spi-nor.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107
  1. /*
  2. * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
  3. * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
  4. *
  5. * Copyright (C) 2005, Intec Automation Inc.
  6. * Copyright (C) 2014, Freescale Semiconductor, Inc.
  7. *
  8. * This code is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/module.h>
  15. #include <linux/device.h>
  16. #include <linux/mutex.h>
  17. #include <linux/math64.h>
  18. #include <linux/mtd/cfi.h>
  19. #include <linux/mtd/mtd.h>
  20. #include <linux/of_platform.h>
  21. #include <linux/spi/flash.h>
  22. #include <linux/mtd/spi-nor.h>
  23. /* Define max times to check status register before we give up. */
  24. #define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
  25. #define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
  26. /*
  27. * Read the status register, returning its value in the location
  28. * Return the status register value.
  29. * Returns negative if error occurred.
  30. */
  31. static int read_sr(struct spi_nor *nor)
  32. {
  33. int ret;
  34. u8 val;
  35. ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
  36. if (ret < 0) {
  37. pr_err("error %d reading SR\n", (int) ret);
  38. return ret;
  39. }
  40. return val;
  41. }
  42. /*
  43. * Read configuration register, returning its value in the
  44. * location. Return the configuration register value.
  45. * Returns negative if error occured.
  46. */
  47. static int read_cr(struct spi_nor *nor)
  48. {
  49. int ret;
  50. u8 val;
  51. ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
  52. if (ret < 0) {
  53. dev_err(nor->dev, "error %d reading CR\n", ret);
  54. return ret;
  55. }
  56. return val;
  57. }
  58. /*
  59. * Dummy Cycle calculation for different type of read.
  60. * It can be used to support more commands with
  61. * different dummy cycle requirements.
  62. */
  63. static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
  64. {
  65. switch (nor->flash_read) {
  66. case SPI_NOR_FAST:
  67. case SPI_NOR_DUAL:
  68. case SPI_NOR_QUAD:
  69. return 1;
  70. case SPI_NOR_NORMAL:
  71. return 0;
  72. }
  73. return 0;
  74. }
  75. /*
  76. * Write status register 1 byte
  77. * Returns negative if error occurred.
  78. */
  79. static inline int write_sr(struct spi_nor *nor, u8 val)
  80. {
  81. nor->cmd_buf[0] = val;
  82. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  83. }
  84. /*
  85. * Set write enable latch with Write Enable command.
  86. * Returns negative if error occurred.
  87. */
  88. static inline int write_enable(struct spi_nor *nor)
  89. {
  90. return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
  91. }
  92. /*
  93. * Send write disble instruction to the chip.
  94. */
  95. static inline int write_disable(struct spi_nor *nor)
  96. {
  97. return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
  98. }
  99. static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
  100. {
  101. return mtd->priv;
  102. }
  103. /* Enable/disable 4-byte addressing mode. */
  104. static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
  105. {
  106. int status;
  107. bool need_wren = false;
  108. u8 cmd;
  109. switch (JEDEC_MFR(jedec_id)) {
  110. case CFI_MFR_ST: /* Micron, actually */
  111. /* Some Micron need WREN command; all will accept it */
  112. need_wren = true;
  113. case CFI_MFR_MACRONIX:
  114. case 0xEF /* winbond */:
  115. if (need_wren)
  116. write_enable(nor);
  117. cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
  118. status = nor->write_reg(nor, cmd, NULL, 0, 0);
  119. if (need_wren)
  120. write_disable(nor);
  121. return status;
  122. default:
  123. /* Spansion style */
  124. nor->cmd_buf[0] = enable << 7;
  125. return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
  126. }
  127. }
  128. static int spi_nor_wait_till_ready(struct spi_nor *nor)
  129. {
  130. unsigned long deadline;
  131. int sr;
  132. deadline = jiffies + MAX_READY_WAIT_JIFFIES;
  133. do {
  134. cond_resched();
  135. sr = read_sr(nor);
  136. if (sr < 0)
  137. break;
  138. else if (!(sr & SR_WIP))
  139. return 0;
  140. } while (!time_after_eq(jiffies, deadline));
  141. return -ETIMEDOUT;
  142. }
  143. /*
  144. * Service routine to read status register until ready, or timeout occurs.
