igb_main.c 218 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  24. #include <linux/module.h>
  25. #include <linux/types.h>
  26. #include <linux/init.h>
  27. #include <linux/bitops.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/pagemap.h>
  30. #include <linux/netdevice.h>
  31. #include <linux/ipv6.h>
  32. #include <linux/slab.h>
  33. #include <net/checksum.h>
  34. #include <net/ip6_checksum.h>
  35. #include <linux/net_tstamp.h>
  36. #include <linux/mii.h>
  37. #include <linux/ethtool.h>
  38. #include <linux/if.h>
  39. #include <linux/if_vlan.h>
  40. #include <linux/pci.h>
  41. #include <linux/pci-aspm.h>
  42. #include <linux/delay.h>
  43. #include <linux/interrupt.h>
  44. #include <linux/ip.h>
  45. #include <linux/tcp.h>
  46. #include <linux/sctp.h>
  47. #include <linux/if_ether.h>
  48. #include <linux/aer.h>
  49. #include <linux/prefetch.h>
  50. #include <linux/pm_runtime.h>
  51. #ifdef CONFIG_IGB_DCA
  52. #include <linux/dca.h>
  53. #endif
  54. #include <linux/i2c.h>
  55. #include "igb.h"
  56. #define MAJ 5
  57. #define MIN 0
  58. #define BUILD 5
  59. #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
  60. __stringify(BUILD) "-k"
  61. char igb_driver_name[] = "igb";
  62. char igb_driver_version[] = DRV_VERSION;
  63. static const char igb_driver_string[] =
  64. "Intel(R) Gigabit Ethernet Network Driver";
  65. static const char igb_copyright[] =
  66. "Copyright (c) 2007-2014 Intel Corporation.";
  67. static const struct e1000_info *igb_info_tbl[] = {
  68. [board_82575] = &e1000_82575_info,
  69. };
  70. static const struct pci_device_id igb_pci_tbl[] = {
  71. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
  72. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
  73. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
  74. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
  75. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
  76. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
  77. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
  78. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
  79. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
  80. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
  81. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
  82. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
  83. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
  84. { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
  85. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
  86. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
  87. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
  88. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
  89. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
  90. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
  91. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
  92. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
  93. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
  94. { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
  95. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
  96. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
  97. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
  98. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
  99. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
  100. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
  101. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
  102. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
  103. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
  104. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
  105. { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
  106. /* required last entry */
  107. {0, }
  108. };
  109. MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  110. static int igb_setup_all_tx_resources(struct igb_adapter *);
  111. static int igb_setup_all_rx_resources(struct igb_adapter *);
  112. static void igb_free_all_tx_resources(struct igb_adapter *);
  113. static void igb_free_all_rx_resources(struct igb_adapter *);
  114. static void igb_setup_mrqc(struct igb_adapter *);
  115. static int igb_probe(struct pci_dev *, const struct pci_device_id *);
  116. static void igb_remove(struct pci_dev *pdev);
  117. static int igb_sw_init(struct igb_adapter *);
  118. static int igb_open(struct net_device *);
  119. static int igb_close(struct net_device *);
  120. static void igb_configure(struct igb_adapter *);
  121. static void igb_configure_tx(struct igb_adapter *);
  122. static void igb_configure_rx(struct igb_adapter *);
  123. static void igb_clean_all_tx_rings(struct igb_adapter *);
  124. static void igb_clean_all_rx_rings(struct igb_adapter *);
  125. static void igb_clean_tx_ring(struct igb_ring *);
  126. static void igb_clean_rx_ring(struct igb_ring *);
  127. static void igb_set_rx_mode(struct net_device *);
  128. static void igb_update_phy_info(unsigned long);
  129. static void igb_watchdog(unsigned long);
  130. static void igb_watchdog_task(struct work_struct *);
  131. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  132. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
  133. struct rtnl_link_stats64 *stats);
  134. static int igb_change_mtu(struct net_device *, int);
  135. static int igb_set_mac(struct net_device *, void *);
  136. static void igb_set_uta(struct igb_adapter *adapter);
  137. static irqreturn_t igb_intr(int irq, void *);
  138. static irqreturn_t igb_intr_msi(int irq, void *);
  139. static irqreturn_t igb_msix_other(int irq, void *);
  140. static irqreturn_t igb_msix_ring(int irq, void *);
  141. #ifdef CONFIG_IGB_DCA
  142. static void igb_update_dca(struct igb_q_vector *);
  143. static void igb_setup_dca(struct igb_adapter *);
  144. #endif /* CONFIG_IGB_DCA */
  145. static int igb_poll(struct napi_struct *, int);
  146. static bool igb_clean_tx_irq(struct igb_q_vector *);
  147. static bool igb_clean_rx_irq(struct igb_q_vector *, int);
  148. static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  149. static void igb_tx_timeout(struct net_device *);
  150. static void igb_reset_task(struct work_struct *);
  151. static void igb_vlan_mode(struct net_device *netdev,
  152. netdev_features_t features);
  153. static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  154. static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  155. static void igb_restore_vlan(struct igb_adapter *);
  156. static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
  157. static void igb_ping_all_vfs(struct igb_adapter *);
  158. static void igb_msg_task(struct igb_adapter *);
  159. static void igb_vmm_control(struct igb_adapter *);
  160. static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  161. static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  162. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  163. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  164. int vf, u16 vlan, u8 qos);
  165. static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  166. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  167. bool setting);
  168. static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  169. struct ifla_vf_info *ivi);
  170. static void igb_check_vf_rate_limit(struct igb_adapter *);
  171. #ifdef CONFIG_PCI_IOV
  172. static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  173. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
  174. #endif
  175. #ifdef CONFIG_PM
  176. #ifdef CONFIG_PM_SLEEP
  177. static int igb_suspend(struct device *);
  178. #endif
  179. static int igb_resume(struct device *);
  180. #ifdef CONFIG_PM_RUNTIME
  181. static int igb_runtime_suspend(struct device *dev);
  182. static int igb_runtime_resume(struct device *dev);
  183. static int igb_runtime_idle(struct device *dev);
  184. #endif
  185. static const struct dev_pm_ops igb_pm_ops = {
  186. SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
  187. SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
  188. igb_runtime_idle)
  189. };
  190. #endif
  191. static void igb_shutdown(struct pci_dev *);
  192. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
  193. #ifdef CONFIG_IGB_DCA
  194. static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  195. static struct notifier_block dca_notifier = {
  196. .notifier_call = igb_notify_dca,
  197. .next = NULL,
  198. .priority = 0
  199. };
  200. #endif
  201. #ifdef CONFIG_NET_POLL_CONTROLLER
  202. /* for netdump / net console */
  203. static void igb_netpoll(struct net_device *);
  204. #endif
  205. #ifdef CONFIG_PCI_IOV
  206. static unsigned int max_vfs;
  207. module_param(max_vfs, uint, 0);
  208. MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  209. #endif /* CONFIG_PCI_IOV */
  210. static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  211. pci_channel_state_t);
  212. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  213. static void igb_io_resume(struct pci_dev *);
  214. static const struct pci_error_handlers igb_err_handler = {
  215. .error_detected = igb_io_error_detected,
  216. .slot_reset = igb_io_slot_reset,
  217. .resume = igb_io_resume,
  218. };
  219. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  220. static struct pci_driver igb_driver = {
  221. .name = igb_driver_name,
  222. .id_table = igb_pci_tbl,
  223. .probe = igb_probe,
  224. .remove = igb_remove,
  225. #ifdef CONFIG_PM
  226. .driver.pm = &igb_pm_ops,
  227. #endif
  228. .shutdown = igb_shutdown,
  229. .sriov_configure = igb_pci_sriov_configure,
  230. .err_handler = &igb_err_handler
  231. };
  232. MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
  233. MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  234. MODULE_LICENSE("GPL");
  235. MODULE_VERSION(DRV_VERSION);
  236. #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  237. static int debug = -1;
  238. module_param(debug, int, 0);
  239. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  240. struct igb_reg_info {
  241. u32 ofs;
  242. char *name;
  243. };
  244. static const struct igb_reg_info igb_reg_info_tbl[] = {
  245. /* General Registers */
  246. {E1000_CTRL, "CTRL"},
  247. {E1000_STATUS, "STATUS"},
  248. {E1000_CTRL_EXT, "CTRL_EXT"},
  249. /* Interrupt Registers */
  250. {E1000_ICR, "ICR"},
  251. /* RX Registers */
  252. {E1000_RCTL, "RCTL"},
  253. {E1000_RDLEN(0), "RDLEN"},
  254. {E1000_RDH(0), "RDH"},
  255. {E1000_RDT(0), "RDT"},
  256. {E1000_RXDCTL(0), "RXDCTL"},
  257. {E1000_RDBAL(0), "RDBAL"},
  258. {E1000_RDBAH(0), "RDBAH"},
  259. /* TX Registers */
  260. {E1000_TCTL, "TCTL"},
  261. {E1000_TDBAL(0), "TDBAL"},
  262. {E1000_TDBAH(0), "TDBAH"},
  263. {E1000_TDLEN(0), "TDLEN"},
  264. {E1000_TDH(0), "TDH"},
  265. {E1000_TDT(0), "TDT"},
  266. {E1000_TXDCTL(0), "TXDCTL"},
  267. {E1000_TDFH, "TDFH"},
  268. {E1000_TDFT, "TDFT"},
  269. {E1000_TDFHS, "TDFHS"},
  270. {E1000_TDFPC, "TDFPC"},
  271. /* List Terminator */
  272. {}
  273. };
  274. /* igb_regdump - register printout routine */
  275. static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  276. {
  277. int n = 0;
  278. char rname[16];
  279. u32 regs[8];
  280. switch (reginfo->ofs) {
  281. case E1000_RDLEN(0):
  282. for (n = 0; n < 4; n++)
  283. regs[n] = rd32(E1000_RDLEN(n));
  284. break;
  285. case E1000_RDH(0):
  286. for (n = 0; n < 4; n++)
  287. regs[n] = rd32(E1000_RDH(n));
  288. break;
  289. case E1000_RDT(0):
  290. for (n = 0; n < 4; n++)
  291. regs[n] = rd32(E1000_RDT(n));
  292. break;
  293. case E1000_RXDCTL(0):
  294. for (n = 0; n < 4; n++)
  295. regs[n] = rd32(E1000_RXDCTL(n));
  296. break;
  297. case E1000_RDBAL(0):
  298. for (n = 0; n < 4; n++)
  299. regs[n] = rd32(E1000_RDBAL(n));
  300. break;
  301. case E1000_RDBAH(0):
  302. for (n = 0; n < 4; n++)
  303. regs[n] = rd32(E1000_RDBAH(n));
  304. break;
  305. case E1000_TDBAL(0):
  306. for (n = 0; n < 4; n++)
  307. regs[n] = rd32(E1000_RDBAL(n));
  308. break;
  309. case E1000_TDBAH(0):
  310. for (n = 0; n < 4; n++)
  311. regs[n] = rd32(E1000_TDBAH(n));
  312. break;
  313. case E1000_TDLEN(0):
  314. for (n = 0; n < 4; n++)
  315. regs[n] = rd32(E1000_TDLEN(n));
  316. break;
  317. case E1000_TDH(0):
  318. for (n = 0; n < 4; n++)
  319. regs[n] = rd32(E1000_TDH(n));
  320. break;
  321. case E1000_TDT(0):
  322. for (n = 0; n < 4; n++)
  323. regs[n] = rd32(E1000_TDT(n));
  324. break;
  325. case E1000_TXDCTL(0):
  326. for (n = 0; n < 4; n++)
  327. regs[n] = rd32(E1000_TXDCTL(n));
  328. break;
  329. default:
  330. pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  331. return;
  332. }
  333. snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  334. pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  335. regs[2], regs[3]);
  336. }
  337. /* igb_dump - Print registers, Tx-rings and Rx-rings */
  338. static void igb_dump(struct igb_adapter *adapter)
  339. {
  340. struct net_device *netdev = adapter->netdev;
  341. struct e1000_hw *hw = &adapter->hw;
  342. struct igb_reg_info *reginfo;
  343. struct igb_ring *tx_ring;
  344. union e1000_adv_tx_desc *tx_desc;
  345. struct my_u0 { u64 a; u64 b; } *u0;
  346. struct igb_ring *rx_ring;
  347. union e1000_adv_rx_desc *rx_desc;
  348. u32 staterr;
  349. u16 i, n;
  350. if (!netif_msg_hw(adapter))
  351. return;
  352. /* Print netdevice Info */
  353. if (netdev) {
  354. dev_info(&adapter->pdev->dev, "Net device Info\n");
  355. pr_info("Device Name state trans_start last_rx\n");
  356. pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
  357. netdev->state, netdev->trans_start, netdev->last_rx);
  358. }
  359. /* Print Registers */
  360. dev_info(&adapter->pdev->dev, "Register Dump\n");
  361. pr_info(" Register Name Value\n");
  362. for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  363. reginfo->name; reginfo++) {
  364. igb_regdump(hw, reginfo);
  365. }
  366. /* Print TX Ring Summary */
  367. if (!netdev || !netif_running(netdev))
  368. goto exit;
  369. dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  370. pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
  371. for (n = 0; n < adapter->num_tx_queues; n++) {
  372. struct igb_tx_buffer *buffer_info;
  373. tx_ring = adapter->tx_ring[n];
  374. buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  375. pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  376. n, tx_ring->next_to_use, tx_ring->next_to_clean,
  377. (u64)dma_unmap_addr(buffer_info, dma),
  378. dma_unmap_len(buffer_info, len),
  379. buffer_info->next_to_watch,
  380. (u64)buffer_info->time_stamp);
  381. }
  382. /* Print TX Rings */
  383. if (!netif_msg_tx_done(adapter))
  384. goto rx_ring_summary;
  385. dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  386. /* Transmit Descriptor Formats
  387. *
  388. * Advanced Transmit Descriptor
  389. * +--------------------------------------------------------------+
  390. * 0 | Buffer Address [63:0] |
  391. * +--------------------------------------------------------------+
  392. * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
  393. * +--------------------------------------------------------------+
  394. * 63 46 45 40 39 38 36 35 32 31 24 15 0
  395. */
  396. for (n = 0; n < adapter->num_tx_queues; n++) {
  397. tx_ring = adapter->tx_ring[n];
  398. pr_info("------------------------------------\n");
  399. pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  400. pr_info("------------------------------------\n");
  401. pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
  402. for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  403. const char *next_desc;
  404. struct igb_tx_buffer *buffer_info;
  405. tx_desc = IGB_TX_DESC(tx_ring, i);
  406. buffer_info = &tx_ring->tx_buffer_info[i];
  407. u0 = (struct my_u0 *)tx_desc;
  408. if (i == tx_ring->next_to_use &&
  409. i == tx_ring->next_to_clean)
  410. next_desc = " NTC/U";
  411. else if (i == tx_ring->next_to_use)
  412. next_desc = " NTU";
  413. else if (i == tx_ring->next_to_clean)
  414. next_desc = " NTC";
  415. else
  416. next_desc = "";
  417. pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
  418. i, le64_to_cpu(u0->a),
  419. le64_to_cpu(u0->b),
  420. (u64)dma_unmap_addr(buffer_info, dma),
  421. dma_unmap_len(buffer_info, len),
  422. buffer_info->next_to_watch,
  423. (u64)buffer_info->time_stamp,
  424. buffer_info->skb, next_desc);
  425. if (netif_msg_pktdata(adapter) && buffer_info->skb)
  426. print_hex_dump(KERN_INFO, "",
  427. DUMP_PREFIX_ADDRESS,
  428. 16, 1, buffer_info->skb->data,
  429. dma_unmap_len(buffer_info, len),
  430. true);
  431. }
  432. }
  433. /* Print RX Rings Summary */
  434. rx_ring_summary:
  435. dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  436. pr_info("Queue [NTU] [NTC]\n");
  437. for (n = 0; n < adapter->num_rx_queues; n++) {
  438. rx_ring = adapter->rx_ring[n];
  439. pr_info(" %5d %5X %5X\n",
  440. n, rx_ring->next_to_use, rx_ring->next_to_clean);
  441. }
  442. /* Print RX Rings */
  443. if (!netif_msg_rx_status(adapter))
  444. goto exit;
  445. dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  446. /* Advanced Receive Descriptor (Read) Format
  447. * 63 1 0
  448. * +-----------------------------------------------------+
  449. * 0 | Packet Buffer Address [63:1] |A0/NSE|
  450. * +----------------------------------------------+------+
  451. * 8 | Header Buffer Address [63:1] | DD |
  452. * +-----------------------------------------------------+
  453. *
  454. *
  455. * Advanced Receive Descriptor (Write-Back) Format
  456. *
  457. * 63 48 47 32 31 30 21 20 17 16 4 3 0
  458. * +------------------------------------------------------+
  459. * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
  460. * | Checksum Ident | | | | Type | Type |
  461. * +------------------------------------------------------+
  462. * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  463. * +------------------------------------------------------+
  464. * 63 48 47 32 31 20 19 0
  465. */
  466. for (n = 0; n < adapter->num_rx_queues; n++) {
  467. rx_ring = adapter->rx_ring[n];
  468. pr_info("------------------------------------\n");
  469. pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  470. pr_info("------------------------------------\n");
  471. pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
  472. pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  473. for (i = 0; i < rx_ring->count; i++) {
  474. const char *next_desc;
  475. struct igb_rx_buffer *buffer_info;
  476. buffer_info = &rx_ring->rx_buffer_info[i];
  477. rx_desc = IGB_RX_DESC(rx_ring, i);
  478. u0 = (struct my_u0 *)rx_desc;
  479. staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  480. if (i == rx_ring->next_to_use)
  481. next_desc = " NTU";
  482. else if (i == rx_ring->next_to_clean)
  483. next_desc = " NTC";
  484. else
  485. next_desc = "";
  486. if (staterr & E1000_RXD_STAT_DD) {
  487. /* Descriptor Done */
  488. pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
  489. "RWB", i,
  490. le64_to_cpu(u0->a),
  491. le64_to_cpu(u0->b),
  492. next_desc);
  493. } else {
  494. pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
  495. "R ", i,
  496. le64_to_cpu(u0->a),
  497. le64_to_cpu(u0->b),
  498. (u64)buffer_info->dma,
  499. next_desc);
  500. if (netif_msg_pktdata(adapter) &&
  501. buffer_info->dma && buffer_info->page) {
  502. print_hex_dump(KERN_INFO, "",
  503. DUMP_PREFIX_ADDRESS,
  504. 16, 1,
  505. page_address(buffer_info->page) +
  506. buffer_info->page_offset,
  507. IGB_RX_BUFSZ, true);
  508. }
  509. }
  510. }
  511. }
  512. exit:
  513. return;
  514. }
  515. /**
  516. * igb_get_i2c_data - Reads the I2C SDA data bit
  517. * @hw: pointer to hardware structure
  518. * @i2cctl: Current value of I2CCTL register
  519. *
  520. * Returns the I2C data bit value
  521. **/
  522. static int igb_get_i2c_data(void *data)
  523. {
  524. struct igb_adapter *adapter = (struct igb_adapter *)data;
  525. struct e1000_hw *hw = &adapter->hw;
  526. s32 i2cctl = rd32(E1000_I2CPARAMS);
  527. return !!(i2cctl & E1000_I2C_DATA_IN);
  528. }
  529. /**
  530. * igb_set_i2c_data - Sets the I2C data bit
  531. * @data: pointer to hardware structure
  532. * @state: I2C data value (0 or 1) to set
  533. *
  534. * Sets the I2C data bit
  535. **/
  536. static void igb_set_i2c_data(void *data, int state)
  537. {
  538. struct igb_adapter *adapter = (struct igb_adapter *)data;
  539. struct e1000_hw *hw = &adapter->hw;
  540. s32 i2cctl = rd32(E1000_I2CPARAMS);
  541. if (state)
  542. i2cctl |= E1000_I2C_DATA_OUT;
  543. else
  544. i2cctl &= ~E1000_I2C_DATA_OUT;
  545. i2cctl &= ~E1000_I2C_DATA_OE_N;
  546. i2cctl |= E1000_I2C_CLK_OE_N;
  547. wr32(E1000_I2CPARAMS, i2cctl);
  548. wrfl();
  549. }
  550. /**
  551. * igb_set_i2c_clk - Sets the I2C SCL clock
  552. * @data: pointer to hardware structure
  553. * @state: state to set clock
  554. *
  555. * Sets the I2C clock line to state
  556. **/
  557. static void igb_set_i2c_clk(void *data, int state)
  558. {
  559. struct igb_adapter *adapter = (struct igb_adapter *)data;
  560. struct e1000_hw *hw = &adapter->hw;
  561. s32 i2cctl = rd32(E1000_I2CPARAMS);
  562. if (state) {
  563. i2cctl |= E1000_I2C_CLK_OUT;
  564. i2cctl &= ~E1000_I2C_CLK_OE_N;
  565. } else {
  566. i2cctl &= ~E1000_I2C_CLK_OUT;
  567. i2cctl &= ~E1000_I2C_CLK_OE_N;
  568. }
  569. wr32(E1000_I2CPARAMS, i2cctl);
  570. wrfl();
  571. }
  572. /**
  573. * igb_get_i2c_clk - Gets the I2C SCL clock state
  574. * @data: pointer to hardware structure
  575. *
  576. * Gets the I2C clock state
  577. **/
  578. static int igb_get_i2c_clk(void *data)
  579. {
  580. struct igb_adapter *adapter = (struct igb_adapter *)data;
  581. struct e1000_hw *hw = &adapter->hw;
  582. s32 i2cctl = rd32(E1000_I2CPARAMS);
  583. return !!(i2cctl & E1000_I2C_CLK_IN);
  584. }
  585. static const struct i2c_algo_bit_data igb_i2c_algo = {
  586. .setsda = igb_set_i2c_data,
  587. .setscl = igb_set_i2c_clk,
  588. .getsda = igb_get_i2c_data,
  589. .getscl = igb_get_i2c_clk,
  590. .udelay = 5,
  591. .timeout = 20,
  592. };
  593. /**
  594. * igb_get_hw_dev - return device
  595. * @hw: pointer to hardware structure
  596. *
  597. * used by hardware layer to print debugging information
  598. **/
  599. struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  600. {
  601. struct igb_adapter *adapter = hw->back;
  602. return adapter->netdev;
  603. }
  604. /**
  605. * igb_init_module - Driver Registration Routine
  606. *
  607. * igb_init_module is the first routine called when the driver is
  608. * loaded. All it does is register with the PCI subsystem.
  609. **/
  610. static int __init igb_init_module(void)
  611. {
  612. int ret;
  613. pr_info("%s - version %s\n",
  614. igb_driver_string, igb_driver_version);
  615. pr_info("%s\n", igb_copyright);
  616. #ifdef CONFIG_IGB_DCA
  617. dca_register_notify(&dca_notifier);
  618. #endif
  619. ret = pci_register_driver(&igb_driver);
  620. return ret;
  621. }
  622. module_init(igb_init_module);
  623. /**
  624. * igb_exit_module - Driver Exit Cleanup Routine
  625. *
  626. * igb_exit_module is called just before the driver is removed
  627. * from memory.
  628. **/
  629. static void __exit igb_exit_module(void)
  630. {
  631. #ifdef CONFIG_IGB_DCA
  632. dca_unregister_notify(&dca_notifier);
  633. #endif
  634. pci_unregister_driver(&igb_driver);
  635. }
  636. module_exit(igb_exit_module);
  637. #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  638. /**
  639. * igb_cache_ring_register - Descriptor ring to register mapping
  640. * @adapter: board private structure to initialize
  641. *
  642. * Once we know the feature-set enabled for the device, we'll cache
  643. * the register offset the descriptor ring is assigned to.
  644. **/
  645. static void igb_cache_ring_register(struct igb_adapter *adapter)
  646. {
  647. int i = 0, j = 0;
  648. u32 rbase_offset = adapter->vfs_allocated_count;
  649. switch (adapter->hw.mac.type) {
  650. case e1000_82576:
  651. /* The queues are allocated for virtualization such that VF 0
  652. * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  653. * In order to avoid collision we start at the first free queue
  654. * and continue consuming queues in the same sequence
  655. */
  656. if (adapter->vfs_allocated_count) {
  657. for (; i < adapter->rss_queues; i++)
  658. adapter->rx_ring[i]->reg_idx = rbase_offset +
  659. Q_IDX_82576(i);
  660. }
  661. /* Fall through */
  662. case e1000_82575:
  663. case e1000_82580:
  664. case e1000_i350:
  665. case e1000_i354:
  666. case e1000_i210:
  667. case e1000_i211:
  668. /* Fall through */
  669. default:
  670. for (; i < adapter->num_rx_queues; i++)
  671. adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  672. for (; j < adapter->num_tx_queues; j++)
  673. adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  674. break;
  675. }
  676. }
  677. u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  678. {
  679. struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  680. u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
  681. u32 value = 0;
  682. if (E1000_REMOVED(hw_addr))
  683. return ~value;
  684. value = readl(&hw_addr[reg]);
  685. /* reads should not return all F's */
  686. if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  687. struct net_device *netdev = igb->netdev;
  688. hw->hw_addr = NULL;
  689. netif_device_detach(netdev);
  690. netdev_err(netdev, "PCIe link lost, device now detached\n");
  691. }
  692. return value;
  693. }
  694. /**
  695. * igb_write_ivar - configure ivar for given MSI-X vector
  696. * @hw: pointer to the HW structure
  697. * @msix_vector: vector number we are allocating to a given ring
  698. * @index: row index of IVAR register to write within IVAR table
  699. * @offset: column offset of in IVAR, should be multiple of 8
  700. *
  701. * This function is intended to handle the writing of the IVAR register
  702. * for adapters 82576 and newer. The IVAR table consists of 2 columns,
  703. * each containing an cause allocation for an Rx and Tx ring, and a
  704. * variable number of rows depending on the number of queues supported.
  705. **/
  706. static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  707. int index, int offset)
  708. {
  709. u32 ivar = array_rd32(E1000_IVAR0, index);
  710. /* clear any bits that are currently set */
  711. ivar &= ~((u32)0xFF << offset);
  712. /* write vector and valid bit */
  713. ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  714. array_wr32(E1000_IVAR0, index, ivar);
  715. }
  716. #define IGB_N0_QUEUE -1
  717. static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  718. {
  719. struct igb_adapter *adapter = q_vector->adapter;
  720. struct e1000_hw *hw = &adapter->hw;
  721. int rx_queue = IGB_N0_QUEUE;
  722. int tx_queue = IGB_N0_QUEUE;
  723. u32 msixbm = 0;
  724. if (q_vector->rx.ring)
  725. rx_queue = q_vector->rx.ring->reg_idx;
  726. if (q_vector->tx.ring)
  727. tx_queue = q_vector->tx.ring->reg_idx;
  728. switch (hw->mac.type) {
  729. case e1000_82575:
  730. /* The 82575 assigns vectors using a bitmask, which matches the
  731. * bitmask for the EICR/EIMS/EIMC registers. To assign one
  732. * or more queues to a vector, we write the appropriate bits
  733. * into the MSIXBM register for that vector.
  734. */
  735. if (rx_queue > IGB_N0_QUEUE)
  736. msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  737. if (tx_queue > IGB_N0_QUEUE)
  738. msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  739. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  740. msixbm |= E1000_EIMS_OTHER;
  741. array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  742. q_vector->eims_value = msixbm;
  743. break;
  744. case e1000_82576:
  745. /* 82576 uses a table that essentially consists of 2 columns
  746. * with 8 rows. The ordering is column-major so we use the
  747. * lower 3 bits as the row index, and the 4th bit as the
  748. * column offset.
  749. */
  750. if (rx_queue > IGB_N0_QUEUE)
  751. igb_write_ivar(hw, msix_vector,
  752. rx_queue & 0x7,
  753. (rx_queue & 0x8) << 1);
  754. if (tx_queue > IGB_N0_QUEUE)
  755. igb_write_ivar(hw, msix_vector,
  756. tx_queue & 0x7,
  757. ((tx_queue & 0x8) << 1) + 8);
  758. q_vector->eims_value = 1 << msix_vector;
  759. break;
  760. case e1000_82580:
  761. case e1000_i350:
  762. case e1000_i354:
  763. case e1000_i210:
  764. case e1000_i211:
  765. /* On 82580 and newer adapters the scheme is similar to 82576
  766. * however instead of ordering column-major we have things
  767. * ordered row-major. So we traverse the table by using
  768. * bit 0 as the column offset, and the remaining bits as the
  769. * row index.
  770. */
  771. if (rx_queue > IGB_N0_QUEUE)
  772. igb_write_ivar(hw, msix_vector,
  773. rx_queue >> 1,
  774. (rx_queue & 0x1) << 4);
  775. if (tx_queue > IGB_N0_QUEUE)
  776. igb_write_ivar(hw, msix_vector,
  777. tx_queue >> 1,
  778. ((tx_queue & 0x1) << 4) + 8);
  779. q_vector->eims_value = 1 << msix_vector;
  780. break;
  781. default:
  782. BUG();
  783. break;
  784. }
  785. /* add q_vector eims value to global eims_enable_mask */
  786. adapter->eims_enable_mask |= q_vector->eims_value;
  787. /* configure q_vector to set itr on first interrupt */
  788. q_vector->set_itr = 1;
  789. }
  790. /**
  791. * igb_configure_msix - Configure MSI-X hardware
  792. * @adapter: board private structure to initialize
  793. *
  794. * igb_configure_msix sets up the hardware to properly
  795. * generate MSI-X interrupts.
  796. **/
  797. static void igb_configure_msix(struct igb_adapter *adapter)
  798. {
  799. u32 tmp;
  800. int i, vector = 0;
  801. struct e1000_hw *hw = &adapter->hw;
  802. adapter->eims_enable_mask = 0;
  803. /* set vector for other causes, i.e. link changes */
  804. switch (hw->mac.type) {
  805. case e1000_82575:
  806. tmp = rd32(E1000_CTRL_EXT);
  807. /* enable MSI-X PBA support*/
  808. tmp |= E1000_CTRL_EXT_PBA_CLR;
  809. /* Auto-Mask interrupts upon ICR read. */
  810. tmp |= E1000_CTRL_EXT_EIAME;
  811. tmp |= E1000_CTRL_EXT_IRCA;
  812. wr32(E1000_CTRL_EXT, tmp);
  813. /* enable msix_other interrupt */
  814. array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  815. adapter->eims_other = E1000_EIMS_OTHER;
  816. break;
  817. case e1000_82576:
  818. case e1000_82580:
  819. case e1000_i350:
  820. case e1000_i354:
  821. case e1000_i210:
  822. case e1000_i211:
  823. /* Turn on MSI-X capability first, or our settings
  824. * won't stick. And it will take days to debug.
  825. */
  826. wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  827. E1000_GPIE_PBA | E1000_GPIE_EIAME |
  828. E1000_GPIE_NSICR);
  829. /* enable msix_other interrupt */
  830. adapter->eims_other = 1 << vector;
  831. tmp = (vector++ | E1000_IVAR_VALID) << 8;
  832. wr32(E1000_IVAR_MISC, tmp);
  833. break;
  834. default:
  835. /* do nothing, since nothing else supports MSI-X */
  836. break;
  837. } /* switch (hw->mac.type) */
  838. adapter->eims_enable_mask |= adapter->eims_other;
  839. for (i = 0; i < adapter->num_q_vectors; i++)
  840. igb_assign_vector(adapter->q_vector[i], vector++);
  841. wrfl();
  842. }
  843. /**
  844. * igb_request_msix - Initialize MSI-X interrupts
  845. * @adapter: board private structure to initialize
  846. *
  847. * igb_request_msix allocates MSI-X vectors and requests interrupts from the
  848. * kernel.
  849. **/
  850. static int igb_request_msix(struct igb_adapter *adapter)
  851. {
  852. struct net_device *netdev = adapter->netdev;
  853. struct e1000_hw *hw = &adapter->hw;
  854. int i, err = 0, vector = 0, free_vector = 0;
  855. err = request_irq(adapter->msix_entries[vector].vector,
  856. igb_msix_other, 0, netdev->name, adapter);
  857. if (err)
  858. goto err_out;
  859. for (i = 0; i < adapter->num_q_vectors; i++) {
  860. struct igb_q_vector *q_vector = adapter->q_vector[i];
  861. vector++;
  862. q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
  863. if (q_vector->rx.ring && q_vector->tx.ring)
  864. sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  865. q_vector->rx.ring->queue_index);
  866. else if (q_vector->tx.ring)
  867. sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  868. q_vector->tx.ring->queue_index);
  869. else if (q_vector->rx.ring)
  870. sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  871. q_vector->rx.ring->queue_index);
  872. else
  873. sprintf(q_vector->name, "%s-unused", netdev->name);
  874. err = request_irq(adapter->msix_entries[vector].vector,
  875. igb_msix_ring, 0, q_vector->name,
  876. q_vector);
  877. if (err)
  878. goto err_free;
  879. }
  880. igb_configure_msix(adapter);
  881. return 0;
  882. err_free:
  883. /* free already assigned IRQs */
  884. free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  885. vector--;
  886. for (i = 0; i < vector; i++) {
  887. free_irq(adapter->msix_entries[free_vector++].vector,
  888. adapter->q_vector[i]);
  889. }
  890. err_out:
  891. return err;
  892. }
  893. /**
  894. * igb_free_q_vector - Free memory allocated for specific interrupt vector
  895. * @adapter: board private structure to initialize
  896. * @v_idx: Index of vector to be freed
  897. *
  898. * This function frees the memory allocated to the q_vector.
  899. **/
  900. static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  901. {
  902. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  903. adapter->q_vector[v_idx] = NULL;
  904. /* igb_get_stats64() might access the rings on this vector,
  905. * we must wait a grace period before freeing it.
  906. */
  907. kfree_rcu(q_vector, rcu);
  908. }
  909. /**
  910. * igb_reset_q_vector - Reset config for interrupt vector
  911. * @adapter: board private structure to initialize
  912. * @v_idx: Index of vector to be reset
  913. *
  914. * If NAPI is enabled it will delete any references to the
  915. * NAPI struct. This is preparation for igb_free_q_vector.
  916. **/
  917. static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
  918. {
  919. struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  920. /* Coming from igb_set_interrupt_capability, the vectors are not yet
  921. * allocated. So, q_vector is NULL so we should stop here.
  922. */
  923. if (!q_vector)
  924. return;
  925. if (q_vector->tx.ring)
  926. adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
  927. if (q_vector->rx.ring)
  928. adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
  929. netif_napi_del(&q_vector->napi);
  930. }
  931. static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
  932. {
  933. int v_idx = adapter->num_q_vectors;
  934. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  935. pci_disable_msix(adapter->pdev);
  936. else if (adapter->flags & IGB_FLAG_HAS_MSI)
  937. pci_disable_msi(adapter->pdev);
  938. while (v_idx--)
  939. igb_reset_q_vector(adapter, v_idx);
  940. }
  941. /**
  942. * igb_free_q_vectors - Free memory allocated for interrupt vectors
  943. * @adapter: board private structure to initialize
  944. *
  945. * This function frees the memory allocated to the q_vectors. In addition if
  946. * NAPI is enabled it will delete any references to the NAPI struct prior
  947. * to freeing the q_vector.
