total_len = skb->len - hdr_len;
  1329. while (total_len > 0) {
  1330. char *hdr;
  1331. data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
  1332. total_len -= data_left;
  1333. desc_count++;
  1334. /* prepare packet headers: MAC + IP + TCP */
  1335. hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
  1336. tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
  1337. mvneta_tso_put_hdr(skb, pp, txq);
  1338. while (data_left > 0) {
  1339. int size;
  1340. desc_count++;
  1341. size = min_t(int, tso.size, data_left);
  1342. if (mvneta_tso_put_data(dev, txq, skb,
  1343. tso.data, size,
  1344. size == data_left,
  1345. total_len == 0))
  1346. goto err_release;
  1347. data_left -= size;
  1348. tso_build_data(skb, &tso, size);
  1349. }
  1350. }
  1351. return desc_count;
  1352. err_release:
  1353. /* Release all used data descriptors; header descriptors must not
  1354. * be DMA-unmapped.
  1355. */
  1356. for (i = desc_count - 1; i >= 0; i--) {
  1357. struct mvneta_tx_desc *tx_desc = txq->descs + i;
  1358. if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
  1359. dma_unmap_single(pp->dev->dev.parent,
  1360. tx_desc->buf_phys_addr,
  1361. tx_desc->data_size,
  1362. DMA_TO_DEVICE);
  1363. mvneta_txq_desc_put(txq);
  1364. }
  1365. return 0;
  1366. }
  1367. /* Handle tx fragmentation processing */
  1368. static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
  1369. struct mvneta_tx_queue *txq)
  1370. {
  1371. struct mvneta_tx_desc *tx_desc;
  1372. int i, nr_frags = skb_shinfo(skb)->nr_frags;
  1373. for (i = 0; i < nr_frags; i++) {
  1374. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1375. void *addr = page_address(frag->page.p) + frag->page_offset;
  1376. tx_desc = mvneta_txq_next_desc_get(txq);
  1377. tx_desc->data_size = frag->size;
  1378. tx_desc->buf_phys_addr =
  1379. dma_map_single(pp->dev->dev.parent, addr,
  1380. tx_desc->data_size, DMA_TO_DEVICE);
  1381. if (dma_mapping_error(pp->dev->dev.parent,
  1382. tx_desc->buf_phys_addr)) {
  1383. mvneta_txq_desc_put(txq);
  1384. goto error;
  1385. }
  1386. if (i == nr_frags - 1) {
  1387. /* Last descriptor */
  1388. tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
  1389. txq->tx_skb[txq->txq_put_index] = skb;
  1390. } else {
  1391. /* Descriptor in the middle: Not First, Not Last */
  1392. tx_desc->command = 0;
  1393. txq->tx_skb[txq->txq_put_index] = NULL;
  1394. }
  1395. mvneta_txq_inc_put(txq);
  1396. }
  1397. return 0;
  1398. error:
  1399. /* Release all descriptors that were used to map fragments of
  1400. * this packet, as well as the corresponding DMA mappings
  1401. */
  1402. for (i = i - 1; i >= 0; i--) {
  1403. tx_desc = txq->descs + i;
  1404. dma_unmap_single(pp->dev->dev.parent,
  1405. tx_desc->buf_phys_addr,
  1406. tx_desc->data_size,
  1407. DMA_TO_DEVICE);
  1408. mvneta_txq_desc_put(txq);
  1409. }
  1410. return -ENOMEM;
  1411. }
  1412. /* Main tx processing */
  1413. static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
  1414. {
  1415. struct mvneta_port *pp = netdev_priv(dev);
  1416. u16 txq_id = skb_get_queue_mapping(skb);
  1417. struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
  1418. struct mvneta_tx_desc *tx_desc;
  1419. int frags = 0;
  1420. u32 tx_cmd;
  1421. if (!netif_running(dev))
  1422. goto out;
  1423. if (skb_is_gso(skb)) {
  1424. frags = mvneta_tx_tso(skb, dev, txq);
  1425. goto out;
  1426. }
  1427. frags = skb_shinfo(skb)->nr_frags + 1;
  1428. /* Get a descriptor for the first part of the packet */
  1429. tx_desc = mvneta_txq_next_desc_get(txq);
  1430. tx_cmd = mvneta_skb_tx_csum(pp, skb);
  1431. tx_desc->data_size = skb_headlen(skb);
  1432. tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
  1433. tx_desc->data_size,
  1434. DMA_TO_DEVICE);
  1435. if (unlikely(dma_mapping_error(dev->dev.parent,
  1436. tx_desc->buf_phys_addr))) {
  1437. mvneta_txq_desc_put(txq);
  1438. frags = 0;
  1439. goto out;
  1440. }
  1441. if (frags == 1) {
  1442. /* First and Last descriptor */
  1443. tx_cmd |= MVNETA_TXD_FLZ_DESC;
  1444. tx_desc->command = tx_cmd;
  1445. txq->tx_skb[txq->txq_put_index] = skb;
  1446. mvneta_txq_inc_put(txq);
  1447. } else {
  1448. /* First but not Last */
  1449. tx_cmd |= MVNETA_TXD_F_DESC;
  1450. txq->tx_skb[txq->txq_put_index] = NULL;
  1451. mvneta_txq_inc_put(txq);
  1452. tx_desc->command = tx_cmd;
  1453. /* Continue with other skb fragments */
  1454. if (mvneta_tx_frag_process(pp, skb, txq)) {
  1455. dma_unmap_single(dev->dev.parent,
  1456. tx_desc->buf_phys_addr,
  1457. tx_desc->data_size,
  1458. DMA_TO_DEVICE);
  1459. mvneta_txq_desc_put(txq);
  1460. frags = 0;
  1461. goto out;
  1462. }
  1463. }
  1464. out:
  1465. if (frags > 0) {
  1466. struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
  1467. struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
