e1000_82575.c 76 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865
  1. /* Intel(R) Gigabit Ethernet Linux driver
  2. * Copyright(c) 2007-2014 Intel Corporation.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms and conditions of the GNU General Public License,
  6. * version 2, as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope it will be useful, but WITHOUT
  9. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  11. * more details.
  12. *
  13. * You should have received a copy of the GNU General Public License along with
  14. * this program; if not, see <http://www.gnu.org/licenses/>.
  15. *
  16. * The full GNU General Public License is included in this distribution in
  17. * the file called "COPYING".
  18. *
  19. * Contact Information:
  20. * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  21. * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  22. */
  23. /* e1000_82575
  24. * e1000_82576
  25. */
  26. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  27. #include <linux/types.h>
  28. #include <linux/if_ether.h>
  29. #include <linux/i2c.h>
  30. #include "e1000_mac.h"
  31. #include "e1000_82575.h"
  32. #include "e1000_i210.h"
  33. static s32 igb_get_invariants_82575(struct e1000_hw *);
  34. static s32 igb_acquire_phy_82575(struct e1000_hw *);
  35. static void igb_release_phy_82575(struct e1000_hw *);
  36. static s32 igb_acquire_nvm_82575(struct e1000_hw *);
  37. static void igb_release_nvm_82575(struct e1000_hw *);
  38. static s32 igb_check_for_link_82575(struct e1000_hw *);
  39. static s32 igb_get_cfg_done_82575(struct e1000_hw *);
  40. static s32 igb_init_hw_82575(struct e1000_hw *);
  41. static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  42. static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  43. static s32 igb_read_phy_reg_82580(struct e1000_hw *, u32, u16 *);
  44. static s32 igb_write_phy_reg_82580(struct e1000_hw *, u32, u16);
  45. static s32 igb_reset_hw_82575(struct e1000_hw *);
  46. static s32 igb_reset_hw_82580(struct e1000_hw *);
  47. static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  48. static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  49. static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  50. static s32 igb_setup_copper_link_82575(struct e1000_hw *);
  51. static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
  52. static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  53. static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  54. static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  55. static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  56. u16 *);
  57. static s32 igb_get_phy_id_82575(struct e1000_hw *);
  58. static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  59. static bool igb_sgmii_active_82575(struct e1000_hw *);
  60. static s32 igb_reset_init_script_82575(struct e1000_hw *);
  61. static s32 igb_read_mac_addr_82575(struct e1000_hw *);
  62. static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  63. static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  64. static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  65. static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  66. static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  67. static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  68. static const u16 e1000_82580_rxpbs_table[] = {
  69. 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  70. /**
  71. * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  72. * @hw: pointer to the HW structure
  73. *
  74. * Called to determine if the I2C pins are being used for I2C or as an
  75. * external MDIO interface since the two options are mutually exclusive.
  76. **/
  77. static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  78. {
  79. u32 reg = 0;
  80. bool ext_mdio = false;
  81. switch (hw->mac.type) {
  82. case e1000_82575:
  83. case e1000_82576:
  84. reg = rd32(E1000_MDIC);
  85. ext_mdio = !!(reg & E1000_MDIC_DEST);
  86. break;
  87. case e1000_82580:
  88. case e1000_i350:
  89. case e1000_i354:
  90. case e1000_i210:
  91. case e1000_i211:
  92. reg = rd32(E1000_MDICNFG);
  93. ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
  94. break;
  95. default:
  96. break;
  97. }
  98. return ext_mdio;
  99. }
  100. /**
  101. * igb_check_for_link_media_swap - Check which M88E1112 interface linked
  102. * @hw: pointer to the HW structure
  103. *
  104. * Poll the M88E1112 interfaces to see which interface achieved link.
  105. */
  106. static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
  107. {
  108. struct e1000_phy_info *phy = &hw->phy;
  109. s32 ret_val;
  110. u16 data;
  111. u8 port = 0;
  112. /* Check the copper medium. */
  113. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
  114. if (ret_val)
  115. return ret_val;
  116. ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
  117. if (ret_val)
  118. return ret_val;
  119. if (data & E1000_M88E1112_STATUS_LINK)
  120. port = E1000_MEDIA_PORT_COPPER;
  121. /* Check the other medium. */
  122. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
  123. if (ret_val)
  124. return ret_val;
  125. ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
  126. if (ret_val)
  127. return ret_val;
  128. /* reset page to 0 */
  129. ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
  130. if (ret_val)
  131. return ret_val;
  132. if (data & E1000_M88E1112_STATUS_LINK)
  133. port = E1000_MEDIA_PORT_OTHER;
  134. /* Determine if a swap needs to happen. */
  135. if (port && (hw->dev_spec._82575.media_port != port)) {
  136. hw->dev_spec._82575.media_port = port;
  137. hw->dev_spec._82575.media_changed = true;
  138. } else {
  139. ret_val = igb_check_for_link_82575(hw);
  140. }
  141. return 0;
  142. }
  143. /**
  144. * igb_init_phy_params_82575 - Init PHY func ptrs.
  145. * @hw: pointer to the HW structure
  146. **/
  147. static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
  148. {
  149. struct e1000_phy_info *phy = &hw->phy;
  150. s32 ret_val = 0;
  151. u32 ctrl_ext;
  152. if (hw->phy.media_type != e1000_media_type_copper) {
  153. phy->type = e1000_phy_none;
  154. goto out;
  155. }
  156. phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  157. phy->reset_delay_us = 100;
  158. ctrl_ext = rd32(E1000_CTRL_EXT);
  159. if (igb_sgmii_active_82575(hw)) {
  160. phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
  161. ctrl_ext |= E1000_CTRL_I2C_ENA;
  162. } else {
  163. phy->ops.reset = igb_phy_hw_reset;
  164. ctrl_ext &= ~E1000_CTRL_I2C_ENA;
  165. }
  166. wr32(E1000_CTRL_EXT, ctrl_ext);
  167. igb_reset_mdicnfg_82580(hw);
  168. if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
  169. phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
  170. phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
  171. } else {
  172. switch (hw->mac.type) {
  173. case e1000_82580:
  174. case e1000_i350:
  175. case e1000_i354:
  176. phy->ops.read_reg = igb_read_phy_reg_82580;
  177. phy->ops.write_reg = igb_write_phy_reg_82580;
  178. break;
  179. case e1000_i210:
  180. case e1000_i211:
  181. phy->ops.read_reg = igb_read_phy_reg_gs40g;
  182. phy->ops.write_reg = igb_write_phy_reg_gs40g;
  183. break;
  184. default:
  185. phy->ops.read_reg = igb_read_phy_reg_igp;
  186. phy->ops.write_reg = igb_write_phy_reg_igp;
  187. }
  188. }
  189. /* set lan id */
  190. hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
  191. E1000_STATUS_FUNC_SHIFT;
  192. /* Set phy->phy_addr and phy->id. */
  193. ret_val = igb_get_phy_id_82575(hw);
  194. if (ret_val)
  195. return ret_val;
  196. /* Verify phy id and set remaining function pointers */
  197. switch (phy->id) {
  198. case M88E1543_E_PHY_ID:
  199. case I347AT4_E_PHY_ID:
  200. case M88E1112_E_PHY_ID:
  201. case M88E1111_I_PHY_ID:
  202. phy->type = e1000_phy_m88;
  203. phy->ops.check_polarity = igb_check_polarity_m88;
  204. phy->ops.get_phy_info = igb_get_phy_info_m88;
  205. if (phy->id != M88E1111_I_PHY_ID)
  206. phy->ops.get_cable_length =
  207. igb_get_cable_length_m88_gen2;
  208. else
  209. phy->ops.get_cable_length = igb_get_cable_length_m88;
  210. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
  211. /* Check if this PHY is confgured for media swap. */
  212. if (phy->id == M88E1112_E_PHY_ID) {
  213. u16 data;
  214. ret_val = phy->ops.write_reg(hw,
  215. E1000_M88E1112_PAGE_ADDR,
  216. 2);
  217. if (ret_val)
  218. goto out;
  219. ret_val = phy->ops.read_reg(hw,
  220. E1000_M88E1112_MAC_CTRL_1,
  221. &data);
  222. if (ret_val)
  223. goto out;
  224. data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
  225. E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
  226. if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
  227. data == E1000_M88E1112_AUTO_COPPER_BASEX)
  228. hw->mac.ops.check_for_link =
  229. igb_check_for_link_media_swap;
  230. }
  231. break;
  232. case IGP03E1000_E_PHY_ID:
  233. phy->type = e1000_phy_igp_3;
  234. phy->ops.get_phy_info = igb_get_phy_info_igp;
  235. phy->ops.get_cable_length = igb_get_cable_length_igp_2;
  236. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
  237. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
  238. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
  239. break;
  240. case I82580_I_PHY_ID:
  241. case I350_I_PHY_ID:
  242. phy->type = e1000_phy_82580;
  243. phy->ops.force_speed_duplex =
  244. igb_phy_force_speed_duplex_82580;
  245. phy->ops.get_cable_length = igb_get_cable_length_82580;
  246. phy->ops.get_phy_info = igb_get_phy_info_82580;
  247. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
  248. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
  249. break;
  250. case I210_I_PHY_ID:
  251. phy->type = e1000_phy_i210;
  252. phy->ops.check_polarity = igb_check_polarity_m88;
  253. phy->ops.get_phy_info = igb_get_phy_info_m88;
  254. phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
  255. phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
  256. phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
  257. phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
  258. break;
  259. default:
  260. ret_val = -E1000_ERR_PHY;
  261. goto out;
  262. }
  263. out:
  264. return ret_val;
  265. }
  266. /**
  267. * igb_init_nvm_params_82575 - Init NVM func ptrs.
  268. * @hw: pointer to the HW structure
  269. **/
  270. static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
  271. {
  272. struct e1000_nvm_info *nvm = &hw->nvm;
  273. u32 eecd = rd32(E1000_EECD);
  274. u16 size;
  275. size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
  276. E1000_EECD_SIZE_EX_SHIFT);
  277. /* Added to a constant, "size" becomes the left-shift value
  278. * for setting word_size.
  279. */
  280. size += NVM_WORD_SIZE_BASE_SHIFT;
  281. /* Just in case size is out of range, cap it to the largest
  282. * EEPROM size supported
  283. */
  284. if (size > 15)
  285. size = 15;
  286. nvm->word_size = 1 << size;
  287. nvm->opcode_bits = 8;
  288. nvm->delay_usec = 1;
  289. switch (nvm->override) {
  290. case e1000_nvm_override_spi_large:
  291. nvm->page_size = 32;
  292. nvm->address_bits = 16;
  293. break;
  294. case e1000_nvm_override_spi_small:
  295. nvm->page_size = 8;
  296. nvm->address_bits = 8;
  297. break;
  298. default:
  299. nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  300. nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
  301. 16 : 8;
  302. break;
  303. }
  304. if (nvm->word_size == (1 << 15))
  305. nvm->page_size = 128;
  306. nvm->type = e1000_nvm_eeprom_spi;
  307. /* NVM Function Pointers */
  308. nvm->ops.acquire = igb_acquire_nvm_82575;
  309. nvm->ops.release = igb_release_nvm_82575;
  310. nvm->ops.write = igb_write_nvm_spi;
  311. nvm->ops.validate = igb_validate_nvm_checksum;
  312. nvm->ops.update = igb_update_nvm_checksum;
  313. if (nvm->word_size < (1 << 15))
  314. nvm->ops.read = igb_read_nvm_eerd;
  315. else
  316. nvm->ops.read = igb_read_nvm_spi;
  317. /* override generic family function pointers for specific descendants */
  318. switch (hw->mac.type) {
  319. case e1000_82580:
  320. nvm->ops.validate = igb_validate_nvm_checksum_82580;
  321. nvm->ops.update = igb_update_nvm_checksum_82580;
  322. break;
  323. case e1000_i354:
  324. case e1000_i350:
  325. nvm->ops.validate = igb_validate_nvm_checksum_i350;
  326. nvm->ops.update = igb_update_nvm_checksum_i350;
  327. break;
  328. default:
  329. break;
  330. }
  331. return 0;
  332. }
  333. /**
  334. * igb_init_mac_params_82575 - Init MAC func ptrs.
