bnx2.c 216 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818
  1. /* bnx2.c: Broadcom NX2 network driver.
  2. *
  3. * Copyright (c) 2004-2013 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Written by: Michael Chan (mchan@broadcom.com)
  10. */
  11. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12. #include <linux/module.h>
  13. #include <linux/moduleparam.h>
  14. #include <linux/stringify.h>
  15. #include <linux/kernel.h>
  16. #include <linux/timer.h>
  17. #include <linux/errno.h>
  18. #include <linux/ioport.h>
  19. #include <linux/slab.h>
  20. #include <linux/vmalloc.h>
  21. #include <linux/interrupt.h>
  22. #include <linux/pci.h>
  23. #include <linux/netdevice.h>
  24. #include <linux/etherdevice.h>
  25. #include <linux/skbuff.h>
  26. #include <linux/dma-mapping.h>
  27. #include <linux/bitops.h>
  28. #include <asm/io.h>
  29. #include <asm/irq.h>
  30. #include <linux/delay.h>
  31. #include <asm/byteorder.h>
  32. #include <asm/page.h>
  33. #include <linux/time.h>
  34. #include <linux/ethtool.h>
  35. #include <linux/mii.h>
  36. #include <linux/if.h>
  37. #include <linux/if_vlan.h>
  38. #include <net/ip.h>
  39. #include <net/tcp.h>
  40. #include <net/checksum.h>
  41. #include <linux/workqueue.h>
  42. #include <linux/crc32.h>
  43. #include <linux/prefetch.h>
  44. #include <linux/cache.h>
  45. #include <linux/firmware.h>
  46. #include <linux/log2.h>
  47. #include <linux/aer.h>
  48. #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
  49. #define BCM_CNIC 1
  50. #include "cnic_if.h"
  51. #endif
  52. #include "bnx2.h"
  53. #include "bnx2_fw.h"
  54. #define DRV_MODULE_NAME "bnx2"
  55. #define DRV_MODULE_VERSION "2.2.5"
  56. #define DRV_MODULE_RELDATE "December 20, 2013"
  57. #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-6.2.3.fw"
  58. #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-6.0.15.fw"
  59. #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-6.2.1b.fw"
  60. #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-6.0.17.fw"
  61. #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-6.0.17.fw"
  62. #define RUN_AT(x) (jiffies + (x))
  63. /* Time in jiffies before concluding the transmitter is hung. */
  64. #define TX_TIMEOUT (5*HZ)
  65. static char version[] =
  66. "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
  67. MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
  68. MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
  69. MODULE_LICENSE("GPL");
  70. MODULE_VERSION(DRV_MODULE_VERSION);
  71. MODULE_FIRMWARE(FW_MIPS_FILE_06);
  72. MODULE_FIRMWARE(FW_RV2P_FILE_06);
  73. MODULE_FIRMWARE(FW_MIPS_FILE_09);
  74. MODULE_FIRMWARE(FW_RV2P_FILE_09);
  75. MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax);
  76. static int disable_msi = 0;
  77. module_param(disable_msi, int, S_IRUGO);
  78. MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
  79. typedef enum {
  80. BCM5706 = 0,
  81. NC370T,
  82. NC370I,
  83. BCM5706S,
  84. NC370F,
  85. BCM5708,
  86. BCM5708S,
  87. BCM5709,
  88. BCM5709S,
  89. BCM5716,
  90. BCM5716S,
  91. } board_t;
  92. /* indexed by board_t, above */
  93. static struct {
  94. char *name;
  95. } board_info[] = {
  96. { "Broadcom NetXtreme II BCM5706 1000Base-T" },
  97. { "HP NC370T Multifunction Gigabit Server Adapter" },
  98. { "HP NC370i Multifunction Gigabit Server Adapter" },
  99. { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
  100. { "HP NC370F Multifunction Gigabit Server Adapter" },
  101. { "Broadcom NetXtreme II BCM5708 1000Base-T" },
  102. { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
  103. { "Broadcom NetXtreme II BCM5709 1000Base-T" },
  104. { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
  105. { "Broadcom NetXtreme II BCM5716 1000Base-T" },
  106. { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
  107. };
  108. static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
  109. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  110. PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
  111. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  112. PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
  113. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
  114. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
  115. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
  116. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
  117. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  118. PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
  119. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
  120. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
  121. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
  122. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
  123. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
  124. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
  125. { PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
  126. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
  127. { PCI_VENDOR_ID_BROADCOM, 0x163b,
  128. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
  129. { PCI_VENDOR_ID_BROADCOM, 0x163c,
  130. PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716S },
  131. { 0, }
  132. };
  133. static const struct flash_spec flash_table[] =
  134. {
  135. #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
  136. #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
  137. /* Slow EEPROM */
  138. {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
  139. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  140. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  141. "EEPROM - slow"},
  142. /* Expansion entry 0001 */
  143. {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
  144. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  145. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  146. "Entry 0001"},
  147. /* Saifun SA25F010 (non-buffered flash) */
  148. /* strap, cfg1, & write1 need updates */
  149. {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
  150. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  151. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
  152. "Non-buffered flash (128kB)"},
  153. /* Saifun SA25F020 (non-buffered flash) */
  154. /* strap, cfg1, & write1 need updates */
  155. {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
  156. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  157. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
  158. "Non-buffered flash (256kB)"},
  159. /* Expansion entry 0100 */
  160. {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
  161. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  162. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  163. "Entry 0100"},
  164. /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
  165. {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
  166. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  167. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
  168. "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
  169. /* Entry 0110: ST M45PE20 (non-buffered flash)*/
  170. {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
  171. NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
  172. ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
  173. "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
  174. /* Saifun SA25F005 (non-buffered flash) */
  175. /* strap, cfg1, & write1 need updates */
  176. {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
  177. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  178. SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
  179. "Non-buffered flash (64kB)"},
  180. /* Fast EEPROM */
  181. {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
  182. BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
  183. SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
  184. "EEPROM - fast"},
  185. /* Expansion entry 1001 */
  186. {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
  187. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  188. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  189. "Entry 1001"},
  190. /* Expansion entry 1010 */
  191. {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
  192. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  193. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  194. "Entry 1010"},
  195. /* ATMEL AT45DB011B (buffered flash) */
  196. {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
  197. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  198. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
  199. "Buffered flash (128kB)"},
  200. /* Expansion entry 1100 */
  201. {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
  202. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  203. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  204. "Entry 1100"},
  205. /* Expansion entry 1101 */
  206. {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
  207. NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
  208. SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
  209. "Entry 1101"},
  210. /* Ateml Expansion entry 1110 */
  211. {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
  212. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  213. BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
  214. "Entry 1110 (Atmel)"},
  215. /* ATMEL AT45DB021B (buffered flash) */
  216. {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
  217. BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
  218. BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
  219. "Buffered flash (256kB)"},
  220. };
  221. static const struct flash_spec flash_5709 = {
  222. .flags = BNX2_NV_BUFFERED,
  223. .page_bits = BCM5709_FLASH_PAGE_BITS,
  224. .page_size = BCM5709_FLASH_PAGE_SIZE,
  225. .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
  226. .total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
  227. .name = "5709 Buffered flash (256kB)",
  228. };
  229. MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
  230. static void bnx2_init_napi(struct bnx2 *bp);
  231. static void bnx2_del_napi(struct bnx2 *bp);
  232. static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
  233. {
  234. u32 diff;
  235. /* Tell compiler to fetch tx_prod and tx_cons from memory. */
  236. barrier();
  237. /* The ring uses 256 indices for 255 entries, one of them
  238. * needs to be skipped.
  239. */
  240. diff = txr->tx_prod - txr->tx_cons;
  241. if (unlikely(diff >= BNX2_TX_DESC_CNT)) {
  242. diff &= 0xffff;
  243. if (diff == BNX2_TX_DESC_CNT)
  244. diff = BNX2_MAX_TX_DESC_CNT;
  245. }
  246. return bp->tx_ring_size - diff;
  247. }
  248. static u32
  249. bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
  250. {
  251. u32 val;
  252. spin_lock_bh(&bp->indirect_lock);
  253. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  254. val = BNX2_RD(bp, BNX2_PCICFG_REG_WINDOW);
  255. spin_unlock_bh(&bp->indirect_lock);
  256. return val;
  257. }
  258. static void
  259. bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
  260. {
  261. spin_lock_bh(&bp->indirect_lock);
  262. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
  263. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
  264. spin_unlock_bh(&bp->indirect_lock);
  265. }
  266. static void
  267. bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
  268. {
  269. bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
  270. }
  271. static u32
  272. bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
  273. {
  274. return bnx2_reg_rd_ind(bp, bp->shmem_base + offset);
  275. }
  276. static void
  277. bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
  278. {
  279. offset += cid_addr;
  280. spin_lock_bh(&bp->indirect_lock);
  281. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  282. int i;
  283. BNX2_WR(bp, BNX2_CTX_CTX_DATA, val);
  284. BNX2_WR(bp, BNX2_CTX_CTX_CTRL,
  285. offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
  286. for (i = 0; i < 5; i++) {
  287. val = BNX2_RD(bp, BNX2_CTX_CTX_CTRL);
  288. if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
  289. break;
  290. udelay(5);
  291. }
  292. } else {
  293. BNX2_WR(bp, BNX2_CTX_DATA_ADR, offset);
  294. BNX2_WR(bp, BNX2_CTX_DATA, val);
  295. }
  296. spin_unlock_bh(&bp->indirect_lock);
  297. }
  298. #ifdef BCM_CNIC
  299. static int
  300. bnx2_drv_ctl(struct net_device *dev, struct drv_ctl_info *info)
  301. {
  302. struct bnx2 *bp = netdev_priv(dev);
  303. struct drv_ctl_io *io = &info->data.io;
  304. switch (info->cmd) {
  305. case DRV_CTL_IO_WR_CMD:
  306. bnx2_reg_wr_ind(bp, io->offset, io->data);
  307. break;
  308. case DRV_CTL_IO_RD_CMD:
  309. io->data = bnx2_reg_rd_ind(bp, io->offset);
  310. break;
  311. case DRV_CTL_CTX_WR_CMD:
  312. bnx2_ctx_wr(bp, io->cid_addr, io->offset, io->data);
  313. break;
  314. default:
  315. return -EINVAL;
  316. }
  317. return 0;
  318. }
  319. static void bnx2_setup_cnic_irq_info(struct bnx2 *bp)
  320. {
  321. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  322. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  323. int sb_id;
  324. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  325. cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
  326. bnapi->cnic_present = 0;
  327. sb_id = bp->irq_nvecs;
  328. cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
  329. } else {
  330. cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
  331. bnapi->cnic_tag = bnapi->last_status_idx;
  332. bnapi->cnic_present = 1;
  333. sb_id = 0;
  334. cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
  335. }
  336. cp->irq_arr[0].vector = bp->irq_tbl[sb_id].vector;
  337. cp->irq_arr[0].status_blk = (void *)
  338. ((unsigned long) bnapi->status_blk.msi +
  339. (BNX2_SBLK_MSIX_ALIGN_SIZE * sb_id));
  340. cp->irq_arr[0].status_blk_num = sb_id;
  341. cp->num_irq = 1;
  342. }
  343. static int bnx2_register_cnic(struct net_device *dev, struct cnic_ops *ops,
  344. void *data)
  345. {
  346. struct bnx2 *bp = netdev_priv(dev);
  347. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  348. if (ops == NULL)
  349. return -EINVAL;
  350. if (cp->drv_state & CNIC_DRV_STATE_REGD)
  351. return -EBUSY;
  352. if (!bnx2_reg_rd_ind(bp, BNX2_FW_MAX_ISCSI_CONN))
  353. return -ENODEV;
  354. bp->cnic_data = data;
  355. rcu_assign_pointer(bp->cnic_ops, ops);
  356. cp->num_irq = 0;
  357. cp->drv_state = CNIC_DRV_STATE_REGD;
  358. bnx2_setup_cnic_irq_info(bp);
  359. return 0;
  360. }
  361. static int bnx2_unregister_cnic(struct net_device *dev)
  362. {
  363. struct bnx2 *bp = netdev_priv(dev);
  364. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  365. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  366. mutex_lock(&bp->cnic_lock);
  367. cp->drv_state = 0;
  368. bnapi->cnic_present = 0;
  369. RCU_INIT_POINTER(bp->cnic_ops, NULL);
  370. mutex_unlock(&bp->cnic_lock);
  371. synchronize_rcu();
  372. return 0;
  373. }
  374. static struct cnic_eth_dev *bnx2_cnic_probe(struct net_device *dev)
  375. {
  376. struct bnx2 *bp = netdev_priv(dev);
  377. struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
  378. if (!cp->max_iscsi_conn)
  379. return NULL;
  380. cp->drv_owner = THIS_MODULE;
  381. cp->chip_id = bp->chip_id;
  382. cp->pdev = bp->pdev;
  383. cp->io_base = bp->regview;
  384. cp->drv_ctl = bnx2_drv_ctl;
  385. cp->drv_register_cnic = bnx2_register_cnic;
  386. cp->drv_unregister_cnic = bnx2_unregister_cnic;
  387. return cp;
  388. }
  389. static void
  390. bnx2_cnic_stop(struct bnx2 *bp)
  391. {
  392. struct cnic_ops *c_ops;
  393. struct cnic_ctl_info info;
  394. mutex_lock(&bp->cnic_lock);
  395. c_ops = rcu_dereference_protected(bp->cnic_ops,
  396. lockdep_is_held(&bp->cnic_lock));
  397. if (c_ops) {
  398. info.cmd = CNIC_CTL_STOP_CMD;
  399. c_ops->cnic_ctl(bp->cnic_data, &info);
  400. }
  401. mutex_unlock(&bp->cnic_lock);
  402. }
  403. static void
  404. bnx2_cnic_start(struct bnx2 *bp)
  405. {
  406. struct cnic_ops *c_ops;
  407. struct cnic_ctl_info info;
  408. mutex_lock(&bp->cnic_lock);
  409. c_ops = rcu_dereference_protected(bp->cnic_ops,
  410. lockdep_is_held(&bp->cnic_lock));
  411. if (c_ops) {
  412. if (!(bp->flags & BNX2_FLAG_USING_MSIX)) {
  413. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  414. bnapi->cnic_tag = bnapi->last_status_idx;
  415. }
  416. info.cmd = CNIC_CTL_START_CMD;
  417. c_ops->cnic_ctl(bp->cnic_data, &info);
  418. }
  419. mutex_unlock(&bp->cnic_lock);
  420. }
  421. #else
  422. static void
  423. bnx2_cnic_stop(struct bnx2 *bp)
  424. {
  425. }
  426. static void
  427. bnx2_cnic_start(struct bnx2 *bp)
  428. {
  429. }
  430. #endif
  431. static int
  432. bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
  433. {
  434. u32 val1;
  435. int i, ret;
  436. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  437. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  438. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  439. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  440. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  441. udelay(40);
  442. }
  443. val1 = (bp->phy_addr << 21) | (reg << 16) |
  444. BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
  445. BNX2_EMAC_MDIO_COMM_START_BUSY;
  446. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  447. for (i = 0; i < 50; i++) {
  448. udelay(10);
  449. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  450. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  451. udelay(5);
  452. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  453. val1 &= BNX2_EMAC_MDIO_COMM_DATA;
  454. break;
  455. }
  456. }
  457. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
  458. *val = 0x0;
  459. ret = -EBUSY;
  460. }
  461. else {
  462. *val = val1;
  463. ret = 0;
  464. }
  465. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  466. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  467. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  468. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  469. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  470. udelay(40);
  471. }
  472. return ret;
  473. }
  474. static int
  475. bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
  476. {
  477. u32 val1;
  478. int i, ret;
  479. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  480. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  481. val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  482. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  483. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  484. udelay(40);
  485. }
  486. val1 = (bp->phy_addr << 21) | (reg << 16) | val |
  487. BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
  488. BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
  489. BNX2_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
  490. for (i = 0; i < 50; i++) {
  491. udelay(10);
  492. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_COMM);
  493. if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
  494. udelay(5);
  495. break;
  496. }
  497. }
  498. if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
  499. ret = -EBUSY;
  500. else
  501. ret = 0;
  502. if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
  503. val1 = BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  504. val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
  505. BNX2_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
  506. BNX2_RD(bp, BNX2_EMAC_MDIO_MODE);
  507. udelay(40);
  508. }
  509. return ret;
  510. }
  511. static void
  512. bnx2_disable_int(struct bnx2 *bp)
  513. {
  514. int i;
  515. struct bnx2_napi *bnapi;
  516. for (i = 0; i < bp->irq_nvecs; i++) {
  517. bnapi = &bp->bnx2_napi[i];
  518. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  519. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  520. }
  521. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  522. }
  523. static void
  524. bnx2_enable_int(struct bnx2 *bp)
  525. {
  526. int i;
  527. struct bnx2_napi *bnapi;
  528. for (i = 0; i < bp->irq_nvecs; i++) {
  529. bnapi = &bp->bnx2_napi[i];
  530. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  531. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  532. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  533. bnapi->last_status_idx);
  534. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  535. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  536. bnapi->last_status_idx);
  537. }
  538. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  539. }
  540. static void
  541. bnx2_disable_int_sync(struct bnx2 *bp)
  542. {
  543. int i;
  544. atomic_inc(&bp->intr_sem);
  545. if (!netif_running(bp->dev))
  546. return;
  547. bnx2_disable_int(bp);
  548. for (i = 0; i < bp->irq_nvecs; i++)
  549. synchronize_irq(bp->irq_tbl[i].vector);
  550. }
  551. static void
  552. bnx2_napi_disable(struct bnx2 *bp)
  553. {
  554. int i;
  555. for (i = 0; i < bp->irq_nvecs; i++)
  556. napi_disable(&bp->bnx2_napi[i].napi);
  557. }
  558. static void
  559. bnx2_napi_enable(struct bnx2 *bp)
  560. {
  561. int i;
  562. for (i = 0; i < bp->irq_nvecs; i++)
  563. napi_enable(&bp->bnx2_napi[i].napi);
  564. }
  565. static void
  566. bnx2_netif_stop(struct bnx2 *bp, bool stop_cnic)
  567. {
  568. if (stop_cnic)
  569. bnx2_cnic_stop(bp);
  570. if (netif_running(bp->dev)) {
  571. bnx2_napi_disable(bp);
  572. netif_tx_disable(bp->dev);
  573. }
  574. bnx2_disable_int_sync(bp);
  575. netif_carrier_off(bp->dev); /* prevent tx timeout */
  576. }
  577. static void
  578. bnx2_netif_start(struct bnx2 *bp, bool start_cnic)
  579. {
  580. if (atomic_dec_and_test(&bp->intr_sem)) {
  581. if (netif_running(bp->dev)) {
  582. netif_tx_wake_all_queues(bp->dev);
  583. spin_lock_bh(&bp->phy_lock);
  584. if (bp->link_up)
  585. netif_carrier_on(bp->dev);
  586. spin_unlock_bh(&bp->phy_lock);
  587. bnx2_napi_enable(bp);
  588. bnx2_enable_int(bp);
  589. if (start_cnic)
  590. bnx2_cnic_start(bp);
  591. }
  592. }
  593. }
  594. static void
  595. bnx2_free_tx_mem(struct bnx2 *bp)
  596. {
  597. int i;
  598. for (i = 0; i < bp->num_tx_rings; i++) {
  599. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  600. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  601. if (txr->tx_desc_ring) {
  602. dma_free_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  603. txr->tx_desc_ring,
  604. txr->tx_desc_mapping);
  605. txr->tx_desc_ring = NULL;
  606. }
  607. kfree(txr->tx_buf_ring);
  608. txr->tx_buf_ring = NULL;
  609. }
  610. }
  611. static void
  612. bnx2_free_rx_mem(struct bnx2 *bp)
  613. {
  614. int i;
  615. for (i = 0; i < bp->num_rx_rings; i++) {
  616. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  617. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  618. int j;
  619. for (j = 0; j < bp->rx_max_ring; j++) {
  620. if (rxr->rx_desc_ring[j])
  621. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  622. rxr->rx_desc_ring[j],
  623. rxr->rx_desc_mapping[j]);
  624. rxr->rx_desc_ring[j] = NULL;
  625. }
  626. vfree(rxr->rx_buf_ring);
  627. rxr->rx_buf_ring = NULL;
  628. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  629. if (rxr->rx_pg_desc_ring[j])
  630. dma_free_coherent(&bp->pdev->dev, RXBD_RING_SIZE,
  631. rxr->rx_pg_desc_ring[j],
  632. rxr->rx_pg_desc_mapping[j]);
  633. rxr->rx_pg_desc_ring[j] = NULL;
  634. }
  635. vfree(rxr->rx_pg_ring);
  636. rxr->rx_pg_ring = NULL;
  637. }
  638. }
  639. static int
  640. bnx2_alloc_tx_mem(struct bnx2 *bp)
  641. {
  642. int i;
  643. for (i = 0; i < bp->num_tx_rings; i++) {
  644. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  645. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  646. txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
  647. if (txr->tx_buf_ring == NULL)
  648. return -ENOMEM;
  649. txr->tx_desc_ring =
  650. dma_alloc_coherent(&bp->pdev->dev, TXBD_RING_SIZE,
  651. &txr->tx_desc_mapping, GFP_KERNEL);
  652. if (txr->tx_desc_ring == NULL)
  653. return -ENOMEM;
  654. }
  655. return 0;
  656. }
  657. static int
  658. bnx2_alloc_rx_mem(struct bnx2 *bp)
  659. {
  660. int i;
  661. for (i = 0; i < bp->num_rx_rings; i++) {
  662. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  663. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  664. int j;
  665. rxr->rx_buf_ring =
  666. vzalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
  667. if (rxr->rx_buf_ring == NULL)
  668. return -ENOMEM;
  669. for (j = 0; j < bp->rx_max_ring; j++) {
  670. rxr->rx_desc_ring[j] =
  671. dma_alloc_coherent(&bp->pdev->dev,
  672. RXBD_RING_SIZE,
  673. &rxr->rx_desc_mapping[j],
  674. GFP_KERNEL);
  675. if (rxr->rx_desc_ring[j] == NULL)
  676. return -ENOMEM;
  677. }
  678. if (bp->rx_pg_ring_size) {
  679. rxr->rx_pg_ring = vzalloc(SW_RXPG_RING_SIZE *
  680. bp->rx_max_pg_ring);
  681. if (rxr->rx_pg_ring == NULL)
  682. return -ENOMEM;
  683. }
  684. for (j = 0; j < bp->rx_max_pg_ring; j++) {
  685. rxr->rx_pg_desc_ring[j] =
  686. dma_alloc_coherent(&bp->pdev->dev,
  687. RXBD_RING_SIZE,
  688. &rxr->rx_pg_desc_mapping[j],
  689. GFP_KERNEL);
  690. if (rxr->rx_pg_desc_ring[j] == NULL)
  691. return -ENOMEM;
  692. }
  693. }
  694. return 0;
  695. }
  696. static void
  697. bnx2_free_mem(struct bnx2 *bp)
  698. {
  699. int i;
  700. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  701. bnx2_free_tx_mem(bp);
  702. bnx2_free_rx_mem(bp);
  703. for (i = 0; i < bp->ctx_pages; i++) {
  704. if (bp->ctx_blk[i]) {
  705. dma_free_coherent(&bp->pdev->dev, BNX2_PAGE_SIZE,
  706. bp->ctx_blk[i],
  707. bp->ctx_blk_mapping[i]);
  708. bp->ctx_blk[i] = NULL;
  709. }
  710. }
  711. if (bnapi->status_blk.msi) {
  712. dma_free_coherent(&bp->pdev->dev, bp->status_stats_size,
  713. bnapi->status_blk.msi,
  714. bp->status_blk_mapping);
  715. bnapi->status_blk.msi = NULL;
  716. bp->stats_blk = NULL;
  717. }
  718. }
  719. static int
  720. bnx2_alloc_mem(struct bnx2 *bp)
  721. {
  722. int i, status_blk_size, err;
  723. struct bnx2_napi *bnapi;
  724. void *status_blk;
  725. /* Combine status and statistics blocks into one allocation. */
  726. status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
  727. if (bp->flags & BNX2_FLAG_MSIX_CAP)
  728. status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
  729. BNX2_SBLK_MSIX_ALIGN_SIZE);
  730. bp->status_stats_size = status_blk_size +
  731. sizeof(struct statistics_block);
  732. status_blk = dma_zalloc_coherent(&bp->pdev->dev, bp->status_stats_size,
  733. &bp->status_blk_mapping, GFP_KERNEL);
  734. if (status_blk == NULL)
  735. goto alloc_mem_err;
  736. bnapi = &bp->bnx2_napi[0];
  737. bnapi->status_blk.msi = status_blk;
  738. bnapi->hw_tx_cons_ptr =
  739. &bnapi->status_blk.msi->status_tx_quick_consumer_index0;
  740. bnapi->hw_rx_cons_ptr =
  741. &bnapi->status_blk.msi->status_rx_quick_consumer_index0;
  742. if (bp->flags & BNX2_FLAG_MSIX_CAP) {
  743. for (i = 1; i < bp->irq_nvecs; i++) {
  744. struct status_block_msix *sblk;
  745. bnapi = &bp->bnx2_napi[i];
  746. sblk = (status_blk + BNX2_SBLK_MSIX_ALIGN_SIZE * i);
  747. bnapi->status_blk.msix = sblk;
  748. bnapi->hw_tx_cons_ptr =
  749. &sblk->status_tx_quick_consumer_index;
  750. bnapi->hw_rx_cons_ptr =
  751. &sblk->status_rx_quick_consumer_index;
  752. bnapi->int_num = i << 24;
  753. }
  754. }
  755. bp->stats_blk = status_blk + status_blk_size;
  756. bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
  757. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  758. bp->ctx_pages = 0x2000 / BNX2_PAGE_SIZE;
  759. if (bp->ctx_pages == 0)
  760. bp->ctx_pages = 1;
  761. for (i = 0; i < bp->ctx_pages; i++) {
  762. bp->ctx_blk[i] = dma_alloc_coherent(&bp->pdev->dev,
  763. BNX2_PAGE_SIZE,
  764. &bp->ctx_blk_mapping[i],
  765. GFP_KERNEL);
  766. if (bp->ctx_blk[i] == NULL)
  767. goto alloc_mem_err;
  768. }
  769. }
  770. err = bnx2_alloc_rx_mem(bp);
  771. if (err)
  772. goto alloc_mem_err;
  773. err = bnx2_alloc_tx_mem(bp);
  774. if (err)
  775. goto alloc_mem_err;
  776. return 0;
  777. alloc_mem_err:
  778. bnx2_free_mem(bp);
  779. return -ENOMEM;
  780. }
  781. static void
  782. bnx2_report_fw_link(struct bnx2 *bp)
  783. {
  784. u32 fw_link_status = 0;
  785. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  786. return;
  787. if (bp->link_up) {
  788. u32 bmsr;
  789. switch (bp->line_speed) {
  790. case SPEED_10:
  791. if (bp->duplex == DUPLEX_HALF)
  792. fw_link_status = BNX2_LINK_STATUS_10HALF;
  793. else
  794. fw_link_status = BNX2_LINK_STATUS_10FULL;
  795. break;
  796. case SPEED_100:
  797. if (bp->duplex == DUPLEX_HALF)
  798. fw_link_status = BNX2_LINK_STATUS_100HALF;
  799. else
  800. fw_link_status = BNX2_LINK_STATUS_100FULL;
  801. break;
  802. case SPEED_1000:
  803. if (bp->duplex == DUPLEX_HALF)
  804. fw_link_status = BNX2_LINK_STATUS_1000HALF;
  805. else
  806. fw_link_status = BNX2_LINK_STATUS_1000FULL;
  807. break;
  808. case SPEED_2500:
  809. if (bp->duplex == DUPLEX_HALF)
  810. fw_link_status = BNX2_LINK_STATUS_2500HALF;
  811. else
  812. fw_link_status = BNX2_LINK_STATUS_2500FULL;
  813. break;
  814. }
  815. fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
  816. if (bp->autoneg) {
  817. fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
  818. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  819. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  820. if (!(bmsr & BMSR_ANEGCOMPLETE) ||
  821. bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
  822. fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
  823. else
  824. fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
  825. }
  826. }
  827. else
  828. fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
  829. bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
  830. }
  831. static char *
  832. bnx2_xceiver_str(struct bnx2 *bp)
  833. {
  834. return (bp->phy_port == PORT_FIBRE) ? "SerDes" :
  835. ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
  836. "Copper");
  837. }
  838. static void
  839. bnx2_report_link(struct bnx2 *bp)
  840. {
  841. if (bp->link_up) {
  842. netif_carrier_on(bp->dev);
  843. netdev_info(bp->dev, "NIC %s Link is Up, %d Mbps %s duplex",
  844. bnx2_xceiver_str(bp),
  845. bp->line_speed,
  846. bp->duplex == DUPLEX_FULL ? "full" : "half");
  847. if (bp->flow_ctrl) {
  848. if (bp->flow_ctrl & FLOW_CTRL_RX) {
  849. pr_cont(", receive ");
  850. if (bp->flow_ctrl & FLOW_CTRL_TX)
  851. pr_cont("& transmit ");
  852. }
  853. else {
  854. pr_cont(", transmit ");
  855. }
  856. pr_cont("flow control ON");
  857. }
  858. pr_cont("\n");
  859. } else {
  860. netif_carrier_off(bp->dev);
  861. netdev_err(bp->dev, "NIC %s Link is Down\n",
  862. bnx2_xceiver_str(bp));
  863. }
  864. bnx2_report_fw_link(bp);
  865. }
  866. static void
  867. bnx2_resolve_flow_ctrl(struct bnx2 *bp)
  868. {
  869. u32 local_adv, remote_adv;
  870. bp->flow_ctrl = 0;
  871. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  872. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  873. if (bp->duplex == DUPLEX_FULL) {
  874. bp->flow_ctrl = bp->req_flow_ctrl;
  875. }
  876. return;
  877. }
  878. if (bp->duplex != DUPLEX_FULL) {
  879. return;
  880. }
  881. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  882. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  883. u32 val;
  884. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  885. if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
  886. bp->flow_ctrl |= FLOW_CTRL_TX;
  887. if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
  888. bp->flow_ctrl |= FLOW_CTRL_RX;
  889. return;
  890. }
  891. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  892. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  893. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  894. u32 new_local_adv = 0;
  895. u32 new_remote_adv = 0;
  896. if (local_adv & ADVERTISE_1000XPAUSE)
  897. new_local_adv |= ADVERTISE_PAUSE_CAP;
  898. if (local_adv & ADVERTISE_1000XPSE_ASYM)
  899. new_local_adv |= ADVERTISE_PAUSE_ASYM;
  900. if (remote_adv & ADVERTISE_1000XPAUSE)
  901. new_remote_adv |= ADVERTISE_PAUSE_CAP;
  902. if (remote_adv & ADVERTISE_1000XPSE_ASYM)
  903. new_remote_adv |= ADVERTISE_PAUSE_ASYM;
  904. local_adv = new_local_adv;
  905. remote_adv = new_remote_adv;
  906. }