  948. **/
  949. static void igb_free_q_vectors(struct igb_adapter *adapter)
  950. {
  951. int v_idx = adapter->num_q_vectors;
  952. adapter->num_tx_queues = 0;
  953. adapter->num_rx_queues = 0;
  954. adapter->num_q_vectors = 0;
  955. while (v_idx--) {
  956. igb_reset_q_vector(adapter, v_idx);
  957. igb_free_q_vector(adapter, v_idx);
  958. }
  959. }
  960. /**
  961. * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
  962. * @adapter: board private structure to initialize
  963. *
  964. * This function resets the device so that it has 0 Rx queues, Tx queues, and
  965. * MSI-X interrupts allocated.
  966. */
  967. static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
  968. {
  969. igb_free_q_vectors(adapter);
  970. igb_reset_interrupt_capability(adapter);
  971. }
  972. /**
  973. * igb_set_interrupt_capability - set MSI or MSI-X if supported
  974. * @adapter: board private structure to initialize
  975. * @msix: boolean value of MSIX capability
  976. *
  977. * Attempt to configure interrupts using the best available
  978. * capabilities of the hardware and kernel.
  979. **/
  980. static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
  981. {
  982. int err;
  983. int numvecs, i;
  984. if (!msix)
  985. goto msi_only;
  986. adapter->flags |= IGB_FLAG_HAS_MSIX;
  987. /* Number of supported queues. */
  988. adapter->num_rx_queues = adapter->rss_queues;
  989. if (adapter->vfs_allocated_count)
  990. adapter->num_tx_queues = 1;
  991. else
  992. adapter->num_tx_queues = adapter->rss_queues;
  993. /* start with one vector for every Rx queue */
  994. numvecs = adapter->num_rx_queues;
  995. /* if Tx handler is separate add 1 for every Tx queue */
  996. if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
  997. numvecs += adapter->num_tx_queues;
  998. /* store the number of vectors reserved for queues */
  999. adapter->num_q_vectors = numvecs;
  1000. /* add 1 vector for link status interrupts */
  1001. numvecs++;
  1002. for (i = 0; i < numvecs; i++)
  1003. adapter->msix_entries[i].entry = i;
  1004. err = pci_enable_msix_range(adapter->pdev,
  1005. adapter->msix_entries,
  1006. numvecs,
  1007. numvecs);
  1008. if (err > 0)
  1009. return;
  1010. igb_reset_interrupt_capability(adapter);
  1011. /* If we can't do MSI-X, try MSI */
  1012. msi_only:
  1013. adapter->flags &= ~IGB_FLAG_HAS_MSIX;
  1014. #ifdef CONFIG_PCI_IOV
  1015. /* disable SR-IOV for non MSI-X configurations */
  1016. if (adapter->vf_data) {
  1017. struct e1000_hw *hw = &adapter->hw;
  1018. /* disable iov and allow time for transactions to clear */
  1019. pci_disable_sriov(adapter->pdev);
  1020. msleep(500);
  1021. kfree(adapter->vf_data);
  1022. adapter->vf_data = NULL;
  1023. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  1024. wrfl();
  1025. msleep(100);
  1026. dev_info(&adapter->pdev->dev, "IOV Disabled\n");
  1027. }
  1028. #endif
  1029. adapter->vfs_allocated_count = 0;
  1030. adapter->rss_queues = 1;
  1031. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  1032. adapter->num_rx_queues = 1;
  1033. adapter->num_tx_queues = 1;
  1034. adapter->num_q_vectors = 1;
  1035. if (!pci_enable_msi(adapter->pdev))
  1036. adapter->flags |= IGB_FLAG_HAS_MSI;
  1037. }
  1038. static void igb_add_ring(struct igb_ring *ring,
  1039. struct igb_ring_container *head)
  1040. {
  1041. head->ring = ring;
  1042. head->count++;
  1043. }
  1044. /**
  1045. * igb_alloc_q_vector - Allocate memory for a single interrupt vector
  1046. * @adapter: board private structure to initialize
  1047. * @v_count: q_vectors allocated on adapter, used for ring interleaving
  1048. * @v_idx: index of vector in adapter struct
  1049. * @txr_count: total number of Tx rings to allocate
  1050. * @txr_idx: index of first Tx ring to allocate
  1051. * @rxr_count: total number of Rx rings to allocate
  1052. * @rxr_idx: index of first Rx ring to allocate
  1053. *
  1054. * We allocate one q_vector. If allocation fails we return -ENOMEM.
  1055. **/
  1056. static int igb_alloc_q_vector(struct igb_adapter *adapter,
  1057. int v_count, int v_idx,
  1058. int txr_count, int txr_idx,
  1059. int rxr_count, int rxr_idx)
  1060. {
  1061. struct igb_q_vector *q_vector;
  1062. struct igb_ring *ring;
  1063. int ring_count, size;
  1064. /* igb only supports 1 Tx and/or 1 Rx queue per vector */
  1065. if (txr_count > 1 || rxr_count > 1)
  1066. return -ENOMEM;
  1067. ring_count = txr_count + rxr_count;
  1068. size = sizeof(struct igb_q_vector) +
  1069. (sizeof(struct igb_ring) * ring_count);
  1070. /* allocate q_vector and rings */
  1071. q_vector = adapter->q_vector[v_idx];
  1072. if (!q_vector)
  1073. q_vector = kzalloc(size, GFP_KERNEL);
  1074. if (!q_vector)
  1075. return -ENOMEM;
  1076. /* initialize NAPI */
  1077. netif_napi_add(adapter->netdev, &q_vector->napi,
  1078. igb_poll, 64);
  1079. /* tie q_vector and adapter together */
  1080. adapter->q_vector[v_idx] = q_vector;
  1081. q_vector->adapter = adapter;
  1082. /* initialize work limits */
  1083. q_vector->tx.work_limit = adapter->tx_work_limit;
  1084. /* initialize ITR configuration */
  1085. q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
  1086. q_vector->itr_val = IGB_START_ITR;
  1087. /* initialize pointer to rings */
  1088. ring = q_vector->ring;
  1089. /* intialize ITR */
  1090. if (rxr_count) {
  1091. /* rx or rx/tx vector */
  1092. if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
  1093. q_vector->itr_val = adapter->rx_itr_setting;
  1094. } else {
  1095. /* tx only vector */
  1096. if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
  1097. q_vector->itr_val = adapter->tx_itr_setting;
  1098. }
  1099. if (txr_count) {
  1100. /* assign generic ring traits */
  1101. ring->dev = &adapter->pdev->dev;
  1102. ring->netdev = adapter->netdev;
  1103. /* configure backlink on ring */
  1104. ring->q_vector = q_vector;
  1105. /* update q_vector Tx values */
  1106. igb_add_ring(ring, &q_vector->tx);
  1107. /* For 82575, context index must be unique per ring. */
  1108. if (adapter->hw.mac.type == e1000_82575)
  1109. set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
  1110. /* apply Tx specific ring traits */
  1111. ring->count = adapter->tx_ring_count;
  1112. ring->queue_index = txr_idx;
  1113. u64_stats_init(&ring->tx_syncp);
  1114. u64_stats_init(&ring->tx_syncp2);
  1115. /* assign ring to adapter */
  1116. adapter->tx_ring[txr_idx] = ring;
  1117. /* push pointer to next ring */
  1118. ring++;
  1119. }
  1120. if (rxr_count) {
  1121. /* assign generic ring traits */
  1122. ring->dev = &adapter->pdev->dev;
  1123. ring->netdev = adapter->netdev;
  1124. /* configure backlink on ring */
  1125. ring->q_vector = q_vector;
  1126. /* update q_vector Rx values */
  1127. igb_add_ring(ring, &q_vector->rx);
  1128. /* set flag indicating ring supports SCTP checksum offload */
  1129. if (adapter->hw.mac.type >= e1000_82576)
  1130. set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
  1131. /* On i350, i354, i210, and i211, loopback VLAN packets
  1132. * have the tag byte-swapped.
  1133. */
  1134. if (adapter->hw.mac.type >= e1000_i350)
  1135. set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
  1136. /* apply Rx specific ring traits */
  1137. ring->count = adapter->rx_ring_count;
  1138. ring->queue_index = rxr_idx;
  1139. u64_stats_init(&ring->rx_syncp);
  1140. /* assign ring to adapter */
  1141. adapter->rx_ring[rxr_idx] = ring;
  1142. }
  1143. return 0;
  1144. }
  1145. /**
  1146. * igb_alloc_q_vectors - Allocate memory for interrupt vectors
  1147. * @adapter: board private structure to initialize
  1148. *
  1149. * We allocate one q_vector per queue interrupt. If allocation fails we
  1150. * return -ENOMEM.
  1151. **/
  1152. static int igb_alloc_q_vectors(struct igb_adapter *adapter)
  1153. {
  1154. int q_vectors = adapter->num_q_vectors;
  1155. int rxr_remaining = adapter->num_rx_queues;
  1156. int txr_remaining = adapter->num_tx_queues;
  1157. int rxr_idx = 0, txr_idx = 0, v_idx = 0;
  1158. int err;
  1159. if (q_vectors >= (rxr_remaining + txr_remaining)) {
  1160. for (; rxr_remaining; v_idx++) {
  1161. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1162. 0, 0, 1, rxr_idx);
  1163. if (err)
  1164. goto err_out;
  1165. /* update counts and index */
  1166. rxr_remaining--;
  1167. rxr_idx++;
  1168. }
  1169. }
  1170. for (; v_idx < q_vectors; v_idx++) {
  1171. int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
  1172. int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
  1173. err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
  1174. tqpv, txr_idx, rqpv, rxr_idx);
  1175. if (err)
  1176. goto err_out;
  1177. /* update counts and index */
  1178. rxr_remaining -= rqpv;
  1179. txr_remaining -= tqpv;
  1180. rxr_idx++;
  1181. txr_idx++;
  1182. }
  1183. return 0;
  1184. err_out:
  1185. adapter->num_tx_queues = 0;
  1186. adapter->num_rx_queues = 0;
  1187. adapter->num_q_vectors = 0;
  1188. while (v_idx--)
  1189. igb_free_q_vector(adapter, v_idx);
  1190. return -ENOMEM;
  1191. }
  1192. /**
  1193. * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
  1194. * @adapter: board private structure to initialize
  1195. * @msix: boolean value of MSIX capability
  1196. *
  1197. * This function initializes the interrupts and allocates all of the queues.
  1198. **/
  1199. static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
  1200. {
  1201. struct pci_dev *pdev = adapter->pdev;
  1202. int err;
  1203. igb_set_interrupt_capability(adapter, msix);
  1204. err = igb_alloc_q_vectors(adapter);
  1205. if (err) {
  1206. dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
  1207. goto err_alloc_q_vectors;
  1208. }
  1209. igb_cache_ring_register(adapter);
  1210. return 0;
  1211. err_alloc_q_vectors:
  1212. igb_reset_interrupt_capability(adapter);
  1213. return err;
  1214. }
  1215. /**
  1216. * igb_request_irq - initialize interrupts
  1217. * @adapter: board private structure to initialize
  1218. *
  1219. * Attempts to configure interrupts using the best available
  1220. * capabilities of the hardware and kernel.
  1221. **/
  1222. static int igb_request_irq(struct igb_adapter *adapter)
  1223. {
  1224. struct net_device *netdev = adapter->netdev;
  1225. struct pci_dev *pdev = adapter->pdev;
  1226. int err = 0;
  1227. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1228. err = igb_request_msix(adapter);
  1229. if (!err)
  1230. goto request_done;
  1231. /* fall back to MSI */
  1232. igb_free_all_tx_resources(adapter);
  1233. igb_free_all_rx_resources(adapter);
  1234. igb_clear_interrupt_scheme(adapter);
  1235. err = igb_init_interrupt_scheme(adapter, false);
  1236. if (err)
  1237. goto request_done;
  1238. igb_setup_all_tx_resources(adapter);
  1239. igb_setup_all_rx_resources(adapter);
  1240. igb_configure(adapter);
  1241. }
  1242. igb_assign_vector(adapter->q_vector[0], 0);
  1243. if (adapter->flags & IGB_FLAG_HAS_MSI) {
  1244. err = request_irq(pdev->irq, igb_intr_msi, 0,
  1245. netdev->name, adapter);
  1246. if (!err)
  1247. goto request_done;
  1248. /* fall back to legacy interrupts */
  1249. igb_reset_interrupt_capability(adapter);
  1250. adapter->flags &= ~IGB_FLAG_HAS_MSI;
  1251. }
  1252. err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
  1253. netdev->name, adapter);
  1254. if (err)
  1255. dev_err(&pdev->dev, "Error %d getting interrupt\n",
  1256. err);
  1257. request_done:
  1258. return err;
  1259. }
  1260. static void igb_free_irq(struct igb_adapter *adapter)
  1261. {
  1262. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1263. int vector = 0, i;
  1264. free_irq(adapter->msix_entries[vector++].vector, adapter);
  1265. for (i = 0; i < adapter->num_q_vectors; i++)
  1266. free_irq(adapter->msix_entries[vector++].vector,
  1267. adapter->q_vector[i]);
  1268. } else {
  1269. free_irq(adapter->pdev->irq, adapter);
  1270. }
  1271. }
  1272. /**
  1273. * igb_irq_disable - Mask off interrupt generation on the NIC
  1274. * @adapter: board private structure
  1275. **/
  1276. static void igb_irq_disable(struct igb_adapter *adapter)
  1277. {
  1278. struct e1000_hw *hw = &adapter->hw;
  1279. /* we need to be careful when disabling interrupts. The VFs are also
  1280. * mapped into these registers and so clearing the bits can cause
  1281. * issues on the VF drivers so we only need to clear what we set
  1282. */
  1283. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1284. u32 regval = rd32(E1000_EIAM);
  1285. wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
  1286. wr32(E1000_EIMC, adapter->eims_enable_mask);
  1287. regval = rd32(E1000_EIAC);
  1288. wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
  1289. }
  1290. wr32(E1000_IAM, 0);
  1291. wr32(E1000_IMC, ~0);
  1292. wrfl();
  1293. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1294. int i;
  1295. for (i = 0; i < adapter->num_q_vectors; i++)
  1296. synchronize_irq(adapter->msix_entries[i].vector);
  1297. } else {
  1298. synchronize_irq(adapter->pdev->irq);
  1299. }
  1300. }
  1301. /**
  1302. * igb_irq_enable - Enable default interrupt generation settings
  1303. * @adapter: board private structure
  1304. **/
  1305. static void igb_irq_enable(struct igb_adapter *adapter)
  1306. {
  1307. struct e1000_hw *hw = &adapter->hw;
  1308. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  1309. u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
  1310. u32 regval = rd32(E1000_EIAC);
  1311. wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
  1312. regval = rd32(E1000_EIAM);
  1313. wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
  1314. wr32(E1000_EIMS, adapter->eims_enable_mask);
  1315. if (adapter->vfs_allocated_count) {
  1316. wr32(E1000_MBVFIMR, 0xFF);
  1317. ims |= E1000_IMS_VMMB;
  1318. }
  1319. wr32(E1000_IMS, ims);
  1320. } else {
  1321. wr32(E1000_IMS, IMS_ENABLE_MASK |
  1322. E1000_IMS_DRSTA);
  1323. wr32(E1000_IAM, IMS_ENABLE_MASK |
  1324. E1000_IMS_DRSTA);
  1325. }
  1326. }
  1327. static void igb_update_mng_vlan(struct igb_adapter *adapter)
  1328. {
  1329. struct e1000_hw *hw = &adapter->hw;
  1330. u16 vid = adapter->hw.mng_cookie.vlan_id;
  1331. u16 old_vid = adapter->mng_vlan_id;
  1332. if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
  1333. /* add VID to filter table */
  1334. igb_vfta_set(hw, vid, true);
  1335. adapter->mng_vlan_id = vid;
  1336. } else {
  1337. adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
  1338. }
  1339. if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
  1340. (vid != old_vid) &&
  1341. !test_bit(old_vid, adapter->active_vlans)) {
  1342. /* remove VID from filter table */
  1343. igb_vfta_set(hw, old_vid, false);
  1344. }
  1345. }
  1346. /**
  1347. * igb_release_hw_control - release control of the h/w to f/w
  1348. * @adapter: address of board private structure
  1349. *
  1350. * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
  1351. * For ASF and Pass Through versions of f/w this means that the
  1352. * driver is no longer loaded.
  1353. **/
  1354. static void igb_release_hw_control(struct igb_adapter *adapter)
  1355. {
  1356. struct e1000_hw *hw = &adapter->hw;
  1357. u32 ctrl_ext;
  1358. /* Let firmware take over control of h/w */
  1359. ctrl_ext = rd32(E1000_CTRL_EXT);
  1360. wr32(E1000_CTRL_EXT,
  1361. ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
  1362. }
  1363. /**
  1364. * igb_get_hw_control - get control of the h/w from f/w
  1365. * @adapter: address of board private structure
  1366. *
  1367. * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
  1368. * For ASF and Pass Through versions of f/w this means that
  1369. * the driver is loaded.
  1370. **/
  1371. static void igb_get_hw_control(struct igb_adapter *adapter)
  1372. {
  1373. struct e1000_hw *hw = &adapter->hw;
  1374. u32 ctrl_ext;
  1375. /* Let firmware know the driver has taken over */
  1376. ctrl_ext = rd32(E1000_CTRL_EXT);
  1377. wr32(E1000_CTRL_EXT,
  1378. ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
  1379. }
  1380. /**
  1381. * igb_configure - configure the hardware for RX and TX
  1382. * @adapter: private board structure
  1383. **/
  1384. static void igb_configure(struct igb_adapter *adapter)
  1385. {
  1386. struct net_device *netdev = adapter->netdev;
  1387. int i;
  1388. igb_get_hw_control(adapter);
  1389. igb_set_rx_mode(netdev);
  1390. igb_restore_vlan(adapter);
  1391. igb_setup_tctl(adapter);
  1392. igb_setup_mrqc(adapter);
  1393. igb_setup_rctl(adapter);
  1394. igb_configure_tx(adapter);
  1395. igb_configure_rx(adapter);
  1396. igb_rx_fifo_flush_82575(&adapter->hw);
  1397. /* call igb_desc_unused which always leaves
  1398. * at least 1 descriptor unused to make sure
  1399. * next_to_use != next_to_clean
  1400. */
  1401. for (i = 0; i < adapter->num_rx_queues; i++) {
  1402. struct igb_ring *ring = adapter->rx_ring[i];
  1403. igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
  1404. }
  1405. }
  1406. /**
  1407. * igb_power_up_link - Power up the phy/serdes link
  1408. * @adapter: address of board private structure
  1409. **/
  1410. void igb_power_up_link(struct igb_adapter *adapter)
  1411. {
  1412. igb_reset_phy(&adapter->hw);
  1413. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1414. igb_power_up_phy_copper(&adapter->hw);
  1415. else
  1416. igb_power_up_serdes_link_82575(&adapter->hw);
  1417. }
  1418. /**
  1419. * igb_power_down_link - Power down the phy/serdes link
  1420. * @adapter: address of board private structure
  1421. */
  1422. static void igb_power_down_link(struct igb_adapter *adapter)
  1423. {
  1424. if (adapter->hw.phy.media_type == e1000_media_type_copper)
  1425. igb_power_down_phy_copper_82575(&adapter->hw);
  1426. else
  1427. igb_shutdown_serdes_link_82575(&adapter->hw);
  1428. }
  1429. /**
  1430. * Detect and switch function for Media Auto Sense
  1431. * @adapter: address of the board private structure
  1432. **/
  1433. static void igb_check_swap_media(struct igb_adapter *adapter)
  1434. {
  1435. struct e1000_hw *hw = &adapter->hw;
  1436. u32 ctrl_ext, connsw;
  1437. bool swap_now = false;
  1438. ctrl_ext = rd32(E1000_CTRL_EXT);
  1439. connsw = rd32(E1000_CONNSW);
  1440. /* need to live swap if current media is copper and we have fiber/serdes
  1441. * to go to.
  1442. */
  1443. if ((hw->phy.media_type == e1000_media_type_copper) &&
  1444. (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
  1445. swap_now = true;
  1446. } else if (!(connsw & E1000_CONNSW_SERDESD)) {
  1447. /* copper signal takes time to appear */
  1448. if (adapter->copper_tries < 4) {
  1449. adapter->copper_tries++;
  1450. connsw |= E1000_CONNSW_AUTOSENSE_CONF;
  1451. wr32(E1000_CONNSW, connsw);
  1452. return;
  1453. } else {
  1454. adapter->copper_tries = 0;
  1455. if ((connsw & E1000_CONNSW_PHYSD) &&
  1456. (!(connsw & E1000_CONNSW_PHY_PDN))) {
  1457. swap_now = true;
  1458. connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
  1459. wr32(E1000_CONNSW, connsw);
  1460. }
  1461. }
  1462. }
  1463. if (!swap_now)
  1464. return;
  1465. switch (hw->phy.media_type) {
  1466. case e1000_media_type_copper:
  1467. netdev_info(adapter->netdev,
  1468. "MAS: changing media to fiber/serdes\n");
  1469. ctrl_ext |=
  1470. E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1471. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1472. adapter->copper_tries = 0;
  1473. break;
  1474. case e1000_media_type_internal_serdes:
  1475. case e1000_media_type_fiber:
  1476. netdev_info(adapter->netdev,
  1477. "MAS: changing media to copper\n");
  1478. ctrl_ext &=
  1479. ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  1480. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  1481. break;
  1482. default:
  1483. /* shouldn't get here during regular operation */
  1484. netdev_err(adapter->netdev,
  1485. "AMS: Invalid media type found, returning\n");
  1486. break;
  1487. }
  1488. wr32(E1000_CTRL_EXT, ctrl_ext);
  1489. }
  1490. /**
  1491. * igb_up - Open the interface and prepare it to handle traffic
  1492. * @adapter: board private structure
  1493. **/
  1494. int igb_up(struct igb_adapter *adapter)
  1495. {
  1496. struct e1000_hw *hw = &adapter->hw;
  1497. int i;
  1498. /* hardware has been reset, we need to reload some things */
  1499. igb_configure(adapter);
  1500. clear_bit(__IGB_DOWN, &adapter->state);
  1501. for (i = 0; i < adapter->num_q_vectors; i++)
  1502. napi_enable(&(adapter->q_vector[i]->napi));
  1503. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  1504. igb_configure_msix(adapter);
  1505. else
  1506. igb_assign_vector(adapter->q_vector[0], 0);
  1507. /* Clear any pending interrupts. */
  1508. rd32(E1000_ICR);
  1509. igb_irq_enable(adapter);
  1510. /* notify VFs that reset has been completed */
  1511. if (adapter->vfs_allocated_count) {
  1512. u32 reg_data = rd32(E1000_CTRL_EXT);
  1513. reg_data |= E1000_CTRL_EXT_PFRSTD;
  1514. wr32(E1000_CTRL_EXT, reg_data);
  1515. }
  1516. netif_tx_start_all_queues(adapter->netdev);
  1517. /* start the watchdog. */
  1518. hw->mac.get_link_status = 1;
  1519. schedule_work(&adapter->watchdog_task);
  1520. if ((adapter->flags & IGB_FLAG_EEE) &&
  1521. (!hw->dev_spec._82575.eee_disable))
  1522. adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
  1523. return 0;
  1524. }
  1525. void igb_down(struct igb_adapter *adapter)
  1526. {
  1527. struct net_device *netdev = adapter->netdev;
  1528. struct e1000_hw *hw = &adapter->hw;
  1529. u32 tctl, rctl;
  1530. int i;
  1531. /* signal that we're down so the interrupt handler does not
  1532. * reschedule our watchdog timer
  1533. */
  1534. set_bit(__IGB_DOWN, &adapter->state);
  1535. /* disable receives in the hardware */
  1536. rctl = rd32(E1000_RCTL);
  1537. wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
  1538. /* flush and sleep below */
  1539. netif_tx_stop_all_queues(netdev);
  1540. /* disable transmits in the hardware */
  1541. tctl = rd32(E1000_TCTL);
  1542. tctl &= ~E1000_TCTL_EN;
  1543. wr32(E1000_TCTL, tctl);
  1544. /* flush both disables and wait for them to finish */
  1545. wrfl();
  1546. usleep_range(10000, 11000);
  1547. igb_irq_disable(adapter);
  1548. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  1549. for (i = 0; i < adapter->num_q_vectors; i++) {
  1550. napi_synchronize(&(adapter->q_vector[i]->napi));
  1551. napi_disable(&(adapter->q_vector[i]->napi));
  1552. }
  1553. del_timer_sync(&adapter->watchdog_timer);
  1554. del_timer_sync(&adapter->phy_info_timer);
  1555. netif_carrier_off(netdev);
  1556. /* record the stats before reset*/
  1557. spin_lock(&adapter->stats64_lock);
  1558. igb_update_stats(adapter, &adapter->stats64);
  1559. spin_unlock(&adapter->stats64_lock);
  1560. adapter->link_speed = 0;
  1561. adapter->link_duplex = 0;
  1562. if (!pci_channel_offline(adapter->pdev))
  1563. igb_reset(adapter);
  1564. igb_clean_all_tx_rings(adapter);
  1565. igb_clean_all_rx_rings(adapter);
  1566. #ifdef CONFIG_IGB_DCA
  1567. /* since we reset the hardware DCA settings were cleared */
  1568. igb_setup_dca(adapter);
  1569. #endif
  1570. }
  1571. void igb_reinit_locked(struct igb_adapter *adapter)
  1572. {
  1573. WARN_ON(in_interrupt());
  1574. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  1575. usleep_range(1000, 2000);
  1576. igb_down(adapter);
  1577. igb_up(adapter);
  1578. clear_bit(__IGB_RESETTING, &adapter->state);
  1579. }
  1580. /** igb_enable_mas - Media Autosense re-enable after swap
  1581. *
  1582. * @adapter: adapter struct
  1583. **/
  1584. static s32 igb_enable_mas(struct igb_adapter *adapter)
  1585. {
  1586. struct e1000_hw *hw = &adapter->hw;
  1587. u32 connsw;
  1588. s32 ret_val = 0;
  1589. connsw = rd32(E1000_CONNSW);
  1590. if (!(hw->phy.media_type == e1000_media_type_copper))
  1591. return ret_val;
  1592. /* configure for SerDes media detect */
  1593. if (!(connsw & E1000_CONNSW_SERDESD)) {
  1594. connsw |= E1000_CONNSW_ENRGSRC;
  1595. connsw |= E1000_CONNSW_AUTOSENSE_EN;
  1596. wr32(E1000_CONNSW, connsw);
  1597. wrfl();
  1598. } else if (connsw & E1000_CONNSW_SERDESD) {
  1599. /* already SerDes, no need to enable anything */
  1600. return ret_val;
  1601. } else {
  1602. netdev_info(adapter->netdev,
  1603. "MAS: Unable to configure feature, disabling..\n");
  1604. adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
  1605. }
  1606. return ret_val;
  1607. }
  1608. void igb_reset(struct igb_adapter *adapter)
  1609. {
  1610. struct pci_dev *pdev = adapter->pdev;
  1611. struct e1000_hw *hw = &adapter->hw;
  1612. struct e1000_mac_info *mac = &hw->mac;
  1613. struct e1000_fc_info *fc = &hw->fc;
  1614. u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
  1615. /* Repartition Pba for greater than 9k mtu
  1616. * To take effect CTRL.RST is required.
  1617. */
  1618. switch (mac->type) {
  1619. case e1000_i350:
  1620. case e1000_i354:
  1621. case e1000_82580:
  1622. pba = rd32(E1000_RXPBS);
  1623. pba = igb_rxpbs_adjust_82580(pba);
  1624. break;
  1625. case e1000_82576:
  1626. pba = rd32(E1000_RXPBS);
  1627. pba &= E1000_RXPBS_SIZE_MASK_82576;
  1628. break;
  1629. case e1000_82575:
  1630. case e1000_i210:
  1631. case e1000_i211:
  1632. default:
  1633. pba = E1000_PBA_34K;
  1634. break;
  1635. }
  1636. if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
  1637. (mac->type < e1000_82576)) {
  1638. /* adjust PBA for jumbo frames */
  1639. wr32(E1000_PBA, pba);
  1640. /* To maintain wire speed transmits, the Tx FIFO should be
  1641. * large enough to accommodate two full transmit packets,
  1642. * rounded up to the next 1KB and expressed in KB. Likewise,
  1643. * the Rx FIFO should be large enough to accommodate at least
  1644. * one full receive packet and is similarly rounded up and
  1645. * expressed in KB.
  1646. */
  1647. pba = rd32(E1000_PBA);
  1648. /* upper 16 bits has Tx packet buffer allocation size in KB */
  1649. tx_space = pba >> 16;
  1650. /* lower 16 bits has Rx packet buffer allocation size in KB */
  1651. pba &= 0xffff;
  1652. /* the Tx fifo also stores 16 bytes of information about the Tx
  1653. * but don't include ethernet FCS because hardware appends it
  1654. */
  1655. min_tx_space = (adapter->max_frame_size +
  1656. sizeof(union e1000_adv_tx_desc) -
  1657. ETH_FCS_LEN) * 2;
  1658. min_tx_space = ALIGN(min_tx_space, 1024);
  1659. min_tx_space >>= 10;
  1660. /* software strips receive CRC, so leave room for it */
  1661. min_rx_space = adapter->max_frame_size;
  1662. min_rx_space = ALIGN(min_rx_space, 1024);
  1663. min_rx_space >>= 10;
  1664. /* If current Tx allocation is less than the min Tx FIFO size,
  1665. * and the min Tx FIFO size is less than the current Rx FIFO
  1666. * allocation, take space away from current Rx allocation
  1667. */
  1668. if (tx_space < min_tx_space &&
  1669. ((min_tx_space - tx_space) < pba)) {
  1670. pba = pba - (min_tx_space - tx_space);
  1671. /* if short on Rx space, Rx wins and must trump Tx
  1672. * adjustment
  1673. */
  1674. if (pba < min_rx_space)
  1675. pba = min_rx_space;
  1676. }
  1677. wr32(E1000_PBA, pba);
  1678. }
  1679. /* flow control settings */
  1680. /* The high water mark must be low enough to fit one full frame
  1681. * (or the size used for early receive) above it in the Rx FIFO.
  1682. * Set it to the lower of:
  1683. * - 90% of the Rx FIFO size, or
  1684. * - the full Rx FIFO size minus one full frame
  1685. */
  1686. hwm = min(((pba << 10) * 9 / 10),
  1687. ((pba << 10) - 2 * adapter->max_frame_size));
  1688. fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
  1689. fc->low_water = fc->high_water - 16;
  1690. fc->pause_time = 0xFFFF;
  1691. fc->send_xon = 1;
  1692. fc->current_mode = fc->requested_mode;
  1693. /* disable receive for all VFs and wait one second */
  1694. if (adapter->vfs_allocated_count) {
  1695. int i;
  1696. for (i = 0 ; i < adapter->vfs_allocated_count; i++)
  1697. adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
  1698. /* ping all the active vfs to let them know we are going down */
  1699. igb_ping_all_vfs(adapter);
  1700. /* disable transmits and receives */
  1701. wr32(E1000_VFRE, 0);
  1702. wr32(E1000_VFTE, 0);
  1703. }
  1704. /* Allow time for pending master requests to run */
  1705. hw->mac.ops.reset_hw(hw);
  1706. wr32(E1000_WUC, 0);
  1707. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  1708. /* need to resetup here after media swap */
  1709. adapter->ei.get_invariants(hw);
  1710. adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
  1711. }
  1712. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  1713. if (igb_enable_mas(adapter))
  1714. dev_err(&pdev->dev,
  1715. "Error enabling Media Auto Sense\n");
  1716. }
  1717. if (hw->mac.ops.init_hw(hw))
  1718. dev_err(&pdev->dev, "Hardware Error\n");
  1719. /* Flow control settings reset on hardware reset, so guarantee flow
  1720. * control is off when forcing speed.
  1721. */
  1722. if (!hw->mac.autoneg)
  1723. igb_force_mac_fc(hw);
  1724. igb_init_dmac(adapter, pba);
  1725. #ifdef CONFIG_IGB_HWMON
  1726. /* Re-initialize the thermal sensor on i350 devices. */
  1727. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  1728. if (mac->type == e1000_i350 && hw->bus.func == 0) {
  1729. /* If present, re-initialize the external thermal sensor
  1730. * interface.
  1731. */
  1732. if (adapter->ets)
  1733. mac->ops.init_thermal_sensor_thresh(hw);
  1734. }
  1735. }
  1736. #endif
  1737. /* Re-establish EEE setting */
  1738. if (hw->phy.media_type == e1000_media_type_copper) {
  1739. switch (mac->type) {
  1740. case e1000_i350:
  1741. case e1000_i210:
  1742. case e1000_i211:
  1743. igb_set_eee_i350(hw);
  1744. break;
  1745. case e1000_i354:
  1746. igb_set_eee_i354(hw);
  1747. break;
  1748. default:
  1749. break;
  1750. }
  1751. }
  1752. if (!netif_running(adapter->netdev))
  1753. igb_power_down_link(adapter);
  1754. igb_update_mng_vlan(adapter);
  1755. /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
  1756. wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
  1757. /* Re-enable PTP, where applicable. */
  1758. igb_ptp_reset(adapter);
  1759. igb_get_phy_info(hw);
  1760. }
  1761. static netdev_features_t igb_fix_features(struct net_device *netdev,
  1762. netdev_features_t features)
  1763. {
  1764. /* Since there is no support for separate Rx/Tx vlan accel
  1765. * enable/disable make sure Tx flag is always in same state as Rx.