  335. * @hw: pointer to the HW structure
  336. **/
  337. static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
  338. {
  339. struct e1000_mac_info *mac = &hw->mac;
  340. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  341. /* Set mta register count */
  342. mac->mta_reg_count = 128;
  343. /* Set rar entry count */
  344. switch (mac->type) {
  345. case e1000_82576:
  346. mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
  347. break;
  348. case e1000_82580:
  349. mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
  350. break;
  351. case e1000_i350:
  352. case e1000_i354:
  353. mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
  354. break;
  355. default:
  356. mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
  357. break;
  358. }
  359. /* reset */
  360. if (mac->type >= e1000_82580)
  361. mac->ops.reset_hw = igb_reset_hw_82580;
  362. else
  363. mac->ops.reset_hw = igb_reset_hw_82575;
  364. if (mac->type >= e1000_i210) {
  365. mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
  366. mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
  367. } else {
  368. mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
  369. mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
  370. }
  371. /* Set if part includes ASF firmware */
  372. mac->asf_firmware_present = true;
  373. /* Set if manageability features are enabled. */
  374. mac->arc_subsystem_valid =
  375. (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
  376. ? true : false;
  377. /* enable EEE on i350 parts and later parts */
  378. if (mac->type >= e1000_i350)
  379. dev_spec->eee_disable = false;
  380. else
  381. dev_spec->eee_disable = true;
  382. /* Allow a single clear of the SW semaphore on I210 and newer */
  383. if (mac->type >= e1000_i210)
  384. dev_spec->clear_semaphore_once = true;
  385. /* physical interface link setup */
  386. mac->ops.setup_physical_interface =
  387. (hw->phy.media_type == e1000_media_type_copper)
  388. ? igb_setup_copper_link_82575
  389. : igb_setup_serdes_link_82575;
  390. if (mac->type == e1000_82580) {
  391. switch (hw->device_id) {
  392. /* feature not supported on these id's */
  393. case E1000_DEV_ID_DH89XXCC_SGMII:
  394. case E1000_DEV_ID_DH89XXCC_SERDES:
  395. case E1000_DEV_ID_DH89XXCC_BACKPLANE:
  396. case E1000_DEV_ID_DH89XXCC_SFP:
  397. break;
  398. default:
  399. hw->dev_spec._82575.mas_capable = true;
  400. break;
  401. }
  402. }
  403. return 0;
  404. }
  405. /**
  406. * igb_set_sfp_media_type_82575 - derives SFP module media type.
  407. * @hw: pointer to the HW structure
  408. *
  409. * The media type is chosen based on SFP module.
  410. * compatibility flags retrieved from SFP ID EEPROM.
  411. **/
  412. static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
  413. {
  414. s32 ret_val = E1000_ERR_CONFIG;
  415. u32 ctrl_ext = 0;
  416. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  417. struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
  418. u8 tranceiver_type = 0;
  419. s32 timeout = 3;
  420. /* Turn I2C interface ON and power on sfp cage */
  421. ctrl_ext = rd32(E1000_CTRL_EXT);
  422. ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
  423. wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
  424. wrfl();
  425. /* Read SFP module data */
  426. while (timeout) {
  427. ret_val = igb_read_sfp_data_byte(hw,
  428. E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
  429. &tranceiver_type);
  430. if (ret_val == 0)
  431. break;
  432. msleep(100);
  433. timeout--;
  434. }
  435. if (ret_val != 0)
  436. goto out;
  437. ret_val = igb_read_sfp_data_byte(hw,
  438. E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
  439. (u8 *)eth_flags);
  440. if (ret_val != 0)
  441. goto out;
  442. /* Check if there is some SFP module plugged and powered */
  443. if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
  444. (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
  445. dev_spec->module_plugged = true;
  446. if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
  447. hw->phy.media_type = e1000_media_type_internal_serdes;
  448. } else if (eth_flags->e100_base_fx) {
  449. dev_spec->sgmii_active = true;
  450. hw->phy.media_type = e1000_media_type_internal_serdes;
  451. } else if (eth_flags->e1000_base_t) {
  452. dev_spec->sgmii_active = true;
  453. hw->phy.media_type = e1000_media_type_copper;
  454. } else {
  455. hw->phy.media_type = e1000_media_type_unknown;
  456. hw_dbg("PHY module has not been recognized\n");
  457. goto out;
  458. }
  459. } else {
  460. hw->phy.media_type = e1000_media_type_unknown;
  461. }
  462. ret_val = 0;
  463. out:
  464. /* Restore I2C interface setting */
  465. wr32(E1000_CTRL_EXT, ctrl_ext);
  466. return ret_val;
  467. }
  468. static s32 igb_get_invariants_82575(struct e1000_hw *hw)
  469. {
  470. struct e1000_mac_info *mac = &hw->mac;
  471. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  472. s32 ret_val;
  473. u32 ctrl_ext = 0;
  474. u32 link_mode = 0;
  475. switch (hw->device_id) {
  476. case E1000_DEV_ID_82575EB_COPPER:
  477. case E1000_DEV_ID_82575EB_FIBER_SERDES:
  478. case E1000_DEV_ID_82575GB_QUAD_COPPER:
  479. mac->type = e1000_82575;
  480. break;
  481. case E1000_DEV_ID_82576:
  482. case E1000_DEV_ID_82576_NS:
  483. case E1000_DEV_ID_82576_NS_SERDES:
  484. case E1000_DEV_ID_82576_FIBER:
  485. case E1000_DEV_ID_82576_SERDES:
  486. case E1000_DEV_ID_82576_QUAD_COPPER:
  487. case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
  488. case E1000_DEV_ID_82576_SERDES_QUAD:
  489. mac->type = e1000_82576;
  490. break;
  491. case E1000_DEV_ID_82580_COPPER:
  492. case E1000_DEV_ID_82580_FIBER:
  493. case E1000_DEV_ID_82580_QUAD_FIBER:
  494. case E1000_DEV_ID_82580_SERDES:
  495. case E1000_DEV_ID_82580_SGMII:
  496. case E1000_DEV_ID_82580_COPPER_DUAL:
  497. case E1000_DEV_ID_DH89XXCC_SGMII:
  498. case E1000_DEV_ID_DH89XXCC_SERDES:
  499. case E1000_DEV_ID_DH89XXCC_BACKPLANE:
  500. case E1000_DEV_ID_DH89XXCC_SFP:
  501. mac->type = e1000_82580;
  502. break;
  503. case E1000_DEV_ID_I350_COPPER:
  504. case E1000_DEV_ID_I350_FIBER:
  505. case E1000_DEV_ID_I350_SERDES:
  506. case E1000_DEV_ID_I350_SGMII:
  507. mac->type = e1000_i350;
  508. break;
  509. case E1000_DEV_ID_I210_COPPER:
  510. case E1000_DEV_ID_I210_FIBER:
  511. case E1000_DEV_ID_I210_SERDES:
  512. case E1000_DEV_ID_I210_SGMII:
  513. case E1000_DEV_ID_I210_COPPER_FLASHLESS:
  514. case E1000_DEV_ID_I210_SERDES_FLASHLESS:
  515. mac->type = e1000_i210;
  516. break;
  517. case E1000_DEV_ID_I211_COPPER:
  518. mac->type = e1000_i211;
  519. break;
  520. case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
  521. case E1000_DEV_ID_I354_SGMII:
  522. case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
  523. mac->type = e1000_i354;
  524. break;
  525. default:
  526. return -E1000_ERR_MAC_INIT;
  527. break;
  528. }
  529. /* Set media type */
  530. /* The 82575 uses bits 22:23 for link mode. The mode can be changed
  531. * based on the EEPROM. We cannot rely upon device ID. There
  532. * is no distinguishable difference between fiber and internal
  533. * SerDes mode on the 82575. There can be an external PHY attached
  534. * on the SGMII interface. For this, we'll set sgmii_active to true.
  535. */
  536. hw->phy.media_type = e1000_media_type_copper;
  537. dev_spec->sgmii_active = false;
  538. dev_spec->module_plugged = false;
  539. ctrl_ext = rd32(E1000_CTRL_EXT);
  540. link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
  541. switch (link_mode) {
  542. case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
  543. hw->phy.media_type = e1000_media_type_internal_serdes;
  544. break;
  545. case E1000_CTRL_EXT_LINK_MODE_SGMII:
  546. /* Get phy control interface type set (MDIO vs. I2C)*/
  547. if (igb_sgmii_uses_mdio_82575(hw)) {
  548. hw->phy.media_type = e1000_media_type_copper;
  549. dev_spec->sgmii_active = true;
  550. break;
  551. }
  552. /* fall through for I2C based SGMII */
  553. case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
  554. /* read media type from SFP EEPROM */
  555. ret_val = igb_set_sfp_media_type_82575(hw);
  556. if ((ret_val != 0) ||
  557. (hw->phy.media_type == e1000_media_type_unknown)) {
  558. /* If media type was not identified then return media
  559. * type defined by the CTRL_EXT settings.
  560. */
  561. hw->phy.media_type = e1000_media_type_internal_serdes;
  562. if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
  563. hw->phy.media_type = e1000_media_type_copper;
  564. dev_spec->sgmii_active = true;
  565. }
  566. break;
  567. }
  568. /* do not change link mode for 100BaseFX */
  569. if (dev_spec->eth_flags.e100_base_fx)
  570. break;
  571. /* change current link mode setting */
  572. ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
  573. if (hw->phy.media_type == e1000_media_type_copper)
  574. ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
  575. else
  576. ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
  577. wr32(E1000_CTRL_EXT, ctrl_ext);
  578. break;
  579. default:
  580. break;
  581. }
  582. /* mac initialization and operations */
  583. ret_val = igb_init_mac_params_82575(hw);
  584. if (ret_val)
  585. goto out;
  586. /* NVM initialization */
  587. ret_val = igb_init_nvm_params_82575(hw);
  588. switch (hw->mac.type) {
  589. case e1000_i210:
  590. case e1000_i211:
  591. ret_val = igb_init_nvm_params_i210(hw);
  592. break;
  593. default:
  594. break;
  595. }
  596. if (ret_val)
  597. goto out;
  598. /* if part supports SR-IOV then initialize mailbox parameters */
  599. switch (mac->type) {
  600. case e1000_82576:
  601. case e1000_i350:
  602. igb_init_mbx_params_pf(hw);
  603. break;
  604. default:
  605. break;
  606. }
  607. /* setup PHY parameters */
  608. ret_val = igb_init_phy_params_82575(hw);
  609. out:
  610. return ret_val;
  611. }
  612. /**
  613. * igb_acquire_phy_82575 - Acquire rights to access PHY
  614. * @hw: pointer to the HW structure
  615. *
  616. * Acquire access rights to the correct PHY. This is a
  617. * function pointer entry point called by the api module.
  618. **/
  619. static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
  620. {
  621. u16 mask = E1000_SWFW_PHY0_SM;
  622. if (hw->bus.func == E1000_FUNC_1)
  623. mask = E1000_SWFW_PHY1_SM;
  624. else if (hw->bus.func == E1000_FUNC_2)
  625. mask = E1000_SWFW_PHY2_SM;
  626. else if (hw->bus.func == E1000_FUNC_3)
  627. mask = E1000_SWFW_PHY3_SM;
  628. return hw->mac.ops.acquire_swfw_sync(hw, mask);
  629. }
  630. /**
  631. * igb_release_phy_82575 - Release rights to access PHY
  632. * @hw: pointer to the HW structure
  633. *
  634. * A wrapper to release access rights to the correct PHY. This is a
  635. * function pointer entry point called by the api module.