  907. /* See Table 28B-3 of 802.3ab-1999 spec. */
  908. if (local_adv & ADVERTISE_PAUSE_CAP) {
  909. if(local_adv & ADVERTISE_PAUSE_ASYM) {
  910. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  911. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  912. }
  913. else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
  914. bp->flow_ctrl = FLOW_CTRL_RX;
  915. }
  916. }
  917. else {
  918. if (remote_adv & ADVERTISE_PAUSE_CAP) {
  919. bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
  920. }
  921. }
  922. }
  923. else if (local_adv & ADVERTISE_PAUSE_ASYM) {
  924. if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
  925. (remote_adv & ADVERTISE_PAUSE_ASYM)) {
  926. bp->flow_ctrl = FLOW_CTRL_TX;
  927. }
  928. }
  929. }
  930. static int
  931. bnx2_5709s_linkup(struct bnx2 *bp)
  932. {
  933. u32 val, speed;
  934. bp->link_up = 1;
  935. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
  936. bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
  937. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  938. if ((bp->autoneg & AUTONEG_SPEED) == 0) {
  939. bp->line_speed = bp->req_line_speed;
  940. bp->duplex = bp->req_duplex;
  941. return 0;
  942. }
  943. speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
  944. switch (speed) {
  945. case MII_BNX2_GP_TOP_AN_SPEED_10:
  946. bp->line_speed = SPEED_10;
  947. break;
  948. case MII_BNX2_GP_TOP_AN_SPEED_100:
  949. bp->line_speed = SPEED_100;
  950. break;
  951. case MII_BNX2_GP_TOP_AN_SPEED_1G:
  952. case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
  953. bp->line_speed = SPEED_1000;
  954. break;
  955. case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
  956. bp->line_speed = SPEED_2500;
  957. break;
  958. }
  959. if (val & MII_BNX2_GP_TOP_AN_FD)
  960. bp->duplex = DUPLEX_FULL;
  961. else
  962. bp->duplex = DUPLEX_HALF;
  963. return 0;
  964. }
  965. static int
  966. bnx2_5708s_linkup(struct bnx2 *bp)
  967. {
  968. u32 val;
  969. bp->link_up = 1;
  970. bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
  971. switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
  972. case BCM5708S_1000X_STAT1_SPEED_10:
  973. bp->line_speed = SPEED_10;
  974. break;
  975. case BCM5708S_1000X_STAT1_SPEED_100:
  976. bp->line_speed = SPEED_100;
  977. break;
  978. case BCM5708S_1000X_STAT1_SPEED_1G:
  979. bp->line_speed = SPEED_1000;
  980. break;
  981. case BCM5708S_1000X_STAT1_SPEED_2G5:
  982. bp->line_speed = SPEED_2500;
  983. break;
  984. }
  985. if (val & BCM5708S_1000X_STAT1_FD)
  986. bp->duplex = DUPLEX_FULL;
  987. else
  988. bp->duplex = DUPLEX_HALF;
  989. return 0;
  990. }
  991. static int
  992. bnx2_5706s_linkup(struct bnx2 *bp)
  993. {
  994. u32 bmcr, local_adv, remote_adv, common;
  995. bp->link_up = 1;
  996. bp->line_speed = SPEED_1000;
  997. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  998. if (bmcr & BMCR_FULLDPLX) {
  999. bp->duplex = DUPLEX_FULL;
  1000. }
  1001. else {
  1002. bp->duplex = DUPLEX_HALF;
  1003. }
  1004. if (!(bmcr & BMCR_ANENABLE)) {
  1005. return 0;
  1006. }
  1007. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1008. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1009. common = local_adv & remote_adv;
  1010. if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
  1011. if (common & ADVERTISE_1000XFULL) {
  1012. bp->duplex = DUPLEX_FULL;
  1013. }
  1014. else {
  1015. bp->duplex = DUPLEX_HALF;
  1016. }
  1017. }
  1018. return 0;
  1019. }
  1020. static int
  1021. bnx2_copper_linkup(struct bnx2 *bp)
  1022. {
  1023. u32 bmcr;
  1024. bp->phy_flags &= ~BNX2_PHY_FLAG_MDIX;
  1025. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1026. if (bmcr & BMCR_ANENABLE) {
  1027. u32 local_adv, remote_adv, common;
  1028. bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
  1029. bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
  1030. common = local_adv & (remote_adv >> 2);
  1031. if (common & ADVERTISE_1000FULL) {
  1032. bp->line_speed = SPEED_1000;
  1033. bp->duplex = DUPLEX_FULL;
  1034. }
  1035. else if (common & ADVERTISE_1000HALF) {
  1036. bp->line_speed = SPEED_1000;
  1037. bp->duplex = DUPLEX_HALF;
  1038. }
  1039. else {
  1040. bnx2_read_phy(bp, bp->mii_adv, &local_adv);
  1041. bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
  1042. common = local_adv & remote_adv;
  1043. if (common & ADVERTISE_100FULL) {
  1044. bp->line_speed = SPEED_100;
  1045. bp->duplex = DUPLEX_FULL;
  1046. }
  1047. else if (common & ADVERTISE_100HALF) {
  1048. bp->line_speed = SPEED_100;
  1049. bp->duplex = DUPLEX_HALF;
  1050. }
  1051. else if (common & ADVERTISE_10FULL) {
  1052. bp->line_speed = SPEED_10;
  1053. bp->duplex = DUPLEX_FULL;
  1054. }
  1055. else if (common & ADVERTISE_10HALF) {
  1056. bp->line_speed = SPEED_10;
  1057. bp->duplex = DUPLEX_HALF;
  1058. }
  1059. else {
  1060. bp->line_speed = 0;
  1061. bp->link_up = 0;
  1062. }
  1063. }
  1064. }
  1065. else {
  1066. if (bmcr & BMCR_SPEED100) {
  1067. bp->line_speed = SPEED_100;
  1068. }
  1069. else {
  1070. bp->line_speed = SPEED_10;
  1071. }
  1072. if (bmcr & BMCR_FULLDPLX) {
  1073. bp->duplex = DUPLEX_FULL;
  1074. }
  1075. else {
  1076. bp->duplex = DUPLEX_HALF;
  1077. }
  1078. }
  1079. if (bp->link_up) {
  1080. u32 ext_status;
  1081. bnx2_read_phy(bp, MII_BNX2_EXT_STATUS, &ext_status);
  1082. if (ext_status & EXT_STATUS_MDIX)
  1083. bp->phy_flags |= BNX2_PHY_FLAG_MDIX;
  1084. }
  1085. return 0;
  1086. }
  1087. static void
  1088. bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
  1089. {
  1090. u32 val, rx_cid_addr = GET_CID_ADDR(cid);
  1091. val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
  1092. val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
  1093. val |= 0x02 << 8;
  1094. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1095. val |= BNX2_L2CTX_FLOW_CTRL_ENABLE;
  1096. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
  1097. }
  1098. static void
  1099. bnx2_init_all_rx_contexts(struct bnx2 *bp)
  1100. {
  1101. int i;
  1102. u32 cid;
  1103. for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
  1104. if (i == 1)
  1105. cid = RX_RSS_CID;
  1106. bnx2_init_rx_context(bp, cid);
  1107. }
  1108. }
  1109. static void
  1110. bnx2_set_mac_link(struct bnx2 *bp)
  1111. {
  1112. u32 val;
  1113. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
  1114. if (bp->link_up && (bp->line_speed == SPEED_1000) &&
  1115. (bp->duplex == DUPLEX_HALF)) {
  1116. BNX2_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
  1117. }
  1118. /* Configure the EMAC mode register. */
  1119. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  1120. val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  1121. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  1122. BNX2_EMAC_MODE_25G_MODE);
  1123. if (bp->link_up) {
  1124. switch (bp->line_speed) {
  1125. case SPEED_10:
  1126. if (BNX2_CHIP(bp) != BNX2_CHIP_5706) {
  1127. val |= BNX2_EMAC_MODE_PORT_MII_10M;
  1128. break;
  1129. }
  1130. /* fall through */
  1131. case SPEED_100:
  1132. val |= BNX2_EMAC_MODE_PORT_MII;
  1133. break;
  1134. case SPEED_2500:
  1135. val |= BNX2_EMAC_MODE_25G_MODE;
  1136. /* fall through */
  1137. case SPEED_1000:
  1138. val |= BNX2_EMAC_MODE_PORT_GMII;
  1139. break;
  1140. }
  1141. }
  1142. else {
  1143. val |= BNX2_EMAC_MODE_PORT_GMII;
  1144. }
  1145. /* Set the MAC to operate in the appropriate duplex mode. */
  1146. if (bp->duplex == DUPLEX_HALF)
  1147. val |= BNX2_EMAC_MODE_HALF_DUPLEX;
  1148. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  1149. /* Enable/disable rx PAUSE. */
  1150. bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
  1151. if (bp->flow_ctrl & FLOW_CTRL_RX)
  1152. bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
  1153. BNX2_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
  1154. /* Enable/disable tx PAUSE. */
  1155. val = BNX2_RD(bp, BNX2_EMAC_TX_MODE);
  1156. val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
  1157. if (bp->flow_ctrl & FLOW_CTRL_TX)
  1158. val |= BNX2_EMAC_TX_MODE_FLOW_EN;
  1159. BNX2_WR(bp, BNX2_EMAC_TX_MODE, val);
  1160. /* Acknowledge the interrupt. */
  1161. BNX2_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
  1162. bnx2_init_all_rx_contexts(bp);
  1163. }
  1164. static void
  1165. bnx2_enable_bmsr1(struct bnx2 *bp)
  1166. {
  1167. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1168. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1169. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1170. MII_BNX2_BLK_ADDR_GP_STATUS);
  1171. }
  1172. static void
  1173. bnx2_disable_bmsr1(struct bnx2 *bp)
  1174. {
  1175. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1176. (BNX2_CHIP(bp) == BNX2_CHIP_5709))
  1177. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1178. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1179. }
  1180. static int
  1181. bnx2_test_and_enable_2g5(struct bnx2 *bp)
  1182. {
  1183. u32 up1;
  1184. int ret = 1;
  1185. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1186. return 0;
  1187. if (bp->autoneg & AUTONEG_SPEED)
  1188. bp->advertising |= ADVERTISED_2500baseX_Full;
  1189. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1190. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1191. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1192. if (!(up1 & BCM5708S_UP1_2G5)) {
  1193. up1 |= BCM5708S_UP1_2G5;
  1194. bnx2_write_phy(bp, bp->mii_up1, up1);
  1195. ret = 0;
  1196. }
  1197. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1198. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1199. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1200. return ret;
  1201. }
  1202. static int
  1203. bnx2_test_and_disable_2g5(struct bnx2 *bp)
  1204. {
  1205. u32 up1;
  1206. int ret = 0;
  1207. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1208. return 0;
  1209. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1210. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1211. bnx2_read_phy(bp, bp->mii_up1, &up1);
  1212. if (up1 & BCM5708S_UP1_2G5) {
  1213. up1 &= ~BCM5708S_UP1_2G5;
  1214. bnx2_write_phy(bp, bp->mii_up1, up1);
  1215. ret = 1;
  1216. }
  1217. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1218. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1219. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1220. return ret;
  1221. }
  1222. static void
  1223. bnx2_enable_forced_2g5(struct bnx2 *bp)
  1224. {
  1225. u32 uninitialized_var(bmcr);
  1226. int err;
  1227. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1228. return;
  1229. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1230. u32 val;
  1231. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1232. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1233. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1234. val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
  1235. val |= MII_BNX2_SD_MISC1_FORCE |
  1236. MII_BNX2_SD_MISC1_FORCE_2_5G;
  1237. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1238. }
  1239. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1240. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1241. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1242. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1243. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1244. if (!err)
  1245. bmcr |= BCM5708S_BMCR_FORCE_2500;
  1246. } else {
  1247. return;
  1248. }
  1249. if (err)
  1250. return;
  1251. if (bp->autoneg & AUTONEG_SPEED) {
  1252. bmcr &= ~BMCR_ANENABLE;
  1253. if (bp->req_duplex == DUPLEX_FULL)
  1254. bmcr |= BMCR_FULLDPLX;
  1255. }
  1256. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1257. }
  1258. static void
  1259. bnx2_disable_forced_2g5(struct bnx2 *bp)
  1260. {
  1261. u32 uninitialized_var(bmcr);
  1262. int err;
  1263. if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  1264. return;
  1265. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1266. u32 val;
  1267. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1268. MII_BNX2_BLK_ADDR_SERDES_DIG);
  1269. if (!bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val)) {
  1270. val &= ~MII_BNX2_SD_MISC1_FORCE;
  1271. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
  1272. }
  1273. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
  1274. MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1275. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1276. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1277. err = bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1278. if (!err)
  1279. bmcr &= ~BCM5708S_BMCR_FORCE_2500;
  1280. } else {
  1281. return;
  1282. }
  1283. if (err)
  1284. return;
  1285. if (bp->autoneg & AUTONEG_SPEED)
  1286. bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
  1287. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1288. }
  1289. static void
  1290. bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
  1291. {
  1292. u32 val;
  1293. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
  1294. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1295. if (start)
  1296. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
  1297. else
  1298. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
  1299. }
  1300. static int
  1301. bnx2_set_link(struct bnx2 *bp)
  1302. {
  1303. u32 bmsr;
  1304. u8 link_up;
  1305. if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
  1306. bp->link_up = 1;
  1307. return 0;
  1308. }
  1309. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1310. return 0;
  1311. link_up = bp->link_up;
  1312. bnx2_enable_bmsr1(bp);
  1313. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1314. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  1315. bnx2_disable_bmsr1(bp);
  1316. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1317. (BNX2_CHIP(bp) == BNX2_CHIP_5706)) {
  1318. u32 val, an_dbg;
  1319. if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
  1320. bnx2_5706s_force_link_dn(bp, 0);
  1321. bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
  1322. }
  1323. val = BNX2_RD(bp, BNX2_EMAC_STATUS);
  1324. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  1325. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1326. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  1327. if ((val & BNX2_EMAC_STATUS_LINK) &&
  1328. !(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
  1329. bmsr |= BMSR_LSTATUS;
  1330. else
  1331. bmsr &= ~BMSR_LSTATUS;
  1332. }
  1333. if (bmsr & BMSR_LSTATUS) {
  1334. bp->link_up = 1;
  1335. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1336. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1337. bnx2_5706s_linkup(bp);
  1338. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  1339. bnx2_5708s_linkup(bp);
  1340. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1341. bnx2_5709s_linkup(bp);
  1342. }
  1343. else {
  1344. bnx2_copper_linkup(bp);
  1345. }
  1346. bnx2_resolve_flow_ctrl(bp);
  1347. }
  1348. else {
  1349. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  1350. (bp->autoneg & AUTONEG_SPEED))
  1351. bnx2_disable_forced_2g5(bp);
  1352. if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
  1353. u32 bmcr;
  1354. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1355. bmcr |= BMCR_ANENABLE;
  1356. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  1357. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1358. }
  1359. bp->link_up = 0;
  1360. }
  1361. if (bp->link_up != link_up) {
  1362. bnx2_report_link(bp);
  1363. }
  1364. bnx2_set_mac_link(bp);
  1365. return 0;
  1366. }
  1367. static int
  1368. bnx2_reset_phy(struct bnx2 *bp)
  1369. {
  1370. int i;
  1371. u32 reg;
  1372. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
  1373. #define PHY_RESET_MAX_WAIT 100
  1374. for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
  1375. udelay(10);
  1376. bnx2_read_phy(bp, bp->mii_bmcr, &reg);
  1377. if (!(reg & BMCR_RESET)) {
  1378. udelay(20);
  1379. break;
  1380. }
  1381. }
  1382. if (i == PHY_RESET_MAX_WAIT) {
  1383. return -EBUSY;
  1384. }
  1385. return 0;
  1386. }
  1387. static u32
  1388. bnx2_phy_get_pause_adv(struct bnx2 *bp)
  1389. {
  1390. u32 adv = 0;
  1391. if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
  1392. (FLOW_CTRL_RX | FLOW_CTRL_TX)) {
  1393. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1394. adv = ADVERTISE_1000XPAUSE;
  1395. }
  1396. else {
  1397. adv = ADVERTISE_PAUSE_CAP;
  1398. }
  1399. }
  1400. else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
  1401. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1402. adv = ADVERTISE_1000XPSE_ASYM;
  1403. }
  1404. else {
  1405. adv = ADVERTISE_PAUSE_ASYM;
  1406. }
  1407. }
  1408. else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
  1409. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1410. adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
  1411. }
  1412. else {
  1413. adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
  1414. }
  1415. }
  1416. return adv;
  1417. }
  1418. static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
  1419. static int
  1420. bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
  1421. __releases(&bp->phy_lock)
  1422. __acquires(&bp->phy_lock)
  1423. {
  1424. u32 speed_arg = 0, pause_adv;
  1425. pause_adv = bnx2_phy_get_pause_adv(bp);
  1426. if (bp->autoneg & AUTONEG_SPEED) {
  1427. speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
  1428. if (bp->advertising & ADVERTISED_10baseT_Half)
  1429. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1430. if (bp->advertising & ADVERTISED_10baseT_Full)
  1431. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1432. if (bp->advertising & ADVERTISED_100baseT_Half)
  1433. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1434. if (bp->advertising & ADVERTISED_100baseT_Full)
  1435. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1436. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1437. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1438. if (bp->advertising & ADVERTISED_2500baseX_Full)
  1439. speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1440. } else {
  1441. if (bp->req_line_speed == SPEED_2500)
  1442. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
  1443. else if (bp->req_line_speed == SPEED_1000)
  1444. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
  1445. else if (bp->req_line_speed == SPEED_100) {
  1446. if (bp->req_duplex == DUPLEX_FULL)
  1447. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
  1448. else
  1449. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
  1450. } else if (bp->req_line_speed == SPEED_10) {
  1451. if (bp->req_duplex == DUPLEX_FULL)
  1452. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
  1453. else
  1454. speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
  1455. }
  1456. }
  1457. if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
  1458. speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
  1459. if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
  1460. speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
  1461. if (port == PORT_TP)
  1462. speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
  1463. BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
  1464. bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
  1465. spin_unlock_bh(&bp->phy_lock);
  1466. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
  1467. spin_lock_bh(&bp->phy_lock);
  1468. return 0;
  1469. }
  1470. static int
  1471. bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
  1472. __releases(&bp->phy_lock)
  1473. __acquires(&bp->phy_lock)
  1474. {
  1475. u32 adv, bmcr;
  1476. u32 new_adv = 0;
  1477. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  1478. return bnx2_setup_remote_phy(bp, port);
  1479. if (!(bp->autoneg & AUTONEG_SPEED)) {
  1480. u32 new_bmcr;
  1481. int force_link_down = 0;
  1482. if (bp->req_line_speed == SPEED_2500) {
  1483. if (!bnx2_test_and_enable_2g5(bp))
  1484. force_link_down = 1;
  1485. } else if (bp->req_line_speed == SPEED_1000) {
  1486. if (bnx2_test_and_disable_2g5(bp))
  1487. force_link_down = 1;
  1488. }
  1489. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1490. adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
  1491. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1492. new_bmcr = bmcr & ~BMCR_ANENABLE;
  1493. new_bmcr |= BMCR_SPEED1000;
  1494. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  1495. if (bp->req_line_speed == SPEED_2500)
  1496. bnx2_enable_forced_2g5(bp);
  1497. else if (bp->req_line_speed == SPEED_1000) {
  1498. bnx2_disable_forced_2g5(bp);
  1499. new_bmcr &= ~0x2000;
  1500. }
  1501. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5708) {
  1502. if (bp->req_line_speed == SPEED_2500)
  1503. new_bmcr |= BCM5708S_BMCR_FORCE_2500;
  1504. else
  1505. new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
  1506. }
  1507. if (bp->req_duplex == DUPLEX_FULL) {
  1508. adv |= ADVERTISE_1000XFULL;
  1509. new_bmcr |= BMCR_FULLDPLX;
  1510. }
  1511. else {
  1512. adv |= ADVERTISE_1000XHALF;
  1513. new_bmcr &= ~BMCR_FULLDPLX;
  1514. }
  1515. if ((new_bmcr != bmcr) || (force_link_down)) {
  1516. /* Force a link down visible on the other side */
  1517. if (bp->link_up) {
  1518. bnx2_write_phy(bp, bp->mii_adv, adv &
  1519. ~(ADVERTISE_1000XFULL |
  1520. ADVERTISE_1000XHALF));
  1521. bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
  1522. BMCR_ANRESTART | BMCR_ANENABLE);
  1523. bp->link_up = 0;
  1524. netif_carrier_off(bp->dev);
  1525. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1526. bnx2_report_link(bp);
  1527. }
  1528. bnx2_write_phy(bp, bp->mii_adv, adv);
  1529. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1530. } else {
  1531. bnx2_resolve_flow_ctrl(bp);
  1532. bnx2_set_mac_link(bp);
  1533. }
  1534. return 0;
  1535. }
  1536. bnx2_test_and_enable_2g5(bp);
  1537. if (bp->advertising & ADVERTISED_1000baseT_Full)
  1538. new_adv |= ADVERTISE_1000XFULL;
  1539. new_adv |= bnx2_phy_get_pause_adv(bp);
  1540. bnx2_read_phy(bp, bp->mii_adv, &adv);
  1541. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1542. bp->serdes_an_pending = 0;
  1543. if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
  1544. /* Force a link down visible on the other side */
  1545. if (bp->link_up) {
  1546. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1547. spin_unlock_bh(&bp->phy_lock);
  1548. msleep(20);
  1549. spin_lock_bh(&bp->phy_lock);
  1550. }
  1551. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1552. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
  1553. BMCR_ANENABLE);
  1554. /* Speed up link-up time when the link partner
  1555. * does not autonegotiate which is very common
  1556. * in blade servers. Some blade servers use
  1557. * IPMI for kerboard input and it's important
  1558. * to minimize link disruptions. Autoneg. involves
  1559. * exchanging base pages plus 3 next pages and
  1560. * normally completes in about 120 msec.
  1561. */
  1562. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  1563. bp->serdes_an_pending = 1;
  1564. mod_timer(&bp->timer, jiffies + bp->current_interval);
  1565. } else {
  1566. bnx2_resolve_flow_ctrl(bp);
  1567. bnx2_set_mac_link(bp);
  1568. }
  1569. return 0;
  1570. }
  1571. #define ETHTOOL_ALL_FIBRE_SPEED \
  1572. (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
  1573. (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
  1574. (ADVERTISED_1000baseT_Full)
  1575. #define ETHTOOL_ALL_COPPER_SPEED \
  1576. (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
  1577. ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
  1578. ADVERTISED_1000baseT_Full)
  1579. #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
  1580. ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
  1581. #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
  1582. static void
  1583. bnx2_set_default_remote_link(struct bnx2 *bp)
  1584. {
  1585. u32 link;
  1586. if (bp->phy_port == PORT_TP)
  1587. link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
  1588. else
  1589. link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
  1590. if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
  1591. bp->req_line_speed = 0;
  1592. bp->autoneg |= AUTONEG_SPEED;
  1593. bp->advertising = ADVERTISED_Autoneg;
  1594. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1595. bp->advertising |= ADVERTISED_10baseT_Half;
  1596. if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
  1597. bp->advertising |= ADVERTISED_10baseT_Full;
  1598. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1599. bp->advertising |= ADVERTISED_100baseT_Half;
  1600. if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
  1601. bp->advertising |= ADVERTISED_100baseT_Full;
  1602. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1603. bp->advertising |= ADVERTISED_1000baseT_Full;
  1604. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1605. bp->advertising |= ADVERTISED_2500baseX_Full;
  1606. } else {
  1607. bp->autoneg = 0;
  1608. bp->advertising = 0;
  1609. bp->req_duplex = DUPLEX_FULL;
  1610. if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
  1611. bp->req_line_speed = SPEED_10;
  1612. if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
  1613. bp->req_duplex = DUPLEX_HALF;
  1614. }
  1615. if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
  1616. bp->req_line_speed = SPEED_100;
  1617. if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
  1618. bp->req_duplex = DUPLEX_HALF;
  1619. }
  1620. if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
  1621. bp->req_line_speed = SPEED_1000;
  1622. if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
  1623. bp->req_line_speed = SPEED_2500;
  1624. }
  1625. }
  1626. static void
  1627. bnx2_set_default_link(struct bnx2 *bp)
  1628. {
  1629. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  1630. bnx2_set_default_remote_link(bp);
  1631. return;
  1632. }
  1633. bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
  1634. bp->req_line_speed = 0;
  1635. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1636. u32 reg;
  1637. bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
  1638. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
  1639. reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
  1640. if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
  1641. bp->autoneg = 0;
  1642. bp->req_line_speed = bp->line_speed = SPEED_1000;
  1643. bp->req_duplex = DUPLEX_FULL;
  1644. }
  1645. } else
  1646. bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
  1647. }
  1648. static void
  1649. bnx2_send_heart_beat(struct bnx2 *bp)
  1650. {
  1651. u32 msg;
  1652. u32 addr;
  1653. spin_lock(&bp->indirect_lock);
  1654. msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
  1655. addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
  1656. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
  1657. BNX2_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
  1658. spin_unlock(&bp->indirect_lock);
  1659. }
  1660. static void
  1661. bnx2_remote_phy_event(struct bnx2 *bp)
  1662. {
  1663. u32 msg;
  1664. u8 link_up = bp->link_up;
  1665. u8 old_port;
  1666. msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  1667. if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
  1668. bnx2_send_heart_beat(bp);
  1669. msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
  1670. if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
  1671. bp->link_up = 0;
  1672. else {
  1673. u32 speed;
  1674. bp->link_up = 1;
  1675. speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
  1676. bp->duplex = DUPLEX_FULL;
  1677. switch (speed) {
  1678. case BNX2_LINK_STATUS_10HALF:
  1679. bp->duplex = DUPLEX_HALF;
  1680. /* fall through */
  1681. case BNX2_LINK_STATUS_10FULL:
  1682. bp->line_speed = SPEED_10;
  1683. break;
  1684. case BNX2_LINK_STATUS_100HALF:
  1685. bp->duplex = DUPLEX_HALF;
  1686. /* fall through */
  1687. case BNX2_LINK_STATUS_100BASE_T4:
  1688. case BNX2_LINK_STATUS_100FULL:
  1689. bp->line_speed = SPEED_100;
  1690. break;
  1691. case BNX2_LINK_STATUS_1000HALF:
  1692. bp->duplex = DUPLEX_HALF;
  1693. /* fall through */
  1694. case BNX2_LINK_STATUS_1000FULL:
  1695. bp->line_speed = SPEED_1000;
  1696. break;
  1697. case BNX2_LINK_STATUS_2500HALF:
  1698. bp->duplex = DUPLEX_HALF;
  1699. /* fall through */
  1700. case BNX2_LINK_STATUS_2500FULL:
  1701. bp->line_speed = SPEED_2500;
  1702. break;
  1703. default:
  1704. bp->line_speed = 0;
  1705. break;
  1706. }
  1707. bp->flow_ctrl = 0;
  1708. if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
  1709. (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
  1710. if (bp->duplex == DUPLEX_FULL)
  1711. bp->flow_ctrl = bp->req_flow_ctrl;
  1712. } else {
  1713. if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
  1714. bp->flow_ctrl |= FLOW_CTRL_TX;
  1715. if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
  1716. bp->flow_ctrl |= FLOW_CTRL_RX;
  1717. }
  1718. old_port = bp->phy_port;
  1719. if (msg & BNX2_LINK_STATUS_SERDES_LINK)
  1720. bp->phy_port = PORT_FIBRE;
  1721. else
  1722. bp->phy_port = PORT_TP;
  1723. if (old_port != bp->phy_port)
  1724. bnx2_set_default_link(bp);
  1725. }
  1726. if (bp->link_up != link_up)
  1727. bnx2_report_link(bp);
  1728. bnx2_set_mac_link(bp);
  1729. }
  1730. static int
  1731. bnx2_set_remote_link(struct bnx2 *bp)
  1732. {
  1733. u32 evt_code;
  1734. evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
  1735. switch (evt_code) {
  1736. case BNX2_FW_EVT_CODE_LINK_EVENT:
  1737. bnx2_remote_phy_event(bp);
  1738. break;
  1739. case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
  1740. default:
  1741. bnx2_send_heart_beat(bp);
  1742. break;
  1743. }
  1744. return 0;
  1745. }
  1746. static int
  1747. bnx2_setup_copper_phy(struct bnx2 *bp)
  1748. __releases(&bp->phy_lock)
  1749. __acquires(&bp->phy_lock)
  1750. {
  1751. u32 bmcr, adv_reg, new_adv = 0;
  1752. u32 new_bmcr;
  1753. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  1754. bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
  1755. adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
  1756. ADVERTISE_PAUSE_ASYM);
  1757. new_adv = ADVERTISE_CSMA | ethtool_adv_to_mii_adv_t(bp->advertising);
  1758. if (bp->autoneg & AUTONEG_SPEED) {
  1759. u32 adv1000_reg;
  1760. u32 new_adv1000 = 0;
  1761. new_adv |= bnx2_phy_get_pause_adv(bp);
  1762. bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
  1763. adv1000_reg &= PHY_ALL_1000_SPEED;
  1764. new_adv1000 |= ethtool_adv_to_mii_ctrl1000_t(bp->advertising);
  1765. if ((adv1000_reg != new_adv1000) ||
  1766. (adv_reg != new_adv) ||
  1767. ((bmcr & BMCR_ANENABLE) == 0)) {
  1768. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1769. bnx2_write_phy(bp, MII_CTRL1000, new_adv1000);
  1770. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
  1771. BMCR_ANENABLE);
  1772. }
  1773. else if (bp->link_up) {
  1774. /* Flow ctrl may have changed from auto to forced */
  1775. /* or vice-versa. */
  1776. bnx2_resolve_flow_ctrl(bp);
  1777. bnx2_set_mac_link(bp);
  1778. }
  1779. return 0;
  1780. }
  1781. /* advertise nothing when forcing speed */
  1782. if (adv_reg != new_adv)
  1783. bnx2_write_phy(bp, bp->mii_adv, new_adv);
  1784. new_bmcr = 0;
  1785. if (bp->req_line_speed == SPEED_100) {
  1786. new_bmcr |= BMCR_SPEED100;
  1787. }
  1788. if (bp->req_duplex == DUPLEX_FULL) {
  1789. new_bmcr |= BMCR_FULLDPLX;
  1790. }
  1791. if (new_bmcr != bmcr) {
  1792. u32 bmsr;
  1793. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1794. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1795. if (bmsr & BMSR_LSTATUS) {
  1796. /* Force link down */
  1797. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  1798. spin_unlock_bh(&bp->phy_lock);
  1799. msleep(50);
  1800. spin_lock_bh(&bp->phy_lock);
  1801. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1802. bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
  1803. }
  1804. bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
  1805. /* Normally, the new speed is setup after the link has
  1806. * gone down and up again. In some cases, link will not go
  1807. * down so we need to set up the new speed here.