  1766. */
  1767. if (features & NETIF_F_HW_VLAN_CTAG_RX)
  1768. features |= NETIF_F_HW_VLAN_CTAG_TX;
  1769. else
  1770. features &= ~NETIF_F_HW_VLAN_CTAG_TX;
  1771. return features;
  1772. }
  1773. static int igb_set_features(struct net_device *netdev,
  1774. netdev_features_t features)
  1775. {
  1776. netdev_features_t changed = netdev->features ^ features;
  1777. struct igb_adapter *adapter = netdev_priv(netdev);
  1778. if (changed & NETIF_F_HW_VLAN_CTAG_RX)
  1779. igb_vlan_mode(netdev, features);
  1780. if (!(changed & NETIF_F_RXALL))
  1781. return 0;
  1782. netdev->features = features;
  1783. if (netif_running(netdev))
  1784. igb_reinit_locked(adapter);
  1785. else
  1786. igb_reset(adapter);
  1787. return 0;
  1788. }
  1789. static const struct net_device_ops igb_netdev_ops = {
  1790. .ndo_open = igb_open,
  1791. .ndo_stop = igb_close,
  1792. .ndo_start_xmit = igb_xmit_frame,
  1793. .ndo_get_stats64 = igb_get_stats64,
  1794. .ndo_set_rx_mode = igb_set_rx_mode,
  1795. .ndo_set_mac_address = igb_set_mac,
  1796. .ndo_change_mtu = igb_change_mtu,
  1797. .ndo_do_ioctl = igb_ioctl,
  1798. .ndo_tx_timeout = igb_tx_timeout,
  1799. .ndo_validate_addr = eth_validate_addr,
  1800. .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
  1801. .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
  1802. .ndo_set_vf_mac = igb_ndo_set_vf_mac,
  1803. .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
  1804. .ndo_set_vf_rate = igb_ndo_set_vf_bw,
  1805. .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
  1806. .ndo_get_vf_config = igb_ndo_get_vf_config,
  1807. #ifdef CONFIG_NET_POLL_CONTROLLER
  1808. .ndo_poll_controller = igb_netpoll,
  1809. #endif
  1810. .ndo_fix_features = igb_fix_features,
  1811. .ndo_set_features = igb_set_features,
  1812. };
  1813. /**
  1814. * igb_set_fw_version - Configure version string for ethtool
  1815. * @adapter: adapter struct
  1816. **/
  1817. void igb_set_fw_version(struct igb_adapter *adapter)
  1818. {
  1819. struct e1000_hw *hw = &adapter->hw;
  1820. struct e1000_fw_version fw;
  1821. igb_get_fw_version(hw, &fw);
  1822. switch (hw->mac.type) {
  1823. case e1000_i210:
  1824. case e1000_i211:
  1825. if (!(igb_get_flash_presence_i210(hw))) {
  1826. snprintf(adapter->fw_version,
  1827. sizeof(adapter->fw_version),
  1828. "%2d.%2d-%d",
  1829. fw.invm_major, fw.invm_minor,
  1830. fw.invm_img_type);
  1831. break;
  1832. }
  1833. /* fall through */
  1834. default:
  1835. /* if option is rom valid, display its version too */
  1836. if (fw.or_valid) {
  1837. snprintf(adapter->fw_version,
  1838. sizeof(adapter->fw_version),
  1839. "%d.%d, 0x%08x, %d.%d.%d",
  1840. fw.eep_major, fw.eep_minor, fw.etrack_id,
  1841. fw.or_major, fw.or_build, fw.or_patch);
  1842. /* no option rom */
  1843. } else if (fw.etrack_id != 0X0000) {
  1844. snprintf(adapter->fw_version,
  1845. sizeof(adapter->fw_version),
  1846. "%d.%d, 0x%08x",
  1847. fw.eep_major, fw.eep_minor, fw.etrack_id);
  1848. } else {
  1849. snprintf(adapter->fw_version,
  1850. sizeof(adapter->fw_version),
  1851. "%d.%d.%d",
  1852. fw.eep_major, fw.eep_minor, fw.eep_build);
  1853. }
  1854. break;
  1855. }
  1856. }
  1857. /**
  1858. * igb_init_mas - init Media Autosense feature if enabled in the NVM
  1859. *
  1860. * @adapter: adapter struct
  1861. **/
  1862. static void igb_init_mas(struct igb_adapter *adapter)
  1863. {
  1864. struct e1000_hw *hw = &adapter->hw;
  1865. u16 eeprom_data;
  1866. hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
  1867. switch (hw->bus.func) {
  1868. case E1000_FUNC_0:
  1869. if (eeprom_data & IGB_MAS_ENABLE_0) {
  1870. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1871. netdev_info(adapter->netdev,
  1872. "MAS: Enabling Media Autosense for port %d\n",
  1873. hw->bus.func);
  1874. }
  1875. break;
  1876. case E1000_FUNC_1:
  1877. if (eeprom_data & IGB_MAS_ENABLE_1) {
  1878. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1879. netdev_info(adapter->netdev,
  1880. "MAS: Enabling Media Autosense for port %d\n",
  1881. hw->bus.func);
  1882. }
  1883. break;
  1884. case E1000_FUNC_2:
  1885. if (eeprom_data & IGB_MAS_ENABLE_2) {
  1886. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1887. netdev_info(adapter->netdev,
  1888. "MAS: Enabling Media Autosense for port %d\n",
  1889. hw->bus.func);
  1890. }
  1891. break;
  1892. case E1000_FUNC_3:
  1893. if (eeprom_data & IGB_MAS_ENABLE_3) {
  1894. adapter->flags |= IGB_FLAG_MAS_ENABLE;
  1895. netdev_info(adapter->netdev,
  1896. "MAS: Enabling Media Autosense for port %d\n",
  1897. hw->bus.func);
  1898. }
  1899. break;
  1900. default:
  1901. /* Shouldn't get here */
  1902. netdev_err(adapter->netdev,
  1903. "MAS: Invalid port configuration, returning\n");
  1904. break;
  1905. }
  1906. }
  1907. /**
  1908. * igb_init_i2c - Init I2C interface
  1909. * @adapter: pointer to adapter structure
  1910. **/
  1911. static s32 igb_init_i2c(struct igb_adapter *adapter)
  1912. {
  1913. s32 status = 0;
  1914. /* I2C interface supported on i350 devices */
  1915. if (adapter->hw.mac.type != e1000_i350)
  1916. return 0;
  1917. /* Initialize the i2c bus which is controlled by the registers.
  1918. * This bus will use the i2c_algo_bit structue that implements
  1919. * the protocol through toggling of the 4 bits in the register.
  1920. */
  1921. adapter->i2c_adap.owner = THIS_MODULE;
  1922. adapter->i2c_algo = igb_i2c_algo;
  1923. adapter->i2c_algo.data = adapter;
  1924. adapter->i2c_adap.algo_data = &adapter->i2c_algo;
  1925. adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
  1926. strlcpy(adapter->i2c_adap.name, "igb BB",
  1927. sizeof(adapter->i2c_adap.name));
  1928. status = i2c_bit_add_bus(&adapter->i2c_adap);
  1929. return status;
  1930. }
  1931. /**
  1932. * igb_probe - Device Initialization Routine
  1933. * @pdev: PCI device information struct
  1934. * @ent: entry in igb_pci_tbl
  1935. *
  1936. * Returns 0 on success, negative on failure
  1937. *
  1938. * igb_probe initializes an adapter identified by a pci_dev structure.
  1939. * The OS initialization, configuring of the adapter private structure,
  1940. * and a hardware reset occur.
  1941. **/
  1942. static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
  1943. {
  1944. struct net_device *netdev;
  1945. struct igb_adapter *adapter;
  1946. struct e1000_hw *hw;
  1947. u16 eeprom_data = 0;
  1948. s32 ret_val;
  1949. static int global_quad_port_a; /* global quad port a indication */
  1950. const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
  1951. int err, pci_using_dac;
  1952. u8 part_str[E1000_PBANUM_LENGTH];
  1953. /* Catch broken hardware that put the wrong VF device ID in
  1954. * the PCIe SR-IOV capability.
  1955. */
  1956. if (pdev->is_virtfn) {
  1957. WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
  1958. pci_name(pdev), pdev->vendor, pdev->device);
  1959. return -EINVAL;
  1960. }
  1961. err = pci_enable_device_mem(pdev);
  1962. if (err)
  1963. return err;
  1964. pci_using_dac = 0;
  1965. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
  1966. if (!err) {
  1967. pci_using_dac = 1;
  1968. } else {
  1969. err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
  1970. if (err) {
  1971. dev_err(&pdev->dev,
  1972. "No usable DMA configuration, aborting\n");
  1973. goto err_dma;
  1974. }
  1975. }
  1976. err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
  1977. IORESOURCE_MEM),
  1978. igb_driver_name);
  1979. if (err)
  1980. goto err_pci_reg;
  1981. pci_enable_pcie_error_reporting(pdev);
  1982. pci_set_master(pdev);
  1983. pci_save_state(pdev);
  1984. err = -ENOMEM;
  1985. netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
  1986. IGB_MAX_TX_QUEUES);
  1987. if (!netdev)
  1988. goto err_alloc_etherdev;
  1989. SET_NETDEV_DEV(netdev, &pdev->dev);
  1990. pci_set_drvdata(pdev, netdev);
  1991. adapter = netdev_priv(netdev);
  1992. adapter->netdev = netdev;
  1993. adapter->pdev = pdev;
  1994. hw = &adapter->hw;
  1995. hw->back = adapter;
  1996. adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
  1997. err = -EIO;
  1998. hw->hw_addr = pci_iomap(pdev, 0, 0);
  1999. if (!hw->hw_addr)
  2000. goto err_ioremap;
  2001. netdev->netdev_ops = &igb_netdev_ops;
  2002. igb_set_ethtool_ops(netdev);
  2003. netdev->watchdog_timeo = 5 * HZ;
  2004. strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
  2005. netdev->mem_start = pci_resource_start(pdev, 0);
  2006. netdev->mem_end = pci_resource_end(pdev, 0);
  2007. /* PCI config space info */
  2008. hw->vendor_id = pdev->vendor;
  2009. hw->device_id = pdev->device;
  2010. hw->revision_id = pdev->revision;
  2011. hw->subsystem_vendor_id = pdev->subsystem_vendor;
  2012. hw->subsystem_device_id = pdev->subsystem_device;
  2013. /* Copy the default MAC, PHY and NVM function pointers */
  2014. memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
  2015. memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
  2016. memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
  2017. /* Initialize skew-specific constants */
  2018. err = ei->get_invariants(hw);
  2019. if (err)
  2020. goto err_sw_init;
  2021. /* setup the private structure */
  2022. err = igb_sw_init(adapter);
  2023. if (err)
  2024. goto err_sw_init;
  2025. igb_get_bus_info_pcie(hw);
  2026. hw->phy.autoneg_wait_to_complete = false;
  2027. /* Copper options */
  2028. if (hw->phy.media_type == e1000_media_type_copper) {
  2029. hw->phy.mdix = AUTO_ALL_MODES;
  2030. hw->phy.disable_polarity_correction = false;
  2031. hw->phy.ms_type = e1000_ms_hw_default;
  2032. }
  2033. if (igb_check_reset_block(hw))
  2034. dev_info(&pdev->dev,
  2035. "PHY reset is blocked due to SOL/IDER session.\n");
  2036. /* features is initialized to 0 in allocation, it might have bits
  2037. * set by igb_sw_init so we should use an or instead of an
  2038. * assignment.
  2039. */
  2040. netdev->features |= NETIF_F_SG |
  2041. NETIF_F_IP_CSUM |
  2042. NETIF_F_IPV6_CSUM |
  2043. NETIF_F_TSO |
  2044. NETIF_F_TSO6 |
  2045. NETIF_F_RXHASH |
  2046. NETIF_F_RXCSUM |
  2047. NETIF_F_HW_VLAN_CTAG_RX |
  2048. NETIF_F_HW_VLAN_CTAG_TX;
  2049. /* copy netdev features into list of user selectable features */
  2050. netdev->hw_features |= netdev->features;
  2051. netdev->hw_features |= NETIF_F_RXALL;
  2052. /* set this bit last since it cannot be part of hw_features */
  2053. netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
  2054. netdev->vlan_features |= NETIF_F_TSO |
  2055. NETIF_F_TSO6 |
  2056. NETIF_F_IP_CSUM |
  2057. NETIF_F_IPV6_CSUM |
  2058. NETIF_F_SG;
  2059. netdev->priv_flags |= IFF_SUPP_NOFCS;
  2060. if (pci_using_dac) {
  2061. netdev->features |= NETIF_F_HIGHDMA;
  2062. netdev->vlan_features |= NETIF_F_HIGHDMA;
  2063. }
  2064. if (hw->mac.type >= e1000_82576) {
  2065. netdev->hw_features |= NETIF_F_SCTP_CSUM;
  2066. netdev->features |= NETIF_F_SCTP_CSUM;
  2067. }
  2068. netdev->priv_flags |= IFF_UNICAST_FLT;
  2069. adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
  2070. /* before reading the NVM, reset the controller to put the device in a
  2071. * known good starting state
  2072. */
  2073. hw->mac.ops.reset_hw(hw);
  2074. /* make sure the NVM is good , i211/i210 parts can have special NVM
  2075. * that doesn't contain a checksum
  2076. */
  2077. switch (hw->mac.type) {
  2078. case e1000_i210:
  2079. case e1000_i211:
  2080. if (igb_get_flash_presence_i210(hw)) {
  2081. if (hw->nvm.ops.validate(hw) < 0) {
  2082. dev_err(&pdev->dev,
  2083. "The NVM Checksum Is Not Valid\n");
  2084. err = -EIO;
  2085. goto err_eeprom;
  2086. }
  2087. }
  2088. break;
  2089. default:
  2090. if (hw->nvm.ops.validate(hw) < 0) {
  2091. dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
  2092. err = -EIO;
  2093. goto err_eeprom;
  2094. }
  2095. break;
  2096. }
  2097. /* copy the MAC address out of the NVM */
  2098. if (hw->mac.ops.read_mac_addr(hw))
  2099. dev_err(&pdev->dev, "NVM Read Error\n");
  2100. memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
  2101. if (!is_valid_ether_addr(netdev->dev_addr)) {
  2102. dev_err(&pdev->dev, "Invalid MAC Address\n");
  2103. err = -EIO;
  2104. goto err_eeprom;
  2105. }
  2106. /* get firmware version for ethtool -i */
  2107. igb_set_fw_version(adapter);
  2108. /* configure RXPBSIZE and TXPBSIZE */
  2109. if (hw->mac.type == e1000_i210) {
  2110. wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
  2111. wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
  2112. }
  2113. setup_timer(&adapter->watchdog_timer, igb_watchdog,
  2114. (unsigned long) adapter);
  2115. setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
  2116. (unsigned long) adapter);
  2117. INIT_WORK(&adapter->reset_task, igb_reset_task);
  2118. INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
  2119. /* Initialize link properties that are user-changeable */
  2120. adapter->fc_autoneg = true;
  2121. hw->mac.autoneg = true;
  2122. hw->phy.autoneg_advertised = 0x2f;
  2123. hw->fc.requested_mode = e1000_fc_default;
  2124. hw->fc.current_mode = e1000_fc_default;
  2125. igb_validate_mdi_setting(hw);
  2126. /* By default, support wake on port A */
  2127. if (hw->bus.func == 0)
  2128. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2129. /* Check the NVM for wake support on non-port A ports */
  2130. if (hw->mac.type >= e1000_82580)
  2131. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  2132. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  2133. &eeprom_data);
  2134. else if (hw->bus.func == 1)
  2135. hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
  2136. if (eeprom_data & IGB_EEPROM_APME)
  2137. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2138. /* now that we have the eeprom settings, apply the special cases where
  2139. * the eeprom may be wrong or the board simply won't support wake on
  2140. * lan on a particular port
  2141. */
  2142. switch (pdev->device) {
  2143. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  2144. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2145. break;
  2146. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  2147. case E1000_DEV_ID_82576_FIBER:
  2148. case E1000_DEV_ID_82576_SERDES:
  2149. /* Wake events only supported on port A for dual fiber
  2150. * regardless of eeprom setting
  2151. */
  2152. if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
  2153. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2154. break;
  2155. case E1000_DEV_ID_82576_QUAD_COPPER:
  2156. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  2157. /* if quad port adapter, disable WoL on all but port A */
  2158. if (global_quad_port_a != 0)
  2159. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2160. else
  2161. adapter->flags |= IGB_FLAG_QUAD_PORT_A;
  2162. /* Reset for multiple quad port adapters */
  2163. if (++global_quad_port_a == 4)
  2164. global_quad_port_a = 0;
  2165. break;
  2166. default:
  2167. /* If the device can't wake, don't set software support */
  2168. if (!device_can_wakeup(&adapter->pdev->dev))
  2169. adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
  2170. }
  2171. /* initialize the wol settings based on the eeprom settings */
  2172. if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
  2173. adapter->wol |= E1000_WUFC_MAG;
  2174. /* Some vendors want WoL disabled by default, but still supported */
  2175. if ((hw->mac.type == e1000_i350) &&
  2176. (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
  2177. adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
  2178. adapter->wol = 0;
  2179. }
  2180. device_set_wakeup_enable(&adapter->pdev->dev,
  2181. adapter->flags & IGB_FLAG_WOL_SUPPORTED);
  2182. /* reset the hardware with the new settings */
  2183. igb_reset(adapter);
  2184. /* Init the I2C interface */
  2185. err = igb_init_i2c(adapter);
  2186. if (err) {
  2187. dev_err(&pdev->dev, "failed to init i2c interface\n");
  2188. goto err_eeprom;
  2189. }
  2190. /* let the f/w know that the h/w is now under the control of the
  2191. * driver.
  2192. */
  2193. igb_get_hw_control(adapter);
  2194. strcpy(netdev->name, "eth%d");
  2195. err = register_netdev(netdev);
  2196. if (err)
  2197. goto err_register;
  2198. /* carrier off reporting is important to ethtool even BEFORE open */
  2199. netif_carrier_off(netdev);
  2200. #ifdef CONFIG_IGB_DCA
  2201. if (dca_add_requester(&pdev->dev) == 0) {
  2202. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  2203. dev_info(&pdev->dev, "DCA enabled\n");
  2204. igb_setup_dca(adapter);
  2205. }
  2206. #endif
  2207. #ifdef CONFIG_IGB_HWMON
  2208. /* Initialize the thermal sensor on i350 devices. */
  2209. if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
  2210. u16 ets_word;
  2211. /* Read the NVM to determine if this i350 device supports an
  2212. * external thermal sensor.
  2213. */
  2214. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
  2215. if (ets_word != 0x0000 && ets_word != 0xFFFF)
  2216. adapter->ets = true;
  2217. else
  2218. adapter->ets = false;
  2219. if (igb_sysfs_init(adapter))
  2220. dev_err(&pdev->dev,
  2221. "failed to allocate sysfs resources\n");
  2222. } else {
  2223. adapter->ets = false;
  2224. }
  2225. #endif
  2226. /* Check if Media Autosense is enabled */
  2227. adapter->ei = *ei;
  2228. if (hw->dev_spec._82575.mas_capable)
  2229. igb_init_mas(adapter);
  2230. /* do hw tstamp init after resetting */
  2231. igb_ptp_init(adapter);
  2232. dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
  2233. /* print bus type/speed/width info, not applicable to i354 */
  2234. if (hw->mac.type != e1000_i354) {
  2235. dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
  2236. netdev->name,
  2237. ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
  2238. (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
  2239. "unknown"),
  2240. ((hw->bus.width == e1000_bus_width_pcie_x4) ?
  2241. "Width x4" :
  2242. (hw->bus.width == e1000_bus_width_pcie_x2) ?
  2243. "Width x2" :
  2244. (hw->bus.width == e1000_bus_width_pcie_x1) ?
  2245. "Width x1" : "unknown"), netdev->dev_addr);
  2246. }
  2247. if ((hw->mac.type >= e1000_i210 ||
  2248. igb_get_flash_presence_i210(hw))) {
  2249. ret_val = igb_read_part_string(hw, part_str,
  2250. E1000_PBANUM_LENGTH);
  2251. } else {
  2252. ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
  2253. }
  2254. if (ret_val)
  2255. strcpy(part_str, "Unknown");
  2256. dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
  2257. dev_info(&pdev->dev,
  2258. "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
  2259. (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
  2260. (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
  2261. adapter->num_rx_queues, adapter->num_tx_queues);
  2262. if (hw->phy.media_type == e1000_media_type_copper) {
  2263. switch (hw->mac.type) {
  2264. case e1000_i350:
  2265. case e1000_i210:
  2266. case e1000_i211:
  2267. /* Enable EEE for internal copper PHY devices */
  2268. err = igb_set_eee_i350(hw);
  2269. if ((!err) &&
  2270. (!hw->dev_spec._82575.eee_disable)) {
  2271. adapter->eee_advert =
  2272. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2273. adapter->flags |= IGB_FLAG_EEE;
  2274. }
  2275. break;
  2276. case e1000_i354:
  2277. if ((rd32(E1000_CTRL_EXT) &
  2278. E1000_CTRL_EXT_LINK_MODE_SGMII)) {
  2279. err = igb_set_eee_i354(hw);
  2280. if ((!err) &&
  2281. (!hw->dev_spec._82575.eee_disable)) {
  2282. adapter->eee_advert =
  2283. MDIO_EEE_100TX | MDIO_EEE_1000T;
  2284. adapter->flags |= IGB_FLAG_EEE;
  2285. }
  2286. }
  2287. break;
  2288. default:
  2289. break;
  2290. }
  2291. }
  2292. pm_runtime_put_noidle(&pdev->dev);
  2293. return 0;
  2294. err_register:
  2295. igb_release_hw_control(adapter);
  2296. memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
  2297. err_eeprom:
  2298. if (!igb_check_reset_block(hw))
  2299. igb_reset_phy(hw);
  2300. if (hw->flash_address)
  2301. iounmap(hw->flash_address);
  2302. err_sw_init:
  2303. igb_clear_interrupt_scheme(adapter);
  2304. pci_iounmap(pdev, hw->hw_addr);
  2305. err_ioremap:
  2306. free_netdev(netdev);
  2307. err_alloc_etherdev:
  2308. pci_release_selected_regions(pdev,
  2309. pci_select_bars(pdev, IORESOURCE_MEM));
  2310. err_pci_reg:
  2311. err_dma:
  2312. pci_disable_device(pdev);
  2313. return err;
  2314. }
  2315. #ifdef CONFIG_PCI_IOV
  2316. static int igb_disable_sriov(struct pci_dev *pdev)
  2317. {
  2318. struct net_device *netdev = pci_get_drvdata(pdev);
  2319. struct igb_adapter *adapter = netdev_priv(netdev);
  2320. struct e1000_hw *hw = &adapter->hw;
  2321. /* reclaim resources allocated to VFs */
  2322. if (adapter->vf_data) {
  2323. /* disable iov and allow time for transactions to clear */
  2324. if (pci_vfs_assigned(pdev)) {
  2325. dev_warn(&pdev->dev,
  2326. "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
  2327. return -EPERM;
  2328. } else {
  2329. pci_disable_sriov(pdev);
  2330. msleep(500);
  2331. }
  2332. kfree(adapter->vf_data);
  2333. adapter->vf_data = NULL;
  2334. adapter->vfs_allocated_count = 0;
  2335. wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
  2336. wrfl();
  2337. msleep(100);
  2338. dev_info(&pdev->dev, "IOV Disabled\n");
  2339. /* Re-enable DMA Coalescing flag since IOV is turned off */
  2340. adapter->flags |= IGB_FLAG_DMAC;
  2341. }
  2342. return 0;
  2343. }
  2344. static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
  2345. {
  2346. struct net_device *netdev = pci_get_drvdata(pdev);
  2347. struct igb_adapter *adapter = netdev_priv(netdev);
  2348. int old_vfs = pci_num_vf(pdev);
  2349. int err = 0;
  2350. int i;
  2351. if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
  2352. err = -EPERM;
  2353. goto out;
  2354. }
  2355. if (!num_vfs)
  2356. goto out;
  2357. if (old_vfs) {
  2358. dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
  2359. old_vfs, max_vfs);
  2360. adapter->vfs_allocated_count = old_vfs;
  2361. } else
  2362. adapter->vfs_allocated_count = num_vfs;
  2363. adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
  2364. sizeof(struct vf_data_storage), GFP_KERNEL);
  2365. /* if allocation failed then we do not support SR-IOV */
  2366. if (!adapter->vf_data) {
  2367. adapter->vfs_allocated_count = 0;
  2368. dev_err(&pdev->dev,
  2369. "Unable to allocate memory for VF Data Storage\n");
  2370. err = -ENOMEM;
  2371. goto out;
  2372. }
  2373. /* only call pci_enable_sriov() if no VFs are allocated already */
  2374. if (!old_vfs) {
  2375. err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
  2376. if (err)
  2377. goto err_out;
  2378. }
  2379. dev_info(&pdev->dev, "%d VFs allocated\n",
  2380. adapter->vfs_allocated_count);
  2381. for (i = 0; i < adapter->vfs_allocated_count; i++)
  2382. igb_vf_configure(adapter, i);
  2383. /* DMA Coalescing is not supported in IOV mode. */
  2384. adapter->flags &= ~IGB_FLAG_DMAC;
  2385. goto out;
  2386. err_out:
  2387. kfree(adapter->vf_data);
  2388. adapter->vf_data = NULL;
  2389. adapter->vfs_allocated_count = 0;
  2390. out:
  2391. return err;
  2392. }
  2393. #endif
  2394. /**
  2395. * igb_remove_i2c - Cleanup I2C interface
  2396. * @adapter: pointer to adapter structure
  2397. **/
  2398. static void igb_remove_i2c(struct igb_adapter *adapter)
  2399. {
  2400. /* free the adapter bus structure */
  2401. i2c_del_adapter(&adapter->i2c_adap);
  2402. }
  2403. /**
  2404. * igb_remove - Device Removal Routine
  2405. * @pdev: PCI device information struct
  2406. *
  2407. * igb_remove is called by the PCI subsystem to alert the driver
  2408. * that it should release a PCI device. The could be caused by a
  2409. * Hot-Plug event, or because the driver is going to be removed from
  2410. * memory.
  2411. **/
  2412. static void igb_remove(struct pci_dev *pdev)
  2413. {
  2414. struct net_device *netdev = pci_get_drvdata(pdev);
  2415. struct igb_adapter *adapter = netdev_priv(netdev);
  2416. struct e1000_hw *hw = &adapter->hw;
  2417. pm_runtime_get_noresume(&pdev->dev);
  2418. #ifdef CONFIG_IGB_HWMON
  2419. igb_sysfs_exit(adapter);
  2420. #endif
  2421. igb_remove_i2c(adapter);
  2422. igb_ptp_stop(adapter);
  2423. /* The watchdog timer may be rescheduled, so explicitly
  2424. * disable watchdog from being rescheduled.
  2425. */
  2426. set_bit(__IGB_DOWN, &adapter->state);
  2427. del_timer_sync(&adapter->watchdog_timer);
  2428. del_timer_sync(&adapter->phy_info_timer);
  2429. cancel_work_sync(&adapter->reset_task);
  2430. cancel_work_sync(&adapter->watchdog_task);
  2431. #ifdef CONFIG_IGB_DCA
  2432. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  2433. dev_info(&pdev->dev, "DCA disabled\n");
  2434. dca_remove_requester(&pdev->dev);
  2435. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  2436. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  2437. }
  2438. #endif
  2439. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  2440. * would have already happened in close and is redundant.
  2441. */
  2442. igb_release_hw_control(adapter);
  2443. unregister_netdev(netdev);
  2444. igb_clear_interrupt_scheme(adapter);
  2445. #ifdef CONFIG_PCI_IOV
  2446. igb_disable_sriov(pdev);
  2447. #endif
  2448. pci_iounmap(pdev, hw->hw_addr);
  2449. if (hw->flash_address)
  2450. iounmap(hw->flash_address);
  2451. pci_release_selected_regions(pdev,
  2452. pci_select_bars(pdev, IORESOURCE_MEM));
  2453. kfree(adapter->shadow_vfta);
  2454. free_netdev(netdev);
  2455. pci_disable_pcie_error_reporting(pdev);
  2456. pci_disable_device(pdev);
  2457. }
  2458. /**
  2459. * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
  2460. * @adapter: board private structure to initialize
  2461. *
  2462. * This function initializes the vf specific data storage and then attempts to
  2463. * allocate the VFs. The reason for ordering it this way is because it is much
  2464. * mor expensive time wise to disable SR-IOV than it is to allocate and free
  2465. * the memory for the VFs.
  2466. **/
  2467. static void igb_probe_vfs(struct igb_adapter *adapter)
  2468. {
  2469. #ifdef CONFIG_PCI_IOV
  2470. struct pci_dev *pdev = adapter->pdev;
  2471. struct e1000_hw *hw = &adapter->hw;
  2472. /* Virtualization features not supported on i210 family. */
  2473. if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
  2474. return;
  2475. pci_sriov_set_totalvfs(pdev, 7);
  2476. igb_pci_enable_sriov(pdev, max_vfs);
  2477. #endif /* CONFIG_PCI_IOV */
  2478. }
  2479. static void igb_init_queue_configuration(struct igb_adapter *adapter)
  2480. {
  2481. struct e1000_hw *hw = &adapter->hw;
  2482. u32 max_rss_queues;
  2483. /* Determine the maximum number of RSS queues supported. */
  2484. switch (hw->mac.type) {
  2485. case e1000_i211:
  2486. max_rss_queues = IGB_MAX_RX_QUEUES_I211;
  2487. break;
  2488. case e1000_82575:
  2489. case e1000_i210:
  2490. max_rss_queues = IGB_MAX_RX_QUEUES_82575;
  2491. break;
  2492. case e1000_i350:
  2493. /* I350 cannot do RSS and SR-IOV at the same time */
  2494. if (!!adapter->vfs_allocated_count) {
  2495. max_rss_queues = 1;
  2496. break;
  2497. }
  2498. /* fall through */
  2499. case e1000_82576:
  2500. if (!!adapter->vfs_allocated_count) {
  2501. max_rss_queues = 2;
  2502. break;
  2503. }
  2504. /* fall through */
  2505. case e1000_82580:
  2506. case e1000_i354:
  2507. default:
  2508. max_rss_queues = IGB_MAX_RX_QUEUES;
  2509. break;
  2510. }
  2511. adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
  2512. /* Determine if we need to pair queues. */
  2513. switch (hw->mac.type) {
  2514. case e1000_82575:
  2515. case e1000_i211:
  2516. /* Device supports enough interrupts without queue pairing. */
  2517. break;
  2518. case e1000_82576:
  2519. /* If VFs are going to be allocated with RSS queues then we
  2520. * should pair the queues in order to conserve interrupts due
  2521. * to limited supply.
  2522. */
  2523. if ((adapter->rss_queues > 1) &&
  2524. (adapter->vfs_allocated_count > 6))
  2525. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2526. /* fall through */
  2527. case e1000_82580:
  2528. case e1000_i350:
  2529. case e1000_i354:
  2530. case e1000_i210:
  2531. default:
  2532. /* If rss_queues > half of max_rss_queues, pair the queues in
  2533. * order to conserve interrupts due to limited supply.
  2534. */
  2535. if (adapter->rss_queues > (max_rss_queues / 2))
  2536. adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
  2537. break;
  2538. }
  2539. }
  2540. /**
  2541. * igb_sw_init - Initialize general software structures (struct igb_adapter)
  2542. * @adapter: board private structure to initialize
  2543. *
  2544. * igb_sw_init initializes the Adapter private data structure.
  2545. * Fields are initialized based on PCI device information and
  2546. * OS network device settings (MTU size).
  2547. **/
  2548. static int igb_sw_init(struct igb_adapter *adapter)
  2549. {
  2550. struct e1000_hw *hw = &adapter->hw;
  2551. struct net_device *netdev = adapter->netdev;
  2552. struct pci_dev *pdev = adapter->pdev;
  2553. pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
  2554. /* set default ring sizes */
  2555. adapter->tx_ring_count = IGB_DEFAULT_TXD;
  2556. adapter->rx_ring_count = IGB_DEFAULT_RXD;
  2557. /* set default ITR values */
  2558. adapter->rx_itr_setting = IGB_DEFAULT_ITR;
  2559. adapter->tx_itr_setting = IGB_DEFAULT_ITR;
  2560. /* set default work limits */
  2561. adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
  2562. adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
  2563. VLAN_HLEN;
  2564. adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
  2565. spin_lock_init(&adapter->stats64_lock);
  2566. #ifdef CONFIG_PCI_IOV
  2567. switch (hw->mac.type) {
  2568. case e1000_82576:
  2569. case e1000_i350:
  2570. if (max_vfs > 7) {
  2571. dev_warn(&pdev->dev,
  2572. "Maximum of 7 VFs per PF, using max\n");
  2573. max_vfs = adapter->vfs_allocated_count = 7;
  2574. } else
  2575. adapter->vfs_allocated_count = max_vfs;
  2576. if (adapter->vfs_allocated_count)
  2577. dev_warn(&pdev->dev,
  2578. "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
  2579. break;
  2580. default:
  2581. break;
  2582. }
  2583. #endif /* CONFIG_PCI_IOV */
  2584. igb_init_queue_configuration(adapter);
  2585. /* Setup and initialize a copy of the hw vlan table array */
  2586. adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
  2587. GFP_ATOMIC);
  2588. /* This call may decrease the number of queues */
  2589. if (igb_init_interrupt_scheme(adapter, true)) {
  2590. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  2591. return -ENOMEM;
  2592. }
  2593. igb_probe_vfs(adapter);
  2594. /* Explicitly disable IRQ since the NIC can be in any state. */
  2595. igb_irq_disable(adapter);
  2596. if (hw->mac.type >= e1000_i350)
  2597. adapter->flags &= ~IGB_FLAG_DMAC;
  2598. set_bit(__IGB_DOWN, &adapter->state);
  2599. return 0;
  2600. }
  2601. /**
  2602. * igb_open - Called when a network interface is made active
  2603. * @netdev: network interface device structure
  2604. *
  2605. * Returns 0 on success, negative value on failure
  2606. *
  2607. * The open entry point is called when a network interface is made
  2608. * active by the system (IFF_UP). At this point all resources needed
  2609. * for transmit and receive operations are allocated, the interrupt
  2610. * handler is registered with the OS, the watchdog timer is started,
  2611. * and the stack is notified that the interface is ready.
  2612. **/
  2613. static int __igb_open(struct net_device *netdev, bool resuming)
  2614. {
  2615. struct igb_adapter *adapter = netdev_priv(netdev);
  2616. struct e1000_hw *hw = &adapter->hw;
  2617. struct pci_dev *pdev = adapter->pdev;
  2618. int err;
  2619. int i;
  2620. /* disallow open during test */
  2621. if (test_bit(__IGB_TESTING, &adapter->state)) {
  2622. WARN_ON(resuming);
  2623. return -EBUSY;
  2624. }
  2625. if (!resuming)
  2626. pm_runtime_get_sync(&pdev->dev);
  2627. netif_carrier_off(netdev);
  2628. /* allocate transmit descriptors */
  2629. err = igb_setup_all_tx_resources(adapter);
  2630. if (err)
  2631. goto err_setup_tx;
  2632. /* allocate receive descriptors */
  2633. err = igb_setup_all_rx_resources(adapter);
  2634. if (err)
  2635. goto err_setup_rx;
  2636. igb_power_up_link(adapter);
  2637. /* before we allocate an interrupt, we must be ready to handle it.