  636. **/
  637. static void igb_release_phy_82575(struct e1000_hw *hw)
  638. {
  639. u16 mask = E1000_SWFW_PHY0_SM;
  640. if (hw->bus.func == E1000_FUNC_1)
  641. mask = E1000_SWFW_PHY1_SM;
  642. else if (hw->bus.func == E1000_FUNC_2)
  643. mask = E1000_SWFW_PHY2_SM;
  644. else if (hw->bus.func == E1000_FUNC_3)
  645. mask = E1000_SWFW_PHY3_SM;
  646. hw->mac.ops.release_swfw_sync(hw, mask);
  647. }
  648. /**
  649. * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
  650. * @hw: pointer to the HW structure
  651. * @offset: register offset to be read
  652. * @data: pointer to the read data
  653. *
  654. * Reads the PHY register at offset using the serial gigabit media independent
  655. * interface and stores the retrieved information in data.
  656. **/
  657. static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
  658. u16 *data)
  659. {
  660. s32 ret_val = -E1000_ERR_PARAM;
  661. if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
  662. hw_dbg("PHY Address %u is out of range\n", offset);
  663. goto out;
  664. }
  665. ret_val = hw->phy.ops.acquire(hw);
  666. if (ret_val)
  667. goto out;
  668. ret_val = igb_read_phy_reg_i2c(hw, offset, data);
  669. hw->phy.ops.release(hw);
  670. out:
  671. return ret_val;
  672. }
  673. /**
  674. * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
  675. * @hw: pointer to the HW structure
  676. * @offset: register offset to write to
  677. * @data: data to write at register offset
  678. *
  679. * Writes the data to PHY register at the offset using the serial gigabit
  680. * media independent interface.
  681. **/
  682. static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
  683. u16 data)
  684. {
  685. s32 ret_val = -E1000_ERR_PARAM;
  686. if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
  687. hw_dbg("PHY Address %d is out of range\n", offset);
  688. goto out;
  689. }
  690. ret_val = hw->phy.ops.acquire(hw);
  691. if (ret_val)
  692. goto out;
  693. ret_val = igb_write_phy_reg_i2c(hw, offset, data);
  694. hw->phy.ops.release(hw);
  695. out:
  696. return ret_val;
  697. }
  698. /**
  699. * igb_get_phy_id_82575 - Retrieve PHY addr and id
  700. * @hw: pointer to the HW structure
  701. *
  702. * Retrieves the PHY address and ID for both PHY's which do and do not use
  703. * sgmi interface.
  704. **/
  705. static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
  706. {
  707. struct e1000_phy_info *phy = &hw->phy;
  708. s32 ret_val = 0;
  709. u16 phy_id;
  710. u32 ctrl_ext;
  711. u32 mdic;
  712. /* Extra read required for some PHY's on i354 */
  713. if (hw->mac.type == e1000_i354)
  714. igb_get_phy_id(hw);
  715. /* For SGMII PHYs, we try the list of possible addresses until
  716. * we find one that works. For non-SGMII PHYs
  717. * (e.g. integrated copper PHYs), an address of 1 should
  718. * work. The result of this function should mean phy->phy_addr
  719. * and phy->id are set correctly.
  720. */
  721. if (!(igb_sgmii_active_82575(hw))) {
  722. phy->addr = 1;
  723. ret_val = igb_get_phy_id(hw);
  724. goto out;
  725. }
  726. if (igb_sgmii_uses_mdio_82575(hw)) {
  727. switch (hw->mac.type) {
  728. case e1000_82575:
  729. case e1000_82576:
  730. mdic = rd32(E1000_MDIC);
  731. mdic &= E1000_MDIC_PHY_MASK;
  732. phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
  733. break;
  734. case e1000_82580:
  735. case e1000_i350:
  736. case e1000_i354:
  737. case e1000_i210:
  738. case e1000_i211:
  739. mdic = rd32(E1000_MDICNFG);
  740. mdic &= E1000_MDICNFG_PHY_MASK;
  741. phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
  742. break;
  743. default:
  744. ret_val = -E1000_ERR_PHY;
  745. goto out;
  746. break;
  747. }
  748. ret_val = igb_get_phy_id(hw);
  749. goto out;
  750. }
  751. /* Power on sgmii phy if it is disabled */
  752. ctrl_ext = rd32(E1000_CTRL_EXT);
  753. wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
  754. wrfl();
  755. msleep(300);
  756. /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
  757. * Therefore, we need to test 1-7
  758. */
  759. for (phy->addr = 1; phy->addr < 8; phy->addr++) {
  760. ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
  761. if (ret_val == 0) {
  762. hw_dbg("Vendor ID 0x%08X read at address %u\n",
  763. phy_id, phy->addr);
  764. /* At the time of this writing, The M88 part is
  765. * the only supported SGMII PHY product.
  766. */
  767. if (phy_id == M88_VENDOR)
  768. break;
  769. } else {
  770. hw_dbg("PHY address %u was unreadable\n", phy->addr);
  771. }
  772. }
  773. /* A valid PHY type couldn't be found. */
  774. if (phy->addr == 8) {
  775. phy->addr = 0;
  776. ret_val = -E1000_ERR_PHY;
  777. goto out;
  778. } else {
  779. ret_val = igb_get_phy_id(hw);
  780. }
  781. /* restore previous sfp cage power state */
  782. wr32(E1000_CTRL_EXT, ctrl_ext);
  783. out:
  784. return ret_val;
  785. }
  786. /**
  787. * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
  788. * @hw: pointer to the HW structure
  789. *
  790. * Resets the PHY using the serial gigabit media independent interface.
  791. **/
  792. static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
  793. {
  794. s32 ret_val;
  795. /* This isn't a true "hard" reset, but is the only reset
  796. * available to us at this time.
  797. */
  798. hw_dbg("Soft resetting SGMII attached PHY...\n");
  799. /* SFP documentation requires the following to configure the SPF module
  800. * to work on SGMII. No further documentation is given.
  801. */
  802. ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
  803. if (ret_val)
  804. goto out;
  805. ret_val = igb_phy_sw_reset(hw);
  806. out:
  807. return ret_val;
  808. }
  809. /**
  810. * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
  811. * @hw: pointer to the HW structure
  812. * @active: true to enable LPLU, false to disable
  813. *
  814. * Sets the LPLU D0 state according to the active flag. When
  815. * activating LPLU this function also disables smart speed
  816. * and vice versa. LPLU will not be activated unless the
  817. * device autonegotiation advertisement meets standards of
  818. * either 10 or 10/100 or 10/100/1000 at all duplexes.
  819. * This is a function pointer entry point only called by
  820. * PHY setup routines.
  821. **/
  822. static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
  823. {
  824. struct e1000_phy_info *phy = &hw->phy;
  825. s32 ret_val;
  826. u16 data;
  827. ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
  828. if (ret_val)
  829. goto out;
  830. if (active) {
  831. data |= IGP02E1000_PM_D0_LPLU;
  832. ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
  833. data);
  834. if (ret_val)
  835. goto out;
  836. /* When LPLU is enabled, we should disable SmartSpeed */
  837. ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
  838. &data);
  839. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  840. ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
  841. data);
  842. if (ret_val)
  843. goto out;
  844. } else {
  845. data &= ~IGP02E1000_PM_D0_LPLU;
  846. ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
  847. data);
  848. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  849. * during Dx states where the power conservation is most
  850. * important. During driver activity we should enable
  851. * SmartSpeed, so performance is maintained.
  852. */
  853. if (phy->smart_speed == e1000_smart_speed_on) {
  854. ret_val = phy->ops.read_reg(hw,
  855. IGP01E1000_PHY_PORT_CONFIG, &data);
  856. if (ret_val)
  857. goto out;
  858. data |= IGP01E1000_PSCFR_SMART_SPEED;
  859. ret_val = phy->ops.write_reg(hw,
  860. IGP01E1000_PHY_PORT_CONFIG, data);
  861. if (ret_val)
  862. goto out;
  863. } else if (phy->smart_speed == e1000_smart_speed_off) {
  864. ret_val = phy->ops.read_reg(hw,
  865. IGP01E1000_PHY_PORT_CONFIG, &data);
  866. if (ret_val)
  867. goto out;
  868. data &= ~IGP01E1000_PSCFR_SMART_SPEED;
  869. ret_val = phy->ops.write_reg(hw,
  870. IGP01E1000_PHY_PORT_CONFIG, data);
  871. if (ret_val)
  872. goto out;
  873. }
  874. }
  875. out:
  876. return ret_val;
  877. }
  878. /**
  879. * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
  880. * @hw: pointer to the HW structure
  881. * @active: true to enable LPLU, false to disable
  882. *
  883. * Sets the LPLU D0 state according to the active flag. When
  884. * activating LPLU this function also disables smart speed
  885. * and vice versa. LPLU will not be activated unless the
  886. * device autonegotiation advertisement meets standards of
  887. * either 10 or 10/100 or 10/100/1000 at all duplexes.
  888. * This is a function pointer entry point only called by
  889. * PHY setup routines.
  890. **/
  891. static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
  892. {
  893. struct e1000_phy_info *phy = &hw->phy;
  894. u16 data;
  895. data = rd32(E1000_82580_PHY_POWER_MGMT);
  896. if (active) {
  897. data |= E1000_82580_PM_D0_LPLU;
  898. /* When LPLU is enabled, we should disable SmartSpeed */
  899. data &= ~E1000_82580_PM_SPD;
  900. } else {
  901. data &= ~E1000_82580_PM_D0_LPLU;
  902. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  903. * during Dx states where the power conservation is most
  904. * important. During driver activity we should enable
  905. * SmartSpeed, so performance is maintained.
  906. */
  907. if (phy->smart_speed == e1000_smart_speed_on)
  908. data |= E1000_82580_PM_SPD;
  909. else if (phy->smart_speed == e1000_smart_speed_off)
  910. data &= ~E1000_82580_PM_SPD; }
  911. wr32(E1000_82580_PHY_POWER_MGMT, data);
  912. return 0;
  913. }
  914. /**
  915. * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
  916. * @hw: pointer to the HW structure
  917. * @active: boolean used to enable/disable lplu
  918. *
  919. * Success returns 0, Failure returns 1
  920. *
  921. * The low power link up (lplu) state is set to the power management level D3
  922. * and SmartSpeed is disabled when active is true, else clear lplu for D3
  923. * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
  924. * is used during Dx states where the power conservation is most important.
  925. * During driver activity, SmartSpeed should be enabled so performance is
  926. * maintained.
  927. **/
  928. static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
  929. {
  930. struct e1000_phy_info *phy = &hw->phy;
  931. u16 data;
  932. data = rd32(E1000_82580_PHY_POWER_MGMT);
  933. if (!active) {
  934. data &= ~E1000_82580_PM_D3_LPLU;
  935. /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
  936. * during Dx states where the power conservation is most
  937. * important. During driver activity we should enable
  938. * SmartSpeed, so performance is maintained.
  939. */
  940. if (phy->smart_speed == e1000_smart_speed_on)
  941. data |= E1000_82580_PM_SPD;
  942. else if (phy->smart_speed == e1000_smart_speed_off)
  943. data &= ~E1000_82580_PM_SPD;
  944. } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
  945. (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
  946. (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
  947. data |= E1000_82580_PM_D3_LPLU;
  948. /* When LPLU is enabled, we should disable SmartSpeed */
  949. data &= ~E1000_82580_PM_SPD;
  950. }
  951. wr32(E1000_82580_PHY_POWER_MGMT, data);
  952. return 0;
  953. }
  954. /**
  955. * igb_acquire_nvm_82575 - Request for access to EEPROM
  956. * @hw: pointer to the HW structure
  957. *
  958. * Acquire the necessary semaphores for exclusive access to the EEPROM.