  1808. */
  1809. if (bmsr & BMSR_LSTATUS) {
  1810. bp->line_speed = bp->req_line_speed;
  1811. bp->duplex = bp->req_duplex;
  1812. bnx2_resolve_flow_ctrl(bp);
  1813. bnx2_set_mac_link(bp);
  1814. }
  1815. } else {
  1816. bnx2_resolve_flow_ctrl(bp);
  1817. bnx2_set_mac_link(bp);
  1818. }
  1819. return 0;
  1820. }
  1821. static int
  1822. bnx2_setup_phy(struct bnx2 *bp, u8 port)
  1823. __releases(&bp->phy_lock)
  1824. __acquires(&bp->phy_lock)
  1825. {
  1826. if (bp->loopback == MAC_LOOPBACK)
  1827. return 0;
  1828. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  1829. return bnx2_setup_serdes_phy(bp, port);
  1830. }
  1831. else {
  1832. return bnx2_setup_copper_phy(bp);
  1833. }
  1834. }
  1835. static int
  1836. bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
  1837. {
  1838. u32 val;
  1839. bp->mii_bmcr = MII_BMCR + 0x10;
  1840. bp->mii_bmsr = MII_BMSR + 0x10;
  1841. bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
  1842. bp->mii_adv = MII_ADVERTISE + 0x10;
  1843. bp->mii_lpa = MII_LPA + 0x10;
  1844. bp->mii_up1 = MII_BNX2_OVER1G_UP1;
  1845. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
  1846. bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
  1847. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1848. if (reset_phy)
  1849. bnx2_reset_phy(bp);
  1850. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
  1851. bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
  1852. val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
  1853. val |= MII_BNX2_SD_1000XCTL1_FIBER;
  1854. bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
  1855. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
  1856. bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
  1857. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  1858. val |= BCM5708S_UP1_2G5;
  1859. else
  1860. val &= ~BCM5708S_UP1_2G5;
  1861. bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
  1862. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
  1863. bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
  1864. val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
  1865. bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
  1866. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
  1867. val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
  1868. MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
  1869. bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
  1870. bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
  1871. return 0;
  1872. }
  1873. static int
  1874. bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
  1875. {
  1876. u32 val;
  1877. if (reset_phy)
  1878. bnx2_reset_phy(bp);
  1879. bp->mii_up1 = BCM5708S_UP1;
  1880. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
  1881. bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
  1882. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1883. bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
  1884. val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
  1885. bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
  1886. bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
  1887. val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
  1888. bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
  1889. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
  1890. bnx2_read_phy(bp, BCM5708S_UP1, &val);
  1891. val |= BCM5708S_UP1_2G5;
  1892. bnx2_write_phy(bp, BCM5708S_UP1, val);
  1893. }
  1894. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  1895. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  1896. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1)) {
  1897. /* increase tx signal amplitude */
  1898. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1899. BCM5708S_BLK_ADDR_TX_MISC);
  1900. bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
  1901. val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
  1902. bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
  1903. bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
  1904. }
  1905. val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
  1906. BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
  1907. if (val) {
  1908. u32 is_backplane;
  1909. is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  1910. if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
  1911. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1912. BCM5708S_BLK_ADDR_TX_MISC);
  1913. bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
  1914. bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
  1915. BCM5708S_BLK_ADDR_DIG);
  1916. }
  1917. }
  1918. return 0;
  1919. }
  1920. static int
  1921. bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
  1922. {
  1923. if (reset_phy)
  1924. bnx2_reset_phy(bp);
  1925. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  1926. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  1927. BNX2_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
  1928. if (bp->dev->mtu > 1500) {
  1929. u32 val;
  1930. /* Set extended packet length bit */
  1931. bnx2_write_phy(bp, 0x18, 0x7);
  1932. bnx2_read_phy(bp, 0x18, &val);
  1933. bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
  1934. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1935. bnx2_read_phy(bp, 0x1c, &val);
  1936. bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
  1937. }
  1938. else {
  1939. u32 val;
  1940. bnx2_write_phy(bp, 0x18, 0x7);
  1941. bnx2_read_phy(bp, 0x18, &val);
  1942. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1943. bnx2_write_phy(bp, 0x1c, 0x6c00);
  1944. bnx2_read_phy(bp, 0x1c, &val);
  1945. bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
  1946. }
  1947. return 0;
  1948. }
  1949. static int
  1950. bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
  1951. {
  1952. u32 val;
  1953. if (reset_phy)
  1954. bnx2_reset_phy(bp);
  1955. if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
  1956. bnx2_write_phy(bp, 0x18, 0x0c00);
  1957. bnx2_write_phy(bp, 0x17, 0x000a);
  1958. bnx2_write_phy(bp, 0x15, 0x310b);
  1959. bnx2_write_phy(bp, 0x17, 0x201f);
  1960. bnx2_write_phy(bp, 0x15, 0x9506);
  1961. bnx2_write_phy(bp, 0x17, 0x401f);
  1962. bnx2_write_phy(bp, 0x15, 0x14e2);
  1963. bnx2_write_phy(bp, 0x18, 0x0400);
  1964. }
  1965. if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
  1966. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
  1967. MII_BNX2_DSP_EXPAND_REG | 0x8);
  1968. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
  1969. val &= ~(1 << 8);
  1970. bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
  1971. }
  1972. if (bp->dev->mtu > 1500) {
  1973. /* Set extended packet length bit */
  1974. bnx2_write_phy(bp, 0x18, 0x7);
  1975. bnx2_read_phy(bp, 0x18, &val);
  1976. bnx2_write_phy(bp, 0x18, val | 0x4000);
  1977. bnx2_read_phy(bp, 0x10, &val);
  1978. bnx2_write_phy(bp, 0x10, val | 0x1);
  1979. }
  1980. else {
  1981. bnx2_write_phy(bp, 0x18, 0x7);
  1982. bnx2_read_phy(bp, 0x18, &val);
  1983. bnx2_write_phy(bp, 0x18, val & ~0x4007);
  1984. bnx2_read_phy(bp, 0x10, &val);
  1985. bnx2_write_phy(bp, 0x10, val & ~0x1);
  1986. }
  1987. /* ethernet@wirespeed */
  1988. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, AUX_CTL_MISC_CTL);
  1989. bnx2_read_phy(bp, MII_BNX2_AUX_CTL, &val);
  1990. val |= AUX_CTL_MISC_CTL_WR | AUX_CTL_MISC_CTL_WIRESPEED;
  1991. /* auto-mdix */
  1992. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  1993. val |= AUX_CTL_MISC_CTL_AUTOMDIX;
  1994. bnx2_write_phy(bp, MII_BNX2_AUX_CTL, val);
  1995. return 0;
  1996. }
  1997. static int
  1998. bnx2_init_phy(struct bnx2 *bp, int reset_phy)
  1999. __releases(&bp->phy_lock)
  2000. __acquires(&bp->phy_lock)
  2001. {
  2002. u32 val;
  2003. int rc = 0;
  2004. bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
  2005. bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
  2006. bp->mii_bmcr = MII_BMCR;
  2007. bp->mii_bmsr = MII_BMSR;
  2008. bp->mii_bmsr1 = MII_BMSR;
  2009. bp->mii_adv = MII_ADVERTISE;
  2010. bp->mii_lpa = MII_LPA;
  2011. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  2012. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  2013. goto setup_phy;
  2014. bnx2_read_phy(bp, MII_PHYSID1, &val);
  2015. bp->phy_id = val << 16;
  2016. bnx2_read_phy(bp, MII_PHYSID2, &val);
  2017. bp->phy_id |= val & 0xffff;
  2018. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  2019. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  2020. rc = bnx2_init_5706s_phy(bp, reset_phy);
  2021. else if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  2022. rc = bnx2_init_5708s_phy(bp, reset_phy);
  2023. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  2024. rc = bnx2_init_5709s_phy(bp, reset_phy);
  2025. }
  2026. else {
  2027. rc = bnx2_init_copper_phy(bp, reset_phy);
  2028. }
  2029. setup_phy:
  2030. if (!rc)
  2031. rc = bnx2_setup_phy(bp, bp->phy_port);
  2032. return rc;
  2033. }
  2034. static int
  2035. bnx2_set_mac_loopback(struct bnx2 *bp)
  2036. {
  2037. u32 mac_mode;
  2038. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2039. mac_mode &= ~BNX2_EMAC_MODE_PORT;
  2040. mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
  2041. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2042. bp->link_up = 1;
  2043. return 0;
  2044. }
  2045. static int bnx2_test_link(struct bnx2 *);
  2046. static int
  2047. bnx2_set_phy_loopback(struct bnx2 *bp)
  2048. {
  2049. u32 mac_mode;
  2050. int rc, i;
  2051. spin_lock_bh(&bp->phy_lock);
  2052. rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
  2053. BMCR_SPEED1000);
  2054. spin_unlock_bh(&bp->phy_lock);
  2055. if (rc)
  2056. return rc;
  2057. for (i = 0; i < 10; i++) {
  2058. if (bnx2_test_link(bp) == 0)
  2059. break;
  2060. msleep(100);
  2061. }
  2062. mac_mode = BNX2_RD(bp, BNX2_EMAC_MODE);
  2063. mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
  2064. BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
  2065. BNX2_EMAC_MODE_25G_MODE);
  2066. mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
  2067. BNX2_WR(bp, BNX2_EMAC_MODE, mac_mode);
  2068. bp->link_up = 1;
  2069. return 0;
  2070. }
  2071. static void
  2072. bnx2_dump_mcp_state(struct bnx2 *bp)
  2073. {
  2074. struct net_device *dev = bp->dev;
  2075. u32 mcp_p0, mcp_p1;
  2076. netdev_err(dev, "<--- start MCP states dump --->\n");
  2077. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  2078. mcp_p0 = BNX2_MCP_STATE_P0;
  2079. mcp_p1 = BNX2_MCP_STATE_P1;
  2080. } else {
  2081. mcp_p0 = BNX2_MCP_STATE_P0_5708;
  2082. mcp_p1 = BNX2_MCP_STATE_P1_5708;
  2083. }
  2084. netdev_err(dev, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
  2085. bnx2_reg_rd_ind(bp, mcp_p0), bnx2_reg_rd_ind(bp, mcp_p1));
  2086. netdev_err(dev, "DEBUG: MCP mode[%08x] state[%08x] evt_mask[%08x]\n",
  2087. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_MODE),
  2088. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_STATE),
  2089. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_EVENT_MASK));
  2090. netdev_err(dev, "DEBUG: pc[%08x] pc[%08x] instr[%08x]\n",
  2091. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2092. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_PROGRAM_COUNTER),
  2093. bnx2_reg_rd_ind(bp, BNX2_MCP_CPU_INSTRUCTION));
  2094. netdev_err(dev, "DEBUG: shmem states:\n");
  2095. netdev_err(dev, "DEBUG: drv_mb[%08x] fw_mb[%08x] link_status[%08x]",
  2096. bnx2_shmem_rd(bp, BNX2_DRV_MB),
  2097. bnx2_shmem_rd(bp, BNX2_FW_MB),
  2098. bnx2_shmem_rd(bp, BNX2_LINK_STATUS));
  2099. pr_cont(" drv_pulse_mb[%08x]\n", bnx2_shmem_rd(bp, BNX2_DRV_PULSE_MB));
  2100. netdev_err(dev, "DEBUG: dev_info_signature[%08x] reset_type[%08x]",
  2101. bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE),
  2102. bnx2_shmem_rd(bp, BNX2_BC_STATE_RESET_TYPE));
  2103. pr_cont(" condition[%08x]\n",
  2104. bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION));
  2105. DP_SHMEM_LINE(bp, BNX2_BC_RESET_TYPE);
  2106. DP_SHMEM_LINE(bp, 0x3cc);
  2107. DP_SHMEM_LINE(bp, 0x3dc);
  2108. DP_SHMEM_LINE(bp, 0x3ec);
  2109. netdev_err(dev, "DEBUG: 0x3fc[%08x]\n", bnx2_shmem_rd(bp, 0x3fc));
  2110. netdev_err(dev, "<--- end MCP states dump --->\n");
  2111. }
  2112. static int
  2113. bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
  2114. {
  2115. int i;
  2116. u32 val;
  2117. bp->fw_wr_seq++;
  2118. msg_data |= bp->fw_wr_seq;
  2119. bp->fw_last_msg = msg_data;
  2120. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2121. if (!ack)
  2122. return 0;
  2123. /* wait for an acknowledgement. */
  2124. for (i = 0; i < (BNX2_FW_ACK_TIME_OUT_MS / 10); i++) {
  2125. msleep(10);
  2126. val = bnx2_shmem_rd(bp, BNX2_FW_MB);
  2127. if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
  2128. break;
  2129. }
  2130. if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
  2131. return 0;
  2132. /* If we timed out, inform the firmware that this is the case. */
  2133. if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
  2134. msg_data &= ~BNX2_DRV_MSG_CODE;
  2135. msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
  2136. bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
  2137. if (!silent) {
  2138. pr_err("fw sync timeout, reset code = %x\n", msg_data);
  2139. bnx2_dump_mcp_state(bp);
  2140. }
  2141. return -EBUSY;
  2142. }
  2143. if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
  2144. return -EIO;
  2145. return 0;
  2146. }
  2147. static int
  2148. bnx2_init_5709_context(struct bnx2 *bp)
  2149. {
  2150. int i, ret = 0;
  2151. u32 val;
  2152. val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
  2153. val |= (BNX2_PAGE_BITS - 8) << 16;
  2154. BNX2_WR(bp, BNX2_CTX_COMMAND, val);
  2155. for (i = 0; i < 10; i++) {
  2156. val = BNX2_RD(bp, BNX2_CTX_COMMAND);
  2157. if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
  2158. break;
  2159. udelay(2);
  2160. }
  2161. if (val & BNX2_CTX_COMMAND_MEM_INIT)
  2162. return -EBUSY;
  2163. for (i = 0; i < bp->ctx_pages; i++) {
  2164. int j;
  2165. if (bp->ctx_blk[i])
  2166. memset(bp->ctx_blk[i], 0, BNX2_PAGE_SIZE);
  2167. else
  2168. return -ENOMEM;
  2169. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
  2170. (bp->ctx_blk_mapping[i] & 0xffffffff) |
  2171. BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
  2172. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
  2173. (u64) bp->ctx_blk_mapping[i] >> 32);
  2174. BNX2_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
  2175. BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
  2176. for (j = 0; j < 10; j++) {
  2177. val = BNX2_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
  2178. if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
  2179. break;
  2180. udelay(5);
  2181. }
  2182. if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
  2183. ret = -EBUSY;
  2184. break;
  2185. }
  2186. }
  2187. return ret;
  2188. }
  2189. static void
  2190. bnx2_init_context(struct bnx2 *bp)
  2191. {
  2192. u32 vcid;
  2193. vcid = 96;
  2194. while (vcid) {
  2195. u32 vcid_addr, pcid_addr, offset;
  2196. int i;
  2197. vcid--;
  2198. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  2199. u32 new_vcid;
  2200. vcid_addr = GET_PCID_ADDR(vcid);
  2201. if (vcid & 0x8) {
  2202. new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
  2203. }
  2204. else {
  2205. new_vcid = vcid;
  2206. }
  2207. pcid_addr = GET_PCID_ADDR(new_vcid);
  2208. }
  2209. else {
  2210. vcid_addr = GET_CID_ADDR(vcid);
  2211. pcid_addr = vcid_addr;
  2212. }
  2213. for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
  2214. vcid_addr += (i << PHY_CTX_SHIFT);
  2215. pcid_addr += (i << PHY_CTX_SHIFT);
  2216. BNX2_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
  2217. BNX2_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
  2218. /* Zero out the context. */
  2219. for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
  2220. bnx2_ctx_wr(bp, vcid_addr, offset, 0);
  2221. }
  2222. }
  2223. }
  2224. static int
  2225. bnx2_alloc_bad_rbuf(struct bnx2 *bp)
  2226. {
  2227. u16 *good_mbuf;
  2228. u32 good_mbuf_cnt;
  2229. u32 val;
  2230. good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
  2231. if (good_mbuf == NULL)
  2232. return -ENOMEM;
  2233. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  2234. BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
  2235. good_mbuf_cnt = 0;
  2236. /* Allocate a bunch of mbufs and save the good ones in an array. */
  2237. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2238. while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
  2239. bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
  2240. BNX2_RBUF_COMMAND_ALLOC_REQ);
  2241. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
  2242. val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
  2243. /* The addresses with Bit 9 set are bad memory blocks. */
  2244. if (!(val & (1 << 9))) {
  2245. good_mbuf[good_mbuf_cnt] = (u16) val;
  2246. good_mbuf_cnt++;
  2247. }
  2248. val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
  2249. }
  2250. /* Free the good ones back to the mbuf pool thus discarding
  2251. * all the bad ones. */
  2252. while (good_mbuf_cnt) {
  2253. good_mbuf_cnt--;
  2254. val = good_mbuf[good_mbuf_cnt];
  2255. val = (val << 9) | val | 1;
  2256. bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
  2257. }
  2258. kfree(good_mbuf);
  2259. return 0;
  2260. }
  2261. static void
  2262. bnx2_set_mac_addr(struct bnx2 *bp, u8 *mac_addr, u32 pos)
  2263. {
  2264. u32 val;
  2265. val = (mac_addr[0] << 8) | mac_addr[1];
  2266. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH0 + (pos * 8), val);
  2267. val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
  2268. (mac_addr[4] << 8) | mac_addr[5];
  2269. BNX2_WR(bp, BNX2_EMAC_MAC_MATCH1 + (pos * 8), val);
  2270. }
  2271. static inline int
  2272. bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2273. {
  2274. dma_addr_t mapping;
  2275. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2276. struct bnx2_rx_bd *rxbd =
  2277. &rxr->rx_pg_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2278. struct page *page = alloc_page(gfp);
  2279. if (!page)
  2280. return -ENOMEM;
  2281. mapping = dma_map_page(&bp->pdev->dev, page, 0, PAGE_SIZE,
  2282. PCI_DMA_FROMDEVICE);
  2283. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2284. __free_page(page);
  2285. return -EIO;
  2286. }
  2287. rx_pg->page = page;
  2288. dma_unmap_addr_set(rx_pg, mapping, mapping);
  2289. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2290. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2291. return 0;
  2292. }
  2293. static void
  2294. bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
  2295. {
  2296. struct bnx2_sw_pg *rx_pg = &rxr->rx_pg_ring[index];
  2297. struct page *page = rx_pg->page;
  2298. if (!page)
  2299. return;
  2300. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(rx_pg, mapping),
  2301. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2302. __free_page(page);
  2303. rx_pg->page = NULL;
  2304. }
  2305. static inline int
  2306. bnx2_alloc_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index, gfp_t gfp)
  2307. {
  2308. u8 *data;
  2309. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[index];
  2310. dma_addr_t mapping;
  2311. struct bnx2_rx_bd *rxbd =
  2312. &rxr->rx_desc_ring[BNX2_RX_RING(index)][BNX2_RX_IDX(index)];
  2313. data = kmalloc(bp->rx_buf_size, gfp);
  2314. if (!data)
  2315. return -ENOMEM;
  2316. mapping = dma_map_single(&bp->pdev->dev,
  2317. get_l2_fhdr(data),
  2318. bp->rx_buf_use_size,
  2319. PCI_DMA_FROMDEVICE);
  2320. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  2321. kfree(data);
  2322. return -EIO;
  2323. }
  2324. rx_buf->data = data;
  2325. dma_unmap_addr_set(rx_buf, mapping, mapping);
  2326. rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
  2327. rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  2328. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2329. return 0;
  2330. }
  2331. static int
  2332. bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
  2333. {
  2334. struct status_block *sblk = bnapi->status_blk.msi;
  2335. u32 new_link_state, old_link_state;
  2336. int is_set = 1;
  2337. new_link_state = sblk->status_attn_bits & event;
  2338. old_link_state = sblk->status_attn_bits_ack & event;
  2339. if (new_link_state != old_link_state) {
  2340. if (new_link_state)
  2341. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
  2342. else
  2343. BNX2_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
  2344. } else
  2345. is_set = 0;
  2346. return is_set;
  2347. }
  2348. static void
  2349. bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2350. {
  2351. spin_lock(&bp->phy_lock);
  2352. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
  2353. bnx2_set_link(bp);
  2354. if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
  2355. bnx2_set_remote_link(bp);
  2356. spin_unlock(&bp->phy_lock);
  2357. }
  2358. static inline u16
  2359. bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
  2360. {
  2361. u16 cons;
  2362. /* Tell compiler that status block fields can change. */
  2363. barrier();
  2364. cons = *bnapi->hw_tx_cons_ptr;
  2365. barrier();
  2366. if (unlikely((cons & BNX2_MAX_TX_DESC_CNT) == BNX2_MAX_TX_DESC_CNT))
  2367. cons++;
  2368. return cons;
  2369. }
  2370. static int
  2371. bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2372. {
  2373. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2374. u16 hw_cons, sw_cons, sw_ring_cons;
  2375. int tx_pkt = 0, index;
  2376. unsigned int tx_bytes = 0;
  2377. struct netdev_queue *txq;
  2378. index = (bnapi - bp->bnx2_napi);
  2379. txq = netdev_get_tx_queue(bp->dev, index);
  2380. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2381. sw_cons = txr->tx_cons;
  2382. while (sw_cons != hw_cons) {
  2383. struct bnx2_sw_tx_bd *tx_buf;
  2384. struct sk_buff *skb;
  2385. int i, last;
  2386. sw_ring_cons = BNX2_TX_RING_IDX(sw_cons);
  2387. tx_buf = &txr->tx_buf_ring[sw_ring_cons];
  2388. skb = tx_buf->skb;
  2389. /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
  2390. prefetch(&skb->end);
  2391. /* partial BD completions possible with TSO packets */
  2392. if (tx_buf->is_gso) {
  2393. u16 last_idx, last_ring_idx;
  2394. last_idx = sw_cons + tx_buf->nr_frags + 1;
  2395. last_ring_idx = sw_ring_cons + tx_buf->nr_frags + 1;
  2396. if (unlikely(last_ring_idx >= BNX2_MAX_TX_DESC_CNT)) {
  2397. last_idx++;
  2398. }
  2399. if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
  2400. break;
  2401. }
  2402. }
  2403. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  2404. skb_headlen(skb), PCI_DMA_TODEVICE);
  2405. tx_buf->skb = NULL;
  2406. last = tx_buf->nr_frags;
  2407. for (i = 0; i < last; i++) {
  2408. struct bnx2_sw_tx_bd *tx_buf;
  2409. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2410. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(sw_cons)];
  2411. dma_unmap_page(&bp->pdev->dev,
  2412. dma_unmap_addr(tx_buf, mapping),
  2413. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  2414. PCI_DMA_TODEVICE);
  2415. }
  2416. sw_cons = BNX2_NEXT_TX_BD(sw_cons);
  2417. tx_bytes += skb->len;
  2418. dev_kfree_skb_any(skb);
  2419. tx_pkt++;
  2420. if (tx_pkt == budget)
  2421. break;
  2422. if (hw_cons == sw_cons)
  2423. hw_cons = bnx2_get_hw_tx_cons(bnapi);
  2424. }
  2425. netdev_tx_completed_queue(txq, tx_pkt, tx_bytes);
  2426. txr->hw_tx_cons = hw_cons;
  2427. txr->tx_cons = sw_cons;
  2428. /* Need to make the tx_cons update visible to bnx2_start_xmit()
  2429. * before checking for netif_tx_queue_stopped(). Without the
  2430. * memory barrier, there is a small possibility that bnx2_start_xmit()
  2431. * will miss it and cause the queue to be stopped forever.
  2432. */
  2433. smp_mb();
  2434. if (unlikely(netif_tx_queue_stopped(txq)) &&
  2435. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
  2436. __netif_tx_lock(txq, smp_processor_id());
  2437. if ((netif_tx_queue_stopped(txq)) &&
  2438. (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
  2439. netif_tx_wake_queue(txq);
  2440. __netif_tx_unlock(txq);
  2441. }
  2442. return tx_pkt;
  2443. }
  2444. static void
  2445. bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2446. struct sk_buff *skb, int count)
  2447. {
  2448. struct bnx2_sw_pg *cons_rx_pg, *prod_rx_pg;
  2449. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2450. int i;
  2451. u16 hw_prod, prod;
  2452. u16 cons = rxr->rx_pg_cons;
  2453. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2454. /* The caller was unable to allocate a new page to replace the
  2455. * last one in the frags array, so we need to recycle that page
  2456. * and then free the skb.
  2457. */
  2458. if (skb) {
  2459. struct page *page;
  2460. struct skb_shared_info *shinfo;
  2461. shinfo = skb_shinfo(skb);
  2462. shinfo->nr_frags--;
  2463. page = skb_frag_page(&shinfo->frags[shinfo->nr_frags]);
  2464. __skb_frag_set_page(&shinfo->frags[shinfo->nr_frags], NULL);
  2465. cons_rx_pg->page = page;
  2466. dev_kfree_skb(skb);
  2467. }
  2468. hw_prod = rxr->rx_pg_prod;
  2469. for (i = 0; i < count; i++) {
  2470. prod = BNX2_RX_PG_RING_IDX(hw_prod);
  2471. prod_rx_pg = &rxr->rx_pg_ring[prod];
  2472. cons_rx_pg = &rxr->rx_pg_ring[cons];
  2473. cons_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(cons)]
  2474. [BNX2_RX_IDX(cons)];
  2475. prod_bd = &rxr->rx_pg_desc_ring[BNX2_RX_RING(prod)]
  2476. [BNX2_RX_IDX(prod)];
  2477. if (prod != cons) {
  2478. prod_rx_pg->page = cons_rx_pg->page;
  2479. cons_rx_pg->page = NULL;
  2480. dma_unmap_addr_set(prod_rx_pg, mapping,
  2481. dma_unmap_addr(cons_rx_pg, mapping));
  2482. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2483. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2484. }
  2485. cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(cons));
  2486. hw_prod = BNX2_NEXT_RX_BD(hw_prod);
  2487. }
  2488. rxr->rx_pg_prod = hw_prod;
  2489. rxr->rx_pg_cons = cons;
  2490. }
  2491. static inline void
  2492. bnx2_reuse_rx_data(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
  2493. u8 *data, u16 cons, u16 prod)
  2494. {
  2495. struct bnx2_sw_bd *cons_rx_buf, *prod_rx_buf;
  2496. struct bnx2_rx_bd *cons_bd, *prod_bd;
  2497. cons_rx_buf = &rxr->rx_buf_ring[cons];
  2498. prod_rx_buf = &rxr->rx_buf_ring[prod];
  2499. dma_sync_single_for_device(&bp->pdev->dev,
  2500. dma_unmap_addr(cons_rx_buf, mapping),
  2501. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
  2502. rxr->rx_prod_bseq += bp->rx_buf_use_size;
  2503. prod_rx_buf->data = data;
  2504. if (cons == prod)
  2505. return;
  2506. dma_unmap_addr_set(prod_rx_buf, mapping,
  2507. dma_unmap_addr(cons_rx_buf, mapping));
  2508. cons_bd = &rxr->rx_desc_ring[BNX2_RX_RING(cons)][BNX2_RX_IDX(cons)];
  2509. prod_bd = &rxr->rx_desc_ring[BNX2_RX_RING(prod)][BNX2_RX_IDX(prod)];
  2510. prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
  2511. prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
  2512. }
  2513. static struct sk_buff *
  2514. bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u8 *data,
  2515. unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
  2516. u32 ring_idx)
  2517. {
  2518. int err;
  2519. u16 prod = ring_idx & 0xffff;
  2520. struct sk_buff *skb;
  2521. err = bnx2_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
  2522. if (unlikely(err)) {
  2523. bnx2_reuse_rx_data(bp, rxr, data, (u16) (ring_idx >> 16), prod);
  2524. error:
  2525. if (hdr_len) {
  2526. unsigned int raw_len = len + 4;
  2527. int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
  2528. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2529. }
  2530. return NULL;
  2531. }
  2532. dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
  2533. PCI_DMA_FROMDEVICE);
  2534. skb = build_skb(data, 0);
  2535. if (!skb) {
  2536. kfree(data);
  2537. goto error;
  2538. }
  2539. skb_reserve(skb, ((u8 *)get_l2_fhdr(data) - data) + BNX2_RX_OFFSET);
  2540. if (hdr_len == 0) {
  2541. skb_put(skb, len);
  2542. return skb;
  2543. } else {
  2544. unsigned int i, frag_len, frag_size, pages;
  2545. struct bnx2_sw_pg *rx_pg;
  2546. u16 pg_cons = rxr->rx_pg_cons;
  2547. u16 pg_prod = rxr->rx_pg_prod;
  2548. frag_size = len + 4 - hdr_len;
  2549. pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
  2550. skb_put(skb, hdr_len);
  2551. for (i = 0; i < pages; i++) {
  2552. dma_addr_t mapping_old;
  2553. frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
  2554. if (unlikely(frag_len <= 4)) {
  2555. unsigned int tail = 4 - frag_len;
  2556. rxr->rx_pg_cons = pg_cons;
  2557. rxr->rx_pg_prod = pg_prod;
  2558. bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
  2559. pages - i);
  2560. skb->len -= tail;
  2561. if (i == 0) {
  2562. skb->tail -= tail;
  2563. } else {
  2564. skb_frag_t *frag =
  2565. &skb_shinfo(skb)->frags[i - 1];
  2566. skb_frag_size_sub(frag, tail);
  2567. skb->data_len -= tail;
  2568. }
  2569. return skb;
  2570. }
  2571. rx_pg = &rxr->rx_pg_ring[pg_cons];
  2572. /* Don't unmap yet. If we're unable to allocate a new
  2573. * page, we need to recycle the page and the DMA addr.
  2574. */
  2575. mapping_old = dma_unmap_addr(rx_pg, mapping);
  2576. if (i == pages - 1)
  2577. frag_len -= 4;
  2578. skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
  2579. rx_pg->page = NULL;
  2580. err = bnx2_alloc_rx_page(bp, rxr,
  2581. BNX2_RX_PG_RING_IDX(pg_prod),
  2582. GFP_ATOMIC);
  2583. if (unlikely(err)) {
  2584. rxr->rx_pg_cons = pg_cons;
  2585. rxr->rx_pg_prod = pg_prod;
  2586. bnx2_reuse_rx_skb_pages(bp, rxr, skb,
  2587. pages - i);
  2588. return NULL;
  2589. }
  2590. dma_unmap_page(&bp->pdev->dev, mapping_old,
  2591. PAGE_SIZE, PCI_DMA_FROMDEVICE);
  2592. frag_size -= frag_len;
  2593. skb->data_len += frag_len;
  2594. skb->truesize += PAGE_SIZE;
  2595. skb->len += frag_len;
  2596. pg_prod = BNX2_NEXT_RX_BD(pg_prod);
  2597. pg_cons = BNX2_RX_PG_RING_IDX(BNX2_NEXT_RX_BD(pg_cons));
  2598. }
  2599. rxr->rx_pg_prod = pg_prod;
  2600. rxr->rx_pg_cons = pg_cons;
  2601. }
  2602. return skb;
  2603. }
  2604. static inline u16
  2605. bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
  2606. {
  2607. u16 cons;
  2608. /* Tell compiler that status block fields can change. */
  2609. barrier();
  2610. cons = *bnapi->hw_rx_cons_ptr;
  2611. barrier();
  2612. if (unlikely((cons & BNX2_MAX_RX_DESC_CNT) == BNX2_MAX_RX_DESC_CNT))
  2613. cons++;
  2614. return cons;
  2615. }
  2616. static int
  2617. bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
  2618. {
  2619. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2620. u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
  2621. struct l2_fhdr *rx_hdr;
  2622. int rx_pkt = 0, pg_ring_used = 0;
  2623. if (budget <= 0)
  2624. return rx_pkt;
  2625. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2626. sw_cons = rxr->rx_cons;
  2627. sw_prod = rxr->rx_prod;
  2628. /* Memory barrier necessary as speculative reads of the rx
  2629. * buffer can be ahead of the index in the status block
  2630. */
  2631. rmb();
  2632. while (sw_cons != hw_cons) {
  2633. unsigned int len, hdr_len;
  2634. u32 status;
  2635. struct bnx2_sw_bd *rx_buf, *next_rx_buf;
  2636. struct sk_buff *skb;
  2637. dma_addr_t dma_addr;
  2638. u8 *data;
  2639. u16 next_ring_idx;
  2640. sw_ring_cons = BNX2_RX_RING_IDX(sw_cons);
  2641. sw_ring_prod = BNX2_RX_RING_IDX(sw_prod);
  2642. rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
  2643. data = rx_buf->data;
  2644. rx_buf->data = NULL;
  2645. rx_hdr = get_l2_fhdr(data);
  2646. prefetch(rx_hdr);
  2647. dma_addr = dma_unmap_addr(rx_buf, mapping);
  2648. dma_sync_single_for_cpu(&bp->pdev->dev, dma_addr,
  2649. BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
  2650. PCI_DMA_FROMDEVICE);
  2651. next_ring_idx = BNX2_RX_RING_IDX(BNX2_NEXT_RX_BD(sw_cons));
  2652. next_rx_buf = &rxr->rx_buf_ring[next_ring_idx];
  2653. prefetch(get_l2_fhdr(next_rx_buf->data));
  2654. len = rx_hdr->l2_fhdr_pkt_len;
  2655. status = rx_hdr->l2_fhdr_status;
  2656. hdr_len = 0;
  2657. if (status & L2_FHDR_STATUS_SPLIT) {
  2658. hdr_len = rx_hdr->l2_fhdr_ip_xsum;
  2659. pg_ring_used = 1;
  2660. } else if (len > bp->rx_jumbo_thresh) {
  2661. hdr_len = bp->rx_jumbo_thresh;
  2662. pg_ring_used = 1;
  2663. }
  2664. if (unlikely(status & (L2_FHDR_ERRORS_BAD_CRC |
  2665. L2_FHDR_ERRORS_PHY_DECODE |
  2666. L2_FHDR_ERRORS_ALIGNMENT |
  2667. L2_FHDR_ERRORS_TOO_SHORT |
  2668. L2_FHDR_ERRORS_GIANT_FRAME))) {
  2669. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2670. sw_ring_prod);
  2671. if (pg_ring_used) {
  2672. int pages;
  2673. pages = PAGE_ALIGN(len - hdr_len) >> PAGE_SHIFT;
  2674. bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
  2675. }
  2676. goto next_rx;
  2677. }
  2678. len -= 4;
  2679. if (len <= bp->rx_copy_thresh) {
  2680. skb = netdev_alloc_skb(bp->dev, len + 6);
  2681. if (skb == NULL) {
  2682. bnx2_reuse_rx_data(bp, rxr, data, sw_ring_cons,
  2683. sw_ring_prod);
  2684. goto next_rx;
  2685. }
  2686. /* aligned copy */
  2687. memcpy(skb->data,
  2688. (u8 *)rx_hdr + BNX2_RX_OFFSET - 6,
  2689. len + 6);
  2690. skb_reserve(skb, 6);
  2691. skb_put(skb, len);
  2692. bnx2_reuse_rx_data(bp, rxr, data,
  2693. sw_ring_cons, sw_ring_prod);
  2694. } else {
  2695. skb = bnx2_rx_skb(bp, rxr, data, len, hdr_len, dma_addr,
  2696. (sw_ring_cons << 16) | sw_ring_prod);
  2697. if (!skb)
  2698. goto next_rx;
  2699. }
  2700. if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
  2701. !(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG))
  2702. __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), rx_hdr->l2_fhdr_vlan_tag);
  2703. skb->protocol = eth_type_trans(skb, bp->dev);
  2704. if ((len > (bp->dev->mtu + ETH_HLEN)) &&
  2705. (ntohs(skb->protocol) != 0x8100)) {
  2706. dev_kfree_skb(skb);
  2707. goto next_rx;
  2708. }
  2709. skb_checksum_none_assert(skb);
  2710. if ((bp->dev->features & NETIF_F_RXCSUM) &&
  2711. (status & (L2_FHDR_STATUS_TCP_SEGMENT |
  2712. L2_FHDR_STATUS_UDP_DATAGRAM))) {
  2713. if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
  2714. L2_FHDR_ERRORS_UDP_XSUM)) == 0))
  2715. skb->ip_summed = CHECKSUM_UNNECESSARY;
  2716. }
  2717. if ((bp->dev->features & NETIF_F_RXHASH) &&
  2718. ((status & L2_FHDR_STATUS_USE_RXHASH) ==
  2719. L2_FHDR_STATUS_USE_RXHASH))
  2720. skb_set_hash(skb, rx_hdr->l2_fhdr_hash,
  2721. PKT_HASH_TYPE_L3);
  2722. skb_record_rx_queue(skb, bnapi - &bp->bnx2_napi[0]);
  2723. napi_gro_receive(&bnapi->napi, skb);
  2724. rx_pkt++;
  2725. next_rx:
  2726. sw_cons = BNX2_NEXT_RX_BD(sw_cons);
  2727. sw_prod = BNX2_NEXT_RX_BD(sw_prod);
  2728. if ((rx_pkt == budget))
  2729. break;
  2730. /* Refresh hw_cons to see if there is new work */
  2731. if (sw_cons == hw_cons) {
  2732. hw_cons = bnx2_get_hw_rx_cons(bnapi);
  2733. rmb();
  2734. }
  2735. }
  2736. rxr->rx_cons = sw_cons;
  2737. rxr->rx_prod = sw_prod;
  2738. if (pg_ring_used)
  2739. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  2740. BNX2_WR16(bp, rxr->rx_bidx_addr, sw_prod);
  2741. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  2742. mmiowb();
  2743. return rx_pkt;
  2744. }
  2745. /* MSI ISR - The only difference between this and the INTx ISR
  2746. * is that the MSI interrupt is always serviced.
  2747. */
  2748. static irqreturn_t
  2749. bnx2_msi(int irq, void *dev_instance)
  2750. {
  2751. struct bnx2_napi *bnapi = dev_instance;
  2752. struct bnx2 *bp = bnapi->bp;
  2753. prefetch(bnapi->status_blk.msi);
  2754. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2755. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2756. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2757. /* Return here if interrupt is disabled. */
  2758. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2759. return IRQ_HANDLED;
  2760. napi_schedule(&bnapi->napi);
  2761. return IRQ_HANDLED;
  2762. }
  2763. static irqreturn_t
  2764. bnx2_msi_1shot(int irq, void *dev_instance)
  2765. {
  2766. struct bnx2_napi *bnapi = dev_instance;
  2767. struct bnx2 *bp = bnapi->bp;
  2768. prefetch(bnapi->status_blk.msi);
  2769. /* Return here if interrupt is disabled. */
  2770. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2771. return IRQ_HANDLED;
  2772. napi_schedule(&bnapi->napi);
  2773. return IRQ_HANDLED;
  2774. }
  2775. static irqreturn_t
  2776. bnx2_interrupt(int irq, void *dev_instance)
  2777. {
  2778. struct bnx2_napi *bnapi = dev_instance;
  2779. struct bnx2 *bp = bnapi->bp;
  2780. struct status_block *sblk = bnapi->status_blk.msi;
  2781. /* When using INTx, it is possible for the interrupt to arrive
  2782. * at the CPU before the status block posted prior to the
  2783. * interrupt. Reading a register will flush the status block.
  2784. * When using MSI, the MSI message will always complete after
  2785. * the status block write.
  2786. */
  2787. if ((sblk->status_idx == bnapi->last_status_idx) &&
  2788. (BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS) &
  2789. BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
  2790. return IRQ_NONE;
  2791. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2792. BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
  2793. BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  2794. /* Read back to deassert IRQ immediately to avoid too many
  2795. * spurious interrupts.
  2796. */
  2797. BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
  2798. /* Return here if interrupt is shared and is disabled. */
  2799. if (unlikely(atomic_read(&bp->intr_sem) != 0))
  2800. return IRQ_HANDLED;
  2801. if (napi_schedule_prep(&bnapi->napi)) {
  2802. bnapi->last_status_idx = sblk->status_idx;
  2803. __napi_schedule(&bnapi->napi);
  2804. }
  2805. return IRQ_HANDLED;
  2806. }
  2807. static inline int
  2808. bnx2_has_fast_work(struct bnx2_napi *bnapi)
  2809. {
  2810. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2811. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2812. if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
  2813. (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
  2814. return 1;
  2815. return 0;
  2816. }
  2817. #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
  2818. STATUS_ATTN_BITS_TIMER_ABORT)
  2819. static inline int
  2820. bnx2_has_work(struct bnx2_napi *bnapi)
  2821. {
  2822. struct status_block *sblk = bnapi->status_blk.msi;
  2823. if (bnx2_has_fast_work(bnapi))
  2824. return 1;
  2825. #ifdef BCM_CNIC
  2826. if (bnapi->cnic_present && (bnapi->cnic_tag != sblk->status_idx))
  2827. return 1;
  2828. #endif
  2829. if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
  2830. (sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
  2831. return 1;
  2832. return 0;
  2833. }
  2834. static void
  2835. bnx2_chk_missed_msi(struct bnx2 *bp)
  2836. {
  2837. struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
  2838. u32 msi_ctrl;
  2839. if (bnx2_has_work(bnapi)) {
  2840. msi_ctrl = BNX2_RD(bp, BNX2_PCICFG_MSI_CONTROL);
  2841. if (!(msi_ctrl & BNX2_PCICFG_MSI_CONTROL_ENABLE))
  2842. return;
  2843. if (bnapi->last_status_idx == bp->idle_chk_status_idx) {
  2844. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl &
  2845. ~BNX2_PCICFG_MSI_CONTROL_ENABLE);
  2846. BNX2_WR(bp, BNX2_PCICFG_MSI_CONTROL, msi_ctrl);
  2847. bnx2_msi(bp->irq_tbl[0].vector, bnapi);
  2848. }
  2849. }
  2850. bp->idle_chk_status_idx = bnapi->last_status_idx;
  2851. }
  2852. #ifdef BCM_CNIC
  2853. static void bnx2_poll_cnic(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2854. {
  2855. struct cnic_ops *c_ops;
  2856. if (!bnapi->cnic_present)
  2857. return;
  2858. rcu_read_lock();
  2859. c_ops = rcu_dereference(bp->cnic_ops);
  2860. if (c_ops)
  2861. bnapi->cnic_tag = c_ops->cnic_handler(bp->cnic_data,
  2862. bnapi->status_blk.msi);
  2863. rcu_read_unlock();
  2864. }
  2865. #endif
  2866. static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
  2867. {
  2868. struct status_block *sblk = bnapi->status_blk.msi;
  2869. u32 status_attn_bits = sblk->status_attn_bits;
  2870. u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
  2871. if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
  2872. (status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
  2873. bnx2_phy_int(bp, bnapi);
  2874. /* This is needed to take care of transient status
  2875. * during link changes.
  2876. */
  2877. BNX2_WR(bp, BNX2_HC_COMMAND,
  2878. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  2879. BNX2_RD(bp, BNX2_HC_COMMAND);
  2880. }
  2881. }
  2882. static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
  2883. int work_done, int budget)
  2884. {
  2885. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  2886. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  2887. if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
  2888. bnx2_tx_int(bp, bnapi, 0);
  2889. if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
  2890. work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
  2891. return work_done;
  2892. }
  2893. static int bnx2_poll_msix(struct napi_struct *napi, int budget)
  2894. {
  2895. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2896. struct bnx2 *bp = bnapi->bp;
  2897. int work_done = 0;
  2898. struct status_block_msix *sblk = bnapi->status_blk.msix;
  2899. while (1) {
  2900. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2901. if (unlikely(work_done >= budget))
  2902. break;
  2903. bnapi->last_status_idx = sblk->status_idx;
  2904. /* status idx must be read before checking for more work. */
  2905. rmb();
  2906. if (likely(!bnx2_has_fast_work(bnapi))) {
  2907. napi_complete(napi);
  2908. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
  2909. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2910. bnapi->last_status_idx);
  2911. break;
  2912. }
  2913. }
  2914. return work_done;
  2915. }
  2916. static int bnx2_poll(struct napi_struct *napi, int budget)
  2917. {
  2918. struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
  2919. struct bnx2 *bp = bnapi->bp;
  2920. int work_done = 0;
  2921. struct status_block *sblk = bnapi->status_blk.msi;
  2922. while (1) {
  2923. bnx2_poll_link(bp, bnapi);
  2924. work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
  2925. #ifdef BCM_CNIC
  2926. bnx2_poll_cnic(bp, bnapi);
  2927. #endif
  2928. /* bnapi->last_status_idx is used below to tell the hw how
  2929. * much work has been processed, so we must read it before
  2930. * checking for more work.
