io.c 41 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. static int self_check_not_bad(const struct ubi_device *ubi, int pnum);
  92. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  93. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  94. const struct ubi_ec_hdr *ec_hdr);
  95. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  96. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  97. const struct ubi_vid_hdr *vid_hdr);
  98. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  99. int offset, int len);
  100. /**
  101. * ubi_io_read - read data from a physical eraseblock.
  102. * @ubi: UBI device description object
  103. * @buf: buffer where to store the read data
  104. * @pnum: physical eraseblock number to read from
  105. * @offset: offset within the physical eraseblock from where to read
  106. * @len: how many bytes to read
  107. *
  108. * This function reads data from offset @offset of physical eraseblock @pnum
  109. * and stores the read data in the @buf buffer. The following return codes are
  110. * possible:
  111. *
  112. * o %0 if all the requested data were successfully read;
  113. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  114. * correctable bit-flips were detected; this is harmless but may indicate
  115. * that this eraseblock may become bad soon (but do not have to);
  116. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  117. * example it can be an ECC error in case of NAND; this most probably means
  118. * that the data is corrupted;
  119. * o %-EIO if some I/O error occurred;
  120. * o other negative error codes in case of other errors.
  121. */
  122. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  123. int len)
  124. {
  125. int err, retries = 0;
  126. size_t read;
  127. loff_t addr;
  128. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  129. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  130. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  131. ubi_assert(len > 0);
  132. err = self_check_not_bad(ubi, pnum);
  133. if (err)
  134. return err;
  135. /*
  136. * Deliberately corrupt the buffer to improve robustness. Indeed, if we
  137. * do not do this, the following may happen:
  138. * 1. The buffer contains data from previous operation, e.g., read from
  139. * another PEB previously. The data looks like expected, e.g., if we
  140. * just do not read anything and return - the caller would not
  141. * notice this. E.g., if we are reading a VID header, the buffer may
  142. * contain a valid VID header from another PEB.
  143. * 2. The driver is buggy and returns us success or -EBADMSG or
  144. * -EUCLEAN, but it does not actually put any data to the buffer.
  145. *
  146. * This may confuse UBI or upper layers - they may think the buffer
  147. * contains valid data while in fact it is just old data. This is
  148. * especially possible because UBI (and UBIFS) relies on CRC, and
  149. * treats data as correct even in case of ECC errors if the CRC is
  150. * correct.
  151. *
  152. * Try to prevent this situation by changing the first byte of the
  153. * buffer.
  154. */
  155. *((uint8_t *)buf) ^= 0xFF;
  156. addr = (loff_t)pnum * ubi->peb_size + offset;
  157. retry:
  158. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  159. if (err) {
  160. const char *errstr = mtd_is_eccerr(err) ? " (ECC error)" : "";
  161. if (mtd_is_bitflip(err)) {
  162. /*
  163. * -EUCLEAN is reported if there was a bit-flip which
  164. * was corrected, so this is harmless.
  165. *
  166. * We do not report about it here unless debugging is
  167. * enabled. A corresponding message will be printed
  168. * later, when it is has been scrubbed.
  169. */
  170. ubi_msg("fixable bit-flip detected at PEB %d", pnum);
  171. ubi_assert(len == read);
  172. return UBI_IO_BITFLIPS;
  173. }
  174. if (retries++ < UBI_IO_RETRIES) {
  175. ubi_warn("error %d%s while reading %d bytes from PEB %d:%d, read only %zd bytes, retry",
  176. err, errstr, len, pnum, offset, read);
  177. yield();
  178. goto retry;
  179. }
  180. ubi_err("error %d%s while reading %d bytes from PEB %d:%d, read %zd bytes",
  181. err, errstr, len, pnum, offset, read);
  182. dump_stack();
  183. /*
  184. * The driver should never return -EBADMSG if it failed to read
  185. * all the requested data. But some buggy drivers might do
  186. * this, so we change it to -EIO.
  187. */
  188. if (read != len && mtd_is_eccerr(err)) {
  189. ubi_assert(0);
  190. err = -EIO;
  191. }
  192. } else {
  193. ubi_assert(len == read);
  194. if (ubi_dbg_is_bitflip(ubi)) {
  195. dbg_gen("bit-flip (emulated)");
  196. err = UBI_IO_BITFLIPS;
  197. }
  198. }
  199. return err;
  200. }
  201. /**
  202. * ubi_io_write - write data to a physical eraseblock.
  203. * @ubi: UBI device description object
  204. * @buf: buffer with the data to write
  205. * @pnum: physical eraseblock number to write to
  206. * @offset: offset within the physical eraseblock where to write
  207. * @len: how many bytes to write
  208. *
  209. * This function writes @len bytes of data from buffer @buf to offset @offset
  210. * of physical eraseblock @pnum. If all the data were successfully written,
  211. * zero is returned. If an error occurred, this function returns a negative
  212. * error code. If %-EIO is returned, the physical eraseblock most probably went
  213. * bad.
  214. *
  215. * Note, in case of an error, it is possible that something was still written
  216. * to the flash media, but may be some garbage.
