card_utils.c 27 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034
  1. /**
  2. * IBM Accelerator Family 'GenWQE'
  3. *
  4. * (C) Copyright IBM Corp. 2013
  5. *
  6. * Author: Frank Haverkamp <haver@linux.vnet.ibm.com>
  7. * Author: Joerg-Stephan Vogt <jsvogt@de.ibm.com>
  8. * Author: Michael Jung <mijung@de.ibm.com>
  9. * Author: Michael Ruettger <michael@ibmra.de>
  10. *
  11. * This program is free software; you can redistribute it and/or modify
  12. * it under the terms of the GNU General Public License (version 2 only)
  13. * as published by the Free Software Foundation.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. */
  20. /*
  21. * Miscelanous functionality used in the other GenWQE driver parts.
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/sched.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/page-flags.h>
  28. #include <linux/scatterlist.h>
  29. #include <linux/hugetlb.h>
  30. #include <linux/iommu.h>
  31. #include <linux/delay.h>
  32. #include <linux/pci.h>
  33. #include <linux/dma-mapping.h>
  34. #include <linux/ctype.h>
  35. #include <linux/module.h>
  36. #include <linux/platform_device.h>
  37. #include <linux/delay.h>
  38. #include <asm/pgtable.h>
  39. #include "genwqe_driver.h"
  40. #include "card_base.h"
  41. #include "card_ddcb.h"
  42. /**
  43. * __genwqe_writeq() - Write 64-bit register
  44. * @cd: genwqe device descriptor
  45. * @byte_offs: byte offset within BAR
  46. * @val: 64-bit value
  47. *
  48. * Return: 0 if success; < 0 if error
  49. */
  50. int __genwqe_writeq(struct genwqe_dev *cd, u64 byte_offs, u64 val)
  51. {
  52. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  53. return -EIO;
  54. if (cd->mmio == NULL)
  55. return -EIO;
  56. __raw_writeq((__force u64)cpu_to_be64(val), cd->mmio + byte_offs);
  57. return 0;
  58. }
  59. /**
  60. * __genwqe_readq() - Read 64-bit register
  61. * @cd: genwqe device descriptor
  62. * @byte_offs: offset within BAR
  63. *
  64. * Return: value from register
  65. */
  66. u64 __genwqe_readq(struct genwqe_dev *cd, u64 byte_offs)
  67. {
  68. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  69. return 0xffffffffffffffffull;
  70. if ((cd->err_inject & GENWQE_INJECT_GFIR_FATAL) &&
  71. (byte_offs == IO_SLC_CFGREG_GFIR))
  72. return 0x000000000000ffffull;
  73. if ((cd->err_inject & GENWQE_INJECT_GFIR_INFO) &&
  74. (byte_offs == IO_SLC_CFGREG_GFIR))
  75. return 0x00000000ffff0000ull;
  76. if (cd->mmio == NULL)
  77. return 0xffffffffffffffffull;
  78. return be64_to_cpu((__force __be64)__raw_readq(cd->mmio + byte_offs));
  79. }
  80. /**
  81. * __genwqe_writel() - Write 32-bit register
  82. * @cd: genwqe device descriptor
  83. * @byte_offs: byte offset within BAR
  84. * @val: 32-bit value
  85. *
  86. * Return: 0 if success; < 0 if error
  87. */
  88. int __genwqe_writel(struct genwqe_dev *cd, u64 byte_offs, u32 val)
  89. {
  90. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  91. return -EIO;
  92. if (cd->mmio == NULL)
  93. return -EIO;
  94. __raw_writel((__force u32)cpu_to_be32(val), cd->mmio + byte_offs);
  95. return 0;
  96. }
  97. /**
  98. * __genwqe_readl() - Read 32-bit register
  99. * @cd: genwqe device descriptor
  100. * @byte_offs: offset within BAR
  101. *
  102. * Return: Value from register
  103. */
  104. u32 __genwqe_readl(struct genwqe_dev *cd, u64 byte_offs)
  105. {
  106. if (cd->err_inject & GENWQE_INJECT_HARDWARE_FAILURE)
  107. return 0xffffffff;
  108. if (cd->mmio == NULL)
  109. return 0xffffffff;
  110. return be32_to_cpu((__force __be32)__raw_readl(cd->mmio + byte_offs));
  111. }
  112. /**
  113. * genwqe_read_app_id() - Extract app_id
  114. *
  115. * app_unitcfg need to be filled with valid data first
  116. */
  117. int genwqe_read_app_id(struct genwqe_dev *cd, char *app_name, int len)
  118. {
  119. int i, j;
  120. u32 app_id = (u32)cd->app_unitcfg;
  121. memset(app_name, 0, len);
  122. for (i = 0, j = 0; j < min(len, 4); j++) {
  123. char ch = (char)((app_id >> (24 - j*8)) & 0xff);
  124. if (ch == ' ')
  125. continue;
  126. app_name[i++] = isprint(ch) ? ch : 'X';
  127. }
  128. return i;
  129. }
  130. /**
  131. * genwqe_init_crc32() - Prepare a lookup table for fast crc32 calculations
  132. *
  133. * Existing kernel functions seem to use a different polynom,
  134. * therefore we could not use them here.