  2638. * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
  2639. * as soon as we call pci_request_irq, so we have to setup our
  2640. * clean_rx handler before we do so.
  2641. */
  2642. igb_configure(adapter);
  2643. err = igb_request_irq(adapter);
  2644. if (err)
  2645. goto err_req_irq;
  2646. /* Notify the stack of the actual queue counts. */
  2647. err = netif_set_real_num_tx_queues(adapter->netdev,
  2648. adapter->num_tx_queues);
  2649. if (err)
  2650. goto err_set_queues;
  2651. err = netif_set_real_num_rx_queues(adapter->netdev,
  2652. adapter->num_rx_queues);
  2653. if (err)
  2654. goto err_set_queues;
  2655. /* From here on the code is the same as igb_up() */
  2656. clear_bit(__IGB_DOWN, &adapter->state);
  2657. for (i = 0; i < adapter->num_q_vectors; i++)
  2658. napi_enable(&(adapter->q_vector[i]->napi));
  2659. /* Clear any pending interrupts. */
  2660. rd32(E1000_ICR);
  2661. igb_irq_enable(adapter);
  2662. /* notify VFs that reset has been completed */
  2663. if (adapter->vfs_allocated_count) {
  2664. u32 reg_data = rd32(E1000_CTRL_EXT);
  2665. reg_data |= E1000_CTRL_EXT_PFRSTD;
  2666. wr32(E1000_CTRL_EXT, reg_data);
  2667. }
  2668. netif_tx_start_all_queues(netdev);
  2669. if (!resuming)
  2670. pm_runtime_put(&pdev->dev);
  2671. /* start the watchdog. */
  2672. hw->mac.get_link_status = 1;
  2673. schedule_work(&adapter->watchdog_task);
  2674. return 0;
  2675. err_set_queues:
  2676. igb_free_irq(adapter);
  2677. err_req_irq:
  2678. igb_release_hw_control(adapter);
  2679. igb_power_down_link(adapter);
  2680. igb_free_all_rx_resources(adapter);
  2681. err_setup_rx:
  2682. igb_free_all_tx_resources(adapter);
  2683. err_setup_tx:
  2684. igb_reset(adapter);
  2685. if (!resuming)
  2686. pm_runtime_put(&pdev->dev);
  2687. return err;
  2688. }
  2689. static int igb_open(struct net_device *netdev)
  2690. {
  2691. return __igb_open(netdev, false);
  2692. }
  2693. /**
  2694. * igb_close - Disables a network interface
  2695. * @netdev: network interface device structure
  2696. *
  2697. * Returns 0, this is not allowed to fail
  2698. *
  2699. * The close entry point is called when an interface is de-activated
  2700. * by the OS. The hardware is still under the driver's control, but
  2701. * needs to be disabled. A global MAC reset is issued to stop the
  2702. * hardware, and all transmit and receive resources are freed.
  2703. **/
  2704. static int __igb_close(struct net_device *netdev, bool suspending)
  2705. {
  2706. struct igb_adapter *adapter = netdev_priv(netdev);
  2707. struct pci_dev *pdev = adapter->pdev;
  2708. WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
  2709. if (!suspending)
  2710. pm_runtime_get_sync(&pdev->dev);
  2711. igb_down(adapter);
  2712. igb_free_irq(adapter);
  2713. igb_free_all_tx_resources(adapter);
  2714. igb_free_all_rx_resources(adapter);
  2715. if (!suspending)
  2716. pm_runtime_put_sync(&pdev->dev);
  2717. return 0;
  2718. }
  2719. static int igb_close(struct net_device *netdev)
  2720. {
  2721. return __igb_close(netdev, false);
  2722. }
  2723. /**
  2724. * igb_setup_tx_resources - allocate Tx resources (Descriptors)
  2725. * @tx_ring: tx descriptor ring (for a specific queue) to setup
  2726. *
  2727. * Return 0 on success, negative on failure
  2728. **/
  2729. int igb_setup_tx_resources(struct igb_ring *tx_ring)
  2730. {
  2731. struct device *dev = tx_ring->dev;
  2732. int size;
  2733. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  2734. tx_ring->tx_buffer_info = vzalloc(size);
  2735. if (!tx_ring->tx_buffer_info)
  2736. goto err;
  2737. /* round up to nearest 4K */
  2738. tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
  2739. tx_ring->size = ALIGN(tx_ring->size, 4096);
  2740. tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
  2741. &tx_ring->dma, GFP_KERNEL);
  2742. if (!tx_ring->desc)
  2743. goto err;
  2744. tx_ring->next_to_use = 0;
  2745. tx_ring->next_to_clean = 0;
  2746. return 0;
  2747. err:
  2748. vfree(tx_ring->tx_buffer_info);
  2749. tx_ring->tx_buffer_info = NULL;
  2750. dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
  2751. return -ENOMEM;
  2752. }
  2753. /**
  2754. * igb_setup_all_tx_resources - wrapper to allocate Tx resources
  2755. * (Descriptors) for all queues
  2756. * @adapter: board private structure
  2757. *
  2758. * Return 0 on success, negative on failure
  2759. **/
  2760. static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
  2761. {
  2762. struct pci_dev *pdev = adapter->pdev;
  2763. int i, err = 0;
  2764. for (i = 0; i < adapter->num_tx_queues; i++) {
  2765. err = igb_setup_tx_resources(adapter->tx_ring[i]);
  2766. if (err) {
  2767. dev_err(&pdev->dev,
  2768. "Allocation for Tx Queue %u failed\n", i);
  2769. for (i--; i >= 0; i--)
  2770. igb_free_tx_resources(adapter->tx_ring[i]);
  2771. break;
  2772. }
  2773. }
  2774. return err;
  2775. }
  2776. /**
  2777. * igb_setup_tctl - configure the transmit control registers
  2778. * @adapter: Board private structure
  2779. **/
  2780. void igb_setup_tctl(struct igb_adapter *adapter)
  2781. {
  2782. struct e1000_hw *hw = &adapter->hw;
  2783. u32 tctl;
  2784. /* disable queue 0 which is enabled by default on 82575 and 82576 */
  2785. wr32(E1000_TXDCTL(0), 0);
  2786. /* Program the Transmit Control Register */
  2787. tctl = rd32(E1000_TCTL);
  2788. tctl &= ~E1000_TCTL_CT;
  2789. tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
  2790. (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
  2791. igb_config_collision_dist(hw);
  2792. /* Enable transmits */
  2793. tctl |= E1000_TCTL_EN;
  2794. wr32(E1000_TCTL, tctl);
  2795. }
  2796. /**
  2797. * igb_configure_tx_ring - Configure transmit ring after Reset
  2798. * @adapter: board private structure
  2799. * @ring: tx ring to configure
  2800. *
  2801. * Configure a transmit ring after a reset.
  2802. **/
  2803. void igb_configure_tx_ring(struct igb_adapter *adapter,
  2804. struct igb_ring *ring)
  2805. {
  2806. struct e1000_hw *hw = &adapter->hw;
  2807. u32 txdctl = 0;
  2808. u64 tdba = ring->dma;
  2809. int reg_idx = ring->reg_idx;
  2810. /* disable the queue */
  2811. wr32(E1000_TXDCTL(reg_idx), 0);
  2812. wrfl();
  2813. mdelay(10);
  2814. wr32(E1000_TDLEN(reg_idx),
  2815. ring->count * sizeof(union e1000_adv_tx_desc));
  2816. wr32(E1000_TDBAL(reg_idx),
  2817. tdba & 0x00000000ffffffffULL);
  2818. wr32(E1000_TDBAH(reg_idx), tdba >> 32);
  2819. ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
  2820. wr32(E1000_TDH(reg_idx), 0);
  2821. writel(0, ring->tail);
  2822. txdctl |= IGB_TX_PTHRESH;
  2823. txdctl |= IGB_TX_HTHRESH << 8;
  2824. txdctl |= IGB_TX_WTHRESH << 16;
  2825. txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
  2826. wr32(E1000_TXDCTL(reg_idx), txdctl);
  2827. }
  2828. /**
  2829. * igb_configure_tx - Configure transmit Unit after Reset
  2830. * @adapter: board private structure
  2831. *
  2832. * Configure the Tx unit of the MAC after a reset.
  2833. **/
  2834. static void igb_configure_tx(struct igb_adapter *adapter)
  2835. {
  2836. int i;
  2837. for (i = 0; i < adapter->num_tx_queues; i++)
  2838. igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
  2839. }
  2840. /**
  2841. * igb_setup_rx_resources - allocate Rx resources (Descriptors)
  2842. * @rx_ring: Rx descriptor ring (for a specific queue) to setup
  2843. *
  2844. * Returns 0 on success, negative on failure
  2845. **/
  2846. int igb_setup_rx_resources(struct igb_ring *rx_ring)
  2847. {
  2848. struct device *dev = rx_ring->dev;
  2849. int size;
  2850. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  2851. rx_ring->rx_buffer_info = vzalloc(size);
  2852. if (!rx_ring->rx_buffer_info)
  2853. goto err;
  2854. /* Round up to nearest 4K */
  2855. rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
  2856. rx_ring->size = ALIGN(rx_ring->size, 4096);
  2857. rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
  2858. &rx_ring->dma, GFP_KERNEL);
  2859. if (!rx_ring->desc)
  2860. goto err;
  2861. rx_ring->next_to_alloc = 0;
  2862. rx_ring->next_to_clean = 0;
  2863. rx_ring->next_to_use = 0;
  2864. return 0;
  2865. err:
  2866. vfree(rx_ring->rx_buffer_info);
  2867. rx_ring->rx_buffer_info = NULL;
  2868. dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
  2869. return -ENOMEM;
  2870. }
  2871. /**
  2872. * igb_setup_all_rx_resources - wrapper to allocate Rx resources
  2873. * (Descriptors) for all queues
  2874. * @adapter: board private structure
  2875. *
  2876. * Return 0 on success, negative on failure
  2877. **/
  2878. static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
  2879. {
  2880. struct pci_dev *pdev = adapter->pdev;
  2881. int i, err = 0;
  2882. for (i = 0; i < adapter->num_rx_queues; i++) {
  2883. err = igb_setup_rx_resources(adapter->rx_ring[i]);
  2884. if (err) {
  2885. dev_err(&pdev->dev,
  2886. "Allocation for Rx Queue %u failed\n", i);
  2887. for (i--; i >= 0; i--)
  2888. igb_free_rx_resources(adapter->rx_ring[i]);
  2889. break;
  2890. }
  2891. }
  2892. return err;
  2893. }
  2894. /**
  2895. * igb_setup_mrqc - configure the multiple receive queue control registers
  2896. * @adapter: Board private structure
  2897. **/
  2898. static void igb_setup_mrqc(struct igb_adapter *adapter)
  2899. {
  2900. struct e1000_hw *hw = &adapter->hw;
  2901. u32 mrqc, rxcsum;
  2902. u32 j, num_rx_queues;
  2903. static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
  2904. 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
  2905. 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
  2906. 0xFA01ACBE };
  2907. /* Fill out hash function seeds */
  2908. for (j = 0; j < 10; j++)
  2909. wr32(E1000_RSSRK(j), rsskey[j]);
  2910. num_rx_queues = adapter->rss_queues;
  2911. switch (hw->mac.type) {
  2912. case e1000_82576:
  2913. /* 82576 supports 2 RSS queues for SR-IOV */
  2914. if (adapter->vfs_allocated_count)
  2915. num_rx_queues = 2;
  2916. break;
  2917. default:
  2918. break;
  2919. }
  2920. if (adapter->rss_indir_tbl_init != num_rx_queues) {
  2921. for (j = 0; j < IGB_RETA_SIZE; j++)
  2922. adapter->rss_indir_tbl[j] =
  2923. (j * num_rx_queues) / IGB_RETA_SIZE;
  2924. adapter->rss_indir_tbl_init = num_rx_queues;
  2925. }
  2926. igb_write_rss_indir_tbl(adapter);
  2927. /* Disable raw packet checksumming so that RSS hash is placed in
  2928. * descriptor on writeback. No need to enable TCP/UDP/IP checksum
  2929. * offloads as they are enabled by default
  2930. */
  2931. rxcsum = rd32(E1000_RXCSUM);
  2932. rxcsum |= E1000_RXCSUM_PCSD;
  2933. if (adapter->hw.mac.type >= e1000_82576)
  2934. /* Enable Receive Checksum Offload for SCTP */
  2935. rxcsum |= E1000_RXCSUM_CRCOFL;
  2936. /* Don't need to set TUOFL or IPOFL, they default to 1 */
  2937. wr32(E1000_RXCSUM, rxcsum);
  2938. /* Generate RSS hash based on packet types, TCP/UDP
  2939. * port numbers and/or IPv4/v6 src and dst addresses
  2940. */
  2941. mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
  2942. E1000_MRQC_RSS_FIELD_IPV4_TCP |
  2943. E1000_MRQC_RSS_FIELD_IPV6 |
  2944. E1000_MRQC_RSS_FIELD_IPV6_TCP |
  2945. E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
  2946. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
  2947. mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
  2948. if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
  2949. mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
  2950. /* If VMDq is enabled then we set the appropriate mode for that, else
  2951. * we default to RSS so that an RSS hash is calculated per packet even
  2952. * if we are only using one queue
  2953. */
  2954. if (adapter->vfs_allocated_count) {
  2955. if (hw->mac.type > e1000_82575) {
  2956. /* Set the default pool for the PF's first queue */
  2957. u32 vtctl = rd32(E1000_VT_CTL);
  2958. vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
  2959. E1000_VT_CTL_DISABLE_DEF_POOL);
  2960. vtctl |= adapter->vfs_allocated_count <<
  2961. E1000_VT_CTL_DEFAULT_POOL_SHIFT;
  2962. wr32(E1000_VT_CTL, vtctl);
  2963. }
  2964. if (adapter->rss_queues > 1)
  2965. mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
  2966. else
  2967. mrqc |= E1000_MRQC_ENABLE_VMDQ;
  2968. } else {
  2969. if (hw->mac.type != e1000_i211)
  2970. mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
  2971. }
  2972. igb_vmm_control(adapter);
  2973. wr32(E1000_MRQC, mrqc);
  2974. }
  2975. /**
  2976. * igb_setup_rctl - configure the receive control registers
  2977. * @adapter: Board private structure
  2978. **/
  2979. void igb_setup_rctl(struct igb_adapter *adapter)
  2980. {
  2981. struct e1000_hw *hw = &adapter->hw;
  2982. u32 rctl;
  2983. rctl = rd32(E1000_RCTL);
  2984. rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
  2985. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  2986. rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
  2987. (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
  2988. /* enable stripping of CRC. It's unlikely this will break BMC
  2989. * redirection as it did with e1000. Newer features require
  2990. * that the HW strips the CRC.
  2991. */
  2992. rctl |= E1000_RCTL_SECRC;
  2993. /* disable store bad packets and clear size bits. */
  2994. rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
  2995. /* enable LPE to prevent packets larger than max_frame_size */
  2996. rctl |= E1000_RCTL_LPE;
  2997. /* disable queue 0 to prevent tail write w/o re-config */
  2998. wr32(E1000_RXDCTL(0), 0);
  2999. /* Attention!!! For SR-IOV PF driver operations you must enable
  3000. * queue drop for all VF and PF queues to prevent head of line blocking
  3001. * if an un-trusted VF does not provide descriptors to hardware.
  3002. */
  3003. if (adapter->vfs_allocated_count) {
  3004. /* set all queue drop enable bits */
  3005. wr32(E1000_QDE, ALL_QUEUES);
  3006. }
  3007. /* This is useful for sniffing bad packets. */
  3008. if (adapter->netdev->features & NETIF_F_RXALL) {
  3009. /* UPE and MPE will be handled by normal PROMISC logic
  3010. * in e1000e_set_rx_mode
  3011. */
  3012. rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
  3013. E1000_RCTL_BAM | /* RX All Bcast Pkts */
  3014. E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
  3015. rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
  3016. E1000_RCTL_DPF | /* Allow filtered pause */
  3017. E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
  3018. /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
  3019. * and that breaks VLANs.
  3020. */
  3021. }
  3022. wr32(E1000_RCTL, rctl);
  3023. }
  3024. static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
  3025. int vfn)
  3026. {
  3027. struct e1000_hw *hw = &adapter->hw;
  3028. u32 vmolr;
  3029. /* if it isn't the PF check to see if VFs are enabled and
  3030. * increase the size to support vlan tags
  3031. */
  3032. if (vfn < adapter->vfs_allocated_count &&
  3033. adapter->vf_data[vfn].vlans_enabled)
  3034. size += VLAN_TAG_SIZE;
  3035. vmolr = rd32(E1000_VMOLR(vfn));
  3036. vmolr &= ~E1000_VMOLR_RLPML_MASK;
  3037. vmolr |= size | E1000_VMOLR_LPE;
  3038. wr32(E1000_VMOLR(vfn), vmolr);
  3039. return 0;
  3040. }
  3041. /**
  3042. * igb_rlpml_set - set maximum receive packet size
  3043. * @adapter: board private structure
  3044. *
  3045. * Configure maximum receivable packet size.
  3046. **/
  3047. static void igb_rlpml_set(struct igb_adapter *adapter)
  3048. {
  3049. u32 max_frame_size = adapter->max_frame_size;
  3050. struct e1000_hw *hw = &adapter->hw;
  3051. u16 pf_id = adapter->vfs_allocated_count;
  3052. if (pf_id) {
  3053. igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
  3054. /* If we're in VMDQ or SR-IOV mode, then set global RLPML
  3055. * to our max jumbo frame size, in case we need to enable
  3056. * jumbo frames on one of the rings later.
  3057. * This will not pass over-length frames into the default
  3058. * queue because it's gated by the VMOLR.RLPML.
  3059. */
  3060. max_frame_size = MAX_JUMBO_FRAME_SIZE;
  3061. }
  3062. wr32(E1000_RLPML, max_frame_size);
  3063. }
  3064. static inline void igb_set_vmolr(struct igb_adapter *adapter,
  3065. int vfn, bool aupe)
  3066. {
  3067. struct e1000_hw *hw = &adapter->hw;
  3068. u32 vmolr;
  3069. /* This register exists only on 82576 and newer so if we are older then
  3070. * we should exit and do nothing
  3071. */
  3072. if (hw->mac.type < e1000_82576)
  3073. return;
  3074. vmolr = rd32(E1000_VMOLR(vfn));
  3075. vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
  3076. if (hw->mac.type == e1000_i350) {
  3077. u32 dvmolr;
  3078. dvmolr = rd32(E1000_DVMOLR(vfn));
  3079. dvmolr |= E1000_DVMOLR_STRVLAN;
  3080. wr32(E1000_DVMOLR(vfn), dvmolr);
  3081. }
  3082. if (aupe)
  3083. vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
  3084. else
  3085. vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
  3086. /* clear all bits that might not be set */
  3087. vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
  3088. if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
  3089. vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
  3090. /* for VMDq only allow the VFs and pool 0 to accept broadcast and
  3091. * multicast packets
  3092. */
  3093. if (vfn <= adapter->vfs_allocated_count)
  3094. vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
  3095. wr32(E1000_VMOLR(vfn), vmolr);
  3096. }
  3097. /**
  3098. * igb_configure_rx_ring - Configure a receive ring after Reset
  3099. * @adapter: board private structure
  3100. * @ring: receive ring to be configured
  3101. *
  3102. * Configure the Rx unit of the MAC after a reset.
  3103. **/
  3104. void igb_configure_rx_ring(struct igb_adapter *adapter,
  3105. struct igb_ring *ring)
  3106. {
  3107. struct e1000_hw *hw = &adapter->hw;
  3108. u64 rdba = ring->dma;
  3109. int reg_idx = ring->reg_idx;
  3110. u32 srrctl = 0, rxdctl = 0;
  3111. /* disable the queue */
  3112. wr32(E1000_RXDCTL(reg_idx), 0);
  3113. /* Set DMA base address registers */
  3114. wr32(E1000_RDBAL(reg_idx),
  3115. rdba & 0x00000000ffffffffULL);
  3116. wr32(E1000_RDBAH(reg_idx), rdba >> 32);
  3117. wr32(E1000_RDLEN(reg_idx),
  3118. ring->count * sizeof(union e1000_adv_rx_desc));
  3119. /* initialize head and tail */
  3120. ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
  3121. wr32(E1000_RDH(reg_idx), 0);
  3122. writel(0, ring->tail);
  3123. /* set descriptor configuration */
  3124. srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
  3125. srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
  3126. srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
  3127. if (hw->mac.type >= e1000_82580)
  3128. srrctl |= E1000_SRRCTL_TIMESTAMP;
  3129. /* Only set Drop Enable if we are supporting multiple queues */
  3130. if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
  3131. srrctl |= E1000_SRRCTL_DROP_EN;
  3132. wr32(E1000_SRRCTL(reg_idx), srrctl);
  3133. /* set filtering for VMDQ pools */
  3134. igb_set_vmolr(adapter, reg_idx & 0x7, true);
  3135. rxdctl |= IGB_RX_PTHRESH;
  3136. rxdctl |= IGB_RX_HTHRESH << 8;
  3137. rxdctl |= IGB_RX_WTHRESH << 16;
  3138. /* enable receive descriptor fetching */
  3139. rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
  3140. wr32(E1000_RXDCTL(reg_idx), rxdctl);
  3141. }
  3142. /**
  3143. * igb_configure_rx - Configure receive Unit after Reset
  3144. * @adapter: board private structure
  3145. *
  3146. * Configure the Rx unit of the MAC after a reset.
  3147. **/
  3148. static void igb_configure_rx(struct igb_adapter *adapter)
  3149. {
  3150. int i;
  3151. /* set UTA to appropriate mode */
  3152. igb_set_uta(adapter);
  3153. /* set the correct pool for the PF default MAC address in entry 0 */
  3154. igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
  3155. adapter->vfs_allocated_count);
  3156. /* Setup the HW Rx Head and Tail Descriptor Pointers and
  3157. * the Base and Length of the Rx Descriptor Ring
  3158. */
  3159. for (i = 0; i < adapter->num_rx_queues; i++)
  3160. igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
  3161. }
  3162. /**
  3163. * igb_free_tx_resources - Free Tx Resources per Queue
  3164. * @tx_ring: Tx descriptor ring for a specific queue
  3165. *
  3166. * Free all transmit software resources
  3167. **/
  3168. void igb_free_tx_resources(struct igb_ring *tx_ring)
  3169. {
  3170. igb_clean_tx_ring(tx_ring);
  3171. vfree(tx_ring->tx_buffer_info);
  3172. tx_ring->tx_buffer_info = NULL;
  3173. /* if not set, then don't free */
  3174. if (!tx_ring->desc)
  3175. return;
  3176. dma_free_coherent(tx_ring->dev, tx_ring->size,
  3177. tx_ring->desc, tx_ring->dma);
  3178. tx_ring->desc = NULL;
  3179. }
  3180. /**
  3181. * igb_free_all_tx_resources - Free Tx Resources for All Queues
  3182. * @adapter: board private structure
  3183. *
  3184. * Free all transmit software resources
  3185. **/
  3186. static void igb_free_all_tx_resources(struct igb_adapter *adapter)
  3187. {
  3188. int i;
  3189. for (i = 0; i < adapter->num_tx_queues; i++)
  3190. igb_free_tx_resources(adapter->tx_ring[i]);
  3191. }
  3192. void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
  3193. struct igb_tx_buffer *tx_buffer)
  3194. {
  3195. if (tx_buffer->skb) {
  3196. dev_kfree_skb_any(tx_buffer->skb);
  3197. if (dma_unmap_len(tx_buffer, len))
  3198. dma_unmap_single(ring->dev,
  3199. dma_unmap_addr(tx_buffer, dma),
  3200. dma_unmap_len(tx_buffer, len),
  3201. DMA_TO_DEVICE);
  3202. } else if (dma_unmap_len(tx_buffer, len)) {
  3203. dma_unmap_page(ring->dev,
  3204. dma_unmap_addr(tx_buffer, dma),
  3205. dma_unmap_len(tx_buffer, len),
  3206. DMA_TO_DEVICE);
  3207. }
  3208. tx_buffer->next_to_watch = NULL;
  3209. tx_buffer->skb = NULL;
  3210. dma_unmap_len_set(tx_buffer, len, 0);
  3211. /* buffer_info must be completely set up in the transmit path */
  3212. }
  3213. /**
  3214. * igb_clean_tx_ring - Free Tx Buffers
  3215. * @tx_ring: ring to be cleaned
  3216. **/
  3217. static void igb_clean_tx_ring(struct igb_ring *tx_ring)
  3218. {
  3219. struct igb_tx_buffer *buffer_info;
  3220. unsigned long size;
  3221. u16 i;
  3222. if (!tx_ring->tx_buffer_info)
  3223. return;
  3224. /* Free all the Tx ring sk_buffs */
  3225. for (i = 0; i < tx_ring->count; i++) {
  3226. buffer_info = &tx_ring->tx_buffer_info[i];
  3227. igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
  3228. }
  3229. netdev_tx_reset_queue(txring_txq(tx_ring));
  3230. size = sizeof(struct igb_tx_buffer) * tx_ring->count;
  3231. memset(tx_ring->tx_buffer_info, 0, size);
  3232. /* Zero out the descriptor ring */
  3233. memset(tx_ring->desc, 0, tx_ring->size);
  3234. tx_ring->next_to_use = 0;
  3235. tx_ring->next_to_clean = 0;
  3236. }
  3237. /**
  3238. * igb_clean_all_tx_rings - Free Tx Buffers for all queues
  3239. * @adapter: board private structure
  3240. **/
  3241. static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
  3242. {
  3243. int i;
  3244. for (i = 0; i < adapter->num_tx_queues; i++)
  3245. igb_clean_tx_ring(adapter->tx_ring[i]);
  3246. }
  3247. /**
  3248. * igb_free_rx_resources - Free Rx Resources
  3249. * @rx_ring: ring to clean the resources from
  3250. *
  3251. * Free all receive software resources
  3252. **/
  3253. void igb_free_rx_resources(struct igb_ring *rx_ring)
  3254. {
  3255. igb_clean_rx_ring(rx_ring);
  3256. vfree(rx_ring->rx_buffer_info);
  3257. rx_ring->rx_buffer_info = NULL;
  3258. /* if not set, then don't free */
  3259. if (!rx_ring->desc)
  3260. return;
  3261. dma_free_coherent(rx_ring->dev, rx_ring->size,
  3262. rx_ring->desc, rx_ring->dma);
  3263. rx_ring->desc = NULL;
  3264. }
  3265. /**
  3266. * igb_free_all_rx_resources - Free Rx Resources for All Queues
  3267. * @adapter: board private structure
  3268. *
  3269. * Free all receive software resources
  3270. **/
  3271. static void igb_free_all_rx_resources(struct igb_adapter *adapter)
  3272. {
  3273. int i;
  3274. for (i = 0; i < adapter->num_rx_queues; i++)
  3275. igb_free_rx_resources(adapter->rx_ring[i]);
  3276. }
  3277. /**
  3278. * igb_clean_rx_ring - Free Rx Buffers per Queue
  3279. * @rx_ring: ring to free buffers from
  3280. **/
  3281. static void igb_clean_rx_ring(struct igb_ring *rx_ring)
  3282. {
  3283. unsigned long size;
  3284. u16 i;
  3285. if (rx_ring->skb)
  3286. dev_kfree_skb(rx_ring->skb);
  3287. rx_ring->skb = NULL;
  3288. if (!rx_ring->rx_buffer_info)
  3289. return;
  3290. /* Free all the Rx ring sk_buffs */
  3291. for (i = 0; i < rx_ring->count; i++) {
  3292. struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
  3293. if (!buffer_info->page)
  3294. continue;
  3295. dma_unmap_page(rx_ring->dev,
  3296. buffer_info->dma,
  3297. PAGE_SIZE,
  3298. DMA_FROM_DEVICE);
  3299. __free_page(buffer_info->page);
  3300. buffer_info->page = NULL;
  3301. }
  3302. size = sizeof(struct igb_rx_buffer) * rx_ring->count;
  3303. memset(rx_ring->rx_buffer_info, 0, size);
  3304. /* Zero out the descriptor ring */
  3305. memset(rx_ring->desc, 0, rx_ring->size);
  3306. rx_ring->next_to_alloc = 0;
  3307. rx_ring->next_to_clean = 0;
  3308. rx_ring->next_to_use = 0;
  3309. }
  3310. /**
  3311. * igb_clean_all_rx_rings - Free Rx Buffers for all queues
  3312. * @adapter: board private structure
  3313. **/
  3314. static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
  3315. {
  3316. int i;
  3317. for (i = 0; i < adapter->num_rx_queues; i++)
  3318. igb_clean_rx_ring(adapter->rx_ring[i]);
  3319. }
  3320. /**
  3321. * igb_set_mac - Change the Ethernet Address of the NIC
  3322. * @netdev: network interface device structure
  3323. * @p: pointer to an address structure
  3324. *
  3325. * Returns 0 on success, negative on failure
  3326. **/
  3327. static int igb_set_mac(struct net_device *netdev, void *p)
  3328. {
  3329. struct igb_adapter *adapter = netdev_priv(netdev);
  3330. struct e1000_hw *hw = &adapter->hw;
  3331. struct sockaddr *addr = p;
  3332. if (!is_valid_ether_addr(addr->sa_data))
  3333. return -EADDRNOTAVAIL;
  3334. memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
  3335. memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
  3336. /* set the correct pool for the new PF MAC address in entry 0 */
  3337. igb_rar_set_qsel(adapter, hw->mac.addr, 0,
  3338. adapter->vfs_allocated_count);
  3339. return 0;
  3340. }
  3341. /**
  3342. * igb_write_mc_addr_list - write multicast addresses to MTA
  3343. * @netdev: network interface device structure
  3344. *
  3345. * Writes multicast address list to the MTA hash table.
  3346. * Returns: -ENOMEM on failure
  3347. * 0 on no addresses written
  3348. * X on writing X addresses to MTA
  3349. **/
  3350. static int igb_write_mc_addr_list(struct net_device *netdev)
  3351. {
  3352. struct igb_adapter *adapter = netdev_priv(netdev);
  3353. struct e1000_hw *hw = &adapter->hw;
  3354. struct netdev_hw_addr *ha;
  3355. u8 *mta_list;
  3356. int i;
  3357. if (netdev_mc_empty(netdev)) {
  3358. /* nothing to program, so clear mc list */
  3359. igb_update_mc_addr_list(hw, NULL, 0);
  3360. igb_restore_vf_multicasts(adapter);
  3361. return 0;
  3362. }
  3363. mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
  3364. if (!mta_list)
  3365. return -ENOMEM;
  3366. /* The shared function expects a packed array of only addresses. */
  3367. i = 0;
  3368. netdev_for_each_mc_addr(ha, netdev)
  3369. memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
  3370. igb_update_mc_addr_list(hw, mta_list, i);
  3371. kfree(mta_list);
  3372. return netdev_mc_count(netdev);
  3373. }
  3374. /**
  3375. * igb_write_uc_addr_list - write unicast addresses to RAR table
  3376. * @netdev: network interface device structure
  3377. *
  3378. * Writes unicast address list to the RAR table.
  3379. * Returns: -ENOMEM on failure/insufficient address space
  3380. * 0 on no addresses written
  3381. * X on writing X addresses to the RAR table
  3382. **/
  3383. static int igb_write_uc_addr_list(struct net_device *netdev)
  3384. {
  3385. struct igb_adapter *adapter = netdev_priv(netdev);
  3386. struct e1000_hw *hw = &adapter->hw;
  3387. unsigned int vfn = adapter->vfs_allocated_count;
  3388. unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
  3389. int count = 0;
  3390. /* return ENOMEM indicating insufficient memory for addresses */
  3391. if (netdev_uc_count(netdev) > rar_entries)
  3392. return -ENOMEM;
  3393. if (!netdev_uc_empty(netdev) && rar_entries) {
  3394. struct netdev_hw_addr *ha;
  3395. netdev_for_each_uc_addr(ha, netdev) {
  3396. if (!rar_entries)
  3397. break;
  3398. igb_rar_set_qsel(adapter, ha->addr,
  3399. rar_entries--,
  3400. vfn);
  3401. count++;
  3402. }
  3403. }
  3404. /* write the addresses in reverse order to avoid write combining */
  3405. for (; rar_entries > 0 ; rar_entries--) {
  3406. wr32(E1000_RAH(rar_entries), 0);
  3407. wr32(E1000_RAL(rar_entries), 0);
  3408. }
  3409. wrfl();
  3410. return count;
  3411. }
  3412. /**
  3413. * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
  3414. * @netdev: network interface device structure
  3415. *
  3416. * The set_rx_mode entry point is called whenever the unicast or multicast
  3417. * address lists or the network interface flags are updated. This routine is
  3418. * responsible for configuring the hardware for proper unicast, multicast,
  3419. * promiscuous mode, and all-multi behavior.