  217. */
  218. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  219. int len)
  220. {
  221. int err;
  222. size_t written;
  223. loff_t addr;
  224. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  225. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  226. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  227. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  228. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  229. if (ubi->ro_mode) {
  230. ubi_err("read-only mode");
  231. return -EROFS;
  232. }
  233. err = self_check_not_bad(ubi, pnum);
  234. if (err)
  235. return err;
  236. /* The area we are writing to has to contain all 0xFF bytes */
  237. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  238. if (err)
  239. return err;
  240. if (offset >= ubi->leb_start) {
  241. /*
  242. * We write to the data area of the physical eraseblock. Make
  243. * sure it has valid EC and VID headers.
  244. */
  245. err = self_check_peb_ec_hdr(ubi, pnum);
  246. if (err)
  247. return err;
  248. err = self_check_peb_vid_hdr(ubi, pnum);
  249. if (err)
  250. return err;
  251. }
  252. if (ubi_dbg_is_write_failure(ubi)) {
  253. ubi_err("cannot write %d bytes to PEB %d:%d (emulated)",
  254. len, pnum, offset);
  255. dump_stack();
  256. return -EIO;
  257. }
  258. addr = (loff_t)pnum * ubi->peb_size + offset;
  259. err = mtd_write(ubi->mtd, addr, len, &written, buf);
  260. if (err) {
  261. ubi_err("error %d while writing %d bytes to PEB %d:%d, written %zd bytes",
  262. err, len, pnum, offset, written);
  263. dump_stack();
  264. ubi_dump_flash(ubi, pnum, offset, len);
  265. } else
  266. ubi_assert(written == len);
  267. if (!err) {
  268. err = self_check_write(ubi, buf, pnum, offset, len);
  269. if (err)
  270. return err;
  271. /*
  272. * Since we always write sequentially, the rest of the PEB has
  273. * to contain only 0xFF bytes.
  274. */
  275. offset += len;
  276. len = ubi->peb_size - offset;
  277. if (len)
  278. err = ubi_self_check_all_ff(ubi, pnum, offset, len);
  279. }
  280. return err;
  281. }
  282. /**
  283. * erase_callback - MTD erasure call-back.
  284. * @ei: MTD erase information object.
  285. *
  286. * Note, even though MTD erase interface is asynchronous, all the current
  287. * implementations are synchronous anyway.
  288. */
  289. static void erase_callback(struct erase_info *ei)
  290. {
  291. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  292. }
  293. /**
  294. * do_sync_erase - synchronously erase a physical eraseblock.
  295. * @ubi: UBI device description object
  296. * @pnum: the physical eraseblock number to erase
  297. *
  298. * This function synchronously erases physical eraseblock @pnum and returns
  299. * zero in case of success and a negative error code in case of failure. If
  300. * %-EIO is returned, the physical eraseblock most probably went bad.
  301. */
  302. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  303. {
  304. int err, retries = 0;
  305. struct erase_info ei;
  306. wait_queue_head_t wq;
  307. dbg_io("erase PEB %d", pnum);
  308. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  309. if (ubi->ro_mode) {
  310. ubi_err("read-only mode");
  311. return -EROFS;
  312. }
  313. retry:
  314. init_waitqueue_head(&wq);
  315. memset(&ei, 0, sizeof(struct erase_info));
  316. ei.mtd = ubi->mtd;
  317. ei.addr = (loff_t)pnum * ubi->peb_size;
  318. ei.len = ubi->peb_size;
  319. ei.callback = erase_callback;
  320. ei.priv = (unsigned long)&wq;
  321. err = mtd_erase(ubi->mtd, &ei);
  322. if (err) {
  323. if (retries++ < UBI_IO_RETRIES) {
  324. ubi_warn("error %d while erasing PEB %d, retry",
  325. err, pnum);
  326. yield();
  327. goto retry;
  328. }
  329. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  330. dump_stack();
  331. return err;
  332. }
  333. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  334. ei.state == MTD_ERASE_FAILED);
  335. if (err) {
  336. ubi_err("interrupted PEB %d erasure", pnum);
  337. return -EINTR;
  338. }
  339. if (ei.state == MTD_ERASE_FAILED) {
  340. if (retries++ < UBI_IO_RETRIES) {
  341. ubi_warn("error while erasing PEB %d, retry", pnum);
  342. yield();
  343. goto retry;
  344. }
  345. ubi_err("cannot erase PEB %d", pnum);
  346. dump_stack();
  347. return -EIO;
  348. }
  349. err = ubi_self_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  350. if (err)
  351. return err;
  352. if (ubi_dbg_is_erase_failure(ubi)) {
  353. ubi_err("cannot erase PEB %d (emulated)", pnum);
  354. return -EIO;
  355. }
  356. return 0;
  357. }
  358. /* Patterns to write to a physical eraseblock when torturing it */
  359. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  360. /**
  361. * torture_peb - test a supposedly bad physical eraseblock.
  362. * @ubi: UBI device description object
  363. * @pnum: the physical eraseblock number to test
  364. *
  365. * This function returns %-EIO if the physical eraseblock did not pass the
  366. * test, a positive number of erase operations done if the test was
  367. * successfully passed, and other negative error codes in case of other errors.