  959. * Set the EEPROM access request bit and wait for EEPROM access grant bit.
  960. * Return successful if access grant bit set, else clear the request for
  961. * EEPROM access and return -E1000_ERR_NVM (-1).
  962. **/
  963. static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
  964. {
  965. s32 ret_val;
  966. ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
  967. if (ret_val)
  968. goto out;
  969. ret_val = igb_acquire_nvm(hw);
  970. if (ret_val)
  971. hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
  972. out:
  973. return ret_val;
  974. }
  975. /**
  976. * igb_release_nvm_82575 - Release exclusive access to EEPROM
  977. * @hw: pointer to the HW structure
  978. *
  979. * Stop any current commands to the EEPROM and clear the EEPROM request bit,
  980. * then release the semaphores acquired.
  981. **/
  982. static void igb_release_nvm_82575(struct e1000_hw *hw)
  983. {
  984. igb_release_nvm(hw);
  985. hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
  986. }
  987. /**
  988. * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
  989. * @hw: pointer to the HW structure
  990. * @mask: specifies which semaphore to acquire
  991. *
  992. * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
  993. * will also specify which port we're acquiring the lock for.
  994. **/
  995. static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
  996. {
  997. u32 swfw_sync;
  998. u32 swmask = mask;
  999. u32 fwmask = mask << 16;
  1000. s32 ret_val = 0;
  1001. s32 i = 0, timeout = 200; /* FIXME: find real value to use here */
  1002. while (i < timeout) {
  1003. if (igb_get_hw_semaphore(hw)) {
  1004. ret_val = -E1000_ERR_SWFW_SYNC;
  1005. goto out;
  1006. }
  1007. swfw_sync = rd32(E1000_SW_FW_SYNC);
  1008. if (!(swfw_sync & (fwmask | swmask)))
  1009. break;
  1010. /* Firmware currently using resource (fwmask)
  1011. * or other software thread using resource (swmask)
  1012. */
  1013. igb_put_hw_semaphore(hw);
  1014. mdelay(5);
  1015. i++;
  1016. }
  1017. if (i == timeout) {
  1018. hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
  1019. ret_val = -E1000_ERR_SWFW_SYNC;
  1020. goto out;
  1021. }
  1022. swfw_sync |= swmask;
  1023. wr32(E1000_SW_FW_SYNC, swfw_sync);
  1024. igb_put_hw_semaphore(hw);
  1025. out:
  1026. return ret_val;
  1027. }
  1028. /**
  1029. * igb_release_swfw_sync_82575 - Release SW/FW semaphore
  1030. * @hw: pointer to the HW structure
  1031. * @mask: specifies which semaphore to acquire
  1032. *
  1033. * Release the SW/FW semaphore used to access the PHY or NVM. The mask
  1034. * will also specify which port we're releasing the lock for.
  1035. **/
  1036. static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
  1037. {
  1038. u32 swfw_sync;
  1039. while (igb_get_hw_semaphore(hw) != 0)
  1040. ; /* Empty */
  1041. swfw_sync = rd32(E1000_SW_FW_SYNC);
  1042. swfw_sync &= ~mask;
  1043. wr32(E1000_SW_FW_SYNC, swfw_sync);
  1044. igb_put_hw_semaphore(hw);
  1045. }
  1046. /**
  1047. * igb_get_cfg_done_82575 - Read config done bit
  1048. * @hw: pointer to the HW structure
  1049. *
  1050. * Read the management control register for the config done bit for
  1051. * completion status. NOTE: silicon which is EEPROM-less will fail trying
  1052. * to read the config done bit, so an error is *ONLY* logged and returns
  1053. * 0. If we were to return with error, EEPROM-less silicon
  1054. * would not be able to be reset or change link.
  1055. **/
  1056. static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
  1057. {
  1058. s32 timeout = PHY_CFG_TIMEOUT;
  1059. u32 mask = E1000_NVM_CFG_DONE_PORT_0;
  1060. if (hw->bus.func == 1)
  1061. mask = E1000_NVM_CFG_DONE_PORT_1;
  1062. else if (hw->bus.func == E1000_FUNC_2)
  1063. mask = E1000_NVM_CFG_DONE_PORT_2;
  1064. else if (hw->bus.func == E1000_FUNC_3)
  1065. mask = E1000_NVM_CFG_DONE_PORT_3;
  1066. while (timeout) {
  1067. if (rd32(E1000_EEMNGCTL) & mask)
  1068. break;
  1069. usleep_range(1000, 2000);
  1070. timeout--;
  1071. }
  1072. if (!timeout)
  1073. hw_dbg("MNG configuration cycle has not completed.\n");
  1074. /* If EEPROM is not marked present, init the PHY manually */
  1075. if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
  1076. (hw->phy.type == e1000_phy_igp_3))
  1077. igb_phy_init_script_igp3(hw);
  1078. return 0;
  1079. }
  1080. /**
  1081. * igb_get_link_up_info_82575 - Get link speed/duplex info
  1082. * @hw: pointer to the HW structure
  1083. * @speed: stores the current speed
  1084. * @duplex: stores the current duplex
  1085. *
  1086. * This is a wrapper function, if using the serial gigabit media independent
  1087. * interface, use PCS to retrieve the link speed and duplex information.
  1088. * Otherwise, use the generic function to get the link speed and duplex info.
  1089. **/
  1090. static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
  1091. u16 *duplex)
  1092. {
  1093. s32 ret_val;
  1094. if (hw->phy.media_type != e1000_media_type_copper)
  1095. ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
  1096. duplex);
  1097. else
  1098. ret_val = igb_get_speed_and_duplex_copper(hw, speed,
  1099. duplex);
  1100. return ret_val;
  1101. }
  1102. /**
  1103. * igb_check_for_link_82575 - Check for link
  1104. * @hw: pointer to the HW structure
  1105. *
  1106. * If sgmii is enabled, then use the pcs register to determine link, otherwise
  1107. * use the generic interface for determining link.
  1108. **/
  1109. static s32 igb_check_for_link_82575(struct e1000_hw *hw)
  1110. {
  1111. s32 ret_val;
  1112. u16 speed, duplex;
  1113. if (hw->phy.media_type != e1000_media_type_copper) {
  1114. ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
  1115. &duplex);
  1116. /* Use this flag to determine if link needs to be checked or
  1117. * not. If we have link clear the flag so that we do not
  1118. * continue to check for link.
  1119. */
  1120. hw->mac.get_link_status = !hw->mac.serdes_has_link;
  1121. /* Configure Flow Control now that Auto-Neg has completed.
  1122. * First, we need to restore the desired flow control
  1123. * settings because we may have had to re-autoneg with a
  1124. * different link partner.
  1125. */
  1126. ret_val = igb_config_fc_after_link_up(hw);
  1127. if (ret_val)
  1128. hw_dbg("Error configuring flow control\n");
  1129. } else {
  1130. ret_val = igb_check_for_copper_link(hw);
  1131. }
  1132. return ret_val;
  1133. }
  1134. /**
  1135. * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
  1136. * @hw: pointer to the HW structure
  1137. **/
  1138. void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
  1139. {
  1140. u32 reg;
  1141. if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
  1142. !igb_sgmii_active_82575(hw))
  1143. return;
  1144. /* Enable PCS to turn on link */
  1145. reg = rd32(E1000_PCS_CFG0);
  1146. reg |= E1000_PCS_CFG_PCS_EN;
  1147. wr32(E1000_PCS_CFG0, reg);
  1148. /* Power up the laser */
  1149. reg = rd32(E1000_CTRL_EXT);
  1150. reg &= ~E1000_CTRL_EXT_SDP3_DATA;
  1151. wr32(E1000_CTRL_EXT, reg);
  1152. /* flush the write to verify completion */
  1153. wrfl();
  1154. usleep_range(1000, 2000);
  1155. }
  1156. /**
  1157. * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
  1158. * @hw: pointer to the HW structure
  1159. * @speed: stores the current speed
  1160. * @duplex: stores the current duplex
  1161. *
  1162. * Using the physical coding sub-layer (PCS), retrieve the current speed and
  1163. * duplex, then store the values in the pointers provided.
  1164. **/
  1165. static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
  1166. u16 *duplex)
  1167. {
  1168. struct e1000_mac_info *mac = &hw->mac;
  1169. u32 pcs, status;
  1170. /* Set up defaults for the return values of this function */
  1171. mac->serdes_has_link = false;
  1172. *speed = 0;
  1173. *duplex = 0;
  1174. /* Read the PCS Status register for link state. For non-copper mode,
  1175. * the status register is not accurate. The PCS status register is
  1176. * used instead.
  1177. */
  1178. pcs = rd32(E1000_PCS_LSTAT);
  1179. /* The link up bit determines when link is up on autoneg. The sync ok
  1180. * gets set once both sides sync up and agree upon link. Stable link
  1181. * can be determined by checking for both link up and link sync ok
  1182. */
  1183. if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
  1184. mac->serdes_has_link = true;
  1185. /* Detect and store PCS speed */
  1186. if (pcs & E1000_PCS_LSTS_SPEED_1000)
  1187. *speed = SPEED_1000;
  1188. else if (pcs & E1000_PCS_LSTS_SPEED_100)
  1189. *speed = SPEED_100;
  1190. else
  1191. *speed = SPEED_10;
  1192. /* Detect and store PCS duplex */
  1193. if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
  1194. *duplex = FULL_DUPLEX;
  1195. else
  1196. *duplex = HALF_DUPLEX;
  1197. /* Check if it is an I354 2.5Gb backplane connection. */
  1198. if (mac->type == e1000_i354) {
  1199. status = rd32(E1000_STATUS);
  1200. if ((status & E1000_STATUS_2P5_SKU) &&
  1201. !(status & E1000_STATUS_2P5_SKU_OVER)) {
  1202. *speed = SPEED_2500;
  1203. *duplex = FULL_DUPLEX;
  1204. hw_dbg("2500 Mbs, ");
  1205. hw_dbg("Full Duplex\n");
  1206. }
  1207. }
  1208. }
  1209. return 0;
  1210. }
  1211. /**
  1212. * igb_shutdown_serdes_link_82575 - Remove link during power down
  1213. * @hw: pointer to the HW structure
  1214. *
  1215. * In the case of fiber serdes, shut down optics and PCS on driver unload
  1216. * when management pass thru is not enabled.
  1217. **/
  1218. void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
  1219. {
  1220. u32 reg;
  1221. if (hw->phy.media_type != e1000_media_type_internal_serdes &&
  1222. igb_sgmii_active_82575(hw))
  1223. return;
  1224. if (!igb_enable_mng_pass_thru(hw)) {
  1225. /* Disable PCS to turn off link */
  1226. reg = rd32(E1000_PCS_CFG0);
  1227. reg &= ~E1000_PCS_CFG_PCS_EN;
  1228. wr32(E1000_PCS_CFG0, reg);
  1229. /* shutdown the laser */
  1230. reg = rd32(E1000_CTRL_EXT);
  1231. reg |= E1000_CTRL_EXT_SDP3_DATA;
  1232. wr32(E1000_CTRL_EXT, reg);
  1233. /* flush the write to verify completion */
  1234. wrfl();
  1235. usleep_range(1000, 2000);
  1236. }
  1237. }
  1238. /**
  1239. * igb_reset_hw_82575 - Reset hardware
  1240. * @hw: pointer to the HW structure
  1241. *
  1242. * This resets the hardware into a known state. This is a
  1243. * function pointer entry point called by the api module.
