btree.c 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "extents.h"
  26. #include <linux/slab.h>
  27. #include <linux/bitops.h>
  28. #include <linux/freezer.h>
  29. #include <linux/hash.h>
  30. #include <linux/kthread.h>
  31. #include <linux/prefetch.h>
  32. #include <linux/random.h>
  33. #include <linux/rcupdate.h>
  34. #include <trace/events/bcache.h>
  35. /*
  36. * Todo:
  37. * register_bcache: Return errors out to userspace correctly
  38. *
  39. * Writeback: don't undirty key until after a cache flush
  40. *
  41. * Create an iterator for key pointers
  42. *
  43. * On btree write error, mark bucket such that it won't be freed from the cache
  44. *
  45. * Journalling:
  46. * Check for bad keys in replay
  47. * Propagate barriers
  48. * Refcount journal entries in journal_replay
  49. *
  50. * Garbage collection:
  51. * Finish incremental gc
  52. * Gc should free old UUIDs, data for invalid UUIDs
  53. *
  54. * Provide a way to list backing device UUIDs we have data cached for, and
  55. * probably how long it's been since we've seen them, and a way to invalidate
  56. * dirty data for devices that will never be attached again
  57. *
  58. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  59. * that based on that and how much dirty data we have we can keep writeback
  60. * from being starved
  61. *
  62. * Add a tracepoint or somesuch to watch for writeback starvation
  63. *
  64. * When btree depth > 1 and splitting an interior node, we have to make sure
  65. * alloc_bucket() cannot fail. This should be true but is not completely
  66. * obvious.
  67. *
  68. * Plugging?
  69. *
  70. * If data write is less than hard sector size of ssd, round up offset in open
  71. * bucket to the next whole sector
  72. *
  73. * Superblock needs to be fleshed out for multiple cache devices
  74. *
  75. * Add a sysfs tunable for the number of writeback IOs in flight
  76. *
  77. * Add a sysfs tunable for the number of open data buckets
  78. *
  79. * IO tracking: Can we track when one process is doing io on behalf of another?
  80. * IO tracking: Don't use just an average, weigh more recent stuff higher
  81. *
  82. * Test module load/unload
  83. */
  84. #define MAX_NEED_GC 64
  85. #define MAX_SAVE_PRIO 72
  86. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  87. #define PTR_HASH(c, k) \
  88. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  89. #define insert_lock(s, b) ((b)->level <= (s)->lock)
  90. /*
  91. * These macros are for recursing down the btree - they handle the details of
  92. * locking and looking up nodes in the cache for you. They're best treated as
  93. * mere syntax when reading code that uses them.
  94. *
  95. * op->lock determines whether we take a read or a write lock at a given depth.
  96. * If you've got a read lock and find that you need a write lock (i.e. you're
  97. * going to have to split), set op->lock and return -EINTR; btree_root() will
  98. * call you again and you'll have the correct lock.
  99. */
  100. /**
  101. * btree - recurse down the btree on a specified key
  102. * @fn: function to call, which will be passed the child node
  103. * @key: key to recurse on
  104. * @b: parent btree node
  105. * @op: pointer to struct btree_op
  106. */
  107. #define btree(fn, key, b, op, ...) \
  108. ({ \
  109. int _r, l = (b)->level - 1; \
  110. bool _w = l <= (op)->lock; \
  111. struct btree *_child = bch_btree_node_get((b)->c, op, key, l, _w);\
  112. if (!IS_ERR(_child)) { \
  113. _child->parent = (b); \
  114. _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \
  115. rw_unlock(_w, _child); \
  116. } else \
  117. _r = PTR_ERR(_child); \
  118. _r; \
  119. })
  120. /**
  121. * btree_root - call a function on the root of the btree
  122. * @fn: function to call, which will be passed the child node
  123. * @c: cache set
  124. * @op: pointer to struct btree_op
  125. */
  126. #define btree_root(fn, c, op, ...) \
  127. ({ \
  128. int _r = -EINTR; \
  129. do { \
  130. struct btree *_b = (c)->root; \
  131. bool _w = insert_lock(op, _b); \
  132. rw_lock(_w, _b, _b->level); \
  133. if (_b == (c)->root && \
  134. _w == insert_lock(op, _b)) { \
  135. _b->parent = NULL; \
  136. _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \
  137. } \
  138. rw_unlock(_w, _b); \
  139. bch_cannibalize_unlock(c); \
  140. if (_r == -EINTR) \
  141. schedule(); \
  142. } while (_r == -EINTR); \
  143. \
  144. finish_wait(&(c)->btree_cache_wait, &(op)->wait); \
  145. _r; \
  146. })
  147. static inline struct bset *write_block(struct btree *b)
  148. {
  149. return ((void *) btree_bset_first(b)) + b->written * block_bytes(b->c);
  150. }
  151. static void bch_btree_init_next(struct btree *b)
  152. {
  153. /* If not a leaf node, always sort */
  154. if (b->level && b->keys.nsets)
  155. bch_btree_sort(&b->keys, &b->c->sort);
  156. else
  157. bch_btree_sort_lazy(&b->keys, &b->c->sort);
  158. if (b->written < btree_blocks(b))
  159. bch_bset_init_next(&b->keys, write_block(b),
  160. bset_magic(&b->c->sb));
  161. }
  162. /* Btree key manipulation */
  163. void bkey_put(struct cache_set *c, struct bkey *k)
  164. {
  165. unsigned i;
  166. for (i = 0; i < KEY_PTRS(k); i++)
  167. if (ptr_available(c, k, i))
  168. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  169. }
  170. /* Btree IO */
  171. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  172. {
  173. uint64_t crc = b->key.ptr[0];
  174. void *data = (void *) i + 8, *end = bset_bkey_last(i);
  175. crc = bch_crc64_update(crc, data, end - data);
  176. return crc ^ 0xffffffffffffffffULL;
  177. }
  178. void bch_btree_node_read_done(struct btree *b)
  179. {
  180. const char *err = "bad btree header";
  181. struct bset *i = btree_bset_first(b);
  182. struct btree_iter *iter;
  183. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  184. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  185. iter->used = 0;
  186. #ifdef CONFIG_BCACHE_DEBUG
  187. iter->b = &b->keys;
  188. #endif
  189. if (!i->seq)
  190. goto err;
  191. for (;
  192. b->written < btree_blocks(b) && i->seq == b->keys.set[0].data->seq;
  193. i = write_block(b)) {
  194. err = "unsupported bset version";
  195. if (i->version > BCACHE_BSET_VERSION)
  196. goto err;
  197. err = "bad btree header";
  198. if (b->written + set_blocks(i, block_bytes(b->c)) >
  199. btree_blocks(b))
  200. goto err;
  201. err = "bad magic";
  202. if (i->magic != bset_magic(&b->c->sb))
  203. goto err;
  204. err = "bad checksum";
  205. switch (i->version) {
  206. case 0:
  207. if (i->csum != csum_set(i))
  208. goto err;
  209. break;
  210. case BCACHE_BSET_VERSION:
  211. if (i->csum != btree_csum_set(b, i))
  212. goto err;
  213. break;
  214. }
  215. err = "empty set";
  216. if (i != b->keys.set[0].data && !i->keys)
  217. goto err;
  218. bch_btree_iter_push(iter, i->start, bset_bkey_last(i));
  219. b->written += set_blocks(i, block_bytes(b->c));
  220. }
  221. err = "corrupted btree";
  222. for (i = write_block(b);
  223. bset_sector_offset(&b->keys, i) < KEY_SIZE(&b->key);
  224. i = ((void *) i) + block_bytes(b->c))
  225. if (i->seq == b->keys.set[0].data->seq)
  226. goto err;
  227. bch_btree_sort_and_fix_extents(&b->keys, iter, &b->c->sort);
  228. i = b->keys.set[0].data;
  229. err = "short btree key";
  230. if (b->keys.set[0].size &&
  231. bkey_cmp(&b->key, &b->keys.set[0].end) < 0)
  232. goto err;
  233. if (b->written < btree_blocks(b))
  234. bch_bset_init_next(&b->keys, write_block(b),
  235. bset_magic(&b->c->sb));
  236. out:
  237. mempool_free(iter, b->c->fill_iter);
  238. return;
  239. err:
  240. set_btree_node_io_error(b);
  241. bch_cache_set_error(b->c, "%s at bucket %zu, block %u, %u keys",
  242. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  243. bset_block_offset(b, i), i->keys);
  244. goto out;
  245. }
  246. static void btree_node_read_endio(struct bio *bio, int error)
  247. {
  248. struct closure *cl = bio->bi_private;
  249. closure_put(cl);