  3420. **/
  3421. static void igb_set_rx_mode(struct net_device *netdev)
  3422. {
  3423. struct igb_adapter *adapter = netdev_priv(netdev);
  3424. struct e1000_hw *hw = &adapter->hw;
  3425. unsigned int vfn = adapter->vfs_allocated_count;
  3426. u32 rctl, vmolr = 0;
  3427. int count;
  3428. /* Check for Promiscuous and All Multicast modes */
  3429. rctl = rd32(E1000_RCTL);
  3430. /* clear the effected bits */
  3431. rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
  3432. if (netdev->flags & IFF_PROMISC) {
  3433. /* retain VLAN HW filtering if in VT mode */
  3434. if (adapter->vfs_allocated_count)
  3435. rctl |= E1000_RCTL_VFE;
  3436. rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
  3437. vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
  3438. } else {
  3439. if (netdev->flags & IFF_ALLMULTI) {
  3440. rctl |= E1000_RCTL_MPE;
  3441. vmolr |= E1000_VMOLR_MPME;
  3442. } else {
  3443. /* Write addresses to the MTA, if the attempt fails
  3444. * then we should just turn on promiscuous mode so
  3445. * that we can at least receive multicast traffic
  3446. */
  3447. count = igb_write_mc_addr_list(netdev);
  3448. if (count < 0) {
  3449. rctl |= E1000_RCTL_MPE;
  3450. vmolr |= E1000_VMOLR_MPME;
  3451. } else if (count) {
  3452. vmolr |= E1000_VMOLR_ROMPE;
  3453. }
  3454. }
  3455. /* Write addresses to available RAR registers, if there is not
  3456. * sufficient space to store all the addresses then enable
  3457. * unicast promiscuous mode
  3458. */
  3459. count = igb_write_uc_addr_list(netdev);
  3460. if (count < 0) {
  3461. rctl |= E1000_RCTL_UPE;
  3462. vmolr |= E1000_VMOLR_ROPE;
  3463. }
  3464. rctl |= E1000_RCTL_VFE;
  3465. }
  3466. wr32(E1000_RCTL, rctl);
  3467. /* In order to support SR-IOV and eventually VMDq it is necessary to set
  3468. * the VMOLR to enable the appropriate modes. Without this workaround
  3469. * we will have issues with VLAN tag stripping not being done for frames
  3470. * that are only arriving because we are the default pool
  3471. */
  3472. if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
  3473. return;
  3474. vmolr |= rd32(E1000_VMOLR(vfn)) &
  3475. ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
  3476. wr32(E1000_VMOLR(vfn), vmolr);
  3477. igb_restore_vf_multicasts(adapter);
  3478. }
  3479. static void igb_check_wvbr(struct igb_adapter *adapter)
  3480. {
  3481. struct e1000_hw *hw = &adapter->hw;
  3482. u32 wvbr = 0;
  3483. switch (hw->mac.type) {
  3484. case e1000_82576:
  3485. case e1000_i350:
  3486. wvbr = rd32(E1000_WVBR);
  3487. if (!wvbr)
  3488. return;
  3489. break;
  3490. default:
  3491. break;
  3492. }
  3493. adapter->wvbr |= wvbr;
  3494. }
  3495. #define IGB_STAGGERED_QUEUE_OFFSET 8
  3496. static void igb_spoof_check(struct igb_adapter *adapter)
  3497. {
  3498. int j;
  3499. if (!adapter->wvbr)
  3500. return;
  3501. for (j = 0; j < adapter->vfs_allocated_count; j++) {
  3502. if (adapter->wvbr & (1 << j) ||
  3503. adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
  3504. dev_warn(&adapter->pdev->dev,
  3505. "Spoof event(s) detected on VF %d\n", j);
  3506. adapter->wvbr &=
  3507. ~((1 << j) |
  3508. (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
  3509. }
  3510. }
  3511. }
  3512. /* Need to wait a few seconds after link up to get diagnostic information from
  3513. * the phy
  3514. */
  3515. static void igb_update_phy_info(unsigned long data)
  3516. {
  3517. struct igb_adapter *adapter = (struct igb_adapter *) data;
  3518. igb_get_phy_info(&adapter->hw);
  3519. }
  3520. /**
  3521. * igb_has_link - check shared code for link and determine up/down
  3522. * @adapter: pointer to driver private info
  3523. **/
  3524. bool igb_has_link(struct igb_adapter *adapter)
  3525. {
  3526. struct e1000_hw *hw = &adapter->hw;
  3527. bool link_active = false;
  3528. /* get_link_status is set on LSC (link status) interrupt or
  3529. * rx sequence error interrupt. get_link_status will stay
  3530. * false until the e1000_check_for_link establishes link
  3531. * for copper adapters ONLY
  3532. */
  3533. switch (hw->phy.media_type) {
  3534. case e1000_media_type_copper:
  3535. if (!hw->mac.get_link_status)
  3536. return true;
  3537. case e1000_media_type_internal_serdes:
  3538. hw->mac.ops.check_for_link(hw);
  3539. link_active = !hw->mac.get_link_status;
  3540. break;
  3541. default:
  3542. case e1000_media_type_unknown:
  3543. break;
  3544. }
  3545. if (((hw->mac.type == e1000_i210) ||
  3546. (hw->mac.type == e1000_i211)) &&
  3547. (hw->phy.id == I210_I_PHY_ID)) {
  3548. if (!netif_carrier_ok(adapter->netdev)) {
  3549. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3550. } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
  3551. adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
  3552. adapter->link_check_timeout = jiffies;
  3553. }
  3554. }
  3555. return link_active;
  3556. }
  3557. static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
  3558. {
  3559. bool ret = false;
  3560. u32 ctrl_ext, thstat;
  3561. /* check for thermal sensor event on i350 copper only */
  3562. if (hw->mac.type == e1000_i350) {
  3563. thstat = rd32(E1000_THSTAT);
  3564. ctrl_ext = rd32(E1000_CTRL_EXT);
  3565. if ((hw->phy.media_type == e1000_media_type_copper) &&
  3566. !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
  3567. ret = !!(thstat & event);
  3568. }
  3569. return ret;
  3570. }
  3571. /**
  3572. * igb_watchdog - Timer Call-back
  3573. * @data: pointer to adapter cast into an unsigned long
  3574. **/
  3575. static void igb_watchdog(unsigned long data)
  3576. {
  3577. struct igb_adapter *adapter = (struct igb_adapter *)data;
  3578. /* Do the rest outside of interrupt context */
  3579. schedule_work(&adapter->watchdog_task);
  3580. }
  3581. static void igb_watchdog_task(struct work_struct *work)
  3582. {
  3583. struct igb_adapter *adapter = container_of(work,
  3584. struct igb_adapter,
  3585. watchdog_task);
  3586. struct e1000_hw *hw = &adapter->hw;
  3587. struct e1000_phy_info *phy = &hw->phy;
  3588. struct net_device *netdev = adapter->netdev;
  3589. u32 link;
  3590. int i;
  3591. u32 connsw;
  3592. link = igb_has_link(adapter);
  3593. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
  3594. if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
  3595. adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
  3596. else
  3597. link = false;
  3598. }
  3599. /* Force link down if we have fiber to swap to */
  3600. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3601. if (hw->phy.media_type == e1000_media_type_copper) {
  3602. connsw = rd32(E1000_CONNSW);
  3603. if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
  3604. link = 0;
  3605. }
  3606. }
  3607. if (link) {
  3608. /* Perform a reset if the media type changed. */
  3609. if (hw->dev_spec._82575.media_changed) {
  3610. hw->dev_spec._82575.media_changed = false;
  3611. adapter->flags |= IGB_FLAG_MEDIA_RESET;
  3612. igb_reset(adapter);
  3613. }
  3614. /* Cancel scheduled suspend requests. */
  3615. pm_runtime_resume(netdev->dev.parent);
  3616. if (!netif_carrier_ok(netdev)) {
  3617. u32 ctrl;
  3618. hw->mac.ops.get_speed_and_duplex(hw,
  3619. &adapter->link_speed,
  3620. &adapter->link_duplex);
  3621. ctrl = rd32(E1000_CTRL);
  3622. /* Links status message must follow this format */
  3623. netdev_info(netdev,
  3624. "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
  3625. netdev->name,
  3626. adapter->link_speed,
  3627. adapter->link_duplex == FULL_DUPLEX ?
  3628. "Full" : "Half",
  3629. (ctrl & E1000_CTRL_TFCE) &&
  3630. (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
  3631. (ctrl & E1000_CTRL_RFCE) ? "RX" :
  3632. (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
  3633. /* disable EEE if enabled */
  3634. if ((adapter->flags & IGB_FLAG_EEE) &&
  3635. (adapter->link_duplex == HALF_DUPLEX)) {
  3636. dev_info(&adapter->pdev->dev,
  3637. "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
  3638. adapter->hw.dev_spec._82575.eee_disable = true;
  3639. adapter->flags &= ~IGB_FLAG_EEE;
  3640. }
  3641. /* check if SmartSpeed worked */
  3642. igb_check_downshift(hw);
  3643. if (phy->speed_downgraded)
  3644. netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
  3645. /* check for thermal sensor event */
  3646. if (igb_thermal_sensor_event(hw,
  3647. E1000_THSTAT_LINK_THROTTLE))
  3648. netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
  3649. /* adjust timeout factor according to speed/duplex */
  3650. adapter->tx_timeout_factor = 1;
  3651. switch (adapter->link_speed) {
  3652. case SPEED_10:
  3653. adapter->tx_timeout_factor = 14;
  3654. break;
  3655. case SPEED_100:
  3656. /* maybe add some timeout factor ? */
  3657. break;
  3658. }
  3659. netif_carrier_on(netdev);
  3660. igb_ping_all_vfs(adapter);
  3661. igb_check_vf_rate_limit(adapter);
  3662. /* link state has changed, schedule phy info update */
  3663. if (!test_bit(__IGB_DOWN, &adapter->state))
  3664. mod_timer(&adapter->phy_info_timer,
  3665. round_jiffies(jiffies + 2 * HZ));
  3666. }
  3667. } else {
  3668. if (netif_carrier_ok(netdev)) {
  3669. adapter->link_speed = 0;
  3670. adapter->link_duplex = 0;
  3671. /* check for thermal sensor event */
  3672. if (igb_thermal_sensor_event(hw,
  3673. E1000_THSTAT_PWR_DOWN)) {
  3674. netdev_err(netdev, "The network adapter was stopped because it overheated\n");
  3675. }
  3676. /* Links status message must follow this format */
  3677. netdev_info(netdev, "igb: %s NIC Link is Down\n",
  3678. netdev->name);
  3679. netif_carrier_off(netdev);
  3680. igb_ping_all_vfs(adapter);
  3681. /* link state has changed, schedule phy info update */
  3682. if (!test_bit(__IGB_DOWN, &adapter->state))
  3683. mod_timer(&adapter->phy_info_timer,
  3684. round_jiffies(jiffies + 2 * HZ));
  3685. /* link is down, time to check for alternate media */
  3686. if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
  3687. igb_check_swap_media(adapter);
  3688. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3689. schedule_work(&adapter->reset_task);
  3690. /* return immediately */
  3691. return;
  3692. }
  3693. }
  3694. pm_schedule_suspend(netdev->dev.parent,
  3695. MSEC_PER_SEC * 5);
  3696. /* also check for alternate media here */
  3697. } else if (!netif_carrier_ok(netdev) &&
  3698. (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
  3699. igb_check_swap_media(adapter);
  3700. if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
  3701. schedule_work(&adapter->reset_task);
  3702. /* return immediately */
  3703. return;
  3704. }
  3705. }
  3706. }
  3707. spin_lock(&adapter->stats64_lock);
  3708. igb_update_stats(adapter, &adapter->stats64);
  3709. spin_unlock(&adapter->stats64_lock);
  3710. for (i = 0; i < adapter->num_tx_queues; i++) {
  3711. struct igb_ring *tx_ring = adapter->tx_ring[i];
  3712. if (!netif_carrier_ok(netdev)) {
  3713. /* We've lost link, so the controller stops DMA,
  3714. * but we've got queued Tx work that's never going
  3715. * to get done, so reset controller to flush Tx.
  3716. * (Do the reset outside of interrupt context).
  3717. */
  3718. if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
  3719. adapter->tx_timeout_count++;
  3720. schedule_work(&adapter->reset_task);
  3721. /* return immediately since reset is imminent */
  3722. return;
  3723. }
  3724. }
  3725. /* Force detection of hung controller every watchdog period */
  3726. set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  3727. }
  3728. /* Cause software interrupt to ensure Rx ring is cleaned */
  3729. if (adapter->flags & IGB_FLAG_HAS_MSIX) {
  3730. u32 eics = 0;
  3731. for (i = 0; i < adapter->num_q_vectors; i++)
  3732. eics |= adapter->q_vector[i]->eims_value;
  3733. wr32(E1000_EICS, eics);
  3734. } else {
  3735. wr32(E1000_ICS, E1000_ICS_RXDMT0);
  3736. }
  3737. igb_spoof_check(adapter);
  3738. igb_ptp_rx_hang(adapter);
  3739. /* Reset the timer */
  3740. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  3741. if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
  3742. mod_timer(&adapter->watchdog_timer,
  3743. round_jiffies(jiffies + HZ));
  3744. else
  3745. mod_timer(&adapter->watchdog_timer,
  3746. round_jiffies(jiffies + 2 * HZ));
  3747. }
  3748. }
  3749. enum latency_range {
  3750. lowest_latency = 0,
  3751. low_latency = 1,
  3752. bulk_latency = 2,
  3753. latency_invalid = 255
  3754. };
  3755. /**
  3756. * igb_update_ring_itr - update the dynamic ITR value based on packet size
  3757. * @q_vector: pointer to q_vector
  3758. *
  3759. * Stores a new ITR value based on strictly on packet size. This
  3760. * algorithm is less sophisticated than that used in igb_update_itr,
  3761. * due to the difficulty of synchronizing statistics across multiple
  3762. * receive rings. The divisors and thresholds used by this function
  3763. * were determined based on theoretical maximum wire speed and testing
  3764. * data, in order to minimize response time while increasing bulk
  3765. * throughput.
  3766. * This functionality is controlled by ethtool's coalescing settings.
  3767. * NOTE: This function is called only when operating in a multiqueue
  3768. * receive environment.
  3769. **/
  3770. static void igb_update_ring_itr(struct igb_q_vector *q_vector)
  3771. {
  3772. int new_val = q_vector->itr_val;
  3773. int avg_wire_size = 0;
  3774. struct igb_adapter *adapter = q_vector->adapter;
  3775. unsigned int packets;
  3776. /* For non-gigabit speeds, just fix the interrupt rate at 4000
  3777. * ints/sec - ITR timer value of 120 ticks.
  3778. */
  3779. if (adapter->link_speed != SPEED_1000) {
  3780. new_val = IGB_4K_ITR;
  3781. goto set_itr_val;
  3782. }
  3783. packets = q_vector->rx.total_packets;
  3784. if (packets)
  3785. avg_wire_size = q_vector->rx.total_bytes / packets;
  3786. packets = q_vector->tx.total_packets;
  3787. if (packets)
  3788. avg_wire_size = max_t(u32, avg_wire_size,
  3789. q_vector->tx.total_bytes / packets);
  3790. /* if avg_wire_size isn't set no work was done */
  3791. if (!avg_wire_size)
  3792. goto clear_counts;
  3793. /* Add 24 bytes to size to account for CRC, preamble, and gap */
  3794. avg_wire_size += 24;
  3795. /* Don't starve jumbo frames */
  3796. avg_wire_size = min(avg_wire_size, 3000);
  3797. /* Give a little boost to mid-size frames */
  3798. if ((avg_wire_size > 300) && (avg_wire_size < 1200))
  3799. new_val = avg_wire_size / 3;
  3800. else
  3801. new_val = avg_wire_size / 2;
  3802. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  3803. if (new_val < IGB_20K_ITR &&
  3804. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  3805. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  3806. new_val = IGB_20K_ITR;
  3807. set_itr_val:
  3808. if (new_val != q_vector->itr_val) {
  3809. q_vector->itr_val = new_val;
  3810. q_vector->set_itr = 1;
  3811. }
  3812. clear_counts:
  3813. q_vector->rx.total_bytes = 0;
  3814. q_vector->rx.total_packets = 0;
  3815. q_vector->tx.total_bytes = 0;
  3816. q_vector->tx.total_packets = 0;
  3817. }
  3818. /**
  3819. * igb_update_itr - update the dynamic ITR value based on statistics
  3820. * @q_vector: pointer to q_vector
  3821. * @ring_container: ring info to update the itr for
  3822. *
  3823. * Stores a new ITR value based on packets and byte
  3824. * counts during the last interrupt. The advantage of per interrupt
  3825. * computation is faster updates and more accurate ITR for the current
  3826. * traffic pattern. Constants in this function were computed
  3827. * based on theoretical maximum wire speed and thresholds were set based
  3828. * on testing data as well as attempting to minimize response time
  3829. * while increasing bulk throughput.
  3830. * This functionality is controlled by ethtool's coalescing settings.
  3831. * NOTE: These calculations are only valid when operating in a single-
  3832. * queue environment.
  3833. **/
  3834. static void igb_update_itr(struct igb_q_vector *q_vector,
  3835. struct igb_ring_container *ring_container)
  3836. {
  3837. unsigned int packets = ring_container->total_packets;
  3838. unsigned int bytes = ring_container->total_bytes;
  3839. u8 itrval = ring_container->itr;
  3840. /* no packets, exit with status unchanged */
  3841. if (packets == 0)
  3842. return;
  3843. switch (itrval) {
  3844. case lowest_latency:
  3845. /* handle TSO and jumbo frames */
  3846. if (bytes/packets > 8000)
  3847. itrval = bulk_latency;
  3848. else if ((packets < 5) && (bytes > 512))
  3849. itrval = low_latency;
  3850. break;
  3851. case low_latency: /* 50 usec aka 20000 ints/s */
  3852. if (bytes > 10000) {
  3853. /* this if handles the TSO accounting */
  3854. if (bytes/packets > 8000)
  3855. itrval = bulk_latency;
  3856. else if ((packets < 10) || ((bytes/packets) > 1200))
  3857. itrval = bulk_latency;
  3858. else if ((packets > 35))
  3859. itrval = lowest_latency;
  3860. } else if (bytes/packets > 2000) {
  3861. itrval = bulk_latency;
  3862. } else if (packets <= 2 && bytes < 512) {
  3863. itrval = lowest_latency;
  3864. }
  3865. break;
  3866. case bulk_latency: /* 250 usec aka 4000 ints/s */
  3867. if (bytes > 25000) {
  3868. if (packets > 35)
  3869. itrval = low_latency;
  3870. } else if (bytes < 1500) {
  3871. itrval = low_latency;
  3872. }
  3873. break;
  3874. }
  3875. /* clear work counters since we have the values we need */
  3876. ring_container->total_bytes = 0;
  3877. ring_container->total_packets = 0;
  3878. /* write updated itr to ring container */
  3879. ring_container->itr = itrval;
  3880. }
  3881. static void igb_set_itr(struct igb_q_vector *q_vector)
  3882. {
  3883. struct igb_adapter *adapter = q_vector->adapter;
  3884. u32 new_itr = q_vector->itr_val;
  3885. u8 current_itr = 0;
  3886. /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
  3887. if (adapter->link_speed != SPEED_1000) {
  3888. current_itr = 0;
  3889. new_itr = IGB_4K_ITR;
  3890. goto set_itr_now;
  3891. }
  3892. igb_update_itr(q_vector, &q_vector->tx);
  3893. igb_update_itr(q_vector, &q_vector->rx);
  3894. current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
  3895. /* conservative mode (itr 3) eliminates the lowest_latency setting */
  3896. if (current_itr == lowest_latency &&
  3897. ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
  3898. (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
  3899. current_itr = low_latency;
  3900. switch (current_itr) {
  3901. /* counts and packets in update_itr are dependent on these numbers */
  3902. case lowest_latency:
  3903. new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
  3904. break;
  3905. case low_latency:
  3906. new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
  3907. break;
  3908. case bulk_latency:
  3909. new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
  3910. break;
  3911. default:
  3912. break;
  3913. }
  3914. set_itr_now:
  3915. if (new_itr != q_vector->itr_val) {
  3916. /* this attempts to bias the interrupt rate towards Bulk
  3917. * by adding intermediate steps when interrupt rate is
  3918. * increasing
  3919. */
  3920. new_itr = new_itr > q_vector->itr_val ?
  3921. max((new_itr * q_vector->itr_val) /
  3922. (new_itr + (q_vector->itr_val >> 2)),
  3923. new_itr) : new_itr;
  3924. /* Don't write the value here; it resets the adapter's
  3925. * internal timer, and causes us to delay far longer than
  3926. * we should between interrupts. Instead, we write the ITR
  3927. * value at the beginning of the next interrupt so the timing
  3928. * ends up being correct.
  3929. */
  3930. q_vector->itr_val = new_itr;
  3931. q_vector->set_itr = 1;
  3932. }
  3933. }
  3934. static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
  3935. u32 type_tucmd, u32 mss_l4len_idx)
  3936. {
  3937. struct e1000_adv_tx_context_desc *context_desc;
  3938. u16 i = tx_ring->next_to_use;
  3939. context_desc = IGB_TX_CTXTDESC(tx_ring, i);
  3940. i++;
  3941. tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  3942. /* set bits to identify this as an advanced context descriptor */
  3943. type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
  3944. /* For 82575, context index must be unique per ring. */
  3945. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  3946. mss_l4len_idx |= tx_ring->reg_idx << 4;
  3947. context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
  3948. context_desc->seqnum_seed = 0;
  3949. context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
  3950. context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
  3951. }
  3952. static int igb_tso(struct igb_ring *tx_ring,
  3953. struct igb_tx_buffer *first,
  3954. u8 *hdr_len)
  3955. {
  3956. struct sk_buff *skb = first->skb;
  3957. u32 vlan_macip_lens, type_tucmd;
  3958. u32 mss_l4len_idx, l4len;
  3959. int err;
  3960. if (skb->ip_summed != CHECKSUM_PARTIAL)
  3961. return 0;
  3962. if (!skb_is_gso(skb))
  3963. return 0;
  3964. err = skb_cow_head(skb, 0);
  3965. if (err < 0)
  3966. return err;
  3967. /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
  3968. type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
  3969. if (first->protocol == htons(ETH_P_IP)) {
  3970. struct iphdr *iph = ip_hdr(skb);
  3971. iph->tot_len = 0;
  3972. iph->check = 0;
  3973. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  3974. iph->daddr, 0,
  3975. IPPROTO_TCP,
  3976. 0);
  3977. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  3978. first->tx_flags |= IGB_TX_FLAGS_TSO |
  3979. IGB_TX_FLAGS_CSUM |
  3980. IGB_TX_FLAGS_IPV4;
  3981. } else if (skb_is_gso_v6(skb)) {
  3982. ipv6_hdr(skb)->payload_len = 0;
  3983. tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  3984. &ipv6_hdr(skb)->daddr,
  3985. 0, IPPROTO_TCP, 0);
  3986. first->tx_flags |= IGB_TX_FLAGS_TSO |
  3987. IGB_TX_FLAGS_CSUM;
  3988. }
  3989. /* compute header lengths */
  3990. l4len = tcp_hdrlen(skb);
  3991. *hdr_len = skb_transport_offset(skb) + l4len;
  3992. /* update gso size and bytecount with header size */
  3993. first->gso_segs = skb_shinfo(skb)->gso_segs;
  3994. first->bytecount += (first->gso_segs - 1) * *hdr_len;
  3995. /* MSS L4LEN IDX */
  3996. mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
  3997. mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
  3998. /* VLAN MACLEN IPLEN */
  3999. vlan_macip_lens = skb_network_header_len(skb);
  4000. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4001. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4002. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4003. return 1;
  4004. }
  4005. static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
  4006. {
  4007. struct sk_buff *skb = first->skb;
  4008. u32 vlan_macip_lens = 0;
  4009. u32 mss_l4len_idx = 0;
  4010. u32 type_tucmd = 0;
  4011. if (skb->ip_summed != CHECKSUM_PARTIAL) {
  4012. if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
  4013. return;
  4014. } else {
  4015. u8 l4_hdr = 0;
  4016. switch (first->protocol) {
  4017. case htons(ETH_P_IP):
  4018. vlan_macip_lens |= skb_network_header_len(skb);
  4019. type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
  4020. l4_hdr = ip_hdr(skb)->protocol;
  4021. break;
  4022. case htons(ETH_P_IPV6):
  4023. vlan_macip_lens |= skb_network_header_len(skb);
  4024. l4_hdr = ipv6_hdr(skb)->nexthdr;
  4025. break;
  4026. default:
  4027. if (unlikely(net_ratelimit())) {
  4028. dev_warn(tx_ring->dev,
  4029. "partial checksum but proto=%x!\n",
  4030. first->protocol);
  4031. }
  4032. break;
  4033. }
  4034. switch (l4_hdr) {
  4035. case IPPROTO_TCP:
  4036. type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
  4037. mss_l4len_idx = tcp_hdrlen(skb) <<
  4038. E1000_ADVTXD_L4LEN_SHIFT;
  4039. break;
  4040. case IPPROTO_SCTP:
  4041. type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
  4042. mss_l4len_idx = sizeof(struct sctphdr) <<
  4043. E1000_ADVTXD_L4LEN_SHIFT;
  4044. break;
  4045. case IPPROTO_UDP:
  4046. mss_l4len_idx = sizeof(struct udphdr) <<
  4047. E1000_ADVTXD_L4LEN_SHIFT;
  4048. break;
  4049. default:
  4050. if (unlikely(net_ratelimit())) {
  4051. dev_warn(tx_ring->dev,
  4052. "partial checksum but l4 proto=%x!\n",
  4053. l4_hdr);
  4054. }
  4055. break;
  4056. }
  4057. /* update TX checksum flag */
  4058. first->tx_flags |= IGB_TX_FLAGS_CSUM;
  4059. }
  4060. vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
  4061. vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
  4062. igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
  4063. }
  4064. #define IGB_SET_FLAG(_input, _flag, _result) \
  4065. ((_flag <= _result) ? \
  4066. ((u32)(_input & _flag) * (_result / _flag)) : \
  4067. ((u32)(_input & _flag) / (_flag / _result)))
  4068. static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
  4069. {
  4070. /* set type for advanced descriptor with frame checksum insertion */
  4071. u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
  4072. E1000_ADVTXD_DCMD_DEXT |
  4073. E1000_ADVTXD_DCMD_IFCS;
  4074. /* set HW vlan bit if vlan is present */
  4075. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
  4076. (E1000_ADVTXD_DCMD_VLE));
  4077. /* set segmentation bits for TSO */
  4078. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
  4079. (E1000_ADVTXD_DCMD_TSE));
  4080. /* set timestamp bit if present */
  4081. cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
  4082. (E1000_ADVTXD_MAC_TSTAMP));
  4083. /* insert frame checksum */
  4084. cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
  4085. return cmd_type;
  4086. }
  4087. static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
  4088. union e1000_adv_tx_desc *tx_desc,
  4089. u32 tx_flags, unsigned int paylen)
  4090. {
  4091. u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
  4092. /* 82575 requires a unique index per ring */
  4093. if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
  4094. olinfo_status |= tx_ring->reg_idx << 4;
  4095. /* insert L4 checksum */
  4096. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4097. IGB_TX_FLAGS_CSUM,
  4098. (E1000_TXD_POPTS_TXSM << 8));
  4099. /* insert IPv4 checksum */
  4100. olinfo_status |= IGB_SET_FLAG(tx_flags,
  4101. IGB_TX_FLAGS_IPV4,
  4102. (E1000_TXD_POPTS_IXSM << 8));
  4103. tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
  4104. }
  4105. static void igb_tx_map(struct igb_ring *tx_ring,
  4106. struct igb_tx_buffer *first,
  4107. const u8 hdr_len)
  4108. {
  4109. struct sk_buff *skb = first->skb;
  4110. struct igb_tx_buffer *tx_buffer;
  4111. union e1000_adv_tx_desc *tx_desc;
  4112. struct skb_frag_struct *frag;
  4113. dma_addr_t dma;
  4114. unsigned int data_len, size;
  4115. u32 tx_flags = first->tx_flags;
  4116. u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
  4117. u16 i = tx_ring->next_to_use;
  4118. tx_desc = IGB_TX_DESC(tx_ring, i);
  4119. igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
  4120. size = skb_headlen(skb);
  4121. data_len = skb->data_len;
  4122. dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
  4123. tx_buffer = first;
  4124. for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
  4125. if (dma_mapping_error(tx_ring->dev, dma))
  4126. goto dma_error;
  4127. /* record length, and DMA address */
  4128. dma_unmap_len_set(tx_buffer, len, size);
  4129. dma_unmap_addr_set(tx_buffer, dma, dma);
  4130. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4131. while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
  4132. tx_desc->read.cmd_type_len =
  4133. cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
  4134. i++;
  4135. tx_desc++;
  4136. if (i == tx_ring->count) {
  4137. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4138. i = 0;
  4139. }
  4140. tx_desc->read.olinfo_status = 0;
  4141. dma += IGB_MAX_DATA_PER_TXD;
  4142. size -= IGB_MAX_DATA_PER_TXD;
  4143. tx_desc->read.buffer_addr = cpu_to_le64(dma);
  4144. }
  4145. if (likely(!data_len))
  4146. break;
  4147. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
  4148. i++;
  4149. tx_desc++;
  4150. if (i == tx_ring->count) {
  4151. tx_desc = IGB_TX_DESC(tx_ring, 0);
  4152. i = 0;
  4153. }
  4154. tx_desc->read.olinfo_status = 0;
  4155. size = skb_frag_size(frag);
  4156. data_len -= size;
  4157. dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
  4158. size, DMA_TO_DEVICE);
  4159. tx_buffer = &tx_ring->tx_buffer_info[i];
  4160. }
  4161. /* write last descriptor with RS and EOP bits */
  4162. cmd_type |= size | IGB_TXD_DCMD;
  4163. tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
  4164. netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
  4165. /* set the timestamp */
  4166. first->time_stamp = jiffies;
  4167. /* Force memory writes to complete before letting h/w know there
  4168. * are new descriptors to fetch. (Only applicable for weak-ordered
  4169. * memory model archs, such as IA-64).
  4170. *
  4171. * We also need this memory barrier to make certain all of the
  4172. * status bits have been updated before next_to_watch is written.
  4173. */
  4174. wmb();
  4175. /* set next_to_watch value indicating a packet is present */
  4176. first->next_to_watch = tx_desc;
  4177. i++;
  4178. if (i == tx_ring->count)
  4179. i = 0;
  4180. tx_ring->next_to_use = i;
  4181. writel(i, tx_ring->tail);
  4182. /* we need this if more than one processor can write to our tail
  4183. * at a time, it synchronizes IO on IA64/Altix systems
  4184. */
  4185. mmiowb();
  4186. return;
  4187. dma_error:
  4188. dev_err(tx_ring->dev, "TX DMA map failed\n");
  4189. /* clear dma mappings for failed tx_buffer_info map */
  4190. for (;;) {
  4191. tx_buffer = &tx_ring->tx_buffer_info[i];
  4192. igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
  4193. if (tx_buffer == first)
  4194. break;
  4195. if (i == 0)
  4196. i = tx_ring->count;
  4197. i--;
  4198. }
  4199. tx_ring->next_to_use = i;
  4200. }
  4201. static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4202. {
  4203. struct net_device *netdev = tx_ring->netdev;
  4204. netif_stop_subqueue(netdev, tx_ring->queue_index);
  4205. /* Herbert's original patch had:
  4206. * smp_mb__after_netif_stop_queue();
  4207. * but since that doesn't exist yet, just open code it.
  4208. */
  4209. smp_mb();
  4210. /* We need to check again in a case another CPU has just
  4211. * made room available.
  4212. */
  4213. if (igb_desc_unused(tx_ring) < size)
  4214. return -EBUSY;
  4215. /* A reprieve! */
  4216. netif_wake_subqueue(netdev, tx_ring->queue_index);
  4217. u64_stats_update_begin(&tx_ring->tx_syncp2);
  4218. tx_ring->tx_stats.restart_queue2++;
  4219. u64_stats_update_end(&tx_ring->tx_syncp2);
  4220. return 0;
  4221. }
  4222. static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
  4223. {
  4224. if (igb_desc_unused(tx_ring) >= size)
  4225. return 0;
  4226. return __igb_maybe_stop_tx(tx_ring, size);
  4227. }
  4228. netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
  4229. struct igb_ring *tx_ring)
  4230. {
  4231. struct igb_tx_buffer *first;
  4232. int tso;
  4233. u32 tx_flags = 0;
  4234. u16 count = TXD_USE_COUNT(skb_headlen(skb));
  4235. __be16 protocol = vlan_get_protocol(skb);
  4236. u8 hdr_len = 0;
  4237. /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
  4238. * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
  4239. * + 2 desc gap to keep tail from touching head,
  4240. * + 1 desc for context descriptor,
  4241. * otherwise try next time
  4242. */
  4243. if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
  4244. unsigned short f;
  4245. for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
  4246. count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
  4247. } else {
  4248. count += skb_shinfo(skb)->nr_frags;
  4249. }
  4250. if (igb_maybe_stop_tx(tx_ring, count + 3)) {
  4251. /* this is a hard error */
  4252. return NETDEV_TX_BUSY;
  4253. }
  4254. /* record the location of the first descriptor for this packet */
  4255. first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
  4256. first->skb = skb;
  4257. first->bytecount = skb->len;
  4258. first->gso_segs = 1;
  4259. if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
  4260. struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
  4261. if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
  4262. &adapter->state)) {
  4263. skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
  4264. tx_flags |= IGB_TX_FLAGS_TSTAMP;
  4265. adapter->ptp_tx_skb = skb_get(skb);
  4266. adapter->ptp_tx_start = jiffies;
  4267. if (adapter->hw.mac.type == e1000_82576)
  4268. schedule_work(&adapter->ptp_tx_work);
  4269. }
  4270. }
  4271. skb_tx_timestamp(skb);
  4272. if (vlan_tx_tag_present(skb)) {
  4273. tx_flags |= IGB_TX_FLAGS_VLAN;
  4274. tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
  4275. }
  4276. /* record initial flags and protocol */
  4277. first->tx_flags = tx_flags;
  4278. first->protocol = protocol;
  4279. tso = igb_tso(tx_ring, first, &hdr_len);
  4280. if (tso < 0)
  4281. goto out_drop;
  4282. else if (!tso)
  4283. igb_tx_csum(tx_ring, first);
  4284. igb_tx_map(tx_ring, first, hdr_len);
  4285. /* Make sure there is space in the ring for the next send. */
  4286. igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
  4287. return NETDEV_TX_OK;
  4288. out_drop:
  4289. igb_unmap_and_free_tx_resource(tx_ring, first);
  4290. return NETDEV_TX_OK;
  4291. }
  4292. static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
  4293. struct sk_buff *skb)
  4294. {
  4295. unsigned int r_idx = skb->queue_mapping;
  4296. if (r_idx >= adapter->num_tx_queues)
  4297. r_idx = r_idx % adapter->num_tx_queues;
  4298. return adapter->tx_ring[r_idx];
  4299. }
  4300. static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
  4301. struct net_device *netdev)
  4302. {
  4303. struct igb_adapter *adapter = netdev_priv(netdev);
  4304. if (test_bit(__IGB_DOWN, &adapter->state)) {
  4305. dev_kfree_skb_any(skb);
  4306. return NETDEV_TX_OK;
  4307. }
  4308. if (skb->len <= 0) {
  4309. dev_kfree_skb_any(skb);
  4310. return NETDEV_TX_OK;
  4311. }
  4312. /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
  4313. * in order to meet this minimum size requirement.