  135. *
  136. * Genwqe's Polynomial = 0x20044009
  137. */
  138. #define CRC32_POLYNOMIAL 0x20044009
  139. static u32 crc32_tab[256]; /* crc32 lookup table */
  140. void genwqe_init_crc32(void)
  141. {
  142. int i, j;
  143. u32 crc;
  144. for (i = 0; i < 256; i++) {
  145. crc = i << 24;
  146. for (j = 0; j < 8; j++) {
  147. if (crc & 0x80000000)
  148. crc = (crc << 1) ^ CRC32_POLYNOMIAL;
  149. else
  150. crc = (crc << 1);
  151. }
  152. crc32_tab[i] = crc;
  153. }
  154. }
  155. /**
  156. * genwqe_crc32() - Generate 32-bit crc as required for DDCBs
  157. * @buff: pointer to data buffer
  158. * @len: length of data for calculation
  159. * @init: initial crc (0xffffffff at start)
  160. *
  161. * polynomial = x^32 * + x^29 + x^18 + x^14 + x^3 + 1 (0x20044009)
  162. * Example: 4 bytes 0x01 0x02 0x03 0x04 with init=0xffffffff should
  163. * result in a crc32 of 0xf33cb7d3.
  164. *
  165. * The existing kernel crc functions did not cover this polynom yet.
  166. *
  167. * Return: crc32 checksum.
  168. */
  169. u32 genwqe_crc32(u8 *buff, size_t len, u32 init)
  170. {
  171. int i;
  172. u32 crc;
  173. crc = init;
  174. while (len--) {
  175. i = ((crc >> 24) ^ *buff++) & 0xFF;
  176. crc = (crc << 8) ^ crc32_tab[i];
  177. }
  178. return crc;
  179. }
  180. void *__genwqe_alloc_consistent(struct genwqe_dev *cd, size_t size,
  181. dma_addr_t *dma_handle)
  182. {
  183. if (get_order(size) > MAX_ORDER)
  184. return NULL;
  185. return pci_alloc_consistent(cd->pci_dev, size, dma_handle);
  186. }
  187. void __genwqe_free_consistent(struct genwqe_dev *cd, size_t size,
  188. void *vaddr, dma_addr_t dma_handle)
  189. {
  190. if (vaddr == NULL)
  191. return;
  192. pci_free_consistent(cd->pci_dev, size, vaddr, dma_handle);
  193. }
  194. static void genwqe_unmap_pages(struct genwqe_dev *cd, dma_addr_t *dma_list,
  195. int num_pages)
  196. {
  197. int i;
  198. struct pci_dev *pci_dev = cd->pci_dev;
  199. for (i = 0; (i < num_pages) && (dma_list[i] != 0x0); i++) {
  200. pci_unmap_page(pci_dev, dma_list[i],
  201. PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
  202. dma_list[i] = 0x0;
  203. }
  204. }
  205. static int genwqe_map_pages(struct genwqe_dev *cd,
  206. struct page **page_list, int num_pages,
  207. dma_addr_t *dma_list)
  208. {
  209. int i;
  210. struct pci_dev *pci_dev = cd->pci_dev;
  211. /* establish DMA mapping for requested pages */
  212. for (i = 0; i < num_pages; i++) {
  213. dma_addr_t daddr;
  214. dma_list[i] = 0x0;
  215. daddr = pci_map_page(pci_dev, page_list[i],
  216. 0, /* map_offs */
  217. PAGE_SIZE,
  218. PCI_DMA_BIDIRECTIONAL); /* FIXME rd/rw */
  219. if (pci_dma_mapping_error(pci_dev, daddr)) {
  220. dev_err(&pci_dev->dev,
  221. "[%s] err: no dma addr daddr=%016llx!\n",
  222. __func__, (long long)daddr);
  223. goto err;
  224. }
  225. dma_list[i] = daddr;
  226. }
  227. return 0;
  228. err:
  229. genwqe_unmap_pages(cd, dma_list, num_pages);
  230. return -EIO;
  231. }
  232. static int genwqe_sgl_size(int num_pages)
  233. {
  234. int len, num_tlb = num_pages / 7;
  235. len = sizeof(struct sg_entry) * (num_pages+num_tlb + 1);
  236. return roundup(len, PAGE_SIZE);
  237. }
  238. /**
  239. * genwqe_alloc_sync_sgl() - Allocate memory for sgl and overlapping pages
  240. *
  241. * Allocates memory for sgl and overlapping pages. Pages which might
  242. * overlap other user-space memory blocks are being cached for DMAs,
  243. * such that we do not run into syncronization issues. Data is copied
  244. * from user-space into the cached pages.