  1468. txq->count += frags;
  1469. mvneta_txq_pend_desc_add(pp, txq, frags);
  1470. if (txq->count >= txq->tx_stop_threshold)
  1471. netif_tx_stop_queue(nq);
  1472. u64_stats_update_begin(&stats->syncp);
  1473. stats->tx_packets++;
  1474. stats->tx_bytes += skb->len;
  1475. u64_stats_update_end(&stats->syncp);
  1476. } else {
  1477. dev->stats.tx_dropped++;
  1478. dev_kfree_skb_any(skb);
  1479. }
  1480. return NETDEV_TX_OK;
  1481. }
  1482. /* Free tx resources, when resetting a port */
  1483. static void mvneta_txq_done_force(struct mvneta_port *pp,
  1484. struct mvneta_tx_queue *txq)
  1485. {
  1486. int tx_done = txq->count;
  1487. mvneta_txq_bufs_free(pp, txq, tx_done);
  1488. /* reset txq */
  1489. txq->count = 0;
  1490. txq->txq_put_index = 0;
  1491. txq->txq_get_index = 0;
  1492. }
  1493. /* Handle tx done - called in softirq context. The <cause_tx_done> argument
  1494. * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
  1495. */
  1496. static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
  1497. {
  1498. struct mvneta_tx_queue *txq;
  1499. struct netdev_queue *nq;
  1500. while (cause_tx_done) {
  1501. txq = mvneta_tx_done_policy(pp, cause_tx_done);
  1502. nq = netdev_get_tx_queue(pp->dev, txq->id);
  1503. __netif_tx_lock(nq, smp_processor_id());
  1504. if (txq->count)
  1505. mvneta_txq_done(pp, txq);
  1506. __netif_tx_unlock(nq);
  1507. cause_tx_done &= ~((1 << txq->id));
  1508. }
  1509. }
  1510. /* Compute crc8 of the specified address, using a unique algorithm ,
  1511. * according to hw spec, different than generic crc8 algorithm
  1512. */
  1513. static int mvneta_addr_crc(unsigned char *addr)
  1514. {
  1515. int crc = 0;
  1516. int i;
  1517. for (i = 0; i < ETH_ALEN; i++) {
  1518. int j;
  1519. crc = (crc ^ addr[i]) << 8;
  1520. for (j = 7; j >= 0; j--) {
  1521. if (crc & (0x100 << j))
  1522. crc ^= 0x107 << j;
  1523. }
  1524. }
  1525. return crc;
  1526. }
  1527. /* This method controls the net device special MAC multicast support.
  1528. * The Special Multicast Table for MAC addresses supports MAC of the form
  1529. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1530. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1531. * Table entries in the DA-Filter table. This method set the Special
  1532. * Multicast Table appropriate entry.
  1533. */
  1534. static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
  1535. unsigned char last_byte,
  1536. int queue)
  1537. {
  1538. unsigned int smc_table_reg;
  1539. unsigned int tbl_offset;
  1540. unsigned int reg_offset;
  1541. /* Register offset from SMC table base */
  1542. tbl_offset = (last_byte / 4);
  1543. /* Entry offset within the above reg */
  1544. reg_offset = last_byte % 4;
  1545. smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
  1546. + tbl_offset * 4));
  1547. if (queue == -1)
  1548. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1549. else {
  1550. smc_table_reg &= ~(0xff << (8 * reg_offset));
  1551. smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1552. }
  1553. mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
  1554. smc_table_reg);
  1555. }
  1556. /* This method controls the network device Other MAC multicast support.
  1557. * The Other Multicast Table is used for multicast of another type.
  1558. * A CRC-8 is used as an index to the Other Multicast Table entries
  1559. * in the DA-Filter table.
  1560. * The method gets the CRC-8 value from the calling routine and
  1561. * sets the Other Multicast Table appropriate entry according to the
  1562. * specified CRC-8 .
  1563. */
  1564. static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
  1565. unsigned char crc8,
  1566. int queue)
  1567. {
  1568. unsigned int omc_table_reg;
  1569. unsigned int tbl_offset;
  1570. unsigned int reg_offset;
  1571. tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
  1572. reg_offset = crc8 % 4; /* Entry offset within the above reg */
  1573. omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
  1574. if (queue == -1) {
  1575. /* Clear accepts frame bit at specified Other DA table entry */
  1576. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1577. } else {
  1578. omc_table_reg &= ~(0xff << (8 * reg_offset));
  1579. omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
  1580. }
  1581. mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
  1582. }
  1583. /* The network device supports multicast using two tables:
  1584. * 1) Special Multicast Table for MAC addresses of the form
  1585. * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
  1586. * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
  1587. * Table entries in the DA-Filter table.
  1588. * 2) Other Multicast Table for multicast of another type. A CRC-8 value
  1589. * is used as an index to the Other Multicast Table entries in the
  1590. * DA-Filter table.