  1244. **/
  1245. static s32 igb_reset_hw_82575(struct e1000_hw *hw)
  1246. {
  1247. u32 ctrl;
  1248. s32 ret_val;
  1249. /* Prevent the PCI-E bus from sticking if there is no TLP connection
  1250. * on the last TLP read/write transaction when MAC is reset.
  1251. */
  1252. ret_val = igb_disable_pcie_master(hw);
  1253. if (ret_val)
  1254. hw_dbg("PCI-E Master disable polling has failed.\n");
  1255. /* set the completion timeout for interface */
  1256. ret_val = igb_set_pcie_completion_timeout(hw);
  1257. if (ret_val)
  1258. hw_dbg("PCI-E Set completion timeout has failed.\n");
  1259. hw_dbg("Masking off all interrupts\n");
  1260. wr32(E1000_IMC, 0xffffffff);
  1261. wr32(E1000_RCTL, 0);
  1262. wr32(E1000_TCTL, E1000_TCTL_PSP);
  1263. wrfl();
  1264. usleep_range(10000, 20000);
  1265. ctrl = rd32(E1000_CTRL);
  1266. hw_dbg("Issuing a global reset to MAC\n");
  1267. wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
  1268. ret_val = igb_get_auto_rd_done(hw);
  1269. if (ret_val) {
  1270. /* When auto config read does not complete, do not
  1271. * return with an error. This can happen in situations
  1272. * where there is no eeprom and prevents getting link.
  1273. */
  1274. hw_dbg("Auto Read Done did not complete\n");
  1275. }
  1276. /* If EEPROM is not present, run manual init scripts */
  1277. if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
  1278. igb_reset_init_script_82575(hw);
  1279. /* Clear any pending interrupt events. */
  1280. wr32(E1000_IMC, 0xffffffff);
  1281. rd32(E1000_ICR);
  1282. /* Install any alternate MAC address into RAR0 */
  1283. ret_val = igb_check_alt_mac_addr(hw);
  1284. return ret_val;
  1285. }
  1286. /**
  1287. * igb_init_hw_82575 - Initialize hardware
  1288. * @hw: pointer to the HW structure
  1289. *
  1290. * This inits the hardware readying it for operation.
  1291. **/
  1292. static s32 igb_init_hw_82575(struct e1000_hw *hw)
  1293. {
  1294. struct e1000_mac_info *mac = &hw->mac;
  1295. s32 ret_val;
  1296. u16 i, rar_count = mac->rar_entry_count;
  1297. if ((hw->mac.type >= e1000_i210) &&
  1298. !(igb_get_flash_presence_i210(hw))) {
  1299. ret_val = igb_pll_workaround_i210(hw);
  1300. if (ret_val)
  1301. return ret_val;
  1302. }
  1303. /* Initialize identification LED */
  1304. ret_val = igb_id_led_init(hw);
  1305. if (ret_val) {
  1306. hw_dbg("Error initializing identification LED\n");
  1307. /* This is not fatal and we should not stop init due to this */
  1308. }
  1309. /* Disabling VLAN filtering */
  1310. hw_dbg("Initializing the IEEE VLAN\n");
  1311. if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
  1312. igb_clear_vfta_i350(hw);
  1313. else
  1314. igb_clear_vfta(hw);
  1315. /* Setup the receive address */
  1316. igb_init_rx_addrs(hw, rar_count);
  1317. /* Zero out the Multicast HASH table */
  1318. hw_dbg("Zeroing the MTA\n");
  1319. for (i = 0; i < mac->mta_reg_count; i++)
  1320. array_wr32(E1000_MTA, i, 0);
  1321. /* Zero out the Unicast HASH table */
  1322. hw_dbg("Zeroing the UTA\n");
  1323. for (i = 0; i < mac->uta_reg_count; i++)
  1324. array_wr32(E1000_UTA, i, 0);
  1325. /* Setup link and flow control */
  1326. ret_val = igb_setup_link(hw);
  1327. /* Clear all of the statistics registers (clear on read). It is
  1328. * important that we do this after we have tried to establish link
  1329. * because the symbol error count will increment wildly if there
  1330. * is no link.
  1331. */
  1332. igb_clear_hw_cntrs_82575(hw);
  1333. return ret_val;
  1334. }
  1335. /**
  1336. * igb_setup_copper_link_82575 - Configure copper link settings
  1337. * @hw: pointer to the HW structure
  1338. *
  1339. * Configures the link for auto-neg or forced speed and duplex. Then we check
  1340. * for link, once link is established calls to configure collision distance
  1341. * and flow control are called.
  1342. **/
  1343. static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
  1344. {
  1345. u32 ctrl;
  1346. s32 ret_val;
  1347. u32 phpm_reg;
  1348. ctrl = rd32(E1000_CTRL);
  1349. ctrl |= E1000_CTRL_SLU;
  1350. ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
  1351. wr32(E1000_CTRL, ctrl);
  1352. /* Clear Go Link Disconnect bit on supported devices */
  1353. switch (hw->mac.type) {
  1354. case e1000_82580:
  1355. case e1000_i350:
  1356. case e1000_i210:
  1357. case e1000_i211:
  1358. phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
  1359. phpm_reg &= ~E1000_82580_PM_GO_LINKD;
  1360. wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
  1361. break;
  1362. default:
  1363. break;
  1364. }
  1365. ret_val = igb_setup_serdes_link_82575(hw);
  1366. if (ret_val)
  1367. goto out;
  1368. if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
  1369. /* allow time for SFP cage time to power up phy */
  1370. msleep(300);
  1371. ret_val = hw->phy.ops.reset(hw);
  1372. if (ret_val) {
  1373. hw_dbg("Error resetting the PHY.\n");
  1374. goto out;
  1375. }
  1376. }
  1377. switch (hw->phy.type) {
  1378. case e1000_phy_i210:
  1379. case e1000_phy_m88:
  1380. switch (hw->phy.id) {
  1381. case I347AT4_E_PHY_ID:
  1382. case M88E1112_E_PHY_ID:
  1383. case M88E1543_E_PHY_ID:
  1384. case I210_I_PHY_ID:
  1385. ret_val = igb_copper_link_setup_m88_gen2(hw);
  1386. break;
  1387. default:
  1388. ret_val = igb_copper_link_setup_m88(hw);
  1389. break;
  1390. }
  1391. break;
  1392. case e1000_phy_igp_3:
  1393. ret_val = igb_copper_link_setup_igp(hw);
  1394. break;
  1395. case e1000_phy_82580:
  1396. ret_val = igb_copper_link_setup_82580(hw);
  1397. break;
  1398. default:
  1399. ret_val = -E1000_ERR_PHY;
  1400. break;
  1401. }
  1402. if (ret_val)
  1403. goto out;
  1404. ret_val = igb_setup_copper_link(hw);
  1405. out:
  1406. return ret_val;
  1407. }
  1408. /**
  1409. * igb_setup_serdes_link_82575 - Setup link for serdes
  1410. * @hw: pointer to the HW structure
  1411. *
  1412. * Configure the physical coding sub-layer (PCS) link. The PCS link is
  1413. * used on copper connections where the serialized gigabit media independent
  1414. * interface (sgmii), or serdes fiber is being used. Configures the link
  1415. * for auto-negotiation or forces speed/duplex.
  1416. **/
  1417. static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
  1418. {
  1419. u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
  1420. bool pcs_autoneg;
  1421. s32 ret_val = 0;
  1422. u16 data;
  1423. if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
  1424. !igb_sgmii_active_82575(hw))
  1425. return ret_val;
  1426. /* On the 82575, SerDes loopback mode persists until it is
  1427. * explicitly turned off or a power cycle is performed. A read to
  1428. * the register does not indicate its status. Therefore, we ensure
  1429. * loopback mode is disabled during initialization.
  1430. */
  1431. wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
  1432. /* power on the sfp cage if present and turn on I2C */
  1433. ctrl_ext = rd32(E1000_CTRL_EXT);
  1434. ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
  1435. ctrl_ext |= E1000_CTRL_I2C_ENA;
  1436. wr32(E1000_CTRL_EXT, ctrl_ext);
  1437. ctrl_reg = rd32(E1000_CTRL);
  1438. ctrl_reg |= E1000_CTRL_SLU;
  1439. if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
  1440. /* set both sw defined pins */
  1441. ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
  1442. /* Set switch control to serdes energy detect */
  1443. reg = rd32(E1000_CONNSW);
  1444. reg |= E1000_CONNSW_ENRGSRC;
  1445. wr32(E1000_CONNSW, reg);
  1446. }
  1447. reg = rd32(E1000_PCS_LCTL);
  1448. /* default pcs_autoneg to the same setting as mac autoneg */
  1449. pcs_autoneg = hw->mac.autoneg;
  1450. switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
  1451. case E1000_CTRL_EXT_LINK_MODE_SGMII:
  1452. /* sgmii mode lets the phy handle forcing speed/duplex */
  1453. pcs_autoneg = true;
  1454. /* autoneg time out should be disabled for SGMII mode */
  1455. reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
  1456. break;
  1457. case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
  1458. /* disable PCS autoneg and support parallel detect only */
  1459. pcs_autoneg = false;
  1460. default:
  1461. if (hw->mac.type == e1000_82575 ||
  1462. hw->mac.type == e1000_82576) {
  1463. ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
  1464. if (ret_val) {
  1465. hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
  1466. return ret_val;
  1467. }
  1468. if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
  1469. pcs_autoneg = false;
  1470. }
  1471. /* non-SGMII modes only supports a speed of 1000/Full for the
  1472. * link so it is best to just force the MAC and let the pcs
  1473. * link either autoneg or be forced to 1000/Full
  1474. */
  1475. ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
  1476. E1000_CTRL_FD | E1000_CTRL_FRCDPX;
  1477. /* set speed of 1000/Full if speed/duplex is forced */
  1478. reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
  1479. break;
  1480. }
  1481. wr32(E1000_CTRL, ctrl_reg);
  1482. /* New SerDes mode allows for forcing speed or autonegotiating speed
  1483. * at 1gb. Autoneg should be default set by most drivers. This is the
  1484. * mode that will be compatible with older link partners and switches.
  1485. * However, both are supported by the hardware and some drivers/tools.
  1486. */
  1487. reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
  1488. E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
  1489. if (pcs_autoneg) {
  1490. /* Set PCS register for autoneg */
  1491. reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
  1492. E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
  1493. /* Disable force flow control for autoneg */
  1494. reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
  1495. /* Configure flow control advertisement for autoneg */
  1496. anadv_reg = rd32(E1000_PCS_ANADV);
  1497. anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
  1498. switch (hw->fc.requested_mode) {
  1499. case e1000_fc_full:
  1500. case e1000_fc_rx_pause:
  1501. anadv_reg |= E1000_TXCW_ASM_DIR;
  1502. anadv_reg |= E1000_TXCW_PAUSE;
  1503. break;
  1504. case e1000_fc_tx_pause:
  1505. anadv_reg |= E1000_TXCW_ASM_DIR;
  1506. break;
  1507. default:
  1508. break;
  1509. }
  1510. wr32(E1000_PCS_ANADV, anadv_reg);
  1511. hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
  1512. } else {
  1513. /* Set PCS register for forced link */
  1514. reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
  1515. /* Force flow control for forced link */
  1516. reg |= E1000_PCS_LCTL_FORCE_FCTRL;
  1517. hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
  1518. }
  1519. wr32(E1000_PCS_LCTL, reg);
  1520. if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
  1521. igb_force_mac_fc(hw);
  1522. return ret_val;
  1523. }
  1524. /**
  1525. * igb_sgmii_active_82575 - Return sgmii state
  1526. * @hw: pointer to the HW structure
  1527. *
  1528. * 82575 silicon has a serialized gigabit media independent interface (sgmii)
  1529. * which can be enabled for use in the embedded applications. Simply
  1530. * return the current state of the sgmii interface.