  245. */
  246. int genwqe_alloc_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  247. void __user *user_addr, size_t user_size)
  248. {
  249. int rc;
  250. struct pci_dev *pci_dev = cd->pci_dev;
  251. sgl->fpage_offs = offset_in_page((unsigned long)user_addr);
  252. sgl->fpage_size = min_t(size_t, PAGE_SIZE-sgl->fpage_offs, user_size);
  253. sgl->nr_pages = DIV_ROUND_UP(sgl->fpage_offs + user_size, PAGE_SIZE);
  254. sgl->lpage_size = (user_size - sgl->fpage_size) % PAGE_SIZE;
  255. dev_dbg(&pci_dev->dev, "[%s] uaddr=%p usize=%8ld nr_pages=%ld "
  256. "fpage_offs=%lx fpage_size=%ld lpage_size=%ld\n",
  257. __func__, user_addr, user_size, sgl->nr_pages,
  258. sgl->fpage_offs, sgl->fpage_size, sgl->lpage_size);
  259. sgl->user_addr = user_addr;
  260. sgl->user_size = user_size;
  261. sgl->sgl_size = genwqe_sgl_size(sgl->nr_pages);
  262. if (get_order(sgl->sgl_size) > MAX_ORDER) {
  263. dev_err(&pci_dev->dev,
  264. "[%s] err: too much memory requested!\n", __func__);
  265. return -ENOMEM;
  266. }
  267. sgl->sgl = __genwqe_alloc_consistent(cd, sgl->sgl_size,
  268. &sgl->sgl_dma_addr);
  269. if (sgl->sgl == NULL) {
  270. dev_err(&pci_dev->dev,
  271. "[%s] err: no memory available!\n", __func__);
  272. return -ENOMEM;
  273. }
  274. /* Only use buffering on incomplete pages */
  275. if ((sgl->fpage_size != 0) && (sgl->fpage_size != PAGE_SIZE)) {
  276. sgl->fpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  277. &sgl->fpage_dma_addr);
  278. if (sgl->fpage == NULL)
  279. goto err_out;
  280. /* Sync with user memory */
  281. if (copy_from_user(sgl->fpage + sgl->fpage_offs,
  282. user_addr, sgl->fpage_size)) {
  283. rc = -EFAULT;
  284. goto err_out;
  285. }
  286. }
  287. if (sgl->lpage_size != 0) {
  288. sgl->lpage = __genwqe_alloc_consistent(cd, PAGE_SIZE,
  289. &sgl->lpage_dma_addr);
  290. if (sgl->lpage == NULL)
  291. goto err_out1;
  292. /* Sync with user memory */
  293. if (copy_from_user(sgl->lpage, user_addr + user_size -
  294. sgl->lpage_size, sgl->lpage_size)) {
  295. rc = -EFAULT;
  296. goto err_out1;
  297. }
  298. }
  299. return 0;
  300. err_out1:
  301. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  302. sgl->fpage_dma_addr);
  303. err_out:
  304. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  305. sgl->sgl_dma_addr);
  306. return -ENOMEM;
  307. }
  308. int genwqe_setup_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl,
  309. dma_addr_t *dma_list)
  310. {
  311. int i = 0, j = 0, p;
  312. unsigned long dma_offs, map_offs;
  313. dma_addr_t prev_daddr = 0;
  314. struct sg_entry *s, *last_s = NULL;
  315. size_t size = sgl->user_size;
  316. dma_offs = 128; /* next block if needed/dma_offset */
  317. map_offs = sgl->fpage_offs; /* offset in first page */
  318. s = &sgl->sgl[0]; /* first set of 8 entries */
  319. p = 0; /* page */
  320. while (p < sgl->nr_pages) {
  321. dma_addr_t daddr;
  322. unsigned int size_to_map;
  323. /* always write the chaining entry, cleanup is done later */
  324. j = 0;
  325. s[j].target_addr = cpu_to_be64(sgl->sgl_dma_addr + dma_offs);
  326. s[j].len = cpu_to_be32(128);
  327. s[j].flags = cpu_to_be32(SG_CHAINED);
  328. j++;
  329. while (j < 8) {
  330. /* DMA mapping for requested page, offs, size */
  331. size_to_map = min(size, PAGE_SIZE - map_offs);
  332. if ((p == 0) && (sgl->fpage != NULL)) {
  333. daddr = sgl->fpage_dma_addr + map_offs;
  334. } else if ((p == sgl->nr_pages - 1) &&
  335. (sgl->lpage != NULL)) {
  336. daddr = sgl->lpage_dma_addr;
  337. } else {
  338. daddr = dma_list[p] + map_offs;
  339. }
  340. size -= size_to_map;
  341. map_offs = 0;
  342. if (prev_daddr == daddr) {
  343. u32 prev_len = be32_to_cpu(last_s->len);
  344. /* pr_info("daddr combining: "
  345. "%016llx/%08x -> %016llx\n",
  346. prev_daddr, prev_len, daddr); */
  347. last_s->len = cpu_to_be32(prev_len +
  348. size_to_map);
  349. p++; /* process next page */