  4314. */
  4315. if (unlikely(skb->len < 17)) {
  4316. if (skb_pad(skb, 17 - skb->len))
  4317. return NETDEV_TX_OK;
  4318. skb->len = 17;
  4319. skb_set_tail_pointer(skb, 17);
  4320. }
  4321. return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
  4322. }
  4323. /**
  4324. * igb_tx_timeout - Respond to a Tx Hang
  4325. * @netdev: network interface device structure
  4326. **/
  4327. static void igb_tx_timeout(struct net_device *netdev)
  4328. {
  4329. struct igb_adapter *adapter = netdev_priv(netdev);
  4330. struct e1000_hw *hw = &adapter->hw;
  4331. /* Do the reset outside of interrupt context */
  4332. adapter->tx_timeout_count++;
  4333. if (hw->mac.type >= e1000_82580)
  4334. hw->dev_spec._82575.global_device_reset = true;
  4335. schedule_work(&adapter->reset_task);
  4336. wr32(E1000_EICS,
  4337. (adapter->eims_enable_mask & ~adapter->eims_other));
  4338. }
  4339. static void igb_reset_task(struct work_struct *work)
  4340. {
  4341. struct igb_adapter *adapter;
  4342. adapter = container_of(work, struct igb_adapter, reset_task);
  4343. igb_dump(adapter);
  4344. netdev_err(adapter->netdev, "Reset adapter\n");
  4345. igb_reinit_locked(adapter);
  4346. }
  4347. /**
  4348. * igb_get_stats64 - Get System Network Statistics
  4349. * @netdev: network interface device structure
  4350. * @stats: rtnl_link_stats64 pointer
  4351. **/
  4352. static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
  4353. struct rtnl_link_stats64 *stats)
  4354. {
  4355. struct igb_adapter *adapter = netdev_priv(netdev);
  4356. spin_lock(&adapter->stats64_lock);
  4357. igb_update_stats(adapter, &adapter->stats64);
  4358. memcpy(stats, &adapter->stats64, sizeof(*stats));
  4359. spin_unlock(&adapter->stats64_lock);
  4360. return stats;
  4361. }
  4362. /**
  4363. * igb_change_mtu - Change the Maximum Transfer Unit
  4364. * @netdev: network interface device structure
  4365. * @new_mtu: new value for maximum frame size
  4366. *
  4367. * Returns 0 on success, negative on failure
  4368. **/
  4369. static int igb_change_mtu(struct net_device *netdev, int new_mtu)
  4370. {
  4371. struct igb_adapter *adapter = netdev_priv(netdev);
  4372. struct pci_dev *pdev = adapter->pdev;
  4373. int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
  4374. if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
  4375. dev_err(&pdev->dev, "Invalid MTU setting\n");
  4376. return -EINVAL;
  4377. }
  4378. #define MAX_STD_JUMBO_FRAME_SIZE 9238
  4379. if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
  4380. dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
  4381. return -EINVAL;
  4382. }
  4383. /* adjust max frame to be at least the size of a standard frame */
  4384. if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
  4385. max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
  4386. while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
  4387. usleep_range(1000, 2000);
  4388. /* igb_down has a dependency on max_frame_size */
  4389. adapter->max_frame_size = max_frame;
  4390. if (netif_running(netdev))
  4391. igb_down(adapter);
  4392. dev_info(&pdev->dev, "changing MTU from %d to %d\n",
  4393. netdev->mtu, new_mtu);
  4394. netdev->mtu = new_mtu;
  4395. if (netif_running(netdev))
  4396. igb_up(adapter);
  4397. else
  4398. igb_reset(adapter);
  4399. clear_bit(__IGB_RESETTING, &adapter->state);
  4400. return 0;
  4401. }
  4402. /**
  4403. * igb_update_stats - Update the board statistics counters
  4404. * @adapter: board private structure
  4405. **/
  4406. void igb_update_stats(struct igb_adapter *adapter,
  4407. struct rtnl_link_stats64 *net_stats)
  4408. {
  4409. struct e1000_hw *hw = &adapter->hw;
  4410. struct pci_dev *pdev = adapter->pdev;
  4411. u32 reg, mpc;
  4412. u16 phy_tmp;
  4413. int i;
  4414. u64 bytes, packets;
  4415. unsigned int start;
  4416. u64 _bytes, _packets;
  4417. #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
  4418. /* Prevent stats update while adapter is being reset, or if the pci
  4419. * connection is down.
  4420. */
  4421. if (adapter->link_speed == 0)
  4422. return;
  4423. if (pci_channel_offline(pdev))
  4424. return;
  4425. bytes = 0;
  4426. packets = 0;
  4427. rcu_read_lock();
  4428. for (i = 0; i < adapter->num_rx_queues; i++) {
  4429. struct igb_ring *ring = adapter->rx_ring[i];
  4430. u32 rqdpc = rd32(E1000_RQDPC(i));
  4431. if (hw->mac.type >= e1000_i210)
  4432. wr32(E1000_RQDPC(i), 0);
  4433. if (rqdpc) {
  4434. ring->rx_stats.drops += rqdpc;
  4435. net_stats->rx_fifo_errors += rqdpc;
  4436. }
  4437. do {
  4438. start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
  4439. _bytes = ring->rx_stats.bytes;
  4440. _packets = ring->rx_stats.packets;
  4441. } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
  4442. bytes += _bytes;
  4443. packets += _packets;
  4444. }
  4445. net_stats->rx_bytes = bytes;
  4446. net_stats->rx_packets = packets;
  4447. bytes = 0;
  4448. packets = 0;
  4449. for (i = 0; i < adapter->num_tx_queues; i++) {
  4450. struct igb_ring *ring = adapter->tx_ring[i];
  4451. do {
  4452. start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
  4453. _bytes = ring->tx_stats.bytes;
  4454. _packets = ring->tx_stats.packets;
  4455. } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
  4456. bytes += _bytes;
  4457. packets += _packets;
  4458. }
  4459. net_stats->tx_bytes = bytes;
  4460. net_stats->tx_packets = packets;
  4461. rcu_read_unlock();
  4462. /* read stats registers */
  4463. adapter->stats.crcerrs += rd32(E1000_CRCERRS);
  4464. adapter->stats.gprc += rd32(E1000_GPRC);
  4465. adapter->stats.gorc += rd32(E1000_GORCL);
  4466. rd32(E1000_GORCH); /* clear GORCL */
  4467. adapter->stats.bprc += rd32(E1000_BPRC);
  4468. adapter->stats.mprc += rd32(E1000_MPRC);
  4469. adapter->stats.roc += rd32(E1000_ROC);
  4470. adapter->stats.prc64 += rd32(E1000_PRC64);
  4471. adapter->stats.prc127 += rd32(E1000_PRC127);
  4472. adapter->stats.prc255 += rd32(E1000_PRC255);
  4473. adapter->stats.prc511 += rd32(E1000_PRC511);
  4474. adapter->stats.prc1023 += rd32(E1000_PRC1023);
  4475. adapter->stats.prc1522 += rd32(E1000_PRC1522);
  4476. adapter->stats.symerrs += rd32(E1000_SYMERRS);
  4477. adapter->stats.sec += rd32(E1000_SEC);
  4478. mpc = rd32(E1000_MPC);
  4479. adapter->stats.mpc += mpc;
  4480. net_stats->rx_fifo_errors += mpc;
  4481. adapter->stats.scc += rd32(E1000_SCC);
  4482. adapter->stats.ecol += rd32(E1000_ECOL);
  4483. adapter->stats.mcc += rd32(E1000_MCC);
  4484. adapter->stats.latecol += rd32(E1000_LATECOL);
  4485. adapter->stats.dc += rd32(E1000_DC);
  4486. adapter->stats.rlec += rd32(E1000_RLEC);
  4487. adapter->stats.xonrxc += rd32(E1000_XONRXC);
  4488. adapter->stats.xontxc += rd32(E1000_XONTXC);
  4489. adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
  4490. adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
  4491. adapter->stats.fcruc += rd32(E1000_FCRUC);
  4492. adapter->stats.gptc += rd32(E1000_GPTC);
  4493. adapter->stats.gotc += rd32(E1000_GOTCL);
  4494. rd32(E1000_GOTCH); /* clear GOTCL */
  4495. adapter->stats.rnbc += rd32(E1000_RNBC);
  4496. adapter->stats.ruc += rd32(E1000_RUC);
  4497. adapter->stats.rfc += rd32(E1000_RFC);
  4498. adapter->stats.rjc += rd32(E1000_RJC);
  4499. adapter->stats.tor += rd32(E1000_TORH);
  4500. adapter->stats.tot += rd32(E1000_TOTH);
  4501. adapter->stats.tpr += rd32(E1000_TPR);
  4502. adapter->stats.ptc64 += rd32(E1000_PTC64);
  4503. adapter->stats.ptc127 += rd32(E1000_PTC127);
  4504. adapter->stats.ptc255 += rd32(E1000_PTC255);
  4505. adapter->stats.ptc511 += rd32(E1000_PTC511);
  4506. adapter->stats.ptc1023 += rd32(E1000_PTC1023);
  4507. adapter->stats.ptc1522 += rd32(E1000_PTC1522);
  4508. adapter->stats.mptc += rd32(E1000_MPTC);
  4509. adapter->stats.bptc += rd32(E1000_BPTC);
  4510. adapter->stats.tpt += rd32(E1000_TPT);
  4511. adapter->stats.colc += rd32(E1000_COLC);
  4512. adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
  4513. /* read internal phy specific stats */
  4514. reg = rd32(E1000_CTRL_EXT);
  4515. if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
  4516. adapter->stats.rxerrc += rd32(E1000_RXERRC);
  4517. /* this stat has invalid values on i210/i211 */
  4518. if ((hw->mac.type != e1000_i210) &&
  4519. (hw->mac.type != e1000_i211))
  4520. adapter->stats.tncrs += rd32(E1000_TNCRS);
  4521. }
  4522. adapter->stats.tsctc += rd32(E1000_TSCTC);
  4523. adapter->stats.tsctfc += rd32(E1000_TSCTFC);
  4524. adapter->stats.iac += rd32(E1000_IAC);
  4525. adapter->stats.icrxoc += rd32(E1000_ICRXOC);
  4526. adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
  4527. adapter->stats.icrxatc += rd32(E1000_ICRXATC);
  4528. adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
  4529. adapter->stats.ictxatc += rd32(E1000_ICTXATC);
  4530. adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
  4531. adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
  4532. adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
  4533. /* Fill out the OS statistics structure */
  4534. net_stats->multicast = adapter->stats.mprc;
  4535. net_stats->collisions = adapter->stats.colc;
  4536. /* Rx Errors */
  4537. /* RLEC on some newer hardware can be incorrect so build
  4538. * our own version based on RUC and ROC
  4539. */
  4540. net_stats->rx_errors = adapter->stats.rxerrc +
  4541. adapter->stats.crcerrs + adapter->stats.algnerrc +
  4542. adapter->stats.ruc + adapter->stats.roc +
  4543. adapter->stats.cexterr;
  4544. net_stats->rx_length_errors = adapter->stats.ruc +
  4545. adapter->stats.roc;
  4546. net_stats->rx_crc_errors = adapter->stats.crcerrs;
  4547. net_stats->rx_frame_errors = adapter->stats.algnerrc;
  4548. net_stats->rx_missed_errors = adapter->stats.mpc;
  4549. /* Tx Errors */
  4550. net_stats->tx_errors = adapter->stats.ecol +
  4551. adapter->stats.latecol;
  4552. net_stats->tx_aborted_errors = adapter->stats.ecol;
  4553. net_stats->tx_window_errors = adapter->stats.latecol;
  4554. net_stats->tx_carrier_errors = adapter->stats.tncrs;
  4555. /* Tx Dropped needs to be maintained elsewhere */
  4556. /* Phy Stats */
  4557. if (hw->phy.media_type == e1000_media_type_copper) {
  4558. if ((adapter->link_speed == SPEED_1000) &&
  4559. (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
  4560. phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
  4561. adapter->phy_stats.idle_errors += phy_tmp;
  4562. }
  4563. }
  4564. /* Management Stats */
  4565. adapter->stats.mgptc += rd32(E1000_MGTPTC);
  4566. adapter->stats.mgprc += rd32(E1000_MGTPRC);
  4567. adapter->stats.mgpdc += rd32(E1000_MGTPDC);
  4568. /* OS2BMC Stats */
  4569. reg = rd32(E1000_MANC);
  4570. if (reg & E1000_MANC_EN_BMC2OS) {
  4571. adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
  4572. adapter->stats.o2bspc += rd32(E1000_O2BSPC);
  4573. adapter->stats.b2ospc += rd32(E1000_B2OSPC);
  4574. adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
  4575. }
  4576. }
  4577. static irqreturn_t igb_msix_other(int irq, void *data)
  4578. {
  4579. struct igb_adapter *adapter = data;
  4580. struct e1000_hw *hw = &adapter->hw;
  4581. u32 icr = rd32(E1000_ICR);
  4582. /* reading ICR causes bit 31 of EICR to be cleared */
  4583. if (icr & E1000_ICR_DRSTA)
  4584. schedule_work(&adapter->reset_task);
  4585. if (icr & E1000_ICR_DOUTSYNC) {
  4586. /* HW is reporting DMA is out of sync */
  4587. adapter->stats.doosync++;
  4588. /* The DMA Out of Sync is also indication of a spoof event
  4589. * in IOV mode. Check the Wrong VM Behavior register to
  4590. * see if it is really a spoof event.
  4591. */
  4592. igb_check_wvbr(adapter);
  4593. }
  4594. /* Check for a mailbox event */
  4595. if (icr & E1000_ICR_VMMB)
  4596. igb_msg_task(adapter);
  4597. if (icr & E1000_ICR_LSC) {
  4598. hw->mac.get_link_status = 1;
  4599. /* guard against interrupt when we're going down */
  4600. if (!test_bit(__IGB_DOWN, &adapter->state))
  4601. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  4602. }
  4603. if (icr & E1000_ICR_TS) {
  4604. u32 tsicr = rd32(E1000_TSICR);
  4605. if (tsicr & E1000_TSICR_TXTS) {
  4606. /* acknowledge the interrupt */
  4607. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  4608. /* retrieve hardware timestamp */
  4609. schedule_work(&adapter->ptp_tx_work);
  4610. }
  4611. }
  4612. wr32(E1000_EIMS, adapter->eims_other);
  4613. return IRQ_HANDLED;
  4614. }
  4615. static void igb_write_itr(struct igb_q_vector *q_vector)
  4616. {
  4617. struct igb_adapter *adapter = q_vector->adapter;
  4618. u32 itr_val = q_vector->itr_val & 0x7FFC;
  4619. if (!q_vector->set_itr)
  4620. return;
  4621. if (!itr_val)
  4622. itr_val = 0x4;
  4623. if (adapter->hw.mac.type == e1000_82575)
  4624. itr_val |= itr_val << 16;
  4625. else
  4626. itr_val |= E1000_EITR_CNT_IGNR;
  4627. writel(itr_val, q_vector->itr_register);
  4628. q_vector->set_itr = 0;
  4629. }
  4630. static irqreturn_t igb_msix_ring(int irq, void *data)
  4631. {
  4632. struct igb_q_vector *q_vector = data;
  4633. /* Write the ITR value calculated from the previous interrupt. */
  4634. igb_write_itr(q_vector);
  4635. napi_schedule(&q_vector->napi);
  4636. return IRQ_HANDLED;
  4637. }
  4638. #ifdef CONFIG_IGB_DCA
  4639. static void igb_update_tx_dca(struct igb_adapter *adapter,
  4640. struct igb_ring *tx_ring,
  4641. int cpu)
  4642. {
  4643. struct e1000_hw *hw = &adapter->hw;
  4644. u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
  4645. if (hw->mac.type != e1000_82575)
  4646. txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
  4647. /* We can enable relaxed ordering for reads, but not writes when
  4648. * DCA is enabled. This is due to a known issue in some chipsets
  4649. * which will cause the DCA tag to be cleared.
  4650. */
  4651. txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
  4652. E1000_DCA_TXCTRL_DATA_RRO_EN |
  4653. E1000_DCA_TXCTRL_DESC_DCA_EN;
  4654. wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
  4655. }
  4656. static void igb_update_rx_dca(struct igb_adapter *adapter,
  4657. struct igb_ring *rx_ring,
  4658. int cpu)
  4659. {
  4660. struct e1000_hw *hw = &adapter->hw;
  4661. u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
  4662. if (hw->mac.type != e1000_82575)
  4663. rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
  4664. /* We can enable relaxed ordering for reads, but not writes when
  4665. * DCA is enabled. This is due to a known issue in some chipsets
  4666. * which will cause the DCA tag to be cleared.
  4667. */
  4668. rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
  4669. E1000_DCA_RXCTRL_DESC_DCA_EN;
  4670. wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
  4671. }
  4672. static void igb_update_dca(struct igb_q_vector *q_vector)
  4673. {
  4674. struct igb_adapter *adapter = q_vector->adapter;
  4675. int cpu = get_cpu();
  4676. if (q_vector->cpu == cpu)
  4677. goto out_no_update;
  4678. if (q_vector->tx.ring)
  4679. igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
  4680. if (q_vector->rx.ring)
  4681. igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
  4682. q_vector->cpu = cpu;
  4683. out_no_update:
  4684. put_cpu();
  4685. }
  4686. static void igb_setup_dca(struct igb_adapter *adapter)
  4687. {
  4688. struct e1000_hw *hw = &adapter->hw;
  4689. int i;
  4690. if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
  4691. return;
  4692. /* Always use CB2 mode, difference is masked in the CB driver. */
  4693. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
  4694. for (i = 0; i < adapter->num_q_vectors; i++) {
  4695. adapter->q_vector[i]->cpu = -1;
  4696. igb_update_dca(adapter->q_vector[i]);
  4697. }
  4698. }
  4699. static int __igb_notify_dca(struct device *dev, void *data)
  4700. {
  4701. struct net_device *netdev = dev_get_drvdata(dev);
  4702. struct igb_adapter *adapter = netdev_priv(netdev);
  4703. struct pci_dev *pdev = adapter->pdev;
  4704. struct e1000_hw *hw = &adapter->hw;
  4705. unsigned long event = *(unsigned long *)data;
  4706. switch (event) {
  4707. case DCA_PROVIDER_ADD:
  4708. /* if already enabled, don't do it again */
  4709. if (adapter->flags & IGB_FLAG_DCA_ENABLED)
  4710. break;
  4711. if (dca_add_requester(dev) == 0) {
  4712. adapter->flags |= IGB_FLAG_DCA_ENABLED;
  4713. dev_info(&pdev->dev, "DCA enabled\n");
  4714. igb_setup_dca(adapter);
  4715. break;
  4716. }
  4717. /* Fall Through since DCA is disabled. */
  4718. case DCA_PROVIDER_REMOVE:
  4719. if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
  4720. /* without this a class_device is left
  4721. * hanging around in the sysfs model
  4722. */
  4723. dca_remove_requester(dev);
  4724. dev_info(&pdev->dev, "DCA disabled\n");
  4725. adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
  4726. wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
  4727. }
  4728. break;
  4729. }
  4730. return 0;
  4731. }
  4732. static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
  4733. void *p)
  4734. {
  4735. int ret_val;
  4736. ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
  4737. __igb_notify_dca);
  4738. return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
  4739. }
  4740. #endif /* CONFIG_IGB_DCA */
  4741. #ifdef CONFIG_PCI_IOV
  4742. static int igb_vf_configure(struct igb_adapter *adapter, int vf)
  4743. {
  4744. unsigned char mac_addr[ETH_ALEN];
  4745. eth_zero_addr(mac_addr);
  4746. igb_set_vf_mac(adapter, vf, mac_addr);
  4747. /* By default spoof check is enabled for all VFs */
  4748. adapter->vf_data[vf].spoofchk_enabled = true;
  4749. return 0;
  4750. }
  4751. #endif
  4752. static void igb_ping_all_vfs(struct igb_adapter *adapter)
  4753. {
  4754. struct e1000_hw *hw = &adapter->hw;
  4755. u32 ping;
  4756. int i;
  4757. for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
  4758. ping = E1000_PF_CONTROL_MSG;
  4759. if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
  4760. ping |= E1000_VT_MSGTYPE_CTS;
  4761. igb_write_mbx(hw, &ping, 1, i);
  4762. }
  4763. }
  4764. static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  4765. {
  4766. struct e1000_hw *hw = &adapter->hw;
  4767. u32 vmolr = rd32(E1000_VMOLR(vf));
  4768. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  4769. vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
  4770. IGB_VF_FLAG_MULTI_PROMISC);
  4771. vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  4772. if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
  4773. vmolr |= E1000_VMOLR_MPME;
  4774. vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
  4775. *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
  4776. } else {
  4777. /* if we have hashes and we are clearing a multicast promisc
  4778. * flag we need to write the hashes to the MTA as this step
  4779. * was previously skipped
  4780. */
  4781. if (vf_data->num_vf_mc_hashes > 30) {
  4782. vmolr |= E1000_VMOLR_MPME;
  4783. } else if (vf_data->num_vf_mc_hashes) {
  4784. int j;
  4785. vmolr |= E1000_VMOLR_ROMPE;
  4786. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  4787. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  4788. }
  4789. }
  4790. wr32(E1000_VMOLR(vf), vmolr);
  4791. /* there are flags left unprocessed, likely not supported */
  4792. if (*msgbuf & E1000_VT_MSGINFO_MASK)
  4793. return -EINVAL;
  4794. return 0;
  4795. }
  4796. static int igb_set_vf_multicasts(struct igb_adapter *adapter,
  4797. u32 *msgbuf, u32 vf)
  4798. {
  4799. int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  4800. u16 *hash_list = (u16 *)&msgbuf[1];
  4801. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  4802. int i;
  4803. /* salt away the number of multicast addresses assigned
  4804. * to this VF for later use to restore when the PF multi cast
  4805. * list changes
  4806. */
  4807. vf_data->num_vf_mc_hashes = n;
  4808. /* only up to 30 hash values supported */
  4809. if (n > 30)
  4810. n = 30;
  4811. /* store the hashes for later use */
  4812. for (i = 0; i < n; i++)
  4813. vf_data->vf_mc_hashes[i] = hash_list[i];
  4814. /* Flush and reset the mta with the new values */
  4815. igb_set_rx_mode(adapter->netdev);
  4816. return 0;
  4817. }
  4818. static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
  4819. {
  4820. struct e1000_hw *hw = &adapter->hw;
  4821. struct vf_data_storage *vf_data;
  4822. int i, j;
  4823. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  4824. u32 vmolr = rd32(E1000_VMOLR(i));
  4825. vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
  4826. vf_data = &adapter->vf_data[i];
  4827. if ((vf_data->num_vf_mc_hashes > 30) ||
  4828. (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
  4829. vmolr |= E1000_VMOLR_MPME;
  4830. } else if (vf_data->num_vf_mc_hashes) {
  4831. vmolr |= E1000_VMOLR_ROMPE;
  4832. for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
  4833. igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
  4834. }
  4835. wr32(E1000_VMOLR(i), vmolr);
  4836. }
  4837. }
  4838. static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
  4839. {
  4840. struct e1000_hw *hw = &adapter->hw;
  4841. u32 pool_mask, reg, vid;
  4842. int i;
  4843. pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
  4844. /* Find the vlan filter for this id */
  4845. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4846. reg = rd32(E1000_VLVF(i));
  4847. /* remove the vf from the pool */
  4848. reg &= ~pool_mask;
  4849. /* if pool is empty then remove entry from vfta */
  4850. if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
  4851. (reg & E1000_VLVF_VLANID_ENABLE)) {
  4852. reg = 0;
  4853. vid = reg & E1000_VLVF_VLANID_MASK;
  4854. igb_vfta_set(hw, vid, false);
  4855. }
  4856. wr32(E1000_VLVF(i), reg);
  4857. }
  4858. adapter->vf_data[vf].vlans_enabled = 0;
  4859. }
  4860. static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
  4861. {
  4862. struct e1000_hw *hw = &adapter->hw;
  4863. u32 reg, i;
  4864. /* The vlvf table only exists on 82576 hardware and newer */
  4865. if (hw->mac.type < e1000_82576)
  4866. return -1;
  4867. /* we only need to do this if VMDq is enabled */
  4868. if (!adapter->vfs_allocated_count)
  4869. return -1;
  4870. /* Find the vlan filter for this id */
  4871. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4872. reg = rd32(E1000_VLVF(i));
  4873. if ((reg & E1000_VLVF_VLANID_ENABLE) &&
  4874. vid == (reg & E1000_VLVF_VLANID_MASK))
  4875. break;
  4876. }
  4877. if (add) {
  4878. if (i == E1000_VLVF_ARRAY_SIZE) {
  4879. /* Did not find a matching VLAN ID entry that was
  4880. * enabled. Search for a free filter entry, i.e.
  4881. * one without the enable bit set
  4882. */
  4883. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4884. reg = rd32(E1000_VLVF(i));
  4885. if (!(reg & E1000_VLVF_VLANID_ENABLE))
  4886. break;
  4887. }
  4888. }
  4889. if (i < E1000_VLVF_ARRAY_SIZE) {
  4890. /* Found an enabled/available entry */
  4891. reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
  4892. /* if !enabled we need to set this up in vfta */
  4893. if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
  4894. /* add VID to filter table */
  4895. igb_vfta_set(hw, vid, true);
  4896. reg |= E1000_VLVF_VLANID_ENABLE;
  4897. }
  4898. reg &= ~E1000_VLVF_VLANID_MASK;
  4899. reg |= vid;
  4900. wr32(E1000_VLVF(i), reg);
  4901. /* do not modify RLPML for PF devices */
  4902. if (vf >= adapter->vfs_allocated_count)
  4903. return 0;
  4904. if (!adapter->vf_data[vf].vlans_enabled) {
  4905. u32 size;
  4906. reg = rd32(E1000_VMOLR(vf));
  4907. size = reg & E1000_VMOLR_RLPML_MASK;
  4908. size += 4;
  4909. reg &= ~E1000_VMOLR_RLPML_MASK;
  4910. reg |= size;
  4911. wr32(E1000_VMOLR(vf), reg);
  4912. }
  4913. adapter->vf_data[vf].vlans_enabled++;
  4914. }
  4915. } else {
  4916. if (i < E1000_VLVF_ARRAY_SIZE) {
  4917. /* remove vf from the pool */
  4918. reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
  4919. /* if pool is empty then remove entry from vfta */
  4920. if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
  4921. reg = 0;
  4922. igb_vfta_set(hw, vid, false);
  4923. }
  4924. wr32(E1000_VLVF(i), reg);
  4925. /* do not modify RLPML for PF devices */
  4926. if (vf >= adapter->vfs_allocated_count)
  4927. return 0;
  4928. adapter->vf_data[vf].vlans_enabled--;
  4929. if (!adapter->vf_data[vf].vlans_enabled) {
  4930. u32 size;
  4931. reg = rd32(E1000_VMOLR(vf));
  4932. size = reg & E1000_VMOLR_RLPML_MASK;
  4933. size -= 4;
  4934. reg &= ~E1000_VMOLR_RLPML_MASK;
  4935. reg |= size;
  4936. wr32(E1000_VMOLR(vf), reg);
  4937. }
  4938. }
  4939. }
  4940. return 0;
  4941. }
  4942. static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
  4943. {
  4944. struct e1000_hw *hw = &adapter->hw;
  4945. if (vid)
  4946. wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
  4947. else
  4948. wr32(E1000_VMVIR(vf), 0);
  4949. }
  4950. static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  4951. int vf, u16 vlan, u8 qos)
  4952. {
  4953. int err = 0;
  4954. struct igb_adapter *adapter = netdev_priv(netdev);
  4955. if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
  4956. return -EINVAL;
  4957. if (vlan || qos) {
  4958. err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
  4959. if (err)
  4960. goto out;
  4961. igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
  4962. igb_set_vmolr(adapter, vf, !vlan);
  4963. adapter->vf_data[vf].pf_vlan = vlan;
  4964. adapter->vf_data[vf].pf_qos = qos;
  4965. dev_info(&adapter->pdev->dev,
  4966. "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
  4967. if (test_bit(__IGB_DOWN, &adapter->state)) {
  4968. dev_warn(&adapter->pdev->dev,
  4969. "The VF VLAN has been set, but the PF device is not up.\n");
  4970. dev_warn(&adapter->pdev->dev,
  4971. "Bring the PF device up before attempting to use the VF device.\n");
  4972. }
  4973. } else {
  4974. igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
  4975. false, vf);
  4976. igb_set_vmvir(adapter, vlan, vf);
  4977. igb_set_vmolr(adapter, vf, true);
  4978. adapter->vf_data[vf].pf_vlan = 0;
  4979. adapter->vf_data[vf].pf_qos = 0;
  4980. }
  4981. out:
  4982. return err;
  4983. }
  4984. static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
  4985. {
  4986. struct e1000_hw *hw = &adapter->hw;
  4987. int i;
  4988. u32 reg;
  4989. /* Find the vlan filter for this id */
  4990. for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
  4991. reg = rd32(E1000_VLVF(i));
  4992. if ((reg & E1000_VLVF_VLANID_ENABLE) &&
  4993. vid == (reg & E1000_VLVF_VLANID_MASK))
  4994. break;
  4995. }
  4996. if (i >= E1000_VLVF_ARRAY_SIZE)
  4997. i = -1;
  4998. return i;
  4999. }
  5000. static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
  5001. {
  5002. struct e1000_hw *hw = &adapter->hw;
  5003. int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
  5004. int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
  5005. int err = 0;
  5006. /* If in promiscuous mode we need to make sure the PF also has
  5007. * the VLAN filter set.
  5008. */
  5009. if (add && (adapter->netdev->flags & IFF_PROMISC))
  5010. err = igb_vlvf_set(adapter, vid, add,
  5011. adapter->vfs_allocated_count);
  5012. if (err)
  5013. goto out;
  5014. err = igb_vlvf_set(adapter, vid, add, vf);
  5015. if (err)
  5016. goto out;
  5017. /* Go through all the checks to see if the VLAN filter should
  5018. * be wiped completely.
  5019. */
  5020. if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
  5021. u32 vlvf, bits;
  5022. int regndx = igb_find_vlvf_entry(adapter, vid);
  5023. if (regndx < 0)
  5024. goto out;
  5025. /* See if any other pools are set for this VLAN filter
  5026. * entry other than the PF.
  5027. */
  5028. vlvf = bits = rd32(E1000_VLVF(regndx));
  5029. bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
  5030. adapter->vfs_allocated_count);
  5031. /* If the filter was removed then ensure PF pool bit
  5032. * is cleared if the PF only added itself to the pool
  5033. * because the PF is in promiscuous mode.
  5034. */
  5035. if ((vlvf & VLAN_VID_MASK) == vid &&
  5036. !test_bit(vid, adapter->active_vlans) &&
  5037. !bits)
  5038. igb_vlvf_set(adapter, vid, add,
  5039. adapter->vfs_allocated_count);
  5040. }
  5041. out:
  5042. return err;
  5043. }
  5044. static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
  5045. {
  5046. /* clear flags - except flag that indicates PF has set the MAC */
  5047. adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
  5048. adapter->vf_data[vf].last_nack = jiffies;
  5049. /* reset offloads to defaults */
  5050. igb_set_vmolr(adapter, vf, true);
  5051. /* reset vlans for device */
  5052. igb_clear_vf_vfta(adapter, vf);
  5053. if (adapter->vf_data[vf].pf_vlan)
  5054. igb_ndo_set_vf_vlan(adapter->netdev, vf,
  5055. adapter->vf_data[vf].pf_vlan,
  5056. adapter->vf_data[vf].pf_qos);
  5057. else
  5058. igb_clear_vf_vfta(adapter, vf);
  5059. /* reset multicast table array for vf */
  5060. adapter->vf_data[vf].num_vf_mc_hashes = 0;
  5061. /* Flush and reset the mta with the new values */
  5062. igb_set_rx_mode(adapter->netdev);
  5063. }
  5064. static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
  5065. {
  5066. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5067. /* clear mac address as we were hotplug removed/added */
  5068. if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
  5069. eth_zero_addr(vf_mac);
  5070. /* process remaining reset events */
  5071. igb_vf_reset(adapter, vf);
  5072. }
  5073. static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
  5074. {
  5075. struct e1000_hw *hw = &adapter->hw;
  5076. unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
  5077. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  5078. u32 reg, msgbuf[3];
  5079. u8 *addr = (u8 *)(&msgbuf[1]);
  5080. /* process all the same items cleared in a function level reset */
  5081. igb_vf_reset(adapter, vf);
  5082. /* set vf mac address */
  5083. igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
  5084. /* enable transmit and receive for vf */
  5085. reg = rd32(E1000_VFTE);
  5086. wr32(E1000_VFTE, reg | (1 << vf));
  5087. reg = rd32(E1000_VFRE);
  5088. wr32(E1000_VFRE, reg | (1 << vf));
  5089. adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
  5090. /* reply to reset with ack and vf mac address */
  5091. msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
  5092. memcpy(addr, vf_mac, ETH_ALEN);
  5093. igb_write_mbx(hw, msgbuf, 3, vf);
  5094. }
  5095. static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
  5096. {
  5097. /* The VF MAC Address is stored in a packed array of bytes
  5098. * starting at the second 32 bit word of the msg array
  5099. */
  5100. unsigned char *addr = (char *)&msg[1];
  5101. int err = -1;
  5102. if (is_valid_ether_addr(addr))
  5103. err = igb_set_vf_mac(adapter, vf, addr);
  5104. return err;
  5105. }
  5106. static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
  5107. {
  5108. struct e1000_hw *hw = &adapter->hw;
  5109. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5110. u32 msg = E1000_VT_MSGTYPE_NACK;
  5111. /* if device isn't clear to send it shouldn't be reading either */
  5112. if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
  5113. time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
  5114. igb_write_mbx(hw, &msg, 1, vf);
  5115. vf_data->last_nack = jiffies;
  5116. }
  5117. }
  5118. static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
  5119. {
  5120. struct pci_dev *pdev = adapter->pdev;
  5121. u32 msgbuf[E1000_VFMAILBOX_SIZE];
  5122. struct e1000_hw *hw = &adapter->hw;
  5123. struct vf_data_storage *vf_data = &adapter->vf_data[vf];
  5124. s32 retval;
  5125. retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
  5126. if (retval) {
  5127. /* if receive failed revoke VF CTS stats and restart init */
  5128. dev_err(&pdev->dev, "Error receiving message from VF\n");
  5129. vf_data->flags &= ~IGB_VF_FLAG_CTS;
  5130. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5131. return;
  5132. goto out;
  5133. }
  5134. /* this is a message we already processed, do nothing */
  5135. if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
  5136. return;
  5137. /* until the vf completes a reset it should not be
  5138. * allowed to start any configuration.
