dm9000.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766
  1. /*
  2. * Davicom DM9000 Fast Ethernet driver for Linux.
  3. * Copyright (C) 1997 Sten Wang
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License
  7. * as published by the Free Software Foundation; either version 2
  8. * of the License, or (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
  16. *
  17. * Additional updates, Copyright:
  18. * Ben Dooks <ben@simtec.co.uk>
  19. * Sascha Hauer <s.hauer@pengutronix.de>
  20. */
  21. #include <linux/module.h>
  22. #include <linux/ioport.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/interrupt.h>
  26. #include <linux/skbuff.h>
  27. #include <linux/spinlock.h>
  28. #include <linux/crc32.h>
  29. #include <linux/mii.h>
  30. #include <linux/of.h>
  31. #include <linux/of_net.h>
  32. #include <linux/ethtool.h>
  33. #include <linux/dm9000.h>
  34. #include <linux/delay.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/irq.h>
  37. #include <linux/slab.h>
  38. #include <asm/delay.h>
  39. #include <asm/irq.h>
  40. #include <asm/io.h>
  41. #include "dm9000.h"
  42. /* Board/System/Debug information/definition ---------------- */
  43. #define DM9000_PHY 0x40 /* PHY address 0x01 */
  44. #define CARDNAME "dm9000"
  45. #define DRV_VERSION "1.31"
  46. /*
  47. * Transmit timeout, default 5 seconds.
  48. */
  49. static int watchdog = 5000;
  50. module_param(watchdog, int, 0400);
  51. MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
  52. /*
  53. * Debug messages level
  54. */
  55. static int debug;
  56. module_param(debug, int, 0644);
  57. MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
  58. /* DM9000 register address locking.
  59. *
  60. * The DM9000 uses an address register to control where data written
  61. * to the data register goes. This means that the address register
  62. * must be preserved over interrupts or similar calls.
  63. *
  64. * During interrupt and other critical calls, a spinlock is used to
  65. * protect the system, but the calls themselves save the address
  66. * in the address register in case they are interrupting another
  67. * access to the device.
  68. *
  69. * For general accesses a lock is provided so that calls which are
  70. * allowed to sleep are serialised so that the address register does
  71. * not need to be saved. This lock also serves to serialise access
  72. * to the EEPROM and PHY access registers which are shared between
  73. * these two devices.
  74. */
  75. /* The driver supports the original DM9000E, and now the two newer
  76. * devices, DM9000A and DM9000B.
  77. */
  78. enum dm9000_type {
  79. TYPE_DM9000E, /* original DM9000 */
  80. TYPE_DM9000A,
  81. TYPE_DM9000B
  82. };
  83. /* Structure/enum declaration ------------------------------- */
  84. typedef struct board_info {
  85. void __iomem *io_addr; /* Register I/O base address */
  86. void __iomem *io_data; /* Data I/O address */
  87. u16 irq; /* IRQ */
  88. u16 tx_pkt_cnt;
  89. u16 queue_pkt_len;
  90. u16 queue_start_addr;
  91. u16 queue_ip_summed;
  92. u16 dbug_cnt;
  93. u8 io_mode; /* 0:word, 2:byte */
  94. u8 phy_addr;
  95. u8 imr_all;
  96. unsigned int flags;
  97. unsigned int in_timeout:1;
  98. unsigned int in_suspend:1;
  99. unsigned int wake_supported:1;
  100. enum dm9000_type type;
  101. void (*inblk)(void __iomem *port, void *data, int length);
  102. void (*outblk)(void __iomem *port, void *data, int length);
  103. void (*dumpblk)(void __iomem *port, int length);
  104. struct device *dev; /* parent device */
  105. struct resource *addr_res; /* resources found */
  106. struct resource *data_res;
  107. struct resource *addr_req; /* resources requested */
  108. struct resource *data_req;
  109. struct resource *irq_res;
  110. int irq_wake;
  111. struct mutex addr_lock; /* phy and eeprom access lock */
  112. struct delayed_work phy_poll;
  113. struct net_device *ndev;
  114. spinlock_t lock;
  115. struct mii_if_info mii;
  116. u32 msg_enable;
  117. u32 wake_state;
  118. int ip_summed;
  119. } board_info_t;
  120. /* debug code */
  121. #define dm9000_dbg(db, lev, msg...) do { \
  122. if ((lev) < debug) { \
  123. dev_dbg(db->dev, msg); \
  124. } \
  125. } while (0)
  126. static inline board_info_t *to_dm9000_board(struct net_device *dev)
  127. {
  128. return netdev_priv(dev);
  129. }
  130. /* DM9000 network board routine ---------------------------- */
  131. /*
  132. * Read a byte from I/O port
  133. */
  134. static u8
  135. ior(board_info_t *db, int reg)
  136. {
  137. writeb(reg, db->io_addr);
  138. return readb(db->io_data);
  139. }
  140. /*
  141. * Write a byte to I/O port
  142. */
  143. static void
  144. iow(board_info_t *db, int reg, int value)
  145. {
  146. writeb(reg, db->io_addr);
  147. writeb(value, db->io_data);
  148. }
  149. static void
  150. dm9000_reset(board_info_t *db)
  151. {
  152. dev_dbg(db->dev, "resetting device\n");
  153. /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
  154. * The essential point is that we have to do a double reset, and the
  155. * instruction is to set LBK into MAC internal loopback mode.
  156. */
  157. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  158. udelay(100); /* Application note says at least 20 us */
  159. if (ior(db, DM9000_NCR) & 1)
  160. dev_err(db->dev, "dm9000 did not respond to first reset\n");
  161. iow(db, DM9000_NCR, 0);
  162. iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
  163. udelay(100);
  164. if (ior(db, DM9000_NCR) & 1)
  165. dev_err(db->dev, "dm9000 did not respond to second reset\n");
  166. }
  167. /* routines for sending block to chip */
  168. static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
  169. {
  170. iowrite8_rep(reg, data, count);
  171. }
  172. static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
  173. {
  174. iowrite16_rep(reg, data, (count+1) >> 1);
  175. }
  176. static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
  177. {
  178. iowrite32_rep(reg, data, (count+3) >> 2);
  179. }
  180. /* input block from chip to memory */
  181. static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
  182. {
  183. ioread8_rep(reg, data, count);
  184. }
  185. static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
  186. {
  187. ioread16_rep(reg, data, (count+1) >> 1);
  188. }
  189. static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
  190. {
  191. ioread32_rep(reg, data, (count+3) >> 2);
  192. }
  193. /* dump block from chip to null */
  194. static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
  195. {
  196. int i;
  197. int tmp;
  198. for (i = 0; i < count; i++)
  199. tmp = readb(reg);
  200. }
  201. static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
  202. {
  203. int i;
  204. int tmp;
  205. count = (count + 1) >> 1;
  206. for (i = 0; i < count; i++)
  207. tmp = readw(reg);
  208. }
  209. static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
  210. {
  211. int i;
  212. int tmp;
  213. count = (count + 3) >> 2;
  214. for (i = 0; i < count; i++)
  215. tmp = readl(reg);
  216. }
  217. /*
  218. * Sleep, either by using msleep() or if we are suspending, then
  219. * use mdelay() to sleep.