  250. }
  251. static void bch_btree_node_read(struct btree *b)
  252. {
  253. uint64_t start_time = local_clock();
  254. struct closure cl;
  255. struct bio *bio;
  256. trace_bcache_btree_read(b);
  257. closure_init_stack(&cl);
  258. bio = bch_bbio_alloc(b->c);
  259. bio->bi_rw = REQ_META|READ_SYNC;
  260. bio->bi_iter.bi_size = KEY_SIZE(&b->key) << 9;
  261. bio->bi_end_io = btree_node_read_endio;
  262. bio->bi_private = &cl;
  263. bch_bio_map(bio, b->keys.set[0].data);
  264. bch_submit_bbio(bio, b->c, &b->key, 0);
  265. closure_sync(&cl);
  266. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  267. set_btree_node_io_error(b);
  268. bch_bbio_free(bio, b->c);
  269. if (btree_node_io_error(b))
  270. goto err;
  271. bch_btree_node_read_done(b);
  272. bch_time_stats_update(&b->c->btree_read_time, start_time);
  273. return;
  274. err:
  275. bch_cache_set_error(b->c, "io error reading bucket %zu",
  276. PTR_BUCKET_NR(b->c, &b->key, 0));
  277. }
  278. static void btree_complete_write(struct btree *b, struct btree_write *w)
  279. {
  280. if (w->prio_blocked &&
  281. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  282. wake_up_allocators(b->c);
  283. if (w->journal) {
  284. atomic_dec_bug(w->journal);
  285. __closure_wake_up(&b->c->journal.wait);
  286. }
  287. w->prio_blocked = 0;
  288. w->journal = NULL;
  289. }
  290. static void btree_node_write_unlock(struct closure *cl)
  291. {
  292. struct btree *b = container_of(cl, struct btree, io);
  293. up(&b->io_mutex);
  294. }
  295. static void __btree_node_write_done(struct closure *cl)
  296. {
  297. struct btree *b = container_of(cl, struct btree, io);
  298. struct btree_write *w = btree_prev_write(b);
  299. bch_bbio_free(b->bio, b->c);
  300. b->bio = NULL;
  301. btree_complete_write(b, w);
  302. if (btree_node_dirty(b))
  303. schedule_delayed_work(&b->work, 30 * HZ);
  304. closure_return_with_destructor(cl, btree_node_write_unlock);
  305. }
  306. static void btree_node_write_done(struct closure *cl)
  307. {
  308. struct btree *b = container_of(cl, struct btree, io);
  309. struct bio_vec *bv;
  310. int n;
  311. bio_for_each_segment_all(bv, b->bio, n)
  312. __free_page(bv->bv_page);
  313. __btree_node_write_done(cl);
  314. }
  315. static void btree_node_write_endio(struct bio *bio, int error)
  316. {
  317. struct closure *cl = bio->bi_private;
  318. struct btree *b = container_of(cl, struct btree, io);
  319. if (error)
  320. set_btree_node_io_error(b);
  321. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  322. closure_put(cl);
  323. }
  324. static void do_btree_node_write(struct btree *b)
  325. {
  326. struct closure *cl = &b->io;
  327. struct bset *i = btree_bset_last(b);
  328. BKEY_PADDED(key) k;
  329. i->version = BCACHE_BSET_VERSION;
  330. i->csum = btree_csum_set(b, i);
  331. BUG_ON(b->bio);
  332. b->bio = bch_bbio_alloc(b->c);
  333. b->bio->bi_end_io = btree_node_write_endio;
  334. b->bio->bi_private = cl;
  335. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  336. b->bio->bi_iter.bi_size = roundup(set_bytes(i), block_bytes(b->c));
  337. bch_bio_map(b->bio, i);
  338. /*
  339. * If we're appending to a leaf node, we don't technically need FUA -
  340. * this write just needs to be persisted before the next journal write,
  341. * which will be marked FLUSH|FUA.
  342. *
  343. * Similarly if we're writing a new btree root - the pointer is going to
  344. * be in the next journal entry.
  345. *
  346. * But if we're writing a new btree node (that isn't a root) or
  347. * appending to a non leaf btree node, we need either FUA or a flush
  348. * when we write the parent with the new pointer. FUA is cheaper than a
  349. * flush, and writes appending to leaf nodes aren't blocking anything so
  350. * just make all btree node writes FUA to keep things sane.
  351. */
  352. bkey_copy(&k.key, &b->key);
  353. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) +
  354. bset_sector_offset(&b->keys, i));
  355. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  356. int j;
  357. struct bio_vec *bv;
  358. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  359. bio_for_each_segment_all(bv, b->bio, j)
  360. memcpy(page_address(bv->bv_page),
  361. base + j * PAGE_SIZE, PAGE_SIZE);
  362. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  363. continue_at(cl, btree_node_write_done, NULL);
  364. } else {
  365. b->bio->bi_vcnt = 0;
  366. bch_bio_map(b->bio, i);
  367. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  368. closure_sync(cl);
  369. continue_at_nobarrier(cl, __btree_node_write_done, NULL);
  370. }
  371. }
  372. void __bch_btree_node_write(struct btree *b, struct closure *parent)
  373. {
  374. struct bset *i = btree_bset_last(b);
  375. lockdep_assert_held(&b->write_lock);
  376. trace_bcache_btree_write(b);
  377. BUG_ON(current->bio_list);
  378. BUG_ON(b->written >= btree_blocks(b));
  379. BUG_ON(b->written && !i->keys);
  380. BUG_ON(btree_bset_first(b)->seq != i->seq);
  381. bch_check_keys(&b->keys, "writing");
  382. cancel_delayed_work(&b->work);
  383. /* If caller isn't waiting for write, parent refcount is cache set */
  384. down(&b->io_mutex);
  385. closure_init(&b->io, parent ?: &b->c->cl);
  386. clear_bit(BTREE_NODE_dirty, &b->flags);
  387. change_bit(BTREE_NODE_write_idx, &b->flags);
  388. do_btree_node_write(b);
  389. atomic_long_add(set_blocks(i, block_bytes(b->c)) * b->c->sb.block_size,
  390. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  391. b->written += set_blocks(i, block_bytes(b->c));
  392. }
  393. void bch_btree_node_write(struct btree *b, struct closure *parent)
  394. {
  395. unsigned nsets = b->keys.nsets;
  396. lockdep_assert_held(&b->lock);
  397. __bch_btree_node_write(b, parent);
  398. /*
  399. * do verify if there was more than one set initially (i.e. we did a
  400. * sort) and we sorted down to a single set:
  401. */
  402. if (nsets && !b->keys.nsets)
  403. bch_btree_verify(b);
  404. bch_btree_init_next(b);
  405. }
  406. static void bch_btree_node_write_sync(struct btree *b)
  407. {
  408. struct closure cl;
  409. closure_init_stack(&cl);
  410. mutex_lock(&b->write_lock);
  411. bch_btree_node_write(b, &cl);
  412. mutex_unlock(&b->write_lock);
  413. closure_sync(&cl);
  414. }
  415. static void btree_node_write_work(struct work_struct *w)
  416. {
  417. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  418. mutex_lock(&b->write_lock);
  419. if (btree_node_dirty(b))
  420. __bch_btree_node_write(b, NULL);
  421. mutex_unlock(&b->write_lock);
  422. }
  423. static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref)
  424. {
  425. struct bset *i = btree_bset_last(b);
  426. struct btree_write *w = btree_current_write(b);
  427. lockdep_assert_held(&b->write_lock);
  428. BUG_ON(!b->written);
  429. BUG_ON(!i->keys);
  430. if (!btree_node_dirty(b))
  431. schedule_delayed_work(&b->work, 30 * HZ);
  432. set_btree_node_dirty(b);
  433. if (journal_ref) {
  434. if (w->journal &&
  435. journal_pin_cmp(b->c, w->journal, journal_ref)) {
  436. atomic_dec_bug(w->journal);
  437. w->journal = NULL;
  438. }
  439. if (!w->journal) {
  440. w->journal = journal_ref;
  441. atomic_inc(w->journal);
  442. }
  443. }
  444. /* Force write if set is too big */
  445. if (set_bytes(i) > PAGE_SIZE - 48 &&
  446. !current->bio_list)
  447. bch_btree_node_write(b, NULL);
  448. }
  449. /*
  450. * Btree in memory cache - allocation/freeing
  451. * mca -> memory cache
  452. */
  453. #define mca_reserve(c) (((c->root && c->root->level) \
  454. ? c->root->level : 1) * 8 + 16)
  455. #define mca_can_free(c) \
  456. max_t(int, 0, c->btree_cache_used - mca_reserve(c))
  457. static void mca_data_free(struct btree *b)
  458. {
  459. BUG_ON(b->io_mutex.count != 1);
  460. bch_btree_keys_free(&b->keys);
  461. b->c->btree_cache_used--;
  462. list_move(&b->list, &b->c->btree_cache_freed);
  463. }
  464. static void mca_bucket_free(struct btree *b)
  465. {
  466. BUG_ON(btree_node_dirty(b));