  5139. */
  5140. if (msgbuf[0] == E1000_VF_RESET) {
  5141. igb_vf_reset_msg(adapter, vf);
  5142. return;
  5143. }
  5144. if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
  5145. if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
  5146. return;
  5147. retval = -1;
  5148. goto out;
  5149. }
  5150. switch ((msgbuf[0] & 0xFFFF)) {
  5151. case E1000_VF_SET_MAC_ADDR:
  5152. retval = -EINVAL;
  5153. if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
  5154. retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
  5155. else
  5156. dev_warn(&pdev->dev,
  5157. "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
  5158. vf);
  5159. break;
  5160. case E1000_VF_SET_PROMISC:
  5161. retval = igb_set_vf_promisc(adapter, msgbuf, vf);
  5162. break;
  5163. case E1000_VF_SET_MULTICAST:
  5164. retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
  5165. break;
  5166. case E1000_VF_SET_LPE:
  5167. retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
  5168. break;
  5169. case E1000_VF_SET_VLAN:
  5170. retval = -1;
  5171. if (vf_data->pf_vlan)
  5172. dev_warn(&pdev->dev,
  5173. "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
  5174. vf);
  5175. else
  5176. retval = igb_set_vf_vlan(adapter, msgbuf, vf);
  5177. break;
  5178. default:
  5179. dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
  5180. retval = -1;
  5181. break;
  5182. }
  5183. msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
  5184. out:
  5185. /* notify the VF of the results of what it sent us */
  5186. if (retval)
  5187. msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
  5188. else
  5189. msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
  5190. igb_write_mbx(hw, msgbuf, 1, vf);
  5191. }
  5192. static void igb_msg_task(struct igb_adapter *adapter)
  5193. {
  5194. struct e1000_hw *hw = &adapter->hw;
  5195. u32 vf;
  5196. for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
  5197. /* process any reset requests */
  5198. if (!igb_check_for_rst(hw, vf))
  5199. igb_vf_reset_event(adapter, vf);
  5200. /* process any messages pending */
  5201. if (!igb_check_for_msg(hw, vf))
  5202. igb_rcv_msg_from_vf(adapter, vf);
  5203. /* process any acks */
  5204. if (!igb_check_for_ack(hw, vf))
  5205. igb_rcv_ack_from_vf(adapter, vf);
  5206. }
  5207. }
  5208. /**
  5209. * igb_set_uta - Set unicast filter table address
  5210. * @adapter: board private structure
  5211. *
  5212. * The unicast table address is a register array of 32-bit registers.
  5213. * The table is meant to be used in a way similar to how the MTA is used
  5214. * however due to certain limitations in the hardware it is necessary to
  5215. * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
  5216. * enable bit to allow vlan tag stripping when promiscuous mode is enabled
  5217. **/
  5218. static void igb_set_uta(struct igb_adapter *adapter)
  5219. {
  5220. struct e1000_hw *hw = &adapter->hw;
  5221. int i;
  5222. /* The UTA table only exists on 82576 hardware and newer */
  5223. if (hw->mac.type < e1000_82576)
  5224. return;
  5225. /* we only need to do this if VMDq is enabled */
  5226. if (!adapter->vfs_allocated_count)
  5227. return;
  5228. for (i = 0; i < hw->mac.uta_reg_count; i++)
  5229. array_wr32(E1000_UTA, i, ~0);
  5230. }
  5231. /**
  5232. * igb_intr_msi - Interrupt Handler
  5233. * @irq: interrupt number
  5234. * @data: pointer to a network interface device structure
  5235. **/
  5236. static irqreturn_t igb_intr_msi(int irq, void *data)
  5237. {
  5238. struct igb_adapter *adapter = data;
  5239. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5240. struct e1000_hw *hw = &adapter->hw;
  5241. /* read ICR disables interrupts using IAM */
  5242. u32 icr = rd32(E1000_ICR);
  5243. igb_write_itr(q_vector);
  5244. if (icr & E1000_ICR_DRSTA)
  5245. schedule_work(&adapter->reset_task);
  5246. if (icr & E1000_ICR_DOUTSYNC) {
  5247. /* HW is reporting DMA is out of sync */
  5248. adapter->stats.doosync++;
  5249. }
  5250. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5251. hw->mac.get_link_status = 1;
  5252. if (!test_bit(__IGB_DOWN, &adapter->state))
  5253. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5254. }
  5255. if (icr & E1000_ICR_TS) {
  5256. u32 tsicr = rd32(E1000_TSICR);
  5257. if (tsicr & E1000_TSICR_TXTS) {
  5258. /* acknowledge the interrupt */
  5259. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  5260. /* retrieve hardware timestamp */
  5261. schedule_work(&adapter->ptp_tx_work);
  5262. }
  5263. }
  5264. napi_schedule(&q_vector->napi);
  5265. return IRQ_HANDLED;
  5266. }
  5267. /**
  5268. * igb_intr - Legacy Interrupt Handler
  5269. * @irq: interrupt number
  5270. * @data: pointer to a network interface device structure
  5271. **/
  5272. static irqreturn_t igb_intr(int irq, void *data)
  5273. {
  5274. struct igb_adapter *adapter = data;
  5275. struct igb_q_vector *q_vector = adapter->q_vector[0];
  5276. struct e1000_hw *hw = &adapter->hw;
  5277. /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
  5278. * need for the IMC write
  5279. */
  5280. u32 icr = rd32(E1000_ICR);
  5281. /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
  5282. * not set, then the adapter didn't send an interrupt
  5283. */
  5284. if (!(icr & E1000_ICR_INT_ASSERTED))
  5285. return IRQ_NONE;
  5286. igb_write_itr(q_vector);
  5287. if (icr & E1000_ICR_DRSTA)
  5288. schedule_work(&adapter->reset_task);
  5289. if (icr & E1000_ICR_DOUTSYNC) {
  5290. /* HW is reporting DMA is out of sync */
  5291. adapter->stats.doosync++;
  5292. }
  5293. if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
  5294. hw->mac.get_link_status = 1;
  5295. /* guard against interrupt when we're going down */
  5296. if (!test_bit(__IGB_DOWN, &adapter->state))
  5297. mod_timer(&adapter->watchdog_timer, jiffies + 1);
  5298. }
  5299. if (icr & E1000_ICR_TS) {
  5300. u32 tsicr = rd32(E1000_TSICR);
  5301. if (tsicr & E1000_TSICR_TXTS) {
  5302. /* acknowledge the interrupt */
  5303. wr32(E1000_TSICR, E1000_TSICR_TXTS);
  5304. /* retrieve hardware timestamp */
  5305. schedule_work(&adapter->ptp_tx_work);
  5306. }
  5307. }
  5308. napi_schedule(&q_vector->napi);
  5309. return IRQ_HANDLED;
  5310. }
  5311. static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
  5312. {
  5313. struct igb_adapter *adapter = q_vector->adapter;
  5314. struct e1000_hw *hw = &adapter->hw;
  5315. if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
  5316. (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
  5317. if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
  5318. igb_set_itr(q_vector);
  5319. else
  5320. igb_update_ring_itr(q_vector);
  5321. }
  5322. if (!test_bit(__IGB_DOWN, &adapter->state)) {
  5323. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  5324. wr32(E1000_EIMS, q_vector->eims_value);
  5325. else
  5326. igb_irq_enable(adapter);
  5327. }
  5328. }
  5329. /**
  5330. * igb_poll - NAPI Rx polling callback
  5331. * @napi: napi polling structure
  5332. * @budget: count of how many packets we should handle
  5333. **/
  5334. static int igb_poll(struct napi_struct *napi, int budget)
  5335. {
  5336. struct igb_q_vector *q_vector = container_of(napi,
  5337. struct igb_q_vector,
  5338. napi);
  5339. bool clean_complete = true;
  5340. #ifdef CONFIG_IGB_DCA
  5341. if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
  5342. igb_update_dca(q_vector);
  5343. #endif
  5344. if (q_vector->tx.ring)
  5345. clean_complete = igb_clean_tx_irq(q_vector);
  5346. if (q_vector->rx.ring)
  5347. clean_complete &= igb_clean_rx_irq(q_vector, budget);
  5348. /* If all work not completed, return budget and keep polling */
  5349. if (!clean_complete)
  5350. return budget;
  5351. /* If not enough Rx work done, exit the polling mode */
  5352. napi_complete(napi);
  5353. igb_ring_irq_enable(q_vector);
  5354. return 0;
  5355. }
  5356. /**
  5357. * igb_clean_tx_irq - Reclaim resources after transmit completes
  5358. * @q_vector: pointer to q_vector containing needed info
  5359. *
  5360. * returns true if ring is completely cleaned
  5361. **/
  5362. static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
  5363. {
  5364. struct igb_adapter *adapter = q_vector->adapter;
  5365. struct igb_ring *tx_ring = q_vector->tx.ring;
  5366. struct igb_tx_buffer *tx_buffer;
  5367. union e1000_adv_tx_desc *tx_desc;
  5368. unsigned int total_bytes = 0, total_packets = 0;
  5369. unsigned int budget = q_vector->tx.work_limit;
  5370. unsigned int i = tx_ring->next_to_clean;
  5371. if (test_bit(__IGB_DOWN, &adapter->state))
  5372. return true;
  5373. tx_buffer = &tx_ring->tx_buffer_info[i];
  5374. tx_desc = IGB_TX_DESC(tx_ring, i);
  5375. i -= tx_ring->count;
  5376. do {
  5377. union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
  5378. /* if next_to_watch is not set then there is no work pending */
  5379. if (!eop_desc)
  5380. break;
  5381. /* prevent any other reads prior to eop_desc */
  5382. read_barrier_depends();
  5383. /* if DD is not set pending work has not been completed */
  5384. if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
  5385. break;
  5386. /* clear next_to_watch to prevent false hangs */
  5387. tx_buffer->next_to_watch = NULL;
  5388. /* update the statistics for this packet */
  5389. total_bytes += tx_buffer->bytecount;
  5390. total_packets += tx_buffer->gso_segs;
  5391. /* free the skb */
  5392. dev_kfree_skb_any(tx_buffer->skb);
  5393. /* unmap skb header data */
  5394. dma_unmap_single(tx_ring->dev,
  5395. dma_unmap_addr(tx_buffer, dma),
  5396. dma_unmap_len(tx_buffer, len),
  5397. DMA_TO_DEVICE);
  5398. /* clear tx_buffer data */
  5399. tx_buffer->skb = NULL;
  5400. dma_unmap_len_set(tx_buffer, len, 0);
  5401. /* clear last DMA location and unmap remaining buffers */
  5402. while (tx_desc != eop_desc) {
  5403. tx_buffer++;
  5404. tx_desc++;
  5405. i++;
  5406. if (unlikely(!i)) {
  5407. i -= tx_ring->count;
  5408. tx_buffer = tx_ring->tx_buffer_info;
  5409. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5410. }
  5411. /* unmap any remaining paged data */
  5412. if (dma_unmap_len(tx_buffer, len)) {
  5413. dma_unmap_page(tx_ring->dev,
  5414. dma_unmap_addr(tx_buffer, dma),
  5415. dma_unmap_len(tx_buffer, len),
  5416. DMA_TO_DEVICE);
  5417. dma_unmap_len_set(tx_buffer, len, 0);
  5418. }
  5419. }
  5420. /* move us one more past the eop_desc for start of next pkt */
  5421. tx_buffer++;
  5422. tx_desc++;
  5423. i++;
  5424. if (unlikely(!i)) {
  5425. i -= tx_ring->count;
  5426. tx_buffer = tx_ring->tx_buffer_info;
  5427. tx_desc = IGB_TX_DESC(tx_ring, 0);
  5428. }
  5429. /* issue prefetch for next Tx descriptor */
  5430. prefetch(tx_desc);
  5431. /* update budget accounting */
  5432. budget--;
  5433. } while (likely(budget));
  5434. netdev_tx_completed_queue(txring_txq(tx_ring),
  5435. total_packets, total_bytes);
  5436. i += tx_ring->count;
  5437. tx_ring->next_to_clean = i;
  5438. u64_stats_update_begin(&tx_ring->tx_syncp);
  5439. tx_ring->tx_stats.bytes += total_bytes;
  5440. tx_ring->tx_stats.packets += total_packets;
  5441. u64_stats_update_end(&tx_ring->tx_syncp);
  5442. q_vector->tx.total_bytes += total_bytes;
  5443. q_vector->tx.total_packets += total_packets;
  5444. if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
  5445. struct e1000_hw *hw = &adapter->hw;
  5446. /* Detect a transmit hang in hardware, this serializes the
  5447. * check with the clearing of time_stamp and movement of i
  5448. */
  5449. clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
  5450. if (tx_buffer->next_to_watch &&
  5451. time_after(jiffies, tx_buffer->time_stamp +
  5452. (adapter->tx_timeout_factor * HZ)) &&
  5453. !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
  5454. /* detected Tx unit hang */
  5455. dev_err(tx_ring->dev,
  5456. "Detected Tx Unit Hang\n"
  5457. " Tx Queue <%d>\n"
  5458. " TDH <%x>\n"
  5459. " TDT <%x>\n"
  5460. " next_to_use <%x>\n"
  5461. " next_to_clean <%x>\n"
  5462. "buffer_info[next_to_clean]\n"
  5463. " time_stamp <%lx>\n"
  5464. " next_to_watch <%p>\n"
  5465. " jiffies <%lx>\n"
  5466. " desc.status <%x>\n",
  5467. tx_ring->queue_index,
  5468. rd32(E1000_TDH(tx_ring->reg_idx)),
  5469. readl(tx_ring->tail),
  5470. tx_ring->next_to_use,
  5471. tx_ring->next_to_clean,
  5472. tx_buffer->time_stamp,
  5473. tx_buffer->next_to_watch,
  5474. jiffies,
  5475. tx_buffer->next_to_watch->wb.status);
  5476. netif_stop_subqueue(tx_ring->netdev,
  5477. tx_ring->queue_index);
  5478. /* we are about to reset, no point in enabling stuff */
  5479. return true;
  5480. }
  5481. }
  5482. #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
  5483. if (unlikely(total_packets &&
  5484. netif_carrier_ok(tx_ring->netdev) &&
  5485. igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
  5486. /* Make sure that anybody stopping the queue after this
  5487. * sees the new next_to_clean.
  5488. */
  5489. smp_mb();
  5490. if (__netif_subqueue_stopped(tx_ring->netdev,
  5491. tx_ring->queue_index) &&
  5492. !(test_bit(__IGB_DOWN, &adapter->state))) {
  5493. netif_wake_subqueue(tx_ring->netdev,
  5494. tx_ring->queue_index);
  5495. u64_stats_update_begin(&tx_ring->tx_syncp);
  5496. tx_ring->tx_stats.restart_queue++;
  5497. u64_stats_update_end(&tx_ring->tx_syncp);
  5498. }
  5499. }
  5500. return !!budget;
  5501. }
  5502. /**
  5503. * igb_reuse_rx_page - page flip buffer and store it back on the ring
  5504. * @rx_ring: rx descriptor ring to store buffers on
  5505. * @old_buff: donor buffer to have page reused
  5506. *
  5507. * Synchronizes page for reuse by the adapter
  5508. **/
  5509. static void igb_reuse_rx_page(struct igb_ring *rx_ring,
  5510. struct igb_rx_buffer *old_buff)
  5511. {
  5512. struct igb_rx_buffer *new_buff;
  5513. u16 nta = rx_ring->next_to_alloc;
  5514. new_buff = &rx_ring->rx_buffer_info[nta];
  5515. /* update, and store next to alloc */
  5516. nta++;
  5517. rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
  5518. /* transfer page from old buffer to new buffer */
  5519. *new_buff = *old_buff;
  5520. /* sync the buffer for use by the device */
  5521. dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
  5522. old_buff->page_offset,
  5523. IGB_RX_BUFSZ,
  5524. DMA_FROM_DEVICE);
  5525. }
  5526. static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
  5527. struct page *page,
  5528. unsigned int truesize)
  5529. {
  5530. /* avoid re-using remote pages */
  5531. if (unlikely(page_to_nid(page) != numa_node_id()))
  5532. return false;
  5533. #if (PAGE_SIZE < 8192)
  5534. /* if we are only owner of page we can reuse it */
  5535. if (unlikely(page_count(page) != 1))
  5536. return false;
  5537. /* flip page offset to other buffer */
  5538. rx_buffer->page_offset ^= IGB_RX_BUFSZ;
  5539. /* since we are the only owner of the page and we need to
  5540. * increment it, just set the value to 2 in order to avoid
  5541. * an unnecessary locked operation
  5542. */
  5543. atomic_set(&page->_count, 2);
  5544. #else
  5545. /* move offset up to the next cache line */
  5546. rx_buffer->page_offset += truesize;
  5547. if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
  5548. return false;
  5549. /* bump ref count on page before it is given to the stack */
  5550. get_page(page);
  5551. #endif
  5552. return true;
  5553. }
  5554. /**
  5555. * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
  5556. * @rx_ring: rx descriptor ring to transact packets on
  5557. * @rx_buffer: buffer containing page to add
  5558. * @rx_desc: descriptor containing length of buffer written by hardware
  5559. * @skb: sk_buff to place the data into
  5560. *
  5561. * This function will add the data contained in rx_buffer->page to the skb.
  5562. * This is done either through a direct copy if the data in the buffer is
  5563. * less than the skb header size, otherwise it will just attach the page as
  5564. * a frag to the skb.
  5565. *
  5566. * The function will then update the page offset if necessary and return
  5567. * true if the buffer can be reused by the adapter.
  5568. **/
  5569. static bool igb_add_rx_frag(struct igb_ring *rx_ring,
  5570. struct igb_rx_buffer *rx_buffer,
  5571. union e1000_adv_rx_desc *rx_desc,
  5572. struct sk_buff *skb)
  5573. {
  5574. struct page *page = rx_buffer->page;
  5575. unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
  5576. #if (PAGE_SIZE < 8192)
  5577. unsigned int truesize = IGB_RX_BUFSZ;
  5578. #else
  5579. unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
  5580. #endif
  5581. if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
  5582. unsigned char *va = page_address(page) + rx_buffer->page_offset;
  5583. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
  5584. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5585. va += IGB_TS_HDR_LEN;
  5586. size -= IGB_TS_HDR_LEN;
  5587. }
  5588. memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
  5589. /* we can reuse buffer as-is, just make sure it is local */
  5590. if (likely(page_to_nid(page) == numa_node_id()))
  5591. return true;
  5592. /* this page cannot be reused so discard it */
  5593. put_page(page);
  5594. return false;
  5595. }
  5596. skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
  5597. rx_buffer->page_offset, size, truesize);
  5598. return igb_can_reuse_rx_page(rx_buffer, page, truesize);
  5599. }
  5600. static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
  5601. union e1000_adv_rx_desc *rx_desc,
  5602. struct sk_buff *skb)
  5603. {
  5604. struct igb_rx_buffer *rx_buffer;
  5605. struct page *page;
  5606. rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
  5607. page = rx_buffer->page;
  5608. prefetchw(page);
  5609. if (likely(!skb)) {
  5610. void *page_addr = page_address(page) +
  5611. rx_buffer->page_offset;
  5612. /* prefetch first cache line of first page */
  5613. prefetch(page_addr);
  5614. #if L1_CACHE_BYTES < 128
  5615. prefetch(page_addr + L1_CACHE_BYTES);
  5616. #endif
  5617. /* allocate a skb to store the frags */
  5618. skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
  5619. IGB_RX_HDR_LEN);
  5620. if (unlikely(!skb)) {
  5621. rx_ring->rx_stats.alloc_failed++;
  5622. return NULL;
  5623. }
  5624. /* we will be copying header into skb->data in
  5625. * pskb_may_pull so it is in our interest to prefetch
  5626. * it now to avoid a possible cache miss
  5627. */
  5628. prefetchw(skb->data);
  5629. }
  5630. /* we are reusing so sync this buffer for CPU use */
  5631. dma_sync_single_range_for_cpu(rx_ring->dev,
  5632. rx_buffer->dma,
  5633. rx_buffer->page_offset,
  5634. IGB_RX_BUFSZ,
  5635. DMA_FROM_DEVICE);
  5636. /* pull page into skb */
  5637. if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
  5638. /* hand second half of page back to the ring */
  5639. igb_reuse_rx_page(rx_ring, rx_buffer);
  5640. } else {
  5641. /* we are not reusing the buffer so unmap it */
  5642. dma_unmap_page(rx_ring->dev, rx_buffer->dma,
  5643. PAGE_SIZE, DMA_FROM_DEVICE);
  5644. }
  5645. /* clear contents of rx_buffer */
  5646. rx_buffer->page = NULL;
  5647. return skb;
  5648. }
  5649. static inline void igb_rx_checksum(struct igb_ring *ring,
  5650. union e1000_adv_rx_desc *rx_desc,
  5651. struct sk_buff *skb)
  5652. {
  5653. skb_checksum_none_assert(skb);
  5654. /* Ignore Checksum bit is set */
  5655. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
  5656. return;
  5657. /* Rx checksum disabled via ethtool */
  5658. if (!(ring->netdev->features & NETIF_F_RXCSUM))
  5659. return;
  5660. /* TCP/UDP checksum error bit is set */
  5661. if (igb_test_staterr(rx_desc,
  5662. E1000_RXDEXT_STATERR_TCPE |
  5663. E1000_RXDEXT_STATERR_IPE)) {
  5664. /* work around errata with sctp packets where the TCPE aka
  5665. * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
  5666. * packets, (aka let the stack check the crc32c)
  5667. */
  5668. if (!((skb->len == 60) &&
  5669. test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
  5670. u64_stats_update_begin(&ring->rx_syncp);
  5671. ring->rx_stats.csum_err++;
  5672. u64_stats_update_end(&ring->rx_syncp);
  5673. }
  5674. /* let the stack verify checksum errors */
  5675. return;
  5676. }
  5677. /* It must be a TCP or UDP packet with a valid checksum */
  5678. if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
  5679. E1000_RXD_STAT_UDPCS))
  5680. skb->ip_summed = CHECKSUM_UNNECESSARY;
  5681. dev_dbg(ring->dev, "cksum success: bits %08X\n",
  5682. le32_to_cpu(rx_desc->wb.upper.status_error));
  5683. }
  5684. static inline void igb_rx_hash(struct igb_ring *ring,
  5685. union e1000_adv_rx_desc *rx_desc,
  5686. struct sk_buff *skb)
  5687. {
  5688. if (ring->netdev->features & NETIF_F_RXHASH)
  5689. skb_set_hash(skb,
  5690. le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
  5691. PKT_HASH_TYPE_L3);
  5692. }
  5693. /**
  5694. * igb_is_non_eop - process handling of non-EOP buffers
  5695. * @rx_ring: Rx ring being processed
  5696. * @rx_desc: Rx descriptor for current buffer
  5697. * @skb: current socket buffer containing buffer in progress
  5698. *
  5699. * This function updates next to clean. If the buffer is an EOP buffer
  5700. * this function exits returning false, otherwise it will place the
  5701. * sk_buff in the next buffer to be chained and return true indicating
  5702. * that this is in fact a non-EOP buffer.
  5703. **/
  5704. static bool igb_is_non_eop(struct igb_ring *rx_ring,
  5705. union e1000_adv_rx_desc *rx_desc)
  5706. {
  5707. u32 ntc = rx_ring->next_to_clean + 1;
  5708. /* fetch, update, and store next to clean */
  5709. ntc = (ntc < rx_ring->count) ? ntc : 0;
  5710. rx_ring->next_to_clean = ntc;
  5711. prefetch(IGB_RX_DESC(rx_ring, ntc));
  5712. if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
  5713. return false;
  5714. return true;
  5715. }
  5716. /**
  5717. * igb_get_headlen - determine size of header for LRO/GRO
  5718. * @data: pointer to the start of the headers
  5719. * @max_len: total length of section to find headers in
  5720. *
  5721. * This function is meant to determine the length of headers that will
  5722. * be recognized by hardware for LRO, and GRO offloads. The main
  5723. * motivation of doing this is to only perform one pull for IPv4 TCP
  5724. * packets so that we can do basic things like calculating the gso_size
  5725. * based on the average data per packet.
  5726. **/
  5727. static unsigned int igb_get_headlen(unsigned char *data,
  5728. unsigned int max_len)
  5729. {
  5730. union {
  5731. unsigned char *network;
  5732. /* l2 headers */
  5733. struct ethhdr *eth;
  5734. struct vlan_hdr *vlan;
  5735. /* l3 headers */
  5736. struct iphdr *ipv4;
  5737. struct ipv6hdr *ipv6;
  5738. } hdr;
  5739. __be16 protocol;
  5740. u8 nexthdr = 0; /* default to not TCP */
  5741. u8 hlen;
  5742. /* this should never happen, but better safe than sorry */
  5743. if (max_len < ETH_HLEN)
  5744. return max_len;
  5745. /* initialize network frame pointer */
  5746. hdr.network = data;
  5747. /* set first protocol and move network header forward */
  5748. protocol = hdr.eth->h_proto;
  5749. hdr.network += ETH_HLEN;
  5750. /* handle any vlan tag if present */
  5751. if (protocol == htons(ETH_P_8021Q)) {
  5752. if ((hdr.network - data) > (max_len - VLAN_HLEN))
  5753. return max_len;
  5754. protocol = hdr.vlan->h_vlan_encapsulated_proto;
  5755. hdr.network += VLAN_HLEN;
  5756. }
  5757. /* handle L3 protocols */
  5758. if (protocol == htons(ETH_P_IP)) {
  5759. if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
  5760. return max_len;
  5761. /* access ihl as a u8 to avoid unaligned access on ia64 */
  5762. hlen = (hdr.network[0] & 0x0F) << 2;
  5763. /* verify hlen meets minimum size requirements */
  5764. if (hlen < sizeof(struct iphdr))
  5765. return hdr.network - data;
  5766. /* record next protocol if header is present */
  5767. if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
  5768. nexthdr = hdr.ipv4->protocol;
  5769. } else if (protocol == htons(ETH_P_IPV6)) {
  5770. if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
  5771. return max_len;
  5772. /* record next protocol */
  5773. nexthdr = hdr.ipv6->nexthdr;
  5774. hlen = sizeof(struct ipv6hdr);
  5775. } else {
  5776. return hdr.network - data;
  5777. }
  5778. /* relocate pointer to start of L4 header */
  5779. hdr.network += hlen;
  5780. /* finally sort out TCP */
  5781. if (nexthdr == IPPROTO_TCP) {
  5782. if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
  5783. return max_len;
  5784. /* access doff as a u8 to avoid unaligned access on ia64 */
  5785. hlen = (hdr.network[12] & 0xF0) >> 2;
  5786. /* verify hlen meets minimum size requirements */
  5787. if (hlen < sizeof(struct tcphdr))
  5788. return hdr.network - data;
  5789. hdr.network += hlen;
  5790. } else if (nexthdr == IPPROTO_UDP) {
  5791. if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
  5792. return max_len;
  5793. hdr.network += sizeof(struct udphdr);
  5794. }
  5795. /* If everything has gone correctly hdr.network should be the
  5796. * data section of the packet and will be the end of the header.
  5797. * If not then it probably represents the end of the last recognized
  5798. * header.
  5799. */
  5800. if ((hdr.network - data) < max_len)
  5801. return hdr.network - data;
  5802. else
  5803. return max_len;
  5804. }
  5805. /**
  5806. * igb_pull_tail - igb specific version of skb_pull_tail
  5807. * @rx_ring: rx descriptor ring packet is being transacted on
  5808. * @rx_desc: pointer to the EOP Rx descriptor
  5809. * @skb: pointer to current skb being adjusted
  5810. *
  5811. * This function is an igb specific version of __pskb_pull_tail. The
  5812. * main difference between this version and the original function is that
  5813. * this function can make several assumptions about the state of things
  5814. * that allow for significant optimizations versus the standard function.
  5815. * As a result we can do things like drop a frag and maintain an accurate
  5816. * truesize for the skb.
  5817. */
  5818. static void igb_pull_tail(struct igb_ring *rx_ring,
  5819. union e1000_adv_rx_desc *rx_desc,
  5820. struct sk_buff *skb)
  5821. {
  5822. struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  5823. unsigned char *va;
  5824. unsigned int pull_len;
  5825. /* it is valid to use page_address instead of kmap since we are
  5826. * working with pages allocated out of the lomem pool per
  5827. * alloc_page(GFP_ATOMIC)
  5828. */
  5829. va = skb_frag_address(frag);
  5830. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
  5831. /* retrieve timestamp from buffer */
  5832. igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
  5833. /* update pointers to remove timestamp header */
  5834. skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
  5835. frag->page_offset += IGB_TS_HDR_LEN;
  5836. skb->data_len -= IGB_TS_HDR_LEN;
  5837. skb->len -= IGB_TS_HDR_LEN;
  5838. /* move va to start of packet data */
  5839. va += IGB_TS_HDR_LEN;
  5840. }
  5841. /* we need the header to contain the greater of either ETH_HLEN or
  5842. * 60 bytes if the skb->len is less than 60 for skb_pad.
  5843. */
  5844. pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
  5845. /* align pull length to size of long to optimize memcpy performance */
  5846. skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
  5847. /* update all of the pointers */
  5848. skb_frag_size_sub(frag, pull_len);
  5849. frag->page_offset += pull_len;
  5850. skb->data_len -= pull_len;
  5851. skb->tail += pull_len;
  5852. }
  5853. /**
  5854. * igb_cleanup_headers - Correct corrupted or empty headers
  5855. * @rx_ring: rx descriptor ring packet is being transacted on
  5856. * @rx_desc: pointer to the EOP Rx descriptor
  5857. * @skb: pointer to current skb being fixed
  5858. *
  5859. * Address the case where we are pulling data in on pages only
  5860. * and as such no data is present in the skb header.
  5861. *
  5862. * In addition if skb is not at least 60 bytes we need to pad it so that
  5863. * it is large enough to qualify as a valid Ethernet frame.
  5864. *
  5865. * Returns true if an error was encountered and skb was freed.
  5866. **/
  5867. static bool igb_cleanup_headers(struct igb_ring *rx_ring,
  5868. union e1000_adv_rx_desc *rx_desc,
  5869. struct sk_buff *skb)
  5870. {
  5871. if (unlikely((igb_test_staterr(rx_desc,
  5872. E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
  5873. struct net_device *netdev = rx_ring->netdev;
  5874. if (!(netdev->features & NETIF_F_RXALL)) {
  5875. dev_kfree_skb_any(skb);
  5876. return true;
  5877. }
  5878. }
  5879. /* place header in linear portion of buffer */
  5880. if (skb_is_nonlinear(skb))
  5881. igb_pull_tail(rx_ring, rx_desc, skb);
  5882. /* if skb_pad returns an error the skb was freed */
  5883. if (unlikely(skb->len < 60)) {
  5884. int pad_len = 60 - skb->len;
  5885. if (skb_pad(skb, pad_len))
  5886. return true;
  5887. __skb_put(skb, pad_len);
  5888. }
  5889. return false;
  5890. }
  5891. /**
  5892. * igb_process_skb_fields - Populate skb header fields from Rx descriptor
  5893. * @rx_ring: rx descriptor ring packet is being transacted on
  5894. * @rx_desc: pointer to the EOP Rx descriptor
  5895. * @skb: pointer to current skb being populated
  5896. *
  5897. * This function checks the ring, descriptor, and packet information in
  5898. * order to populate the hash, checksum, VLAN, timestamp, protocol, and
  5899. * other fields within the skb.
  5900. **/
  5901. static void igb_process_skb_fields(struct igb_ring *rx_ring,
  5902. union e1000_adv_rx_desc *rx_desc,
  5903. struct sk_buff *skb)
  5904. {
  5905. struct net_device *dev = rx_ring->netdev;
  5906. igb_rx_hash(rx_ring, rx_desc, skb);
  5907. igb_rx_checksum(rx_ring, rx_desc, skb);
  5908. if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
  5909. !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
  5910. igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
  5911. if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  5912. igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
  5913. u16 vid;
  5914. if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
  5915. test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
  5916. vid = be16_to_cpu(rx_desc->wb.upper.vlan);
  5917. else
  5918. vid = le16_to_cpu(rx_desc->wb.upper.vlan);
  5919. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
  5920. }
  5921. skb_record_rx_queue(skb, rx_ring->queue_index);
  5922. skb->protocol = eth_type_trans(skb, rx_ring->netdev);
  5923. }
  5924. static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
  5925. {
  5926. struct igb_ring *rx_ring = q_vector->rx.ring;
  5927. struct sk_buff *skb = rx_ring->skb;
  5928. unsigned int total_bytes = 0, total_packets = 0;
  5929. u16 cleaned_count = igb_desc_unused(rx_ring);
  5930. while (likely(total_packets < budget)) {
  5931. union e1000_adv_rx_desc *rx_desc;
  5932. /* return some buffers to hardware, one at a time is too slow */
  5933. if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
  5934. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  5935. cleaned_count = 0;
  5936. }
  5937. rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
  5938. if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
  5939. break;
  5940. /* This memory barrier is needed to keep us from reading
  5941. * any other fields out of the rx_desc until we know the
  5942. * RXD_STAT_DD bit is set
  5943. */
  5944. rmb();
  5945. /* retrieve a buffer from the ring */
  5946. skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
  5947. /* exit if we failed to retrieve a buffer */
  5948. if (!skb)
  5949. break;
  5950. cleaned_count++;
  5951. /* fetch next buffer in frame if non-eop */
  5952. if (igb_is_non_eop(rx_ring, rx_desc))
  5953. continue;
  5954. /* verify the packet layout is correct */
  5955. if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
  5956. skb = NULL;
  5957. continue;
  5958. }
  5959. /* probably a little skewed due to removing CRC */
  5960. total_bytes += skb->len;
  5961. /* populate checksum, timestamp, VLAN, and protocol */
  5962. igb_process_skb_fields(rx_ring, rx_desc, skb);
  5963. napi_gro_receive(&q_vector->napi, skb);
  5964. /* reset skb pointer */
  5965. skb = NULL;
  5966. /* update budget accounting */
  5967. total_packets++;
  5968. }
  5969. /* place incomplete frames back on ring for completion */
  5970. rx_ring->skb = skb;
  5971. u64_stats_update_begin(&rx_ring->rx_syncp);
  5972. rx_ring->rx_stats.packets += total_packets;
  5973. rx_ring->rx_stats.bytes += total_bytes;
  5974. u64_stats_update_end(&rx_ring->rx_syncp);
  5975. q_vector->rx.total_packets += total_packets;
  5976. q_vector->rx.total_bytes += total_bytes;
  5977. if (cleaned_count)
  5978. igb_alloc_rx_buffers(rx_ring, cleaned_count);
  5979. return total_packets < budget;
  5980. }
  5981. static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
  5982. struct igb_rx_buffer *bi)
  5983. {
  5984. struct page *page = bi->page;
  5985. dma_addr_t dma;
  5986. /* since we are recycling buffers we should seldom need to alloc */
  5987. if (likely(page))
  5988. return true;
  5989. /* alloc new page for storage */
  5990. page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
  5991. if (unlikely(!page)) {
  5992. rx_ring->rx_stats.alloc_failed++;
  5993. return false;
  5994. }
  5995. /* map page for use */
  5996. dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
  5997. /* if mapping failed free memory back to system since
  5998. * there isn't much point in holding memory we can't use
  5999. */
  6000. if (dma_mapping_error(rx_ring->dev, dma)) {
  6001. __free_page(page);
  6002. rx_ring->rx_stats.alloc_failed++;
  6003. return false;
  6004. }
  6005. bi->dma = dma;
  6006. bi->page = page;
  6007. bi->page_offset = 0;
  6008. return true;
  6009. }
  6010. /**
  6011. * igb_alloc_rx_buffers - Replace used receive buffers; packet split
  6012. * @adapter: address of board private structure
  6013. **/
  6014. void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
  6015. {
  6016. union e1000_adv_rx_desc *rx_desc;
  6017. struct igb_rx_buffer *bi;
  6018. u16 i = rx_ring->next_to_use;
  6019. /* nothing to do */
  6020. if (!cleaned_count)
  6021. return;
  6022. rx_desc = IGB_RX_DESC(rx_ring, i);
  6023. bi = &rx_ring->rx_buffer_info[i];
  6024. i -= rx_ring->count;
  6025. do {
  6026. if (!igb_alloc_mapped_page(rx_ring, bi))
  6027. break;
  6028. /* Refresh the desc even if buffer_addrs didn't change
  6029. * because each write-back erases this info.