  220. */
  221. static void dm9000_msleep(board_info_t *db, unsigned int ms)
  222. {
  223. if (db->in_suspend || db->in_timeout)
  224. mdelay(ms);
  225. else
  226. msleep(ms);
  227. }
  228. /* Read a word from phyxcer */
  229. static int
  230. dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
  231. {
  232. board_info_t *db = netdev_priv(dev);
  233. unsigned long flags;
  234. unsigned int reg_save;
  235. int ret;
  236. mutex_lock(&db->addr_lock);
  237. spin_lock_irqsave(&db->lock, flags);
  238. /* Save previous register address */
  239. reg_save = readb(db->io_addr);
  240. /* Fill the phyxcer register into REG_0C */
  241. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  242. /* Issue phyxcer read command */
  243. iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
  244. writeb(reg_save, db->io_addr);
  245. spin_unlock_irqrestore(&db->lock, flags);
  246. dm9000_msleep(db, 1); /* Wait read complete */
  247. spin_lock_irqsave(&db->lock, flags);
  248. reg_save = readb(db->io_addr);
  249. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
  250. /* The read data keeps on REG_0D & REG_0E */
  251. ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
  252. /* restore the previous address */
  253. writeb(reg_save, db->io_addr);
  254. spin_unlock_irqrestore(&db->lock, flags);
  255. mutex_unlock(&db->addr_lock);
  256. dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
  257. return ret;
  258. }
  259. /* Write a word to phyxcer */
  260. static void
  261. dm9000_phy_write(struct net_device *dev,
  262. int phyaddr_unused, int reg, int value)
  263. {
  264. board_info_t *db = netdev_priv(dev);
  265. unsigned long flags;
  266. unsigned long reg_save;
  267. dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
  268. if (!db->in_timeout)
  269. mutex_lock(&db->addr_lock);
  270. spin_lock_irqsave(&db->lock, flags);
  271. /* Save previous register address */
  272. reg_save = readb(db->io_addr);
  273. /* Fill the phyxcer register into REG_0C */
  274. iow(db, DM9000_EPAR, DM9000_PHY | reg);
  275. /* Fill the written data into REG_0D & REG_0E */
  276. iow(db, DM9000_EPDRL, value);
  277. iow(db, DM9000_EPDRH, value >> 8);
  278. /* Issue phyxcer write command */
  279. iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
  280. writeb(reg_save, db->io_addr);
  281. spin_unlock_irqrestore(&db->lock, flags);
  282. dm9000_msleep(db, 1); /* Wait write complete */
  283. spin_lock_irqsave(&db->lock, flags);
  284. reg_save = readb(db->io_addr);
  285. iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
  286. /* restore the previous address */
  287. writeb(reg_save, db->io_addr);
  288. spin_unlock_irqrestore(&db->lock, flags);
  289. if (!db->in_timeout)
  290. mutex_unlock(&db->addr_lock);
  291. }
  292. /* dm9000_set_io
  293. *
  294. * select the specified set of io routines to use with the
  295. * device
  296. */
  297. static void dm9000_set_io(struct board_info *db, int byte_width)
  298. {
  299. /* use the size of the data resource to work out what IO
  300. * routines we want to use
  301. */
  302. switch (byte_width) {
  303. case 1:
  304. db->dumpblk = dm9000_dumpblk_8bit;
  305. db->outblk = dm9000_outblk_8bit;
  306. db->inblk = dm9000_inblk_8bit;
  307. break;
  308. case 3:
  309. dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
  310. case 2:
  311. db->dumpblk = dm9000_dumpblk_16bit;
  312. db->outblk = dm9000_outblk_16bit;
  313. db->inblk = dm9000_inblk_16bit;
  314. break;
  315. case 4:
  316. default:
  317. db->dumpblk = dm9000_dumpblk_32bit;
  318. db->outblk = dm9000_outblk_32bit;
  319. db->inblk = dm9000_inblk_32bit;
  320. break;
  321. }
  322. }
  323. static void dm9000_schedule_poll(board_info_t *db)
  324. {
  325. if (db->type == TYPE_DM9000E)
  326. schedule_delayed_work(&db->phy_poll, HZ * 2);
  327. }
  328. static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
  329. {
  330. board_info_t *dm = to_dm9000_board(dev);
  331. if (!netif_running(dev))
  332. return -EINVAL;
  333. return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
  334. }
  335. static unsigned int
  336. dm9000_read_locked(board_info_t *db, int reg)
  337. {
  338. unsigned long flags;
  339. unsigned int ret;
  340. spin_lock_irqsave(&db->lock, flags);
  341. ret = ior(db, reg);
  342. spin_unlock_irqrestore(&db->lock, flags);
  343. return ret;
  344. }
  345. static int dm9000_wait_eeprom(board_info_t *db)
  346. {
  347. unsigned int status;
  348. int timeout = 8; /* wait max 8msec */
  349. /* The DM9000 data sheets say we should be able to
  350. * poll the ERRE bit in EPCR to wait for the EEPROM
  351. * operation. From testing several chips, this bit
  352. * does not seem to work.
  353. *
  354. * We attempt to use the bit, but fall back to the
  355. * timeout (which is why we do not return an error
  356. * on expiry) to say that the EEPROM operation has
  357. * completed.