  350. if (p == sgl->nr_pages)
  351. goto fixup; /* nothing to do */
  352. prev_daddr = daddr + size_to_map;
  353. continue;
  354. }
  355. /* start new entry */
  356. s[j].target_addr = cpu_to_be64(daddr);
  357. s[j].len = cpu_to_be32(size_to_map);
  358. s[j].flags = cpu_to_be32(SG_DATA);
  359. prev_daddr = daddr + size_to_map;
  360. last_s = &s[j];
  361. j++;
  362. p++; /* process next page */
  363. if (p == sgl->nr_pages)
  364. goto fixup; /* nothing to do */
  365. }
  366. dma_offs += 128;
  367. s += 8; /* continue 8 elements further */
  368. }
  369. fixup:
  370. if (j == 1) { /* combining happend on last entry! */
  371. s -= 8; /* full shift needed on previous sgl block */
  372. j = 7; /* shift all elements */
  373. }
  374. for (i = 0; i < j; i++) /* move elements 1 up */
  375. s[i] = s[i + 1];
  376. s[i].target_addr = cpu_to_be64(0);
  377. s[i].len = cpu_to_be32(0);
  378. s[i].flags = cpu_to_be32(SG_END_LIST);
  379. return 0;
  380. }
  381. /**
  382. * genwqe_free_sync_sgl() - Free memory for sgl and overlapping pages
  383. *
  384. * After the DMA transfer has been completed we free the memory for
  385. * the sgl and the cached pages. Data is being transfered from cached
  386. * pages into user-space buffers.
  387. */
  388. int genwqe_free_sync_sgl(struct genwqe_dev *cd, struct genwqe_sgl *sgl)
  389. {
  390. int rc = 0;
  391. struct pci_dev *pci_dev = cd->pci_dev;
  392. if (sgl->fpage) {
  393. if (copy_to_user(sgl->user_addr, sgl->fpage + sgl->fpage_offs,
  394. sgl->fpage_size)) {
  395. dev_err(&pci_dev->dev, "[%s] err: copying fpage!\n",
  396. __func__);
  397. rc = -EFAULT;
  398. }
  399. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->fpage,
  400. sgl->fpage_dma_addr);
  401. sgl->fpage = NULL;
  402. sgl->fpage_dma_addr = 0;
  403. }
  404. if (sgl->lpage) {
  405. if (copy_to_user(sgl->user_addr + sgl->user_size -
  406. sgl->lpage_size, sgl->lpage,
  407. sgl->lpage_size)) {
  408. dev_err(&pci_dev->dev, "[%s] err: copying lpage!\n",
  409. __func__);
  410. rc = -EFAULT;
  411. }
  412. __genwqe_free_consistent(cd, PAGE_SIZE, sgl->lpage,
  413. sgl->lpage_dma_addr);
  414. sgl->lpage = NULL;
  415. sgl->lpage_dma_addr = 0;
  416. }
  417. __genwqe_free_consistent(cd, sgl->sgl_size, sgl->sgl,
  418. sgl->sgl_dma_addr);
  419. sgl->sgl = NULL;
  420. sgl->sgl_dma_addr = 0x0;
  421. sgl->sgl_size = 0;
  422. return rc;
  423. }
  424. /**
  425. * free_user_pages() - Give pinned pages back
  426. *
  427. * Documentation of get_user_pages is in mm/memory.c:
  428. *
  429. * If the page is written to, set_page_dirty (or set_page_dirty_lock,
  430. * as appropriate) must be called after the page is finished with, and
  431. * before put_page is called.
  432. *
  433. * FIXME Could be of use to others and might belong in the generic
  434. * code, if others agree. E.g.
  435. * ll_free_user_pages in drivers/staging/lustre/lustre/llite/rw26.c
  436. * ceph_put_page_vector in net/ceph/pagevec.c
  437. * maybe more?
  438. */
  439. static int free_user_pages(struct page **page_list, unsigned int nr_pages,
  440. int dirty)
  441. {
  442. unsigned int i;
  443. for (i = 0; i < nr_pages; i++) {
  444. if (page_list[i] != NULL) {
  445. if (dirty)
  446. set_page_dirty_lock(page_list[i]);
  447. put_page(page_list[i]);
  448. }
  449. }
  450. return 0;
  451. }
  452. /**
  453. * genwqe_user_vmap() - Map user-space memory to virtual kernel memory
  454. * @cd: pointer to genwqe device
  455. * @m: mapping params
  456. * @uaddr: user virtual address
  457. * @size: size of memory to be mapped
  458. *
  459. * We need to think about how we could speed this up. Of course it is
  460. * not a good idea to do this over and over again, like we are
  461. * currently doing it. Nevertheless, I am curious where on the path
  462. * the performance is spend. Most probably within the memory
  463. * allocation functions, but maybe also in the DMA mapping code.