  145. * Returns non-zero if error.
  146. */
  147. static int wait_till_ready(struct spi_nor *nor)
  148. {
  149. return nor->wait_till_ready(nor);
  150. }
  151. /*
  152. * Erase the whole flash memory
  153. *
  154. * Returns 0 if successful, non-zero otherwise.
  155. */
  156. static int erase_chip(struct spi_nor *nor)
  157. {
  158. int ret;
  159. dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
  160. /* Wait until finished previous write command. */
  161. ret = wait_till_ready(nor);
  162. if (ret)
  163. return ret;
  164. /* Send write enable, then erase commands. */
  165. write_enable(nor);
  166. return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
  167. }
  168. static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
  169. {
  170. int ret = 0;
  171. mutex_lock(&nor->lock);
  172. if (nor->prepare) {
  173. ret = nor->prepare(nor, ops);
  174. if (ret) {
  175. dev_err(nor->dev, "failed in the preparation.\n");
  176. mutex_unlock(&nor->lock);
  177. return ret;
  178. }
  179. }
  180. return ret;
  181. }
  182. static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
  183. {
  184. if (nor->unprepare)
  185. nor->unprepare(nor, ops);
  186. mutex_unlock(&nor->lock);
  187. }
  188. /*
  189. * Erase an address range on the nor chip. The address range may extend
  190. * one or more erase sectors. Return an error is there is a problem erasing.
  191. */
  192. static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
  193. {
  194. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  195. u32 addr, len;
  196. uint32_t rem;
  197. int ret;
  198. dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
  199. (long long)instr->len);
  200. div_u64_rem(instr->len, mtd->erasesize, &rem);
  201. if (rem)
  202. return -EINVAL;
  203. addr = instr->addr;
  204. len = instr->len;
  205. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
  206. if (ret)
  207. return ret;
  208. /* whole-chip erase? */
  209. if (len == mtd->size) {
  210. if (erase_chip(nor)) {
  211. ret = -EIO;
  212. goto erase_err;
  213. }
  214. /* REVISIT in some cases we could speed up erasing large regions
  215. * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
  216. * to use "small sector erase", but that's not always optimal.
  217. */
  218. /* "sector"-at-a-time erase */
  219. } else {
  220. while (len) {
  221. if (nor->erase(nor, addr)) {
  222. ret = -EIO;
  223. goto erase_err;
  224. }
  225. addr += mtd->erasesize;
  226. len -= mtd->erasesize;
  227. }
  228. }
  229. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  230. instr->state = MTD_ERASE_DONE;
  231. mtd_erase_callback(instr);
  232. return ret;
  233. erase_err:
  234. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
  235. instr->state = MTD_ERASE_FAILED;
  236. return ret;
  237. }
  238. static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  239. {
  240. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  241. uint32_t offset = ofs;
  242. uint8_t status_old, status_new;
  243. int ret = 0;
  244. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
  245. if (ret)
  246. return ret;
  247. /* Wait until finished previous command */
  248. ret = wait_till_ready(nor);
  249. if (ret)
  250. goto err;
  251. status_old = read_sr(nor);
  252. if (offset < mtd->size - (mtd->size / 2))
  253. status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
  254. else if (offset < mtd->size - (mtd->size / 4))
  255. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  256. else if (offset < mtd->size - (mtd->size / 8))
  257. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  258. else if (offset < mtd->size - (mtd->size / 16))
  259. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  260. else if (offset < mtd->size - (mtd->size / 32))
  261. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  262. else if (offset < mtd->size - (mtd->size / 64))
  263. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  264. else
  265. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  266. /* Only modify protection if it will not unlock other areas */
  267. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
  268. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  269. write_enable(nor);
  270. ret = write_sr(nor, status_new);
  271. if (ret)
  272. goto err;
  273. }
  274. err:
  275. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
  276. return ret;
  277. }
  278. static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  279. {
  280. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  281. uint32_t offset = ofs;
  282. uint8_t status_old, status_new;
  283. int ret = 0;
  284. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
  285. if (ret)
  286. return ret;
  287. /* Wait until finished previous command */
  288. ret = wait_till_ready(nor);
  289. if (ret)
  290. goto err;
  291. status_old = read_sr(nor);
  292. if (offset+len > mtd->size - (mtd->size / 64))
  293. status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
  294. else if (offset+len > mtd->size - (mtd->size / 32))
  295. status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
  296. else if (offset+len > mtd->size - (mtd->size / 16))
  297. status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
  298. else if (offset+len > mtd->size - (mtd->size / 8))
  299. status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
  300. else if (offset+len > mtd->size - (mtd->size / 4))
  301. status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
  302. else if (offset+len > mtd->size - (mtd->size / 2))
  303. status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
  304. else
  305. status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
  306. /* Only modify protection if it will not lock other areas */
  307. if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
  308. (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
  309. write_enable(nor);
  310. ret = write_sr(nor, status_new);
  311. if (ret)
  312. goto err;
  313. }
  314. err:
  315. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
  316. return ret;
  317. }
  318. struct flash_info {
  319. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  320. * a high byte of zero plus three data bytes: the manufacturer id,
  321. * then a two byte device id.
