mac-fec.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. /*
  2. * Freescale Ethernet controllers
  3. *
  4. * Copyright (c) 2005 Intracom S.A.
  5. * by Pantelis Antoniou <panto@intracom.gr>
  6. *
  7. * 2005 (c) MontaVista Software, Inc.
  8. * Vitaly Bordug <vbordug@ru.mvista.com>
  9. *
  10. * This file is licensed under the terms of the GNU General Public License
  11. * version 2. This program is licensed "as is" without any warranty of any
  12. * kind, whether express or implied.
  13. */
  14. #include <linux/module.h>
  15. #include <linux/kernel.h>
  16. #include <linux/types.h>
  17. #include <linux/string.h>
  18. #include <linux/ptrace.h>
  19. #include <linux/errno.h>
  20. #include <linux/ioport.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/delay.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/mii.h>
  28. #include <linux/ethtool.h>
  29. #include <linux/bitops.h>
  30. #include <linux/fs.h>
  31. #include <linux/platform_device.h>
  32. #include <linux/of_address.h>
  33. #include <linux/of_device.h>
  34. #include <linux/of_irq.h>
  35. #include <linux/gfp.h>
  36. #include <asm/irq.h>
  37. #include <asm/uaccess.h>
  38. #ifdef CONFIG_8xx
  39. #include <asm/8xx_immap.h>
  40. #include <asm/pgtable.h>
  41. #include <asm/mpc8xx.h>
  42. #include <asm/cpm1.h>
  43. #endif
  44. #include "fs_enet.h"
  45. #include "fec.h"
  46. /*************************************************/
  47. #if defined(CONFIG_CPM1)
  48. /* for a CPM1 __raw_xxx's are sufficient */
  49. #define __fs_out32(addr, x) __raw_writel(x, addr)
  50. #define __fs_out16(addr, x) __raw_writew(x, addr)
  51. #define __fs_in32(addr) __raw_readl(addr)
  52. #define __fs_in16(addr) __raw_readw(addr)
  53. #else
  54. /* for others play it safe */
  55. #define __fs_out32(addr, x) out_be32(addr, x)
  56. #define __fs_out16(addr, x) out_be16(addr, x)
  57. #define __fs_in32(addr) in_be32(addr)
  58. #define __fs_in16(addr) in_be16(addr)
  59. #endif
  60. /* write */
  61. #define FW(_fecp, _reg, _v) __fs_out32(&(_fecp)->fec_ ## _reg, (_v))
  62. /* read */
  63. #define FR(_fecp, _reg) __fs_in32(&(_fecp)->fec_ ## _reg)
  64. /* set bits */
  65. #define FS(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) | (_v))
  66. /* clear bits */
  67. #define FC(_fecp, _reg, _v) FW(_fecp, _reg, FR(_fecp, _reg) & ~(_v))
  68. /*
  69. * Delay to wait for FEC reset command to complete (in us)
  70. */
  71. #define FEC_RESET_DELAY 50
  72. static int whack_reset(struct fec __iomem *fecp)
  73. {
  74. int i;
  75. FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET);
  76. for (i = 0; i < FEC_RESET_DELAY; i++) {
  77. if ((FR(fecp, ecntrl) & FEC_ECNTRL_RESET) == 0)
  78. return 0; /* OK */
  79. udelay(1);
  80. }
  81. return -1;
  82. }
  83. static int do_pd_setup(struct fs_enet_private *fep)
  84. {
  85. struct platform_device *ofdev = to_platform_device(fep->dev);
  86. fep->interrupt = irq_of_parse_and_map(ofdev->dev.of_node, 0);
  87. if (fep->interrupt == NO_IRQ)
  88. return -EINVAL;
  89. fep->fec.fecp = of_iomap(ofdev->dev.of_node, 0);
  90. if (!fep->fcc.fccp)
  91. return -EINVAL;
  92. return 0;
  93. }
  94. #define FEC_NAPI_RX_EVENT_MSK (FEC_ENET_RXF | FEC_ENET_RXB)
  95. #define FEC_RX_EVENT (FEC_ENET_RXF)
  96. #define FEC_TX_EVENT (FEC_ENET_TXF)
  97. #define FEC_ERR_EVENT_MSK (FEC_ENET_HBERR | FEC_ENET_BABR | \
  98. FEC_ENET_BABT | FEC_ENET_EBERR)
  99. static int setup_data(struct net_device *dev)
  100. {
  101. struct fs_enet_private *fep = netdev_priv(dev);
  102. if (do_pd_setup(fep) != 0)
  103. return -EINVAL;
  104. fep->fec.hthi = 0;
  105. fep->fec.htlo = 0;
  106. fep->ev_napi_rx = FEC_NAPI_RX_EVENT_MSK;