  464. *
  465. * Restrictions: The maximum size of the possible mapping currently depends
  466. * on the amount of memory we can get using kzalloc() for the
  467. * page_list and pci_alloc_consistent for the sg_list.
  468. * The sg_list is currently itself not scattered, which could
  469. * be fixed with some effort. The page_list must be split into
  470. * PAGE_SIZE chunks too. All that will make the complicated
  471. * code more complicated.
  472. *
  473. * Return: 0 if success
  474. */
  475. int genwqe_user_vmap(struct genwqe_dev *cd, struct dma_mapping *m, void *uaddr,
  476. unsigned long size, struct ddcb_requ *req)
  477. {
  478. int rc = -EINVAL;
  479. unsigned long data, offs;
  480. struct pci_dev *pci_dev = cd->pci_dev;
  481. if ((uaddr == NULL) || (size == 0)) {
  482. m->size = 0; /* mark unused and not added */
  483. return -EINVAL;
  484. }
  485. m->u_vaddr = uaddr;
  486. m->size = size;
  487. /* determine space needed for page_list. */
  488. data = (unsigned long)uaddr;
  489. offs = offset_in_page(data);
  490. m->nr_pages = DIV_ROUND_UP(offs + size, PAGE_SIZE);
  491. m->page_list = kcalloc(m->nr_pages,
  492. sizeof(struct page *) + sizeof(dma_addr_t),
  493. GFP_KERNEL);
  494. if (!m->page_list) {
  495. dev_err(&pci_dev->dev, "err: alloc page_list failed\n");
  496. m->nr_pages = 0;
  497. m->u_vaddr = NULL;
  498. m->size = 0; /* mark unused and not added */
  499. return -ENOMEM;
  500. }
  501. m->dma_list = (dma_addr_t *)(m->page_list + m->nr_pages);
  502. /* pin user pages in memory */
  503. rc = get_user_pages_fast(data & PAGE_MASK, /* page aligned addr */
  504. m->nr_pages,
  505. 1, /* write by caller */
  506. m->page_list); /* ptrs to pages */
  507. /* assumption: get_user_pages can be killed by signals. */
  508. if (rc < m->nr_pages) {
  509. free_user_pages(m->page_list, rc, 0);
  510. rc = -EFAULT;
  511. goto fail_get_user_pages;
  512. }
  513. rc = genwqe_map_pages(cd, m->page_list, m->nr_pages, m->dma_list);
  514. if (rc != 0)
  515. goto fail_free_user_pages;
  516. return 0;
  517. fail_free_user_pages:
  518. free_user_pages(m->page_list, m->nr_pages, 0);
  519. fail_get_user_pages:
  520. kfree(m->page_list);
  521. m->page_list = NULL;
  522. m->dma_list = NULL;
  523. m->nr_pages = 0;
  524. m->u_vaddr = NULL;
  525. m->size = 0; /* mark unused and not added */
  526. return rc;
  527. }
  528. /**
  529. * genwqe_user_vunmap() - Undo mapping of user-space mem to virtual kernel
  530. * memory
  531. * @cd: pointer to genwqe device
  532. * @m: mapping params
  533. */
  534. int genwqe_user_vunmap(struct genwqe_dev *cd, struct dma_mapping *m,
  535. struct ddcb_requ *req)
  536. {
  537. struct pci_dev *pci_dev = cd->pci_dev;
  538. if (!dma_mapping_used(m)) {
  539. dev_err(&pci_dev->dev, "[%s] err: mapping %p not used!\n",
  540. __func__, m);
  541. return -EINVAL;
  542. }
  543. if (m->dma_list)
  544. genwqe_unmap_pages(cd, m->dma_list, m->nr_pages);
  545. if (m->page_list) {
  546. free_user_pages(m->page_list, m->nr_pages, 1);
  547. kfree(m->page_list);
  548. m->page_list = NULL;
  549. m->dma_list = NULL;
  550. m->nr_pages = 0;
  551. }
  552. m->u_vaddr = NULL;
  553. m->size = 0; /* mark as unused and not added */
  554. return 0;
  555. }
  556. /**
  557. * genwqe_card_type() - Get chip type SLU Configuration Register
  558. * @cd: pointer to the genwqe device descriptor
  559. * Return: 0: Altera Stratix-IV 230
  560. * 1: Altera Stratix-IV 530
  561. * 2: Altera Stratix-V A4
  562. * 3: Altera Stratix-V A7
  563. */
  564. u8 genwqe_card_type(struct genwqe_dev *cd)
  565. {
  566. u64 card_type = cd->slu_unitcfg;
  567. return (u8)((card_type & IO_SLU_UNITCFG_TYPE_MASK) >> 20);
  568. }
  569. /**
  570. * genwqe_card_reset() - Reset the card
  571. * @cd: pointer to the genwqe device descriptor
  572. */
  573. int genwqe_card_reset(struct genwqe_dev *cd)
  574. {
  575. u64 softrst;
  576. struct pci_dev *pci_dev = cd->pci_dev;
  577. if (!genwqe_is_privileged(cd))
  578. return -ENODEV;
  579. /* new SL */
  580. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, 0x1ull);
  581. msleep(1000);
  582. __genwqe_readq(cd, IO_HSU_FIR_CLR);
  583. __genwqe_readq(cd, IO_APP_FIR_CLR);
  584. __genwqe_readq(cd, IO_SLU_FIR_CLR);
  585. /*
  586. * Read-modify-write to preserve the stealth bits
  587. *
  588. * For SL >= 039, Stealth WE bit allows removing
  589. * the read-modify-wrote.