  322. */
  323. u32 jedec_id;
  324. u16 ext_id;
  325. /* The size listed here is what works with SPINOR_OP_SE, which isn't
  326. * necessarily called a "sector" by the vendor.
  327. */
  328. unsigned sector_size;
  329. u16 n_sectors;
  330. u16 page_size;
  331. u16 addr_width;
  332. u16 flags;
  333. #define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
  334. #define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
  335. #define SST_WRITE 0x04 /* use SST byte programming */
  336. #define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
  337. #define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
  338. #define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
  339. #define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
  340. };
  341. #define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
  342. ((kernel_ulong_t)&(struct flash_info) { \
  343. .jedec_id = (_jedec_id), \
  344. .ext_id = (_ext_id), \
  345. .sector_size = (_sector_size), \
  346. .n_sectors = (_n_sectors), \
  347. .page_size = 256, \
  348. .flags = (_flags), \
  349. })
  350. #define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
  351. ((kernel_ulong_t)&(struct flash_info) { \
  352. .sector_size = (_sector_size), \
  353. .n_sectors = (_n_sectors), \
  354. .page_size = (_page_size), \
  355. .addr_width = (_addr_width), \
  356. .flags = (_flags), \
  357. })
  358. /* NOTE: double check command sets and memory organization when you add
  359. * more nor chips. This current list focusses on newer chips, which
  360. * have been converging on command sets which including JEDEC ID.
  361. */
  362. const struct spi_device_id spi_nor_ids[] = {
  363. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  364. { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
  365. { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
  366. { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
  367. { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
  368. { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
  369. { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
  370. { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
  371. { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
  372. { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
  373. { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
  374. /* EON -- en25xxx */
  375. { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
  376. { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
  377. { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
  378. { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
  379. { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
  380. { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
  381. /* ESMT */
  382. { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
  383. /* Everspin */
  384. { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  385. { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  386. /* GigaDevice */
  387. { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
  388. { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
  389. /* Intel/Numonyx -- xxxs33b */
  390. { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
  391. { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
  392. { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
  393. /* Macronix */
  394. { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
  395. { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
  396. { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
  397. { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
  398. { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
  399. { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
  400. { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
  401. { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
  402. { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
  403. { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
  404. { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
  405. { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
  406. { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
  407. /* Micron */
  408. { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
  409. { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
  410. { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
  411. { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
  412. { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
  413. /* PMC */
  414. { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
  415. { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
  416. { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
  417. /* Spansion -- single (large) sector size only, at least
  418. * for the chips listed here (without boot sectors).