  1531. **/
  1532. static bool igb_sgmii_active_82575(struct e1000_hw *hw)
  1533. {
  1534. struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
  1535. return dev_spec->sgmii_active;
  1536. }
  1537. /**
  1538. * igb_reset_init_script_82575 - Inits HW defaults after reset
  1539. * @hw: pointer to the HW structure
  1540. *
  1541. * Inits recommended HW defaults after a reset when there is no EEPROM
  1542. * detected. This is only for the 82575.
  1543. **/
  1544. static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
  1545. {
  1546. if (hw->mac.type == e1000_82575) {
  1547. hw_dbg("Running reset init script for 82575\n");
  1548. /* SerDes configuration via SERDESCTRL */
  1549. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
  1550. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
  1551. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
  1552. igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
  1553. /* CCM configuration via CCMCTL register */
  1554. igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
  1555. igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
  1556. /* PCIe lanes configuration */
  1557. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
  1558. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
  1559. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
  1560. igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
  1561. /* PCIe PLL Configuration */
  1562. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
  1563. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
  1564. igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
  1565. }
  1566. return 0;
  1567. }
  1568. /**
  1569. * igb_read_mac_addr_82575 - Read device MAC address
  1570. * @hw: pointer to the HW structure
  1571. **/
  1572. static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
  1573. {
  1574. s32 ret_val = 0;
  1575. /* If there's an alternate MAC address place it in RAR0
  1576. * so that it will override the Si installed default perm
  1577. * address.
  1578. */
  1579. ret_val = igb_check_alt_mac_addr(hw);
  1580. if (ret_val)
  1581. goto out;
  1582. ret_val = igb_read_mac_addr(hw);
  1583. out:
  1584. return ret_val;
  1585. }
  1586. /**
  1587. * igb_power_down_phy_copper_82575 - Remove link during PHY power down
  1588. * @hw: pointer to the HW structure
  1589. *
  1590. * In the case of a PHY power down to save power, or to turn off link during a
  1591. * driver unload, or wake on lan is not enabled, remove the link.
  1592. **/
  1593. void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
  1594. {
  1595. /* If the management interface is not enabled, then power down */
  1596. if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
  1597. igb_power_down_phy_copper(hw);
  1598. }
  1599. /**
  1600. * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
  1601. * @hw: pointer to the HW structure
  1602. *
  1603. * Clears the hardware counters by reading the counter registers.
  1604. **/
  1605. static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
  1606. {
  1607. igb_clear_hw_cntrs_base(hw);
  1608. rd32(E1000_PRC64);
  1609. rd32(E1000_PRC127);
  1610. rd32(E1000_PRC255);
  1611. rd32(E1000_PRC511);
  1612. rd32(E1000_PRC1023);
  1613. rd32(E1000_PRC1522);
  1614. rd32(E1000_PTC64);
  1615. rd32(E1000_PTC127);
  1616. rd32(E1000_PTC255);
  1617. rd32(E1000_PTC511);
  1618. rd32(E1000_PTC1023);
  1619. rd32(E1000_PTC1522);
  1620. rd32(E1000_ALGNERRC);
  1621. rd32(E1000_RXERRC);
  1622. rd32(E1000_TNCRS);
  1623. rd32(E1000_CEXTERR);
  1624. rd32(E1000_TSCTC);
  1625. rd32(E1000_TSCTFC);
  1626. rd32(E1000_MGTPRC);
  1627. rd32(E1000_MGTPDC);
  1628. rd32(E1000_MGTPTC);
  1629. rd32(E1000_IAC);
  1630. rd32(E1000_ICRXOC);
  1631. rd32(E1000_ICRXPTC);
  1632. rd32(E1000_ICRXATC);
  1633. rd32(E1000_ICTXPTC);
  1634. rd32(E1000_ICTXATC);
  1635. rd32(E1000_ICTXQEC);
  1636. rd32(E1000_ICTXQMTC);
  1637. rd32(E1000_ICRXDMTC);
  1638. rd32(E1000_CBTMPC);
  1639. rd32(E1000_HTDPMC);
  1640. rd32(E1000_CBRMPC);
  1641. rd32(E1000_RPTHC);
  1642. rd32(E1000_HGPTC);
  1643. rd32(E1000_HTCBDPC);
  1644. rd32(E1000_HGORCL);
  1645. rd32(E1000_HGORCH);
  1646. rd32(E1000_HGOTCL);
  1647. rd32(E1000_HGOTCH);
  1648. rd32(E1000_LENERRS);
  1649. /* This register should not be read in copper configurations */
  1650. if (hw->phy.media_type == e1000_media_type_internal_serdes ||
  1651. igb_sgmii_active_82575(hw))
  1652. rd32(E1000_SCVPC);
  1653. }
  1654. /**
  1655. * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
  1656. * @hw: pointer to the HW structure
  1657. *
  1658. * After rx enable if managability is enabled then there is likely some
  1659. * bad data at the start of the fifo and possibly in the DMA fifo. This
  1660. * function clears the fifos and flushes any packets that came in as rx was
  1661. * being enabled.
  1662. **/
  1663. void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
  1664. {
  1665. u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
  1666. int i, ms_wait;
  1667. if (hw->mac.type != e1000_82575 ||
  1668. !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
  1669. return;
  1670. /* Disable all RX queues */
  1671. for (i = 0; i < 4; i++) {
  1672. rxdctl[i] = rd32(E1000_RXDCTL(i));
  1673. wr32(E1000_RXDCTL(i),
  1674. rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
  1675. }
  1676. /* Poll all queues to verify they have shut down */
  1677. for (ms_wait = 0; ms_wait < 10; ms_wait++) {
  1678. usleep_range(1000, 2000);
  1679. rx_enabled = 0;
  1680. for (i = 0; i < 4; i++)
  1681. rx_enabled |= rd32(E1000_RXDCTL(i));
  1682. if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
  1683. break;
  1684. }
  1685. if (ms_wait == 10)
  1686. hw_dbg("Queue disable timed out after 10ms\n");
  1687. /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
  1688. * incoming packets are rejected. Set enable and wait 2ms so that
  1689. * any packet that was coming in as RCTL.EN was set is flushed
  1690. */
  1691. rfctl = rd32(E1000_RFCTL);
  1692. wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
  1693. rlpml = rd32(E1000_RLPML);
  1694. wr32(E1000_RLPML, 0);
  1695. rctl = rd32(E1000_RCTL);
  1696. temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
  1697. temp_rctl |= E1000_RCTL_LPE;
  1698. wr32(E1000_RCTL, temp_rctl);
  1699. wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
  1700. wrfl();
  1701. usleep_range(2000, 3000);
  1702. /* Enable RX queues that were previously enabled and restore our
  1703. * previous state
  1704. */
  1705. for (i = 0; i < 4; i++)
  1706. wr32(E1000_RXDCTL(i), rxdctl[i]);
  1707. wr32(E1000_RCTL, rctl);
  1708. wrfl();
  1709. wr32(E1000_RLPML, rlpml);
  1710. wr32(E1000_RFCTL, rfctl);
  1711. /* Flush receive errors generated by workaround */
  1712. rd32(E1000_ROC);
  1713. rd32(E1000_RNBC);
  1714. rd32(E1000_MPC);
  1715. }
  1716. /**
  1717. * igb_set_pcie_completion_timeout - set pci-e completion timeout
  1718. * @hw: pointer to the HW structure
  1719. *
  1720. * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
  1721. * however the hardware default for these parts is 500us to 1ms which is less
  1722. * than the 10ms recommended by the pci-e spec. To address this we need to
  1723. * increase the value to either 10ms to 200ms for capability version 1 config,
  1724. * or 16ms to 55ms for version 2.
  1725. **/
  1726. static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
  1727. {
  1728. u32 gcr = rd32(E1000_GCR);
  1729. s32 ret_val = 0;
  1730. u16 pcie_devctl2;
  1731. /* only take action if timeout value is defaulted to 0 */
  1732. if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
  1733. goto out;
  1734. /* if capabilities version is type 1 we can write the
  1735. * timeout of 10ms to 200ms through the GCR register
  1736. */
  1737. if (!(gcr & E1000_GCR_CAP_VER2)) {
  1738. gcr |= E1000_GCR_CMPL_TMOUT_10ms;
  1739. goto out;
  1740. }
  1741. /* for version 2 capabilities we need to write the config space
  1742. * directly in order to set the completion timeout value for
  1743. * 16ms to 55ms
  1744. */
  1745. ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
  1746. &pcie_devctl2);
  1747. if (ret_val)
  1748. goto out;
  1749. pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
  1750. ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
  1751. &pcie_devctl2);
  1752. out:
  1753. /* disable completion timeout resend */
  1754. gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
  1755. wr32(E1000_GCR, gcr);
  1756. return ret_val;
  1757. }
  1758. /**
  1759. * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
  1760. * @hw: pointer to the hardware struct
  1761. * @enable: state to enter, either enabled or disabled
  1762. * @pf: Physical Function pool - do not set anti-spoofing for the PF
  1763. *
  1764. * enables/disables L2 switch anti-spoofing functionality.
  1765. **/
  1766. void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
  1767. {
  1768. u32 reg_val, reg_offset;
  1769. switch (hw->mac.type) {
  1770. case e1000_82576:
  1771. reg_offset = E1000_DTXSWC;
  1772. break;
  1773. case e1000_i350:
  1774. case e1000_i354:
  1775. reg_offset = E1000_TXSWC;
  1776. break;
  1777. default:
  1778. return;
  1779. }
  1780. reg_val = rd32(reg_offset);
  1781. if (enable) {
  1782. reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
  1783. E1000_DTXSWC_VLAN_SPOOF_MASK);
  1784. /* The PF can spoof - it has to in order to
  1785. * support emulation mode NICs
  1786. */
  1787. reg_val ^= (1 << pf | 1 << (pf + MAX_NUM_VFS));
  1788. } else {
  1789. reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
  1790. E1000_DTXSWC_VLAN_SPOOF_MASK);
  1791. }
  1792. wr32(reg_offset, reg_val);
  1793. }
  1794. /**
  1795. * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
  1796. * @hw: pointer to the hardware struct
  1797. * @enable: state to enter, either enabled or disabled
  1798. *
  1799. * enables/disables L2 switch loopback functionality.
  1800. **/
  1801. void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
  1802. {
  1803. u32 dtxswc;
  1804. switch (hw->mac.type) {
  1805. case e1000_82576:
  1806. dtxswc = rd32(E1000_DTXSWC);
  1807. if (enable)
  1808. dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1809. else
  1810. dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1811. wr32(E1000_DTXSWC, dtxswc);
  1812. break;
  1813. case e1000_i354:
  1814. case e1000_i350:
  1815. dtxswc = rd32(E1000_TXSWC);
  1816. if (enable)
  1817. dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1818. else
  1819. dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
  1820. wr32(E1000_TXSWC, dtxswc);
  1821. break;
  1822. default:
  1823. /* Currently no other hardware supports loopback */
  1824. break;
  1825. }
  1826. }
  1827. /**
  1828. * igb_vmdq_set_replication_pf - enable or disable vmdq replication
  1829. * @hw: pointer to the hardware struct
  1830. * @enable: state to enter, either enabled or disabled
  1831. *
  1832. * enables/disables replication of packets across multiple pools.
  1833. **/
  1834. void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
  1835. {
  1836. u32 vt_ctl = rd32(E1000_VT_CTL);
  1837. if (enable)
  1838. vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
  1839. else
  1840. vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
  1841. wr32(E1000_VT_CTL, vt_ctl);
  1842. }
  1843. /**
  1844. * igb_read_phy_reg_82580 - Read 82580 MDI control register
  1845. * @hw: pointer to the HW structure
  1846. * @offset: register offset to be read
  1847. * @data: pointer to the read data
  1848. *
  1849. * Reads the MDI control register in the PHY at offset and stores the
  1850. * information read to data.