  2931. */
  2932. bnapi->last_status_idx = sblk->status_idx;
  2933. if (unlikely(work_done >= budget))
  2934. break;
  2935. rmb();
  2936. if (likely(!bnx2_has_work(bnapi))) {
  2937. napi_complete(napi);
  2938. if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
  2939. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2940. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2941. bnapi->last_status_idx);
  2942. break;
  2943. }
  2944. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2945. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2946. BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
  2947. bnapi->last_status_idx);
  2948. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
  2949. BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
  2950. bnapi->last_status_idx);
  2951. break;
  2952. }
  2953. }
  2954. return work_done;
  2955. }
  2956. /* Called with rtnl_lock from vlan functions and also netif_tx_lock
  2957. * from set_multicast.
  2958. */
  2959. static void
  2960. bnx2_set_rx_mode(struct net_device *dev)
  2961. {
  2962. struct bnx2 *bp = netdev_priv(dev);
  2963. u32 rx_mode, sort_mode;
  2964. struct netdev_hw_addr *ha;
  2965. int i;
  2966. if (!netif_running(dev))
  2967. return;
  2968. spin_lock_bh(&bp->phy_lock);
  2969. rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
  2970. BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
  2971. sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
  2972. if (!(dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
  2973. (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  2974. rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
  2975. if (dev->flags & IFF_PROMISC) {
  2976. /* Promiscuous mode. */
  2977. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  2978. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  2979. BNX2_RPM_SORT_USER0_PROM_VLAN;
  2980. }
  2981. else if (dev->flags & IFF_ALLMULTI) {
  2982. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  2983. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  2984. 0xffffffff);
  2985. }
  2986. sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
  2987. }
  2988. else {
  2989. /* Accept one or more multicast(s). */
  2990. u32 mc_filter[NUM_MC_HASH_REGISTERS];
  2991. u32 regidx;
  2992. u32 bit;
  2993. u32 crc;
  2994. memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
  2995. netdev_for_each_mc_addr(ha, dev) {
  2996. crc = ether_crc_le(ETH_ALEN, ha->addr);
  2997. bit = crc & 0xff;
  2998. regidx = (bit & 0xe0) >> 5;
  2999. bit &= 0x1f;
  3000. mc_filter[regidx] |= (1 << bit);
  3001. }
  3002. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3003. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3004. mc_filter[i]);
  3005. }
  3006. sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
  3007. }
  3008. if (netdev_uc_count(dev) > BNX2_MAX_UNICAST_ADDRESSES) {
  3009. rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
  3010. sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
  3011. BNX2_RPM_SORT_USER0_PROM_VLAN;
  3012. } else if (!(dev->flags & IFF_PROMISC)) {
  3013. /* Add all entries into to the match filter list */
  3014. i = 0;
  3015. netdev_for_each_uc_addr(ha, dev) {
  3016. bnx2_set_mac_addr(bp, ha->addr,
  3017. i + BNX2_START_UNICAST_ADDRESS_INDEX);
  3018. sort_mode |= (1 <<
  3019. (i + BNX2_START_UNICAST_ADDRESS_INDEX));
  3020. i++;
  3021. }
  3022. }
  3023. if (rx_mode != bp->rx_mode) {
  3024. bp->rx_mode = rx_mode;
  3025. BNX2_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
  3026. }
  3027. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3028. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
  3029. BNX2_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
  3030. spin_unlock_bh(&bp->phy_lock);
  3031. }
  3032. static int
  3033. check_fw_section(const struct firmware *fw,
  3034. const struct bnx2_fw_file_section *section,
  3035. u32 alignment, bool non_empty)
  3036. {
  3037. u32 offset = be32_to_cpu(section->offset);
  3038. u32 len = be32_to_cpu(section->len);
  3039. if ((offset == 0 && len != 0) || offset >= fw->size || offset & 3)
  3040. return -EINVAL;
  3041. if ((non_empty && len == 0) || len > fw->size - offset ||
  3042. len & (alignment - 1))
  3043. return -EINVAL;
  3044. return 0;
  3045. }
  3046. static int
  3047. check_mips_fw_entry(const struct firmware *fw,
  3048. const struct bnx2_mips_fw_file_entry *entry)
  3049. {
  3050. if (check_fw_section(fw, &entry->text, 4, true) ||
  3051. check_fw_section(fw, &entry->data, 4, false) ||
  3052. check_fw_section(fw, &entry->rodata, 4, false))
  3053. return -EINVAL;
  3054. return 0;
  3055. }
  3056. static void bnx2_release_firmware(struct bnx2 *bp)
  3057. {
  3058. if (bp->rv2p_firmware) {
  3059. release_firmware(bp->mips_firmware);
  3060. release_firmware(bp->rv2p_firmware);
  3061. bp->rv2p_firmware = NULL;
  3062. }
  3063. }
  3064. static int bnx2_request_uncached_firmware(struct bnx2 *bp)
  3065. {
  3066. const char *mips_fw_file, *rv2p_fw_file;
  3067. const struct bnx2_mips_fw_file *mips_fw;
  3068. const struct bnx2_rv2p_fw_file *rv2p_fw;
  3069. int rc;
  3070. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3071. mips_fw_file = FW_MIPS_FILE_09;
  3072. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A0) ||
  3073. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5709_A1))
  3074. rv2p_fw_file = FW_RV2P_FILE_09_Ax;
  3075. else
  3076. rv2p_fw_file = FW_RV2P_FILE_09;
  3077. } else {
  3078. mips_fw_file = FW_MIPS_FILE_06;
  3079. rv2p_fw_file = FW_RV2P_FILE_06;
  3080. }
  3081. rc = request_firmware(&bp->mips_firmware, mips_fw_file, &bp->pdev->dev);
  3082. if (rc) {
  3083. pr_err("Can't load firmware file \"%s\"\n", mips_fw_file);
  3084. goto out;
  3085. }
  3086. rc = request_firmware(&bp->rv2p_firmware, rv2p_fw_file, &bp->pdev->dev);
  3087. if (rc) {
  3088. pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file);
  3089. goto err_release_mips_firmware;
  3090. }
  3091. mips_fw = (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3092. rv2p_fw = (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3093. if (bp->mips_firmware->size < sizeof(*mips_fw) ||
  3094. check_mips_fw_entry(bp->mips_firmware, &mips_fw->com) ||
  3095. check_mips_fw_entry(bp->mips_firmware, &mips_fw->cp) ||
  3096. check_mips_fw_entry(bp->mips_firmware, &mips_fw->rxp) ||
  3097. check_mips_fw_entry(bp->mips_firmware, &mips_fw->tpat) ||
  3098. check_mips_fw_entry(bp->mips_firmware, &mips_fw->txp)) {
  3099. pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file);
  3100. rc = -EINVAL;
  3101. goto err_release_firmware;
  3102. }
  3103. if (bp->rv2p_firmware->size < sizeof(*rv2p_fw) ||
  3104. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc1.rv2p, 8, true) ||
  3105. check_fw_section(bp->rv2p_firmware, &rv2p_fw->proc2.rv2p, 8, true)) {
  3106. pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file);
  3107. rc = -EINVAL;
  3108. goto err_release_firmware;
  3109. }
  3110. out:
  3111. return rc;
  3112. err_release_firmware:
  3113. release_firmware(bp->rv2p_firmware);
  3114. bp->rv2p_firmware = NULL;
  3115. err_release_mips_firmware:
  3116. release_firmware(bp->mips_firmware);
  3117. goto out;
  3118. }
  3119. static int bnx2_request_firmware(struct bnx2 *bp)
  3120. {
  3121. return bp->rv2p_firmware ? 0 : bnx2_request_uncached_firmware(bp);
  3122. }
  3123. static u32
  3124. rv2p_fw_fixup(u32 rv2p_proc, int idx, u32 loc, u32 rv2p_code)
  3125. {
  3126. switch (idx) {
  3127. case RV2P_P1_FIXUP_PAGE_SIZE_IDX:
  3128. rv2p_code &= ~RV2P_BD_PAGE_SIZE_MSK;
  3129. rv2p_code |= RV2P_BD_PAGE_SIZE;
  3130. break;
  3131. }
  3132. return rv2p_code;
  3133. }
  3134. static int
  3135. load_rv2p_fw(struct bnx2 *bp, u32 rv2p_proc,
  3136. const struct bnx2_rv2p_fw_file_entry *fw_entry)
  3137. {
  3138. u32 rv2p_code_len, file_offset;
  3139. __be32 *rv2p_code;
  3140. int i;
  3141. u32 val, cmd, addr;
  3142. rv2p_code_len = be32_to_cpu(fw_entry->rv2p.len);
  3143. file_offset = be32_to_cpu(fw_entry->rv2p.offset);
  3144. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3145. if (rv2p_proc == RV2P_PROC1) {
  3146. cmd = BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
  3147. addr = BNX2_RV2P_PROC1_ADDR_CMD;
  3148. } else {
  3149. cmd = BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
  3150. addr = BNX2_RV2P_PROC2_ADDR_CMD;
  3151. }
  3152. for (i = 0; i < rv2p_code_len; i += 8) {
  3153. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, be32_to_cpu(*rv2p_code));
  3154. rv2p_code++;
  3155. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, be32_to_cpu(*rv2p_code));
  3156. rv2p_code++;
  3157. val = (i / 8) | cmd;
  3158. BNX2_WR(bp, addr, val);
  3159. }
  3160. rv2p_code = (__be32 *)(bp->rv2p_firmware->data + file_offset);
  3161. for (i = 0; i < 8; i++) {
  3162. u32 loc, code;
  3163. loc = be32_to_cpu(fw_entry->fixup[i]);
  3164. if (loc && ((loc * 4) < rv2p_code_len)) {
  3165. code = be32_to_cpu(*(rv2p_code + loc - 1));
  3166. BNX2_WR(bp, BNX2_RV2P_INSTR_HIGH, code);
  3167. code = be32_to_cpu(*(rv2p_code + loc));
  3168. code = rv2p_fw_fixup(rv2p_proc, i, loc, code);
  3169. BNX2_WR(bp, BNX2_RV2P_INSTR_LOW, code);
  3170. val = (loc / 2) | cmd;
  3171. BNX2_WR(bp, addr, val);
  3172. }
  3173. }
  3174. /* Reset the processor, un-stall is done later. */
  3175. if (rv2p_proc == RV2P_PROC1) {
  3176. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
  3177. }
  3178. else {
  3179. BNX2_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
  3180. }
  3181. return 0;
  3182. }
  3183. static int
  3184. load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg,
  3185. const struct bnx2_mips_fw_file_entry *fw_entry)
  3186. {
  3187. u32 addr, len, file_offset;
  3188. __be32 *data;
  3189. u32 offset;
  3190. u32 val;
  3191. /* Halt the CPU. */
  3192. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3193. val |= cpu_reg->mode_value_halt;
  3194. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3195. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3196. /* Load the Text area. */
  3197. addr = be32_to_cpu(fw_entry->text.addr);
  3198. len = be32_to_cpu(fw_entry->text.len);
  3199. file_offset = be32_to_cpu(fw_entry->text.offset);
  3200. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3201. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3202. if (len) {
  3203. int j;
  3204. for (j = 0; j < (len / 4); j++, offset += 4)
  3205. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3206. }
  3207. /* Load the Data area. */
  3208. addr = be32_to_cpu(fw_entry->data.addr);
  3209. len = be32_to_cpu(fw_entry->data.len);
  3210. file_offset = be32_to_cpu(fw_entry->data.offset);
  3211. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3212. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3213. if (len) {
  3214. int j;
  3215. for (j = 0; j < (len / 4); j++, offset += 4)
  3216. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3217. }
  3218. /* Load the Read-Only area. */
  3219. addr = be32_to_cpu(fw_entry->rodata.addr);
  3220. len = be32_to_cpu(fw_entry->rodata.len);
  3221. file_offset = be32_to_cpu(fw_entry->rodata.offset);
  3222. data = (__be32 *)(bp->mips_firmware->data + file_offset);
  3223. offset = cpu_reg->spad_base + (addr - cpu_reg->mips_view_base);
  3224. if (len) {
  3225. int j;
  3226. for (j = 0; j < (len / 4); j++, offset += 4)
  3227. bnx2_reg_wr_ind(bp, offset, be32_to_cpu(data[j]));
  3228. }
  3229. /* Clear the pre-fetch instruction. */
  3230. bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
  3231. val = be32_to_cpu(fw_entry->start_addr);
  3232. bnx2_reg_wr_ind(bp, cpu_reg->pc, val);
  3233. /* Start the CPU. */
  3234. val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
  3235. val &= ~cpu_reg->mode_value_halt;
  3236. bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
  3237. bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
  3238. return 0;
  3239. }
  3240. static int
  3241. bnx2_init_cpus(struct bnx2 *bp)
  3242. {
  3243. const struct bnx2_mips_fw_file *mips_fw =
  3244. (const struct bnx2_mips_fw_file *) bp->mips_firmware->data;
  3245. const struct bnx2_rv2p_fw_file *rv2p_fw =
  3246. (const struct bnx2_rv2p_fw_file *) bp->rv2p_firmware->data;
  3247. int rc;
  3248. /* Initialize the RV2P processor. */
  3249. load_rv2p_fw(bp, RV2P_PROC1, &rv2p_fw->proc1);
  3250. load_rv2p_fw(bp, RV2P_PROC2, &rv2p_fw->proc2);
  3251. /* Initialize the RX Processor. */
  3252. rc = load_cpu_fw(bp, &cpu_reg_rxp, &mips_fw->rxp);
  3253. if (rc)
  3254. goto init_cpu_err;
  3255. /* Initialize the TX Processor. */
  3256. rc = load_cpu_fw(bp, &cpu_reg_txp, &mips_fw->txp);
  3257. if (rc)
  3258. goto init_cpu_err;
  3259. /* Initialize the TX Patch-up Processor. */
  3260. rc = load_cpu_fw(bp, &cpu_reg_tpat, &mips_fw->tpat);
  3261. if (rc)
  3262. goto init_cpu_err;
  3263. /* Initialize the Completion Processor. */
  3264. rc = load_cpu_fw(bp, &cpu_reg_com, &mips_fw->com);
  3265. if (rc)
  3266. goto init_cpu_err;
  3267. /* Initialize the Command Processor. */
  3268. rc = load_cpu_fw(bp, &cpu_reg_cp, &mips_fw->cp);
  3269. init_cpu_err:
  3270. return rc;
  3271. }
  3272. static void
  3273. bnx2_setup_wol(struct bnx2 *bp)
  3274. {
  3275. int i;
  3276. u32 val, wol_msg;
  3277. if (bp->wol) {
  3278. u32 advertising;
  3279. u8 autoneg;
  3280. autoneg = bp->autoneg;
  3281. advertising = bp->advertising;
  3282. if (bp->phy_port == PORT_TP) {
  3283. bp->autoneg = AUTONEG_SPEED;
  3284. bp->advertising = ADVERTISED_10baseT_Half |
  3285. ADVERTISED_10baseT_Full |
  3286. ADVERTISED_100baseT_Half |
  3287. ADVERTISED_100baseT_Full |
  3288. ADVERTISED_Autoneg;
  3289. }
  3290. spin_lock_bh(&bp->phy_lock);
  3291. bnx2_setup_phy(bp, bp->phy_port);
  3292. spin_unlock_bh(&bp->phy_lock);
  3293. bp->autoneg = autoneg;
  3294. bp->advertising = advertising;
  3295. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  3296. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3297. /* Enable port mode. */
  3298. val &= ~BNX2_EMAC_MODE_PORT;
  3299. val |= BNX2_EMAC_MODE_MPKT_RCVD |
  3300. BNX2_EMAC_MODE_ACPI_RCVD |
  3301. BNX2_EMAC_MODE_MPKT;
  3302. if (bp->phy_port == PORT_TP) {
  3303. val |= BNX2_EMAC_MODE_PORT_MII;
  3304. } else {
  3305. val |= BNX2_EMAC_MODE_PORT_GMII;
  3306. if (bp->line_speed == SPEED_2500)
  3307. val |= BNX2_EMAC_MODE_25G_MODE;
  3308. }
  3309. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3310. /* receive all multicast */
  3311. for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
  3312. BNX2_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
  3313. 0xffffffff);
  3314. }
  3315. BNX2_WR(bp, BNX2_EMAC_RX_MODE, BNX2_EMAC_RX_MODE_SORT_MODE);
  3316. val = 1 | BNX2_RPM_SORT_USER0_BC_EN | BNX2_RPM_SORT_USER0_MC_EN;
  3317. BNX2_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
  3318. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val);
  3319. BNX2_WR(bp, BNX2_RPM_SORT_USER0, val | BNX2_RPM_SORT_USER0_ENA);
  3320. /* Need to enable EMAC and RPM for WOL. */
  3321. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  3322. BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
  3323. BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
  3324. BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
  3325. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3326. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3327. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3328. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  3329. } else {
  3330. wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  3331. }
  3332. if (!(bp->flags & BNX2_FLAG_NO_WOL)) {
  3333. u32 val;
  3334. wol_msg |= BNX2_DRV_MSG_DATA_WAIT3;
  3335. if (bp->fw_last_msg || BNX2_CHIP(bp) != BNX2_CHIP_5709) {
  3336. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3337. return;
  3338. }
  3339. /* Tell firmware not to power down the PHY yet, otherwise
  3340. * the chip will take a long time to respond to MMIO reads.
  3341. */
  3342. val = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  3343. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE,
  3344. val | BNX2_PORT_FEATURE_ASF_ENABLED);
  3345. bnx2_fw_sync(bp, wol_msg, 1, 0);
  3346. bnx2_shmem_wr(bp, BNX2_PORT_FEATURE, val);
  3347. }
  3348. }
  3349. static int
  3350. bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
  3351. {
  3352. switch (state) {
  3353. case PCI_D0: {
  3354. u32 val;
  3355. pci_enable_wake(bp->pdev, PCI_D0, false);
  3356. pci_set_power_state(bp->pdev, PCI_D0);
  3357. val = BNX2_RD(bp, BNX2_EMAC_MODE);
  3358. val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
  3359. val &= ~BNX2_EMAC_MODE_MPKT;
  3360. BNX2_WR(bp, BNX2_EMAC_MODE, val);
  3361. val = BNX2_RD(bp, BNX2_RPM_CONFIG);
  3362. val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
  3363. BNX2_WR(bp, BNX2_RPM_CONFIG, val);
  3364. break;
  3365. }
  3366. case PCI_D3hot: {
  3367. bnx2_setup_wol(bp);
  3368. pci_wake_from_d3(bp->pdev, bp->wol);
  3369. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3370. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)) {
  3371. if (bp->wol)
  3372. pci_set_power_state(bp->pdev, PCI_D3hot);
  3373. break;
  3374. }
  3375. if (!bp->fw_last_msg && BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3376. u32 val;
  3377. /* Tell firmware not to power down the PHY yet,
  3378. * otherwise the other port may not respond to
  3379. * MMIO reads.
  3380. */
  3381. val = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  3382. val &= ~BNX2_CONDITION_PM_STATE_MASK;
  3383. val |= BNX2_CONDITION_PM_STATE_UNPREP;
  3384. bnx2_shmem_wr(bp, BNX2_BC_STATE_CONDITION, val);
  3385. }
  3386. pci_set_power_state(bp->pdev, PCI_D3hot);
  3387. /* No more memory access after this point until
  3388. * device is brought back to D0.
  3389. */
  3390. break;
  3391. }
  3392. default:
  3393. return -EINVAL;
  3394. }
  3395. return 0;
  3396. }
  3397. static int
  3398. bnx2_acquire_nvram_lock(struct bnx2 *bp)
  3399. {
  3400. u32 val;
  3401. int j;
  3402. /* Request access to the flash interface. */
  3403. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
  3404. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3405. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3406. if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
  3407. break;
  3408. udelay(5);
  3409. }
  3410. if (j >= NVRAM_TIMEOUT_COUNT)
  3411. return -EBUSY;
  3412. return 0;
  3413. }
  3414. static int
  3415. bnx2_release_nvram_lock(struct bnx2 *bp)
  3416. {
  3417. int j;
  3418. u32 val;
  3419. /* Relinquish nvram interface. */
  3420. BNX2_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
  3421. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3422. val = BNX2_RD(bp, BNX2_NVM_SW_ARB);
  3423. if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
  3424. break;
  3425. udelay(5);
  3426. }
  3427. if (j >= NVRAM_TIMEOUT_COUNT)
  3428. return -EBUSY;
  3429. return 0;
  3430. }
  3431. static int
  3432. bnx2_enable_nvram_write(struct bnx2 *bp)
  3433. {
  3434. u32 val;
  3435. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3436. BNX2_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
  3437. if (bp->flash_info->flags & BNX2_NV_WREN) {
  3438. int j;
  3439. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3440. BNX2_WR(bp, BNX2_NVM_COMMAND,
  3441. BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
  3442. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3443. udelay(5);
  3444. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3445. if (val & BNX2_NVM_COMMAND_DONE)
  3446. break;
  3447. }
  3448. if (j >= NVRAM_TIMEOUT_COUNT)
  3449. return -EBUSY;
  3450. }
  3451. return 0;
  3452. }
  3453. static void
  3454. bnx2_disable_nvram_write(struct bnx2 *bp)
  3455. {
  3456. u32 val;
  3457. val = BNX2_RD(bp, BNX2_MISC_CFG);
  3458. BNX2_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
  3459. }
  3460. static void
  3461. bnx2_enable_nvram_access(struct bnx2 *bp)
  3462. {
  3463. u32 val;
  3464. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3465. /* Enable both bits, even on read. */
  3466. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3467. val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
  3468. }
  3469. static void
  3470. bnx2_disable_nvram_access(struct bnx2 *bp)
  3471. {
  3472. u32 val;
  3473. val = BNX2_RD(bp, BNX2_NVM_ACCESS_ENABLE);
  3474. /* Disable both bits, even after read. */
  3475. BNX2_WR(bp, BNX2_NVM_ACCESS_ENABLE,
  3476. val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
  3477. BNX2_NVM_ACCESS_ENABLE_WR_EN));
  3478. }
  3479. static int
  3480. bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
  3481. {
  3482. u32 cmd;
  3483. int j;
  3484. if (bp->flash_info->flags & BNX2_NV_BUFFERED)
  3485. /* Buffered flash, no erase needed */
  3486. return 0;
  3487. /* Build an erase command */
  3488. cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
  3489. BNX2_NVM_COMMAND_DOIT;
  3490. /* Need to clear DONE bit separately. */
  3491. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3492. /* Address of the NVRAM to read from. */
  3493. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3494. /* Issue an erase command. */
  3495. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3496. /* Wait for completion. */
  3497. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3498. u32 val;
  3499. udelay(5);
  3500. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3501. if (val & BNX2_NVM_COMMAND_DONE)
  3502. break;
  3503. }
  3504. if (j >= NVRAM_TIMEOUT_COUNT)
  3505. return -EBUSY;
  3506. return 0;
  3507. }
  3508. static int
  3509. bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
  3510. {
  3511. u32 cmd;
  3512. int j;
  3513. /* Build the command word. */
  3514. cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
  3515. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3516. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3517. offset = ((offset / bp->flash_info->page_size) <<
  3518. bp->flash_info->page_bits) +
  3519. (offset % bp->flash_info->page_size);
  3520. }
  3521. /* Need to clear DONE bit separately. */
  3522. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3523. /* Address of the NVRAM to read from. */
  3524. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3525. /* Issue a read command. */
  3526. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3527. /* Wait for completion. */
  3528. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3529. u32 val;
  3530. udelay(5);
  3531. val = BNX2_RD(bp, BNX2_NVM_COMMAND);
  3532. if (val & BNX2_NVM_COMMAND_DONE) {
  3533. __be32 v = cpu_to_be32(BNX2_RD(bp, BNX2_NVM_READ));
  3534. memcpy(ret_val, &v, 4);
  3535. break;
  3536. }
  3537. }
  3538. if (j >= NVRAM_TIMEOUT_COUNT)
  3539. return -EBUSY;
  3540. return 0;
  3541. }
  3542. static int
  3543. bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
  3544. {
  3545. u32 cmd;
  3546. __be32 val32;
  3547. int j;
  3548. /* Build the command word. */
  3549. cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
  3550. /* Calculate an offset of a buffered flash, not needed for 5709. */
  3551. if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
  3552. offset = ((offset / bp->flash_info->page_size) <<
  3553. bp->flash_info->page_bits) +
  3554. (offset % bp->flash_info->page_size);
  3555. }
  3556. /* Need to clear DONE bit separately. */
  3557. BNX2_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
  3558. memcpy(&val32, val, 4);
  3559. /* Write the data. */
  3560. BNX2_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
  3561. /* Address of the NVRAM to write to. */
  3562. BNX2_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
  3563. /* Issue the write command. */
  3564. BNX2_WR(bp, BNX2_NVM_COMMAND, cmd);
  3565. /* Wait for completion. */
  3566. for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
  3567. udelay(5);
  3568. if (BNX2_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
  3569. break;
  3570. }
  3571. if (j >= NVRAM_TIMEOUT_COUNT)
  3572. return -EBUSY;
  3573. return 0;
  3574. }
  3575. static int
  3576. bnx2_init_nvram(struct bnx2 *bp)
  3577. {
  3578. u32 val;
  3579. int j, entry_count, rc = 0;
  3580. const struct flash_spec *flash;
  3581. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3582. bp->flash_info = &flash_5709;
  3583. goto get_flash_size;
  3584. }
  3585. /* Determine the selected interface. */
  3586. val = BNX2_RD(bp, BNX2_NVM_CFG1);
  3587. entry_count = ARRAY_SIZE(flash_table);
  3588. if (val & 0x40000000) {
  3589. /* Flash interface has been reconfigured */
  3590. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3591. j++, flash++) {
  3592. if ((val & FLASH_BACKUP_STRAP_MASK) ==
  3593. (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
  3594. bp->flash_info = flash;
  3595. break;
  3596. }
  3597. }
  3598. }
  3599. else {
  3600. u32 mask;
  3601. /* Not yet been reconfigured */
  3602. if (val & (1 << 23))
  3603. mask = FLASH_BACKUP_STRAP_MASK;
  3604. else
  3605. mask = FLASH_STRAP_MASK;
  3606. for (j = 0, flash = &flash_table[0]; j < entry_count;
  3607. j++, flash++) {
  3608. if ((val & mask) == (flash->strapping & mask)) {
  3609. bp->flash_info = flash;
  3610. /* Request access to the flash interface. */
  3611. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3612. return rc;
  3613. /* Enable access to flash interface */
  3614. bnx2_enable_nvram_access(bp);
  3615. /* Reconfigure the flash interface */
  3616. BNX2_WR(bp, BNX2_NVM_CFG1, flash->config1);
  3617. BNX2_WR(bp, BNX2_NVM_CFG2, flash->config2);
  3618. BNX2_WR(bp, BNX2_NVM_CFG3, flash->config3);
  3619. BNX2_WR(bp, BNX2_NVM_WRITE1, flash->write1);
  3620. /* Disable access to flash interface */
  3621. bnx2_disable_nvram_access(bp);
  3622. bnx2_release_nvram_lock(bp);
  3623. break;
  3624. }
  3625. }
  3626. } /* if (val & 0x40000000) */
  3627. if (j == entry_count) {
  3628. bp->flash_info = NULL;
  3629. pr_alert("Unknown flash/EEPROM type\n");
  3630. return -ENODEV;
  3631. }
  3632. get_flash_size:
  3633. val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
  3634. val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
  3635. if (val)
  3636. bp->flash_size = val;
  3637. else
  3638. bp->flash_size = bp->flash_info->total_size;
  3639. return rc;
  3640. }
  3641. static int
  3642. bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
  3643. int buf_size)
  3644. {
  3645. int rc = 0;
  3646. u32 cmd_flags, offset32, len32, extra;
  3647. if (buf_size == 0)
  3648. return 0;
  3649. /* Request access to the flash interface. */
  3650. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3651. return rc;
  3652. /* Enable access to flash interface */
  3653. bnx2_enable_nvram_access(bp);
  3654. len32 = buf_size;
  3655. offset32 = offset;
  3656. extra = 0;
  3657. cmd_flags = 0;
  3658. if (offset32 & 3) {
  3659. u8 buf[4];
  3660. u32 pre_len;
  3661. offset32 &= ~3;
  3662. pre_len = 4 - (offset & 3);
  3663. if (pre_len >= len32) {
  3664. pre_len = len32;
  3665. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3666. BNX2_NVM_COMMAND_LAST;
  3667. }
  3668. else {
  3669. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3670. }
  3671. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3672. if (rc)
  3673. return rc;
  3674. memcpy(ret_buf, buf + (offset & 3), pre_len);
  3675. offset32 += 4;
  3676. ret_buf += pre_len;
  3677. len32 -= pre_len;
  3678. }
  3679. if (len32 & 3) {
  3680. extra = 4 - (len32 & 3);
  3681. len32 = (len32 + 4) & ~3;
  3682. }
  3683. if (len32 == 4) {
  3684. u8 buf[4];
  3685. if (cmd_flags)
  3686. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3687. else
  3688. cmd_flags = BNX2_NVM_COMMAND_FIRST |
  3689. BNX2_NVM_COMMAND_LAST;
  3690. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3691. memcpy(ret_buf, buf, 4 - extra);
  3692. }
  3693. else if (len32 > 0) {
  3694. u8 buf[4];
  3695. /* Read the first word. */
  3696. if (cmd_flags)
  3697. cmd_flags = 0;
  3698. else
  3699. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3700. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
  3701. /* Advance to the next dword. */
  3702. offset32 += 4;
  3703. ret_buf += 4;
  3704. len32 -= 4;
  3705. while (len32 > 4 && rc == 0) {
  3706. rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
  3707. /* Advance to the next dword. */
  3708. offset32 += 4;
  3709. ret_buf += 4;
  3710. len32 -= 4;
  3711. }
  3712. if (rc)
  3713. return rc;
  3714. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3715. rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
  3716. memcpy(ret_buf, buf, 4 - extra);
  3717. }
  3718. /* Disable access to flash interface */
  3719. bnx2_disable_nvram_access(bp);
  3720. bnx2_release_nvram_lock(bp);
  3721. return rc;
  3722. }
  3723. static int
  3724. bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
  3725. int buf_size)
  3726. {
  3727. u32 written, offset32, len32;
  3728. u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
  3729. int rc = 0;
  3730. int align_start, align_end;
  3731. buf = data_buf;
  3732. offset32 = offset;
  3733. len32 = buf_size;
  3734. align_start = align_end = 0;
  3735. if ((align_start = (offset32 & 3))) {
  3736. offset32 &= ~3;
  3737. len32 += align_start;
  3738. if (len32 < 4)
  3739. len32 = 4;
  3740. if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
  3741. return rc;
  3742. }
  3743. if (len32 & 3) {
  3744. align_end = 4 - (len32 & 3);
  3745. len32 += align_end;
  3746. if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
  3747. return rc;
  3748. }
  3749. if (align_start || align_end) {
  3750. align_buf = kmalloc(len32, GFP_KERNEL);
  3751. if (align_buf == NULL)
  3752. return -ENOMEM;
  3753. if (align_start) {
  3754. memcpy(align_buf, start, 4);
  3755. }
  3756. if (align_end) {
  3757. memcpy(align_buf + len32 - 4, end, 4);
  3758. }
  3759. memcpy(align_buf + align_start, data_buf, buf_size);
  3760. buf = align_buf;
  3761. }
  3762. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3763. flash_buffer = kmalloc(264, GFP_KERNEL);
  3764. if (flash_buffer == NULL) {
  3765. rc = -ENOMEM;
  3766. goto nvram_write_end;
  3767. }
  3768. }
  3769. written = 0;
  3770. while ((written < len32) && (rc == 0)) {
  3771. u32 page_start, page_end, data_start, data_end;
  3772. u32 addr, cmd_flags;
  3773. int i;
  3774. /* Find the page_start addr */
  3775. page_start = offset32 + written;
  3776. page_start -= (page_start % bp->flash_info->page_size);
  3777. /* Find the page_end addr */
  3778. page_end = page_start + bp->flash_info->page_size;
  3779. /* Find the data_start addr */
  3780. data_start = (written == 0) ? offset32 : page_start;
  3781. /* Find the data_end addr */
  3782. data_end = (page_end > offset32 + len32) ?