  467. b->key.ptr[0] = 0;
  468. hlist_del_init_rcu(&b->hash);
  469. list_move(&b->list, &b->c->btree_cache_freeable);
  470. }
  471. static unsigned btree_order(struct bkey *k)
  472. {
  473. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  474. }
  475. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  476. {
  477. if (!bch_btree_keys_alloc(&b->keys,
  478. max_t(unsigned,
  479. ilog2(b->c->btree_pages),
  480. btree_order(k)),
  481. gfp)) {
  482. b->c->btree_cache_used++;
  483. list_move(&b->list, &b->c->btree_cache);
  484. } else {
  485. list_move(&b->list, &b->c->btree_cache_freed);
  486. }
  487. }
  488. static struct btree *mca_bucket_alloc(struct cache_set *c,
  489. struct bkey *k, gfp_t gfp)
  490. {
  491. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  492. if (!b)
  493. return NULL;
  494. init_rwsem(&b->lock);
  495. lockdep_set_novalidate_class(&b->lock);
  496. mutex_init(&b->write_lock);
  497. lockdep_set_novalidate_class(&b->write_lock);
  498. INIT_LIST_HEAD(&b->list);
  499. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  500. b->c = c;
  501. sema_init(&b->io_mutex, 1);
  502. mca_data_alloc(b, k, gfp);
  503. return b;
  504. }
  505. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  506. {
  507. struct closure cl;
  508. closure_init_stack(&cl);
  509. lockdep_assert_held(&b->c->bucket_lock);
  510. if (!down_write_trylock(&b->lock))
  511. return -ENOMEM;
  512. BUG_ON(btree_node_dirty(b) && !b->keys.set[0].data);
  513. if (b->keys.page_order < min_order)
  514. goto out_unlock;
  515. if (!flush) {
  516. if (btree_node_dirty(b))
  517. goto out_unlock;
  518. if (down_trylock(&b->io_mutex))
  519. goto out_unlock;
  520. up(&b->io_mutex);
  521. }
  522. mutex_lock(&b->write_lock);
  523. if (btree_node_dirty(b))
  524. __bch_btree_node_write(b, &cl);
  525. mutex_unlock(&b->write_lock);
  526. closure_sync(&cl);
  527. /* wait for any in flight btree write */
  528. down(&b->io_mutex);
  529. up(&b->io_mutex);
  530. return 0;
  531. out_unlock:
  532. rw_unlock(true, b);
  533. return -ENOMEM;
  534. }
  535. static unsigned long bch_mca_scan(struct shrinker *shrink,
  536. struct shrink_control *sc)
  537. {
  538. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  539. struct btree *b, *t;
  540. unsigned long i, nr = sc->nr_to_scan;
  541. unsigned long freed = 0;
  542. if (c->shrinker_disabled)
  543. return SHRINK_STOP;
  544. if (c->btree_cache_alloc_lock)
  545. return SHRINK_STOP;
  546. /* Return -1 if we can't do anything right now */
  547. if (sc->gfp_mask & __GFP_IO)
  548. mutex_lock(&c->bucket_lock);
  549. else if (!mutex_trylock(&c->bucket_lock))
  550. return -1;
  551. /*
  552. * It's _really_ critical that we don't free too many btree nodes - we
  553. * have to always leave ourselves a reserve. The reserve is how we
  554. * guarantee that allocating memory for a new btree node can always
  555. * succeed, so that inserting keys into the btree can always succeed and
  556. * IO can always make forward progress:
  557. */
  558. nr /= c->btree_pages;
  559. nr = min_t(unsigned long, nr, mca_can_free(c));
  560. i = 0;
  561. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  562. if (freed >= nr)
  563. break;
  564. if (++i > 3 &&
  565. !mca_reap(b, 0, false)) {
  566. mca_data_free(b);
  567. rw_unlock(true, b);
  568. freed++;
  569. }
  570. }
  571. for (i = 0; (nr--) && i < c->btree_cache_used; i++) {
  572. if (list_empty(&c->btree_cache))
  573. goto out;
  574. b = list_first_entry(&c->btree_cache, struct btree, list);
  575. list_rotate_left(&c->btree_cache);
  576. if (!b->accessed &&
  577. !mca_reap(b, 0, false)) {
  578. mca_bucket_free(b);
  579. mca_data_free(b);
  580. rw_unlock(true, b);
  581. freed++;
  582. } else
  583. b->accessed = 0;
  584. }
  585. out:
  586. mutex_unlock(&c->bucket_lock);
  587. return freed;
  588. }
  589. static unsigned long bch_mca_count(struct shrinker *shrink,
  590. struct shrink_control *sc)
  591. {
  592. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  593. if (c->shrinker_disabled)
  594. return 0;
  595. if (c->btree_cache_alloc_lock)
  596. return 0;
  597. return mca_can_free(c) * c->btree_pages;
  598. }
  599. void bch_btree_cache_free(struct cache_set *c)
  600. {
  601. struct btree *b;
  602. struct closure cl;
  603. closure_init_stack(&cl);
  604. if (c->shrink.list.next)
  605. unregister_shrinker(&c->shrink);
  606. mutex_lock(&c->bucket_lock);
  607. #ifdef CONFIG_BCACHE_DEBUG
  608. if (c->verify_data)
  609. list_move(&c->verify_data->list, &c->btree_cache);
  610. free_pages((unsigned long) c->verify_ondisk, ilog2(bucket_pages(c)));
  611. #endif
  612. list_splice(&c->btree_cache_freeable,
  613. &c->btree_cache);
  614. while (!list_empty(&c->btree_cache)) {
  615. b = list_first_entry(&c->btree_cache, struct btree, list);
  616. if (btree_node_dirty(b))
  617. btree_complete_write(b, btree_current_write(b));
  618. clear_bit(BTREE_NODE_dirty, &b->flags);
  619. mca_data_free(b);
  620. }
  621. while (!list_empty(&c->btree_cache_freed)) {
  622. b = list_first_entry(&c->btree_cache_freed,
  623. struct btree, list);
  624. list_del(&b->list);
  625. cancel_delayed_work_sync(&b->work);
  626. kfree(b);
  627. }
  628. mutex_unlock(&c->bucket_lock);
  629. }
  630. int bch_btree_cache_alloc(struct cache_set *c)
  631. {
  632. unsigned i;
  633. for (i = 0; i < mca_reserve(c); i++)
  634. if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL))
  635. return -ENOMEM;
  636. list_splice_init(&c->btree_cache,
  637. &c->btree_cache_freeable);
  638. #ifdef CONFIG_BCACHE_DEBUG
  639. mutex_init(&c->verify_lock);
  640. c->verify_ondisk = (void *)
  641. __get_free_pages(GFP_KERNEL, ilog2(bucket_pages(c)));
  642. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  643. if (c->verify_data &&
  644. c->verify_data->keys.set->data)
  645. list_del_init(&c->verify_data->list);
  646. else
  647. c->verify_data = NULL;
  648. #endif
  649. c->shrink.count_objects = bch_mca_count;
  650. c->shrink.scan_objects = bch_mca_scan;
  651. c->shrink.seeks = 4;
  652. c->shrink.batch = c->btree_pages * 2;
  653. register_shrinker(&c->shrink);
  654. return 0;
  655. }
  656. /* Btree in memory cache - hash table */
  657. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  658. {
  659. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  660. }
  661. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  662. {
  663. struct btree *b;
  664. rcu_read_lock();
  665. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  666. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  667. goto out;
  668. b = NULL;
  669. out:
  670. rcu_read_unlock();
  671. return b;
  672. }
  673. static int mca_cannibalize_lock(struct cache_set *c, struct btree_op *op)
  674. {
  675. struct task_struct *old;
  676. old = cmpxchg(&c->btree_cache_alloc_lock, NULL, current);
  677. if (old && old != current) {
  678. if (op)
  679. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  680. TASK_UNINTERRUPTIBLE);
  681. return -EINTR;
  682. }
  683. return 0;
  684. }
  685. static struct btree *mca_cannibalize(struct cache_set *c, struct btree_op *op,
  686. struct bkey *k)
  687. {
  688. struct btree *b;
  689. trace_bcache_btree_cache_cannibalize(c);
  690. if (mca_cannibalize_lock(c, op))
  691. return ERR_PTR(-EINTR);
  692. list_for_each_entry_reverse(b, &c->btree_cache, list)
  693. if (!mca_reap(b, btree_order(k), false))
  694. return b;
  695. list_for_each_entry_reverse(b, &c->btree_cache, list)
  696. if (!mca_reap(b, btree_order(k), true))
  697. return b;
  698. WARN(1, "btree cache cannibalize failed\n");
  699. return ERR_PTR(-ENOMEM);
  700. }
  701. /*
  702. * We can only have one thread cannibalizing other cached btree nodes at a time,
  703. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  704. * cannibalize_bucket() will take. This means every time we unlock the root of
  705. * the btree, we need to release this lock if we have it held.