  107. fep->ev_rx = FEC_RX_EVENT;
  108. fep->ev_tx = FEC_TX_EVENT;
  109. fep->ev_err = FEC_ERR_EVENT_MSK;
  110. return 0;
  111. }
  112. static int allocate_bd(struct net_device *dev)
  113. {
  114. struct fs_enet_private *fep = netdev_priv(dev);
  115. const struct fs_platform_info *fpi = fep->fpi;
  116. fep->ring_base = (void __force __iomem *)dma_alloc_coherent(fep->dev,
  117. (fpi->tx_ring + fpi->rx_ring) *
  118. sizeof(cbd_t), &fep->ring_mem_addr,
  119. GFP_KERNEL);
  120. if (fep->ring_base == NULL)
  121. return -ENOMEM;
  122. return 0;
  123. }
  124. static void free_bd(struct net_device *dev)
  125. {
  126. struct fs_enet_private *fep = netdev_priv(dev);
  127. const struct fs_platform_info *fpi = fep->fpi;
  128. if(fep->ring_base)
  129. dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring)
  130. * sizeof(cbd_t),
  131. (void __force *)fep->ring_base,
  132. fep->ring_mem_addr);
  133. }
  134. static void cleanup_data(struct net_device *dev)
  135. {
  136. /* nothing */
  137. }
  138. static void set_promiscuous_mode(struct net_device *dev)
  139. {
  140. struct fs_enet_private *fep = netdev_priv(dev);
  141. struct fec __iomem *fecp = fep->fec.fecp;
  142. FS(fecp, r_cntrl, FEC_RCNTRL_PROM);
  143. }
  144. static void set_multicast_start(struct net_device *dev)
  145. {
  146. struct fs_enet_private *fep = netdev_priv(dev);
  147. fep->fec.hthi = 0;
  148. fep->fec.htlo = 0;
  149. }
  150. static void set_multicast_one(struct net_device *dev, const u8 *mac)
  151. {
  152. struct fs_enet_private *fep = netdev_priv(dev);
  153. int temp, hash_index, i, j;
  154. u32 crc, csrVal;
  155. u8 byte, msb;
  156. crc = 0xffffffff;
  157. for (i = 0; i < 6; i++) {
  158. byte = mac[i];
  159. for (j = 0; j < 8; j++) {
  160. msb = crc >> 31;
  161. crc <<= 1;
  162. if (msb ^ (byte & 0x1))
  163. crc ^= FEC_CRC_POLY;
  164. byte >>= 1;
  165. }
  166. }
  167. temp = (crc & 0x3f) >> 1;
  168. hash_index = ((temp & 0x01) << 4) |
  169. ((temp & 0x02) << 2) |
  170. ((temp & 0x04)) |
  171. ((temp & 0x08) >> 2) |
  172. ((temp & 0x10) >> 4);
  173. csrVal = 1 << hash_index;
  174. if (crc & 1)
  175. fep->fec.hthi |= csrVal;
  176. else
  177. fep->fec.htlo |= csrVal;
  178. }
  179. static void set_multicast_finish(struct net_device *dev)
  180. {
  181. struct fs_enet_private *fep = netdev_priv(dev);
  182. struct fec __iomem *fecp = fep->fec.fecp;
  183. /* if all multi or too many multicasts; just enable all */
  184. if ((dev->flags & IFF_ALLMULTI) != 0 ||
  185. netdev_mc_count(dev) > FEC_MAX_MULTICAST_ADDRS) {
  186. fep->fec.hthi = 0xffffffffU;
  187. fep->fec.htlo = 0xffffffffU;
  188. }
  189. FC(fecp, r_cntrl, FEC_RCNTRL_PROM);
  190. FW(fecp, grp_hash_table_high, fep->fec.hthi);
  191. FW(fecp, grp_hash_table_low, fep->fec.htlo);
  192. }
  193. static void set_multicast_list(struct net_device *dev)
  194. {
  195. struct netdev_hw_addr *ha;
  196. if ((dev->flags & IFF_PROMISC) == 0) {
  197. set_multicast_start(dev);
  198. netdev_for_each_mc_addr(ha, dev)
  199. set_multicast_one(dev, ha->addr);
  200. set_multicast_finish(dev);
  201. } else
  202. set_promiscuous_mode(dev);
  203. }
  204. static void restart(struct net_device *dev)
  205. {
  206. struct fs_enet_private *fep = netdev_priv(dev);
  207. struct fec __iomem *fecp = fep->fec.fecp;
  208. const struct fs_platform_info *fpi = fep->fpi;
  209. dma_addr_t rx_bd_base_phys, tx_bd_base_phys;
  210. int r;
  211. u32 addrhi, addrlo;
  212. struct mii_bus* mii = fep->phydev->bus;
  213. struct fec_info* fec_inf = mii->priv;
  214. r = whack_reset(fep->fec.fecp);
  215. if (r != 0)
  216. dev_err(fep->dev, "FEC Reset FAILED!\n");
  217. /*
  218. * Set station address.