  1591. */
  1592. static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
  1593. int queue)
  1594. {
  1595. unsigned char crc_result = 0;
  1596. if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
  1597. mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
  1598. return 0;
  1599. }
  1600. crc_result = mvneta_addr_crc(p_addr);
  1601. if (queue == -1) {
  1602. if (pp->mcast_count[crc_result] == 0) {
  1603. netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
  1604. crc_result);
  1605. return -EINVAL;
  1606. }
  1607. pp->mcast_count[crc_result]--;
  1608. if (pp->mcast_count[crc_result] != 0) {
  1609. netdev_info(pp->dev,
  1610. "After delete there are %d valid Mcast for crc8=0x%02x\n",
  1611. pp->mcast_count[crc_result], crc_result);
  1612. return -EINVAL;
  1613. }
  1614. } else
  1615. pp->mcast_count[crc_result]++;
  1616. mvneta_set_other_mcast_addr(pp, crc_result, queue);
  1617. return 0;
  1618. }
  1619. /* Configure Fitering mode of Ethernet port */
  1620. static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
  1621. int is_promisc)
  1622. {
  1623. u32 port_cfg_reg, val;
  1624. port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
  1625. val = mvreg_read(pp, MVNETA_TYPE_PRIO);
  1626. /* Set / Clear UPM bit in port configuration register */
  1627. if (is_promisc) {
  1628. /* Accept all Unicast addresses */
  1629. port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
  1630. val |= MVNETA_FORCE_UNI;
  1631. mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
  1632. mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
  1633. } else {
  1634. /* Reject all Unicast addresses */
  1635. port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
  1636. val &= ~MVNETA_FORCE_UNI;
  1637. }
  1638. mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
  1639. mvreg_write(pp, MVNETA_TYPE_PRIO, val);
  1640. }
  1641. /* register unicast and multicast addresses */
  1642. static void mvneta_set_rx_mode(struct net_device *dev)
  1643. {
  1644. struct mvneta_port *pp = netdev_priv(dev);
  1645. struct netdev_hw_addr *ha;
  1646. if (dev->flags & IFF_PROMISC) {
  1647. /* Accept all: Multicast + Unicast */
  1648. mvneta_rx_unicast_promisc_set(pp, 1);
  1649. mvneta_set_ucast_table(pp, rxq_def);
  1650. mvneta_set_special_mcast_table(pp, rxq_def);
  1651. mvneta_set_other_mcast_table(pp, rxq_def);
  1652. } else {
  1653. /* Accept single Unicast */
  1654. mvneta_rx_unicast_promisc_set(pp, 0);
  1655. mvneta_set_ucast_table(pp, -1);
  1656. mvneta_mac_addr_set(pp, dev->dev_addr, rxq_def);
  1657. if (dev->flags & IFF_ALLMULTI) {
  1658. /* Accept all multicast */
  1659. mvneta_set_special_mcast_table(pp, rxq_def);
  1660. mvneta_set_other_mcast_table(pp, rxq_def);
  1661. } else {
  1662. /* Accept only initialized multicast */
  1663. mvneta_set_special_mcast_table(pp, -1);
  1664. mvneta_set_other_mcast_table(pp, -1);
  1665. if (!netdev_mc_empty(dev)) {
  1666. netdev_for_each_mc_addr(ha, dev) {
  1667. mvneta_mcast_addr_set(pp, ha->addr,
  1668. rxq_def);
  1669. }
  1670. }
  1671. }
  1672. }
  1673. }
  1674. /* Interrupt handling - the callback for request_irq() */
  1675. static irqreturn_t mvneta_isr(int irq, void *dev_id)
  1676. {
  1677. struct mvneta_port *pp = (struct mvneta_port *)dev_id;
  1678. /* Mask all interrupts */
  1679. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1680. napi_schedule(&pp->napi);
  1681. return IRQ_HANDLED;
  1682. }
  1683. /* NAPI handler
  1684. * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
  1685. * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
  1686. * Bits 8 -15 of the cause Rx Tx register indicate that are received
  1687. * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
  1688. * Each CPU has its own causeRxTx register
  1689. */
  1690. static int mvneta_poll(struct napi_struct *napi, int budget)
  1691. {
  1692. int rx_done = 0;
  1693. u32 cause_rx_tx;
  1694. unsigned long flags;
  1695. struct mvneta_port *pp = netdev_priv(napi->dev);
  1696. if (!netif_running(pp->dev)) {
  1697. napi_complete(napi);
  1698. return rx_done;
  1699. }
  1700. /* Read cause register */
  1701. cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE) &
  1702. (MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1703. /* Release Tx descriptors */
  1704. if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
  1705. mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
  1706. cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
  1707. }
  1708. /* For the case where the last mvneta_poll did not process all
  1709. * RX packets
  1710. */
  1711. cause_rx_tx |= pp->cause_rx_tx;
  1712. if (rxq_number > 1) {
  1713. while ((cause_rx_tx & MVNETA_RX_INTR_MASK_ALL) && (budget > 0)) {
  1714. int count;
  1715. struct mvneta_rx_queue *rxq;
  1716. /* get rx queue number from cause_rx_tx */
  1717. rxq = mvneta_rx_policy(pp, cause_rx_tx);
  1718. if (!rxq)
  1719. break;
  1720. /* process the packet in that rx queue */
  1721. count = mvneta_rx(pp, budget, rxq);
  1722. rx_done += count;
  1723. budget -= count;
  1724. if (budget > 0) {
  1725. /* set off the rx bit of the
  1726. * corresponding bit in the cause rx
  1727. * tx register, so that next iteration
  1728. * will find the next rx queue where
  1729. * packets are received on
  1730. */
  1731. cause_rx_tx &= ~((1 << rxq->id) << 8);
  1732. }
  1733. }
  1734. } else {
  1735. rx_done = mvneta_rx(pp, budget, &pp->rxqs[rxq_def]);
  1736. budget -= rx_done;
  1737. }
  1738. if (budget > 0) {
  1739. cause_rx_tx = 0;
  1740. napi_complete(napi);
  1741. local_irq_save(flags);
  1742. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1743. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1744. local_irq_restore(flags);
  1745. }
  1746. pp->cause_rx_tx = cause_rx_tx;
  1747. return rx_done;
  1748. }
  1749. /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
  1750. static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
  1751. int num)
  1752. {
  1753. int i;
  1754. for (i = 0; i < num; i++) {
  1755. memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
  1756. if (mvneta_rx_refill(pp, rxq->descs + i) != 0) {
  1757. netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs filled\n",
  1758. __func__, rxq->id, i, num);
  1759. break;
  1760. }
  1761. }
  1762. /* Add this number of RX descriptors as non occupied (ready to
  1763. * get packets)
  1764. */
  1765. mvneta_rxq_non_occup_desc_add(pp, rxq, i);
  1766. return i;
  1767. }
  1768. /* Free all packets pending transmit from all TXQs and reset TX port */
  1769. static void mvneta_tx_reset(struct mvneta_port *pp)
  1770. {
  1771. int queue;
  1772. /* free the skb's in the tx ring */
  1773. for (queue = 0; queue < txq_number; queue++)
  1774. mvneta_txq_done_force(pp, &pp->txqs[queue]);
  1775. mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
  1776. mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
  1777. }
  1778. static void mvneta_rx_reset(struct mvneta_port *pp)
  1779. {
  1780. mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
  1781. mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
  1782. }
  1783. /* Rx/Tx queue initialization/cleanup methods */
  1784. /* Create a specified RX queue */
  1785. static int mvneta_rxq_init(struct mvneta_port *pp,
  1786. struct mvneta_rx_queue *rxq)
  1787. {
  1788. rxq->size = pp->rx_ring_size;
  1789. /* Allocate memory for RX descriptors */
  1790. rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1791. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1792. &rxq->descs_phys, GFP_KERNEL);
  1793. if (rxq->descs == NULL)
  1794. return -ENOMEM;
  1795. BUG_ON(rxq->descs !=
  1796. PTR_ALIGN(rxq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1797. rxq->last_desc = rxq->size - 1;
  1798. /* Set Rx descriptors queue starting address */
  1799. mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
  1800. mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
  1801. /* Set Offset */
  1802. mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD);
  1803. /* Set coalescing pkts and time */
  1804. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  1805. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  1806. /* Fill RXQ with buffers from RX pool */
  1807. mvneta_rxq_buf_size_set(pp, rxq, MVNETA_RX_BUF_SIZE(pp->pkt_size));
  1808. mvneta_rxq_bm_disable(pp, rxq);
  1809. mvneta_rxq_fill(pp, rxq, rxq->size);
  1810. return 0;
  1811. }
  1812. /* Cleanup Rx queue */
  1813. static void mvneta_rxq_deinit(struct mvneta_port *pp,
  1814. struct mvneta_rx_queue *rxq)
  1815. {
  1816. mvneta_rxq_drop_pkts(pp, rxq);
  1817. if (rxq->descs)
  1818. dma_free_coherent(pp->dev->dev.parent,
  1819. rxq->size * MVNETA_DESC_ALIGNED_SIZE,
  1820. rxq->descs,
  1821. rxq->descs_phys);
  1822. rxq->descs = NULL;
  1823. rxq->last_desc = 0;
  1824. rxq->next_desc_to_proc = 0;
  1825. rxq->descs_phys = 0;
  1826. }
  1827. /* Create and initialize a tx queue */
  1828. static int mvneta_txq_init(struct mvneta_port *pp,
  1829. struct mvneta_tx_queue *txq)
  1830. {
  1831. txq->size = pp->tx_ring_size;
  1832. /* A queue must always have room for at least one skb.