  358. */
  359. while (1) {
  360. status = dm9000_read_locked(db, DM9000_EPCR);
  361. if ((status & EPCR_ERRE) == 0)
  362. break;
  363. msleep(1);
  364. if (timeout-- < 0) {
  365. dev_dbg(db->dev, "timeout waiting EEPROM\n");
  366. break;
  367. }
  368. }
  369. return 0;
  370. }
  371. /*
  372. * Read a word data from EEPROM
  373. */
  374. static void
  375. dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
  376. {
  377. unsigned long flags;
  378. if (db->flags & DM9000_PLATF_NO_EEPROM) {
  379. to[0] = 0xff;
  380. to[1] = 0xff;
  381. return;
  382. }
  383. mutex_lock(&db->addr_lock);
  384. spin_lock_irqsave(&db->lock, flags);
  385. iow(db, DM9000_EPAR, offset);
  386. iow(db, DM9000_EPCR, EPCR_ERPRR);
  387. spin_unlock_irqrestore(&db->lock, flags);
  388. dm9000_wait_eeprom(db);
  389. /* delay for at-least 150uS */
  390. msleep(1);
  391. spin_lock_irqsave(&db->lock, flags);
  392. iow(db, DM9000_EPCR, 0x0);
  393. to[0] = ior(db, DM9000_EPDRL);
  394. to[1] = ior(db, DM9000_EPDRH);
  395. spin_unlock_irqrestore(&db->lock, flags);
  396. mutex_unlock(&db->addr_lock);
  397. }
  398. /*
  399. * Write a word data to SROM
  400. */
  401. static void
  402. dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
  403. {
  404. unsigned long flags;
  405. if (db->flags & DM9000_PLATF_NO_EEPROM)
  406. return;
  407. mutex_lock(&db->addr_lock);
  408. spin_lock_irqsave(&db->lock, flags);
  409. iow(db, DM9000_EPAR, offset);
  410. iow(db, DM9000_EPDRH, data[1]);
  411. iow(db, DM9000_EPDRL, data[0]);
  412. iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
  413. spin_unlock_irqrestore(&db->lock, flags);
  414. dm9000_wait_eeprom(db);
  415. mdelay(1); /* wait at least 150uS to clear */
  416. spin_lock_irqsave(&db->lock, flags);
  417. iow(db, DM9000_EPCR, 0);
  418. spin_unlock_irqrestore(&db->lock, flags);
  419. mutex_unlock(&db->addr_lock);
  420. }
  421. /* ethtool ops */
  422. static void dm9000_get_drvinfo(struct net_device *dev,
  423. struct ethtool_drvinfo *info)
  424. {
  425. board_info_t *dm = to_dm9000_board(dev);
  426. strlcpy(info->driver, CARDNAME, sizeof(info->driver));
  427. strlcpy(info->version, DRV_VERSION, sizeof(info->version));
  428. strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
  429. sizeof(info->bus_info));
  430. }
  431. static u32 dm9000_get_msglevel(struct net_device *dev)
  432. {
  433. board_info_t *dm = to_dm9000_board(dev);
  434. return dm->msg_enable;
  435. }
  436. static void dm9000_set_msglevel(struct net_device *dev, u32 value)
  437. {
  438. board_info_t *dm = to_dm9000_board(dev);
  439. dm->msg_enable = value;
  440. }
  441. static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  442. {
  443. board_info_t *dm = to_dm9000_board(dev);
  444. mii_ethtool_gset(&dm->mii, cmd);
  445. return 0;
  446. }
  447. static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  448. {
  449. board_info_t *dm = to_dm9000_board(dev);
  450. return mii_ethtool_sset(&dm->mii, cmd);
  451. }
  452. static int dm9000_nway_reset(struct net_device *dev)
  453. {
  454. board_info_t *dm = to_dm9000_board(dev);
  455. return mii_nway_restart(&dm->mii);
  456. }
  457. static int dm9000_set_features(struct net_device *dev,
  458. netdev_features_t features)
  459. {
  460. board_info_t *dm = to_dm9000_board(dev);
  461. netdev_features_t changed = dev->features ^ features;
  462. unsigned long flags;
  463. if (!(changed & NETIF_F_RXCSUM))
  464. return 0;
  465. spin_lock_irqsave(&dm->lock, flags);
  466. iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  467. spin_unlock_irqrestore(&dm->lock, flags);
  468. return 0;
  469. }
  470. static u32 dm9000_get_link(struct net_device *dev)
  471. {
  472. board_info_t *dm = to_dm9000_board(dev);
  473. u32 ret;
  474. if (dm->flags & DM9000_PLATF_EXT_PHY)
  475. ret = mii_link_ok(&dm->mii);
  476. else
  477. ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
  478. return ret;
  479. }
  480. #define DM_EEPROM_MAGIC (0x444D394B)
  481. static int dm9000_get_eeprom_len(struct net_device *dev)
  482. {
  483. return 128;
  484. }
  485. static int dm9000_get_eeprom(struct net_device *dev,
  486. struct ethtool_eeprom *ee, u8 *data)
  487. {
  488. board_info_t *dm = to_dm9000_board(dev);
  489. int offset = ee->offset;
  490. int len = ee->len;
  491. int i;
  492. /* EEPROM access is aligned to two bytes */
  493. if ((len & 1) != 0 || (offset & 1) != 0)
  494. return -EINVAL;
  495. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  496. return -ENOENT;
  497. ee->magic = DM_EEPROM_MAGIC;
  498. for (i = 0; i < len; i += 2)
  499. dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
  500. return 0;
  501. }
  502. static int dm9000_set_eeprom(struct net_device *dev,
  503. struct ethtool_eeprom *ee, u8 *data)
  504. {
  505. board_info_t *dm = to_dm9000_board(dev);
  506. int offset = ee->offset;
  507. int len = ee->len;
  508. int done;
  509. /* EEPROM access is aligned to two bytes */
  510. if (dm->flags & DM9000_PLATF_NO_EEPROM)
  511. return -ENOENT;
  512. if (ee->magic != DM_EEPROM_MAGIC)
  513. return -EINVAL;
  514. while (len > 0) {
  515. if (len & 1 || offset & 1) {
  516. int which = offset & 1;
  517. u8 tmp[2];
  518. dm9000_read_eeprom(dm, offset / 2, tmp);
  519. tmp[which] = *data;
  520. dm9000_write_eeprom(dm, offset / 2, tmp);
  521. done = 1;
  522. } else {
  523. dm9000_write_eeprom(dm, offset / 2, data);
  524. done = 2;
  525. }
  526. data += done;
  527. offset += done;
  528. len -= done;
  529. }
  530. return 0;
  531. }
  532. static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  533. {
  534. board_info_t *dm = to_dm9000_board(dev);
  535. memset(w, 0, sizeof(struct ethtool_wolinfo));
  536. /* note, we could probably support wake-phy too */
  537. w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
  538. w->wolopts = dm->wake_state;
  539. }
  540. static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
  541. {
  542. board_info_t *dm = to_dm9000_board(dev);
  543. unsigned long flags;