  706. */
  707. static void bch_cannibalize_unlock(struct cache_set *c)
  708. {
  709. if (c->btree_cache_alloc_lock == current) {
  710. c->btree_cache_alloc_lock = NULL;
  711. wake_up(&c->btree_cache_wait);
  712. }
  713. }
  714. static struct btree *mca_alloc(struct cache_set *c, struct btree_op *op,
  715. struct bkey *k, int level)
  716. {
  717. struct btree *b;
  718. BUG_ON(current->bio_list);
  719. lockdep_assert_held(&c->bucket_lock);
  720. if (mca_find(c, k))
  721. return NULL;
  722. /* btree_free() doesn't free memory; it sticks the node on the end of
  723. * the list. Check if there's any freed nodes there:
  724. */
  725. list_for_each_entry(b, &c->btree_cache_freeable, list)
  726. if (!mca_reap(b, btree_order(k), false))
  727. goto out;
  728. /* We never free struct btree itself, just the memory that holds the on
  729. * disk node. Check the freed list before allocating a new one:
  730. */
  731. list_for_each_entry(b, &c->btree_cache_freed, list)
  732. if (!mca_reap(b, 0, false)) {
  733. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  734. if (!b->keys.set[0].data)
  735. goto err;
  736. else
  737. goto out;
  738. }
  739. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  740. if (!b)
  741. goto err;
  742. BUG_ON(!down_write_trylock(&b->lock));
  743. if (!b->keys.set->data)
  744. goto err;
  745. out:
  746. BUG_ON(b->io_mutex.count != 1);
  747. bkey_copy(&b->key, k);
  748. list_move(&b->list, &c->btree_cache);
  749. hlist_del_init_rcu(&b->hash);
  750. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  751. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  752. b->parent = (void *) ~0UL;
  753. b->flags = 0;
  754. b->written = 0;
  755. b->level = level;
  756. if (!b->level)
  757. bch_btree_keys_init(&b->keys, &bch_extent_keys_ops,
  758. &b->c->expensive_debug_checks);
  759. else
  760. bch_btree_keys_init(&b->keys, &bch_btree_keys_ops,
  761. &b->c->expensive_debug_checks);
  762. return b;
  763. err:
  764. if (b)
  765. rw_unlock(true, b);
  766. b = mca_cannibalize(c, op, k);
  767. if (!IS_ERR(b))
  768. goto out;
  769. return b;
  770. }
  771. /**
  772. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  773. * in from disk if necessary.
  774. *
  775. * If IO is necessary and running under generic_make_request, returns -EAGAIN.
  776. *
  777. * The btree node will have either a read or a write lock held, depending on
  778. * level and op->lock.
  779. */
  780. struct btree *bch_btree_node_get(struct cache_set *c, struct btree_op *op,
  781. struct bkey *k, int level, bool write)
  782. {
  783. int i = 0;
  784. struct btree *b;
  785. BUG_ON(level < 0);
  786. retry:
  787. b = mca_find(c, k);
  788. if (!b) {
  789. if (current->bio_list)
  790. return ERR_PTR(-EAGAIN);
  791. mutex_lock(&c->bucket_lock);
  792. b = mca_alloc(c, op, k, level);
  793. mutex_unlock(&c->bucket_lock);
  794. if (!b)
  795. goto retry;
  796. if (IS_ERR(b))
  797. return b;
  798. bch_btree_node_read(b);
  799. if (!write)
  800. downgrade_write(&b->lock);
  801. } else {
  802. rw_lock(write, b, level);
  803. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  804. rw_unlock(write, b);
  805. goto retry;
  806. }
  807. BUG_ON(b->level != level);
  808. }
  809. b->accessed = 1;
  810. for (; i <= b->keys.nsets && b->keys.set[i].size; i++) {
  811. prefetch(b->keys.set[i].tree);
  812. prefetch(b->keys.set[i].data);
  813. }
  814. for (; i <= b->keys.nsets; i++)
  815. prefetch(b->keys.set[i].data);
  816. if (btree_node_io_error(b)) {
  817. rw_unlock(write, b);
  818. return ERR_PTR(-EIO);
  819. }
  820. BUG_ON(!b->written);
  821. return b;
  822. }
  823. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  824. {
  825. struct btree *b;
  826. mutex_lock(&c->bucket_lock);
  827. b = mca_alloc(c, NULL, k, level);
  828. mutex_unlock(&c->bucket_lock);
  829. if (!IS_ERR_OR_NULL(b)) {
  830. bch_btree_node_read(b);
  831. rw_unlock(true, b);
  832. }
  833. }
  834. /* Btree alloc */
  835. static void btree_node_free(struct btree *b)
  836. {
  837. trace_bcache_btree_node_free(b);
  838. BUG_ON(b == b->c->root);
  839. mutex_lock(&b->write_lock);
  840. if (btree_node_dirty(b))
  841. btree_complete_write(b, btree_current_write(b));
  842. clear_bit(BTREE_NODE_dirty, &b->flags);
  843. mutex_unlock(&b->write_lock);
  844. cancel_delayed_work(&b->work);
  845. mutex_lock(&b->c->bucket_lock);
  846. bch_bucket_free(b->c, &b->key);
  847. mca_bucket_free(b);
  848. mutex_unlock(&b->c->bucket_lock);
  849. }
  850. struct btree *bch_btree_node_alloc(struct cache_set *c, struct btree_op *op,
  851. int level)
  852. {
  853. BKEY_PADDED(key) k;
  854. struct btree *b = ERR_PTR(-EAGAIN);
  855. mutex_lock(&c->bucket_lock);
  856. retry:
  857. if (__bch_bucket_alloc_set(c, RESERVE_BTREE, &k.key, 1, op != NULL))
  858. goto err;
  859. bkey_put(c, &k.key);
  860. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  861. b = mca_alloc(c, op, &k.key, level);
  862. if (IS_ERR(b))
  863. goto err_free;
  864. if (!b) {
  865. cache_bug(c,
  866. "Tried to allocate bucket that was in btree cache");
  867. goto retry;
  868. }
  869. b->accessed = 1;
  870. bch_bset_init_next(&b->keys, b->keys.set->data, bset_magic(&b->c->sb));
  871. mutex_unlock(&c->bucket_lock);
  872. trace_bcache_btree_node_alloc(b);
  873. return b;
  874. err_free:
  875. bch_bucket_free(c, &k.key);
  876. err:
  877. mutex_unlock(&c->bucket_lock);
  878. trace_bcache_btree_node_alloc_fail(b);
  879. return b;
  880. }
  881. static struct btree *btree_node_alloc_replacement(struct btree *b,
  882. struct btree_op *op)
  883. {
  884. struct btree *n = bch_btree_node_alloc(b->c, op, b->level);
  885. if (!IS_ERR_OR_NULL(n)) {
  886. mutex_lock(&n->write_lock);
  887. bch_btree_sort_into(&b->keys, &n->keys, &b->c->sort);
  888. bkey_copy_key(&n->key, &b->key);
  889. mutex_unlock(&n->write_lock);
  890. }
  891. return n;
  892. }
  893. static void make_btree_freeing_key(struct btree *b, struct bkey *k)
  894. {
  895. unsigned i;
  896. mutex_lock(&b->c->bucket_lock);
  897. atomic_inc(&b->c->prio_blocked);
  898. bkey_copy(k, &b->key);
  899. bkey_copy_key(k, &ZERO_KEY);
  900. for (i = 0; i < KEY_PTRS(k); i++)
  901. SET_PTR_GEN(k, i,
  902. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  903. PTR_BUCKET(b->c, &b->key, i)));
  904. mutex_unlock(&b->c->bucket_lock);
  905. }
  906. static int btree_check_reserve(struct btree *b, struct btree_op *op)
  907. {
  908. struct cache_set *c = b->c;
  909. struct cache *ca;
  910. unsigned i, reserve = (c->root->level - b->level) * 2 + 1;
  911. mutex_lock(&c->bucket_lock);
  912. for_each_cache(ca, c, i)
  913. if (fifo_used(&ca->free[RESERVE_BTREE]) < reserve) {
  914. if (op)
  915. prepare_to_wait(&c->btree_cache_wait, &op->wait,
  916. TASK_UNINTERRUPTIBLE);
  917. mutex_unlock(&c->bucket_lock);