  3783. (offset32 + len32) : page_end;
  3784. /* Request access to the flash interface. */
  3785. if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
  3786. goto nvram_write_end;
  3787. /* Enable access to flash interface */
  3788. bnx2_enable_nvram_access(bp);
  3789. cmd_flags = BNX2_NVM_COMMAND_FIRST;
  3790. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3791. int j;
  3792. /* Read the whole page into the buffer
  3793. * (non-buffer flash only) */
  3794. for (j = 0; j < bp->flash_info->page_size; j += 4) {
  3795. if (j == (bp->flash_info->page_size - 4)) {
  3796. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3797. }
  3798. rc = bnx2_nvram_read_dword(bp,
  3799. page_start + j,
  3800. &flash_buffer[j],
  3801. cmd_flags);
  3802. if (rc)
  3803. goto nvram_write_end;
  3804. cmd_flags = 0;
  3805. }
  3806. }
  3807. /* Enable writes to flash interface (unlock write-protect) */
  3808. if ((rc = bnx2_enable_nvram_write(bp)) != 0)
  3809. goto nvram_write_end;
  3810. /* Loop to write back the buffer data from page_start to
  3811. * data_start */
  3812. i = 0;
  3813. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3814. /* Erase the page */
  3815. if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
  3816. goto nvram_write_end;
  3817. /* Re-enable the write again for the actual write */
  3818. bnx2_enable_nvram_write(bp);
  3819. for (addr = page_start; addr < data_start;
  3820. addr += 4, i += 4) {
  3821. rc = bnx2_nvram_write_dword(bp, addr,
  3822. &flash_buffer[i], cmd_flags);
  3823. if (rc != 0)
  3824. goto nvram_write_end;
  3825. cmd_flags = 0;
  3826. }
  3827. }
  3828. /* Loop to write the new data from data_start to data_end */
  3829. for (addr = data_start; addr < data_end; addr += 4, i += 4) {
  3830. if ((addr == page_end - 4) ||
  3831. ((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
  3832. (addr == data_end - 4))) {
  3833. cmd_flags |= BNX2_NVM_COMMAND_LAST;
  3834. }
  3835. rc = bnx2_nvram_write_dword(bp, addr, buf,
  3836. cmd_flags);
  3837. if (rc != 0)
  3838. goto nvram_write_end;
  3839. cmd_flags = 0;
  3840. buf += 4;
  3841. }
  3842. /* Loop to write back the buffer data from data_end
  3843. * to page_end */
  3844. if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
  3845. for (addr = data_end; addr < page_end;
  3846. addr += 4, i += 4) {
  3847. if (addr == page_end-4) {
  3848. cmd_flags = BNX2_NVM_COMMAND_LAST;
  3849. }
  3850. rc = bnx2_nvram_write_dword(bp, addr,
  3851. &flash_buffer[i], cmd_flags);
  3852. if (rc != 0)
  3853. goto nvram_write_end;
  3854. cmd_flags = 0;
  3855. }
  3856. }
  3857. /* Disable writes to flash interface (lock write-protect) */
  3858. bnx2_disable_nvram_write(bp);
  3859. /* Disable access to flash interface */
  3860. bnx2_disable_nvram_access(bp);
  3861. bnx2_release_nvram_lock(bp);
  3862. /* Increment written */
  3863. written += data_end - data_start;
  3864. }
  3865. nvram_write_end:
  3866. kfree(flash_buffer);
  3867. kfree(align_buf);
  3868. return rc;
  3869. }
  3870. static void
  3871. bnx2_init_fw_cap(struct bnx2 *bp)
  3872. {
  3873. u32 val, sig = 0;
  3874. bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3875. bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
  3876. if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
  3877. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3878. val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
  3879. if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
  3880. return;
  3881. if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
  3882. bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
  3883. sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
  3884. }
  3885. if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
  3886. (val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
  3887. u32 link;
  3888. bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
  3889. link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
  3890. if (link & BNX2_LINK_STATUS_SERDES_LINK)
  3891. bp->phy_port = PORT_FIBRE;
  3892. else
  3893. bp->phy_port = PORT_TP;
  3894. sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
  3895. BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
  3896. }
  3897. if (netif_running(bp->dev) && sig)
  3898. bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
  3899. }
  3900. static void
  3901. bnx2_setup_msix_tbl(struct bnx2 *bp)
  3902. {
  3903. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
  3904. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
  3905. BNX2_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
  3906. }
  3907. static int
  3908. bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
  3909. {
  3910. u32 val;
  3911. int i, rc = 0;
  3912. u8 old_port;
  3913. /* Wait for the current PCI transaction to complete before
  3914. * issuing a reset. */
  3915. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  3916. (BNX2_CHIP(bp) == BNX2_CHIP_5708)) {
  3917. BNX2_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
  3918. BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
  3919. BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
  3920. BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
  3921. BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
  3922. val = BNX2_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
  3923. udelay(5);
  3924. } else { /* 5709 */
  3925. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3926. val &= ~BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  3927. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  3928. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  3929. for (i = 0; i < 100; i++) {
  3930. msleep(1);
  3931. val = BNX2_RD(bp, BNX2_PCICFG_DEVICE_CONTROL);
  3932. if (!(val & BNX2_PCICFG_DEVICE_STATUS_NO_PEND))
  3933. break;
  3934. }
  3935. }
  3936. /* Wait for the firmware to tell us it is ok to issue a reset. */
  3937. bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
  3938. /* Deposit a driver reset signature so the firmware knows that
  3939. * this is a soft reset. */
  3940. bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
  3941. BNX2_DRV_RESET_SIGNATURE_MAGIC);
  3942. /* Do a dummy read to force the chip to complete all current transaction
  3943. * before we issue a reset. */
  3944. val = BNX2_RD(bp, BNX2_MISC_ID);
  3945. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  3946. BNX2_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
  3947. BNX2_RD(bp, BNX2_MISC_COMMAND);
  3948. udelay(5);
  3949. val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3950. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3951. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3952. } else {
  3953. val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3954. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  3955. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
  3956. /* Chip reset. */
  3957. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
  3958. /* Reading back any register after chip reset will hang the
  3959. * bus on 5706 A0 and A1. The msleep below provides plenty
  3960. * of margin for write posting.
  3961. */
  3962. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  3963. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1))
  3964. msleep(20);
  3965. /* Reset takes approximate 30 usec */
  3966. for (i = 0; i < 10; i++) {
  3967. val = BNX2_RD(bp, BNX2_PCICFG_MISC_CONFIG);
  3968. if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3969. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
  3970. break;
  3971. udelay(10);
  3972. }
  3973. if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
  3974. BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
  3975. pr_err("Chip reset did not complete\n");
  3976. return -EBUSY;
  3977. }
  3978. }
  3979. /* Make sure byte swapping is properly configured. */
  3980. val = BNX2_RD(bp, BNX2_PCI_SWAP_DIAG0);
  3981. if (val != 0x01020304) {
  3982. pr_err("Chip not in correct endian mode\n");
  3983. return -ENODEV;
  3984. }
  3985. /* Wait for the firmware to finish its initialization. */
  3986. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
  3987. if (rc)
  3988. return rc;
  3989. spin_lock_bh(&bp->phy_lock);
  3990. old_port = bp->phy_port;
  3991. bnx2_init_fw_cap(bp);
  3992. if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
  3993. old_port != bp->phy_port)
  3994. bnx2_set_default_remote_link(bp);
  3995. spin_unlock_bh(&bp->phy_lock);
  3996. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  3997. /* Adjust the voltage regular to two steps lower. The default
  3998. * of this register is 0x0000000e. */
  3999. BNX2_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
  4000. /* Remove bad rbuf memory from the free pool. */
  4001. rc = bnx2_alloc_bad_rbuf(bp);
  4002. }
  4003. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4004. bnx2_setup_msix_tbl(bp);
  4005. /* Prevent MSIX table reads and write from timing out */
  4006. BNX2_WR(bp, BNX2_MISC_ECO_HW_CTL,
  4007. BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN);
  4008. }
  4009. return rc;
  4010. }
  4011. static int
  4012. bnx2_init_chip(struct bnx2 *bp)
  4013. {
  4014. u32 val, mtu;
  4015. int rc, i;
  4016. /* Make sure the interrupt is not active. */
  4017. BNX2_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
  4018. val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
  4019. BNX2_DMA_CONFIG_DATA_WORD_SWAP |
  4020. #ifdef __BIG_ENDIAN
  4021. BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
  4022. #endif
  4023. BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
  4024. DMA_READ_CHANS << 12 |
  4025. DMA_WRITE_CHANS << 16;
  4026. val |= (0x2 << 20) | (1 << 11);
  4027. if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
  4028. val |= (1 << 23);
  4029. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) &&
  4030. (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0) &&
  4031. !(bp->flags & BNX2_FLAG_PCIX))
  4032. val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
  4033. BNX2_WR(bp, BNX2_DMA_CONFIG, val);
  4034. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  4035. val = BNX2_RD(bp, BNX2_TDMA_CONFIG);
  4036. val |= BNX2_TDMA_CONFIG_ONE_DMA;
  4037. BNX2_WR(bp, BNX2_TDMA_CONFIG, val);
  4038. }
  4039. if (bp->flags & BNX2_FLAG_PCIX) {
  4040. u16 val16;
  4041. pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4042. &val16);
  4043. pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
  4044. val16 & ~PCI_X_CMD_ERO);
  4045. }
  4046. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
  4047. BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
  4048. BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
  4049. BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
  4050. /* Initialize context mapping and zero out the quick contexts. The
  4051. * context block must have already been enabled. */
  4052. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4053. rc = bnx2_init_5709_context(bp);
  4054. if (rc)
  4055. return rc;
  4056. } else
  4057. bnx2_init_context(bp);
  4058. if ((rc = bnx2_init_cpus(bp)) != 0)
  4059. return rc;
  4060. bnx2_init_nvram(bp);
  4061. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  4062. val = BNX2_RD(bp, BNX2_MQ_CONFIG);
  4063. val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
  4064. val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
  4065. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4066. val |= BNX2_MQ_CONFIG_BIN_MQ_MODE;
  4067. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  4068. val |= BNX2_MQ_CONFIG_HALT_DIS;
  4069. }
  4070. BNX2_WR(bp, BNX2_MQ_CONFIG, val);
  4071. val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
  4072. BNX2_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
  4073. BNX2_WR(bp, BNX2_MQ_KNL_WIND_END, val);
  4074. val = (BNX2_PAGE_BITS - 8) << 24;
  4075. BNX2_WR(bp, BNX2_RV2P_CONFIG, val);
  4076. /* Configure page size. */
  4077. val = BNX2_RD(bp, BNX2_TBDR_CONFIG);
  4078. val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
  4079. val |= (BNX2_PAGE_BITS - 8) << 24 | 0x40;
  4080. BNX2_WR(bp, BNX2_TBDR_CONFIG, val);
  4081. val = bp->mac_addr[0] +
  4082. (bp->mac_addr[1] << 8) +
  4083. (bp->mac_addr[2] << 16) +
  4084. bp->mac_addr[3] +
  4085. (bp->mac_addr[4] << 8) +
  4086. (bp->mac_addr[5] << 16);
  4087. BNX2_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
  4088. /* Program the MTU. Also include 4 bytes for CRC32. */
  4089. mtu = bp->dev->mtu;
  4090. val = mtu + ETH_HLEN + ETH_FCS_LEN;
  4091. if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
  4092. val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
  4093. BNX2_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
  4094. if (mtu < 1500)
  4095. mtu = 1500;
  4096. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG, BNX2_RBUF_CONFIG_VAL(mtu));
  4097. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG2, BNX2_RBUF_CONFIG2_VAL(mtu));
  4098. bnx2_reg_wr_ind(bp, BNX2_RBUF_CONFIG3, BNX2_RBUF_CONFIG3_VAL(mtu));
  4099. memset(bp->bnx2_napi[0].status_blk.msi, 0, bp->status_stats_size);
  4100. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
  4101. bp->bnx2_napi[i].last_status_idx = 0;
  4102. bp->idle_chk_status_idx = 0xffff;
  4103. bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
  4104. /* Set up how to generate a link change interrupt. */
  4105. BNX2_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
  4106. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_L,
  4107. (u64) bp->status_blk_mapping & 0xffffffff);
  4108. BNX2_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
  4109. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
  4110. (u64) bp->stats_blk_mapping & 0xffffffff);
  4111. BNX2_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
  4112. (u64) bp->stats_blk_mapping >> 32);
  4113. BNX2_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
  4114. (bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
  4115. BNX2_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
  4116. (bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
  4117. BNX2_WR(bp, BNX2_HC_COMP_PROD_TRIP,
  4118. (bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
  4119. BNX2_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4120. BNX2_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4121. BNX2_WR(bp, BNX2_HC_COM_TICKS,
  4122. (bp->com_ticks_int << 16) | bp->com_ticks);
  4123. BNX2_WR(bp, BNX2_HC_CMD_TICKS,
  4124. (bp->cmd_ticks_int << 16) | bp->cmd_ticks);
  4125. if (bp->flags & BNX2_FLAG_BROKEN_STATS)
  4126. BNX2_WR(bp, BNX2_HC_STATS_TICKS, 0);
  4127. else
  4128. BNX2_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
  4129. BNX2_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
  4130. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1)
  4131. val = BNX2_HC_CONFIG_COLLECT_STATS;
  4132. else {
  4133. val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
  4134. BNX2_HC_CONFIG_COLLECT_STATS;
  4135. }
  4136. if (bp->flags & BNX2_FLAG_USING_MSIX) {
  4137. BNX2_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
  4138. BNX2_HC_MSIX_BIT_VECTOR_VAL);
  4139. val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
  4140. }
  4141. if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
  4142. val |= BNX2_HC_CONFIG_ONE_SHOT | BNX2_HC_CONFIG_USE_INT_PARAM;
  4143. BNX2_WR(bp, BNX2_HC_CONFIG, val);
  4144. if (bp->rx_ticks < 25)
  4145. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 1);
  4146. else
  4147. bnx2_reg_wr_ind(bp, BNX2_FW_RX_LOW_LATENCY, 0);
  4148. for (i = 1; i < bp->irq_nvecs; i++) {
  4149. u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
  4150. BNX2_HC_SB_CONFIG_1;
  4151. BNX2_WR(bp, base,
  4152. BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
  4153. BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
  4154. BNX2_HC_SB_CONFIG_1_ONE_SHOT);
  4155. BNX2_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
  4156. (bp->tx_quick_cons_trip_int << 16) |
  4157. bp->tx_quick_cons_trip);
  4158. BNX2_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
  4159. (bp->tx_ticks_int << 16) | bp->tx_ticks);
  4160. BNX2_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
  4161. (bp->rx_quick_cons_trip_int << 16) |
  4162. bp->rx_quick_cons_trip);
  4163. BNX2_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
  4164. (bp->rx_ticks_int << 16) | bp->rx_ticks);
  4165. }
  4166. /* Clear internal stats counters. */
  4167. BNX2_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
  4168. BNX2_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
  4169. /* Initialize the receive filter. */
  4170. bnx2_set_rx_mode(bp->dev);
  4171. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4172. val = BNX2_RD(bp, BNX2_MISC_NEW_CORE_CTL);
  4173. val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
  4174. BNX2_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
  4175. }
  4176. rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
  4177. 1, 0);
  4178. BNX2_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
  4179. BNX2_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
  4180. udelay(20);
  4181. bp->hc_cmd = BNX2_RD(bp, BNX2_HC_COMMAND);
  4182. return rc;
  4183. }
  4184. static void
  4185. bnx2_clear_ring_states(struct bnx2 *bp)
  4186. {
  4187. struct bnx2_napi *bnapi;
  4188. struct bnx2_tx_ring_info *txr;
  4189. struct bnx2_rx_ring_info *rxr;
  4190. int i;
  4191. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  4192. bnapi = &bp->bnx2_napi[i];
  4193. txr = &bnapi->tx_ring;
  4194. rxr = &bnapi->rx_ring;
  4195. txr->tx_cons = 0;
  4196. txr->hw_tx_cons = 0;
  4197. rxr->rx_prod_bseq = 0;
  4198. rxr->rx_prod = 0;
  4199. rxr->rx_cons = 0;
  4200. rxr->rx_pg_prod = 0;
  4201. rxr->rx_pg_cons = 0;
  4202. }
  4203. }
  4204. static void
  4205. bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
  4206. {
  4207. u32 val, offset0, offset1, offset2, offset3;
  4208. u32 cid_addr = GET_CID_ADDR(cid);
  4209. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4210. offset0 = BNX2_L2CTX_TYPE_XI;
  4211. offset1 = BNX2_L2CTX_CMD_TYPE_XI;
  4212. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
  4213. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
  4214. } else {
  4215. offset0 = BNX2_L2CTX_TYPE;
  4216. offset1 = BNX2_L2CTX_CMD_TYPE;
  4217. offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
  4218. offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
  4219. }
  4220. val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
  4221. bnx2_ctx_wr(bp, cid_addr, offset0, val);
  4222. val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
  4223. bnx2_ctx_wr(bp, cid_addr, offset1, val);
  4224. val = (u64) txr->tx_desc_mapping >> 32;
  4225. bnx2_ctx_wr(bp, cid_addr, offset2, val);
  4226. val = (u64) txr->tx_desc_mapping & 0xffffffff;
  4227. bnx2_ctx_wr(bp, cid_addr, offset3, val);
  4228. }
  4229. static void
  4230. bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
  4231. {
  4232. struct bnx2_tx_bd *txbd;
  4233. u32 cid = TX_CID;
  4234. struct bnx2_napi *bnapi;
  4235. struct bnx2_tx_ring_info *txr;
  4236. bnapi = &bp->bnx2_napi[ring_num];
  4237. txr = &bnapi->tx_ring;
  4238. if (ring_num == 0)
  4239. cid = TX_CID;
  4240. else
  4241. cid = TX_TSS_CID + ring_num - 1;
  4242. bp->tx_wake_thresh = bp->tx_ring_size / 2;
  4243. txbd = &txr->tx_desc_ring[BNX2_MAX_TX_DESC_CNT];
  4244. txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
  4245. txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
  4246. txr->tx_prod = 0;
  4247. txr->tx_prod_bseq = 0;
  4248. txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
  4249. txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
  4250. bnx2_init_tx_context(bp, cid, txr);
  4251. }
  4252. static void
  4253. bnx2_init_rxbd_rings(struct bnx2_rx_bd *rx_ring[], dma_addr_t dma[],
  4254. u32 buf_size, int num_rings)
  4255. {
  4256. int i;
  4257. struct bnx2_rx_bd *rxbd;
  4258. for (i = 0; i < num_rings; i++) {
  4259. int j;
  4260. rxbd = &rx_ring[i][0];
  4261. for (j = 0; j < BNX2_MAX_RX_DESC_CNT; j++, rxbd++) {
  4262. rxbd->rx_bd_len = buf_size;
  4263. rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
  4264. }
  4265. if (i == (num_rings - 1))
  4266. j = 0;
  4267. else
  4268. j = i + 1;
  4269. rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
  4270. rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
  4271. }
  4272. }
  4273. static void
  4274. bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
  4275. {
  4276. int i;
  4277. u16 prod, ring_prod;
  4278. u32 cid, rx_cid_addr, val;
  4279. struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
  4280. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4281. if (ring_num == 0)
  4282. cid = RX_CID;
  4283. else
  4284. cid = RX_RSS_CID + ring_num - 1;
  4285. rx_cid_addr = GET_CID_ADDR(cid);
  4286. bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
  4287. bp->rx_buf_use_size, bp->rx_max_ring);
  4288. bnx2_init_rx_context(bp, cid);
  4289. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  4290. val = BNX2_RD(bp, BNX2_MQ_MAP_L2_5);
  4291. BNX2_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
  4292. }
  4293. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
  4294. if (bp->rx_pg_ring_size) {
  4295. bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
  4296. rxr->rx_pg_desc_mapping,
  4297. PAGE_SIZE, bp->rx_max_pg_ring);
  4298. val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
  4299. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
  4300. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
  4301. BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
  4302. val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
  4303. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
  4304. val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
  4305. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
  4306. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4307. BNX2_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
  4308. }
  4309. val = (u64) rxr->rx_desc_mapping[0] >> 32;
  4310. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
  4311. val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
  4312. bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
  4313. ring_prod = prod = rxr->rx_pg_prod;
  4314. for (i = 0; i < bp->rx_pg_ring_size; i++) {
  4315. if (bnx2_alloc_rx_page(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4316. netdev_warn(bp->dev, "init'ed rx page ring %d with %d/%d pages only\n",
  4317. ring_num, i, bp->rx_pg_ring_size);
  4318. break;
  4319. }
  4320. prod = BNX2_NEXT_RX_BD(prod);
  4321. ring_prod = BNX2_RX_PG_RING_IDX(prod);
  4322. }
  4323. rxr->rx_pg_prod = prod;
  4324. ring_prod = prod = rxr->rx_prod;
  4325. for (i = 0; i < bp->rx_ring_size; i++) {
  4326. if (bnx2_alloc_rx_data(bp, rxr, ring_prod, GFP_KERNEL) < 0) {
  4327. netdev_warn(bp->dev, "init'ed rx ring %d with %d/%d skbs only\n",
  4328. ring_num, i, bp->rx_ring_size);
  4329. break;
  4330. }
  4331. prod = BNX2_NEXT_RX_BD(prod);
  4332. ring_prod = BNX2_RX_RING_IDX(prod);
  4333. }
  4334. rxr->rx_prod = prod;
  4335. rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
  4336. rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
  4337. rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
  4338. BNX2_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
  4339. BNX2_WR16(bp, rxr->rx_bidx_addr, prod);
  4340. BNX2_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
  4341. }
  4342. static void
  4343. bnx2_init_all_rings(struct bnx2 *bp)
  4344. {
  4345. int i;
  4346. u32 val;
  4347. bnx2_clear_ring_states(bp);
  4348. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, 0);
  4349. for (i = 0; i < bp->num_tx_rings; i++)
  4350. bnx2_init_tx_ring(bp, i);
  4351. if (bp->num_tx_rings > 1)
  4352. BNX2_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
  4353. (TX_TSS_CID << 7));
  4354. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
  4355. bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
  4356. for (i = 0; i < bp->num_rx_rings; i++)
  4357. bnx2_init_rx_ring(bp, i);
  4358. if (bp->num_rx_rings > 1) {
  4359. u32 tbl_32 = 0;
  4360. for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
  4361. int shift = (i % 8) << 2;
  4362. tbl_32 |= (i % (bp->num_rx_rings - 1)) << shift;
  4363. if ((i % 8) == 7) {
  4364. BNX2_WR(bp, BNX2_RLUP_RSS_DATA, tbl_32);
  4365. BNX2_WR(bp, BNX2_RLUP_RSS_COMMAND, (i >> 3) |
  4366. BNX2_RLUP_RSS_COMMAND_RSS_WRITE_MASK |
  4367. BNX2_RLUP_RSS_COMMAND_WRITE |
  4368. BNX2_RLUP_RSS_COMMAND_HASH_MASK);
  4369. tbl_32 = 0;
  4370. }
  4371. }
  4372. val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
  4373. BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
  4374. BNX2_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
  4375. }
  4376. }
  4377. static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
  4378. {
  4379. u32 max, num_rings = 1;
  4380. while (ring_size > BNX2_MAX_RX_DESC_CNT) {
  4381. ring_size -= BNX2_MAX_RX_DESC_CNT;
  4382. num_rings++;
  4383. }
  4384. /* round to next power of 2 */
  4385. max = max_size;
  4386. while ((max & num_rings) == 0)
  4387. max >>= 1;
  4388. if (num_rings != max)
  4389. max <<= 1;
  4390. return max;
  4391. }
  4392. static void
  4393. bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
  4394. {
  4395. u32 rx_size, rx_space, jumbo_size;
  4396. /* 8 for CRC and VLAN */
  4397. rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
  4398. rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
  4399. SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4400. bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
  4401. bp->rx_pg_ring_size = 0;
  4402. bp->rx_max_pg_ring = 0;
  4403. bp->rx_max_pg_ring_idx = 0;
  4404. if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
  4405. int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
  4406. jumbo_size = size * pages;
  4407. if (jumbo_size > BNX2_MAX_TOTAL_RX_PG_DESC_CNT)
  4408. jumbo_size = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  4409. bp->rx_pg_ring_size = jumbo_size;
  4410. bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
  4411. BNX2_MAX_RX_PG_RINGS);
  4412. bp->rx_max_pg_ring_idx =
  4413. (bp->rx_max_pg_ring * BNX2_RX_DESC_CNT) - 1;
  4414. rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
  4415. bp->rx_copy_thresh = 0;
  4416. }
  4417. bp->rx_buf_use_size = rx_size;
  4418. /* hw alignment + build_skb() overhead*/
  4419. bp->rx_buf_size = SKB_DATA_ALIGN(bp->rx_buf_use_size + BNX2_RX_ALIGN) +
  4420. NET_SKB_PAD + SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
  4421. bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
  4422. bp->rx_ring_size = size;
  4423. bp->rx_max_ring = bnx2_find_max_ring(size, BNX2_MAX_RX_RINGS);
  4424. bp->rx_max_ring_idx = (bp->rx_max_ring * BNX2_RX_DESC_CNT) - 1;
  4425. }
  4426. static void
  4427. bnx2_free_tx_skbs(struct bnx2 *bp)
  4428. {
  4429. int i;
  4430. for (i = 0; i < bp->num_tx_rings; i++) {
  4431. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4432. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4433. int j;
  4434. if (txr->tx_buf_ring == NULL)
  4435. continue;
  4436. for (j = 0; j < BNX2_TX_DESC_CNT; ) {
  4437. struct bnx2_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
  4438. struct sk_buff *skb = tx_buf->skb;
  4439. int k, last;
  4440. if (skb == NULL) {
  4441. j = BNX2_NEXT_TX_BD(j);
  4442. continue;
  4443. }
  4444. dma_unmap_single(&bp->pdev->dev,
  4445. dma_unmap_addr(tx_buf, mapping),
  4446. skb_headlen(skb),
  4447. PCI_DMA_TODEVICE);
  4448. tx_buf->skb = NULL;
  4449. last = tx_buf->nr_frags;
  4450. j = BNX2_NEXT_TX_BD(j);
  4451. for (k = 0; k < last; k++, j = BNX2_NEXT_TX_BD(j)) {
  4452. tx_buf = &txr->tx_buf_ring[BNX2_TX_RING_IDX(j)];
  4453. dma_unmap_page(&bp->pdev->dev,
  4454. dma_unmap_addr(tx_buf, mapping),
  4455. skb_frag_size(&skb_shinfo(skb)->frags[k]),
  4456. PCI_DMA_TODEVICE);
  4457. }
  4458. dev_kfree_skb(skb);
  4459. }
  4460. netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
  4461. }
  4462. }
  4463. static void
  4464. bnx2_free_rx_skbs(struct bnx2 *bp)
  4465. {
  4466. int i;
  4467. for (i = 0; i < bp->num_rx_rings; i++) {
  4468. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  4469. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4470. int j;
  4471. if (rxr->rx_buf_ring == NULL)
  4472. return;
  4473. for (j = 0; j < bp->rx_max_ring_idx; j++) {
  4474. struct bnx2_sw_bd *rx_buf = &rxr->rx_buf_ring[j];
  4475. u8 *data = rx_buf->data;
  4476. if (data == NULL)
  4477. continue;
  4478. dma_unmap_single(&bp->pdev->dev,
  4479. dma_unmap_addr(rx_buf, mapping),
  4480. bp->rx_buf_use_size,
  4481. PCI_DMA_FROMDEVICE);
  4482. rx_buf->data = NULL;
  4483. kfree(data);
  4484. }
  4485. for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
  4486. bnx2_free_rx_page(bp, rxr, j);
  4487. }
  4488. }
  4489. static void
  4490. bnx2_free_skbs(struct bnx2 *bp)
  4491. {
  4492. bnx2_free_tx_skbs(bp);
  4493. bnx2_free_rx_skbs(bp);
  4494. }
  4495. static int
  4496. bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
  4497. {
  4498. int rc;
  4499. rc = bnx2_reset_chip(bp, reset_code);
  4500. bnx2_free_skbs(bp);
  4501. if (rc)
  4502. return rc;
  4503. if ((rc = bnx2_init_chip(bp)) != 0)
  4504. return rc;
  4505. bnx2_init_all_rings(bp);
  4506. return 0;
  4507. }
  4508. static int
  4509. bnx2_init_nic(struct bnx2 *bp, int reset_phy)
  4510. {
  4511. int rc;
  4512. if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
  4513. return rc;
  4514. spin_lock_bh(&bp->phy_lock);
  4515. bnx2_init_phy(bp, reset_phy);
  4516. bnx2_set_link(bp);
  4517. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4518. bnx2_remote_phy_event(bp);
  4519. spin_unlock_bh(&bp->phy_lock);
  4520. return 0;
  4521. }
  4522. static int
  4523. bnx2_shutdown_chip(struct bnx2 *bp)
  4524. {
  4525. u32 reset_code;
  4526. if (bp->flags & BNX2_FLAG_NO_WOL)
  4527. reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
  4528. else if (bp->wol)
  4529. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
  4530. else
  4531. reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
  4532. return bnx2_reset_chip(bp, reset_code);
  4533. }
  4534. static int
  4535. bnx2_test_registers(struct bnx2 *bp)
  4536. {
  4537. int ret;
  4538. int i, is_5709;
  4539. static const struct {
  4540. u16 offset;
  4541. u16 flags;
  4542. #define BNX2_FL_NOT_5709 1
  4543. u32 rw_mask;
  4544. u32 ro_mask;
  4545. } reg_tbl[] = {
  4546. { 0x006c, 0, 0x00000000, 0x0000003f },
  4547. { 0x0090, 0, 0xffffffff, 0x00000000 },
  4548. { 0x0094, 0, 0x00000000, 0x00000000 },
  4549. { 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
  4550. { 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4551. { 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4552. { 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
  4553. { 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
  4554. { 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4555. { 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
  4556. { 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4557. { 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4558. { 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4559. { 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
  4560. { 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4561. { 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4562. { 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4563. { 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
  4564. { 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
  4565. { 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
  4566. { 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
  4567. { 0x1000, 0, 0x00000000, 0x00000001 },
  4568. { 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
  4569. { 0x1408, 0, 0x01c00800, 0x00000000 },
  4570. { 0x149c, 0, 0x8000ffff, 0x00000000 },
  4571. { 0x14a8, 0, 0x00000000, 0x000001ff },
  4572. { 0x14ac, 0, 0x0fffffff, 0x10000000 },
  4573. { 0x14b0, 0, 0x00000002, 0x00000001 },
  4574. { 0x14b8, 0, 0x00000000, 0x00000000 },
  4575. { 0x14c0, 0, 0x00000000, 0x00000009 },
  4576. { 0x14c4, 0, 0x00003fff, 0x00000000 },
  4577. { 0x14cc, 0, 0x00000000, 0x00000001 },
  4578. { 0x14d0, 0, 0xffffffff, 0x00000000 },
  4579. { 0x1800, 0, 0x00000000, 0x00000001 },
  4580. { 0x1804, 0, 0x00000000, 0x00000003 },
  4581. { 0x2800, 0, 0x00000000, 0x00000001 },
  4582. { 0x2804, 0, 0x00000000, 0x00003f01 },
  4583. { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
  4584. { 0x2810, 0, 0xffff0000, 0x00000000 },
  4585. { 0x2814, 0, 0xffff0000, 0x00000000 },
  4586. { 0x2818, 0, 0xffff0000, 0x00000000 },