  419. */
  420. { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  421. { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
  422. { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
  423. { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  424. { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
  425. { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
  426. { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
  427. { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
  428. { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
  429. { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
  430. { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
  431. { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
  432. { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
  433. { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
  434. { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
  435. { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  436. { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
  437. { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  438. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  439. { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  440. { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
  441. { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
  442. { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
  443. { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
  444. { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
  445. { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
  446. { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
  447. { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
  448. /* ST Microelectronics -- newer production may have feature updates */
  449. { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
  450. { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
  451. { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
  452. { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
  453. { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
  454. { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
  455. { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
  456. { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
  457. { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
  458. { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
  459. { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
  460. { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
  461. { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
  462. { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
  463. { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
  464. { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
  465. { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
  466. { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
  467. { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
  468. { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
  469. { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
  470. { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
  471. { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
  472. { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
  473. { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
  474. { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
  475. { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
  476. { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
  477. { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
  478. { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
  479. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  480. { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
  481. { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
  482. { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
  483. { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
  484. { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
  485. { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
  486. { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
  487. { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
  488. { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
  489. { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
  490. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  491. { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
  492. { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
  493. { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
  494. { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
  495. /* Catalyst / On Semiconductor -- non-JEDEC */
  496. { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  497. { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  498. { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  499. { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  500. { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
  501. { },
  502. };
  503. EXPORT_SYMBOL_GPL(spi_nor_ids);
  504. static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
  505. {
  506. int tmp;
  507. u8 id[5];
  508. u32 jedec;
  509. u16 ext_jedec;
  510. struct flash_info *info;
  511. tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
  512. if (tmp < 0) {
  513. dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
  514. return ERR_PTR(tmp);
  515. }
  516. jedec = id[0];
  517. jedec = jedec << 8;
  518. jedec |= id[1];
  519. jedec = jedec << 8;
  520. jedec |= id[2];
  521. ext_jedec = id[3] << 8 | id[4];
  522. for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
  523. info = (void *)spi_nor_ids[tmp].driver_data;
  524. if (info->jedec_id == jedec) {
  525. if (info->ext_id == 0 || info->ext_id == ext_jedec)
  526. return &spi_nor_ids[tmp];
  527. }
  528. }
  529. dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
  530. return ERR_PTR(-ENODEV);
  531. }
  532. static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
  533. {
  534. return nor->read_id(nor);
  535. }
  536. static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
  537. size_t *retlen, u_char *buf)
  538. {
  539. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  540. int ret;
  541. dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
  542. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
  543. if (ret)
  544. return ret;
  545. ret = nor->read(nor, from, len, retlen, buf);
  546. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
  547. return ret;
  548. }
  549. static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
  550. size_t *retlen, const u_char *buf)
  551. {
  552. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  553. size_t actual;
  554. int ret;
  555. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  556. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  557. if (ret)
  558. return ret;
  559. /* Wait until finished previous write command. */
  560. ret = wait_till_ready(nor);
  561. if (ret)
  562. goto time_out;
  563. write_enable(nor);
  564. nor->sst_write_second = false;
  565. actual = to % 2;
  566. /* Start write from odd address. */
  567. if (actual) {
  568. nor->program_opcode = SPINOR_OP_BP;
  569. /* write one byte. */
  570. nor->write(nor, to, 1, retlen, buf);
  571. ret = wait_till_ready(nor);
  572. if (ret)
  573. goto time_out;
  574. }
  575. to += actual;
  576. /* Write out most of the data here. */
  577. for (; actual < len - 1; actual += 2) {
  578. nor->program_opcode = SPINOR_OP_AAI_WP;
  579. /* write two bytes. */
  580. nor->write(nor, to, 2, retlen, buf + actual);
  581. ret = wait_till_ready(nor);
  582. if (ret)
  583. goto time_out;
  584. to += 2;
  585. nor->sst_write_second = true;
  586. }
  587. nor->sst_write_second = false;
  588. write_disable(nor);
  589. ret = wait_till_ready(nor);
  590. if (ret)
  591. goto time_out;
  592. /* Write out trailing byte if it exists. */
  593. if (actual != len) {
  594. write_enable(nor);
  595. nor->program_opcode = SPINOR_OP_BP;
  596. nor->write(nor, to, 1, retlen, buf + actual);
  597. ret = wait_till_ready(nor);
  598. if (ret)
  599. goto time_out;
  600. write_disable(nor);
  601. }
  602. time_out:
  603. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  604. return ret;
  605. }
  606. /*
  607. * Write an address range to the nor chip. Data must be written in
  608. * FLASH_PAGESIZE chunks. The address range may be any size provided
  609. * it is within the physical boundaries.