  918. return -EINTR;
  919. }
  920. mutex_unlock(&c->bucket_lock);
  921. return mca_cannibalize_lock(b->c, op);
  922. }
  923. /* Garbage collection */
  924. static uint8_t __bch_btree_mark_key(struct cache_set *c, int level,
  925. struct bkey *k)
  926. {
  927. uint8_t stale = 0;
  928. unsigned i;
  929. struct bucket *g;
  930. /*
  931. * ptr_invalid() can't return true for the keys that mark btree nodes as
  932. * freed, but since ptr_bad() returns true we'll never actually use them
  933. * for anything and thus we don't want mark their pointers here
  934. */
  935. if (!bkey_cmp(k, &ZERO_KEY))
  936. return stale;
  937. for (i = 0; i < KEY_PTRS(k); i++) {
  938. if (!ptr_available(c, k, i))
  939. continue;
  940. g = PTR_BUCKET(c, k, i);
  941. if (gen_after(g->last_gc, PTR_GEN(k, i)))
  942. g->last_gc = PTR_GEN(k, i);
  943. if (ptr_stale(c, k, i)) {
  944. stale = max(stale, ptr_stale(c, k, i));
  945. continue;
  946. }
  947. cache_bug_on(GC_MARK(g) &&
  948. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  949. c, "inconsistent ptrs: mark = %llu, level = %i",
  950. GC_MARK(g), level);
  951. if (level)
  952. SET_GC_MARK(g, GC_MARK_METADATA);
  953. else if (KEY_DIRTY(k))
  954. SET_GC_MARK(g, GC_MARK_DIRTY);
  955. else if (!GC_MARK(g))
  956. SET_GC_MARK(g, GC_MARK_RECLAIMABLE);
  957. /* guard against overflow */
  958. SET_GC_SECTORS_USED(g, min_t(unsigned,
  959. GC_SECTORS_USED(g) + KEY_SIZE(k),
  960. MAX_GC_SECTORS_USED));
  961. BUG_ON(!GC_SECTORS_USED(g));
  962. }
  963. return stale;
  964. }
  965. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  966. void bch_initial_mark_key(struct cache_set *c, int level, struct bkey *k)
  967. {
  968. unsigned i;
  969. for (i = 0; i < KEY_PTRS(k); i++)
  970. if (ptr_available(c, k, i) &&
  971. !ptr_stale(c, k, i)) {
  972. struct bucket *b = PTR_BUCKET(c, k, i);
  973. b->gen = PTR_GEN(k, i);
  974. if (level && bkey_cmp(k, &ZERO_KEY))
  975. b->prio = BTREE_PRIO;
  976. else if (!level && b->prio == BTREE_PRIO)
  977. b->prio = INITIAL_PRIO;
  978. }
  979. __bch_btree_mark_key(c, level, k);
  980. }
  981. static bool btree_gc_mark_node(struct btree *b, struct gc_stat *gc)
  982. {
  983. uint8_t stale = 0;
  984. unsigned keys = 0, good_keys = 0;
  985. struct bkey *k;
  986. struct btree_iter iter;
  987. struct bset_tree *t;
  988. gc->nodes++;
  989. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid) {
  990. stale = max(stale, btree_mark_key(b, k));
  991. keys++;
  992. if (bch_ptr_bad(&b->keys, k))
  993. continue;
  994. gc->key_bytes += bkey_u64s(k);
  995. gc->nkeys++;
  996. good_keys++;
  997. gc->data += KEY_SIZE(k);
  998. }
  999. for (t = b->keys.set; t <= &b->keys.set[b->keys.nsets]; t++)
  1000. btree_bug_on(t->size &&
  1001. bset_written(&b->keys, t) &&
  1002. bkey_cmp(&b->key, &t->end) < 0,
  1003. b, "found short btree key in gc");
  1004. if (b->c->gc_always_rewrite)
  1005. return true;
  1006. if (stale > 10)
  1007. return true;
  1008. if ((keys - good_keys) * 2 > keys)
  1009. return true;
  1010. return false;
  1011. }
  1012. #define GC_MERGE_NODES 4U
  1013. struct gc_merge_info {
  1014. struct btree *b;
  1015. unsigned keys;
  1016. };
  1017. static int bch_btree_insert_node(struct btree *, struct btree_op *,
  1018. struct keylist *, atomic_t *, struct bkey *);
  1019. static int btree_gc_coalesce(struct btree *b, struct btree_op *op,
  1020. struct gc_stat *gc, struct gc_merge_info *r)
  1021. {
  1022. unsigned i, nodes = 0, keys = 0, blocks;
  1023. struct btree *new_nodes[GC_MERGE_NODES];
  1024. struct keylist keylist;
  1025. struct closure cl;
  1026. struct bkey *k;
  1027. bch_keylist_init(&keylist);
  1028. if (btree_check_reserve(b, NULL))
  1029. return 0;
  1030. memset(new_nodes, 0, sizeof(new_nodes));
  1031. closure_init_stack(&cl);
  1032. while (nodes < GC_MERGE_NODES && !IS_ERR_OR_NULL(r[nodes].b))
  1033. keys += r[nodes++].keys;
  1034. blocks = btree_default_blocks(b->c) * 2 / 3;
  1035. if (nodes < 2 ||
  1036. __set_blocks(b->keys.set[0].data, keys,
  1037. block_bytes(b->c)) > blocks * (nodes - 1))
  1038. return 0;
  1039. for (i = 0; i < nodes; i++) {
  1040. new_nodes[i] = btree_node_alloc_replacement(r[i].b, NULL);
  1041. if (IS_ERR_OR_NULL(new_nodes[i]))
  1042. goto out_nocoalesce;
  1043. }
  1044. /*
  1045. * We have to check the reserve here, after we've allocated our new
  1046. * nodes, to make sure the insert below will succeed - we also check
  1047. * before as an optimization to potentially avoid a bunch of expensive
  1048. * allocs/sorts
  1049. */
  1050. if (btree_check_reserve(b, NULL))
  1051. goto out_nocoalesce;
  1052. for (i = 0; i < nodes; i++)
  1053. mutex_lock(&new_nodes[i]->write_lock);
  1054. for (i = nodes - 1; i > 0; --i) {
  1055. struct bset *n1 = btree_bset_first(new_nodes[i]);
  1056. struct bset *n2 = btree_bset_first(new_nodes[i - 1]);
  1057. struct bkey *k, *last = NULL;
  1058. keys = 0;
  1059. if (i > 1) {
  1060. for (k = n2->start;
  1061. k < bset_bkey_last(n2);
  1062. k = bkey_next(k)) {
  1063. if (__set_blocks(n1, n1->keys + keys +
  1064. bkey_u64s(k),
  1065. block_bytes(b->c)) > blocks)
  1066. break;
  1067. last = k;
  1068. keys += bkey_u64s(k);
  1069. }
  1070. } else {
  1071. /*
  1072. * Last node we're not getting rid of - we're getting
  1073. * rid of the node at r[0]. Have to try and fit all of
  1074. * the remaining keys into this node; we can't ensure
  1075. * they will always fit due to rounding and variable
  1076. * length keys (shouldn't be possible in practice,
  1077. * though)
  1078. */
  1079. if (__set_blocks(n1, n1->keys + n2->keys,
  1080. block_bytes(b->c)) >
  1081. btree_blocks(new_nodes[i]))
  1082. goto out_nocoalesce;
  1083. keys = n2->keys;
  1084. /* Take the key of the node we're getting rid of */
  1085. last = &r->b->key;
  1086. }
  1087. BUG_ON(__set_blocks(n1, n1->keys + keys, block_bytes(b->c)) >
  1088. btree_blocks(new_nodes[i]));
  1089. if (last)
  1090. bkey_copy_key(&new_nodes[i]->key, last);
  1091. memcpy(bset_bkey_last(n1),
  1092. n2->start,
  1093. (void *) bset_bkey_idx(n2, keys) - (void *) n2->start);
  1094. n1->keys += keys;
  1095. r[i].keys = n1->keys;
  1096. memmove(n2->start,
  1097. bset_bkey_idx(n2, keys),
  1098. (void *) bset_bkey_last(n2) -
  1099. (void *) bset_bkey_idx(n2, keys));
  1100. n2->keys -= keys;
  1101. if (__bch_keylist_realloc(&keylist,
  1102. bkey_u64s(&new_nodes[i]->key)))
  1103. goto out_nocoalesce;
  1104. bch_btree_node_write(new_nodes[i], &cl);
  1105. bch_keylist_add(&keylist, &new_nodes[i]->key);
  1106. }
  1107. for (i = 0; i < nodes; i++)
  1108. mutex_unlock(&new_nodes[i]->write_lock);
  1109. closure_sync(&cl);
  1110. /* We emptied out this node */
  1111. BUG_ON(btree_bset_first(new_nodes[0])->keys);
  1112. btree_node_free(new_nodes[0]);