  544. u32 opts = w->wolopts;
  545. u32 wcr = 0;
  546. if (!dm->wake_supported)
  547. return -EOPNOTSUPP;
  548. if (opts & ~WAKE_MAGIC)
  549. return -EINVAL;
  550. if (opts & WAKE_MAGIC)
  551. wcr |= WCR_MAGICEN;
  552. mutex_lock(&dm->addr_lock);
  553. spin_lock_irqsave(&dm->lock, flags);
  554. iow(dm, DM9000_WCR, wcr);
  555. spin_unlock_irqrestore(&dm->lock, flags);
  556. mutex_unlock(&dm->addr_lock);
  557. if (dm->wake_state != opts) {
  558. /* change in wol state, update IRQ state */
  559. if (!dm->wake_state)
  560. irq_set_irq_wake(dm->irq_wake, 1);
  561. else if (dm->wake_state && !opts)
  562. irq_set_irq_wake(dm->irq_wake, 0);
  563. }
  564. dm->wake_state = opts;
  565. return 0;
  566. }
  567. static const struct ethtool_ops dm9000_ethtool_ops = {
  568. .get_drvinfo = dm9000_get_drvinfo,
  569. .get_settings = dm9000_get_settings,
  570. .set_settings = dm9000_set_settings,
  571. .get_msglevel = dm9000_get_msglevel,
  572. .set_msglevel = dm9000_set_msglevel,
  573. .nway_reset = dm9000_nway_reset,
  574. .get_link = dm9000_get_link,
  575. .get_wol = dm9000_get_wol,
  576. .set_wol = dm9000_set_wol,
  577. .get_eeprom_len = dm9000_get_eeprom_len,
  578. .get_eeprom = dm9000_get_eeprom,
  579. .set_eeprom = dm9000_set_eeprom,
  580. };
  581. static void dm9000_show_carrier(board_info_t *db,
  582. unsigned carrier, unsigned nsr)
  583. {
  584. int lpa;
  585. struct net_device *ndev = db->ndev;
  586. struct mii_if_info *mii = &db->mii;
  587. unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
  588. if (carrier) {
  589. lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
  590. dev_info(db->dev,
  591. "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
  592. ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
  593. (ncr & NCR_FDX) ? "full" : "half", lpa);
  594. } else {
  595. dev_info(db->dev, "%s: link down\n", ndev->name);
  596. }
  597. }
  598. static void
  599. dm9000_poll_work(struct work_struct *w)
  600. {
  601. struct delayed_work *dw = to_delayed_work(w);
  602. board_info_t *db = container_of(dw, board_info_t, phy_poll);
  603. struct net_device *ndev = db->ndev;
  604. if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
  605. !(db->flags & DM9000_PLATF_EXT_PHY)) {
  606. unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
  607. unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
  608. unsigned new_carrier;
  609. new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
  610. if (old_carrier != new_carrier) {
  611. if (netif_msg_link(db))
  612. dm9000_show_carrier(db, new_carrier, nsr);
  613. if (!new_carrier)
  614. netif_carrier_off(ndev);
  615. else
  616. netif_carrier_on(ndev);
  617. }
  618. } else
  619. mii_check_media(&db->mii, netif_msg_link(db), 0);
  620. if (netif_running(ndev))
  621. dm9000_schedule_poll(db);
  622. }
  623. /* dm9000_release_board
  624. *
  625. * release a board, and any mapped resources
  626. */
  627. static void
  628. dm9000_release_board(struct platform_device *pdev, struct board_info *db)
  629. {
  630. /* unmap our resources */
  631. iounmap(db->io_addr);
  632. iounmap(db->io_data);
  633. /* release the resources */
  634. release_resource(db->data_req);
  635. kfree(db->data_req);
  636. release_resource(db->addr_req);
  637. kfree(db->addr_req);
  638. }
  639. static unsigned char dm9000_type_to_char(enum dm9000_type type)
  640. {
  641. switch (type) {
  642. case TYPE_DM9000E: return 'e';
  643. case TYPE_DM9000A: return 'a';
  644. case TYPE_DM9000B: return 'b';
  645. }
  646. return '?';
  647. }
  648. /*
  649. * Set DM9000 multicast address
  650. */
  651. static void
  652. dm9000_hash_table_unlocked(struct net_device *dev)
  653. {
  654. board_info_t *db = netdev_priv(dev);
  655. struct netdev_hw_addr *ha;
  656. int i, oft;
  657. u32 hash_val;
  658. u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
  659. u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
  660. dm9000_dbg(db, 1, "entering %s\n", __func__);
  661. for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
  662. iow(db, oft, dev->dev_addr[i]);
  663. if (dev->flags & IFF_PROMISC)
  664. rcr |= RCR_PRMSC;
  665. if (dev->flags & IFF_ALLMULTI)
  666. rcr |= RCR_ALL;
  667. /* the multicast address in Hash Table : 64 bits */
  668. netdev_for_each_mc_addr(ha, dev) {
  669. hash_val = ether_crc_le(6, ha->addr) & 0x3f;
  670. hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
  671. }
  672. /* Write the hash table to MAC MD table */
  673. for (i = 0, oft = DM9000_MAR; i < 4; i++) {
  674. iow(db, oft++, hash_table[i]);
  675. iow(db, oft++, hash_table[i] >> 8);
  676. }
  677. iow(db, DM9000_RCR, rcr);
  678. }
  679. static void
  680. dm9000_hash_table(struct net_device *dev)
  681. {
  682. board_info_t *db = netdev_priv(dev);
  683. unsigned long flags;
  684. spin_lock_irqsave(&db->lock, flags);
  685. dm9000_hash_table_unlocked(dev);
  686. spin_unlock_irqrestore(&db->lock, flags);
  687. }
  688. static void
  689. dm9000_mask_interrupts(board_info_t *db)
  690. {
  691. iow(db, DM9000_IMR, IMR_PAR);
  692. }
  693. static void
  694. dm9000_unmask_interrupts(board_info_t *db)
  695. {
  696. iow(db, DM9000_IMR, db->imr_all);
  697. }
  698. /*
  699. * Initialize dm9000 board
  700. */
  701. static void
  702. dm9000_init_dm9000(struct net_device *dev)
  703. {
  704. board_info_t *db = netdev_priv(dev);
  705. unsigned int imr;
  706. unsigned int ncr;
  707. dm9000_dbg(db, 1, "entering %s\n", __func__);
  708. dm9000_reset(db);
  709. dm9000_mask_interrupts(db);
  710. /* I/O mode */
  711. db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
  712. /* Checksum mode */
  713. if (dev->hw_features & NETIF_F_RXCSUM)
  714. iow(db, DM9000_RCSR,
  715. (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
  716. iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
  717. iow(db, DM9000_GPR, 0);
  718. /* If we are dealing with DM9000B, some extra steps are required: a
  719. * manual phy reset, and setting init params.