  1833. * Therefore, stop the queue when the free entries reaches
  1834. * the maximum number of descriptors per skb.
  1835. */
  1836. txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
  1837. txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
  1838. /* Allocate memory for TX descriptors */
  1839. txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
  1840. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1841. &txq->descs_phys, GFP_KERNEL);
  1842. if (txq->descs == NULL)
  1843. return -ENOMEM;
  1844. /* Make sure descriptor address is cache line size aligned */
  1845. BUG_ON(txq->descs !=
  1846. PTR_ALIGN(txq->descs, MVNETA_CPU_D_CACHE_LINE_SIZE));
  1847. txq->last_desc = txq->size - 1;
  1848. /* Set maximum bandwidth for enabled TXQs */
  1849. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
  1850. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
  1851. /* Set Tx descriptors queue starting address */
  1852. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
  1853. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
  1854. txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
  1855. if (txq->tx_skb == NULL) {
  1856. dma_free_coherent(pp->dev->dev.parent,
  1857. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1858. txq->descs, txq->descs_phys);
  1859. return -ENOMEM;
  1860. }
  1861. /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
  1862. txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
  1863. txq->size * TSO_HEADER_SIZE,
  1864. &txq->tso_hdrs_phys, GFP_KERNEL);
  1865. if (txq->tso_hdrs == NULL) {
  1866. kfree(txq->tx_skb);
  1867. dma_free_coherent(pp->dev->dev.parent,
  1868. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1869. txq->descs, txq->descs_phys);
  1870. return -ENOMEM;
  1871. }
  1872. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  1873. return 0;
  1874. }
  1875. /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
  1876. static void mvneta_txq_deinit(struct mvneta_port *pp,
  1877. struct mvneta_tx_queue *txq)
  1878. {
  1879. kfree(txq->tx_skb);
  1880. if (txq->tso_hdrs)
  1881. dma_free_coherent(pp->dev->dev.parent,
  1882. txq->size * TSO_HEADER_SIZE,
  1883. txq->tso_hdrs, txq->tso_hdrs_phys);
  1884. if (txq->descs)
  1885. dma_free_coherent(pp->dev->dev.parent,
  1886. txq->size * MVNETA_DESC_ALIGNED_SIZE,
  1887. txq->descs, txq->descs_phys);
  1888. txq->descs = NULL;
  1889. txq->last_desc = 0;
  1890. txq->next_desc_to_proc = 0;
  1891. txq->descs_phys = 0;
  1892. /* Set minimum bandwidth for disabled TXQs */
  1893. mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
  1894. mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
  1895. /* Set Tx descriptors queue starting address and size */
  1896. mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
  1897. mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
  1898. }
  1899. /* Cleanup all Tx queues */
  1900. static void mvneta_cleanup_txqs(struct mvneta_port *pp)
  1901. {
  1902. int queue;
  1903. for (queue = 0; queue < txq_number; queue++)
  1904. mvneta_txq_deinit(pp, &pp->txqs[queue]);
  1905. }
  1906. /* Cleanup all Rx queues */
  1907. static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
  1908. {
  1909. int queue;
  1910. for (queue = 0; queue < rxq_number; queue++)
  1911. mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
  1912. }
  1913. /* Init all Rx queues */
  1914. static int mvneta_setup_rxqs(struct mvneta_port *pp)
  1915. {
  1916. int queue;
  1917. for (queue = 0; queue < rxq_number; queue++) {
  1918. int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
  1919. if (err) {
  1920. netdev_err(pp->dev, "%s: can't create rxq=%d\n",
  1921. __func__, queue);
  1922. mvneta_cleanup_rxqs(pp);
  1923. return err;
  1924. }
  1925. }
  1926. return 0;
  1927. }
  1928. /* Init all tx queues */
  1929. static int mvneta_setup_txqs(struct mvneta_port *pp)
  1930. {
  1931. int queue;
  1932. for (queue = 0; queue < txq_number; queue++) {
  1933. int err = mvneta_txq_init(pp, &pp->txqs[queue]);
  1934. if (err) {
  1935. netdev_err(pp->dev, "%s: can't create txq=%d\n",
  1936. __func__, queue);
  1937. mvneta_cleanup_txqs(pp);
  1938. return err;
  1939. }
  1940. }
  1941. return 0;
  1942. }
  1943. static void mvneta_start_dev(struct mvneta_port *pp)
  1944. {
  1945. mvneta_max_rx_size_set(pp, pp->pkt_size);
  1946. mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
  1947. /* start the Rx/Tx activity */
  1948. mvneta_port_enable(pp);
  1949. /* Enable polling on the port */
  1950. napi_enable(&pp->napi);
  1951. /* Unmask interrupts */
  1952. mvreg_write(pp, MVNETA_INTR_NEW_MASK,
  1953. MVNETA_RX_INTR_MASK(rxq_number) | MVNETA_TX_INTR_MASK(txq_number));
  1954. phy_start(pp->phy_dev);
  1955. netif_tx_start_all_queues(pp->dev);
  1956. }
  1957. static void mvneta_stop_dev(struct mvneta_port *pp)
  1958. {
  1959. phy_stop(pp->phy_dev);
  1960. napi_disable(&pp->napi);
  1961. netif_carrier_off(pp->dev);
  1962. mvneta_port_down(pp);
  1963. netif_tx_stop_all_queues(pp->dev);
  1964. /* Stop the port activity */
  1965. mvneta_port_disable(pp);
  1966. /* Clear all ethernet port interrupts */
  1967. mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
  1968. mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
  1969. /* Mask all ethernet port interrupts */
  1970. mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
  1971. mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
  1972. mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
  1973. mvneta_tx_reset(pp);