  590. * r-m-w may require a mask 0x3C to avoid hitting hard
  591. * reset again for error reset (should be 0, chicken).
  592. */
  593. softrst = __genwqe_readq(cd, IO_SLC_CFGREG_SOFTRESET) & 0x3cull;
  594. __genwqe_writeq(cd, IO_SLC_CFGREG_SOFTRESET, softrst | 0x2ull);
  595. /* give ERRORRESET some time to finish */
  596. msleep(50);
  597. if (genwqe_need_err_masking(cd)) {
  598. dev_info(&pci_dev->dev,
  599. "[%s] masking errors for old bitstreams\n", __func__);
  600. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  601. }
  602. return 0;
  603. }
  604. int genwqe_read_softreset(struct genwqe_dev *cd)
  605. {
  606. u64 bitstream;
  607. if (!genwqe_is_privileged(cd))
  608. return -ENODEV;
  609. bitstream = __genwqe_readq(cd, IO_SLU_BITSTREAM) & 0x1;
  610. cd->softreset = (bitstream == 0) ? 0x8ull : 0xcull;
  611. return 0;
  612. }
  613. /**
  614. * genwqe_set_interrupt_capability() - Configure MSI capability structure
  615. * @cd: pointer to the device
  616. * Return: 0 if no error
  617. */
  618. int genwqe_set_interrupt_capability(struct genwqe_dev *cd, int count)
  619. {
  620. int rc;
  621. struct pci_dev *pci_dev = cd->pci_dev;
  622. rc = pci_enable_msi_exact(pci_dev, count);
  623. if (rc == 0)
  624. cd->flags |= GENWQE_FLAG_MSI_ENABLED;
  625. return rc;
  626. }
  627. /**
  628. * genwqe_reset_interrupt_capability() - Undo genwqe_set_interrupt_capability()
  629. * @cd: pointer to the device
  630. */
  631. void genwqe_reset_interrupt_capability(struct genwqe_dev *cd)
  632. {
  633. struct pci_dev *pci_dev = cd->pci_dev;
  634. if (cd->flags & GENWQE_FLAG_MSI_ENABLED) {
  635. pci_disable_msi(pci_dev);
  636. cd->flags &= ~GENWQE_FLAG_MSI_ENABLED;
  637. }
  638. }
  639. /**
  640. * set_reg_idx() - Fill array with data. Ignore illegal offsets.
  641. * @cd: card device
  642. * @r: debug register array
  643. * @i: index to desired entry
  644. * @m: maximum possible entries
  645. * @addr: addr which is read
  646. * @index: index in debug array
  647. * @val: read value
  648. */
  649. static int set_reg_idx(struct genwqe_dev *cd, struct genwqe_reg *r,
  650. unsigned int *i, unsigned int m, u32 addr, u32 idx,
  651. u64 val)
  652. {
  653. if (WARN_ON_ONCE(*i >= m))
  654. return -EFAULT;
  655. r[*i].addr = addr;
  656. r[*i].idx = idx;
  657. r[*i].val = val;
  658. ++*i;
  659. return 0;
  660. }
  661. static int set_reg(struct genwqe_dev *cd, struct genwqe_reg *r,
  662. unsigned int *i, unsigned int m, u32 addr, u64 val)
  663. {
  664. return set_reg_idx(cd, r, i, m, addr, 0, val);
  665. }
  666. int genwqe_read_ffdc_regs(struct genwqe_dev *cd, struct genwqe_reg *regs,
  667. unsigned int max_regs, int all)
  668. {
  669. unsigned int i, j, idx = 0;
  670. u32 ufir_addr, ufec_addr, sfir_addr, sfec_addr;
  671. u64 gfir, sluid, appid, ufir, ufec, sfir, sfec;
  672. /* Global FIR */
  673. gfir = __genwqe_readq(cd, IO_SLC_CFGREG_GFIR);
  674. set_reg(cd, regs, &idx, max_regs, IO_SLC_CFGREG_GFIR, gfir);
  675. /* UnitCfg for SLU */
  676. sluid = __genwqe_readq(cd, IO_SLU_UNITCFG); /* 0x00000000 */
  677. set_reg(cd, regs, &idx, max_regs, IO_SLU_UNITCFG, sluid);
  678. /* UnitCfg for APP */
  679. appid = __genwqe_readq(cd, IO_APP_UNITCFG); /* 0x02000000 */
  680. set_reg(cd, regs, &idx, max_regs, IO_APP_UNITCFG, appid);
  681. /* Check all chip Units */
  682. for (i = 0; i < GENWQE_MAX_UNITS; i++) {
  683. /* Unit FIR */
  684. ufir_addr = (i << 24) | 0x008;
  685. ufir = __genwqe_readq(cd, ufir_addr);
  686. set_reg(cd, regs, &idx, max_regs, ufir_addr, ufir);
  687. /* Unit FEC */
  688. ufec_addr = (i << 24) | 0x018;
  689. ufec = __genwqe_readq(cd, ufec_addr);