  219. */
  220. addrhi = ((u32) dev->dev_addr[0] << 24) |
  221. ((u32) dev->dev_addr[1] << 16) |
  222. ((u32) dev->dev_addr[2] << 8) |
  223. (u32) dev->dev_addr[3];
  224. addrlo = ((u32) dev->dev_addr[4] << 24) |
  225. ((u32) dev->dev_addr[5] << 16);
  226. FW(fecp, addr_low, addrhi);
  227. FW(fecp, addr_high, addrlo);
  228. /*
  229. * Reset all multicast.
  230. */
  231. FW(fecp, grp_hash_table_high, fep->fec.hthi);
  232. FW(fecp, grp_hash_table_low, fep->fec.htlo);
  233. /*
  234. * Set maximum receive buffer size.
  235. */
  236. FW(fecp, r_buff_size, PKT_MAXBLR_SIZE);
  237. #ifdef CONFIG_FS_ENET_MPC5121_FEC
  238. FW(fecp, r_cntrl, PKT_MAXBUF_SIZE << 16);
  239. #else
  240. FW(fecp, r_hash, PKT_MAXBUF_SIZE);
  241. #endif
  242. /* get physical address */
  243. rx_bd_base_phys = fep->ring_mem_addr;
  244. tx_bd_base_phys = rx_bd_base_phys + sizeof(cbd_t) * fpi->rx_ring;
  245. /*
  246. * Set receive and transmit descriptor base.
  247. */
  248. FW(fecp, r_des_start, rx_bd_base_phys);
  249. FW(fecp, x_des_start, tx_bd_base_phys);
  250. fs_init_bds(dev);
  251. /*
  252. * Enable big endian and don't care about SDMA FC.
  253. */
  254. #ifdef CONFIG_FS_ENET_MPC5121_FEC
  255. FS(fecp, dma_control, 0xC0000000);
  256. #else
  257. FW(fecp, fun_code, 0x78000000);
  258. #endif
  259. /*
  260. * Set MII speed.
  261. */
  262. FW(fecp, mii_speed, fec_inf->mii_speed);
  263. /*
  264. * Clear any outstanding interrupt.
  265. */
  266. FW(fecp, ievent, 0xffc0);
  267. #ifndef CONFIG_FS_ENET_MPC5121_FEC
  268. FW(fecp, ivec, (virq_to_hw(fep->interrupt) / 2) << 29);
  269. FW(fecp, r_cntrl, FEC_RCNTRL_MII_MODE); /* MII enable */
  270. #else
  271. /*
  272. * Only set MII/RMII mode - do not touch maximum frame length
  273. * configured before.
  274. */
  275. FS(fecp, r_cntrl, fpi->use_rmii ?
  276. FEC_RCNTRL_RMII_MODE : FEC_RCNTRL_MII_MODE);
  277. #endif
  278. /*
  279. * adjust to duplex mode
  280. */
  281. if (fep->phydev->duplex) {
  282. FC(fecp, r_cntrl, FEC_RCNTRL_DRT);
  283. FS(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD enable */
  284. } else {
  285. FS(fecp, r_cntrl, FEC_RCNTRL_DRT);
  286. FC(fecp, x_cntrl, FEC_TCNTRL_FDEN); /* FD disable */
  287. }
  288. /*
  289. * Enable interrupts we wish to service.
  290. */
  291. FW(fecp, imask, FEC_ENET_TXF | FEC_ENET_TXB |
  292. FEC_ENET_RXF | FEC_ENET_RXB);
  293. /*
  294. * And last, enable the transmit and receive processing.
  295. */
  296. FW(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
  297. FW(fecp, r_des_active, 0x01000000);
  298. }
  299. static void stop(struct net_device *dev)
  300. {
  301. struct fs_enet_private *fep = netdev_priv(dev);
  302. const struct fs_platform_info *fpi = fep->fpi;
  303. struct fec __iomem *fecp = fep->fec.fecp;
  304. struct fec_info* feci= fep->phydev->bus->priv;
  305. int i;
  306. if ((FR(fecp, ecntrl) & FEC_ECNTRL_ETHER_EN) == 0)
  307. return; /* already down */
  308. FW(fecp, x_cntrl, 0x01); /* Graceful transmit stop */
  309. for (i = 0; ((FR(fecp, ievent) & 0x10000000) == 0) &&
  310. i < FEC_RESET_DELAY; i++)
  311. udelay(1);
  312. if (i == FEC_RESET_DELAY)
  313. dev_warn(fep->dev, "FEC timeout on graceful transmit stop\n");
  314. /*
  315. * Disable FEC. Let only MII interrupts.