  1974. mvneta_rx_reset(pp);
  1975. }
  1976. /* Return positive if MTU is valid */
  1977. static int mvneta_check_mtu_valid(struct net_device *dev, int mtu)
  1978. {
  1979. if (mtu < 68) {
  1980. netdev_err(dev, "cannot change mtu to less than 68\n");
  1981. return -EINVAL;
  1982. }
  1983. /* 9676 == 9700 - 20 and rounding to 8 */
  1984. if (mtu > 9676) {
  1985. netdev_info(dev, "Illegal MTU value %d, round to 9676\n", mtu);
  1986. mtu = 9676;
  1987. }
  1988. if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
  1989. netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
  1990. mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
  1991. mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
  1992. }
  1993. return mtu;
  1994. }
  1995. /* Change the device mtu */
  1996. static int mvneta_change_mtu(struct net_device *dev, int mtu)
  1997. {
  1998. struct mvneta_port *pp = netdev_priv(dev);
  1999. int ret;
  2000. mtu = mvneta_check_mtu_valid(dev, mtu);
  2001. if (mtu < 0)
  2002. return -EINVAL;
  2003. dev->mtu = mtu;
  2004. if (!netif_running(dev))
  2005. return 0;
  2006. /* The interface is running, so we have to force a
  2007. * reallocation of the queues
  2008. */
  2009. mvneta_stop_dev(pp);
  2010. mvneta_cleanup_txqs(pp);
  2011. mvneta_cleanup_rxqs(pp);
  2012. pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
  2013. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2014. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2015. ret = mvneta_setup_rxqs(pp);
  2016. if (ret) {
  2017. netdev_err(dev, "unable to setup rxqs after MTU change\n");
  2018. return ret;
  2019. }
  2020. ret = mvneta_setup_txqs(pp);
  2021. if (ret) {
  2022. netdev_err(dev, "unable to setup txqs after MTU change\n");
  2023. return ret;
  2024. }
  2025. mvneta_start_dev(pp);
  2026. mvneta_port_up(pp);
  2027. return 0;
  2028. }
  2029. /* Get mac address */
  2030. static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
  2031. {
  2032. u32 mac_addr_l, mac_addr_h;
  2033. mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
  2034. mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
  2035. addr[0] = (mac_addr_h >> 24) & 0xFF;
  2036. addr[1] = (mac_addr_h >> 16) & 0xFF;
  2037. addr[2] = (mac_addr_h >> 8) & 0xFF;
  2038. addr[3] = mac_addr_h & 0xFF;
  2039. addr[4] = (mac_addr_l >> 8) & 0xFF;
  2040. addr[5] = mac_addr_l & 0xFF;
  2041. }
  2042. /* Handle setting mac address */
  2043. static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
  2044. {
  2045. struct mvneta_port *pp = netdev_priv(dev);
  2046. struct sockaddr *sockaddr = addr;
  2047. int ret;
  2048. ret = eth_prepare_mac_addr_change(dev, addr);
  2049. if (ret < 0)
  2050. return ret;
  2051. /* Remove previous address table entry */
  2052. mvneta_mac_addr_set(pp, dev->dev_addr, -1);
  2053. /* Set new addr in hw */
  2054. mvneta_mac_addr_set(pp, sockaddr->sa_data, rxq_def);
  2055. eth_commit_mac_addr_change(dev, addr);
  2056. return 0;
  2057. }
  2058. static void mvneta_adjust_link(struct net_device *ndev)
  2059. {
  2060. struct mvneta_port *pp = netdev_priv(ndev);
  2061. struct phy_device *phydev = pp->phy_dev;
  2062. int status_change = 0;
  2063. if (phydev->link) {
  2064. if ((pp->speed != phydev->speed) ||
  2065. (pp->duplex != phydev->duplex)) {
  2066. u32 val;
  2067. val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2068. val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
  2069. MVNETA_GMAC_CONFIG_GMII_SPEED |
  2070. MVNETA_GMAC_CONFIG_FULL_DUPLEX |
  2071. MVNETA_GMAC_AN_SPEED_EN |
  2072. MVNETA_GMAC_AN_DUPLEX_EN);
  2073. if (phydev->duplex)
  2074. val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
  2075. if (phydev->speed == SPEED_1000)
  2076. val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
  2077. else if (phydev->speed == SPEED_100)
  2078. val |= MVNETA_GMAC_CONFIG_MII_SPEED;
  2079. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2080. pp->duplex = phydev->duplex;
  2081. pp->speed = phydev->speed;
  2082. }
  2083. }
  2084. if (phydev->link != pp->link) {
  2085. if (!phydev->link) {
  2086. pp->duplex = -1;
  2087. pp->speed = 0;
  2088. }
  2089. pp->link = phydev->link;
  2090. status_change = 1;
  2091. }
  2092. if (status_change) {
  2093. if (phydev->link) {
  2094. u32 val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
  2095. val |= (MVNETA_GMAC_FORCE_LINK_PASS |
  2096. MVNETA_GMAC_FORCE_LINK_DOWN);
  2097. mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
  2098. mvneta_port_up(pp);
  2099. netdev_info(pp->dev, "link up\n");
  2100. } else {
  2101. mvneta_port_down(pp);
  2102. netdev_info(pp->dev, "link down\n");
  2103. }
  2104. }
  2105. }
  2106. static int mvneta_mdio_probe(struct mvneta_port *pp)
  2107. {
  2108. struct phy_device *phy_dev;
  2109. phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
  2110. pp->phy_interface);
  2111. if (!phy_dev) {
  2112. netdev_err(pp->dev, "could not find the PHY\n");
  2113. return -ENODEV;
  2114. }
  2115. phy_dev->supported &= PHY_GBIT_FEATURES;
  2116. phy_dev->advertising = phy_dev->supported;
  2117. pp->phy_dev = phy_dev;
  2118. pp->link = 0;
  2119. pp->duplex = 0;
  2120. pp->speed = 0;
  2121. return 0;
  2122. }
  2123. static void mvneta_mdio_remove(struct mvneta_port *pp)
  2124. {
  2125. phy_disconnect(pp->phy_dev);
  2126. pp->phy_dev = NULL;
  2127. }
  2128. static int mvneta_open(struct net_device *dev)
  2129. {
  2130. struct mvneta_port *pp = netdev_priv(dev);
  2131. int ret;
  2132. pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