  720. */
  721. if (db->type == TYPE_DM9000B) {
  722. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
  723. dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
  724. }
  725. ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
  726. /* if wol is needed, then always set NCR_WAKEEN otherwise we end
  727. * up dumping the wake events if we disable this. There is already
  728. * a wake-mask in DM9000_WCR */
  729. if (db->wake_supported)
  730. ncr |= NCR_WAKEEN;
  731. iow(db, DM9000_NCR, ncr);
  732. /* Program operating register */
  733. iow(db, DM9000_TCR, 0); /* TX Polling clear */
  734. iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
  735. iow(db, DM9000_FCR, 0xff); /* Flow Control */
  736. iow(db, DM9000_SMCR, 0); /* Special Mode */
  737. /* clear TX status */
  738. iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
  739. iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
  740. /* Set address filter table */
  741. dm9000_hash_table_unlocked(dev);
  742. imr = IMR_PAR | IMR_PTM | IMR_PRM;
  743. if (db->type != TYPE_DM9000E)
  744. imr |= IMR_LNKCHNG;
  745. db->imr_all = imr;
  746. /* Init Driver variable */
  747. db->tx_pkt_cnt = 0;
  748. db->queue_pkt_len = 0;
  749. dev->trans_start = jiffies;
  750. }
  751. /* Our watchdog timed out. Called by the networking layer */
  752. static void dm9000_timeout(struct net_device *dev)
  753. {
  754. board_info_t *db = netdev_priv(dev);
  755. u8 reg_save;
  756. unsigned long flags;
  757. /* Save previous register address */
  758. spin_lock_irqsave(&db->lock, flags);
  759. db->in_timeout = 1;
  760. reg_save = readb(db->io_addr);
  761. netif_stop_queue(dev);
  762. dm9000_init_dm9000(dev);
  763. dm9000_unmask_interrupts(db);
  764. /* We can accept TX packets again */
  765. dev->trans_start = jiffies; /* prevent tx timeout */
  766. netif_wake_queue(dev);
  767. /* Restore previous register address */
  768. writeb(reg_save, db->io_addr);
  769. db->in_timeout = 0;
  770. spin_unlock_irqrestore(&db->lock, flags);
  771. }
  772. static void dm9000_send_packet(struct net_device *dev,
  773. int ip_summed,
  774. u16 pkt_len)
  775. {
  776. board_info_t *dm = to_dm9000_board(dev);
  777. /* The DM9000 is not smart enough to leave fragmented packets alone. */
  778. if (dm->ip_summed != ip_summed) {
  779. if (ip_summed == CHECKSUM_NONE)
  780. iow(dm, DM9000_TCCR, 0);
  781. else
  782. iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
  783. dm->ip_summed = ip_summed;
  784. }
  785. /* Set TX length to DM9000 */
  786. iow(dm, DM9000_TXPLL, pkt_len);
  787. iow(dm, DM9000_TXPLH, pkt_len >> 8);
  788. /* Issue TX polling command */
  789. iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
  790. }
  791. /*
  792. * Hardware start transmission.
  793. * Send a packet to media from the upper layer.
  794. */
  795. static int
  796. dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
  797. {
  798. unsigned long flags;
  799. board_info_t *db = netdev_priv(dev);
  800. dm9000_dbg(db, 3, "%s:\n", __func__);
  801. if (db->tx_pkt_cnt > 1)
  802. return NETDEV_TX_BUSY;
  803. spin_lock_irqsave(&db->lock, flags);
  804. /* Move data to DM9000 TX RAM */
  805. writeb(DM9000_MWCMD, db->io_addr);
  806. (db->outblk)(db->io_data, skb->data, skb->len);
  807. dev->stats.tx_bytes += skb->len;
  808. db->tx_pkt_cnt++;
  809. /* TX control: First packet immediately send, second packet queue */
  810. if (db->tx_pkt_cnt == 1) {
  811. dm9000_send_packet(dev, skb->ip_summed, skb->len);
  812. } else {
  813. /* Second packet */
  814. db->queue_pkt_len = skb->len;
  815. db->queue_ip_summed = skb->ip_summed;
  816. netif_stop_queue(dev);
  817. }
  818. spin_unlock_irqrestore(&db->lock, flags);
  819. /* free this SKB */
  820. dev_consume_skb_any(skb);
  821. return NETDEV_TX_OK;
  822. }
  823. /*
  824. * DM9000 interrupt handler
  825. * receive the packet to upper layer, free the transmitted packet
  826. */
  827. static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
  828. {
  829. int tx_status = ior(db, DM9000_NSR); /* Got TX status */
  830. if (tx_status & (NSR_TX2END | NSR_TX1END)) {
  831. /* One packet sent complete */
  832. db->tx_pkt_cnt--;
  833. dev->stats.tx_packets++;
  834. if (netif_msg_tx_done(db))
  835. dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
  836. /* Queue packet check & send */
  837. if (db->tx_pkt_cnt > 0)
  838. dm9000_send_packet(dev, db->queue_ip_summed,
  839. db->queue_pkt_len);
  840. netif_wake_queue(dev);
  841. }
  842. }
  843. struct dm9000_rxhdr {
  844. u8 RxPktReady;
  845. u8 RxStatus;
  846. __le16 RxLen;
  847. } __packed;
  848. /*
  849. * Received a packet and pass to upper layer
  850. */
  851. static void
  852. dm9000_rx(struct net_device *dev)
  853. {
  854. board_info_t *db = netdev_priv(dev);
  855. struct dm9000_rxhdr rxhdr;
  856. struct sk_buff *skb;
  857. u8 rxbyte, *rdptr;
  858. bool GoodPacket;
  859. int RxLen;
  860. /* Check packet ready or not */
  861. do {
  862. ior(db, DM9000_MRCMDX); /* Dummy read */
  863. /* Get most updated data */
  864. rxbyte = readb(db->io_data);
  865. /* Status check: this byte must be 0 or 1 */
  866. if (rxbyte & DM9000_PKT_ERR) {
  867. dev_warn(db->dev, "status check fail: %d\n", rxbyte);
  868. iow(db, DM9000_RCR, 0x00); /* Stop Device */
  869. return;
  870. }
  871. if (!(rxbyte & DM9000_PKT_RDY))
  872. return;
  873. /* A packet ready now & Get status/length */
  874. GoodPacket = true;
  875. writeb(DM9000_MRCMD, db->io_addr);
  876. (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
  877. RxLen = le16_to_cpu(rxhdr.RxLen);
  878. if (netif_msg_rx_status(db))
  879. dev_dbg(db->dev, "RX: status %02x, length %04x\n",
  880. rxhdr.RxStatus, RxLen);
  881. /* Packet Status check */
  882. if (RxLen < 0x40) {
  883. GoodPacket = false;
  884. if (netif_msg_rx_err(db))
  885. dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
  886. }
  887. if (RxLen > DM9000_PKT_MAX) {
  888. dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
  889. }
  890. /* rxhdr.RxStatus is identical to RSR register. */