  610. */
  611. static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
  612. size_t *retlen, const u_char *buf)
  613. {
  614. struct spi_nor *nor = mtd_to_spi_nor(mtd);
  615. u32 page_offset, page_size, i;
  616. int ret;
  617. dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
  618. ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
  619. if (ret)
  620. return ret;
  621. /* Wait until finished previous write command. */
  622. ret = wait_till_ready(nor);
  623. if (ret)
  624. goto write_err;
  625. write_enable(nor);
  626. page_offset = to & (nor->page_size - 1);
  627. /* do all the bytes fit onto one page? */
  628. if (page_offset + len <= nor->page_size) {
  629. nor->write(nor, to, len, retlen, buf);
  630. } else {
  631. /* the size of data remaining on the first page */
  632. page_size = nor->page_size - page_offset;
  633. nor->write(nor, to, page_size, retlen, buf);
  634. /* write everything in nor->page_size chunks */
  635. for (i = page_size; i < len; i += page_size) {
  636. page_size = len - i;
  637. if (page_size > nor->page_size)
  638. page_size = nor->page_size;
  639. wait_till_ready(nor);
  640. write_enable(nor);
  641. nor->write(nor, to + i, page_size, retlen, buf + i);
  642. }
  643. }
  644. write_err:
  645. spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
  646. return 0;
  647. }
  648. static int macronix_quad_enable(struct spi_nor *nor)
  649. {
  650. int ret, val;
  651. val = read_sr(nor);
  652. write_enable(nor);
  653. nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
  654. nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
  655. if (wait_till_ready(nor))
  656. return 1;
  657. ret = read_sr(nor);
  658. if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
  659. dev_err(nor->dev, "Macronix Quad bit not set\n");
  660. return -EINVAL;
  661. }
  662. return 0;
  663. }
  664. /*
  665. * Write status Register and configuration register with 2 bytes
  666. * The first byte will be written to the status register, while the
  667. * second byte will be written to the configuration register.
  668. * Return negative if error occured.
  669. */
  670. static int write_sr_cr(struct spi_nor *nor, u16 val)
  671. {
  672. nor->cmd_buf[0] = val & 0xff;
  673. nor->cmd_buf[1] = (val >> 8);
  674. return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
  675. }
  676. static int spansion_quad_enable(struct spi_nor *nor)
  677. {
  678. int ret;
  679. int quad_en = CR_QUAD_EN_SPAN << 8;
  680. write_enable(nor);
  681. ret = write_sr_cr(nor, quad_en);
  682. if (ret < 0) {
  683. dev_err(nor->dev,
  684. "error while writing configuration register\n");
  685. return -EINVAL;
  686. }
  687. /* read back and check it */
  688. ret = read_cr(nor);
  689. if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
  690. dev_err(nor->dev, "Spansion Quad bit not set\n");
  691. return -EINVAL;
  692. }
  693. return 0;
  694. }
  695. static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
  696. {
  697. int status;
  698. switch (JEDEC_MFR(jedec_id)) {
  699. case CFI_MFR_MACRONIX:
  700. status = macronix_quad_enable(nor);
  701. if (status) {
  702. dev_err(nor->dev, "Macronix quad-read not enabled\n");
  703. return -EINVAL;
  704. }
  705. return status;
  706. default:
  707. status = spansion_quad_enable(nor);
  708. if (status) {
  709. dev_err(nor->dev, "Spansion quad-read not enabled\n");
  710. return -EINVAL;
  711. }
  712. return status;
  713. }
  714. }
  715. static int spi_nor_check(struct spi_nor *nor)
  716. {
  717. if (!nor->dev || !nor->read || !nor->write ||
  718. !nor->read_reg || !nor->write_reg || !nor->erase) {
  719. pr_err("spi-nor: please fill all the necessary fields!\n");
  720. return -EINVAL;
  721. }
  722. if (!nor->read_id)
  723. nor->read_id = spi_nor_read_id;
  724. if (!nor->wait_till_ready)
  725. nor->wait_till_ready = spi_nor_wait_till_ready;
  726. return 0;
  727. }
  728. int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
  729. enum read_mode mode)
  730. {
  731. struct flash_info *info;
  732. struct flash_platform_data *data;
  733. struct device *dev = nor->dev;
  734. struct mtd_info *mtd = nor->mtd;
  735. struct device_node *np = dev->of_node;
  736. int ret;
  737. int i;
  738. ret = spi_nor_check(nor);
  739. if (ret)
  740. return ret;
  741. /* Platform data helps sort out which chip type we have, as
  742. * well as how this board partitions it. If we don't have
  743. * a chip ID, try the JEDEC id commands; they'll work for most
  744. * newer chips, even if we don't recognize the particular chip.