  1113. rw_unlock(true, new_nodes[0]);
  1114. for (i = 0; i < nodes; i++) {
  1115. if (__bch_keylist_realloc(&keylist, bkey_u64s(&r[i].b->key)))
  1116. goto out_nocoalesce;
  1117. make_btree_freeing_key(r[i].b, keylist.top);
  1118. bch_keylist_push(&keylist);
  1119. }
  1120. bch_btree_insert_node(b, op, &keylist, NULL, NULL);
  1121. BUG_ON(!bch_keylist_empty(&keylist));
  1122. for (i = 0; i < nodes; i++) {
  1123. btree_node_free(r[i].b);
  1124. rw_unlock(true, r[i].b);
  1125. r[i].b = new_nodes[i];
  1126. }
  1127. memmove(r, r + 1, sizeof(r[0]) * (nodes - 1));
  1128. r[nodes - 1].b = ERR_PTR(-EINTR);
  1129. trace_bcache_btree_gc_coalesce(nodes);
  1130. gc->nodes--;
  1131. bch_keylist_free(&keylist);
  1132. /* Invalidated our iterator */
  1133. return -EINTR;
  1134. out_nocoalesce:
  1135. closure_sync(&cl);
  1136. bch_keylist_free(&keylist);
  1137. while ((k = bch_keylist_pop(&keylist)))
  1138. if (!bkey_cmp(k, &ZERO_KEY))
  1139. atomic_dec(&b->c->prio_blocked);
  1140. for (i = 0; i < nodes; i++)
  1141. if (!IS_ERR_OR_NULL(new_nodes[i])) {
  1142. btree_node_free(new_nodes[i]);
  1143. rw_unlock(true, new_nodes[i]);
  1144. }
  1145. return 0;
  1146. }
  1147. static int btree_gc_rewrite_node(struct btree *b, struct btree_op *op,
  1148. struct btree *replace)
  1149. {
  1150. struct keylist keys;
  1151. struct btree *n;
  1152. if (btree_check_reserve(b, NULL))
  1153. return 0;
  1154. n = btree_node_alloc_replacement(replace, NULL);
  1155. /* recheck reserve after allocating replacement node */
  1156. if (btree_check_reserve(b, NULL)) {
  1157. btree_node_free(n);
  1158. rw_unlock(true, n);
  1159. return 0;
  1160. }
  1161. bch_btree_node_write_sync(n);
  1162. bch_keylist_init(&keys);
  1163. bch_keylist_add(&keys, &n->key);
  1164. make_btree_freeing_key(replace, keys.top);
  1165. bch_keylist_push(&keys);
  1166. bch_btree_insert_node(b, op, &keys, NULL, NULL);
  1167. BUG_ON(!bch_keylist_empty(&keys));
  1168. btree_node_free(replace);
  1169. rw_unlock(true, n);
  1170. /* Invalidated our iterator */
  1171. return -EINTR;
  1172. }
  1173. static unsigned btree_gc_count_keys(struct btree *b)
  1174. {
  1175. struct bkey *k;
  1176. struct btree_iter iter;
  1177. unsigned ret = 0;
  1178. for_each_key_filter(&b->keys, k, &iter, bch_ptr_bad)
  1179. ret += bkey_u64s(k);
  1180. return ret;
  1181. }
  1182. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1183. struct closure *writes, struct gc_stat *gc)
  1184. {
  1185. int ret = 0;
  1186. bool should_rewrite;
  1187. struct bkey *k;
  1188. struct btree_iter iter;
  1189. struct gc_merge_info r[GC_MERGE_NODES];
  1190. struct gc_merge_info *i, *last = r + ARRAY_SIZE(r) - 1;
  1191. bch_btree_iter_init(&b->keys, &iter, &b->c->gc_done);
  1192. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1193. i->b = ERR_PTR(-EINTR);
  1194. while (1) {
  1195. k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad);
  1196. if (k) {
  1197. r->b = bch_btree_node_get(b->c, op, k, b->level - 1,
  1198. true);
  1199. if (IS_ERR(r->b)) {
  1200. ret = PTR_ERR(r->b);
  1201. break;
  1202. }
  1203. r->keys = btree_gc_count_keys(r->b);
  1204. ret = btree_gc_coalesce(b, op, gc, r);
  1205. if (ret)
  1206. break;
  1207. }
  1208. if (!last->b)
  1209. break;
  1210. if (!IS_ERR(last->b)) {
  1211. should_rewrite = btree_gc_mark_node(last->b, gc);
  1212. if (should_rewrite) {
  1213. ret = btree_gc_rewrite_node(b, op, last->b);
  1214. if (ret)
  1215. break;
  1216. }
  1217. if (last->b->level) {
  1218. ret = btree_gc_recurse(last->b, op, writes, gc);
  1219. if (ret)
  1220. break;
  1221. }
  1222. bkey_copy_key(&b->c->gc_done, &last->b->key);
  1223. /*
  1224. * Must flush leaf nodes before gc ends, since replace
  1225. * operations aren't journalled
  1226. */
  1227. mutex_lock(&last->b->write_lock);
  1228. if (btree_node_dirty(last->b))
  1229. bch_btree_node_write(last->b, writes);
  1230. mutex_unlock(&last->b->write_lock);
  1231. rw_unlock(true, last->b);
  1232. }
  1233. memmove(r + 1, r, sizeof(r[0]) * (GC_MERGE_NODES - 1));
  1234. r->b = NULL;
  1235. if (need_resched()) {
  1236. ret = -EAGAIN;
  1237. break;
  1238. }
  1239. }
  1240. for (i = r; i < r + ARRAY_SIZE(r); i++)
  1241. if (!IS_ERR_OR_NULL(i->b)) {
  1242. mutex_lock(&i->b->write_lock);
  1243. if (btree_node_dirty(i->b))
  1244. bch_btree_node_write(i->b, writes);
  1245. mutex_unlock(&i->b->write_lock);
  1246. rw_unlock(true, i->b);
  1247. }
  1248. return ret;
  1249. }
  1250. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1251. struct closure *writes, struct gc_stat *gc)
  1252. {
  1253. struct btree *n = NULL;
  1254. int ret = 0;
  1255. bool should_rewrite;
  1256. should_rewrite = btree_gc_mark_node(b, gc);
  1257. if (should_rewrite) {
  1258. n = btree_node_alloc_replacement(b, NULL);
  1259. if (!IS_ERR_OR_NULL(n)) {
  1260. bch_btree_node_write_sync(n);
  1261. bch_btree_set_root(n);
  1262. btree_node_free(b);
  1263. rw_unlock(true, n);
  1264. return -EINTR;
  1265. }
  1266. }
  1267. __bch_btree_mark_key(b->c, b->level + 1, &b->key);
  1268. if (b->level) {
  1269. ret = btree_gc_recurse(b, op, writes, gc);
  1270. if (ret)
  1271. return ret;
  1272. }
  1273. bkey_copy_key(&b->c->gc_done, &b->key);
  1274. return ret;
  1275. }
  1276. static void btree_gc_start(struct cache_set *c)
  1277. {
  1278. struct cache *ca;
  1279. struct bucket *b;
  1280. unsigned i;
  1281. if (!c->gc_mark_valid)
  1282. return;
  1283. mutex_lock(&c->bucket_lock);
  1284. c->gc_mark_valid = 0;
  1285. c->gc_done = ZERO_KEY;
  1286. for_each_cache(ca, c, i)
  1287. for_each_bucket(b, ca) {
  1288. b->last_gc = b->gen;
  1289. if (!atomic_read(&b->pin)) {
  1290. SET_GC_MARK(b, 0);
  1291. SET_GC_SECTORS_USED(b, 0);
  1292. }
  1293. }
  1294. mutex_unlock(&c->bucket_lock);
  1295. }
  1296. static size_t bch_btree_gc_finish(struct cache_set *c)
  1297. {
  1298. size_t available = 0;
  1299. struct bucket *b;
  1300. struct cache *ca;
  1301. unsigned i;
  1302. mutex_lock(&c->bucket_lock);
  1303. set_gc_sectors(c);
  1304. c->gc_mark_valid = 1;
  1305. c->need_gc = 0;
  1306. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1307. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1308. GC_MARK_METADATA);
  1309. /* don't reclaim buckets to which writeback keys point */
  1310. rcu_read_lock();
  1311. for (i = 0; i < c->nr_uuids; i++) {
  1312. struct bcache_device *d = c->devices[i];
  1313. struct cached_dev *dc;
  1314. struct keybuf_key *w, *n;
  1315. unsigned j;
  1316. if (!d || UUID_FLASH_ONLY(&c->uuids[i]))
  1317. continue;
  1318. dc = container_of(d, struct cached_dev, disk);
  1319. spin_lock(&dc->writeback_keys.lock);
  1320. rbtree_postorder_for_each_entry_safe(w, n,
  1321. &dc->writeback_keys.keys, node)
  1322. for (j = 0; j < KEY_PTRS(&w->key); j++)
  1323. SET_GC_MARK(PTR_BUCKET(c, &w->key, j),