  2133. pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
  2134. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  2135. ret = mvneta_setup_rxqs(pp);
  2136. if (ret)
  2137. return ret;
  2138. ret = mvneta_setup_txqs(pp);
  2139. if (ret)
  2140. goto err_cleanup_rxqs;
  2141. /* Connect to port interrupt line */
  2142. ret = request_irq(pp->dev->irq, mvneta_isr, 0,
  2143. MVNETA_DRIVER_NAME, pp);
  2144. if (ret) {
  2145. netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
  2146. goto err_cleanup_txqs;
  2147. }
  2148. /* In default link is down */
  2149. netif_carrier_off(pp->dev);
  2150. ret = mvneta_mdio_probe(pp);
  2151. if (ret < 0) {
  2152. netdev_err(dev, "cannot probe MDIO bus\n");
  2153. goto err_free_irq;
  2154. }
  2155. mvneta_start_dev(pp);
  2156. return 0;
  2157. err_free_irq:
  2158. free_irq(pp->dev->irq, pp);
  2159. err_cleanup_txqs:
  2160. mvneta_cleanup_txqs(pp);
  2161. err_cleanup_rxqs:
  2162. mvneta_cleanup_rxqs(pp);
  2163. return ret;
  2164. }
  2165. /* Stop the port, free port interrupt line */
  2166. static int mvneta_stop(struct net_device *dev)
  2167. {
  2168. struct mvneta_port *pp = netdev_priv(dev);
  2169. mvneta_stop_dev(pp);
  2170. mvneta_mdio_remove(pp);
  2171. free_irq(dev->irq, pp);
  2172. mvneta_cleanup_rxqs(pp);
  2173. mvneta_cleanup_txqs(pp);
  2174. return 0;
  2175. }
  2176. static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  2177. {
  2178. struct mvneta_port *pp = netdev_priv(dev);
  2179. int ret;
  2180. if (!pp->phy_dev)
  2181. return -ENOTSUPP;
  2182. ret = phy_mii_ioctl(pp->phy_dev, ifr, cmd);
  2183. if (!ret)
  2184. mvneta_adjust_link(dev);
  2185. return ret;
  2186. }
  2187. /* Ethtool methods */
  2188. /* Get settings (phy address, speed) for ethtools */
  2189. int mvneta_ethtool_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2190. {
  2191. struct mvneta_port *pp = netdev_priv(dev);
  2192. if (!pp->phy_dev)
  2193. return -ENODEV;
  2194. return phy_ethtool_gset(pp->phy_dev, cmd);
  2195. }
  2196. /* Set settings (phy address, speed) for ethtools */
  2197. int mvneta_ethtool_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  2198. {
  2199. struct mvneta_port *pp = netdev_priv(dev);
  2200. if (!pp->phy_dev)
  2201. return -ENODEV;
  2202. return phy_ethtool_sset(pp->phy_dev, cmd);
  2203. }
  2204. /* Set interrupt coalescing for ethtools */
  2205. static int mvneta_ethtool_set_coalesce(struct net_device *dev,
  2206. struct ethtool_coalesce *c)
  2207. {
  2208. struct mvneta_port *pp = netdev_priv(dev);
  2209. int queue;
  2210. for (queue = 0; queue < rxq_number; queue++) {
  2211. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2212. rxq->time_coal = c->rx_coalesce_usecs;
  2213. rxq->pkts_coal = c->rx_max_coalesced_frames;
  2214. mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
  2215. mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
  2216. }
  2217. for (queue = 0; queue < txq_number; queue++) {
  2218. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2219. txq->done_pkts_coal = c->tx_max_coalesced_frames;
  2220. mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
  2221. }
  2222. return 0;
  2223. }
  2224. /* get coalescing for ethtools */
  2225. static int mvneta_ethtool_get_coalesce(struct net_device *dev,
  2226. struct ethtool_coalesce *c)
  2227. {
  2228. struct mvneta_port *pp = netdev_priv(dev);
  2229. c->rx_coalesce_usecs = pp->rxqs[0].time_coal;
  2230. c->rx_max_coalesced_frames = pp->rxqs[0].pkts_coal;
  2231. c->tx_max_coalesced_frames = pp->txqs[0].done_pkts_coal;
  2232. return 0;
  2233. }
  2234. static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
  2235. struct ethtool_drvinfo *drvinfo)
  2236. {
  2237. strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
  2238. sizeof(drvinfo->driver));
  2239. strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
  2240. sizeof(drvinfo->version));
  2241. strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
  2242. sizeof(drvinfo->bus_info));
  2243. }
  2244. static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
  2245. struct ethtool_ringparam *ring)
  2246. {
  2247. struct mvneta_port *pp = netdev_priv(netdev);
  2248. ring->rx_max_pending = MVNETA_MAX_RXD;
  2249. ring->tx_max_pending = MVNETA_MAX_TXD;
  2250. ring->rx_pending = pp->rx_ring_size;
  2251. ring->tx_pending = pp->tx_ring_size;
  2252. }
  2253. static int mvneta_ethtool_set_ringparam(struct net_device *dev,
  2254. struct ethtool_ringparam *ring)
  2255. {
  2256. struct mvneta_port *pp = netdev_priv(dev);
  2257. if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
  2258. return -EINVAL;
  2259. pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
  2260. ring->rx_pending : MVNETA_MAX_RXD;
  2261. pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
  2262. MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
  2263. if (pp->tx_ring_size != ring->tx_pending)
  2264. netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
  2265. pp->tx_ring_size, ring->tx_pending);
  2266. if (netif_running(dev)) {
  2267. mvneta_stop(dev);
  2268. if (mvneta_open(dev)) {
  2269. netdev_err(dev,
  2270. "error on opening device after ring param change\n");
  2271. return -ENOMEM;
  2272. }
  2273. }
  2274. return 0;
  2275. }
  2276. static const struct net_device_ops mvneta_netdev_ops = {
  2277. .ndo_open = mvneta_open,
  2278. .ndo_stop = mvneta_stop,
  2279. .ndo_start_xmit = mvneta_tx,
  2280. .ndo_set_rx_mode = mvneta_set_rx_mode,
  2281. .ndo_set_mac_address = mvneta_set_mac_addr,
  2282. .ndo_change_mtu = mvneta_change_mtu,