  745. */
  746. data = dev_get_platdata(dev);
  747. if (data && data->type) {
  748. const struct spi_device_id *plat_id;
  749. for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
  750. plat_id = &spi_nor_ids[i];
  751. if (strcmp(data->type, plat_id->name))
  752. continue;
  753. break;
  754. }
  755. if (i < ARRAY_SIZE(spi_nor_ids) - 1)
  756. id = plat_id;
  757. else
  758. dev_warn(dev, "unrecognized id %s\n", data->type);
  759. }
  760. info = (void *)id->driver_data;
  761. if (info->jedec_id) {
  762. const struct spi_device_id *jid;
  763. jid = jedec_probe(nor);
  764. if (IS_ERR(jid)) {
  765. return PTR_ERR(jid);
  766. } else if (jid != id) {
  767. /*
  768. * JEDEC knows better, so overwrite platform ID. We
  769. * can't trust partitions any longer, but we'll let
  770. * mtd apply them anyway, since some partitions may be
  771. * marked read-only, and we don't want to lose that
  772. * information, even if it's not 100% accurate.
  773. */
  774. dev_warn(dev, "found %s, expected %s\n",
  775. jid->name, id->name);
  776. id = jid;
  777. info = (void *)jid->driver_data;
  778. }
  779. }
  780. mutex_init(&nor->lock);
  781. /*
  782. * Atmel, SST and Intel/Numonyx serial nor tend to power
  783. * up with the software protection bits set
  784. */
  785. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
  786. JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
  787. JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
  788. write_enable(nor);
  789. write_sr(nor, 0);
  790. }
  791. if (data && data->name)
  792. mtd->name = data->name;
  793. else
  794. mtd->name = dev_name(dev);
  795. mtd->type = MTD_NORFLASH;
  796. mtd->writesize = 1;
  797. mtd->flags = MTD_CAP_NORFLASH;
  798. mtd->size = info->sector_size * info->n_sectors;
  799. mtd->_erase = spi_nor_erase;
  800. mtd->_read = spi_nor_read;
  801. /* nor protection support for STmicro chips */
  802. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
  803. mtd->_lock = spi_nor_lock;
  804. mtd->_unlock = spi_nor_unlock;
  805. }
  806. /* sst nor chips use AAI word program */
  807. if (info->flags & SST_WRITE)
  808. mtd->_write = sst_write;
  809. else
  810. mtd->_write = spi_nor_write;
  811. /* prefer "small sector" erase if possible */
  812. if (info->flags & SECT_4K) {
  813. nor->erase_opcode = SPINOR_OP_BE_4K;
  814. mtd->erasesize = 4096;
  815. } else if (info->flags & SECT_4K_PMC) {
  816. nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
  817. mtd->erasesize = 4096;
  818. } else {
  819. nor->erase_opcode = SPINOR_OP_SE;
  820. mtd->erasesize = info->sector_size;
  821. }
  822. if (info->flags & SPI_NOR_NO_ERASE)
  823. mtd->flags |= MTD_NO_ERASE;
  824. mtd->dev.parent = dev;
  825. nor->page_size = info->page_size;
  826. mtd->writebufsize = nor->page_size;
  827. if (np) {
  828. /* If we were instantiated by DT, use it */
  829. if (of_property_read_bool(np, "m25p,fast-read"))
  830. nor->flash_read = SPI_NOR_FAST;
  831. else
  832. nor->flash_read = SPI_NOR_NORMAL;
  833. } else {
  834. /* If we weren't instantiated by DT, default to fast-read */
  835. nor->flash_read = SPI_NOR_FAST;
  836. }
  837. /* Some devices cannot do fast-read, no matter what DT tells us */
  838. if (info->flags & SPI_NOR_NO_FR)
  839. nor->flash_read = SPI_NOR_NORMAL;