  368. */
  369. static int torture_peb(struct ubi_device *ubi, int pnum)
  370. {
  371. int err, i, patt_count;
  372. ubi_msg("run torture test for PEB %d", pnum);
  373. patt_count = ARRAY_SIZE(patterns);
  374. ubi_assert(patt_count > 0);
  375. mutex_lock(&ubi->buf_mutex);
  376. for (i = 0; i < patt_count; i++) {
  377. err = do_sync_erase(ubi, pnum);
  378. if (err)
  379. goto out;
  380. /* Make sure the PEB contains only 0xFF bytes */
  381. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  382. if (err)
  383. goto out;
  384. err = ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->peb_size);
  385. if (err == 0) {
  386. ubi_err("erased PEB %d, but a non-0xFF byte found",
  387. pnum);
  388. err = -EIO;
  389. goto out;
  390. }
  391. /* Write a pattern and check it */
  392. memset(ubi->peb_buf, patterns[i], ubi->peb_size);
  393. err = ubi_io_write(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  394. if (err)
  395. goto out;
  396. memset(ubi->peb_buf, ~patterns[i], ubi->peb_size);
  397. err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
  398. if (err)
  399. goto out;
  400. err = ubi_check_pattern(ubi->peb_buf, patterns[i],
  401. ubi->peb_size);
  402. if (err == 0) {
  403. ubi_err("pattern %x checking failed for PEB %d",
  404. patterns[i], pnum);
  405. err = -EIO;
  406. goto out;
  407. }
  408. }
  409. err = patt_count;
  410. ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum);
  411. out:
  412. mutex_unlock(&ubi->buf_mutex);
  413. if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
  414. /*
  415. * If a bit-flip or data integrity error was detected, the test
  416. * has not passed because it happened on a freshly erased
  417. * physical eraseblock which means something is wrong with it.
  418. */
  419. ubi_err("read problems on freshly erased PEB %d, must be bad",
  420. pnum);
  421. err = -EIO;
  422. }
  423. return err;
  424. }
  425. /**
  426. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  427. * @ubi: UBI device description object
  428. * @pnum: physical eraseblock number to prepare
  429. *
  430. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  431. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  432. * filling with zeroes starts from the end of the PEB. This was observed with
  433. * Spansion S29GL512N NOR flash.
  434. *
  435. * This means that in case of a power cut we may end up with intact data at the
  436. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  437. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  438. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  439. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  440. *
  441. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  442. * magic numbers in order to invalidate them and prevent the failures. Returns
  443. * zero in case of success and a negative error code in case of failure.
  444. */
  445. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  446. {
  447. int err;
  448. size_t written;
  449. loff_t addr;
  450. uint32_t data = 0;
  451. struct ubi_ec_hdr ec_hdr;
  452. /*
  453. * Note, we cannot generally define VID header buffers on stack,
  454. * because of the way we deal with these buffers (see the header
  455. * comment in this file). But we know this is a NOR-specific piece of
  456. * code, so we can do this. But yes, this is error-prone and we should
  457. * (pre-)allocate VID header buffer instead.
  458. */
  459. struct ubi_vid_hdr vid_hdr;
  460. /*
  461. * If VID or EC is valid, we have to corrupt them before erasing.
  462. * It is important to first invalidate the EC header, and then the VID
  463. * header. Otherwise a power cut may lead to valid EC header and
  464. * invalid VID header, in which case UBI will treat this PEB as
  465. * corrupted and will try to preserve it, and print scary warnings.
  466. */
  467. addr = (loff_t)pnum * ubi->peb_size;
  468. err = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  469. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  470. err != UBI_IO_FF){
  471. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  472. if(err)
  473. goto error;
  474. }
  475. err = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  476. if (err != UBI_IO_BAD_HDR_EBADMSG && err != UBI_IO_BAD_HDR &&
  477. err != UBI_IO_FF){
  478. addr += ubi->vid_hdr_aloffset;
  479. err = mtd_write(ubi->mtd, addr, 4, &written, (void *)&data);
  480. if (err)
  481. goto error;
  482. }
  483. return 0;
  484. error:
  485. /*
  486. * The PEB contains a valid VID or EC header, but we cannot invalidate
  487. * it. Supposedly the flash media or the driver is screwed up, so
  488. * return an error.
  489. */
  490. ubi_err("cannot invalidate PEB %d, write returned %d", pnum, err);
  491. ubi_dump_flash(ubi, pnum, 0, ubi->peb_size);
  492. return -EIO;
  493. }
  494. /**
  495. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  496. * @ubi: UBI device description object
  497. * @pnum: physical eraseblock number to erase
  498. * @torture: if this physical eraseblock has to be tortured
  499. *
  500. * This function synchronously erases physical eraseblock @pnum. If @torture
  501. * flag is not zero, the physical eraseblock is checked by means of writing
  502. * different patterns to it and reading them back. If the torturing is enabled,
  503. * the physical eraseblock is erased more than once.
  504. *
  505. * This function returns the number of erasures made in case of success, %-EIO
  506. * if the erasure failed or the torturing test failed, and other negative error
  507. * codes in case of other errors. Note, %-EIO means that the physical
  508. * eraseblock is bad.