  1324. GC_MARK_DIRTY);
  1325. spin_unlock(&dc->writeback_keys.lock);
  1326. }
  1327. rcu_read_unlock();
  1328. for_each_cache(ca, c, i) {
  1329. uint64_t *i;
  1330. ca->invalidate_needs_gc = 0;
  1331. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1332. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1333. for (i = ca->prio_buckets;
  1334. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1335. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1336. for_each_bucket(b, ca) {
  1337. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1338. if (atomic_read(&b->pin))
  1339. continue;
  1340. BUG_ON(!GC_MARK(b) && GC_SECTORS_USED(b));
  1341. if (!GC_MARK(b) || GC_MARK(b) == GC_MARK_RECLAIMABLE)
  1342. available++;
  1343. }
  1344. }
  1345. mutex_unlock(&c->bucket_lock);
  1346. return available;
  1347. }
  1348. static void bch_btree_gc(struct cache_set *c)
  1349. {
  1350. int ret;
  1351. unsigned long available;
  1352. struct gc_stat stats;
  1353. struct closure writes;
  1354. struct btree_op op;
  1355. uint64_t start_time = local_clock();
  1356. trace_bcache_gc_start(c);
  1357. memset(&stats, 0, sizeof(struct gc_stat));
  1358. closure_init_stack(&writes);
  1359. bch_btree_op_init(&op, SHRT_MAX);
  1360. btree_gc_start(c);
  1361. do {
  1362. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1363. closure_sync(&writes);
  1364. if (ret && ret != -EAGAIN)
  1365. pr_warn("gc failed!");
  1366. } while (ret);
  1367. available = bch_btree_gc_finish(c);
  1368. wake_up_allocators(c);
  1369. bch_time_stats_update(&c->btree_gc_time, start_time);
  1370. stats.key_bytes *= sizeof(uint64_t);
  1371. stats.data <<= 9;
  1372. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1373. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1374. trace_bcache_gc_end(c);
  1375. bch_moving_gc(c);
  1376. }
  1377. static int bch_gc_thread(void *arg)
  1378. {
  1379. struct cache_set *c = arg;
  1380. struct cache *ca;
  1381. unsigned i;
  1382. while (1) {
  1383. again:
  1384. bch_btree_gc(c);
  1385. set_current_state(TASK_INTERRUPTIBLE);
  1386. if (kthread_should_stop())
  1387. break;
  1388. mutex_lock(&c->bucket_lock);
  1389. for_each_cache(ca, c, i)
  1390. if (ca->invalidate_needs_gc) {
  1391. mutex_unlock(&c->bucket_lock);
  1392. set_current_state(TASK_RUNNING);
  1393. goto again;
  1394. }
  1395. mutex_unlock(&c->bucket_lock);
  1396. try_to_freeze();
  1397. schedule();
  1398. }
  1399. return 0;
  1400. }
  1401. int bch_gc_thread_start(struct cache_set *c)
  1402. {
  1403. c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc");
  1404. if (IS_ERR(c->gc_thread))
  1405. return PTR_ERR(c->gc_thread);
  1406. set_task_state(c->gc_thread, TASK_INTERRUPTIBLE);
  1407. return 0;
  1408. }
  1409. /* Initial partial gc */
  1410. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op)
  1411. {
  1412. int ret = 0;
  1413. struct bkey *k, *p = NULL;
  1414. struct btree_iter iter;
  1415. for_each_key_filter(&b->keys, k, &iter, bch_ptr_invalid)
  1416. bch_initial_mark_key(b->c, b->level, k);
  1417. bch_initial_mark_key(b->c, b->level + 1, &b->key);
  1418. if (b->level) {
  1419. bch_btree_iter_init(&b->keys, &iter, NULL);
  1420. do {
  1421. k = bch_btree_iter_next_filter(&iter, &b->keys,
  1422. bch_ptr_bad);
  1423. if (k)
  1424. btree_node_prefetch(b->c, k, b->level - 1);
  1425. if (p)
  1426. ret = btree(check_recurse, p, b, op);
  1427. p = k;
  1428. } while (p && !ret);
  1429. }
  1430. return ret;
  1431. }
  1432. int bch_btree_check(struct cache_set *c)
  1433. {
  1434. struct btree_op op;
  1435. bch_btree_op_init(&op, SHRT_MAX);
  1436. return btree_root(check_recurse, c, &op);
  1437. }
  1438. void bch_initial_gc_finish(struct cache_set *c)
  1439. {
  1440. struct cache *ca;
  1441. struct bucket *b;
  1442. unsigned i;
  1443. bch_btree_gc_finish(c);
  1444. mutex_lock(&c->bucket_lock);
  1445. /*
  1446. * We need to put some unused buckets directly on the prio freelist in
  1447. * order to get the allocator thread started - it needs freed buckets in
  1448. * order to rewrite the prios and gens, and it needs to rewrite prios
  1449. * and gens in order to free buckets.
  1450. *
  1451. * This is only safe for buckets that have no live data in them, which
  1452. * there should always be some of.
  1453. */
  1454. for_each_cache(ca, c, i) {
  1455. for_each_bucket(b, ca) {
  1456. if (fifo_full(&ca->free[RESERVE_PRIO]))
  1457. break;
  1458. if (bch_can_invalidate_bucket(ca, b) &&
  1459. !GC_MARK(b)) {
  1460. __bch_invalidate_one_bucket(ca, b);
  1461. fifo_push(&ca->free[RESERVE_PRIO],
  1462. b - ca->buckets);
  1463. }
  1464. }
  1465. }
  1466. mutex_unlock(&c->bucket_lock);
  1467. }
  1468. /* Btree insertion */
  1469. static bool btree_insert_key(struct btree *b, struct bkey *k,
  1470. struct bkey *replace_key)
  1471. {
  1472. unsigned status;
  1473. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1474. status = bch_btree_insert_key(&b->keys, k, replace_key);
  1475. if (status != BTREE_INSERT_STATUS_NO_INSERT) {
  1476. bch_check_keys(&b->keys, "%u for %s", status,
  1477. replace_key ? "replace" : "insert");
  1478. trace_bcache_btree_insert_key(b, k, replace_key != NULL,
  1479. status);
  1480. return true;
  1481. } else
  1482. return false;
  1483. }
  1484. static size_t insert_u64s_remaining(struct btree *b)
  1485. {
  1486. long ret = bch_btree_keys_u64s_remaining(&b->keys);
  1487. /*
  1488. * Might land in the middle of an existing extent and have to split it
  1489. */
  1490. if (b->keys.ops->is_extents)
  1491. ret -= KEY_MAX_U64S;
  1492. return max(ret, 0L);
  1493. }
  1494. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1495. struct keylist *insert_keys,
  1496. struct bkey *replace_key)
  1497. {
  1498. bool ret = false;
  1499. int oldsize = bch_count_data(&b->keys);
  1500. while (!bch_keylist_empty(insert_keys)) {
  1501. struct bkey *k = insert_keys->keys;
  1502. if (bkey_u64s(k) > insert_u64s_remaining(b))
  1503. break;
  1504. if (bkey_cmp(k, &b->key) <= 0) {
  1505. if (!b->level)
  1506. bkey_put(b->c, k);
  1507. ret |= btree_insert_key(b, k, replace_key);
  1508. bch_keylist_pop_front(insert_keys);
  1509. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1510. BKEY_PADDED(key) temp;
  1511. bkey_copy(&temp.key, insert_keys->keys);
  1512. bch_cut_back(&b->key, &temp.key);
  1513. bch_cut_front(&b->key, insert_keys->keys);
  1514. ret |= btree_insert_key(b, &temp.key, replace_key);
  1515. break;
  1516. } else {
  1517. break;
  1518. }
  1519. }
  1520. if (!ret)
  1521. op->insert_collision = true;
  1522. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1523. BUG_ON(bch_count_data(&b->keys) < oldsize);
  1524. return ret;
  1525. }
  1526. static int btree_split(struct btree *b, struct btree_op *op,
  1527. struct keylist *insert_keys,