  4587. { 0x281c, 0, 0xffff0000, 0x00000000 },
  4588. { 0x2834, 0, 0xffffffff, 0x00000000 },
  4589. { 0x2840, 0, 0x00000000, 0xffffffff },
  4590. { 0x2844, 0, 0x00000000, 0xffffffff },
  4591. { 0x2848, 0, 0xffffffff, 0x00000000 },
  4592. { 0x284c, 0, 0xf800f800, 0x07ff07ff },
  4593. { 0x2c00, 0, 0x00000000, 0x00000011 },
  4594. { 0x2c04, 0, 0x00000000, 0x00030007 },
  4595. { 0x3c00, 0, 0x00000000, 0x00000001 },
  4596. { 0x3c04, 0, 0x00000000, 0x00070000 },
  4597. { 0x3c08, 0, 0x00007f71, 0x07f00000 },
  4598. { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
  4599. { 0x3c10, 0, 0xffffffff, 0x00000000 },
  4600. { 0x3c14, 0, 0x00000000, 0xffffffff },
  4601. { 0x3c18, 0, 0x00000000, 0xffffffff },
  4602. { 0x3c1c, 0, 0xfffff000, 0x00000000 },
  4603. { 0x3c20, 0, 0xffffff00, 0x00000000 },
  4604. { 0x5004, 0, 0x00000000, 0x0000007f },
  4605. { 0x5008, 0, 0x0f0007ff, 0x00000000 },
  4606. { 0x5c00, 0, 0x00000000, 0x00000001 },
  4607. { 0x5c04, 0, 0x00000000, 0x0003000f },
  4608. { 0x5c08, 0, 0x00000003, 0x00000000 },
  4609. { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
  4610. { 0x5c10, 0, 0x00000000, 0xffffffff },
  4611. { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
  4612. { 0x5c84, 0, 0x00000000, 0x0000f333 },
  4613. { 0x5c88, 0, 0x00000000, 0x00077373 },
  4614. { 0x5c8c, 0, 0x00000000, 0x0007f737 },
  4615. { 0x6808, 0, 0x0000ff7f, 0x00000000 },
  4616. { 0x680c, 0, 0xffffffff, 0x00000000 },
  4617. { 0x6810, 0, 0xffffffff, 0x00000000 },
  4618. { 0x6814, 0, 0xffffffff, 0x00000000 },
  4619. { 0x6818, 0, 0xffffffff, 0x00000000 },
  4620. { 0x681c, 0, 0xffffffff, 0x00000000 },
  4621. { 0x6820, 0, 0x00ff00ff, 0x00000000 },
  4622. { 0x6824, 0, 0x00ff00ff, 0x00000000 },
  4623. { 0x6828, 0, 0x00ff00ff, 0x00000000 },
  4624. { 0x682c, 0, 0x03ff03ff, 0x00000000 },
  4625. { 0x6830, 0, 0x03ff03ff, 0x00000000 },
  4626. { 0x6834, 0, 0x03ff03ff, 0x00000000 },
  4627. { 0x6838, 0, 0x03ff03ff, 0x00000000 },
  4628. { 0x683c, 0, 0x0000ffff, 0x00000000 },
  4629. { 0x6840, 0, 0x00000ff0, 0x00000000 },
  4630. { 0x6844, 0, 0x00ffff00, 0x00000000 },
  4631. { 0x684c, 0, 0xffffffff, 0x00000000 },
  4632. { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
  4633. { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
  4634. { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
  4635. { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
  4636. { 0x6908, 0, 0x00000000, 0x0001ff0f },
  4637. { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
  4638. { 0xffff, 0, 0x00000000, 0x00000000 },
  4639. };
  4640. ret = 0;
  4641. is_5709 = 0;
  4642. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4643. is_5709 = 1;
  4644. for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
  4645. u32 offset, rw_mask, ro_mask, save_val, val;
  4646. u16 flags = reg_tbl[i].flags;
  4647. if (is_5709 && (flags & BNX2_FL_NOT_5709))
  4648. continue;
  4649. offset = (u32) reg_tbl[i].offset;
  4650. rw_mask = reg_tbl[i].rw_mask;
  4651. ro_mask = reg_tbl[i].ro_mask;
  4652. save_val = readl(bp->regview + offset);
  4653. writel(0, bp->regview + offset);
  4654. val = readl(bp->regview + offset);
  4655. if ((val & rw_mask) != 0) {
  4656. goto reg_test_err;
  4657. }
  4658. if ((val & ro_mask) != (save_val & ro_mask)) {
  4659. goto reg_test_err;
  4660. }
  4661. writel(0xffffffff, bp->regview + offset);
  4662. val = readl(bp->regview + offset);
  4663. if ((val & rw_mask) != rw_mask) {
  4664. goto reg_test_err;
  4665. }
  4666. if ((val & ro_mask) != (save_val & ro_mask)) {
  4667. goto reg_test_err;
  4668. }
  4669. writel(save_val, bp->regview + offset);
  4670. continue;
  4671. reg_test_err:
  4672. writel(save_val, bp->regview + offset);
  4673. ret = -ENODEV;
  4674. break;
  4675. }
  4676. return ret;
  4677. }
  4678. static int
  4679. bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
  4680. {
  4681. static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
  4682. 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
  4683. int i;
  4684. for (i = 0; i < sizeof(test_pattern) / 4; i++) {
  4685. u32 offset;
  4686. for (offset = 0; offset < size; offset += 4) {
  4687. bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
  4688. if (bnx2_reg_rd_ind(bp, start + offset) !=
  4689. test_pattern[i]) {
  4690. return -ENODEV;
  4691. }
  4692. }
  4693. }
  4694. return 0;
  4695. }
  4696. static int
  4697. bnx2_test_memory(struct bnx2 *bp)
  4698. {
  4699. int ret = 0;
  4700. int i;
  4701. static struct mem_entry {
  4702. u32 offset;
  4703. u32 len;
  4704. } mem_tbl_5706[] = {
  4705. { 0x60000, 0x4000 },
  4706. { 0xa0000, 0x3000 },
  4707. { 0xe0000, 0x4000 },
  4708. { 0x120000, 0x4000 },
  4709. { 0x1a0000, 0x4000 },
  4710. { 0x160000, 0x4000 },
  4711. { 0xffffffff, 0 },
  4712. },
  4713. mem_tbl_5709[] = {
  4714. { 0x60000, 0x4000 },
  4715. { 0xa0000, 0x3000 },
  4716. { 0xe0000, 0x4000 },
  4717. { 0x120000, 0x4000 },
  4718. { 0x1a0000, 0x4000 },
  4719. { 0xffffffff, 0 },
  4720. };
  4721. struct mem_entry *mem_tbl;
  4722. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  4723. mem_tbl = mem_tbl_5709;
  4724. else
  4725. mem_tbl = mem_tbl_5706;
  4726. for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
  4727. if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
  4728. mem_tbl[i].len)) != 0) {
  4729. return ret;
  4730. }
  4731. }
  4732. return ret;
  4733. }
  4734. #define BNX2_MAC_LOOPBACK 0
  4735. #define BNX2_PHY_LOOPBACK 1
  4736. static int
  4737. bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
  4738. {
  4739. unsigned int pkt_size, num_pkts, i;
  4740. struct sk_buff *skb;
  4741. u8 *data;
  4742. unsigned char *packet;
  4743. u16 rx_start_idx, rx_idx;
  4744. dma_addr_t map;
  4745. struct bnx2_tx_bd *txbd;
  4746. struct bnx2_sw_bd *rx_buf;
  4747. struct l2_fhdr *rx_hdr;
  4748. int ret = -ENODEV;
  4749. struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
  4750. struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
  4751. struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
  4752. tx_napi = bnapi;
  4753. txr = &tx_napi->tx_ring;
  4754. rxr = &bnapi->rx_ring;
  4755. if (loopback_mode == BNX2_MAC_LOOPBACK) {
  4756. bp->loopback = MAC_LOOPBACK;
  4757. bnx2_set_mac_loopback(bp);
  4758. }
  4759. else if (loopback_mode == BNX2_PHY_LOOPBACK) {
  4760. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  4761. return 0;
  4762. bp->loopback = PHY_LOOPBACK;
  4763. bnx2_set_phy_loopback(bp);
  4764. }
  4765. else
  4766. return -EINVAL;
  4767. pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
  4768. skb = netdev_alloc_skb(bp->dev, pkt_size);
  4769. if (!skb)
  4770. return -ENOMEM;
  4771. packet = skb_put(skb, pkt_size);
  4772. memcpy(packet, bp->dev->dev_addr, ETH_ALEN);
  4773. memset(packet + ETH_ALEN, 0x0, 8);
  4774. for (i = 14; i < pkt_size; i++)
  4775. packet[i] = (unsigned char) (i & 0xff);
  4776. map = dma_map_single(&bp->pdev->dev, skb->data, pkt_size,
  4777. PCI_DMA_TODEVICE);
  4778. if (dma_mapping_error(&bp->pdev->dev, map)) {
  4779. dev_kfree_skb(skb);
  4780. return -EIO;
  4781. }
  4782. BNX2_WR(bp, BNX2_HC_COMMAND,
  4783. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4784. BNX2_RD(bp, BNX2_HC_COMMAND);
  4785. udelay(5);
  4786. rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
  4787. num_pkts = 0;
  4788. txbd = &txr->tx_desc_ring[BNX2_TX_RING_IDX(txr->tx_prod)];
  4789. txbd->tx_bd_haddr_hi = (u64) map >> 32;
  4790. txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
  4791. txbd->tx_bd_mss_nbytes = pkt_size;
  4792. txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
  4793. num_pkts++;
  4794. txr->tx_prod = BNX2_NEXT_TX_BD(txr->tx_prod);
  4795. txr->tx_prod_bseq += pkt_size;
  4796. BNX2_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
  4797. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  4798. udelay(100);
  4799. BNX2_WR(bp, BNX2_HC_COMMAND,
  4800. bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
  4801. BNX2_RD(bp, BNX2_HC_COMMAND);
  4802. udelay(5);
  4803. dma_unmap_single(&bp->pdev->dev, map, pkt_size, PCI_DMA_TODEVICE);
  4804. dev_kfree_skb(skb);
  4805. if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
  4806. goto loopback_test_done;
  4807. rx_idx = bnx2_get_hw_rx_cons(bnapi);
  4808. if (rx_idx != rx_start_idx + num_pkts) {
  4809. goto loopback_test_done;
  4810. }
  4811. rx_buf = &rxr->rx_buf_ring[rx_start_idx];
  4812. data = rx_buf->data;
  4813. rx_hdr = get_l2_fhdr(data);
  4814. data = (u8 *)rx_hdr + BNX2_RX_OFFSET;
  4815. dma_sync_single_for_cpu(&bp->pdev->dev,
  4816. dma_unmap_addr(rx_buf, mapping),
  4817. bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
  4818. if (rx_hdr->l2_fhdr_status &
  4819. (L2_FHDR_ERRORS_BAD_CRC |
  4820. L2_FHDR_ERRORS_PHY_DECODE |
  4821. L2_FHDR_ERRORS_ALIGNMENT |
  4822. L2_FHDR_ERRORS_TOO_SHORT |
  4823. L2_FHDR_ERRORS_GIANT_FRAME)) {
  4824. goto loopback_test_done;
  4825. }
  4826. if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
  4827. goto loopback_test_done;
  4828. }
  4829. for (i = 14; i < pkt_size; i++) {
  4830. if (*(data + i) != (unsigned char) (i & 0xff)) {
  4831. goto loopback_test_done;
  4832. }
  4833. }
  4834. ret = 0;
  4835. loopback_test_done:
  4836. bp->loopback = 0;
  4837. return ret;
  4838. }
  4839. #define BNX2_MAC_LOOPBACK_FAILED 1
  4840. #define BNX2_PHY_LOOPBACK_FAILED 2
  4841. #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
  4842. BNX2_PHY_LOOPBACK_FAILED)
  4843. static int
  4844. bnx2_test_loopback(struct bnx2 *bp)
  4845. {
  4846. int rc = 0;
  4847. if (!netif_running(bp->dev))
  4848. return BNX2_LOOPBACK_FAILED;
  4849. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  4850. spin_lock_bh(&bp->phy_lock);
  4851. bnx2_init_phy(bp, 1);
  4852. spin_unlock_bh(&bp->phy_lock);
  4853. if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
  4854. rc |= BNX2_MAC_LOOPBACK_FAILED;
  4855. if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
  4856. rc |= BNX2_PHY_LOOPBACK_FAILED;
  4857. return rc;
  4858. }
  4859. #define NVRAM_SIZE 0x200
  4860. #define CRC32_RESIDUAL 0xdebb20e3
  4861. static int
  4862. bnx2_test_nvram(struct bnx2 *bp)
  4863. {
  4864. __be32 buf[NVRAM_SIZE / 4];
  4865. u8 *data = (u8 *) buf;
  4866. int rc = 0;
  4867. u32 magic, csum;
  4868. if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
  4869. goto test_nvram_done;
  4870. magic = be32_to_cpu(buf[0]);
  4871. if (magic != 0x669955aa) {
  4872. rc = -ENODEV;
  4873. goto test_nvram_done;
  4874. }
  4875. if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
  4876. goto test_nvram_done;
  4877. csum = ether_crc_le(0x100, data);
  4878. if (csum != CRC32_RESIDUAL) {
  4879. rc = -ENODEV;
  4880. goto test_nvram_done;
  4881. }
  4882. csum = ether_crc_le(0x100, data + 0x100);
  4883. if (csum != CRC32_RESIDUAL) {
  4884. rc = -ENODEV;
  4885. }
  4886. test_nvram_done:
  4887. return rc;
  4888. }
  4889. static int
  4890. bnx2_test_link(struct bnx2 *bp)
  4891. {
  4892. u32 bmsr;
  4893. if (!netif_running(bp->dev))
  4894. return -ENODEV;
  4895. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  4896. if (bp->link_up)
  4897. return 0;
  4898. return -ENODEV;
  4899. }
  4900. spin_lock_bh(&bp->phy_lock);
  4901. bnx2_enable_bmsr1(bp);
  4902. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4903. bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
  4904. bnx2_disable_bmsr1(bp);
  4905. spin_unlock_bh(&bp->phy_lock);
  4906. if (bmsr & BMSR_LSTATUS) {
  4907. return 0;
  4908. }
  4909. return -ENODEV;
  4910. }
  4911. static int
  4912. bnx2_test_intr(struct bnx2 *bp)
  4913. {
  4914. int i;
  4915. u16 status_idx;
  4916. if (!netif_running(bp->dev))
  4917. return -ENODEV;
  4918. status_idx = BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
  4919. /* This register is not touched during run-time. */
  4920. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
  4921. BNX2_RD(bp, BNX2_HC_COMMAND);
  4922. for (i = 0; i < 10; i++) {
  4923. if ((BNX2_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
  4924. status_idx) {
  4925. break;
  4926. }
  4927. msleep_interruptible(10);
  4928. }
  4929. if (i < 10)
  4930. return 0;
  4931. return -ENODEV;
  4932. }
  4933. /* Determining link for parallel detection. */
  4934. static int
  4935. bnx2_5706_serdes_has_link(struct bnx2 *bp)
  4936. {
  4937. u32 mode_ctl, an_dbg, exp;
  4938. if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
  4939. return 0;
  4940. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
  4941. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
  4942. if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
  4943. return 0;
  4944. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4945. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4946. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
  4947. if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
  4948. return 0;
  4949. bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
  4950. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4951. bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
  4952. if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
  4953. return 0;
  4954. return 1;
  4955. }
  4956. static void
  4957. bnx2_5706_serdes_timer(struct bnx2 *bp)
  4958. {
  4959. int check_link = 1;
  4960. spin_lock(&bp->phy_lock);
  4961. if (bp->serdes_an_pending) {
  4962. bp->serdes_an_pending--;
  4963. check_link = 0;
  4964. } else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  4965. u32 bmcr;
  4966. bp->current_interval = BNX2_TIMER_INTERVAL;
  4967. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4968. if (bmcr & BMCR_ANENABLE) {
  4969. if (bnx2_5706_serdes_has_link(bp)) {
  4970. bmcr &= ~BMCR_ANENABLE;
  4971. bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
  4972. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4973. bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
  4974. }
  4975. }
  4976. }
  4977. else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
  4978. (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
  4979. u32 phy2;
  4980. bnx2_write_phy(bp, 0x17, 0x0f01);
  4981. bnx2_read_phy(bp, 0x15, &phy2);
  4982. if (phy2 & 0x20) {
  4983. u32 bmcr;
  4984. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  4985. bmcr |= BMCR_ANENABLE;
  4986. bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
  4987. bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
  4988. }
  4989. } else
  4990. bp->current_interval = BNX2_TIMER_INTERVAL;
  4991. if (check_link) {
  4992. u32 val;
  4993. bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
  4994. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4995. bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
  4996. if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
  4997. if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
  4998. bnx2_5706s_force_link_dn(bp, 1);
  4999. bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
  5000. } else
  5001. bnx2_set_link(bp);
  5002. } else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
  5003. bnx2_set_link(bp);
  5004. }
  5005. spin_unlock(&bp->phy_lock);
  5006. }
  5007. static void
  5008. bnx2_5708_serdes_timer(struct bnx2 *bp)
  5009. {
  5010. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  5011. return;
  5012. if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
  5013. bp->serdes_an_pending = 0;
  5014. return;
  5015. }
  5016. spin_lock(&bp->phy_lock);
  5017. if (bp->serdes_an_pending)
  5018. bp->serdes_an_pending--;
  5019. else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
  5020. u32 bmcr;
  5021. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5022. if (bmcr & BMCR_ANENABLE) {
  5023. bnx2_enable_forced_2g5(bp);
  5024. bp->current_interval = BNX2_SERDES_FORCED_TIMEOUT;
  5025. } else {
  5026. bnx2_disable_forced_2g5(bp);
  5027. bp->serdes_an_pending = 2;
  5028. bp->current_interval = BNX2_TIMER_INTERVAL;
  5029. }
  5030. } else
  5031. bp->current_interval = BNX2_TIMER_INTERVAL;
  5032. spin_unlock(&bp->phy_lock);
  5033. }
  5034. static void
  5035. bnx2_timer(unsigned long data)
  5036. {
  5037. struct bnx2 *bp = (struct bnx2 *) data;
  5038. if (!netif_running(bp->dev))
  5039. return;
  5040. if (atomic_read(&bp->intr_sem) != 0)
  5041. goto bnx2_restart_timer;
  5042. if ((bp->flags & (BNX2_FLAG_USING_MSI | BNX2_FLAG_ONE_SHOT_MSI)) ==
  5043. BNX2_FLAG_USING_MSI)
  5044. bnx2_chk_missed_msi(bp);
  5045. bnx2_send_heart_beat(bp);
  5046. bp->stats_blk->stat_FwRxDrop =
  5047. bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
  5048. /* workaround occasional corrupted counters */
  5049. if ((bp->flags & BNX2_FLAG_BROKEN_STATS) && bp->stats_ticks)
  5050. BNX2_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
  5051. BNX2_HC_COMMAND_STATS_NOW);
  5052. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5053. if (BNX2_CHIP(bp) == BNX2_CHIP_5706)
  5054. bnx2_5706_serdes_timer(bp);
  5055. else
  5056. bnx2_5708_serdes_timer(bp);
  5057. }
  5058. bnx2_restart_timer:
  5059. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5060. }
  5061. static int
  5062. bnx2_request_irq(struct bnx2 *bp)
  5063. {
  5064. unsigned long flags;
  5065. struct bnx2_irq *irq;
  5066. int rc = 0, i;
  5067. if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
  5068. flags = 0;
  5069. else
  5070. flags = IRQF_SHARED;
  5071. for (i = 0; i < bp->irq_nvecs; i++) {
  5072. irq = &bp->irq_tbl[i];
  5073. rc = request_irq(irq->vector, irq->handler, flags, irq->name,
  5074. &bp->bnx2_napi[i]);
  5075. if (rc)
  5076. break;
  5077. irq->requested = 1;
  5078. }
  5079. return rc;
  5080. }
  5081. static void
  5082. __bnx2_free_irq(struct bnx2 *bp)
  5083. {
  5084. struct bnx2_irq *irq;
  5085. int i;
  5086. for (i = 0; i < bp->irq_nvecs; i++) {
  5087. irq = &bp->irq_tbl[i];
  5088. if (irq->requested)
  5089. free_irq(irq->vector, &bp->bnx2_napi[i]);
  5090. irq->requested = 0;
  5091. }
  5092. }
  5093. static void
  5094. bnx2_free_irq(struct bnx2 *bp)
  5095. {
  5096. __bnx2_free_irq(bp);
  5097. if (bp->flags & BNX2_FLAG_USING_MSI)
  5098. pci_disable_msi(bp->pdev);
  5099. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5100. pci_disable_msix(bp->pdev);
  5101. bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
  5102. }
  5103. static void
  5104. bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
  5105. {
  5106. int i, total_vecs;
  5107. struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
  5108. struct net_device *dev = bp->dev;
  5109. const int len = sizeof(bp->irq_tbl[0].name);
  5110. bnx2_setup_msix_tbl(bp);
  5111. BNX2_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
  5112. BNX2_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
  5113. BNX2_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
  5114. /* Need to flush the previous three writes to ensure MSI-X
  5115. * is setup properly */
  5116. BNX2_RD(bp, BNX2_PCI_MSIX_CONTROL);
  5117. for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
  5118. msix_ent[i].entry = i;
  5119. msix_ent[i].vector = 0;
  5120. }
  5121. total_vecs = msix_vecs;
  5122. #ifdef BCM_CNIC
  5123. total_vecs++;
  5124. #endif
  5125. total_vecs = pci_enable_msix_range(bp->pdev, msix_ent,
  5126. BNX2_MIN_MSIX_VEC, total_vecs);
  5127. if (total_vecs < 0)
  5128. return;
  5129. msix_vecs = total_vecs;
  5130. #ifdef BCM_CNIC
  5131. msix_vecs--;
  5132. #endif
  5133. bp->irq_nvecs = msix_vecs;
  5134. bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
  5135. for (i = 0; i < total_vecs; i++) {
  5136. bp->irq_tbl[i].vector = msix_ent[i].vector;
  5137. snprintf(bp->irq_tbl[i].name, len, "%s-%d", dev->name, i);
  5138. bp->irq_tbl[i].handler = bnx2_msi_1shot;
  5139. }
  5140. }
  5141. static int
  5142. bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
  5143. {
  5144. int cpus = netif_get_num_default_rss_queues();
  5145. int msix_vecs;
  5146. if (!bp->num_req_rx_rings)
  5147. msix_vecs = max(cpus + 1, bp->num_req_tx_rings);
  5148. else if (!bp->num_req_tx_rings)
  5149. msix_vecs = max(cpus, bp->num_req_rx_rings);
  5150. else
  5151. msix_vecs = max(bp->num_req_rx_rings, bp->num_req_tx_rings);
  5152. msix_vecs = min(msix_vecs, RX_MAX_RINGS);
  5153. bp->irq_tbl[0].handler = bnx2_interrupt;
  5154. strcpy(bp->irq_tbl[0].name, bp->dev->name);
  5155. bp->irq_nvecs = 1;
  5156. bp->irq_tbl[0].vector = bp->pdev->irq;
  5157. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi)
  5158. bnx2_enable_msix(bp, msix_vecs);
  5159. if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
  5160. !(bp->flags & BNX2_FLAG_USING_MSIX)) {
  5161. if (pci_enable_msi(bp->pdev) == 0) {
  5162. bp->flags |= BNX2_FLAG_USING_MSI;
  5163. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  5164. bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
  5165. bp->irq_tbl[0].handler = bnx2_msi_1shot;
  5166. } else
  5167. bp->irq_tbl[0].handler = bnx2_msi;
  5168. bp->irq_tbl[0].vector = bp->pdev->irq;
  5169. }
  5170. }
  5171. if (!bp->num_req_tx_rings)
  5172. bp->num_tx_rings = rounddown_pow_of_two(bp->irq_nvecs);
  5173. else
  5174. bp->num_tx_rings = min(bp->irq_nvecs, bp->num_req_tx_rings);
  5175. if (!bp->num_req_rx_rings)
  5176. bp->num_rx_rings = bp->irq_nvecs;
  5177. else
  5178. bp->num_rx_rings = min(bp->irq_nvecs, bp->num_req_rx_rings);
  5179. netif_set_real_num_tx_queues(bp->dev, bp->num_tx_rings);
  5180. return netif_set_real_num_rx_queues(bp->dev, bp->num_rx_rings);
  5181. }
  5182. /* Called with rtnl_lock */
  5183. static int
  5184. bnx2_open(struct net_device *dev)
  5185. {
  5186. struct bnx2 *bp = netdev_priv(dev);
  5187. int rc;
  5188. rc = bnx2_request_firmware(bp);
  5189. if (rc < 0)
  5190. goto out;
  5191. netif_carrier_off(dev);
  5192. bnx2_disable_int(bp);
  5193. rc = bnx2_setup_int_mode(bp, disable_msi);
  5194. if (rc)
  5195. goto open_err;
  5196. bnx2_init_napi(bp);
  5197. bnx2_napi_enable(bp);
  5198. rc = bnx2_alloc_mem(bp);
  5199. if (rc)
  5200. goto open_err;
  5201. rc = bnx2_request_irq(bp);
  5202. if (rc)
  5203. goto open_err;
  5204. rc = bnx2_init_nic(bp, 1);
  5205. if (rc)
  5206. goto open_err;
  5207. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5208. atomic_set(&bp->intr_sem, 0);
  5209. memset(bp->temp_stats_blk, 0, sizeof(struct statistics_block));
  5210. bnx2_enable_int(bp);
  5211. if (bp->flags & BNX2_FLAG_USING_MSI) {
  5212. /* Test MSI to make sure it is working
  5213. * If MSI test fails, go back to INTx mode
  5214. */
  5215. if (bnx2_test_intr(bp) != 0) {
  5216. netdev_warn(bp->dev, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
  5217. bnx2_disable_int(bp);
  5218. bnx2_free_irq(bp);
  5219. bnx2_setup_int_mode(bp, 1);
  5220. rc = bnx2_init_nic(bp, 0);
  5221. if (!rc)
  5222. rc = bnx2_request_irq(bp);
  5223. if (rc) {
  5224. del_timer_sync(&bp->timer);
  5225. goto open_err;
  5226. }
  5227. bnx2_enable_int(bp);
  5228. }
  5229. }
  5230. if (bp->flags & BNX2_FLAG_USING_MSI)
  5231. netdev_info(dev, "using MSI\n");
  5232. else if (bp->flags & BNX2_FLAG_USING_MSIX)
  5233. netdev_info(dev, "using MSIX\n");
  5234. netif_tx_start_all_queues(dev);
  5235. out:
  5236. return rc;
  5237. open_err:
  5238. bnx2_napi_disable(bp);
  5239. bnx2_free_skbs(bp);
  5240. bnx2_free_irq(bp);
  5241. bnx2_free_mem(bp);
  5242. bnx2_del_napi(bp);
  5243. bnx2_release_firmware(bp);
  5244. goto out;
  5245. }
  5246. static void
  5247. bnx2_reset_task(struct work_struct *work)
  5248. {
  5249. struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
  5250. int rc;
  5251. u16 pcicmd;
  5252. rtnl_lock();
  5253. if (!netif_running(bp->dev)) {
  5254. rtnl_unlock();
  5255. return;
  5256. }
  5257. bnx2_netif_stop(bp, true);
  5258. pci_read_config_word(bp->pdev, PCI_COMMAND, &pcicmd);
  5259. if (!(pcicmd & PCI_COMMAND_MEMORY)) {
  5260. /* in case PCI block has reset */
  5261. pci_restore_state(bp->pdev);
  5262. pci_save_state(bp->pdev);
  5263. }
  5264. rc = bnx2_init_nic(bp, 1);
  5265. if (rc) {
  5266. netdev_err(bp->dev, "failed to reset NIC, closing\n");
  5267. bnx2_napi_enable(bp);
  5268. dev_close(bp->dev);
  5269. rtnl_unlock();
  5270. return;
  5271. }
  5272. atomic_set(&bp->intr_sem, 1);
  5273. bnx2_netif_start(bp, true);
  5274. rtnl_unlock();
  5275. }
  5276. #define BNX2_FTQ_ENTRY(ftq) { __stringify(ftq##FTQ_CTL), BNX2_##ftq##FTQ_CTL }
  5277. static void
  5278. bnx2_dump_ftq(struct bnx2 *bp)
  5279. {
  5280. int i;
  5281. u32 reg, bdidx, cid, valid;
  5282. struct net_device *dev = bp->dev;
  5283. static const struct ftq_reg {
  5284. char *name;
  5285. u32 off;
  5286. } ftq_arr[] = {
  5287. BNX2_FTQ_ENTRY(RV2P_P),
  5288. BNX2_FTQ_ENTRY(RV2P_T),
  5289. BNX2_FTQ_ENTRY(RV2P_M),
  5290. BNX2_FTQ_ENTRY(TBDR_),
  5291. BNX2_FTQ_ENTRY(TDMA_),
  5292. BNX2_FTQ_ENTRY(TXP_),
  5293. BNX2_FTQ_ENTRY(TXP_),
  5294. BNX2_FTQ_ENTRY(TPAT_),
  5295. BNX2_FTQ_ENTRY(RXP_C),
  5296. BNX2_FTQ_ENTRY(RXP_),
  5297. BNX2_FTQ_ENTRY(COM_COMXQ_),
  5298. BNX2_FTQ_ENTRY(COM_COMTQ_),
  5299. BNX2_FTQ_ENTRY(COM_COMQ_),
  5300. BNX2_FTQ_ENTRY(CP_CPQ_),
  5301. };
  5302. netdev_err(dev, "<--- start FTQ dump --->\n");
  5303. for (i = 0; i < ARRAY_SIZE(ftq_arr); i++)
  5304. netdev_err(dev, "%s %08x\n", ftq_arr[i].name,
  5305. bnx2_reg_rd_ind(bp, ftq_arr[i].off));
  5306. netdev_err(dev, "CPU states:\n");
  5307. for (reg = BNX2_TXP_CPU_MODE; reg <= BNX2_CP_CPU_MODE; reg += 0x40000)
  5308. netdev_err(dev, "%06x mode %x state %x evt_mask %x pc %x pc %x instr %x\n",
  5309. reg, bnx2_reg_rd_ind(bp, reg),
  5310. bnx2_reg_rd_ind(bp, reg + 4),
  5311. bnx2_reg_rd_ind(bp, reg + 8),
  5312. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5313. bnx2_reg_rd_ind(bp, reg + 0x1c),
  5314. bnx2_reg_rd_ind(bp, reg + 0x20));
  5315. netdev_err(dev, "<--- end FTQ dump --->\n");
  5316. netdev_err(dev, "<--- start TBDC dump --->\n");
  5317. netdev_err(dev, "TBDC free cnt: %ld\n",
  5318. BNX2_RD(bp, BNX2_TBDC_STATUS) & BNX2_TBDC_STATUS_FREE_CNT);
  5319. netdev_err(dev, "LINE CID BIDX CMD VALIDS\n");
  5320. for (i = 0; i < 0x20; i++) {
  5321. int j = 0;
  5322. BNX2_WR(bp, BNX2_TBDC_BD_ADDR, i);
  5323. BNX2_WR(bp, BNX2_TBDC_CAM_OPCODE,
  5324. BNX2_TBDC_CAM_OPCODE_OPCODE_CAM_READ);
  5325. BNX2_WR(bp, BNX2_TBDC_COMMAND, BNX2_TBDC_COMMAND_CMD_REG_ARB);
  5326. while ((BNX2_RD(bp, BNX2_TBDC_COMMAND) &
  5327. BNX2_TBDC_COMMAND_CMD_REG_ARB) && j < 100)
  5328. j++;
  5329. cid = BNX2_RD(bp, BNX2_TBDC_CID);
  5330. bdidx = BNX2_RD(bp, BNX2_TBDC_BIDX);
  5331. valid = BNX2_RD(bp, BNX2_TBDC_CAM_OPCODE);
  5332. netdev_err(dev, "%02x %06x %04lx %02x [%x]\n",
  5333. i, cid, bdidx & BNX2_TBDC_BDIDX_BDIDX,
  5334. bdidx >> 24, (valid >> 8) & 0x0ff);
  5335. }
  5336. netdev_err(dev, "<--- end TBDC dump --->\n");
  5337. }
  5338. static void
  5339. bnx2_dump_state(struct bnx2 *bp)
  5340. {
  5341. struct net_device *dev = bp->dev;
  5342. u32 val1, val2;
  5343. pci_read_config_dword(bp->pdev, PCI_COMMAND, &val1);
  5344. netdev_err(dev, "DEBUG: intr_sem[%x] PCI_CMD[%08x]\n",
  5345. atomic_read(&bp->intr_sem), val1);
  5346. pci_read_config_dword(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &val1);
  5347. pci_read_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, &val2);
  5348. netdev_err(dev, "DEBUG: PCI_PM[%08x] PCI_MISC_CFG[%08x]\n", val1, val2);
  5349. netdev_err(dev, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
  5350. BNX2_RD(bp, BNX2_EMAC_TX_STATUS),
  5351. BNX2_RD(bp, BNX2_EMAC_RX_STATUS));
  5352. netdev_err(dev, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
  5353. BNX2_RD(bp, BNX2_RPM_MGMT_PKT_CTRL));
  5354. netdev_err(dev, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
  5355. BNX2_RD(bp, BNX2_HC_STATS_INTERRUPT_STATUS));
  5356. if (bp->flags & BNX2_FLAG_USING_MSIX)
  5357. netdev_err(dev, "DEBUG: PBA[%08x]\n",
  5358. BNX2_RD(bp, BNX2_PCI_GRC_WINDOW3_BASE));
  5359. }
  5360. static void
  5361. bnx2_tx_timeout(struct net_device *dev)
  5362. {
  5363. struct bnx2 *bp = netdev_priv(dev);
  5364. bnx2_dump_ftq(bp);
  5365. bnx2_dump_state(bp);
  5366. bnx2_dump_mcp_state(bp);
  5367. /* This allows the netif to be shutdown gracefully before resetting */
  5368. schedule_work(&bp->reset_task);
  5369. }
  5370. /* Called with netif_tx_lock.
  5371. * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
  5372. * netif_wake_queue().
  5373. */
  5374. static netdev_tx_t
  5375. bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
  5376. {
  5377. struct bnx2 *bp = netdev_priv(dev);
  5378. dma_addr_t mapping;
  5379. struct bnx2_tx_bd *txbd;
  5380. struct bnx2_sw_tx_bd *tx_buf;
  5381. u32 len, vlan_tag_flags, last_frag, mss;
  5382. u16 prod, ring_prod;
  5383. int i;
  5384. struct bnx2_napi *bnapi;
  5385. struct bnx2_tx_ring_info *txr;
  5386. struct netdev_queue *txq;
  5387. /* Determine which tx ring we will be placed on */
  5388. i = skb_get_queue_mapping(skb);
  5389. bnapi = &bp->bnx2_napi[i];
  5390. txr = &bnapi->tx_ring;
  5391. txq = netdev_get_tx_queue(dev, i);
  5392. if (unlikely(bnx2_tx_avail(bp, txr) <
  5393. (skb_shinfo(skb)->nr_frags + 1))) {
  5394. netif_tx_stop_queue(txq);
  5395. netdev_err(dev, "BUG! Tx ring full when queue awake!\n");
  5396. return NETDEV_TX_BUSY;
  5397. }
  5398. len = skb_headlen(skb);
  5399. prod = txr->tx_prod;
  5400. ring_prod = BNX2_TX_RING_IDX(prod);
  5401. vlan_tag_flags = 0;
  5402. if (skb->ip_summed == CHECKSUM_PARTIAL) {
  5403. vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
  5404. }
  5405. if (vlan_tx_tag_present(skb)) {
  5406. vlan_tag_flags |=
  5407. (TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
  5408. }
  5409. if ((mss = skb_shinfo(skb)->gso_size)) {
  5410. u32 tcp_opt_len;
  5411. struct iphdr *iph;
  5412. vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
  5413. tcp_opt_len = tcp_optlen(skb);
  5414. if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
  5415. u32 tcp_off = skb_transport_offset(skb) -
  5416. sizeof(struct ipv6hdr) - ETH_HLEN;
  5417. vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
  5418. TX_BD_FLAGS_SW_FLAGS;
  5419. if (likely(tcp_off == 0))
  5420. vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
  5421. else {
  5422. tcp_off >>= 3;
  5423. vlan_tag_flags |= ((tcp_off & 0x3) <<
  5424. TX_BD_FLAGS_TCP6_OFF0_SHL) |
  5425. ((tcp_off & 0x10) <<
  5426. TX_BD_FLAGS_TCP6_OFF4_SHL);
  5427. mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
  5428. }
  5429. } else {
  5430. iph = ip_hdr(skb);
  5431. if (tcp_opt_len || (iph->ihl > 5)) {
  5432. vlan_tag_flags |= ((iph->ihl - 5) +
  5433. (tcp_opt_len >> 2)) << 8;
  5434. }
  5435. }
  5436. } else
  5437. mss = 0;
  5438. mapping = dma_map_single(&bp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
  5439. if (dma_mapping_error(&bp->pdev->dev, mapping)) {
  5440. dev_kfree_skb_any(skb);
  5441. return NETDEV_TX_OK;
  5442. }
  5443. tx_buf = &txr->tx_buf_ring[ring_prod];
  5444. tx_buf->skb = skb;
  5445. dma_unmap_addr_set(tx_buf, mapping, mapping);
  5446. txbd = &txr->tx_desc_ring[ring_prod];
  5447. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5448. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5449. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5450. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
  5451. last_frag = skb_shinfo(skb)->nr_frags;
  5452. tx_buf->nr_frags = last_frag;
  5453. tx_buf->is_gso = skb_is_gso(skb);
  5454. for (i = 0; i < last_frag; i++) {
  5455. const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  5456. prod = BNX2_NEXT_TX_BD(prod);
  5457. ring_prod = BNX2_TX_RING_IDX(prod);
  5458. txbd = &txr->tx_desc_ring[ring_prod];
  5459. len = skb_frag_size(frag);
  5460. mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0, len,
  5461. DMA_TO_DEVICE);
  5462. if (dma_mapping_error(&bp->pdev->dev, mapping))
  5463. goto dma_error;
  5464. dma_unmap_addr_set(&txr->tx_buf_ring[ring_prod], mapping,
  5465. mapping);
  5466. txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
  5467. txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
  5468. txbd->tx_bd_mss_nbytes = len | (mss << 16);
  5469. txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
  5470. }
  5471. txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
  5472. /* Sync BD data before updating TX mailbox */
  5473. wmb();
  5474. netdev_tx_sent_queue(txq, skb->len);
  5475. prod = BNX2_NEXT_TX_BD(prod);
  5476. txr->tx_prod_bseq += skb->len;
  5477. BNX2_WR16(bp, txr->tx_bidx_addr, prod);
  5478. BNX2_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
  5479. mmiowb();
  5480. txr->tx_prod = prod;
  5481. if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
  5482. netif_tx_stop_queue(txq);
  5483. /* netif_tx_stop_queue() must be done before checking
  5484. * tx index in bnx2_tx_avail() below, because in
  5485. * bnx2_tx_int(), we update tx index before checking for
  5486. * netif_tx_queue_stopped().