  6030. */
  6031. rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
  6032. rx_desc++;
  6033. bi++;
  6034. i++;
  6035. if (unlikely(!i)) {
  6036. rx_desc = IGB_RX_DESC(rx_ring, 0);
  6037. bi = rx_ring->rx_buffer_info;
  6038. i -= rx_ring->count;
  6039. }
  6040. /* clear the hdr_addr for the next_to_use descriptor */
  6041. rx_desc->read.hdr_addr = 0;
  6042. cleaned_count--;
  6043. } while (cleaned_count);
  6044. i += rx_ring->count;
  6045. if (rx_ring->next_to_use != i) {
  6046. /* record the next descriptor to use */
  6047. rx_ring->next_to_use = i;
  6048. /* update next to alloc since we have filled the ring */
  6049. rx_ring->next_to_alloc = i;
  6050. /* Force memory writes to complete before letting h/w
  6051. * know there are new descriptors to fetch. (Only
  6052. * applicable for weak-ordered memory model archs,
  6053. * such as IA-64).
  6054. */
  6055. wmb();
  6056. writel(i, rx_ring->tail);
  6057. }
  6058. }
  6059. /**
  6060. * igb_mii_ioctl -
  6061. * @netdev:
  6062. * @ifreq:
  6063. * @cmd:
  6064. **/
  6065. static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6066. {
  6067. struct igb_adapter *adapter = netdev_priv(netdev);
  6068. struct mii_ioctl_data *data = if_mii(ifr);
  6069. if (adapter->hw.phy.media_type != e1000_media_type_copper)
  6070. return -EOPNOTSUPP;
  6071. switch (cmd) {
  6072. case SIOCGMIIPHY:
  6073. data->phy_id = adapter->hw.phy.addr;
  6074. break;
  6075. case SIOCGMIIREG:
  6076. if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
  6077. &data->val_out))
  6078. return -EIO;
  6079. break;
  6080. case SIOCSMIIREG:
  6081. default:
  6082. return -EOPNOTSUPP;
  6083. }
  6084. return 0;
  6085. }
  6086. /**
  6087. * igb_ioctl -
  6088. * @netdev:
  6089. * @ifreq:
  6090. * @cmd:
  6091. **/
  6092. static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
  6093. {
  6094. switch (cmd) {
  6095. case SIOCGMIIPHY:
  6096. case SIOCGMIIREG:
  6097. case SIOCSMIIREG:
  6098. return igb_mii_ioctl(netdev, ifr, cmd);
  6099. case SIOCGHWTSTAMP:
  6100. return igb_ptp_get_ts_config(netdev, ifr);
  6101. case SIOCSHWTSTAMP:
  6102. return igb_ptp_set_ts_config(netdev, ifr);
  6103. default:
  6104. return -EOPNOTSUPP;
  6105. }
  6106. }
  6107. void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6108. {
  6109. struct igb_adapter *adapter = hw->back;
  6110. pci_read_config_word(adapter->pdev, reg, value);
  6111. }
  6112. void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
  6113. {
  6114. struct igb_adapter *adapter = hw->back;
  6115. pci_write_config_word(adapter->pdev, reg, *value);
  6116. }
  6117. s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6118. {
  6119. struct igb_adapter *adapter = hw->back;
  6120. if (pcie_capability_read_word(adapter->pdev, reg, value))
  6121. return -E1000_ERR_CONFIG;
  6122. return 0;
  6123. }
  6124. s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
  6125. {
  6126. struct igb_adapter *adapter = hw->back;
  6127. if (pcie_capability_write_word(adapter->pdev, reg, *value))
  6128. return -E1000_ERR_CONFIG;
  6129. return 0;
  6130. }
  6131. static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
  6132. {
  6133. struct igb_adapter *adapter = netdev_priv(netdev);
  6134. struct e1000_hw *hw = &adapter->hw;
  6135. u32 ctrl, rctl;
  6136. bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
  6137. if (enable) {
  6138. /* enable VLAN tag insert/strip */
  6139. ctrl = rd32(E1000_CTRL);
  6140. ctrl |= E1000_CTRL_VME;
  6141. wr32(E1000_CTRL, ctrl);
  6142. /* Disable CFI check */
  6143. rctl = rd32(E1000_RCTL);
  6144. rctl &= ~E1000_RCTL_CFIEN;
  6145. wr32(E1000_RCTL, rctl);
  6146. } else {
  6147. /* disable VLAN tag insert/strip */
  6148. ctrl = rd32(E1000_CTRL);
  6149. ctrl &= ~E1000_CTRL_VME;
  6150. wr32(E1000_CTRL, ctrl);
  6151. }
  6152. igb_rlpml_set(adapter);
  6153. }
  6154. static int igb_vlan_rx_add_vid(struct net_device *netdev,
  6155. __be16 proto, u16 vid)
  6156. {
  6157. struct igb_adapter *adapter = netdev_priv(netdev);
  6158. struct e1000_hw *hw = &adapter->hw;
  6159. int pf_id = adapter->vfs_allocated_count;
  6160. /* attempt to add filter to vlvf array */
  6161. igb_vlvf_set(adapter, vid, true, pf_id);
  6162. /* add the filter since PF can receive vlans w/o entry in vlvf */
  6163. igb_vfta_set(hw, vid, true);
  6164. set_bit(vid, adapter->active_vlans);
  6165. return 0;
  6166. }
  6167. static int igb_vlan_rx_kill_vid(struct net_device *netdev,
  6168. __be16 proto, u16 vid)
  6169. {
  6170. struct igb_adapter *adapter = netdev_priv(netdev);
  6171. struct e1000_hw *hw = &adapter->hw;
  6172. int pf_id = adapter->vfs_allocated_count;
  6173. s32 err;
  6174. /* remove vlan from VLVF table array */
  6175. err = igb_vlvf_set(adapter, vid, false, pf_id);
  6176. /* if vid was not present in VLVF just remove it from table */
  6177. if (err)
  6178. igb_vfta_set(hw, vid, false);
  6179. clear_bit(vid, adapter->active_vlans);
  6180. return 0;
  6181. }
  6182. static void igb_restore_vlan(struct igb_adapter *adapter)
  6183. {
  6184. u16 vid;
  6185. igb_vlan_mode(adapter->netdev, adapter->netdev->features);
  6186. for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
  6187. igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
  6188. }
  6189. int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
  6190. {
  6191. struct pci_dev *pdev = adapter->pdev;
  6192. struct e1000_mac_info *mac = &adapter->hw.mac;
  6193. mac->autoneg = 0;
  6194. /* Make sure dplx is at most 1 bit and lsb of speed is not set
  6195. * for the switch() below to work
  6196. */
  6197. if ((spd & 1) || (dplx & ~1))
  6198. goto err_inval;
  6199. /* Fiber NIC's only allow 1000 gbps Full duplex
  6200. * and 100Mbps Full duplex for 100baseFx sfp
  6201. */
  6202. if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
  6203. switch (spd + dplx) {
  6204. case SPEED_10 + DUPLEX_HALF:
  6205. case SPEED_10 + DUPLEX_FULL:
  6206. case SPEED_100 + DUPLEX_HALF:
  6207. goto err_inval;
  6208. default:
  6209. break;
  6210. }
  6211. }
  6212. switch (spd + dplx) {
  6213. case SPEED_10 + DUPLEX_HALF:
  6214. mac->forced_speed_duplex = ADVERTISE_10_HALF;
  6215. break;
  6216. case SPEED_10 + DUPLEX_FULL:
  6217. mac->forced_speed_duplex = ADVERTISE_10_FULL;
  6218. break;
  6219. case SPEED_100 + DUPLEX_HALF:
  6220. mac->forced_speed_duplex = ADVERTISE_100_HALF;
  6221. break;
  6222. case SPEED_100 + DUPLEX_FULL:
  6223. mac->forced_speed_duplex = ADVERTISE_100_FULL;
  6224. break;
  6225. case SPEED_1000 + DUPLEX_FULL:
  6226. mac->autoneg = 1;
  6227. adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
  6228. break;
  6229. case SPEED_1000 + DUPLEX_HALF: /* not supported */
  6230. default:
  6231. goto err_inval;
  6232. }
  6233. /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
  6234. adapter->hw.phy.mdix = AUTO_ALL_MODES;
  6235. return 0;
  6236. err_inval:
  6237. dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
  6238. return -EINVAL;
  6239. }
  6240. static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
  6241. bool runtime)
  6242. {
  6243. struct net_device *netdev = pci_get_drvdata(pdev);
  6244. struct igb_adapter *adapter = netdev_priv(netdev);
  6245. struct e1000_hw *hw = &adapter->hw;
  6246. u32 ctrl, rctl, status;
  6247. u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
  6248. #ifdef CONFIG_PM
  6249. int retval = 0;
  6250. #endif
  6251. netif_device_detach(netdev);
  6252. if (netif_running(netdev))
  6253. __igb_close(netdev, true);
  6254. igb_clear_interrupt_scheme(adapter);
  6255. #ifdef CONFIG_PM
  6256. retval = pci_save_state(pdev);
  6257. if (retval)
  6258. return retval;
  6259. #endif
  6260. status = rd32(E1000_STATUS);
  6261. if (status & E1000_STATUS_LU)
  6262. wufc &= ~E1000_WUFC_LNKC;
  6263. if (wufc) {
  6264. igb_setup_rctl(adapter);
  6265. igb_set_rx_mode(netdev);
  6266. /* turn on all-multi mode if wake on multicast is enabled */
  6267. if (wufc & E1000_WUFC_MC) {
  6268. rctl = rd32(E1000_RCTL);
  6269. rctl |= E1000_RCTL_MPE;
  6270. wr32(E1000_RCTL, rctl);
  6271. }
  6272. ctrl = rd32(E1000_CTRL);
  6273. /* advertise wake from D3Cold */
  6274. #define E1000_CTRL_ADVD3WUC 0x00100000
  6275. /* phy power management enable */
  6276. #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
  6277. ctrl |= E1000_CTRL_ADVD3WUC;
  6278. wr32(E1000_CTRL, ctrl);
  6279. /* Allow time for pending master requests to run */
  6280. igb_disable_pcie_master(hw);
  6281. wr32(E1000_WUC, E1000_WUC_PME_EN);
  6282. wr32(E1000_WUFC, wufc);
  6283. } else {
  6284. wr32(E1000_WUC, 0);
  6285. wr32(E1000_WUFC, 0);
  6286. }
  6287. *enable_wake = wufc || adapter->en_mng_pt;
  6288. if (!*enable_wake)
  6289. igb_power_down_link(adapter);
  6290. else
  6291. igb_power_up_link(adapter);
  6292. /* Release control of h/w to f/w. If f/w is AMT enabled, this
  6293. * would have already happened in close and is redundant.
  6294. */
  6295. igb_release_hw_control(adapter);
  6296. pci_disable_device(pdev);
  6297. return 0;
  6298. }
  6299. #ifdef CONFIG_PM
  6300. #ifdef CONFIG_PM_SLEEP
  6301. static int igb_suspend(struct device *dev)
  6302. {
  6303. int retval;
  6304. bool wake;
  6305. struct pci_dev *pdev = to_pci_dev(dev);
  6306. retval = __igb_shutdown(pdev, &wake, 0);
  6307. if (retval)
  6308. return retval;
  6309. if (wake) {
  6310. pci_prepare_to_sleep(pdev);
  6311. } else {
  6312. pci_wake_from_d3(pdev, false);
  6313. pci_set_power_state(pdev, PCI_D3hot);
  6314. }
  6315. return 0;
  6316. }
  6317. #endif /* CONFIG_PM_SLEEP */
  6318. static int igb_resume(struct device *dev)
  6319. {
  6320. struct pci_dev *pdev = to_pci_dev(dev);
  6321. struct net_device *netdev = pci_get_drvdata(pdev);
  6322. struct igb_adapter *adapter = netdev_priv(netdev);
  6323. struct e1000_hw *hw = &adapter->hw;
  6324. u32 err;
  6325. pci_set_power_state(pdev, PCI_D0);
  6326. pci_restore_state(pdev);
  6327. pci_save_state(pdev);
  6328. err = pci_enable_device_mem(pdev);
  6329. if (err) {
  6330. dev_err(&pdev->dev,
  6331. "igb: Cannot enable PCI device from suspend\n");
  6332. return err;
  6333. }
  6334. pci_set_master(pdev);
  6335. pci_enable_wake(pdev, PCI_D3hot, 0);
  6336. pci_enable_wake(pdev, PCI_D3cold, 0);
  6337. if (igb_init_interrupt_scheme(adapter, true)) {
  6338. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6339. return -ENOMEM;
  6340. }
  6341. igb_reset(adapter);
  6342. /* let the f/w know that the h/w is now under the control of the
  6343. * driver.
  6344. */
  6345. igb_get_hw_control(adapter);
  6346. wr32(E1000_WUS, ~0);
  6347. if (netdev->flags & IFF_UP) {
  6348. rtnl_lock();
  6349. err = __igb_open(netdev, true);
  6350. rtnl_unlock();
  6351. if (err)
  6352. return err;
  6353. }
  6354. netif_device_attach(netdev);
  6355. return 0;
  6356. }
  6357. #ifdef CONFIG_PM_RUNTIME
  6358. static int igb_runtime_idle(struct device *dev)
  6359. {
  6360. struct pci_dev *pdev = to_pci_dev(dev);
  6361. struct net_device *netdev = pci_get_drvdata(pdev);
  6362. struct igb_adapter *adapter = netdev_priv(netdev);
  6363. if (!igb_has_link(adapter))
  6364. pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
  6365. return -EBUSY;
  6366. }
  6367. static int igb_runtime_suspend(struct device *dev)
  6368. {
  6369. struct pci_dev *pdev = to_pci_dev(dev);
  6370. int retval;
  6371. bool wake;
  6372. retval = __igb_shutdown(pdev, &wake, 1);
  6373. if (retval)
  6374. return retval;
  6375. if (wake) {
  6376. pci_prepare_to_sleep(pdev);
  6377. } else {
  6378. pci_wake_from_d3(pdev, false);
  6379. pci_set_power_state(pdev, PCI_D3hot);
  6380. }
  6381. return 0;
  6382. }
  6383. static int igb_runtime_resume(struct device *dev)
  6384. {
  6385. return igb_resume(dev);
  6386. }
  6387. #endif /* CONFIG_PM_RUNTIME */
  6388. #endif
  6389. static void igb_shutdown(struct pci_dev *pdev)
  6390. {
  6391. bool wake;
  6392. __igb_shutdown(pdev, &wake, 0);
  6393. if (system_state == SYSTEM_POWER_OFF) {
  6394. pci_wake_from_d3(pdev, wake);
  6395. pci_set_power_state(pdev, PCI_D3hot);
  6396. }
  6397. }
  6398. #ifdef CONFIG_PCI_IOV
  6399. static int igb_sriov_reinit(struct pci_dev *dev)
  6400. {
  6401. struct net_device *netdev = pci_get_drvdata(dev);
  6402. struct igb_adapter *adapter = netdev_priv(netdev);
  6403. struct pci_dev *pdev = adapter->pdev;
  6404. rtnl_lock();
  6405. if (netif_running(netdev))
  6406. igb_close(netdev);
  6407. else
  6408. igb_reset(adapter);
  6409. igb_clear_interrupt_scheme(adapter);
  6410. igb_init_queue_configuration(adapter);
  6411. if (igb_init_interrupt_scheme(adapter, true)) {
  6412. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6413. return -ENOMEM;
  6414. }
  6415. if (netif_running(netdev))
  6416. igb_open(netdev);
  6417. rtnl_unlock();
  6418. return 0;
  6419. }
  6420. static int igb_pci_disable_sriov(struct pci_dev *dev)
  6421. {
  6422. int err = igb_disable_sriov(dev);
  6423. if (!err)
  6424. err = igb_sriov_reinit(dev);
  6425. return err;
  6426. }
  6427. static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
  6428. {
  6429. int err = igb_enable_sriov(dev, num_vfs);
  6430. if (err)
  6431. goto out;
  6432. err = igb_sriov_reinit(dev);
  6433. if (!err)
  6434. return num_vfs;
  6435. out:
  6436. return err;
  6437. }
  6438. #endif
  6439. static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
  6440. {
  6441. #ifdef CONFIG_PCI_IOV
  6442. if (num_vfs == 0)
  6443. return igb_pci_disable_sriov(dev);
  6444. else
  6445. return igb_pci_enable_sriov(dev, num_vfs);
  6446. #endif
  6447. return 0;
  6448. }
  6449. #ifdef CONFIG_NET_POLL_CONTROLLER
  6450. /* Polling 'interrupt' - used by things like netconsole to send skbs
  6451. * without having to re-enable interrupts. It's not called while
  6452. * the interrupt routine is executing.
  6453. */
  6454. static void igb_netpoll(struct net_device *netdev)
  6455. {
  6456. struct igb_adapter *adapter = netdev_priv(netdev);
  6457. struct e1000_hw *hw = &adapter->hw;
  6458. struct igb_q_vector *q_vector;
  6459. int i;
  6460. for (i = 0; i < adapter->num_q_vectors; i++) {
  6461. q_vector = adapter->q_vector[i];
  6462. if (adapter->flags & IGB_FLAG_HAS_MSIX)
  6463. wr32(E1000_EIMC, q_vector->eims_value);
  6464. else
  6465. igb_irq_disable(adapter);
  6466. napi_schedule(&q_vector->napi);
  6467. }
  6468. }
  6469. #endif /* CONFIG_NET_POLL_CONTROLLER */
  6470. /**
  6471. * igb_io_error_detected - called when PCI error is detected
  6472. * @pdev: Pointer to PCI device
  6473. * @state: The current pci connection state
  6474. *
  6475. * This function is called after a PCI bus error affecting
  6476. * this device has been detected.
  6477. **/
  6478. static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
  6479. pci_channel_state_t state)
  6480. {
  6481. struct net_device *netdev = pci_get_drvdata(pdev);
  6482. struct igb_adapter *adapter = netdev_priv(netdev);
  6483. netif_device_detach(netdev);
  6484. if (state == pci_channel_io_perm_failure)
  6485. return PCI_ERS_RESULT_DISCONNECT;
  6486. if (netif_running(netdev))
  6487. igb_down(adapter);
  6488. pci_disable_device(pdev);
  6489. /* Request a slot slot reset. */
  6490. return PCI_ERS_RESULT_NEED_RESET;
  6491. }
  6492. /**
  6493. * igb_io_slot_reset - called after the pci bus has been reset.
  6494. * @pdev: Pointer to PCI device
  6495. *
  6496. * Restart the card from scratch, as if from a cold-boot. Implementation
  6497. * resembles the first-half of the igb_resume routine.
  6498. **/
  6499. static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
  6500. {
  6501. struct net_device *netdev = pci_get_drvdata(pdev);
  6502. struct igb_adapter *adapter = netdev_priv(netdev);
  6503. struct e1000_hw *hw = &adapter->hw;
  6504. pci_ers_result_t result;
  6505. int err;
  6506. if (pci_enable_device_mem(pdev)) {
  6507. dev_err(&pdev->dev,
  6508. "Cannot re-enable PCI device after reset.\n");
  6509. result = PCI_ERS_RESULT_DISCONNECT;
  6510. } else {
  6511. pci_set_master(pdev);
  6512. pci_restore_state(pdev);
  6513. pci_save_state(pdev);
  6514. pci_enable_wake(pdev, PCI_D3hot, 0);
  6515. pci_enable_wake(pdev, PCI_D3cold, 0);
  6516. igb_reset(adapter);
  6517. wr32(E1000_WUS, ~0);
  6518. result = PCI_ERS_RESULT_RECOVERED;
  6519. }
  6520. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  6521. if (err) {
  6522. dev_err(&pdev->dev,
  6523. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  6524. err);
  6525. /* non-fatal, continue */
  6526. }
  6527. return result;
  6528. }
  6529. /**
  6530. * igb_io_resume - called when traffic can start flowing again.
  6531. * @pdev: Pointer to PCI device
  6532. *
  6533. * This callback is called when the error recovery driver tells us that
  6534. * its OK to resume normal operation. Implementation resembles the
  6535. * second-half of the igb_resume routine.
  6536. */
  6537. static void igb_io_resume(struct pci_dev *pdev)
  6538. {
  6539. struct net_device *netdev = pci_get_drvdata(pdev);
  6540. struct igb_adapter *adapter = netdev_priv(netdev);
  6541. if (netif_running(netdev)) {
  6542. if (igb_up(adapter)) {
  6543. dev_err(&pdev->dev, "igb_up failed after reset\n");
  6544. return;
  6545. }
  6546. }
  6547. netif_device_attach(netdev);
  6548. /* let the f/w know that the h/w is now under the control of the
  6549. * driver.
  6550. */
  6551. igb_get_hw_control(adapter);
  6552. }
  6553. static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
  6554. u8 qsel)
  6555. {
  6556. u32 rar_low, rar_high;
  6557. struct e1000_hw *hw = &adapter->hw;
  6558. /* HW expects these in little endian so we reverse the byte order
  6559. * from network order (big endian) to little endian
  6560. */
  6561. rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
  6562. ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
  6563. rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
  6564. /* Indicate to hardware the Address is Valid. */
  6565. rar_high |= E1000_RAH_AV;
  6566. if (hw->mac.type == e1000_82575)
  6567. rar_high |= E1000_RAH_POOL_1 * qsel;
  6568. else
  6569. rar_high |= E1000_RAH_POOL_1 << qsel;
  6570. wr32(E1000_RAL(index), rar_low);
  6571. wrfl();
  6572. wr32(E1000_RAH(index), rar_high);
  6573. wrfl();
  6574. }
  6575. static int igb_set_vf_mac(struct igb_adapter *adapter,
  6576. int vf, unsigned char *mac_addr)
  6577. {
  6578. struct e1000_hw *hw = &adapter->hw;
  6579. /* VF MAC addresses start at end of receive addresses and moves
  6580. * towards the first, as a result a collision should not be possible
  6581. */
  6582. int rar_entry = hw->mac.rar_entry_count - (vf + 1);
  6583. memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
  6584. igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
  6585. return 0;
  6586. }
  6587. static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
  6588. {
  6589. struct igb_adapter *adapter = netdev_priv(netdev);
  6590. if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
  6591. return -EINVAL;
  6592. adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
  6593. dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
  6594. dev_info(&adapter->pdev->dev,
  6595. "Reload the VF driver to make this change effective.");
  6596. if (test_bit(__IGB_DOWN, &adapter->state)) {
  6597. dev_warn(&adapter->pdev->dev,
  6598. "The VF MAC address has been set, but the PF device is not up.\n");
  6599. dev_warn(&adapter->pdev->dev,
  6600. "Bring the PF device up before attempting to use the VF device.\n");
  6601. }
  6602. return igb_set_vf_mac(adapter, vf, mac);
  6603. }
  6604. static int igb_link_mbps(int internal_link_speed)
  6605. {
  6606. switch (internal_link_speed) {
  6607. case SPEED_100:
  6608. return 100;
  6609. case SPEED_1000:
  6610. return 1000;
  6611. default:
  6612. return 0;
  6613. }
  6614. }
  6615. static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
  6616. int link_speed)
  6617. {
  6618. int rf_dec, rf_int;
  6619. u32 bcnrc_val;
  6620. if (tx_rate != 0) {
  6621. /* Calculate the rate factor values to set */
  6622. rf_int = link_speed / tx_rate;
  6623. rf_dec = (link_speed - (rf_int * tx_rate));
  6624. rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
  6625. tx_rate;
  6626. bcnrc_val = E1000_RTTBCNRC_RS_ENA;
  6627. bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
  6628. E1000_RTTBCNRC_RF_INT_MASK);
  6629. bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
  6630. } else {
  6631. bcnrc_val = 0;
  6632. }
  6633. wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
  6634. /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
  6635. * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
  6636. */
  6637. wr32(E1000_RTTBCNRM, 0x14);
  6638. wr32(E1000_RTTBCNRC, bcnrc_val);
  6639. }
  6640. static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
  6641. {
  6642. int actual_link_speed, i;
  6643. bool reset_rate = false;
  6644. /* VF TX rate limit was not set or not supported */
  6645. if ((adapter->vf_rate_link_speed == 0) ||
  6646. (adapter->hw.mac.type != e1000_82576))
  6647. return;
  6648. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6649. if (actual_link_speed != adapter->vf_rate_link_speed) {
  6650. reset_rate = true;
  6651. adapter->vf_rate_link_speed = 0;
  6652. dev_info(&adapter->pdev->dev,
  6653. "Link speed has been changed. VF Transmit rate is disabled\n");
  6654. }
  6655. for (i = 0; i < adapter->vfs_allocated_count; i++) {
  6656. if (reset_rate)
  6657. adapter->vf_data[i].tx_rate = 0;
  6658. igb_set_vf_rate_limit(&adapter->hw, i,
  6659. adapter->vf_data[i].tx_rate,
  6660. actual_link_speed);
  6661. }
  6662. }
  6663. static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
  6664. int min_tx_rate, int max_tx_rate)
  6665. {
  6666. struct igb_adapter *adapter = netdev_priv(netdev);
  6667. struct e1000_hw *hw = &adapter->hw;
  6668. int actual_link_speed;
  6669. if (hw->mac.type != e1000_82576)
  6670. return -EOPNOTSUPP;
  6671. if (min_tx_rate)
  6672. return -EINVAL;
  6673. actual_link_speed = igb_link_mbps(adapter->link_speed);
  6674. if ((vf >= adapter->vfs_allocated_count) ||
  6675. (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
  6676. (max_tx_rate < 0) ||
  6677. (max_tx_rate > actual_link_speed))
  6678. return -EINVAL;
  6679. adapter->vf_rate_link_speed = actual_link_speed;
  6680. adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
  6681. igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
  6682. return 0;
  6683. }
  6684. static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  6685. bool setting)
  6686. {
  6687. struct igb_adapter *adapter = netdev_priv(netdev);
  6688. struct e1000_hw *hw = &adapter->hw;
  6689. u32 reg_val, reg_offset;
  6690. if (!adapter->vfs_allocated_count)
  6691. return -EOPNOTSUPP;
  6692. if (vf >= adapter->vfs_allocated_count)
  6693. return -EINVAL;
  6694. reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
  6695. reg_val = rd32(reg_offset);
  6696. if (setting)
  6697. reg_val |= ((1 << vf) |
  6698. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6699. else
  6700. reg_val &= ~((1 << vf) |
  6701. (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
  6702. wr32(reg_offset, reg_val);
  6703. adapter->vf_data[vf].spoofchk_enabled = setting;
  6704. return 0;
  6705. }
  6706. static int igb_ndo_get_vf_config(struct net_device *netdev,
  6707. int vf, struct ifla_vf_info *ivi)
  6708. {
  6709. struct igb_adapter *adapter = netdev_priv(netdev);
  6710. if (vf >= adapter->vfs_allocated_count)
  6711. return -EINVAL;
  6712. ivi->vf = vf;
  6713. memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
  6714. ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
  6715. ivi->min_tx_rate = 0;
  6716. ivi->vlan = adapter->vf_data[vf].pf_vlan;
  6717. ivi->qos = adapter->vf_data[vf].pf_qos;
  6718. ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
  6719. return 0;
  6720. }
  6721. static void igb_vmm_control(struct igb_adapter *adapter)
  6722. {
  6723. struct e1000_hw *hw = &adapter->hw;
  6724. u32 reg;
  6725. switch (hw->mac.type) {
  6726. case e1000_82575:
  6727. case e1000_i210:
  6728. case e1000_i211:
  6729. case e1000_i354:
  6730. default:
  6731. /* replication is not supported for 82575 */
  6732. return;
  6733. case e1000_82576:
  6734. /* notify HW that the MAC is adding vlan tags */
  6735. reg = rd32(E1000_DTXCTL);
  6736. reg |= E1000_DTXCTL_VLAN_ADDED;
  6737. wr32(E1000_DTXCTL, reg);
  6738. /* Fall through */
  6739. case e1000_82580:
  6740. /* enable replication vlan tag stripping */
  6741. reg = rd32(E1000_RPLOLR);
  6742. reg |= E1000_RPLOLR_STRVLAN;
  6743. wr32(E1000_RPLOLR, reg);
  6744. /* Fall through */
  6745. case e1000_i350:
  6746. /* none of the above registers are supported by i350 */
  6747. break;
  6748. }
  6749. if (adapter->vfs_allocated_count) {
  6750. igb_vmdq_set_loopback_pf(hw, true);
  6751. igb_vmdq_set_replication_pf(hw, true);
  6752. igb_vmdq_set_anti_spoofing_pf(hw, true,
  6753. adapter->vfs_allocated_count);
  6754. } else {
  6755. igb_vmdq_set_loopback_pf(hw, false);
  6756. igb_vmdq_set_replication_pf(hw, false);
  6757. }
  6758. }
  6759. static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
  6760. {
  6761. struct e1000_hw *hw = &adapter->hw;
  6762. u32 dmac_thr;
  6763. u16 hwm;
  6764. if (hw->mac.type > e1000_82580) {
  6765. if (adapter->flags & IGB_FLAG_DMAC) {
  6766. u32 reg;
  6767. /* force threshold to 0. */
  6768. wr32(E1000_DMCTXTH, 0);
  6769. /* DMA Coalescing high water mark needs to be greater
  6770. * than the Rx threshold. Set hwm to PBA - max frame
  6771. * size in 16B units, capping it at PBA - 6KB.
  6772. */
  6773. hwm = 64 * pba - adapter->max_frame_size / 16;
  6774. if (hwm < 64 * (pba - 6))
  6775. hwm = 64 * (pba - 6);
  6776. reg = rd32(E1000_FCRTC);
  6777. reg &= ~E1000_FCRTC_RTH_COAL_MASK;
  6778. reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
  6779. & E1000_FCRTC_RTH_COAL_MASK);
  6780. wr32(E1000_FCRTC, reg);
  6781. /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
  6782. * frame size, capping it at PBA - 10KB.
  6783. */
  6784. dmac_thr = pba - adapter->max_frame_size / 512;
  6785. if (dmac_thr < pba - 10)
  6786. dmac_thr = pba - 10;
  6787. reg = rd32(E1000_DMACR);
  6788. reg &= ~E1000_DMACR_DMACTHR_MASK;
  6789. reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
  6790. & E1000_DMACR_DMACTHR_MASK);
  6791. /* transition to L0x or L1 if available..*/
  6792. reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
  6793. /* watchdog timer= +-1000 usec in 32usec intervals */
  6794. reg |= (1000 >> 5);
  6795. /* Disable BMC-to-OS Watchdog Enable */
  6796. if (hw->mac.type != e1000_i354)
  6797. reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
  6798. wr32(E1000_DMACR, reg);
  6799. /* no lower threshold to disable
  6800. * coalescing(smart fifb)-UTRESH=0
  6801. */
  6802. wr32(E1000_DMCRTRH, 0);
  6803. reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
  6804. wr32(E1000_DMCTLX, reg);
  6805. /* free space in tx packet buffer to wake from
  6806. * DMA coal
  6807. */
  6808. wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
  6809. (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
  6810. /* make low power state decision controlled
  6811. * by DMA coal
  6812. */
  6813. reg = rd32(E1000_PCIEMISC);
  6814. reg &= ~E1000_PCIEMISC_LX_DECISION;
  6815. wr32(E1000_PCIEMISC, reg);
  6816. } /* endif adapter->dmac is not disabled */
  6817. } else if (hw->mac.type == e1000_82580) {
  6818. u32 reg = rd32(E1000_PCIEMISC);
  6819. wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
  6820. wr32(E1000_DMACR, 0);
  6821. }
  6822. }
  6823. /**
  6824. * igb_read_i2c_byte - Reads 8 bit word over I2C
  6825. * @hw: pointer to hardware structure
  6826. * @byte_offset: byte offset to read
  6827. * @dev_addr: device address
  6828. * @data: value read
  6829. *
  6830. * Performs byte read operation over I2C interface at
  6831. * a specified device address.
  6832. **/
  6833. s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6834. u8 dev_addr, u8 *data)
  6835. {
  6836. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6837. struct i2c_client *this_client = adapter->i2c_client;
  6838. s32 status;
  6839. u16 swfw_mask = 0;
  6840. if (!this_client)
  6841. return E1000_ERR_I2C;
  6842. swfw_mask = E1000_SWFW_PHY0_SM;
  6843. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6844. return E1000_ERR_SWFW_SYNC;
  6845. status = i2c_smbus_read_byte_data(this_client, byte_offset);
  6846. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6847. if (status < 0)
  6848. return E1000_ERR_I2C;
  6849. else {
  6850. *data = status;
  6851. return 0;
  6852. }
  6853. }
  6854. /**
  6855. * igb_write_i2c_byte - Writes 8 bit word over I2C
  6856. * @hw: pointer to hardware structure
  6857. * @byte_offset: byte offset to write
  6858. * @dev_addr: device address
  6859. * @data: value to write
  6860. *
  6861. * Performs byte write operation over I2C interface at
  6862. * a specified device address.
  6863. **/
  6864. s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
  6865. u8 dev_addr, u8 data)
  6866. {
  6867. struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
  6868. struct i2c_client *this_client = adapter->i2c_client;
  6869. s32 status;
  6870. u16 swfw_mask = E1000_SWFW_PHY0_SM;
  6871. if (!this_client)
  6872. return E1000_ERR_I2C;
  6873. if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
  6874. return E1000_ERR_SWFW_SYNC;
  6875. status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
  6876. hw->mac.ops.release_swfw_sync(hw, swfw_mask);
  6877. if (status)
  6878. return E1000_ERR_I2C;
  6879. else
  6880. return 0;
  6881. }
  6882. int igb_reinit_queues(struct igb_adapter *adapter)
  6883. {
  6884. struct net_device *netdev = adapter->netdev;
  6885. struct pci_dev *pdev = adapter->pdev;
  6886. int err = 0;
  6887. if (netif_running(netdev))
  6888. igb_close(netdev);
  6889. igb_reset_interrupt_capability(adapter);
  6890. if (igb_init_interrupt_scheme(adapter, true)) {
  6891. dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
  6892. return -ENOMEM;
  6893. }
  6894. if (netif_running(netdev))
  6895. err = igb_open(netdev);
  6896. return err;
  6897. }
  6898. /* igb_main.c */