  1851. **/
  1852. static s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
  1853. {
  1854. s32 ret_val;
  1855. ret_val = hw->phy.ops.acquire(hw);
  1856. if (ret_val)
  1857. goto out;
  1858. ret_val = igb_read_phy_reg_mdic(hw, offset, data);
  1859. hw->phy.ops.release(hw);
  1860. out:
  1861. return ret_val;
  1862. }
  1863. /**
  1864. * igb_write_phy_reg_82580 - Write 82580 MDI control register
  1865. * @hw: pointer to the HW structure
  1866. * @offset: register offset to write to
  1867. * @data: data to write to register at offset
  1868. *
  1869. * Writes data to MDI control register in the PHY at offset.
  1870. **/
  1871. static s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
  1872. {
  1873. s32 ret_val;
  1874. ret_val = hw->phy.ops.acquire(hw);
  1875. if (ret_val)
  1876. goto out;
  1877. ret_val = igb_write_phy_reg_mdic(hw, offset, data);
  1878. hw->phy.ops.release(hw);
  1879. out:
  1880. return ret_val;
  1881. }
  1882. /**
  1883. * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
  1884. * @hw: pointer to the HW structure
  1885. *
  1886. * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
  1887. * the values found in the EEPROM. This addresses an issue in which these
  1888. * bits are not restored from EEPROM after reset.
  1889. **/
  1890. static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
  1891. {
  1892. s32 ret_val = 0;
  1893. u32 mdicnfg;
  1894. u16 nvm_data = 0;
  1895. if (hw->mac.type != e1000_82580)
  1896. goto out;
  1897. if (!igb_sgmii_active_82575(hw))
  1898. goto out;
  1899. ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
  1900. NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
  1901. &nvm_data);
  1902. if (ret_val) {
  1903. hw_dbg("NVM Read Error\n");
  1904. goto out;
  1905. }
  1906. mdicnfg = rd32(E1000_MDICNFG);
  1907. if (nvm_data & NVM_WORD24_EXT_MDIO)
  1908. mdicnfg |= E1000_MDICNFG_EXT_MDIO;
  1909. if (nvm_data & NVM_WORD24_COM_MDIO)
  1910. mdicnfg |= E1000_MDICNFG_COM_MDIO;
  1911. wr32(E1000_MDICNFG, mdicnfg);
  1912. out:
  1913. return ret_val;
  1914. }
  1915. /**
  1916. * igb_reset_hw_82580 - Reset hardware
  1917. * @hw: pointer to the HW structure
  1918. *
  1919. * This resets function or entire device (all ports, etc.)
  1920. * to a known state.
  1921. **/
  1922. static s32 igb_reset_hw_82580(struct e1000_hw *hw)
  1923. {
  1924. s32 ret_val = 0;
  1925. /* BH SW mailbox bit in SW_FW_SYNC */
  1926. u16 swmbsw_mask = E1000_SW_SYNCH_MB;
  1927. u32 ctrl;
  1928. bool global_device_reset = hw->dev_spec._82575.global_device_reset;
  1929. hw->dev_spec._82575.global_device_reset = false;
  1930. /* due to hw errata, global device reset doesn't always
  1931. * work on 82580
  1932. */
  1933. if (hw->mac.type == e1000_82580)
  1934. global_device_reset = false;
  1935. /* Get current control state. */
  1936. ctrl = rd32(E1000_CTRL);
  1937. /* Prevent the PCI-E bus from sticking if there is no TLP connection
  1938. * on the last TLP read/write transaction when MAC is reset.
  1939. */
  1940. ret_val = igb_disable_pcie_master(hw);
  1941. if (ret_val)
  1942. hw_dbg("PCI-E Master disable polling has failed.\n");
  1943. hw_dbg("Masking off all interrupts\n");
  1944. wr32(E1000_IMC, 0xffffffff);
  1945. wr32(E1000_RCTL, 0);
  1946. wr32(E1000_TCTL, E1000_TCTL_PSP);
  1947. wrfl();
  1948. usleep_range(10000, 11000);
  1949. /* Determine whether or not a global dev reset is requested */
  1950. if (global_device_reset &&
  1951. hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
  1952. global_device_reset = false;
  1953. if (global_device_reset &&
  1954. !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
  1955. ctrl |= E1000_CTRL_DEV_RST;
  1956. else
  1957. ctrl |= E1000_CTRL_RST;
  1958. wr32(E1000_CTRL, ctrl);
  1959. wrfl();
  1960. /* Add delay to insure DEV_RST has time to complete */
  1961. if (global_device_reset)
  1962. usleep_range(5000, 6000);
  1963. ret_val = igb_get_auto_rd_done(hw);
  1964. if (ret_val) {
  1965. /* When auto config read does not complete, do not
  1966. * return with an error. This can happen in situations
  1967. * where there is no eeprom and prevents getting link.
  1968. */
  1969. hw_dbg("Auto Read Done did not complete\n");
  1970. }
  1971. /* clear global device reset status bit */
  1972. wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
  1973. /* Clear any pending interrupt events. */
  1974. wr32(E1000_IMC, 0xffffffff);
  1975. rd32(E1000_ICR);
  1976. ret_val = igb_reset_mdicnfg_82580(hw);
  1977. if (ret_val)
  1978. hw_dbg("Could not reset MDICNFG based on EEPROM\n");
  1979. /* Install any alternate MAC address into RAR0 */
  1980. ret_val = igb_check_alt_mac_addr(hw);
  1981. /* Release semaphore */
  1982. if (global_device_reset)
  1983. hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
  1984. return ret_val;
  1985. }
  1986. /**
  1987. * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
  1988. * @data: data received by reading RXPBS register
  1989. *
  1990. * The 82580 uses a table based approach for packet buffer allocation sizes.
  1991. * This function converts the retrieved value into the correct table value
  1992. * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
  1993. * 0x0 36 72 144 1 2 4 8 16
  1994. * 0x8 35 70 140 rsv rsv rsv rsv rsv
  1995. */
  1996. u16 igb_rxpbs_adjust_82580(u32 data)
  1997. {
  1998. u16 ret_val = 0;
  1999. if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
  2000. ret_val = e1000_82580_rxpbs_table[data];
  2001. return ret_val;
  2002. }
  2003. /**
  2004. * igb_validate_nvm_checksum_with_offset - Validate EEPROM
  2005. * checksum
  2006. * @hw: pointer to the HW structure
  2007. * @offset: offset in words of the checksum protected region
  2008. *
  2009. * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
  2010. * and then verifies that the sum of the EEPROM is equal to 0xBABA.
  2011. **/
  2012. static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
  2013. u16 offset)
  2014. {
  2015. s32 ret_val = 0;
  2016. u16 checksum = 0;
  2017. u16 i, nvm_data;
  2018. for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
  2019. ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  2020. if (ret_val) {
  2021. hw_dbg("NVM Read Error\n");
  2022. goto out;
  2023. }
  2024. checksum += nvm_data;
  2025. }
  2026. if (checksum != (u16) NVM_SUM) {
  2027. hw_dbg("NVM Checksum Invalid\n");
  2028. ret_val = -E1000_ERR_NVM;
  2029. goto out;
  2030. }
  2031. out:
  2032. return ret_val;
  2033. }
  2034. /**
  2035. * igb_update_nvm_checksum_with_offset - Update EEPROM
  2036. * checksum
  2037. * @hw: pointer to the HW structure
  2038. * @offset: offset in words of the checksum protected region
  2039. *
  2040. * Updates the EEPROM checksum by reading/adding each word of the EEPROM
  2041. * up to the checksum. Then calculates the EEPROM checksum and writes the
  2042. * value to the EEPROM.
  2043. **/
  2044. static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
  2045. {
  2046. s32 ret_val;
  2047. u16 checksum = 0;
  2048. u16 i, nvm_data;
  2049. for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
  2050. ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
  2051. if (ret_val) {
  2052. hw_dbg("NVM Read Error while updating checksum.\n");
  2053. goto out;
  2054. }
  2055. checksum += nvm_data;
  2056. }
  2057. checksum = (u16) NVM_SUM - checksum;
  2058. ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
  2059. &checksum);
  2060. if (ret_val)
  2061. hw_dbg("NVM Write Error while updating checksum.\n");
  2062. out:
  2063. return ret_val;
  2064. }
  2065. /**
  2066. * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
  2067. * @hw: pointer to the HW structure
  2068. *
  2069. * Calculates the EEPROM section checksum by reading/adding each word of
  2070. * the EEPROM and then verifies that the sum of the EEPROM is
  2071. * equal to 0xBABA.
  2072. **/
  2073. static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
  2074. {
  2075. s32 ret_val = 0;
  2076. u16 eeprom_regions_count = 1;
  2077. u16 j, nvm_data;
  2078. u16 nvm_offset;
  2079. ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
  2080. if (ret_val) {
  2081. hw_dbg("NVM Read Error\n");
  2082. goto out;
  2083. }
  2084. if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
  2085. /* if checksums compatibility bit is set validate checksums
  2086. * for all 4 ports.
  2087. */
  2088. eeprom_regions_count = 4;
  2089. }
  2090. for (j = 0; j < eeprom_regions_count; j++) {
  2091. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2092. ret_val = igb_validate_nvm_checksum_with_offset(hw,
  2093. nvm_offset);
  2094. if (ret_val != 0)
  2095. goto out;
  2096. }
  2097. out:
  2098. return ret_val;
  2099. }
  2100. /**
  2101. * igb_update_nvm_checksum_82580 - Update EEPROM checksum
  2102. * @hw: pointer to the HW structure
  2103. *
  2104. * Updates the EEPROM section checksums for all 4 ports by reading/adding
  2105. * each word of the EEPROM up to the checksum. Then calculates the EEPROM
  2106. * checksum and writes the value to the EEPROM.
  2107. **/
  2108. static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
  2109. {
  2110. s32 ret_val;
  2111. u16 j, nvm_data;
  2112. u16 nvm_offset;
  2113. ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
  2114. if (ret_val) {
  2115. hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
  2116. goto out;
  2117. }
  2118. if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
  2119. /* set compatibility bit to validate checksums appropriately */
  2120. nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
  2121. ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
  2122. &nvm_data);
  2123. if (ret_val) {
  2124. hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
  2125. goto out;
  2126. }
  2127. }
  2128. for (j = 0; j < 4; j++) {
  2129. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2130. ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
  2131. if (ret_val)
  2132. goto out;
  2133. }
  2134. out:
  2135. return ret_val;
  2136. }
  2137. /**
  2138. * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
  2139. * @hw: pointer to the HW structure
  2140. *
  2141. * Calculates the EEPROM section checksum by reading/adding each word of
  2142. * the EEPROM and then verifies that the sum of the EEPROM is
  2143. * equal to 0xBABA.
  2144. **/
  2145. static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
  2146. {
  2147. s32 ret_val = 0;
  2148. u16 j;
  2149. u16 nvm_offset;
  2150. for (j = 0; j < 4; j++) {
  2151. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2152. ret_val = igb_validate_nvm_checksum_with_offset(hw,
  2153. nvm_offset);
  2154. if (ret_val != 0)
  2155. goto out;
  2156. }
  2157. out:
  2158. return ret_val;
  2159. }
  2160. /**
  2161. * igb_update_nvm_checksum_i350 - Update EEPROM checksum
  2162. * @hw: pointer to the HW structure
  2163. *
  2164. * Updates the EEPROM section checksums for all 4 ports by reading/adding
  2165. * each word of the EEPROM up to the checksum. Then calculates the EEPROM
  2166. * checksum and writes the value to the EEPROM.