  840. /* Quad/Dual-read mode takes precedence over fast/normal */
  841. if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
  842. ret = set_quad_mode(nor, info->jedec_id);
  843. if (ret) {
  844. dev_err(dev, "quad mode not supported\n");
  845. return ret;
  846. }
  847. nor->flash_read = SPI_NOR_QUAD;
  848. } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
  849. nor->flash_read = SPI_NOR_DUAL;
  850. }
  851. /* Default commands */
  852. switch (nor->flash_read) {
  853. case SPI_NOR_QUAD:
  854. nor->read_opcode = SPINOR_OP_READ_1_1_4;
  855. break;
  856. case SPI_NOR_DUAL:
  857. nor->read_opcode = SPINOR_OP_READ_1_1_2;
  858. break;
  859. case SPI_NOR_FAST:
  860. nor->read_opcode = SPINOR_OP_READ_FAST;
  861. break;
  862. case SPI_NOR_NORMAL:
  863. nor->read_opcode = SPINOR_OP_READ;
  864. break;
  865. default:
  866. dev_err(dev, "No Read opcode defined\n");
  867. return -EINVAL;
  868. }
  869. nor->program_opcode = SPINOR_OP_PP;
  870. if (info->addr_width)
  871. nor->addr_width = info->addr_width;
  872. else if (mtd->size > 0x1000000) {
  873. /* enable 4-byte addressing if the device exceeds 16MiB */
  874. nor->addr_width = 4;
  875. if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
  876. /* Dedicated 4-byte command set */
  877. switch (nor->flash_read) {
  878. case SPI_NOR_QUAD:
  879. nor->read_opcode = SPINOR_OP_READ4_1_1_4;
  880. break;
  881. case SPI_NOR_DUAL:
  882. nor->read_opcode = SPINOR_OP_READ4_1_1_2;
  883. break;
  884. case SPI_NOR_FAST:
  885. nor->read_opcode = SPINOR_OP_READ4_FAST;
  886. break;
  887. case SPI_NOR_NORMAL:
  888. nor->read_opcode = SPINOR_OP_READ4;
  889. break;
  890. }
  891. nor->program_opcode = SPINOR_OP_PP_4B;
  892. /* No small sector erase for 4-byte command set */
  893. nor->erase_opcode = SPINOR_OP_SE_4B;
  894. mtd->erasesize = info->sector_size;
  895. } else
  896. set_4byte(nor, info->jedec_id, 1);
  897. } else {
  898. nor->addr_width = 3;
  899. }
  900. nor->read_dummy = spi_nor_read_dummy_cycles(nor);
  901. dev_info(dev, "%s (%lld Kbytes)\n", id->name,
  902. (long long)mtd->size >> 10);
  903. dev_dbg(dev,
  904. "mtd .name = %s, .size = 0x%llx (%lldMiB), "
  905. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  906. mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
  907. mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
  908. if (mtd->numeraseregions)
  909. for (i = 0; i < mtd->numeraseregions; i++)
  910. dev_dbg(dev,
  911. "mtd.eraseregions[%d] = { .offset = 0x%llx, "
  912. ".erasesize = 0x%.8x (%uKiB), "
  913. ".numblocks = %d }\n",
  914. i, (long long)mtd->eraseregions[i].offset,
  915. mtd->eraseregions[i].erasesize,
  916. mtd->eraseregions[i].erasesize / 1024,
  917. mtd->eraseregions[i].numblocks);
  918. return 0;
  919. }
  920. EXPORT_SYMBOL_GPL(spi_nor_scan);
  921. const struct spi_device_id *spi_nor_match_id(char *name)
  922. {
  923. const struct spi_device_id *id = spi_nor_ids;
  924. while (id->name[0]) {
  925. if (!strcmp(name, id->name))
  926. return id;
  927. id++;
  928. }
  929. return NULL;
  930. }
  931. EXPORT_SYMBOL_GPL(spi_nor_match_id);
  932. MODULE_LICENSE("GPL");
  933. MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
  934. MODULE_AUTHOR("Mike Lavender");
  935. MODULE_DESCRIPTION("framework for SPI NOR");