  5487. */
  5488. smp_mb();
  5489. if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
  5490. netif_tx_wake_queue(txq);
  5491. }
  5492. return NETDEV_TX_OK;
  5493. dma_error:
  5494. /* save value of frag that failed */
  5495. last_frag = i;
  5496. /* start back at beginning and unmap skb */
  5497. prod = txr->tx_prod;
  5498. ring_prod = BNX2_TX_RING_IDX(prod);
  5499. tx_buf = &txr->tx_buf_ring[ring_prod];
  5500. tx_buf->skb = NULL;
  5501. dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5502. skb_headlen(skb), PCI_DMA_TODEVICE);
  5503. /* unmap remaining mapped pages */
  5504. for (i = 0; i < last_frag; i++) {
  5505. prod = BNX2_NEXT_TX_BD(prod);
  5506. ring_prod = BNX2_TX_RING_IDX(prod);
  5507. tx_buf = &txr->tx_buf_ring[ring_prod];
  5508. dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(tx_buf, mapping),
  5509. skb_frag_size(&skb_shinfo(skb)->frags[i]),
  5510. PCI_DMA_TODEVICE);
  5511. }
  5512. dev_kfree_skb_any(skb);
  5513. return NETDEV_TX_OK;
  5514. }
  5515. /* Called with rtnl_lock */
  5516. static int
  5517. bnx2_close(struct net_device *dev)
  5518. {
  5519. struct bnx2 *bp = netdev_priv(dev);
  5520. bnx2_disable_int_sync(bp);
  5521. bnx2_napi_disable(bp);
  5522. netif_tx_disable(dev);
  5523. del_timer_sync(&bp->timer);
  5524. bnx2_shutdown_chip(bp);
  5525. bnx2_free_irq(bp);
  5526. bnx2_free_skbs(bp);
  5527. bnx2_free_mem(bp);
  5528. bnx2_del_napi(bp);
  5529. bp->link_up = 0;
  5530. netif_carrier_off(bp->dev);
  5531. return 0;
  5532. }
  5533. static void
  5534. bnx2_save_stats(struct bnx2 *bp)
  5535. {
  5536. u32 *hw_stats = (u32 *) bp->stats_blk;
  5537. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  5538. int i;
  5539. /* The 1st 10 counters are 64-bit counters */
  5540. for (i = 0; i < 20; i += 2) {
  5541. u32 hi;
  5542. u64 lo;
  5543. hi = temp_stats[i] + hw_stats[i];
  5544. lo = (u64) temp_stats[i + 1] + (u64) hw_stats[i + 1];
  5545. if (lo > 0xffffffff)
  5546. hi++;
  5547. temp_stats[i] = hi;
  5548. temp_stats[i + 1] = lo & 0xffffffff;
  5549. }
  5550. for ( ; i < sizeof(struct statistics_block) / 4; i++)
  5551. temp_stats[i] += hw_stats[i];
  5552. }
  5553. #define GET_64BIT_NET_STATS64(ctr) \
  5554. (((u64) (ctr##_hi) << 32) + (u64) (ctr##_lo))
  5555. #define GET_64BIT_NET_STATS(ctr) \
  5556. GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
  5557. GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
  5558. #define GET_32BIT_NET_STATS(ctr) \
  5559. (unsigned long) (bp->stats_blk->ctr + \
  5560. bp->temp_stats_blk->ctr)
  5561. static struct rtnl_link_stats64 *
  5562. bnx2_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *net_stats)
  5563. {
  5564. struct bnx2 *bp = netdev_priv(dev);
  5565. if (bp->stats_blk == NULL)
  5566. return net_stats;
  5567. net_stats->rx_packets =
  5568. GET_64BIT_NET_STATS(stat_IfHCInUcastPkts) +
  5569. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts) +
  5570. GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts);
  5571. net_stats->tx_packets =
  5572. GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts) +
  5573. GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts) +
  5574. GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts);
  5575. net_stats->rx_bytes =
  5576. GET_64BIT_NET_STATS(stat_IfHCInOctets);
  5577. net_stats->tx_bytes =
  5578. GET_64BIT_NET_STATS(stat_IfHCOutOctets);
  5579. net_stats->multicast =
  5580. GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts);
  5581. net_stats->collisions =
  5582. GET_32BIT_NET_STATS(stat_EtherStatsCollisions);
  5583. net_stats->rx_length_errors =
  5584. GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts) +
  5585. GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts);
  5586. net_stats->rx_over_errors =
  5587. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5588. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards);
  5589. net_stats->rx_frame_errors =
  5590. GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors);
  5591. net_stats->rx_crc_errors =
  5592. GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors);
  5593. net_stats->rx_errors = net_stats->rx_length_errors +
  5594. net_stats->rx_over_errors + net_stats->rx_frame_errors +
  5595. net_stats->rx_crc_errors;
  5596. net_stats->tx_aborted_errors =
  5597. GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions) +
  5598. GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions);
  5599. if ((BNX2_CHIP(bp) == BNX2_CHIP_5706) ||
  5600. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  5601. net_stats->tx_carrier_errors = 0;
  5602. else {
  5603. net_stats->tx_carrier_errors =
  5604. GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors);
  5605. }
  5606. net_stats->tx_errors =
  5607. GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors) +
  5608. net_stats->tx_aborted_errors +
  5609. net_stats->tx_carrier_errors;
  5610. net_stats->rx_missed_errors =
  5611. GET_32BIT_NET_STATS(stat_IfInFTQDiscards) +
  5612. GET_32BIT_NET_STATS(stat_IfInMBUFDiscards) +
  5613. GET_32BIT_NET_STATS(stat_FwRxDrop);
  5614. return net_stats;
  5615. }
  5616. /* All ethtool functions called with rtnl_lock */
  5617. static int
  5618. bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5619. {
  5620. struct bnx2 *bp = netdev_priv(dev);
  5621. int support_serdes = 0, support_copper = 0;
  5622. cmd->supported = SUPPORTED_Autoneg;
  5623. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5624. support_serdes = 1;
  5625. support_copper = 1;
  5626. } else if (bp->phy_port == PORT_FIBRE)
  5627. support_serdes = 1;
  5628. else
  5629. support_copper = 1;
  5630. if (support_serdes) {
  5631. cmd->supported |= SUPPORTED_1000baseT_Full |
  5632. SUPPORTED_FIBRE;
  5633. if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
  5634. cmd->supported |= SUPPORTED_2500baseX_Full;
  5635. }
  5636. if (support_copper) {
  5637. cmd->supported |= SUPPORTED_10baseT_Half |
  5638. SUPPORTED_10baseT_Full |
  5639. SUPPORTED_100baseT_Half |
  5640. SUPPORTED_100baseT_Full |
  5641. SUPPORTED_1000baseT_Full |
  5642. SUPPORTED_TP;
  5643. }
  5644. spin_lock_bh(&bp->phy_lock);
  5645. cmd->port = bp->phy_port;
  5646. cmd->advertising = bp->advertising;
  5647. if (bp->autoneg & AUTONEG_SPEED) {
  5648. cmd->autoneg = AUTONEG_ENABLE;
  5649. } else {
  5650. cmd->autoneg = AUTONEG_DISABLE;
  5651. }
  5652. if (netif_carrier_ok(dev)) {
  5653. ethtool_cmd_speed_set(cmd, bp->line_speed);
  5654. cmd->duplex = bp->duplex;
  5655. if (!(bp->phy_flags & BNX2_PHY_FLAG_SERDES)) {
  5656. if (bp->phy_flags & BNX2_PHY_FLAG_MDIX)
  5657. cmd->eth_tp_mdix = ETH_TP_MDI_X;
  5658. else
  5659. cmd->eth_tp_mdix = ETH_TP_MDI;
  5660. }
  5661. }
  5662. else {
  5663. ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
  5664. cmd->duplex = DUPLEX_UNKNOWN;
  5665. }
  5666. spin_unlock_bh(&bp->phy_lock);
  5667. cmd->transceiver = XCVR_INTERNAL;
  5668. cmd->phy_address = bp->phy_addr;
  5669. return 0;
  5670. }
  5671. static int
  5672. bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
  5673. {
  5674. struct bnx2 *bp = netdev_priv(dev);
  5675. u8 autoneg = bp->autoneg;
  5676. u8 req_duplex = bp->req_duplex;
  5677. u16 req_line_speed = bp->req_line_speed;
  5678. u32 advertising = bp->advertising;
  5679. int err = -EINVAL;
  5680. spin_lock_bh(&bp->phy_lock);
  5681. if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
  5682. goto err_out_unlock;
  5683. if (cmd->port != bp->phy_port &&
  5684. !(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
  5685. goto err_out_unlock;
  5686. /* If device is down, we can store the settings only if the user
  5687. * is setting the currently active port.
  5688. */
  5689. if (!netif_running(dev) && cmd->port != bp->phy_port)
  5690. goto err_out_unlock;
  5691. if (cmd->autoneg == AUTONEG_ENABLE) {
  5692. autoneg |= AUTONEG_SPEED;
  5693. advertising = cmd->advertising;
  5694. if (cmd->port == PORT_TP) {
  5695. advertising &= ETHTOOL_ALL_COPPER_SPEED;
  5696. if (!advertising)
  5697. advertising = ETHTOOL_ALL_COPPER_SPEED;
  5698. } else {
  5699. advertising &= ETHTOOL_ALL_FIBRE_SPEED;
  5700. if (!advertising)
  5701. advertising = ETHTOOL_ALL_FIBRE_SPEED;
  5702. }
  5703. advertising |= ADVERTISED_Autoneg;
  5704. }
  5705. else {
  5706. u32 speed = ethtool_cmd_speed(cmd);
  5707. if (cmd->port == PORT_FIBRE) {
  5708. if ((speed != SPEED_1000 &&
  5709. speed != SPEED_2500) ||
  5710. (cmd->duplex != DUPLEX_FULL))
  5711. goto err_out_unlock;
  5712. if (speed == SPEED_2500 &&
  5713. !(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
  5714. goto err_out_unlock;
  5715. } else if (speed == SPEED_1000 || speed == SPEED_2500)
  5716. goto err_out_unlock;
  5717. autoneg &= ~AUTONEG_SPEED;
  5718. req_line_speed = speed;
  5719. req_duplex = cmd->duplex;
  5720. advertising = 0;
  5721. }
  5722. bp->autoneg = autoneg;
  5723. bp->advertising = advertising;
  5724. bp->req_line_speed = req_line_speed;
  5725. bp->req_duplex = req_duplex;
  5726. err = 0;
  5727. /* If device is down, the new settings will be picked up when it is
  5728. * brought up.
  5729. */
  5730. if (netif_running(dev))
  5731. err = bnx2_setup_phy(bp, cmd->port);
  5732. err_out_unlock:
  5733. spin_unlock_bh(&bp->phy_lock);
  5734. return err;
  5735. }
  5736. static void
  5737. bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
  5738. {
  5739. struct bnx2 *bp = netdev_priv(dev);
  5740. strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
  5741. strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
  5742. strlcpy(info->bus_info, pci_name(bp->pdev), sizeof(info->bus_info));
  5743. strlcpy(info->fw_version, bp->fw_version, sizeof(info->fw_version));
  5744. }
  5745. #define BNX2_REGDUMP_LEN (32 * 1024)
  5746. static int
  5747. bnx2_get_regs_len(struct net_device *dev)
  5748. {
  5749. return BNX2_REGDUMP_LEN;
  5750. }
  5751. static void
  5752. bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
  5753. {
  5754. u32 *p = _p, i, offset;
  5755. u8 *orig_p = _p;
  5756. struct bnx2 *bp = netdev_priv(dev);
  5757. static const u32 reg_boundaries[] = {
  5758. 0x0000, 0x0098, 0x0400, 0x045c,
  5759. 0x0800, 0x0880, 0x0c00, 0x0c10,
  5760. 0x0c30, 0x0d08, 0x1000, 0x101c,
  5761. 0x1040, 0x1048, 0x1080, 0x10a4,
  5762. 0x1400, 0x1490, 0x1498, 0x14f0,
  5763. 0x1500, 0x155c, 0x1580, 0x15dc,
  5764. 0x1600, 0x1658, 0x1680, 0x16d8,
  5765. 0x1800, 0x1820, 0x1840, 0x1854,
  5766. 0x1880, 0x1894, 0x1900, 0x1984,
  5767. 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
  5768. 0x1c80, 0x1c94, 0x1d00, 0x1d84,
  5769. 0x2000, 0x2030, 0x23c0, 0x2400,
  5770. 0x2800, 0x2820, 0x2830, 0x2850,
  5771. 0x2b40, 0x2c10, 0x2fc0, 0x3058,
  5772. 0x3c00, 0x3c94, 0x4000, 0x4010,
  5773. 0x4080, 0x4090, 0x43c0, 0x4458,
  5774. 0x4c00, 0x4c18, 0x4c40, 0x4c54,
  5775. 0x4fc0, 0x5010, 0x53c0, 0x5444,
  5776. 0x5c00, 0x5c18, 0x5c80, 0x5c90,
  5777. 0x5fc0, 0x6000, 0x6400, 0x6428,
  5778. 0x6800, 0x6848, 0x684c, 0x6860,
  5779. 0x6888, 0x6910, 0x8000
  5780. };
  5781. regs->version = 0;
  5782. memset(p, 0, BNX2_REGDUMP_LEN);
  5783. if (!netif_running(bp->dev))
  5784. return;
  5785. i = 0;
  5786. offset = reg_boundaries[0];
  5787. p += offset;
  5788. while (offset < BNX2_REGDUMP_LEN) {
  5789. *p++ = BNX2_RD(bp, offset);
  5790. offset += 4;
  5791. if (offset == reg_boundaries[i + 1]) {
  5792. offset = reg_boundaries[i + 2];
  5793. p = (u32 *) (orig_p + offset);
  5794. i += 2;
  5795. }
  5796. }
  5797. }
  5798. static void
  5799. bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5800. {
  5801. struct bnx2 *bp = netdev_priv(dev);
  5802. if (bp->flags & BNX2_FLAG_NO_WOL) {
  5803. wol->supported = 0;
  5804. wol->wolopts = 0;
  5805. }
  5806. else {
  5807. wol->supported = WAKE_MAGIC;
  5808. if (bp->wol)
  5809. wol->wolopts = WAKE_MAGIC;
  5810. else
  5811. wol->wolopts = 0;
  5812. }
  5813. memset(&wol->sopass, 0, sizeof(wol->sopass));
  5814. }
  5815. static int
  5816. bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  5817. {
  5818. struct bnx2 *bp = netdev_priv(dev);
  5819. if (wol->wolopts & ~WAKE_MAGIC)
  5820. return -EINVAL;
  5821. if (wol->wolopts & WAKE_MAGIC) {
  5822. if (bp->flags & BNX2_FLAG_NO_WOL)
  5823. return -EINVAL;
  5824. bp->wol = 1;
  5825. }
  5826. else {
  5827. bp->wol = 0;
  5828. }
  5829. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  5830. return 0;
  5831. }
  5832. static int
  5833. bnx2_nway_reset(struct net_device *dev)
  5834. {
  5835. struct bnx2 *bp = netdev_priv(dev);
  5836. u32 bmcr;
  5837. if (!netif_running(dev))
  5838. return -EAGAIN;
  5839. if (!(bp->autoneg & AUTONEG_SPEED)) {
  5840. return -EINVAL;
  5841. }
  5842. spin_lock_bh(&bp->phy_lock);
  5843. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
  5844. int rc;
  5845. rc = bnx2_setup_remote_phy(bp, bp->phy_port);
  5846. spin_unlock_bh(&bp->phy_lock);
  5847. return rc;
  5848. }
  5849. /* Force a link down visible on the other side */
  5850. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  5851. bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
  5852. spin_unlock_bh(&bp->phy_lock);
  5853. msleep(20);
  5854. spin_lock_bh(&bp->phy_lock);
  5855. bp->current_interval = BNX2_SERDES_AN_TIMEOUT;
  5856. bp->serdes_an_pending = 1;
  5857. mod_timer(&bp->timer, jiffies + bp->current_interval);
  5858. }
  5859. bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
  5860. bmcr &= ~BMCR_LOOPBACK;
  5861. bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
  5862. spin_unlock_bh(&bp->phy_lock);
  5863. return 0;
  5864. }
  5865. static u32
  5866. bnx2_get_link(struct net_device *dev)
  5867. {
  5868. struct bnx2 *bp = netdev_priv(dev);
  5869. return bp->link_up;
  5870. }
  5871. static int
  5872. bnx2_get_eeprom_len(struct net_device *dev)
  5873. {
  5874. struct bnx2 *bp = netdev_priv(dev);
  5875. if (bp->flash_info == NULL)
  5876. return 0;
  5877. return (int) bp->flash_size;
  5878. }
  5879. static int
  5880. bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5881. u8 *eebuf)
  5882. {
  5883. struct bnx2 *bp = netdev_priv(dev);
  5884. int rc;
  5885. /* parameters already validated in ethtool_get_eeprom */
  5886. rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
  5887. return rc;
  5888. }
  5889. static int
  5890. bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
  5891. u8 *eebuf)
  5892. {
  5893. struct bnx2 *bp = netdev_priv(dev);
  5894. int rc;
  5895. /* parameters already validated in ethtool_set_eeprom */
  5896. rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
  5897. return rc;
  5898. }
  5899. static int
  5900. bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5901. {
  5902. struct bnx2 *bp = netdev_priv(dev);
  5903. memset(coal, 0, sizeof(struct ethtool_coalesce));
  5904. coal->rx_coalesce_usecs = bp->rx_ticks;
  5905. coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
  5906. coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
  5907. coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
  5908. coal->tx_coalesce_usecs = bp->tx_ticks;
  5909. coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
  5910. coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
  5911. coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
  5912. coal->stats_block_coalesce_usecs = bp->stats_ticks;
  5913. return 0;
  5914. }
  5915. static int
  5916. bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
  5917. {
  5918. struct bnx2 *bp = netdev_priv(dev);
  5919. bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
  5920. if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
  5921. bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
  5922. if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
  5923. bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
  5924. if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
  5925. bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
  5926. if (bp->rx_quick_cons_trip_int > 0xff)
  5927. bp->rx_quick_cons_trip_int = 0xff;
  5928. bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
  5929. if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
  5930. bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
  5931. if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
  5932. bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
  5933. if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
  5934. bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
  5935. if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
  5936. 0xff;
  5937. bp->stats_ticks = coal->stats_block_coalesce_usecs;
  5938. if (bp->flags & BNX2_FLAG_BROKEN_STATS) {
  5939. if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
  5940. bp->stats_ticks = USEC_PER_SEC;
  5941. }
  5942. if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
  5943. bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5944. bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  5945. if (netif_running(bp->dev)) {
  5946. bnx2_netif_stop(bp, true);
  5947. bnx2_init_nic(bp, 0);
  5948. bnx2_netif_start(bp, true);
  5949. }
  5950. return 0;
  5951. }
  5952. static void
  5953. bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  5954. {
  5955. struct bnx2 *bp = netdev_priv(dev);
  5956. ering->rx_max_pending = BNX2_MAX_TOTAL_RX_DESC_CNT;
  5957. ering->rx_jumbo_max_pending = BNX2_MAX_TOTAL_RX_PG_DESC_CNT;
  5958. ering->rx_pending = bp->rx_ring_size;
  5959. ering->rx_jumbo_pending = bp->rx_pg_ring_size;
  5960. ering->tx_max_pending = BNX2_MAX_TX_DESC_CNT;
  5961. ering->tx_pending = bp->tx_ring_size;
  5962. }
  5963. static int
  5964. bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx, bool reset_irq)
  5965. {
  5966. if (netif_running(bp->dev)) {
  5967. /* Reset will erase chipset stats; save them */
  5968. bnx2_save_stats(bp);
  5969. bnx2_netif_stop(bp, true);
  5970. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
  5971. if (reset_irq) {
  5972. bnx2_free_irq(bp);
  5973. bnx2_del_napi(bp);
  5974. } else {
  5975. __bnx2_free_irq(bp);
  5976. }
  5977. bnx2_free_skbs(bp);
  5978. bnx2_free_mem(bp);
  5979. }
  5980. bnx2_set_rx_ring_size(bp, rx);
  5981. bp->tx_ring_size = tx;
  5982. if (netif_running(bp->dev)) {
  5983. int rc = 0;
  5984. if (reset_irq) {
  5985. rc = bnx2_setup_int_mode(bp, disable_msi);
  5986. bnx2_init_napi(bp);
  5987. }
  5988. if (!rc)
  5989. rc = bnx2_alloc_mem(bp);
  5990. if (!rc)
  5991. rc = bnx2_request_irq(bp);
  5992. if (!rc)
  5993. rc = bnx2_init_nic(bp, 0);
  5994. if (rc) {
  5995. bnx2_napi_enable(bp);
  5996. dev_close(bp->dev);
  5997. return rc;
  5998. }
  5999. #ifdef BCM_CNIC
  6000. mutex_lock(&bp->cnic_lock);
  6001. /* Let cnic know about the new status block. */
  6002. if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD)
  6003. bnx2_setup_cnic_irq_info(bp);
  6004. mutex_unlock(&bp->cnic_lock);
  6005. #endif
  6006. bnx2_netif_start(bp, true);
  6007. }
  6008. return 0;
  6009. }
  6010. static int
  6011. bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
  6012. {
  6013. struct bnx2 *bp = netdev_priv(dev);
  6014. int rc;
  6015. if ((ering->rx_pending > BNX2_MAX_TOTAL_RX_DESC_CNT) ||
  6016. (ering->tx_pending > BNX2_MAX_TX_DESC_CNT) ||
  6017. (ering->tx_pending <= MAX_SKB_FRAGS)) {
  6018. return -EINVAL;
  6019. }
  6020. rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending,
  6021. false);
  6022. return rc;
  6023. }
  6024. static void
  6025. bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6026. {
  6027. struct bnx2 *bp = netdev_priv(dev);
  6028. epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
  6029. epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
  6030. epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
  6031. }
  6032. static int
  6033. bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
  6034. {
  6035. struct bnx2 *bp = netdev_priv(dev);
  6036. bp->req_flow_ctrl = 0;
  6037. if (epause->rx_pause)
  6038. bp->req_flow_ctrl |= FLOW_CTRL_RX;
  6039. if (epause->tx_pause)
  6040. bp->req_flow_ctrl |= FLOW_CTRL_TX;
  6041. if (epause->autoneg) {
  6042. bp->autoneg |= AUTONEG_FLOW_CTRL;
  6043. }
  6044. else {
  6045. bp->autoneg &= ~AUTONEG_FLOW_CTRL;
  6046. }
  6047. if (netif_running(dev)) {
  6048. spin_lock_bh(&bp->phy_lock);
  6049. bnx2_setup_phy(bp, bp->phy_port);
  6050. spin_unlock_bh(&bp->phy_lock);
  6051. }
  6052. return 0;
  6053. }
  6054. static struct {
  6055. char string[ETH_GSTRING_LEN];
  6056. } bnx2_stats_str_arr[] = {
  6057. { "rx_bytes" },
  6058. { "rx_error_bytes" },
  6059. { "tx_bytes" },
  6060. { "tx_error_bytes" },
  6061. { "rx_ucast_packets" },
  6062. { "rx_mcast_packets" },
  6063. { "rx_bcast_packets" },
  6064. { "tx_ucast_packets" },
  6065. { "tx_mcast_packets" },
  6066. { "tx_bcast_packets" },
  6067. { "tx_mac_errors" },
  6068. { "tx_carrier_errors" },
  6069. { "rx_crc_errors" },
  6070. { "rx_align_errors" },
  6071. { "tx_single_collisions" },
  6072. { "tx_multi_collisions" },
  6073. { "tx_deferred" },
  6074. { "tx_excess_collisions" },
  6075. { "tx_late_collisions" },
  6076. { "tx_total_collisions" },
  6077. { "rx_fragments" },
  6078. { "rx_jabbers" },
  6079. { "rx_undersize_packets" },
  6080. { "rx_oversize_packets" },
  6081. { "rx_64_byte_packets" },
  6082. { "rx_65_to_127_byte_packets" },
  6083. { "rx_128_to_255_byte_packets" },
  6084. { "rx_256_to_511_byte_packets" },
  6085. { "rx_512_to_1023_byte_packets" },
  6086. { "rx_1024_to_1522_byte_packets" },
  6087. { "rx_1523_to_9022_byte_packets" },
  6088. { "tx_64_byte_packets" },
  6089. { "tx_65_to_127_byte_packets" },
  6090. { "tx_128_to_255_byte_packets" },
  6091. { "tx_256_to_511_byte_packets" },
  6092. { "tx_512_to_1023_byte_packets" },
  6093. { "tx_1024_to_1522_byte_packets" },
  6094. { "tx_1523_to_9022_byte_packets" },
  6095. { "rx_xon_frames" },
  6096. { "rx_xoff_frames" },
  6097. { "tx_xon_frames" },
  6098. { "tx_xoff_frames" },
  6099. { "rx_mac_ctrl_frames" },
  6100. { "rx_filtered_packets" },
  6101. { "rx_ftq_discards" },
  6102. { "rx_discards" },
  6103. { "rx_fw_discards" },
  6104. };
  6105. #define BNX2_NUM_STATS ARRAY_SIZE(bnx2_stats_str_arr)
  6106. #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
  6107. static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
  6108. STATS_OFFSET32(stat_IfHCInOctets_hi),
  6109. STATS_OFFSET32(stat_IfHCInBadOctets_hi),
  6110. STATS_OFFSET32(stat_IfHCOutOctets_hi),
  6111. STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
  6112. STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
  6113. STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
  6114. STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
  6115. STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
  6116. STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
  6117. STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
  6118. STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
  6119. STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
  6120. STATS_OFFSET32(stat_Dot3StatsFCSErrors),
  6121. STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
  6122. STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
  6123. STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
  6124. STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
  6125. STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
  6126. STATS_OFFSET32(stat_Dot3StatsLateCollisions),
  6127. STATS_OFFSET32(stat_EtherStatsCollisions),
  6128. STATS_OFFSET32(stat_EtherStatsFragments),
  6129. STATS_OFFSET32(stat_EtherStatsJabbers),
  6130. STATS_OFFSET32(stat_EtherStatsUndersizePkts),
  6131. STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
  6132. STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
  6133. STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
  6134. STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
  6135. STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
  6136. STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
  6137. STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
  6138. STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
  6139. STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
  6140. STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
  6141. STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
  6142. STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
  6143. STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
  6144. STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
  6145. STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
  6146. STATS_OFFSET32(stat_XonPauseFramesReceived),
  6147. STATS_OFFSET32(stat_XoffPauseFramesReceived),
  6148. STATS_OFFSET32(stat_OutXonSent),
  6149. STATS_OFFSET32(stat_OutXoffSent),
  6150. STATS_OFFSET32(stat_MacControlFramesReceived),
  6151. STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
  6152. STATS_OFFSET32(stat_IfInFTQDiscards),
  6153. STATS_OFFSET32(stat_IfInMBUFDiscards),
  6154. STATS_OFFSET32(stat_FwRxDrop),
  6155. };
  6156. /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
  6157. * skipped because of errata.