  2167. **/
  2168. static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
  2169. {
  2170. s32 ret_val = 0;
  2171. u16 j;
  2172. u16 nvm_offset;
  2173. for (j = 0; j < 4; j++) {
  2174. nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
  2175. ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
  2176. if (ret_val != 0)
  2177. goto out;
  2178. }
  2179. out:
  2180. return ret_val;
  2181. }
  2182. /**
  2183. * __igb_access_emi_reg - Read/write EMI register
  2184. * @hw: pointer to the HW structure
  2185. * @addr: EMI address to program
  2186. * @data: pointer to value to read/write from/to the EMI address
  2187. * @read: boolean flag to indicate read or write
  2188. **/
  2189. static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
  2190. u16 *data, bool read)
  2191. {
  2192. s32 ret_val = 0;
  2193. ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
  2194. if (ret_val)
  2195. return ret_val;
  2196. if (read)
  2197. ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
  2198. else
  2199. ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
  2200. return ret_val;
  2201. }
  2202. /**
  2203. * igb_read_emi_reg - Read Extended Management Interface register
  2204. * @hw: pointer to the HW structure
  2205. * @addr: EMI address to program
  2206. * @data: value to be read from the EMI address
  2207. **/
  2208. s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
  2209. {
  2210. return __igb_access_emi_reg(hw, addr, data, true);
  2211. }
  2212. /**
  2213. * igb_set_eee_i350 - Enable/disable EEE support
  2214. * @hw: pointer to the HW structure
  2215. *
  2216. * Enable/disable EEE based on setting in dev_spec structure.
  2217. *
  2218. **/
  2219. s32 igb_set_eee_i350(struct e1000_hw *hw)
  2220. {
  2221. u32 ipcnfg, eeer;
  2222. if ((hw->mac.type < e1000_i350) ||
  2223. (hw->phy.media_type != e1000_media_type_copper))
  2224. goto out;
  2225. ipcnfg = rd32(E1000_IPCNFG);
  2226. eeer = rd32(E1000_EEER);
  2227. /* enable or disable per user setting */
  2228. if (!(hw->dev_spec._82575.eee_disable)) {
  2229. u32 eee_su = rd32(E1000_EEE_SU);
  2230. ipcnfg |= (E1000_IPCNFG_EEE_1G_AN | E1000_IPCNFG_EEE_100M_AN);
  2231. eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
  2232. E1000_EEER_LPI_FC);
  2233. /* This bit should not be set in normal operation. */
  2234. if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
  2235. hw_dbg("LPI Clock Stop Bit should not be set!\n");
  2236. } else {
  2237. ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
  2238. E1000_IPCNFG_EEE_100M_AN);
  2239. eeer &= ~(E1000_EEER_TX_LPI_EN |
  2240. E1000_EEER_RX_LPI_EN |
  2241. E1000_EEER_LPI_FC);
  2242. }
  2243. wr32(E1000_IPCNFG, ipcnfg);
  2244. wr32(E1000_EEER, eeer);
  2245. rd32(E1000_IPCNFG);
  2246. rd32(E1000_EEER);
  2247. out:
  2248. return 0;
  2249. }
  2250. /**
  2251. * igb_set_eee_i354 - Enable/disable EEE support
  2252. * @hw: pointer to the HW structure
  2253. *
  2254. * Enable/disable EEE legacy mode based on setting in dev_spec structure.
  2255. *
  2256. **/
  2257. s32 igb_set_eee_i354(struct e1000_hw *hw)
  2258. {
  2259. struct e1000_phy_info *phy = &hw->phy;
  2260. s32 ret_val = 0;
  2261. u16 phy_data;
  2262. if ((hw->phy.media_type != e1000_media_type_copper) ||
  2263. (phy->id != M88E1543_E_PHY_ID))
  2264. goto out;
  2265. if (!hw->dev_spec._82575.eee_disable) {
  2266. /* Switch to PHY page 18. */
  2267. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
  2268. if (ret_val)
  2269. goto out;
  2270. ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
  2271. &phy_data);
  2272. if (ret_val)
  2273. goto out;
  2274. phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
  2275. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
  2276. phy_data);
  2277. if (ret_val)
  2278. goto out;
  2279. /* Return the PHY to page 0. */
  2280. ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
  2281. if (ret_val)
  2282. goto out;
  2283. /* Turn on EEE advertisement. */
  2284. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2285. E1000_EEE_ADV_DEV_I354,
  2286. &phy_data);
  2287. if (ret_val)
  2288. goto out;
  2289. phy_data |= E1000_EEE_ADV_100_SUPPORTED |
  2290. E1000_EEE_ADV_1000_SUPPORTED;
  2291. ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2292. E1000_EEE_ADV_DEV_I354,
  2293. phy_data);
  2294. } else {
  2295. /* Turn off EEE advertisement. */
  2296. ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2297. E1000_EEE_ADV_DEV_I354,
  2298. &phy_data);
  2299. if (ret_val)
  2300. goto out;
  2301. phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
  2302. E1000_EEE_ADV_1000_SUPPORTED);
  2303. ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
  2304. E1000_EEE_ADV_DEV_I354,
  2305. phy_data);
  2306. }
  2307. out:
  2308. return ret_val;
  2309. }
  2310. /**
  2311. * igb_get_eee_status_i354 - Get EEE status
  2312. * @hw: pointer to the HW structure
  2313. * @status: EEE status
  2314. *
  2315. * Get EEE status by guessing based on whether Tx or Rx LPI indications have
  2316. * been received.
  2317. **/
  2318. s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
  2319. {
  2320. struct e1000_phy_info *phy = &hw->phy;
  2321. s32 ret_val = 0;
  2322. u16 phy_data;
  2323. /* Check if EEE is supported on this device. */
  2324. if ((hw->phy.media_type != e1000_media_type_copper) ||
  2325. (phy->id != M88E1543_E_PHY_ID))
  2326. goto out;
  2327. ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
  2328. E1000_PCS_STATUS_DEV_I354,
  2329. &phy_data);
  2330. if (ret_val)
  2331. goto out;
  2332. *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
  2333. E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
  2334. out:
  2335. return ret_val;
  2336. }
  2337. static const u8 e1000_emc_temp_data[4] = {
  2338. E1000_EMC_INTERNAL_DATA,
  2339. E1000_EMC_DIODE1_DATA,
  2340. E1000_EMC_DIODE2_DATA,
  2341. E1000_EMC_DIODE3_DATA
  2342. };
  2343. static const u8 e1000_emc_therm_limit[4] = {
  2344. E1000_EMC_INTERNAL_THERM_LIMIT,
  2345. E1000_EMC_DIODE1_THERM_LIMIT,
  2346. E1000_EMC_DIODE2_THERM_LIMIT,
  2347. E1000_EMC_DIODE3_THERM_LIMIT
  2348. };
  2349. #ifdef CONFIG_IGB_HWMON
  2350. /**
  2351. * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
  2352. * @hw: pointer to hardware structure
  2353. *
  2354. * Updates the temperatures in mac.thermal_sensor_data
  2355. **/
  2356. static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
  2357. {
  2358. u16 ets_offset;
  2359. u16 ets_cfg;
  2360. u16 ets_sensor;
  2361. u8 num_sensors;
  2362. u8 sensor_index;
  2363. u8 sensor_location;
  2364. u8 i;
  2365. struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
  2366. if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
  2367. return E1000_NOT_IMPLEMENTED;
  2368. data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
  2369. /* Return the internal sensor only if ETS is unsupported */
  2370. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
  2371. if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
  2372. return 0;
  2373. hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
  2374. if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
  2375. != NVM_ETS_TYPE_EMC)
  2376. return E1000_NOT_IMPLEMENTED;
  2377. num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
  2378. if (num_sensors > E1000_MAX_SENSORS)
  2379. num_sensors = E1000_MAX_SENSORS;
  2380. for (i = 1; i < num_sensors; i++) {
  2381. hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
  2382. sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
  2383. NVM_ETS_DATA_INDEX_SHIFT);
  2384. sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
  2385. NVM_ETS_DATA_LOC_SHIFT);
  2386. if (sensor_location != 0)
  2387. hw->phy.ops.read_i2c_byte(hw,
  2388. e1000_emc_temp_data[sensor_index],
  2389. E1000_I2C_THERMAL_SENSOR_ADDR,
  2390. &data->sensor[i].temp);
  2391. }
  2392. return 0;
  2393. }
  2394. /**
  2395. * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
  2396. * @hw: pointer to hardware structure
  2397. *
  2398. * Sets the thermal sensor thresholds according to the NVM map
  2399. * and save off the threshold and location values into mac.thermal_sensor_data
  2400. **/
  2401. static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
  2402. {
  2403. u16 ets_offset;
  2404. u16 ets_cfg;
  2405. u16 ets_sensor;
  2406. u8 low_thresh_delta;
  2407. u8 num_sensors;
  2408. u8 sensor_index;
  2409. u8 sensor_location;
  2410. u8 therm_limit;
  2411. u8 i;
  2412. struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
  2413. if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
  2414. return E1000_NOT_IMPLEMENTED;
  2415. memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
  2416. data->sensor[0].location = 0x1;
  2417. data->sensor[0].caution_thresh =
  2418. (rd32(E1000_THHIGHTC) & 0xFF);
  2419. data->sensor[0].max_op_thresh =
  2420. (rd32(E1000_THLOWTC) & 0xFF);
  2421. /* Return the internal sensor only if ETS is unsupported */
  2422. hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
  2423. if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
  2424. return 0;
  2425. hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
  2426. if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
  2427. != NVM_ETS_TYPE_EMC)
  2428. return E1000_NOT_IMPLEMENTED;
  2429. low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
  2430. NVM_ETS_LTHRES_DELTA_SHIFT);
  2431. num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
  2432. for (i = 1; i <= num_sensors; i++) {
  2433. hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
  2434. sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
  2435. NVM_ETS_DATA_INDEX_SHIFT);
  2436. sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
  2437. NVM_ETS_DATA_LOC_SHIFT);
  2438. therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
  2439. hw->phy.ops.write_i2c_byte(hw,
  2440. e1000_emc_therm_limit[sensor_index],
  2441. E1000_I2C_THERMAL_SENSOR_ADDR,
  2442. therm_limit);
  2443. if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
  2444. data->sensor[i].location = sensor_location;
  2445. data->sensor[i].caution_thresh = therm_limit;
  2446. data->sensor[i].max_op_thresh = therm_limit -
  2447. low_thresh_delta;
  2448. }
  2449. }
  2450. return 0;
  2451. }
  2452. #endif
  2453. static struct e1000_mac_operations e1000_mac_ops_82575 = {
  2454. .init_hw = igb_init_hw_82575,
  2455. .check_for_link = igb_check_for_link_82575,
  2456. .rar_set = igb_rar_set,
  2457. .read_mac_addr = igb_read_mac_addr_82575,
  2458. .get_speed_and_duplex = igb_get_link_up_info_82575,
  2459. #ifdef CONFIG_IGB_HWMON
  2460. .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
  2461. .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
  2462. #endif
  2463. };
  2464. static struct e1000_phy_operations e1000_phy_ops_82575 = {
  2465. .acquire = igb_acquire_phy_82575,
  2466. .get_cfg_done = igb_get_cfg_done_82575,
  2467. .release = igb_release_phy_82575,
  2468. .write_i2c_byte = igb_write_i2c_byte,
  2469. .read_i2c_byte = igb_read_i2c_byte,
  2470. };
  2471. static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
  2472. .acquire = igb_acquire_nvm_82575,
  2473. .read = igb_read_nvm_eerd,
  2474. .release = igb_release_nvm_82575,
  2475. .write = igb_write_nvm_spi,
  2476. };
  2477. const struct e1000_info e1000_82575_info = {
  2478. .get_invariants = igb_get_invariants_82575,
  2479. .mac_ops = &e1000_mac_ops_82575,
  2480. .phy_ops = &e1000_phy_ops_82575,
  2481. .nvm_ops = &e1000_nvm_ops_82575,
  2482. };