  509. */
  510. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  511. {
  512. int err, ret = 0;
  513. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  514. err = self_check_not_bad(ubi, pnum);
  515. if (err != 0)
  516. return err;
  517. if (ubi->ro_mode) {
  518. ubi_err("read-only mode");
  519. return -EROFS;
  520. }
  521. if (ubi->nor_flash) {
  522. err = nor_erase_prepare(ubi, pnum);
  523. if (err)
  524. return err;
  525. }
  526. if (torture) {
  527. ret = torture_peb(ubi, pnum);
  528. if (ret < 0)
  529. return ret;
  530. }
  531. err = do_sync_erase(ubi, pnum);
  532. if (err)
  533. return err;
  534. return ret + 1;
  535. }
  536. /**
  537. * ubi_io_is_bad - check if a physical eraseblock is bad.
  538. * @ubi: UBI device description object
  539. * @pnum: the physical eraseblock number to check
  540. *
  541. * This function returns a positive number if the physical eraseblock is bad,
  542. * zero if not, and a negative error code if an error occurred.
  543. */
  544. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  545. {
  546. struct mtd_info *mtd = ubi->mtd;
  547. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  548. if (ubi->bad_allowed) {
  549. int ret;
  550. ret = mtd_block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  551. if (ret < 0)
  552. ubi_err("error %d while checking if PEB %d is bad",
  553. ret, pnum);
  554. else if (ret)
  555. dbg_io("PEB %d is bad", pnum);
  556. return ret;
  557. }
  558. return 0;
  559. }
  560. /**
  561. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  562. * @ubi: UBI device description object
  563. * @pnum: the physical eraseblock number to mark
  564. *
  565. * This function returns zero in case of success and a negative error code in
  566. * case of failure.
  567. */
  568. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  569. {
  570. int err;
  571. struct mtd_info *mtd = ubi->mtd;
  572. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  573. if (ubi->ro_mode) {
  574. ubi_err("read-only mode");
  575. return -EROFS;
  576. }
  577. if (!ubi->bad_allowed)
  578. return 0;
  579. err = mtd_block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  580. if (err)
  581. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  582. return err;
  583. }
  584. /**
  585. * validate_ec_hdr - validate an erase counter header.
  586. * @ubi: UBI device description object
  587. * @ec_hdr: the erase counter header to check
  588. *
  589. * This function returns zero if the erase counter header is OK, and %1 if
  590. * not.
  591. */
  592. static int validate_ec_hdr(const struct ubi_device *ubi,
  593. const struct ubi_ec_hdr *ec_hdr)
  594. {
  595. long long ec;
  596. int vid_hdr_offset, leb_start;
  597. ec = be64_to_cpu(ec_hdr->ec);
  598. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  599. leb_start = be32_to_cpu(ec_hdr->data_offset);
  600. if (ec_hdr->version != UBI_VERSION) {
  601. ubi_err("node with incompatible UBI version found: this UBI version is %d, image version is %d",
  602. UBI_VERSION, (int)ec_hdr->version);
  603. goto bad;
  604. }
  605. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  606. ubi_err("bad VID header offset %d, expected %d",
  607. vid_hdr_offset, ubi->vid_hdr_offset);
  608. goto bad;
  609. }
  610. if (leb_start != ubi->leb_start) {
  611. ubi_err("bad data offset %d, expected %d",
  612. leb_start, ubi->leb_start);
  613. goto bad;
  614. }
  615. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  616. ubi_err("bad erase counter %lld", ec);
  617. goto bad;
  618. }
  619. return 0;
  620. bad:
  621. ubi_err("bad EC header");
  622. ubi_dump_ec_hdr(ec_hdr);
  623. dump_stack();
  624. return 1;
  625. }
  626. /**
  627. * ubi_io_read_ec_hdr - read and check an erase counter header.
  628. * @ubi: UBI device description object
  629. * @pnum: physical eraseblock to read from
  630. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  631. * header
  632. * @verbose: be verbose if the header is corrupted or was not found
  633. *
  634. * This function reads erase counter header from physical eraseblock @pnum and
  635. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  636. * erase counter header. The following codes may be returned:
  637. *
  638. * o %0 if the CRC checksum is correct and the header was successfully read;
  639. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  640. * and corrected by the flash driver; this is harmless but may indicate that
  641. * this eraseblock may become bad soon (but may be not);
  642. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  643. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  644. * a data integrity error (uncorrectable ECC error in case of NAND);
  645. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  646. * o a negative error code in case of failure.
  647. */
  648. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  649. struct ubi_ec_hdr *ec_hdr, int verbose)
  650. {
  651. int err, read_err;
  652. uint32_t crc, magic, hdr_crc;
  653. dbg_io("read EC header from PEB %d", pnum);
  654. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  655. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  656. if (read_err) {
  657. if (read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  658. return read_err;
  659. /*
  660. * We read all the data, but either a correctable bit-flip
  661. * occurred, or MTD reported a data integrity error
  662. * (uncorrectable ECC error in case of NAND). The former is
  663. * harmless, the later may mean that the read data is
  664. * corrupted. But we have a CRC check-sum and we will detect
  665. * this. If the EC header is still OK, we just report this as
  666. * there was a bit-flip, to force scrubbing.