  316. */
  317. FW(fecp, imask, 0);
  318. FC(fecp, ecntrl, FEC_ECNTRL_ETHER_EN);
  319. fs_cleanup_bds(dev);
  320. /* shut down FEC1? that's where the mii bus is */
  321. if (fpi->has_phy) {
  322. FS(fecp, r_cntrl, fpi->use_rmii ?
  323. FEC_RCNTRL_RMII_MODE :
  324. FEC_RCNTRL_MII_MODE); /* MII/RMII enable */
  325. FS(fecp, ecntrl, FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN);
  326. FW(fecp, ievent, FEC_ENET_MII);
  327. FW(fecp, mii_speed, feci->mii_speed);
  328. }
  329. }
  330. static void napi_clear_rx_event(struct net_device *dev)
  331. {
  332. struct fs_enet_private *fep = netdev_priv(dev);
  333. struct fec __iomem *fecp = fep->fec.fecp;
  334. FW(fecp, ievent, FEC_NAPI_RX_EVENT_MSK);
  335. }
  336. static void napi_enable_rx(struct net_device *dev)
  337. {
  338. struct fs_enet_private *fep = netdev_priv(dev);
  339. struct fec __iomem *fecp = fep->fec.fecp;
  340. FS(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
  341. }
  342. static void napi_disable_rx(struct net_device *dev)
  343. {
  344. struct fs_enet_private *fep = netdev_priv(dev);
  345. struct fec __iomem *fecp = fep->fec.fecp;
  346. FC(fecp, imask, FEC_NAPI_RX_EVENT_MSK);
  347. }
  348. static void rx_bd_done(struct net_device *dev)
  349. {
  350. struct fs_enet_private *fep = netdev_priv(dev);
  351. struct fec __iomem *fecp = fep->fec.fecp;
  352. FW(fecp, r_des_active, 0x01000000);
  353. }
  354. static void tx_kickstart(struct net_device *dev)
  355. {
  356. struct fs_enet_private *fep = netdev_priv(dev);
  357. struct fec __iomem *fecp = fep->fec.fecp;
  358. FW(fecp, x_des_active, 0x01000000);
  359. }
  360. static u32 get_int_events(struct net_device *dev)
  361. {
  362. struct fs_enet_private *fep = netdev_priv(dev);
  363. struct fec __iomem *fecp = fep->fec.fecp;
  364. return FR(fecp, ievent) & FR(fecp, imask);
  365. }
  366. static void clear_int_events(struct net_device *dev, u32 int_events)
  367. {
  368. struct fs_enet_private *fep = netdev_priv(dev);
  369. struct fec __iomem *fecp = fep->fec.fecp;
  370. FW(fecp, ievent, int_events);
  371. }
  372. static void ev_error(struct net_device *dev, u32 int_events)
  373. {
  374. struct fs_enet_private *fep = netdev_priv(dev);
  375. dev_warn(fep->dev, "FEC ERROR(s) 0x%x\n", int_events);
  376. }
  377. static int get_regs(struct net_device *dev, void *p, int *sizep)
  378. {
  379. struct fs_enet_private *fep = netdev_priv(dev);
  380. if (*sizep < sizeof(struct fec))
  381. return -EINVAL;
  382. memcpy_fromio(p, fep->fec.fecp, sizeof(struct fec));
  383. return 0;
  384. }
  385. static int get_regs_len(struct net_device *dev)
  386. {
  387. return sizeof(struct fec);
  388. }
  389. static void tx_restart(struct net_device *dev)
  390. {
  391. /* nothing */
  392. }
  393. /*************************************************************************/
  394. const struct fs_ops fs_fec_ops = {
  395. .setup_data = setup_data,
  396. .cleanup_data = cleanup_data,
  397. .set_multicast_list = set_multicast_list,
  398. .restart = restart,
  399. .stop = stop,
  400. .napi_clear_rx_event = napi_clear_rx_event,
  401. .napi_enable_rx = napi_enable_rx,
  402. .napi_disable_rx = napi_disable_rx,
  403. .rx_bd_done = rx_bd_done,
  404. .tx_kickstart = tx_kickstart,
  405. .get_int_events = get_int_events,
  406. .clear_int_events = clear_int_events,
  407. .ev_error = ev_error,
  408. .get_regs = get_regs,
  409. .get_regs_len = get_regs_len,
  410. .tx_restart = tx_restart,
  411. .allocate_bd = allocate_bd,
  412. .free_bd = free_bd,
  413. };