  6158. */
  6159. static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
  6160. 8,0,8,8,8,8,8,8,8,8,
  6161. 4,0,4,4,4,4,4,4,4,4,
  6162. 4,4,4,4,4,4,4,4,4,4,
  6163. 4,4,4,4,4,4,4,4,4,4,
  6164. 4,4,4,4,4,4,4,
  6165. };
  6166. static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
  6167. 8,0,8,8,8,8,8,8,8,8,
  6168. 4,4,4,4,4,4,4,4,4,4,
  6169. 4,4,4,4,4,4,4,4,4,4,
  6170. 4,4,4,4,4,4,4,4,4,4,
  6171. 4,4,4,4,4,4,4,
  6172. };
  6173. #define BNX2_NUM_TESTS 6
  6174. static struct {
  6175. char string[ETH_GSTRING_LEN];
  6176. } bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
  6177. { "register_test (offline)" },
  6178. { "memory_test (offline)" },
  6179. { "loopback_test (offline)" },
  6180. { "nvram_test (online)" },
  6181. { "interrupt_test (online)" },
  6182. { "link_test (online)" },
  6183. };
  6184. static int
  6185. bnx2_get_sset_count(struct net_device *dev, int sset)
  6186. {
  6187. switch (sset) {
  6188. case ETH_SS_TEST:
  6189. return BNX2_NUM_TESTS;
  6190. case ETH_SS_STATS:
  6191. return BNX2_NUM_STATS;
  6192. default:
  6193. return -EOPNOTSUPP;
  6194. }
  6195. }
  6196. static void
  6197. bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
  6198. {
  6199. struct bnx2 *bp = netdev_priv(dev);
  6200. memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
  6201. if (etest->flags & ETH_TEST_FL_OFFLINE) {
  6202. int i;
  6203. bnx2_netif_stop(bp, true);
  6204. bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
  6205. bnx2_free_skbs(bp);
  6206. if (bnx2_test_registers(bp) != 0) {
  6207. buf[0] = 1;
  6208. etest->flags |= ETH_TEST_FL_FAILED;
  6209. }
  6210. if (bnx2_test_memory(bp) != 0) {
  6211. buf[1] = 1;
  6212. etest->flags |= ETH_TEST_FL_FAILED;
  6213. }
  6214. if ((buf[2] = bnx2_test_loopback(bp)) != 0)
  6215. etest->flags |= ETH_TEST_FL_FAILED;
  6216. if (!netif_running(bp->dev))
  6217. bnx2_shutdown_chip(bp);
  6218. else {
  6219. bnx2_init_nic(bp, 1);
  6220. bnx2_netif_start(bp, true);
  6221. }
  6222. /* wait for link up */
  6223. for (i = 0; i < 7; i++) {
  6224. if (bp->link_up)
  6225. break;
  6226. msleep_interruptible(1000);
  6227. }
  6228. }
  6229. if (bnx2_test_nvram(bp) != 0) {
  6230. buf[3] = 1;
  6231. etest->flags |= ETH_TEST_FL_FAILED;
  6232. }
  6233. if (bnx2_test_intr(bp) != 0) {
  6234. buf[4] = 1;
  6235. etest->flags |= ETH_TEST_FL_FAILED;
  6236. }
  6237. if (bnx2_test_link(bp) != 0) {
  6238. buf[5] = 1;
  6239. etest->flags |= ETH_TEST_FL_FAILED;
  6240. }
  6241. }
  6242. static void
  6243. bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
  6244. {
  6245. switch (stringset) {
  6246. case ETH_SS_STATS:
  6247. memcpy(buf, bnx2_stats_str_arr,
  6248. sizeof(bnx2_stats_str_arr));
  6249. break;
  6250. case ETH_SS_TEST:
  6251. memcpy(buf, bnx2_tests_str_arr,
  6252. sizeof(bnx2_tests_str_arr));
  6253. break;
  6254. }
  6255. }
  6256. static void
  6257. bnx2_get_ethtool_stats(struct net_device *dev,
  6258. struct ethtool_stats *stats, u64 *buf)
  6259. {
  6260. struct bnx2 *bp = netdev_priv(dev);
  6261. int i;
  6262. u32 *hw_stats = (u32 *) bp->stats_blk;
  6263. u32 *temp_stats = (u32 *) bp->temp_stats_blk;
  6264. u8 *stats_len_arr = NULL;
  6265. if (hw_stats == NULL) {
  6266. memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
  6267. return;
  6268. }
  6269. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) ||
  6270. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) ||
  6271. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A2) ||
  6272. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0))
  6273. stats_len_arr = bnx2_5706_stats_len_arr;
  6274. else
  6275. stats_len_arr = bnx2_5708_stats_len_arr;
  6276. for (i = 0; i < BNX2_NUM_STATS; i++) {
  6277. unsigned long offset;
  6278. if (stats_len_arr[i] == 0) {
  6279. /* skip this counter */
  6280. buf[i] = 0;
  6281. continue;
  6282. }
  6283. offset = bnx2_stats_offset_arr[i];
  6284. if (stats_len_arr[i] == 4) {
  6285. /* 4-byte counter */
  6286. buf[i] = (u64) *(hw_stats + offset) +
  6287. *(temp_stats + offset);
  6288. continue;
  6289. }
  6290. /* 8-byte counter */
  6291. buf[i] = (((u64) *(hw_stats + offset)) << 32) +
  6292. *(hw_stats + offset + 1) +
  6293. (((u64) *(temp_stats + offset)) << 32) +
  6294. *(temp_stats + offset + 1);
  6295. }
  6296. }
  6297. static int
  6298. bnx2_set_phys_id(struct net_device *dev, enum ethtool_phys_id_state state)
  6299. {
  6300. struct bnx2 *bp = netdev_priv(dev);
  6301. switch (state) {
  6302. case ETHTOOL_ID_ACTIVE:
  6303. bp->leds_save = BNX2_RD(bp, BNX2_MISC_CFG);
  6304. BNX2_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
  6305. return 1; /* cycle on/off once per second */
  6306. case ETHTOOL_ID_ON:
  6307. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
  6308. BNX2_EMAC_LED_1000MB_OVERRIDE |
  6309. BNX2_EMAC_LED_100MB_OVERRIDE |
  6310. BNX2_EMAC_LED_10MB_OVERRIDE |
  6311. BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
  6312. BNX2_EMAC_LED_TRAFFIC);
  6313. break;
  6314. case ETHTOOL_ID_OFF:
  6315. BNX2_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
  6316. break;
  6317. case ETHTOOL_ID_INACTIVE:
  6318. BNX2_WR(bp, BNX2_EMAC_LED, 0);
  6319. BNX2_WR(bp, BNX2_MISC_CFG, bp->leds_save);
  6320. break;
  6321. }
  6322. return 0;
  6323. }
  6324. static netdev_features_t
  6325. bnx2_fix_features(struct net_device *dev, netdev_features_t features)
  6326. {
  6327. struct bnx2 *bp = netdev_priv(dev);
  6328. if (!(bp->flags & BNX2_FLAG_CAN_KEEP_VLAN))
  6329. features |= NETIF_F_HW_VLAN_CTAG_RX;
  6330. return features;
  6331. }
  6332. static int
  6333. bnx2_set_features(struct net_device *dev, netdev_features_t features)
  6334. {
  6335. struct bnx2 *bp = netdev_priv(dev);
  6336. /* TSO with VLAN tag won't work with current firmware */
  6337. if (features & NETIF_F_HW_VLAN_CTAG_TX)
  6338. dev->vlan_features |= (dev->hw_features & NETIF_F_ALL_TSO);
  6339. else
  6340. dev->vlan_features &= ~NETIF_F_ALL_TSO;
  6341. if ((!!(features & NETIF_F_HW_VLAN_CTAG_RX) !=
  6342. !!(bp->rx_mode & BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG)) &&
  6343. netif_running(dev)) {
  6344. bnx2_netif_stop(bp, false);
  6345. dev->features = features;
  6346. bnx2_set_rx_mode(dev);
  6347. bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
  6348. bnx2_netif_start(bp, false);
  6349. return 1;
  6350. }
  6351. return 0;
  6352. }
  6353. static void bnx2_get_channels(struct net_device *dev,
  6354. struct ethtool_channels *channels)
  6355. {
  6356. struct bnx2 *bp = netdev_priv(dev);
  6357. u32 max_rx_rings = 1;
  6358. u32 max_tx_rings = 1;
  6359. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6360. max_rx_rings = RX_MAX_RINGS;
  6361. max_tx_rings = TX_MAX_RINGS;
  6362. }
  6363. channels->max_rx = max_rx_rings;
  6364. channels->max_tx = max_tx_rings;
  6365. channels->max_other = 0;
  6366. channels->max_combined = 0;
  6367. channels->rx_count = bp->num_rx_rings;
  6368. channels->tx_count = bp->num_tx_rings;
  6369. channels->other_count = 0;
  6370. channels->combined_count = 0;
  6371. }
  6372. static int bnx2_set_channels(struct net_device *dev,
  6373. struct ethtool_channels *channels)
  6374. {
  6375. struct bnx2 *bp = netdev_priv(dev);
  6376. u32 max_rx_rings = 1;
  6377. u32 max_tx_rings = 1;
  6378. int rc = 0;
  6379. if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !disable_msi) {
  6380. max_rx_rings = RX_MAX_RINGS;
  6381. max_tx_rings = TX_MAX_RINGS;
  6382. }
  6383. if (channels->rx_count > max_rx_rings ||
  6384. channels->tx_count > max_tx_rings)
  6385. return -EINVAL;
  6386. bp->num_req_rx_rings = channels->rx_count;
  6387. bp->num_req_tx_rings = channels->tx_count;
  6388. if (netif_running(dev))
  6389. rc = bnx2_change_ring_size(bp, bp->rx_ring_size,
  6390. bp->tx_ring_size, true);
  6391. return rc;
  6392. }
  6393. static const struct ethtool_ops bnx2_ethtool_ops = {
  6394. .get_settings = bnx2_get_settings,
  6395. .set_settings = bnx2_set_settings,
  6396. .get_drvinfo = bnx2_get_drvinfo,
  6397. .get_regs_len = bnx2_get_regs_len,
  6398. .get_regs = bnx2_get_regs,
  6399. .get_wol = bnx2_get_wol,
  6400. .set_wol = bnx2_set_wol,
  6401. .nway_reset = bnx2_nway_reset,
  6402. .get_link = bnx2_get_link,
  6403. .get_eeprom_len = bnx2_get_eeprom_len,
  6404. .get_eeprom = bnx2_get_eeprom,
  6405. .set_eeprom = bnx2_set_eeprom,
  6406. .get_coalesce = bnx2_get_coalesce,
  6407. .set_coalesce = bnx2_set_coalesce,
  6408. .get_ringparam = bnx2_get_ringparam,
  6409. .set_ringparam = bnx2_set_ringparam,
  6410. .get_pauseparam = bnx2_get_pauseparam,
  6411. .set_pauseparam = bnx2_set_pauseparam,
  6412. .self_test = bnx2_self_test,
  6413. .get_strings = bnx2_get_strings,
  6414. .set_phys_id = bnx2_set_phys_id,
  6415. .get_ethtool_stats = bnx2_get_ethtool_stats,
  6416. .get_sset_count = bnx2_get_sset_count,
  6417. .get_channels = bnx2_get_channels,
  6418. .set_channels = bnx2_set_channels,
  6419. };
  6420. /* Called with rtnl_lock */
  6421. static int
  6422. bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  6423. {
  6424. struct mii_ioctl_data *data = if_mii(ifr);
  6425. struct bnx2 *bp = netdev_priv(dev);
  6426. int err;
  6427. switch(cmd) {
  6428. case SIOCGMIIPHY:
  6429. data->phy_id = bp->phy_addr;
  6430. /* fallthru */
  6431. case SIOCGMIIREG: {
  6432. u32 mii_regval;
  6433. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6434. return -EOPNOTSUPP;
  6435. if (!netif_running(dev))
  6436. return -EAGAIN;
  6437. spin_lock_bh(&bp->phy_lock);
  6438. err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
  6439. spin_unlock_bh(&bp->phy_lock);
  6440. data->val_out = mii_regval;
  6441. return err;
  6442. }
  6443. case SIOCSMIIREG:
  6444. if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
  6445. return -EOPNOTSUPP;
  6446. if (!netif_running(dev))
  6447. return -EAGAIN;
  6448. spin_lock_bh(&bp->phy_lock);
  6449. err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
  6450. spin_unlock_bh(&bp->phy_lock);
  6451. return err;
  6452. default:
  6453. /* do nothing */
  6454. break;
  6455. }
  6456. return -EOPNOTSUPP;
  6457. }
  6458. /* Called with rtnl_lock */
  6459. static int
  6460. bnx2_change_mac_addr(struct net_device *dev, void *p)
  6461. {
  6462. struct sockaddr *addr = p;
  6463. struct bnx2 *bp = netdev_priv(dev);
  6464. if (!is_valid_ether_addr(addr->sa_data))
  6465. return -EADDRNOTAVAIL;
  6466. memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
  6467. if (netif_running(dev))
  6468. bnx2_set_mac_addr(bp, bp->dev->dev_addr, 0);
  6469. return 0;
  6470. }
  6471. /* Called with rtnl_lock */
  6472. static int
  6473. bnx2_change_mtu(struct net_device *dev, int new_mtu)
  6474. {
  6475. struct bnx2 *bp = netdev_priv(dev);
  6476. if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
  6477. ((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
  6478. return -EINVAL;
  6479. dev->mtu = new_mtu;
  6480. return bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size,
  6481. false);
  6482. }
  6483. #ifdef CONFIG_NET_POLL_CONTROLLER
  6484. static void
  6485. poll_bnx2(struct net_device *dev)
  6486. {
  6487. struct bnx2 *bp = netdev_priv(dev);
  6488. int i;
  6489. for (i = 0; i < bp->irq_nvecs; i++) {
  6490. struct bnx2_irq *irq = &bp->irq_tbl[i];
  6491. disable_irq(irq->vector);
  6492. irq->handler(irq->vector, &bp->bnx2_napi[i]);
  6493. enable_irq(irq->vector);
  6494. }
  6495. }
  6496. #endif
  6497. static void
  6498. bnx2_get_5709_media(struct bnx2 *bp)
  6499. {
  6500. u32 val = BNX2_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
  6501. u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
  6502. u32 strap;
  6503. if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
  6504. return;
  6505. else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
  6506. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6507. return;
  6508. }
  6509. if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
  6510. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
  6511. else
  6512. strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
  6513. if (bp->func == 0) {
  6514. switch (strap) {
  6515. case 0x4:
  6516. case 0x5:
  6517. case 0x6:
  6518. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6519. return;
  6520. }
  6521. } else {
  6522. switch (strap) {
  6523. case 0x1:
  6524. case 0x2:
  6525. case 0x4:
  6526. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6527. return;
  6528. }
  6529. }
  6530. }
  6531. static void
  6532. bnx2_get_pci_speed(struct bnx2 *bp)
  6533. {
  6534. u32 reg;
  6535. reg = BNX2_RD(bp, BNX2_PCICFG_MISC_STATUS);
  6536. if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
  6537. u32 clkreg;
  6538. bp->flags |= BNX2_FLAG_PCIX;
  6539. clkreg = BNX2_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
  6540. clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
  6541. switch (clkreg) {
  6542. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
  6543. bp->bus_speed_mhz = 133;
  6544. break;
  6545. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
  6546. bp->bus_speed_mhz = 100;
  6547. break;
  6548. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
  6549. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
  6550. bp->bus_speed_mhz = 66;
  6551. break;
  6552. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
  6553. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
  6554. bp->bus_speed_mhz = 50;
  6555. break;
  6556. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
  6557. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
  6558. case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
  6559. bp->bus_speed_mhz = 33;
  6560. break;
  6561. }
  6562. }
  6563. else {
  6564. if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
  6565. bp->bus_speed_mhz = 66;
  6566. else
  6567. bp->bus_speed_mhz = 33;
  6568. }
  6569. if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
  6570. bp->flags |= BNX2_FLAG_PCI_32BIT;
  6571. }
  6572. static void
  6573. bnx2_read_vpd_fw_ver(struct bnx2 *bp)
  6574. {
  6575. int rc, i, j;
  6576. u8 *data;
  6577. unsigned int block_end, rosize, len;
  6578. #define BNX2_VPD_NVRAM_OFFSET 0x300
  6579. #define BNX2_VPD_LEN 128
  6580. #define BNX2_MAX_VER_SLEN 30
  6581. data = kmalloc(256, GFP_KERNEL);
  6582. if (!data)
  6583. return;
  6584. rc = bnx2_nvram_read(bp, BNX2_VPD_NVRAM_OFFSET, data + BNX2_VPD_LEN,
  6585. BNX2_VPD_LEN);
  6586. if (rc)
  6587. goto vpd_done;
  6588. for (i = 0; i < BNX2_VPD_LEN; i += 4) {
  6589. data[i] = data[i + BNX2_VPD_LEN + 3];
  6590. data[i + 1] = data[i + BNX2_VPD_LEN + 2];
  6591. data[i + 2] = data[i + BNX2_VPD_LEN + 1];
  6592. data[i + 3] = data[i + BNX2_VPD_LEN];
  6593. }
  6594. i = pci_vpd_find_tag(data, 0, BNX2_VPD_LEN, PCI_VPD_LRDT_RO_DATA);
  6595. if (i < 0)
  6596. goto vpd_done;
  6597. rosize = pci_vpd_lrdt_size(&data[i]);
  6598. i += PCI_VPD_LRDT_TAG_SIZE;
  6599. block_end = i + rosize;
  6600. if (block_end > BNX2_VPD_LEN)
  6601. goto vpd_done;
  6602. j = pci_vpd_find_info_keyword(data, i, rosize,
  6603. PCI_VPD_RO_KEYWORD_MFR_ID);
  6604. if (j < 0)
  6605. goto vpd_done;
  6606. len = pci_vpd_info_field_size(&data[j]);
  6607. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6608. if (j + len > block_end || len != 4 ||
  6609. memcmp(&data[j], "1028", 4))
  6610. goto vpd_done;
  6611. j = pci_vpd_find_info_keyword(data, i, rosize,
  6612. PCI_VPD_RO_KEYWORD_VENDOR0);
  6613. if (j < 0)
  6614. goto vpd_done;
  6615. len = pci_vpd_info_field_size(&data[j]);
  6616. j += PCI_VPD_INFO_FLD_HDR_SIZE;
  6617. if (j + len > block_end || len > BNX2_MAX_VER_SLEN)
  6618. goto vpd_done;
  6619. memcpy(bp->fw_version, &data[j], len);
  6620. bp->fw_version[len] = ' ';
  6621. vpd_done:
  6622. kfree(data);
  6623. }
  6624. static int
  6625. bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
  6626. {
  6627. struct bnx2 *bp;
  6628. int rc, i, j;
  6629. u32 reg;
  6630. u64 dma_mask, persist_dma_mask;
  6631. int err;
  6632. SET_NETDEV_DEV(dev, &pdev->dev);
  6633. bp = netdev_priv(dev);
  6634. bp->flags = 0;
  6635. bp->phy_flags = 0;
  6636. bp->temp_stats_blk =
  6637. kzalloc(sizeof(struct statistics_block), GFP_KERNEL);
  6638. if (bp->temp_stats_blk == NULL) {
  6639. rc = -ENOMEM;
  6640. goto err_out;
  6641. }
  6642. /* enable device (incl. PCI PM wakeup), and bus-mastering */
  6643. rc = pci_enable_device(pdev);
  6644. if (rc) {
  6645. dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
  6646. goto err_out;
  6647. }
  6648. if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
  6649. dev_err(&pdev->dev,
  6650. "Cannot find PCI device base address, aborting\n");
  6651. rc = -ENODEV;
  6652. goto err_out_disable;
  6653. }
  6654. rc = pci_request_regions(pdev, DRV_MODULE_NAME);
  6655. if (rc) {
  6656. dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
  6657. goto err_out_disable;
  6658. }
  6659. pci_set_master(pdev);
  6660. bp->pm_cap = pdev->pm_cap;
  6661. if (bp->pm_cap == 0) {
  6662. dev_err(&pdev->dev,
  6663. "Cannot find power management capability, aborting\n");
  6664. rc = -EIO;
  6665. goto err_out_release;
  6666. }
  6667. bp->dev = dev;
  6668. bp->pdev = pdev;
  6669. spin_lock_init(&bp->phy_lock);
  6670. spin_lock_init(&bp->indirect_lock);
  6671. #ifdef BCM_CNIC
  6672. mutex_init(&bp->cnic_lock);
  6673. #endif
  6674. INIT_WORK(&bp->reset_task, bnx2_reset_task);
  6675. bp->regview = pci_iomap(pdev, 0, MB_GET_CID_ADDR(TX_TSS_CID +
  6676. TX_MAX_TSS_RINGS + 1));
  6677. if (!bp->regview) {
  6678. dev_err(&pdev->dev, "Cannot map register space, aborting\n");
  6679. rc = -ENOMEM;
  6680. goto err_out_release;
  6681. }
  6682. /* Configure byte swap and enable write to the reg_window registers.
  6683. * Rely on CPU to do target byte swapping on big endian systems
  6684. * The chip's target access swapping will not swap all accesses
  6685. */
  6686. BNX2_WR(bp, BNX2_PCICFG_MISC_CONFIG,
  6687. BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
  6688. BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
  6689. bp->chip_id = BNX2_RD(bp, BNX2_MISC_ID);
  6690. if (BNX2_CHIP(bp) == BNX2_CHIP_5709) {
  6691. if (!pci_is_pcie(pdev)) {
  6692. dev_err(&pdev->dev, "Not PCIE, aborting\n");
  6693. rc = -EIO;
  6694. goto err_out_unmap;
  6695. }
  6696. bp->flags |= BNX2_FLAG_PCIE;
  6697. if (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax)
  6698. bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
  6699. /* AER (Advanced Error Reporting) hooks */
  6700. err = pci_enable_pcie_error_reporting(pdev);
  6701. if (!err)
  6702. bp->flags |= BNX2_FLAG_AER_ENABLED;
  6703. } else {
  6704. bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
  6705. if (bp->pcix_cap == 0) {
  6706. dev_err(&pdev->dev,
  6707. "Cannot find PCIX capability, aborting\n");
  6708. rc = -EIO;
  6709. goto err_out_unmap;
  6710. }
  6711. bp->flags |= BNX2_FLAG_BROKEN_STATS;
  6712. }
  6713. if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6714. BNX2_CHIP_REV(bp) != BNX2_CHIP_REV_Ax) {
  6715. if (pdev->msix_cap)
  6716. bp->flags |= BNX2_FLAG_MSIX_CAP;
  6717. }
  6718. if (BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A0 &&
  6719. BNX2_CHIP_ID(bp) != BNX2_CHIP_ID_5706_A1) {
  6720. if (pdev->msi_cap)
  6721. bp->flags |= BNX2_FLAG_MSI_CAP;
  6722. }
  6723. /* 5708 cannot support DMA addresses > 40-bit. */
  6724. if (BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6725. persist_dma_mask = dma_mask = DMA_BIT_MASK(40);
  6726. else
  6727. persist_dma_mask = dma_mask = DMA_BIT_MASK(64);
  6728. /* Configure DMA attributes. */
  6729. if (pci_set_dma_mask(pdev, dma_mask) == 0) {
  6730. dev->features |= NETIF_F_HIGHDMA;
  6731. rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
  6732. if (rc) {
  6733. dev_err(&pdev->dev,
  6734. "pci_set_consistent_dma_mask failed, aborting\n");
  6735. goto err_out_unmap;
  6736. }
  6737. } else if ((rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
  6738. dev_err(&pdev->dev, "System does not support DMA, aborting\n");
  6739. goto err_out_unmap;
  6740. }
  6741. if (!(bp->flags & BNX2_FLAG_PCIE))
  6742. bnx2_get_pci_speed(bp);
  6743. /* 5706A0 may falsely detect SERR and PERR. */
  6744. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6745. reg = BNX2_RD(bp, PCI_COMMAND);
  6746. reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
  6747. BNX2_WR(bp, PCI_COMMAND, reg);
  6748. } else if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A1) &&
  6749. !(bp->flags & BNX2_FLAG_PCIX)) {
  6750. dev_err(&pdev->dev,
  6751. "5706 A1 can only be used in a PCIX bus, aborting\n");
  6752. goto err_out_unmap;
  6753. }
  6754. bnx2_init_nvram(bp);
  6755. reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
  6756. if (bnx2_reg_rd_ind(bp, BNX2_MCP_TOE_ID) & BNX2_MCP_TOE_ID_FUNCTION_ID)
  6757. bp->func = 1;
  6758. if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
  6759. BNX2_SHM_HDR_SIGNATURE_SIG) {
  6760. u32 off = bp->func << 2;
  6761. bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
  6762. } else
  6763. bp->shmem_base = HOST_VIEW_SHMEM_BASE;
  6764. /* Get the permanent MAC address. First we need to make sure the
  6765. * firmware is actually running.
  6766. */
  6767. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
  6768. if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
  6769. BNX2_DEV_INFO_SIGNATURE_MAGIC) {
  6770. dev_err(&pdev->dev, "Firmware not running, aborting\n");
  6771. rc = -ENODEV;
  6772. goto err_out_unmap;
  6773. }
  6774. bnx2_read_vpd_fw_ver(bp);
  6775. j = strlen(bp->fw_version);
  6776. reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
  6777. for (i = 0; i < 3 && j < 24; i++) {
  6778. u8 num, k, skip0;
  6779. if (i == 0) {
  6780. bp->fw_version[j++] = 'b';
  6781. bp->fw_version[j++] = 'c';
  6782. bp->fw_version[j++] = ' ';
  6783. }
  6784. num = (u8) (reg >> (24 - (i * 8)));
  6785. for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
  6786. if (num >= k || !skip0 || k == 1) {
  6787. bp->fw_version[j++] = (num / k) + '0';
  6788. skip0 = 0;
  6789. }
  6790. }
  6791. if (i != 2)
  6792. bp->fw_version[j++] = '.';
  6793. }
  6794. reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
  6795. if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
  6796. bp->wol = 1;
  6797. if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
  6798. bp->flags |= BNX2_FLAG_ASF_ENABLE;
  6799. for (i = 0; i < 30; i++) {
  6800. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6801. if (reg & BNX2_CONDITION_MFW_RUN_MASK)
  6802. break;
  6803. msleep(10);
  6804. }
  6805. }
  6806. reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
  6807. reg &= BNX2_CONDITION_MFW_RUN_MASK;
  6808. if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
  6809. reg != BNX2_CONDITION_MFW_RUN_NONE) {
  6810. u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
  6811. if (j < 32)
  6812. bp->fw_version[j++] = ' ';
  6813. for (i = 0; i < 3 && j < 28; i++) {
  6814. reg = bnx2_reg_rd_ind(bp, addr + i * 4);
  6815. reg = be32_to_cpu(reg);
  6816. memcpy(&bp->fw_version[j], &reg, 4);
  6817. j += 4;
  6818. }
  6819. }
  6820. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
  6821. bp->mac_addr[0] = (u8) (reg >> 8);
  6822. bp->mac_addr[1] = (u8) reg;
  6823. reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
  6824. bp->mac_addr[2] = (u8) (reg >> 24);
  6825. bp->mac_addr[3] = (u8) (reg >> 16);
  6826. bp->mac_addr[4] = (u8) (reg >> 8);
  6827. bp->mac_addr[5] = (u8) reg;
  6828. bp->tx_ring_size = BNX2_MAX_TX_DESC_CNT;
  6829. bnx2_set_rx_ring_size(bp, 255);
  6830. bp->tx_quick_cons_trip_int = 2;
  6831. bp->tx_quick_cons_trip = 20;
  6832. bp->tx_ticks_int = 18;
  6833. bp->tx_ticks = 80;
  6834. bp->rx_quick_cons_trip_int = 2;
  6835. bp->rx_quick_cons_trip = 12;
  6836. bp->rx_ticks_int = 18;
  6837. bp->rx_ticks = 18;
  6838. bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
  6839. bp->current_interval = BNX2_TIMER_INTERVAL;
  6840. bp->phy_addr = 1;
  6841. /* Disable WOL support if we are running on a SERDES chip. */
  6842. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  6843. bnx2_get_5709_media(bp);
  6844. else if (BNX2_CHIP_BOND(bp) & BNX2_CHIP_BOND_SERDES_BIT)
  6845. bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
  6846. bp->phy_port = PORT_TP;
  6847. if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
  6848. bp->phy_port = PORT_FIBRE;
  6849. reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
  6850. if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
  6851. bp->flags |= BNX2_FLAG_NO_WOL;
  6852. bp->wol = 0;
  6853. }
  6854. if (BNX2_CHIP(bp) == BNX2_CHIP_5706) {
  6855. /* Don't do parallel detect on this board because of
  6856. * some board problems. The link will not go down
  6857. * if we do parallel detect.
  6858. */
  6859. if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
  6860. pdev->subsystem_device == 0x310c)
  6861. bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
  6862. } else {
  6863. bp->phy_addr = 2;
  6864. if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
  6865. bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
  6866. }
  6867. } else if (BNX2_CHIP(bp) == BNX2_CHIP_5706 ||
  6868. BNX2_CHIP(bp) == BNX2_CHIP_5708)
  6869. bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
  6870. else if (BNX2_CHIP(bp) == BNX2_CHIP_5709 &&
  6871. (BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Ax ||
  6872. BNX2_CHIP_REV(bp) == BNX2_CHIP_REV_Bx))
  6873. bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
  6874. bnx2_init_fw_cap(bp);
  6875. if ((BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_A0) ||
  6876. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B0) ||
  6877. (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5708_B1) ||
  6878. !(BNX2_RD(bp, BNX2_PCI_CONFIG_3) & BNX2_PCI_CONFIG_3_VAUX_PRESET)) {
  6879. bp->flags |= BNX2_FLAG_NO_WOL;
  6880. bp->wol = 0;
  6881. }
  6882. if (bp->flags & BNX2_FLAG_NO_WOL)
  6883. device_set_wakeup_capable(&bp->pdev->dev, false);
  6884. else
  6885. device_set_wakeup_enable(&bp->pdev->dev, bp->wol);
  6886. if (BNX2_CHIP_ID(bp) == BNX2_CHIP_ID_5706_A0) {
  6887. bp->tx_quick_cons_trip_int =
  6888. bp->tx_quick_cons_trip;
  6889. bp->tx_ticks_int = bp->tx_ticks;
  6890. bp->rx_quick_cons_trip_int =
  6891. bp->rx_quick_cons_trip;
  6892. bp->rx_ticks_int = bp->rx_ticks;
  6893. bp->comp_prod_trip_int = bp->comp_prod_trip;
  6894. bp->com_ticks_int = bp->com_ticks;
  6895. bp->cmd_ticks_int = bp->cmd_ticks;
  6896. }
  6897. /* Disable MSI on 5706 if AMD 8132 bridge is found.
  6898. *
  6899. * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
  6900. * with byte enables disabled on the unused 32-bit word. This is legal
  6901. * but causes problems on the AMD 8132 which will eventually stop
  6902. * responding after a while.
  6903. *
  6904. * AMD believes this incompatibility is unique to the 5706, and
  6905. * prefers to locally disable MSI rather than globally disabling it.
  6906. */
  6907. if (BNX2_CHIP(bp) == BNX2_CHIP_5706 && disable_msi == 0) {
  6908. struct pci_dev *amd_8132 = NULL;
  6909. while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
  6910. PCI_DEVICE_ID_AMD_8132_BRIDGE,
  6911. amd_8132))) {
  6912. if (amd_8132->revision >= 0x10 &&
  6913. amd_8132->revision <= 0x13) {
  6914. disable_msi = 1;
  6915. pci_dev_put(amd_8132);
  6916. break;
  6917. }
  6918. }
  6919. }
  6920. bnx2_set_default_link(bp);
  6921. bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
  6922. init_timer(&bp->timer);
  6923. bp->timer.expires = RUN_AT(BNX2_TIMER_INTERVAL);
  6924. bp->timer.data = (unsigned long) bp;
  6925. bp->timer.function = bnx2_timer;
  6926. #ifdef BCM_CNIC
  6927. if (bnx2_shmem_rd(bp, BNX2_ISCSI_INITIATOR) & BNX2_ISCSI_INITIATOR_EN)
  6928. bp->cnic_eth_dev.max_iscsi_conn =
  6929. (bnx2_shmem_rd(bp, BNX2_ISCSI_MAX_CONN) &
  6930. BNX2_ISCSI_MAX_CONN_MASK) >> BNX2_ISCSI_MAX_CONN_SHIFT;
  6931. bp->cnic_probe = bnx2_cnic_probe;
  6932. #endif
  6933. pci_save_state(pdev);
  6934. return 0;
  6935. err_out_unmap:
  6936. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  6937. pci_disable_pcie_error_reporting(pdev);
  6938. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  6939. }
  6940. pci_iounmap(pdev, bp->regview);
  6941. bp->regview = NULL;
  6942. err_out_release:
  6943. pci_release_regions(pdev);
  6944. err_out_disable:
  6945. pci_disable_device(pdev);
  6946. err_out:
  6947. return rc;
  6948. }
  6949. static char *
  6950. bnx2_bus_string(struct bnx2 *bp, char *str)
  6951. {
  6952. char *s = str;
  6953. if (bp->flags & BNX2_FLAG_PCIE) {
  6954. s += sprintf(s, "PCI Express");
  6955. } else {
  6956. s += sprintf(s, "PCI");
  6957. if (bp->flags & BNX2_FLAG_PCIX)
  6958. s += sprintf(s, "-X");
  6959. if (bp->flags & BNX2_FLAG_PCI_32BIT)
  6960. s += sprintf(s, " 32-bit");
  6961. else
  6962. s += sprintf(s, " 64-bit");
  6963. s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
  6964. }
  6965. return str;
  6966. }
  6967. static void
  6968. bnx2_del_napi(struct bnx2 *bp)
  6969. {
  6970. int i;
  6971. for (i = 0; i < bp->irq_nvecs; i++)
  6972. netif_napi_del(&bp->bnx2_napi[i].napi);
  6973. }
  6974. static void
  6975. bnx2_init_napi(struct bnx2 *bp)
  6976. {
  6977. int i;
  6978. for (i = 0; i < bp->irq_nvecs; i++) {
  6979. struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
  6980. int (*poll)(struct napi_struct *, int);
  6981. if (i == 0)
  6982. poll = bnx2_poll;
  6983. else
  6984. poll = bnx2_poll_msix;
  6985. netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
  6986. bnapi->bp = bp;
  6987. }
  6988. }
  6989. static const struct net_device_ops bnx2_netdev_ops = {
  6990. .ndo_open = bnx2_open,
  6991. .ndo_start_xmit = bnx2_start_xmit,
  6992. .ndo_stop = bnx2_close,
  6993. .ndo_get_stats64 = bnx2_get_stats64,
  6994. .ndo_set_rx_mode = bnx2_set_rx_mode,
  6995. .ndo_do_ioctl = bnx2_ioctl,
  6996. .ndo_validate_addr = eth_validate_addr,
  6997. .ndo_set_mac_address = bnx2_change_mac_addr,
  6998. .ndo_change_mtu = bnx2_change_mtu,
  6999. .ndo_fix_features = bnx2_fix_features,
  7000. .ndo_set_features = bnx2_set_features,
  7001. .ndo_tx_timeout = bnx2_tx_timeout,
  7002. #ifdef CONFIG_NET_POLL_CONTROLLER
  7003. .ndo_poll_controller = poll_bnx2,
  7004. #endif
  7005. };
  7006. static int
  7007. bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
  7008. {
  7009. static int version_printed = 0;
  7010. struct net_device *dev;
  7011. struct bnx2 *bp;
  7012. int rc;
  7013. char str[40];
  7014. if (version_printed++ == 0)
  7015. pr_info("%s", version);
  7016. /* dev zeroed in init_etherdev */
  7017. dev = alloc_etherdev_mq(sizeof(*bp), TX_MAX_RINGS);
  7018. if (!dev)
  7019. return -ENOMEM;
  7020. rc = bnx2_init_board(pdev, dev);
  7021. if (rc < 0)
  7022. goto err_free;
  7023. dev->netdev_ops = &bnx2_netdev_ops;
  7024. dev->watchdog_timeo = TX_TIMEOUT;
  7025. dev->ethtool_ops = &bnx2_ethtool_ops;
  7026. bp = netdev_priv(dev);
  7027. pci_set_drvdata(pdev, dev);
  7028. memcpy(dev->dev_addr, bp->mac_addr, ETH_ALEN);
  7029. dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
  7030. NETIF_F_TSO | NETIF_F_TSO_ECN |
  7031. NETIF_F_RXHASH | NETIF_F_RXCSUM;
  7032. if (BNX2_CHIP(bp) == BNX2_CHIP_5709)
  7033. dev->hw_features |= NETIF_F_IPV6_CSUM | NETIF_F_TSO6;
  7034. dev->vlan_features = dev->hw_features;
  7035. dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
  7036. dev->features |= dev->hw_features;
  7037. dev->priv_flags |= IFF_UNICAST_FLT;
  7038. if ((rc = register_netdev(dev))) {
  7039. dev_err(&pdev->dev, "Cannot register net device\n");
  7040. goto error;
  7041. }
  7042. netdev_info(dev, "%s (%c%d) %s found at mem %lx, IRQ %d, "
  7043. "node addr %pM\n", board_info[ent->driver_data].name,
  7044. ((BNX2_CHIP_ID(bp) & 0xf000) >> 12) + 'A',
  7045. ((BNX2_CHIP_ID(bp) & 0x0ff0) >> 4),
  7046. bnx2_bus_string(bp, str), (long)pci_resource_start(pdev, 0),
  7047. pdev->irq, dev->dev_addr);
  7048. return 0;
  7049. error:
  7050. pci_iounmap(pdev, bp->regview);
  7051. pci_release_regions(pdev);
  7052. pci_disable_device(pdev);
  7053. err_free:
  7054. free_netdev(dev);
  7055. return rc;
  7056. }
  7057. static void
  7058. bnx2_remove_one(struct pci_dev *pdev)
  7059. {
  7060. struct net_device *dev = pci_get_drvdata(pdev);
  7061. struct bnx2 *bp = netdev_priv(dev);
  7062. unregister_netdev(dev);
  7063. del_timer_sync(&bp->timer);
  7064. cancel_work_sync(&bp->reset_task);
  7065. pci_iounmap(bp->pdev, bp->regview);
  7066. kfree(bp->temp_stats_blk);
  7067. if (bp->flags & BNX2_FLAG_AER_ENABLED) {
  7068. pci_disable_pcie_error_reporting(pdev);
  7069. bp->flags &= ~BNX2_FLAG_AER_ENABLED;
  7070. }
  7071. bnx2_release_firmware(bp);
  7072. free_netdev(dev);
  7073. pci_release_regions(pdev);
  7074. pci_disable_device(pdev);
  7075. }
  7076. #ifdef CONFIG_PM_SLEEP
  7077. static int
  7078. bnx2_suspend(struct device *device)
  7079. {
  7080. struct pci_dev *pdev = to_pci_dev(device);
  7081. struct net_device *dev = pci_get_drvdata(pdev);
  7082. struct bnx2 *bp = netdev_priv(dev);
  7083. if (netif_running(dev)) {
  7084. cancel_work_sync(&bp->reset_task);
  7085. bnx2_netif_stop(bp, true);
  7086. netif_device_detach(dev);
  7087. del_timer_sync(&bp->timer);
  7088. bnx2_shutdown_chip(bp);
  7089. __bnx2_free_irq(bp);
  7090. bnx2_free_skbs(bp);
  7091. }
  7092. bnx2_setup_wol(bp);
  7093. return 0;
  7094. }
  7095. static int
  7096. bnx2_resume(struct device *device)
  7097. {
  7098. struct pci_dev *pdev = to_pci_dev(device);
  7099. struct net_device *dev = pci_get_drvdata(pdev);
  7100. struct bnx2 *bp = netdev_priv(dev);
  7101. if (!netif_running(dev))
  7102. return 0;
  7103. bnx2_set_power_state(bp, PCI_D0);
  7104. netif_device_attach(dev);
  7105. bnx2_request_irq(bp);
  7106. bnx2_init_nic(bp, 1);
  7107. bnx2_netif_start(bp, true);
  7108. return 0;
  7109. }
  7110. static SIMPLE_DEV_PM_OPS(bnx2_pm_ops, bnx2_suspend, bnx2_resume);
  7111. #define BNX2_PM_OPS (&bnx2_pm_ops)
  7112. #else
  7113. #define BNX2_PM_OPS NULL
  7114. #endif /* CONFIG_PM_SLEEP */
  7115. /**
  7116. * bnx2_io_error_detected - called when PCI error is detected
  7117. * @pdev: Pointer to PCI device
  7118. * @state: The current pci connection state
  7119. *
  7120. * This function is called after a PCI bus error affecting
  7121. * this device has been detected.
  7122. */
  7123. static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
  7124. pci_channel_state_t state)
  7125. {
  7126. struct net_device *dev = pci_get_drvdata(pdev);
  7127. struct bnx2 *bp = netdev_priv(dev);
  7128. rtnl_lock();
  7129. netif_device_detach(dev);
  7130. if (state == pci_channel_io_perm_failure) {
  7131. rtnl_unlock();
  7132. return PCI_ERS_RESULT_DISCONNECT;
  7133. }
  7134. if (netif_running(dev)) {
  7135. bnx2_netif_stop(bp, true);
  7136. del_timer_sync(&bp->timer);
  7137. bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
  7138. }
  7139. pci_disable_device(pdev);
  7140. rtnl_unlock();
  7141. /* Request a slot slot reset. */
  7142. return PCI_ERS_RESULT_NEED_RESET;
  7143. }
  7144. /**
  7145. * bnx2_io_slot_reset - called after the pci bus has been reset.
  7146. * @pdev: Pointer to PCI device
  7147. *
  7148. * Restart the card from scratch, as if from a cold-boot.
  7149. */
  7150. static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
  7151. {
  7152. struct net_device *dev = pci_get_drvdata(pdev);
  7153. struct bnx2 *bp = netdev_priv(dev);
  7154. pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
  7155. int err = 0;
  7156. rtnl_lock();
  7157. if (pci_enable_device(pdev)) {
  7158. dev_err(&pdev->dev,
  7159. "Cannot re-enable PCI device after reset\n");
  7160. } else {
  7161. pci_set_master(pdev);
  7162. pci_restore_state(pdev);
  7163. pci_save_state(pdev);
  7164. if (netif_running(dev))
  7165. err = bnx2_init_nic(bp, 1);
  7166. if (!err)
  7167. result = PCI_ERS_RESULT_RECOVERED;
  7168. }
  7169. if (result != PCI_ERS_RESULT_RECOVERED && netif_running(dev)) {
  7170. bnx2_napi_enable(bp);
  7171. dev_close(dev);
  7172. }
  7173. rtnl_unlock();
  7174. if (!(bp->flags & BNX2_FLAG_AER_ENABLED))
  7175. return result;
  7176. err = pci_cleanup_aer_uncorrect_error_status(pdev);
  7177. if (err) {
  7178. dev_err(&pdev->dev,
  7179. "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
  7180. err); /* non-fatal, continue */
  7181. }
  7182. return result;
  7183. }
  7184. /**
  7185. * bnx2_io_resume - called when traffic can start flowing again.
  7186. * @pdev: Pointer to PCI device
  7187. *
  7188. * This callback is called when the error recovery driver tells us that
  7189. * its OK to resume normal operation.
  7190. */
  7191. static void bnx2_io_resume(struct pci_dev *pdev)
  7192. {
  7193. struct net_device *dev = pci_get_drvdata(pdev);
  7194. struct bnx2 *bp = netdev_priv(dev);
  7195. rtnl_lock();
  7196. if (netif_running(dev))
  7197. bnx2_netif_start(bp, true);
  7198. netif_device_attach(dev);
  7199. rtnl_unlock();
  7200. }
  7201. static void bnx2_shutdown(struct pci_dev *pdev)
  7202. {
  7203. struct net_device *dev = pci_get_drvdata(pdev);
  7204. struct bnx2 *bp;
  7205. if (!dev)
  7206. return;
  7207. bp = netdev_priv(dev);
  7208. if (!bp)
  7209. return;
  7210. rtnl_lock();
  7211. if (netif_running(dev))
  7212. dev_close(bp->dev);
  7213. if (system_state == SYSTEM_POWER_OFF)
  7214. bnx2_set_power_state(bp, PCI_D3hot);
  7215. rtnl_unlock();
  7216. }
  7217. static const struct pci_error_handlers bnx2_err_handler = {
  7218. .error_detected = bnx2_io_error_detected,
  7219. .slot_reset = bnx2_io_slot_reset,
  7220. .resume = bnx2_io_resume,
  7221. };
  7222. static struct pci_driver bnx2_pci_driver = {
  7223. .name = DRV_MODULE_NAME,
  7224. .id_table = bnx2_pci_tbl,
  7225. .probe = bnx2_init_one,
  7226. .remove = bnx2_remove_one,
  7227. .driver.pm = BNX2_PM_OPS,
  7228. .err_handler = &bnx2_err_handler,
  7229. .shutdown = bnx2_shutdown,
  7230. };
  7231. module_pci_driver(bnx2_pci_driver);