  690. set_reg(cd, regs, &idx, max_regs, ufec_addr, ufec);
  691. for (j = 0; j < 64; j++) {
  692. /* wherever there is a primary 1, read the 2ndary */
  693. if (!all && (!(ufir & (1ull << j))))
  694. continue;
  695. sfir_addr = (i << 24) | (0x100 + 8 * j);
  696. sfir = __genwqe_readq(cd, sfir_addr);
  697. set_reg(cd, regs, &idx, max_regs, sfir_addr, sfir);
  698. sfec_addr = (i << 24) | (0x300 + 8 * j);
  699. sfec = __genwqe_readq(cd, sfec_addr);
  700. set_reg(cd, regs, &idx, max_regs, sfec_addr, sfec);
  701. }
  702. }
  703. /* fill with invalid data until end */
  704. for (i = idx; i < max_regs; i++) {
  705. regs[i].addr = 0xffffffff;
  706. regs[i].val = 0xffffffffffffffffull;
  707. }
  708. return idx;
  709. }
  710. /**
  711. * genwqe_ffdc_buff_size() - Calculates the number of dump registers
  712. */
  713. int genwqe_ffdc_buff_size(struct genwqe_dev *cd, int uid)
  714. {
  715. int entries = 0, ring, traps, traces, trace_entries;
  716. u32 eevptr_addr, l_addr, d_len, d_type;
  717. u64 eevptr, val, addr;
  718. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  719. eevptr = __genwqe_readq(cd, eevptr_addr);
  720. if ((eevptr != 0x0) && (eevptr != -1ull)) {
  721. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  722. while (1) {
  723. val = __genwqe_readq(cd, l_addr);
  724. if ((val == 0x0) || (val == -1ull))
  725. break;
  726. /* 38:24 */
  727. d_len = (val & 0x0000007fff000000ull) >> 24;
  728. /* 39 */
  729. d_type = (val & 0x0000008000000000ull) >> 36;
  730. if (d_type) { /* repeat */
  731. entries += d_len;
  732. } else { /* size in bytes! */
  733. entries += d_len >> 3;
  734. }
  735. l_addr += 8;
  736. }
  737. }
  738. for (ring = 0; ring < 8; ring++) {
  739. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  740. val = __genwqe_readq(cd, addr);
  741. if ((val == 0x0ull) || (val == -1ull))
  742. continue;
  743. traps = (val >> 24) & 0xff;
  744. traces = (val >> 16) & 0xff;
  745. trace_entries = val & 0xffff;
  746. entries += traps + (traces * trace_entries);
  747. }
  748. return entries;
  749. }
  750. /**
  751. * genwqe_ffdc_buff_read() - Implements LogoutExtendedErrorRegisters procedure
  752. */
  753. int genwqe_ffdc_buff_read(struct genwqe_dev *cd, int uid,
  754. struct genwqe_reg *regs, unsigned int max_regs)
  755. {
  756. int i, traps, traces, trace, trace_entries, trace_entry, ring;
  757. unsigned int idx = 0;
  758. u32 eevptr_addr, l_addr, d_addr, d_len, d_type;
  759. u64 eevptr, e, val, addr;
  760. eevptr_addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_ERROR_POINTER;
  761. eevptr = __genwqe_readq(cd, eevptr_addr);
  762. if ((eevptr != 0x0) && (eevptr != 0xffffffffffffffffull)) {
  763. l_addr = GENWQE_UID_OFFS(uid) | eevptr;
  764. while (1) {
  765. e = __genwqe_readq(cd, l_addr);
  766. if ((e == 0x0) || (e == 0xffffffffffffffffull))
  767. break;
  768. d_addr = (e & 0x0000000000ffffffull); /* 23:0 */
  769. d_len = (e & 0x0000007fff000000ull) >> 24; /* 38:24 */
  770. d_type = (e & 0x0000008000000000ull) >> 36; /* 39 */
  771. d_addr |= GENWQE_UID_OFFS(uid);
  772. if (d_type) {
  773. for (i = 0; i < (int)d_len; i++) {
  774. val = __genwqe_readq(cd, d_addr);
  775. set_reg_idx(cd, regs, &idx, max_regs,
  776. d_addr, i, val);
  777. }
  778. } else {
  779. d_len >>= 3; /* Size in bytes! */
  780. for (i = 0; i < (int)d_len; i++, d_addr += 8) {
  781. val = __genwqe_readq(cd, d_addr);
  782. set_reg_idx(cd, regs, &idx, max_regs,
  783. d_addr, 0, val);
  784. }
  785. }
  786. l_addr += 8;
  787. }
  788. }
  789. /*
  790. * To save time, there are only 6 traces poplulated on Uid=2,
  791. * Ring=1. each with iters=512.