  891. if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
  892. RSR_PLE | RSR_RWTO |
  893. RSR_LCS | RSR_RF)) {
  894. GoodPacket = false;
  895. if (rxhdr.RxStatus & RSR_FOE) {
  896. if (netif_msg_rx_err(db))
  897. dev_dbg(db->dev, "fifo error\n");
  898. dev->stats.rx_fifo_errors++;
  899. }
  900. if (rxhdr.RxStatus & RSR_CE) {
  901. if (netif_msg_rx_err(db))
  902. dev_dbg(db->dev, "crc error\n");
  903. dev->stats.rx_crc_errors++;
  904. }
  905. if (rxhdr.RxStatus & RSR_RF) {
  906. if (netif_msg_rx_err(db))
  907. dev_dbg(db->dev, "length error\n");
  908. dev->stats.rx_length_errors++;
  909. }
  910. }
  911. /* Move data from DM9000 */
  912. if (GoodPacket &&
  913. ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
  914. skb_reserve(skb, 2);
  915. rdptr = (u8 *) skb_put(skb, RxLen - 4);
  916. /* Read received packet from RX SRAM */
  917. (db->inblk)(db->io_data, rdptr, RxLen);
  918. dev->stats.rx_bytes += RxLen;
  919. /* Pass to upper layer */
  920. skb->protocol = eth_type_trans(skb, dev);
  921. if (dev->features & NETIF_F_RXCSUM) {
  922. if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
  923. skb->ip_summed = CHECKSUM_UNNECESSARY;
  924. else
  925. skb_checksum_none_assert(skb);
  926. }
  927. netif_rx(skb);
  928. dev->stats.rx_packets++;
  929. } else {
  930. /* need to dump the packet's data */
  931. (db->dumpblk)(db->io_data, RxLen);
  932. }
  933. } while (rxbyte & DM9000_PKT_RDY);
  934. }
  935. static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
  936. {
  937. struct net_device *dev = dev_id;
  938. board_info_t *db = netdev_priv(dev);
  939. int int_status;
  940. unsigned long flags;
  941. u8 reg_save;
  942. dm9000_dbg(db, 3, "entering %s\n", __func__);
  943. /* A real interrupt coming */
  944. /* holders of db->lock must always block IRQs */
  945. spin_lock_irqsave(&db->lock, flags);
  946. /* Save previous register address */
  947. reg_save = readb(db->io_addr);
  948. dm9000_mask_interrupts(db);
  949. /* Got DM9000 interrupt status */
  950. int_status = ior(db, DM9000_ISR); /* Got ISR */
  951. iow(db, DM9000_ISR, int_status); /* Clear ISR status */
  952. if (netif_msg_intr(db))
  953. dev_dbg(db->dev, "interrupt status %02x\n", int_status);
  954. /* Received the coming packet */
  955. if (int_status & ISR_PRS)
  956. dm9000_rx(dev);
  957. /* Trnasmit Interrupt check */
  958. if (int_status & ISR_PTS)
  959. dm9000_tx_done(dev, db);
  960. if (db->type != TYPE_DM9000E) {
  961. if (int_status & ISR_LNKCHNG) {
  962. /* fire a link-change request */
  963. schedule_delayed_work(&db->phy_poll, 1);
  964. }
  965. }
  966. dm9000_unmask_interrupts(db);
  967. /* Restore previous register address */
  968. writeb(reg_save, db->io_addr);
  969. spin_unlock_irqrestore(&db->lock, flags);
  970. return IRQ_HANDLED;
  971. }
  972. static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
  973. {
  974. struct net_device *dev = dev_id;
  975. board_info_t *db = netdev_priv(dev);
  976. unsigned long flags;
  977. unsigned nsr, wcr;
  978. spin_lock_irqsave(&db->lock, flags);
  979. nsr = ior(db, DM9000_NSR);
  980. wcr = ior(db, DM9000_WCR);
  981. dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
  982. if (nsr & NSR_WAKEST) {
  983. /* clear, so we can avoid */
  984. iow(db, DM9000_NSR, NSR_WAKEST);
  985. if (wcr & WCR_LINKST)
  986. dev_info(db->dev, "wake by link status change\n");
  987. if (wcr & WCR_SAMPLEST)
  988. dev_info(db->dev, "wake by sample packet\n");
  989. if (wcr & WCR_MAGICST)
  990. dev_info(db->dev, "wake by magic packet\n");
  991. if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
  992. dev_err(db->dev, "wake signalled with no reason? "
  993. "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
  994. }
  995. spin_unlock_irqrestore(&db->lock, flags);
  996. return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
  997. }
  998. #ifdef CONFIG_NET_POLL_CONTROLLER
  999. /*
  1000. *Used by netconsole
  1001. */
  1002. static void dm9000_poll_controller(struct net_device *dev)
  1003. {
  1004. disable_irq(dev->irq);
  1005. dm9000_interrupt(dev->irq, dev);
  1006. enable_irq(dev->irq);
  1007. }
  1008. #endif
  1009. /*
  1010. * Open the interface.
  1011. * The interface is opened whenever "ifconfig" actives it.
  1012. */
  1013. static int
  1014. dm9000_open(struct net_device *dev)
  1015. {
  1016. board_info_t *db = netdev_priv(dev);
  1017. unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
  1018. if (netif_msg_ifup(db))
  1019. dev_dbg(db->dev, "enabling %s\n", dev->name);
  1020. /* If there is no IRQ type specified, default to something that
  1021. * may work, and tell the user that this is a problem */
  1022. if (irqflags == IRQF_TRIGGER_NONE)
  1023. irqflags = irq_get_trigger_type(dev->irq);
  1024. if (irqflags == IRQF_TRIGGER_NONE)
  1025. dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
  1026. irqflags |= IRQF_SHARED;
  1027. /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
  1028. iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
  1029. mdelay(1); /* delay needs by DM9000B */
  1030. /* Initialize DM9000 board */
  1031. dm9000_init_dm9000(dev);
  1032. if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
  1033. return -EAGAIN;
  1034. /* Now that we have an interrupt handler hooked up we can unmask
  1035. * our interrupts
  1036. */
  1037. dm9000_unmask_interrupts(db);
  1038. /* Init driver variable */
  1039. db->dbug_cnt = 0;
  1040. mii_check_media(&db->mii, netif_msg_link(db), 1);
  1041. netif_start_queue(dev);
  1042. /* Poll initial link status */
  1043. schedule_delayed_work(&db->phy_poll, 1);
  1044. return 0;
  1045. }
  1046. static void
  1047. dm9000_shutdown(struct net_device *dev)
  1048. {
  1049. board_info_t *db = netdev_priv(dev);
  1050. /* RESET device */
  1051. dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
  1052. iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
  1053. dm9000_mask_interrupts(db);
  1054. iow(db, DM9000_RCR, 0x00); /* Disable RX */
  1055. }
  1056. /*
  1057. * Stop the interface.
  1058. * The interface is stopped when it is brought.