  2283. .ndo_get_stats64 = mvneta_get_stats64,
  2284. .ndo_do_ioctl = mvneta_ioctl,
  2285. };
  2286. const struct ethtool_ops mvneta_eth_tool_ops = {
  2287. .get_link = ethtool_op_get_link,
  2288. .get_settings = mvneta_ethtool_get_settings,
  2289. .set_settings = mvneta_ethtool_set_settings,
  2290. .set_coalesce = mvneta_ethtool_set_coalesce,
  2291. .get_coalesce = mvneta_ethtool_get_coalesce,
  2292. .get_drvinfo = mvneta_ethtool_get_drvinfo,
  2293. .get_ringparam = mvneta_ethtool_get_ringparam,
  2294. .set_ringparam = mvneta_ethtool_set_ringparam,
  2295. };
  2296. /* Initialize hw */
  2297. static int mvneta_init(struct device *dev, struct mvneta_port *pp)
  2298. {
  2299. int queue;
  2300. /* Disable port */
  2301. mvneta_port_disable(pp);
  2302. /* Set port default values */
  2303. mvneta_defaults_set(pp);
  2304. pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
  2305. GFP_KERNEL);
  2306. if (!pp->txqs)
  2307. return -ENOMEM;
  2308. /* Initialize TX descriptor rings */
  2309. for (queue = 0; queue < txq_number; queue++) {
  2310. struct mvneta_tx_queue *txq = &pp->txqs[queue];
  2311. txq->id = queue;
  2312. txq->size = pp->tx_ring_size;
  2313. txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
  2314. }
  2315. pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
  2316. GFP_KERNEL);
  2317. if (!pp->rxqs)
  2318. return -ENOMEM;
  2319. /* Create Rx descriptor rings */
  2320. for (queue = 0; queue < rxq_number; queue++) {
  2321. struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
  2322. rxq->id = queue;
  2323. rxq->size = pp->rx_ring_size;
  2324. rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
  2325. rxq->time_coal = MVNETA_RX_COAL_USEC;
  2326. }
  2327. return 0;
  2328. }
  2329. /* platform glue : initialize decoding windows */
  2330. static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
  2331. const struct mbus_dram_target_info *dram)
  2332. {
  2333. u32 win_enable;
  2334. u32 win_protect;
  2335. int i;
  2336. for (i = 0; i < 6; i++) {
  2337. mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
  2338. mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
  2339. if (i < 4)
  2340. mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
  2341. }
  2342. win_enable = 0x3f;
  2343. win_protect = 0;
  2344. for (i = 0; i < dram->num_cs; i++) {
  2345. const struct mbus_dram_window *cs = dram->cs + i;
  2346. mvreg_write(pp, MVNETA_WIN_BASE(i), (cs->base & 0xffff0000) |
  2347. (cs->mbus_attr << 8) | dram->mbus_dram_target_id);
  2348. mvreg_write(pp, MVNETA_WIN_SIZE(i),
  2349. (cs->size - 1) & 0xffff0000);
  2350. win_enable &= ~(1 << i);
  2351. win_protect |= 3 << (2 * i);
  2352. }
  2353. mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
  2354. }
  2355. /* Power up the port */
  2356. static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
  2357. {
  2358. u32 ctrl;
  2359. /* MAC Cause register should be cleared */
  2360. mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
  2361. ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
  2362. /* Even though it might look weird, when we're configured in
  2363. * SGMII or QSGMII mode, the RGMII bit needs to be set.
  2364. */
  2365. switch(phy_mode) {
  2366. case PHY_INTERFACE_MODE_QSGMII:
  2367. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
  2368. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2369. break;
  2370. case PHY_INTERFACE_MODE_SGMII:
  2371. mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
  2372. ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
  2373. break;
  2374. case PHY_INTERFACE_MODE_RGMII:
  2375. case PHY_INTERFACE_MODE_RGMII_ID:
  2376. ctrl |= MVNETA_GMAC2_PORT_RGMII;
  2377. break;
  2378. default:
  2379. return -EINVAL;
  2380. }
  2381. /* Cancel Port Reset */
  2382. ctrl &= ~MVNETA_GMAC2_PORT_RESET;
  2383. mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
  2384. while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
  2385. MVNETA_GMAC2_PORT_RESET) != 0)
  2386. continue;
  2387. return 0;
  2388. }
  2389. /* Device initialization routine */
  2390. static int mvneta_probe(struct platform_device *pdev)
  2391. {
  2392. const struct mbus_dram_target_info *dram_target_info;
  2393. struct resource *res;
  2394. struct device_node *dn = pdev->dev.of_node;
  2395. struct device_node *phy_node;
  2396. struct mvneta_port *pp;
  2397. struct net_device *dev;
  2398. const char *dt_mac_addr;
  2399. char hw_mac_addr[ETH_ALEN];
  2400. const char *mac_from;
  2401. int phy_mode;
  2402. int err;
  2403. /* Our multiqueue support is not complete, so for now, only
  2404. * allow the usage of the first RX queue
  2405. */
  2406. if (rxq_def != 0) {
  2407. dev_err(&pdev->dev, "Invalid rxq_def argument: %d\n", rxq_def);
  2408. return -EINVAL;
  2409. }
  2410. dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
  2411. if (!dev)
  2412. return -ENOMEM;
  2413. dev->irq = irq_of_parse_and_map(dn, 0);
  2414. if (dev->irq == 0) {
  2415. err = -EINVAL;
  2416. goto err_free_netdev;
  2417. }
  2418. phy_node = of_parse_phandle(dn, "phy", 0);
  2419. if (!phy_node) {
  2420. if (!of_phy_is_fixed_link(dn)) {
  2421. dev_err(&pdev->dev, "no PHY specified\n");
  2422. err = -ENODEV;
  2423. goto err_free_irq;
  2424. }
  2425. err = of_phy_register_fixed_link(dn);
  2426. if (err < 0) {
  2427. dev_err(&pdev->dev, "cannot register fixed PHY\n");
  2428. goto err_free_irq;
  2429. }
  2430. /* In the case of a fixed PHY, the DT node associated
  2431. * to the PHY is the Ethernet MAC DT node.