  792. */
  793. for (ring = 0; ring < 8; ring++) { /* 0 is fls, 1 is fds,
  794. 2...7 are ASI rings */
  795. addr = GENWQE_UID_OFFS(uid) | IO_EXTENDED_DIAG_MAP(ring);
  796. val = __genwqe_readq(cd, addr);
  797. if ((val == 0x0ull) || (val == -1ull))
  798. continue;
  799. traps = (val >> 24) & 0xff; /* Number of Traps */
  800. traces = (val >> 16) & 0xff; /* Number of Traces */
  801. trace_entries = val & 0xffff; /* Entries per trace */
  802. /* Note: This is a combined loop that dumps both the traps */
  803. /* (for the trace == 0 case) as well as the traces 1 to */
  804. /* 'traces'. */
  805. for (trace = 0; trace <= traces; trace++) {
  806. u32 diag_sel =
  807. GENWQE_EXTENDED_DIAG_SELECTOR(ring, trace);
  808. addr = (GENWQE_UID_OFFS(uid) |
  809. IO_EXTENDED_DIAG_SELECTOR);
  810. __genwqe_writeq(cd, addr, diag_sel);
  811. for (trace_entry = 0;
  812. trace_entry < (trace ? trace_entries : traps);
  813. trace_entry++) {
  814. addr = (GENWQE_UID_OFFS(uid) |
  815. IO_EXTENDED_DIAG_READ_MBX);
  816. val = __genwqe_readq(cd, addr);
  817. set_reg_idx(cd, regs, &idx, max_regs, addr,
  818. (diag_sel<<16) | trace_entry, val);
  819. }
  820. }
  821. }
  822. return 0;
  823. }
  824. /**
  825. * genwqe_write_vreg() - Write register in virtual window
  826. *
  827. * Note, these registers are only accessible to the PF through the
  828. * VF-window. It is not intended for the VF to access.
  829. */
  830. int genwqe_write_vreg(struct genwqe_dev *cd, u32 reg, u64 val, int func)
  831. {
  832. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  833. __genwqe_writeq(cd, reg, val);
  834. return 0;
  835. }
  836. /**
  837. * genwqe_read_vreg() - Read register in virtual window
  838. *
  839. * Note, these registers are only accessible to the PF through the
  840. * VF-window. It is not intended for the VF to access.
  841. */
  842. u64 genwqe_read_vreg(struct genwqe_dev *cd, u32 reg, int func)
  843. {
  844. __genwqe_writeq(cd, IO_PF_SLC_VIRTUAL_WINDOW, func & 0xf);
  845. return __genwqe_readq(cd, reg);
  846. }
  847. /**
  848. * genwqe_base_clock_frequency() - Deteremine base clock frequency of the card
  849. *
  850. * Note: From a design perspective it turned out to be a bad idea to
  851. * use codes here to specifiy the frequency/speed values. An old
  852. * driver cannot understand new codes and is therefore always a
  853. * problem. Better is to measure out the value or put the
  854. * speed/frequency directly into a register which is always a valid
  855. * value for old as well as for new software.
  856. *
  857. * Return: Card clock in MHz
  858. */
  859. int genwqe_base_clock_frequency(struct genwqe_dev *cd)
  860. {
  861. u16 speed; /* MHz MHz MHz MHz */
  862. static const int speed_grade[] = { 250, 200, 166, 175 };
  863. speed = (u16)((cd->slu_unitcfg >> 28) & 0x0full);
  864. if (speed >= ARRAY_SIZE(speed_grade))
  865. return 0; /* illegal value */
  866. return speed_grade[speed];
  867. }
  868. /**
  869. * genwqe_stop_traps() - Stop traps
  870. *
  871. * Before reading out the analysis data, we need to stop the traps.
  872. */
  873. void genwqe_stop_traps(struct genwqe_dev *cd)
  874. {
  875. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_SET, 0xcull);
  876. }
  877. /**
  878. * genwqe_start_traps() - Start traps
  879. *
  880. * After having read the data, we can/must enable the traps again.
  881. */
  882. void genwqe_start_traps(struct genwqe_dev *cd)
  883. {
  884. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG_CLR, 0xcull);
  885. if (genwqe_need_err_masking(cd))
  886. __genwqe_writeq(cd, IO_SLC_MISC_DEBUG, 0x0aull);
  887. }