  667. */
  668. }
  669. magic = be32_to_cpu(ec_hdr->magic);
  670. if (magic != UBI_EC_HDR_MAGIC) {
  671. if (mtd_is_eccerr(read_err))
  672. return UBI_IO_BAD_HDR_EBADMSG;
  673. /*
  674. * The magic field is wrong. Let's check if we have read all
  675. * 0xFF. If yes, this physical eraseblock is assumed to be
  676. * empty.
  677. */
  678. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  679. /* The physical eraseblock is supposedly empty */
  680. if (verbose)
  681. ubi_warn("no EC header found at PEB %d, only 0xFF bytes",
  682. pnum);
  683. dbg_bld("no EC header found at PEB %d, only 0xFF bytes",
  684. pnum);
  685. if (!read_err)
  686. return UBI_IO_FF;
  687. else
  688. return UBI_IO_FF_BITFLIPS;
  689. }
  690. /*
  691. * This is not a valid erase counter header, and these are not
  692. * 0xFF bytes. Report that the header is corrupted.
  693. */
  694. if (verbose) {
  695. ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
  696. pnum, magic, UBI_EC_HDR_MAGIC);
  697. ubi_dump_ec_hdr(ec_hdr);
  698. }
  699. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  700. pnum, magic, UBI_EC_HDR_MAGIC);
  701. return UBI_IO_BAD_HDR;
  702. }
  703. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  704. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  705. if (hdr_crc != crc) {
  706. if (verbose) {
  707. ubi_warn("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  708. pnum, crc, hdr_crc);
  709. ubi_dump_ec_hdr(ec_hdr);
  710. }
  711. dbg_bld("bad EC header CRC at PEB %d, calculated %#08x, read %#08x",
  712. pnum, crc, hdr_crc);
  713. if (!read_err)
  714. return UBI_IO_BAD_HDR;
  715. else
  716. return UBI_IO_BAD_HDR_EBADMSG;
  717. }
  718. /* And of course validate what has just been read from the media */
  719. err = validate_ec_hdr(ubi, ec_hdr);
  720. if (err) {
  721. ubi_err("validation failed for PEB %d", pnum);
  722. return -EINVAL;
  723. }
  724. /*
  725. * If there was %-EBADMSG, but the header CRC is still OK, report about
  726. * a bit-flip to force scrubbing on this PEB.
  727. */
  728. return read_err ? UBI_IO_BITFLIPS : 0;
  729. }
  730. /**
  731. * ubi_io_write_ec_hdr - write an erase counter header.
  732. * @ubi: UBI device description object
  733. * @pnum: physical eraseblock to write to
  734. * @ec_hdr: the erase counter header to write
  735. *
  736. * This function writes erase counter header described by @ec_hdr to physical
  737. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  738. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  739. * field.
  740. *
  741. * This function returns zero in case of success and a negative error code in
  742. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  743. * went bad.
  744. */
  745. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  746. struct ubi_ec_hdr *ec_hdr)
  747. {
  748. int err;
  749. uint32_t crc;
  750. dbg_io("write EC header to PEB %d", pnum);
  751. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  752. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  753. ec_hdr->version = UBI_VERSION;
  754. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  755. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  756. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  757. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  758. ec_hdr->hdr_crc = cpu_to_be32(crc);
  759. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  760. if (err)
  761. return err;
  762. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  763. return err;
  764. }
  765. /**
  766. * validate_vid_hdr - validate a volume identifier header.
  767. * @ubi: UBI device description object
  768. * @vid_hdr: the volume identifier header to check
  769. *
  770. * This function checks that data stored in the volume identifier header
  771. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  772. */
  773. static int validate_vid_hdr(const struct ubi_device *ubi,
  774. const struct ubi_vid_hdr *vid_hdr)
  775. {
  776. int vol_type = vid_hdr->vol_type;
  777. int copy_flag = vid_hdr->copy_flag;
  778. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  779. int lnum = be32_to_cpu(vid_hdr->lnum);
  780. int compat = vid_hdr->compat;
  781. int data_size = be32_to_cpu(vid_hdr->data_size);
  782. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  783. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  784. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  785. int usable_leb_size = ubi->leb_size - data_pad;
  786. if (copy_flag != 0 && copy_flag != 1) {
  787. ubi_err("bad copy_flag");
  788. goto bad;
  789. }
  790. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  791. data_pad < 0) {
  792. ubi_err("negative values");
  793. goto bad;
  794. }
  795. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  796. ubi_err("bad vol_id");
  797. goto bad;
  798. }
  799. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  800. ubi_err("bad compat");
  801. goto bad;
  802. }
  803. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  804. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  805. compat != UBI_COMPAT_REJECT) {
  806. ubi_err("bad compat");
  807. goto bad;
  808. }
  809. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  810. ubi_err("bad vol_type");
  811. goto bad;
  812. }
  813. if (data_pad >= ubi->leb_size / 2) {
  814. ubi_err("bad data_pad");
  815. goto bad;
  816. }
  817. if (vol_type == UBI_VID_STATIC) {
  818. /*
  819. * Although from high-level point of view static volumes may
  820. * contain zero bytes of data, but no VID headers can contain
  821. * zero at these fields, because they empty volumes do not have
  822. * mapped logical eraseblocks.