  2432. */
  2433. phy_node = dn;
  2434. }
  2435. phy_mode = of_get_phy_mode(dn);
  2436. if (phy_mode < 0) {
  2437. dev_err(&pdev->dev, "incorrect phy-mode\n");
  2438. err = -EINVAL;
  2439. goto err_free_irq;
  2440. }
  2441. dev->tx_queue_len = MVNETA_MAX_TXD;
  2442. dev->watchdog_timeo = 5 * HZ;
  2443. dev->netdev_ops = &mvneta_netdev_ops;
  2444. dev->ethtool_ops = &mvneta_eth_tool_ops;
  2445. pp = netdev_priv(dev);
  2446. pp->phy_node = phy_node;
  2447. pp->phy_interface = phy_mode;
  2448. pp->clk = devm_clk_get(&pdev->dev, NULL);
  2449. if (IS_ERR(pp->clk)) {
  2450. err = PTR_ERR(pp->clk);
  2451. goto err_free_irq;
  2452. }
  2453. clk_prepare_enable(pp->clk);
  2454. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2455. pp->base = devm_ioremap_resource(&pdev->dev, res);
  2456. if (IS_ERR(pp->base)) {
  2457. err = PTR_ERR(pp->base);
  2458. goto err_clk;
  2459. }
  2460. /* Alloc per-cpu stats */
  2461. pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
  2462. if (!pp->stats) {
  2463. err = -ENOMEM;
  2464. goto err_clk;
  2465. }
  2466. dt_mac_addr = of_get_mac_address(dn);
  2467. if (dt_mac_addr) {
  2468. mac_from = "device tree";
  2469. memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
  2470. } else {
  2471. mvneta_get_mac_addr(pp, hw_mac_addr);
  2472. if (is_valid_ether_addr(hw_mac_addr)) {
  2473. mac_from = "hardware";
  2474. memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
  2475. } else {
  2476. mac_from = "random";
  2477. eth_hw_addr_random(dev);
  2478. }
  2479. }
  2480. pp->tx_ring_size = MVNETA_MAX_TXD;
  2481. pp->rx_ring_size = MVNETA_MAX_RXD;
  2482. pp->dev = dev;
  2483. SET_NETDEV_DEV(dev, &pdev->dev);
  2484. err = mvneta_init(&pdev->dev, pp);
  2485. if (err < 0)
  2486. goto err_free_stats;
  2487. err = mvneta_port_power_up(pp, phy_mode);
  2488. if (err < 0) {
  2489. dev_err(&pdev->dev, "can't power up port\n");
  2490. goto err_free_stats;
  2491. }
  2492. dram_target_info = mv_mbus_dram_info();
  2493. if (dram_target_info)
  2494. mvneta_conf_mbus_windows(pp, dram_target_info);
  2495. netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
  2496. dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
  2497. dev->hw_features |= dev->features;
  2498. dev->vlan_features |= dev->features;
  2499. dev->priv_flags |= IFF_UNICAST_FLT;
  2500. dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
  2501. err = register_netdev(dev);
  2502. if (err < 0) {
  2503. dev_err(&pdev->dev, "failed to register\n");
  2504. goto err_free_stats;
  2505. }
  2506. netdev_info(dev, "Using %s mac address %pM\n", mac_from,
  2507. dev->dev_addr);
  2508. platform_set_drvdata(pdev, pp->dev);
  2509. return 0;
  2510. err_free_stats:
  2511. free_percpu(pp->stats);
  2512. err_clk:
  2513. clk_disable_unprepare(pp->clk);
  2514. err_free_irq:
  2515. irq_dispose_mapping(dev->irq);
  2516. err_free_netdev:
  2517. free_netdev(dev);
  2518. return err;
  2519. }
  2520. /* Device removal routine */
  2521. static int mvneta_remove(struct platform_device *pdev)
  2522. {
  2523. struct net_device *dev = platform_get_drvdata(pdev);
  2524. struct mvneta_port *pp = netdev_priv(dev);
  2525. unregister_netdev(dev);
  2526. clk_disable_unprepare(pp->clk);
  2527. free_percpu(pp->stats);
  2528. irq_dispose_mapping(dev->irq);
  2529. free_netdev(dev);
  2530. return 0;
  2531. }
  2532. static const struct of_device_id mvneta_match[] = {
  2533. { .compatible = "marvell,armada-370-neta" },
  2534. { }
  2535. };
  2536. MODULE_DEVICE_TABLE(of, mvneta_match);
  2537. static struct platform_driver mvneta_driver = {
  2538. .probe = mvneta_probe,
  2539. .remove = mvneta_remove,
  2540. .driver = {
  2541. .name = MVNETA_DRIVER_NAME,
  2542. .of_match_table = mvneta_match,
  2543. },
  2544. };
  2545. module_platform_driver(mvneta_driver);
  2546. MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
  2547. MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
  2548. MODULE_LICENSE("GPL");
  2549. module_param(rxq_number, int, S_IRUGO);
  2550. module_param(txq_number, int, S_IRUGO);
  2551. module_param(rxq_def, int, S_IRUGO);
  2552. module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);