  1059. */
  1060. static int
  1061. dm9000_stop(struct net_device *ndev)
  1062. {
  1063. board_info_t *db = netdev_priv(ndev);
  1064. if (netif_msg_ifdown(db))
  1065. dev_dbg(db->dev, "shutting down %s\n", ndev->name);
  1066. cancel_delayed_work_sync(&db->phy_poll);
  1067. netif_stop_queue(ndev);
  1068. netif_carrier_off(ndev);
  1069. /* free interrupt */
  1070. free_irq(ndev->irq, ndev);
  1071. dm9000_shutdown(ndev);
  1072. return 0;
  1073. }
  1074. static const struct net_device_ops dm9000_netdev_ops = {
  1075. .ndo_open = dm9000_open,
  1076. .ndo_stop = dm9000_stop,
  1077. .ndo_start_xmit = dm9000_start_xmit,
  1078. .ndo_tx_timeout = dm9000_timeout,
  1079. .ndo_set_rx_mode = dm9000_hash_table,
  1080. .ndo_do_ioctl = dm9000_ioctl,
  1081. .ndo_change_mtu = eth_change_mtu,
  1082. .ndo_set_features = dm9000_set_features,
  1083. .ndo_validate_addr = eth_validate_addr,
  1084. .ndo_set_mac_address = eth_mac_addr,
  1085. #ifdef CONFIG_NET_POLL_CONTROLLER
  1086. .ndo_poll_controller = dm9000_poll_controller,
  1087. #endif
  1088. };
  1089. static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
  1090. {
  1091. struct dm9000_plat_data *pdata;
  1092. struct device_node *np = dev->of_node;
  1093. const void *mac_addr;
  1094. if (!IS_ENABLED(CONFIG_OF) || !np)
  1095. return NULL;
  1096. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  1097. if (!pdata)
  1098. return ERR_PTR(-ENOMEM);
  1099. if (of_find_property(np, "davicom,ext-phy", NULL))
  1100. pdata->flags |= DM9000_PLATF_EXT_PHY;
  1101. if (of_find_property(np, "davicom,no-eeprom", NULL))
  1102. pdata->flags |= DM9000_PLATF_NO_EEPROM;
  1103. mac_addr = of_get_mac_address(np);
  1104. if (mac_addr)
  1105. memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
  1106. return pdata;
  1107. }
  1108. /*
  1109. * Search DM9000 board, allocate space and register it
  1110. */
  1111. static int
  1112. dm9000_probe(struct platform_device *pdev)
  1113. {
  1114. struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
  1115. struct board_info *db; /* Point a board information structure */
  1116. struct net_device *ndev;
  1117. const unsigned char *mac_src;
  1118. int ret = 0;
  1119. int iosize;
  1120. int i;
  1121. u32 id_val;
  1122. if (!pdata) {
  1123. pdata = dm9000_parse_dt(&pdev->dev);
  1124. if (IS_ERR(pdata))
  1125. return PTR_ERR(pdata);
  1126. }
  1127. /* Init network device */
  1128. ndev = alloc_etherdev(sizeof(struct board_info));
  1129. if (!ndev)
  1130. return -ENOMEM;
  1131. SET_NETDEV_DEV(ndev, &pdev->dev);
  1132. dev_dbg(&pdev->dev, "dm9000_probe()\n");
  1133. /* setup board info structure */
  1134. db = netdev_priv(ndev);
  1135. db->dev = &pdev->dev;
  1136. db->ndev = ndev;
  1137. spin_lock_init(&db->lock);
  1138. mutex_init(&db->addr_lock);
  1139. INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
  1140. db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1141. db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  1142. db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  1143. if (db->addr_res == NULL || db->data_res == NULL ||
  1144. db->irq_res == NULL) {
  1145. dev_err(db->dev, "insufficient resources\n");
  1146. ret = -ENOENT;
  1147. goto out;
  1148. }
  1149. db->irq_wake = platform_get_irq(pdev, 1);
  1150. if (db->irq_wake >= 0) {
  1151. dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
  1152. ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
  1153. IRQF_SHARED, dev_name(db->dev), ndev);
  1154. if (ret) {
  1155. dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
  1156. } else {
  1157. /* test to see if irq is really wakeup capable */
  1158. ret = irq_set_irq_wake(db->irq_wake, 1);
  1159. if (ret) {
  1160. dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
  1161. db->irq_wake, ret);
  1162. ret = 0;
  1163. } else {
  1164. irq_set_irq_wake(db->irq_wake, 0);
  1165. db->wake_supported = 1;
  1166. }
  1167. }
  1168. }
  1169. iosize = resource_size(db->addr_res);
  1170. db->addr_req = request_mem_region(db->addr_res->start, iosize,
  1171. pdev->name);
  1172. if (db->addr_req == NULL) {
  1173. dev_err(db->dev, "cannot claim address reg area\n");
  1174. ret = -EIO;
  1175. goto out;
  1176. }
  1177. db->io_addr = ioremap(db->addr_res->start, iosize);
  1178. if (db->io_addr == NULL) {
  1179. dev_err(db->dev, "failed to ioremap address reg\n");
  1180. ret = -EINVAL;
  1181. goto out;
  1182. }
  1183. iosize = resource_size(db->data_res);
  1184. db->data_req = request_mem_region(db->data_res->start, iosize,
  1185. pdev->name);
  1186. if (db->data_req == NULL) {
  1187. dev_err(db->dev, "cannot claim data reg area\n");
  1188. ret = -EIO;
  1189. goto out;
  1190. }
  1191. db->io_data = ioremap(db->data_res->start, iosize);
  1192. if (db->io_data == NULL) {
  1193. dev_err(db->dev, "failed to ioremap data reg\n");
  1194. ret = -EINVAL;
  1195. goto out;
  1196. }
  1197. /* fill in parameters for net-dev structure */
  1198. ndev->base_addr = (unsigned long)db->io_addr;
  1199. ndev->irq = db->irq_res->start;
  1200. /* ensure at least we have a default set of IO routines */
  1201. dm9000_set_io(db, iosize);
  1202. /* check to see if anything is being over-ridden */
  1203. if (pdata != NULL) {
  1204. /* check to see if the driver wants to over-ride the
  1205. * default IO width */
  1206. if (pdata->flags & DM9000_PLATF_8BITONLY)
  1207. dm9000_set_io(db, 1);
  1208. if (pdata->flags & DM9000_PLATF_16BITONLY)
  1209. dm9000_set_io(db, 2);
  1210. if (pdata->flags & DM9000_PLATF_32BITONLY)
  1211. dm9000_set_io(db, 4);
  1212. /* check to see if there are any IO routine
  1213. * over-rides */
  1214. if (pdata->inblk != NULL)
  1215. db->inblk = pdata->inblk;
  1216. if (pdata->outblk != NULL)
  1217. db->outblk = pdata->outblk;
  1218. if (pdata->dumpblk != NULL)