  823. */
  824. if (used_ebs == 0) {
  825. ubi_err("zero used_ebs");
  826. goto bad;
  827. }
  828. if (data_size == 0) {
  829. ubi_err("zero data_size");
  830. goto bad;
  831. }
  832. if (lnum < used_ebs - 1) {
  833. if (data_size != usable_leb_size) {
  834. ubi_err("bad data_size");
  835. goto bad;
  836. }
  837. } else if (lnum == used_ebs - 1) {
  838. if (data_size == 0) {
  839. ubi_err("bad data_size at last LEB");
  840. goto bad;
  841. }
  842. } else {
  843. ubi_err("too high lnum");
  844. goto bad;
  845. }
  846. } else {
  847. if (copy_flag == 0) {
  848. if (data_crc != 0) {
  849. ubi_err("non-zero data CRC");
  850. goto bad;
  851. }
  852. if (data_size != 0) {
  853. ubi_err("non-zero data_size");
  854. goto bad;
  855. }
  856. } else {
  857. if (data_size == 0) {
  858. ubi_err("zero data_size of copy");
  859. goto bad;
  860. }
  861. }
  862. if (used_ebs != 0) {
  863. ubi_err("bad used_ebs");
  864. goto bad;
  865. }
  866. }
  867. return 0;
  868. bad:
  869. ubi_err("bad VID header");
  870. ubi_dump_vid_hdr(vid_hdr);
  871. dump_stack();
  872. return 1;
  873. }
  874. /**
  875. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  876. * @ubi: UBI device description object
  877. * @pnum: physical eraseblock number to read from
  878. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  879. * identifier header
  880. * @verbose: be verbose if the header is corrupted or wasn't found
  881. *
  882. * This function reads the volume identifier header from physical eraseblock
  883. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  884. * volume identifier header. The error codes are the same as in
  885. * 'ubi_io_read_ec_hdr()'.
  886. *
  887. * Note, the implementation of this function is also very similar to
  888. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  889. */
  890. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  891. struct ubi_vid_hdr *vid_hdr, int verbose)
  892. {
  893. int err, read_err;
  894. uint32_t crc, magic, hdr_crc;
  895. void *p;
  896. dbg_io("read VID header from PEB %d", pnum);
  897. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  898. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  899. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  900. ubi->vid_hdr_alsize);
  901. if (read_err && read_err != UBI_IO_BITFLIPS && !mtd_is_eccerr(read_err))
  902. return read_err;
  903. magic = be32_to_cpu(vid_hdr->magic);
  904. if (magic != UBI_VID_HDR_MAGIC) {
  905. if (mtd_is_eccerr(read_err))
  906. return UBI_IO_BAD_HDR_EBADMSG;
  907. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  908. if (verbose)
  909. ubi_warn("no VID header found at PEB %d, only 0xFF bytes",
  910. pnum);
  911. dbg_bld("no VID header found at PEB %d, only 0xFF bytes",
  912. pnum);
  913. if (!read_err)
  914. return UBI_IO_FF;
  915. else
  916. return UBI_IO_FF_BITFLIPS;
  917. }
  918. if (verbose) {
  919. ubi_warn("bad magic number at PEB %d: %08x instead of %08x",
  920. pnum, magic, UBI_VID_HDR_MAGIC);
  921. ubi_dump_vid_hdr(vid_hdr);
  922. }
  923. dbg_bld("bad magic number at PEB %d: %08x instead of %08x",
  924. pnum, magic, UBI_VID_HDR_MAGIC);
  925. return UBI_IO_BAD_HDR;
  926. }
  927. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  928. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  929. if (hdr_crc != crc) {
  930. if (verbose) {
  931. ubi_warn("bad CRC at PEB %d, calculated %#08x, read %#08x",
  932. pnum, crc, hdr_crc);
  933. ubi_dump_vid_hdr(vid_hdr);
  934. }
  935. dbg_bld("bad CRC at PEB %d, calculated %#08x, read %#08x",
  936. pnum, crc, hdr_crc);
  937. if (!read_err)
  938. return UBI_IO_BAD_HDR;
  939. else
  940. return UBI_IO_BAD_HDR_EBADMSG;
  941. }
  942. err = validate_vid_hdr(ubi, vid_hdr);
  943. if (err) {
  944. ubi_err("validation failed for PEB %d", pnum);
  945. return -EINVAL;
  946. }
  947. return read_err ? UBI_IO_BITFLIPS : 0;
  948. }
  949. /**
  950. * ubi_io_write_vid_hdr - write a volume identifier header.
  951. * @ubi: UBI device description object
  952. * @pnum: the physical eraseblock number to write to
  953. * @vid_hdr: the volume identifier header to write
  954. *
  955. * This function writes the volume identifier header described by @vid_hdr to
  956. * physical eraseblock @pnum. This function automatically fills the
  957. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  958. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  959. *
  960. * This function returns zero in case of success and a negative error code in
  961. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  962. * bad.
  963. */
  964. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  965. struct ubi_vid_hdr *vid_hdr)
  966. {
  967. int err;
  968. uint32_t crc;
  969. void *p;
  970. dbg_io("write VID header to PEB %d", pnum);
  971. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  972. err = self_check_peb_ec_hdr(ubi, pnum);
  973. if (err)
  974. return err;
  975. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  976. vid_hdr->version = UBI_VERSION;
  977. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  978. vid_hdr->hdr_crc = cpu_to_be32(crc);
  979. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  980. if (err)
  981. return err;
  982. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  983. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  984. ubi->vid_hdr_alsize);
  985. return err;
  986. }
  987. /**
  988. * self_check_not_bad - ensure that a physical eraseblock is not bad.
  989. * @ubi: UBI device description object
  990. * @pnum: physical eraseblock number to check
  991. *
  992. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  993. * it is bad and a negative error code if an error occurred.
  994. */
  995. static int self_check_not_bad(const struct ubi_device *ubi, int pnum)
  996. {
  997. int err;
  998. if (!ubi_dbg_chk_io(ubi))
  999. return 0;
  1000. err = ubi_io_is_bad(ubi, pnum);
  1001. if (!err)
  1002. return err;
  1003. ubi_err("self-check failed for PEB %d", pnum);
  1004. dump_stack();
  1005. return err > 0 ? -EINVAL : err;
  1006. }
  1007. /**
  1008. * self_check_ec_hdr - check if an erase counter header is all right.
  1009. * @ubi: UBI device description object
  1010. * @pnum: physical eraseblock number the erase counter header belongs to
  1011. * @ec_hdr: the erase counter header to check
  1012. *
  1013. * This function returns zero if the erase counter header contains valid
  1014. * values, and %-EINVAL if not.
  1015. */
  1016. static int self_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1017. const struct ubi_ec_hdr *ec_hdr)
  1018. {
  1019. int err;
  1020. uint32_t magic;
  1021. if (!ubi_dbg_chk_io(ubi))
  1022. return 0;
  1023. magic = be32_to_cpu(ec_hdr->magic);
  1024. if (magic != UBI_EC_HDR_MAGIC) {
  1025. ubi_err("bad magic %#08x, must be %#08x",
  1026. magic, UBI_EC_HDR_MAGIC);
  1027. goto fail;
  1028. }
  1029. err = validate_ec_hdr(ubi, ec_hdr);
  1030. if (err) {
  1031. ubi_err("self-check failed for PEB %d", pnum);
  1032. goto fail;
  1033. }
  1034. return 0;
  1035. fail:
  1036. ubi_dump_ec_hdr(ec_hdr);
  1037. dump_stack();
  1038. return -EINVAL;
  1039. }
  1040. /**
  1041. * self_check_peb_ec_hdr - check erase counter header.
  1042. * @ubi: UBI device description object
  1043. * @pnum: the physical eraseblock number to check
  1044. *
  1045. * This function returns zero if the erase counter header is all right and and
  1046. * a negative error code if not or if an error occurred.
  1047. */
  1048. static int self_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1049. {
  1050. int err;
  1051. uint32_t crc, hdr_crc;
  1052. struct ubi_ec_hdr *ec_hdr;
  1053. if (!ubi_dbg_chk_io(ubi))
  1054. return 0;
  1055. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1056. if (!ec_hdr)
  1057. return -ENOMEM;
  1058. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1059. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1060. goto exit;
  1061. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1062. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1063. if (hdr_crc != crc) {
  1064. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1065. ubi_err("self-check failed for PEB %d", pnum);
  1066. ubi_dump_ec_hdr(ec_hdr);
  1067. dump_stack();
  1068. err = -EINVAL;
  1069. goto exit;
  1070. }
  1071. err = self_check_ec_hdr(ubi, pnum, ec_hdr);
  1072. exit:
  1073. kfree(ec_hdr);
  1074. return err;
  1075. }
  1076. /**
  1077. * self_check_vid_hdr - check that a volume identifier header is all right.
  1078. * @ubi: UBI device description object
  1079. * @pnum: physical eraseblock number the volume identifier header belongs to
  1080. * @vid_hdr: the volume identifier header to check
  1081. *
  1082. * This function returns zero if the volume identifier header is all right, and
  1083. * %-EINVAL if not.
  1084. */
  1085. static int self_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1086. const struct ubi_vid_hdr *vid_hdr)
  1087. {
  1088. int err;
  1089. uint32_t magic;
  1090. if (!ubi_dbg_chk_io(ubi))
  1091. return 0;
  1092. magic = be32_to_cpu(vid_hdr->magic);
  1093. if (magic != UBI_VID_HDR_MAGIC) {
  1094. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1095. magic, pnum, UBI_VID_HDR_MAGIC);
  1096. goto fail;
  1097. }
  1098. err = validate_vid_hdr(ubi, vid_hdr);
  1099. if (err) {
  1100. ubi_err("self-check failed for PEB %d", pnum);
  1101. goto fail;
  1102. }
  1103. return err;
  1104. fail:
  1105. ubi_err("self-check failed for PEB %d", pnum);
  1106. ubi_dump_vid_hdr(vid_hdr);
  1107. dump_stack();
  1108. return -EINVAL;
  1109. }
  1110. /**
  1111. * self_check_peb_vid_hdr - check volume identifier header.