  1219. db->dumpblk = pdata->dumpblk;
  1220. db->flags = pdata->flags;
  1221. }
  1222. #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
  1223. db->flags |= DM9000_PLATF_SIMPLE_PHY;
  1224. #endif
  1225. dm9000_reset(db);
  1226. /* try multiple times, DM9000 sometimes gets the read wrong */
  1227. for (i = 0; i < 8; i++) {
  1228. id_val = ior(db, DM9000_VIDL);
  1229. id_val |= (u32)ior(db, DM9000_VIDH) << 8;
  1230. id_val |= (u32)ior(db, DM9000_PIDL) << 16;
  1231. id_val |= (u32)ior(db, DM9000_PIDH) << 24;
  1232. if (id_val == DM9000_ID)
  1233. break;
  1234. dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
  1235. }
  1236. if (id_val != DM9000_ID) {
  1237. dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
  1238. ret = -ENODEV;
  1239. goto out;
  1240. }
  1241. /* Identify what type of DM9000 we are working on */
  1242. id_val = ior(db, DM9000_CHIPR);
  1243. dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
  1244. switch (id_val) {
  1245. case CHIPR_DM9000A:
  1246. db->type = TYPE_DM9000A;
  1247. break;
  1248. case CHIPR_DM9000B:
  1249. db->type = TYPE_DM9000B;
  1250. break;
  1251. default:
  1252. dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
  1253. db->type = TYPE_DM9000E;
  1254. }
  1255. /* dm9000a/b are capable of hardware checksum offload */
  1256. if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
  1257. ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
  1258. ndev->features |= ndev->hw_features;
  1259. }
  1260. /* from this point we assume that we have found a DM9000 */
  1261. /* driver system function */
  1262. ether_setup(ndev);
  1263. ndev->netdev_ops = &dm9000_netdev_ops;
  1264. ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
  1265. ndev->ethtool_ops = &dm9000_ethtool_ops;
  1266. db->msg_enable = NETIF_MSG_LINK;
  1267. db->mii.phy_id_mask = 0x1f;
  1268. db->mii.reg_num_mask = 0x1f;
  1269. db->mii.force_media = 0;
  1270. db->mii.full_duplex = 0;
  1271. db->mii.dev = ndev;
  1272. db->mii.mdio_read = dm9000_phy_read;
  1273. db->mii.mdio_write = dm9000_phy_write;
  1274. mac_src = "eeprom";
  1275. /* try reading the node address from the attached EEPROM */
  1276. for (i = 0; i < 6; i += 2)
  1277. dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
  1278. if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
  1279. mac_src = "platform data";
  1280. memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
  1281. }
  1282. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1283. /* try reading from mac */
  1284. mac_src = "chip";
  1285. for (i = 0; i < 6; i++)
  1286. ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
  1287. }
  1288. if (!is_valid_ether_addr(ndev->dev_addr)) {
  1289. dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
  1290. "set using ifconfig\n", ndev->name);
  1291. eth_hw_addr_random(ndev);
  1292. mac_src = "random";
  1293. }
  1294. platform_set_drvdata(pdev, ndev);
  1295. ret = register_netdev(ndev);
  1296. if (ret == 0)
  1297. printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
  1298. ndev->name, dm9000_type_to_char(db->type),
  1299. db->io_addr, db->io_data, ndev->irq,
  1300. ndev->dev_addr, mac_src);
  1301. return 0;
  1302. out:
  1303. dev_err(db->dev, "not found (%d).\n", ret);
  1304. dm9000_release_board(pdev, db);
  1305. free_netdev(ndev);
  1306. return ret;
  1307. }
  1308. static int
  1309. dm9000_drv_suspend(struct device *dev)
  1310. {
  1311. struct platform_device *pdev = to_platform_device(dev);
  1312. struct net_device *ndev = platform_get_drvdata(pdev);
  1313. board_info_t *db;
  1314. if (ndev) {
  1315. db = netdev_priv(ndev);
  1316. db->in_suspend = 1;
  1317. if (!netif_running(ndev))
  1318. return 0;
  1319. netif_device_detach(ndev);
  1320. /* only shutdown if not using WoL */
  1321. if (!db->wake_state)
  1322. dm9000_shutdown(ndev);
  1323. }
  1324. return 0;
  1325. }
  1326. static int
  1327. dm9000_drv_resume(struct device *dev)
  1328. {
  1329. struct platform_device *pdev = to_platform_device(dev);
  1330. struct net_device *ndev = platform_get_drvdata(pdev);
  1331. board_info_t *db = netdev_priv(ndev);
  1332. if (ndev) {
  1333. if (netif_running(ndev)) {
  1334. /* reset if we were not in wake mode to ensure if
  1335. * the device was powered off it is in a known state */
  1336. if (!db->wake_state) {
  1337. dm9000_init_dm9000(ndev);
  1338. dm9000_unmask_interrupts(db);
  1339. }
  1340. netif_device_attach(ndev);
  1341. }
  1342. db->in_suspend = 0;
  1343. }
  1344. return 0;
  1345. }
  1346. static const struct dev_pm_ops dm9000_drv_pm_ops = {
  1347. .suspend = dm9000_drv_suspend,
  1348. .resume = dm9000_drv_resume,
  1349. };
  1350. static int
  1351. dm9000_drv_remove(struct platform_device *pdev)
  1352. {
  1353. struct net_device *ndev = platform_get_drvdata(pdev);
  1354. unregister_netdev(ndev);
  1355. dm9000_release_board(pdev, netdev_priv(ndev));
  1356. free_netdev(ndev); /* free device structure */
  1357. dev_dbg(&pdev->dev, "released and freed device\n");
  1358. return 0;
  1359. }
  1360. #ifdef CONFIG_OF
  1361. static const struct of_device_id dm9000_of_matches[] = {
  1362. { .compatible = "davicom,dm9000", },
  1363. { /* sentinel */ }
  1364. };
  1365. MODULE_DEVICE_TABLE(of, dm9000_of_matches);
  1366. #endif
  1367. static struct platform_driver dm9000_driver = {
  1368. .driver = {
  1369. .name = "dm9000",
  1370. .owner = THIS_MODULE,
  1371. .pm = &dm9000_drv_pm_ops,
  1372. .of_match_table = of_match_ptr(dm9000_of_matches),
  1373. },
  1374. .probe = dm9000_probe,
  1375. .remove = dm9000_drv_remove,
  1376. };
  1377. module_platform_driver(dm9000_driver);
  1378. MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
  1379. MODULE_DESCRIPTION("Davicom DM9000 network driver");
  1380. MODULE_LICENSE("GPL");
  1381. MODULE_ALIAS("platform:dm9000");