  1112. * @ubi: UBI device description object
  1113. * @pnum: the physical eraseblock number to check
  1114. *
  1115. * This function returns zero if the volume identifier header is all right,
  1116. * and a negative error code if not or if an error occurred.
  1117. */
  1118. static int self_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1119. {
  1120. int err;
  1121. uint32_t crc, hdr_crc;
  1122. struct ubi_vid_hdr *vid_hdr;
  1123. void *p;
  1124. if (!ubi_dbg_chk_io(ubi))
  1125. return 0;
  1126. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1127. if (!vid_hdr)
  1128. return -ENOMEM;
  1129. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1130. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1131. ubi->vid_hdr_alsize);
  1132. if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
  1133. goto exit;
  1134. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1135. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1136. if (hdr_crc != crc) {
  1137. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, read %#08x",
  1138. pnum, crc, hdr_crc);
  1139. ubi_err("self-check failed for PEB %d", pnum);
  1140. ubi_dump_vid_hdr(vid_hdr);
  1141. dump_stack();
  1142. err = -EINVAL;
  1143. goto exit;
  1144. }
  1145. err = self_check_vid_hdr(ubi, pnum, vid_hdr);
  1146. exit:
  1147. ubi_free_vid_hdr(ubi, vid_hdr);
  1148. return err;
  1149. }
  1150. /**
  1151. * self_check_write - make sure write succeeded.
  1152. * @ubi: UBI device description object
  1153. * @buf: buffer with data which were written
  1154. * @pnum: physical eraseblock number the data were written to
  1155. * @offset: offset within the physical eraseblock the data were written to
  1156. * @len: how many bytes were written
  1157. *
  1158. * This functions reads data which were recently written and compares it with
  1159. * the original data buffer - the data have to match. Returns zero if the data
  1160. * match and a negative error code if not or in case of failure.
  1161. */
  1162. static int self_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1163. int offset, int len)
  1164. {
  1165. int err, i;
  1166. size_t read;
  1167. void *buf1;
  1168. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1169. if (!ubi_dbg_chk_io(ubi))
  1170. return 0;
  1171. buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1172. if (!buf1) {
  1173. ubi_err("cannot allocate memory to check writes");
  1174. return 0;
  1175. }
  1176. err = mtd_read(ubi->mtd, addr, len, &read, buf1);
  1177. if (err && !mtd_is_bitflip(err))
  1178. goto out_free;
  1179. for (i = 0; i < len; i++) {
  1180. uint8_t c = ((uint8_t *)buf)[i];
  1181. uint8_t c1 = ((uint8_t *)buf1)[i];
  1182. int dump_len;
  1183. if (c == c1)
  1184. continue;
  1185. ubi_err("self-check failed for PEB %d:%d, len %d",
  1186. pnum, offset, len);
  1187. ubi_msg("data differ at position %d", i);
  1188. dump_len = max_t(int, 128, len - i);
  1189. ubi_msg("hex dump of the original buffer from %d to %d",
  1190. i, i + dump_len);
  1191. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1192. buf + i, dump_len, 1);
  1193. ubi_msg("hex dump of the read buffer from %d to %d",
  1194. i, i + dump_len);
  1195. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1196. buf1 + i, dump_len, 1);
  1197. dump_stack();
  1198. err = -EINVAL;
  1199. goto out_free;
  1200. }
  1201. vfree(buf1);
  1202. return 0;
  1203. out_free:
  1204. vfree(buf1);
  1205. return err;
  1206. }
  1207. /**
  1208. * ubi_self_check_all_ff - check that a region of flash is empty.
  1209. * @ubi: UBI device description object
  1210. * @pnum: the physical eraseblock number to check
  1211. * @offset: the starting offset within the physical eraseblock to check
  1212. * @len: the length of the region to check
  1213. *
  1214. * This function returns zero if only 0xFF bytes are present at offset
  1215. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1216. * or if an error occurred.
  1217. */
  1218. int ubi_self_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1219. {
  1220. size_t read;
  1221. int err;
  1222. void *buf;
  1223. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1224. if (!ubi_dbg_chk_io(ubi))
  1225. return 0;
  1226. buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1227. if (!buf) {
  1228. ubi_err("cannot allocate memory to check for 0xFFs");
  1229. return 0;
  1230. }
  1231. err = mtd_read(ubi->mtd, addr, len, &read, buf);
  1232. if (err && !mtd_is_bitflip(err)) {
  1233. ubi_err("error %d while reading %d bytes from PEB %d:%d, read %zd bytes",
  1234. err, len, pnum, offset, read);
  1235. goto error;
  1236. }
  1237. err = ubi_check_pattern(buf, 0xFF, len);
  1238. if (err == 0) {
  1239. ubi_err("flash region at PEB %d:%d, length %d does not contain all 0xFF bytes",
  1240. pnum, offset, len);
  1241. goto fail;
  1242. }
  1243. vfree(buf);
  1244. return 0;
  1245. fail:
  1246. ubi_err("self-check failed for PEB %d", pnum);
  1247. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1248. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
  1249. err = -EINVAL;
  1250. error:
  1251. dump_stack();
  1252. vfree(buf);
  1253. return err;
  1254. }