  1528. struct bkey *replace_key)
  1529. {
  1530. bool split;
  1531. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1532. uint64_t start_time = local_clock();
  1533. struct closure cl;
  1534. struct keylist parent_keys;
  1535. closure_init_stack(&cl);
  1536. bch_keylist_init(&parent_keys);
  1537. if (btree_check_reserve(b, op)) {
  1538. if (!b->level)
  1539. return -EINTR;
  1540. else
  1541. WARN(1, "insufficient reserve for split\n");
  1542. }
  1543. n1 = btree_node_alloc_replacement(b, op);
  1544. if (IS_ERR(n1))
  1545. goto err;
  1546. split = set_blocks(btree_bset_first(n1),
  1547. block_bytes(n1->c)) > (btree_blocks(b) * 4) / 5;
  1548. if (split) {
  1549. unsigned keys = 0;
  1550. trace_bcache_btree_node_split(b, btree_bset_first(n1)->keys);
  1551. n2 = bch_btree_node_alloc(b->c, op, b->level);
  1552. if (IS_ERR(n2))
  1553. goto err_free1;
  1554. if (!b->parent) {
  1555. n3 = bch_btree_node_alloc(b->c, op, b->level + 1);
  1556. if (IS_ERR(n3))
  1557. goto err_free2;
  1558. }
  1559. mutex_lock(&n1->write_lock);
  1560. mutex_lock(&n2->write_lock);
  1561. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1562. /*
  1563. * Has to be a linear search because we don't have an auxiliary
  1564. * search tree yet
  1565. */
  1566. while (keys < (btree_bset_first(n1)->keys * 3) / 5)
  1567. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1),
  1568. keys));
  1569. bkey_copy_key(&n1->key,
  1570. bset_bkey_idx(btree_bset_first(n1), keys));
  1571. keys += bkey_u64s(bset_bkey_idx(btree_bset_first(n1), keys));
  1572. btree_bset_first(n2)->keys = btree_bset_first(n1)->keys - keys;
  1573. btree_bset_first(n1)->keys = keys;
  1574. memcpy(btree_bset_first(n2)->start,
  1575. bset_bkey_last(btree_bset_first(n1)),
  1576. btree_bset_first(n2)->keys * sizeof(uint64_t));
  1577. bkey_copy_key(&n2->key, &b->key);
  1578. bch_keylist_add(&parent_keys, &n2->key);
  1579. bch_btree_node_write(n2, &cl);
  1580. mutex_unlock(&n2->write_lock);
  1581. rw_unlock(true, n2);
  1582. } else {
  1583. trace_bcache_btree_node_compact(b, btree_bset_first(n1)->keys);
  1584. mutex_lock(&n1->write_lock);
  1585. bch_btree_insert_keys(n1, op, insert_keys, replace_key);
  1586. }
  1587. bch_keylist_add(&parent_keys, &n1->key);
  1588. bch_btree_node_write(n1, &cl);
  1589. mutex_unlock(&n1->write_lock);
  1590. if (n3) {
  1591. /* Depth increases, make a new root */
  1592. mutex_lock(&n3->write_lock);
  1593. bkey_copy_key(&n3->key, &MAX_KEY);
  1594. bch_btree_insert_keys(n3, op, &parent_keys, NULL);
  1595. bch_btree_node_write(n3, &cl);
  1596. mutex_unlock(&n3->write_lock);
  1597. closure_sync(&cl);
  1598. bch_btree_set_root(n3);
  1599. rw_unlock(true, n3);
  1600. } else if (!b->parent) {
  1601. /* Root filled up but didn't need to be split */
  1602. closure_sync(&cl);
  1603. bch_btree_set_root(n1);
  1604. } else {
  1605. /* Split a non root node */
  1606. closure_sync(&cl);
  1607. make_btree_freeing_key(b, parent_keys.top);
  1608. bch_keylist_push(&parent_keys);
  1609. bch_btree_insert_node(b->parent, op, &parent_keys, NULL, NULL);
  1610. BUG_ON(!bch_keylist_empty(&parent_keys));
  1611. }
  1612. btree_node_free(b);
  1613. rw_unlock(true, n1);
  1614. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1615. return 0;
  1616. err_free2:
  1617. bkey_put(b->c, &n2->key);
  1618. btree_node_free(n2);
  1619. rw_unlock(true, n2);
  1620. err_free1:
  1621. bkey_put(b->c, &n1->key);
  1622. btree_node_free(n1);
  1623. rw_unlock(true, n1);
  1624. err:
  1625. WARN(1, "bcache: btree split failed (level %u)", b->level);
  1626. if (n3 == ERR_PTR(-EAGAIN) ||
  1627. n2 == ERR_PTR(-EAGAIN) ||
  1628. n1 == ERR_PTR(-EAGAIN))
  1629. return -EAGAIN;
  1630. return -ENOMEM;
  1631. }
  1632. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1633. struct keylist *insert_keys,
  1634. atomic_t *journal_ref,
  1635. struct bkey *replace_key)
  1636. {
  1637. struct closure cl;
  1638. BUG_ON(b->level && replace_key);
  1639. closure_init_stack(&cl);
  1640. mutex_lock(&b->write_lock);
  1641. if (write_block(b) != btree_bset_last(b) &&
  1642. b->keys.last_set_unwritten)
  1643. bch_btree_init_next(b); /* just wrote a set */
  1644. if (bch_keylist_nkeys(insert_keys) > insert_u64s_remaining(b)) {
  1645. mutex_unlock(&b->write_lock);
  1646. goto split;
  1647. }
  1648. BUG_ON(write_block(b) != btree_bset_last(b));
  1649. if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) {
  1650. if (!b->level)
  1651. bch_btree_leaf_dirty(b, journal_ref);
  1652. else
  1653. bch_btree_node_write(b, &cl);
  1654. }
  1655. mutex_unlock(&b->write_lock);
  1656. /* wait for btree node write if necessary, after unlock */
  1657. closure_sync(&cl);
  1658. return 0;
  1659. split:
  1660. if (current->bio_list) {
  1661. op->lock = b->c->root->level + 1;
  1662. return -EAGAIN;
  1663. } else if (op->lock <= b->c->root->level) {
  1664. op->lock = b->c->root->level + 1;
  1665. return -EINTR;
  1666. } else {
  1667. /* Invalidated all iterators */
  1668. int ret = btree_split(b, op, insert_keys, replace_key);
  1669. if (bch_keylist_empty(insert_keys))
  1670. return 0;
  1671. else if (!ret)
  1672. return -EINTR;
  1673. return ret;
  1674. }
  1675. }
  1676. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1677. struct bkey *check_key)
  1678. {
  1679. int ret = -EINTR;
  1680. uint64_t btree_ptr = b->key.ptr[0];
  1681. unsigned long seq = b->seq;
  1682. struct keylist insert;
  1683. bool upgrade = op->lock == -1;
  1684. bch_keylist_init(&insert);
  1685. if (upgrade) {
  1686. rw_unlock(false, b);
  1687. rw_lock(true, b, b->level);
  1688. if (b->key.ptr[0] != btree_ptr ||
  1689. b->seq != seq + 1)
  1690. goto out;
  1691. }
  1692. SET_KEY_PTRS(check_key, 1);
  1693. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1694. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1695. bch_keylist_add(&insert, check_key);
  1696. ret = bch_btree_insert_node(b, op, &insert, NULL, NULL);
  1697. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1698. out:
  1699. if (upgrade)
  1700. downgrade_write(&b->lock);
  1701. return ret;
  1702. }
  1703. struct btree_insert_op {
  1704. struct btree_op op;
  1705. struct keylist *keys;
  1706. atomic_t *journal_ref;
  1707. struct bkey *replace_key;
  1708. };
  1709. static int btree_insert_fn(struct btree_op *b_op, struct btree *b)
  1710. {
  1711. struct btree_insert_op *op = container_of(b_op,
  1712. struct btree_insert_op, op);
  1713. int ret = bch_btree_insert_node(b, &op->op, op->keys,
  1714. op->journal_ref, op->replace_key);
  1715. if (ret && !bch_keylist_empty(op->keys))
  1716. return ret;
  1717. else
  1718. return MAP_DONE;
  1719. }
  1720. int bch_btree_insert(struct cache_set *c, struct keylist *keys,
  1721. atomic_t *journal_ref, struct bkey *replace_key)
  1722. {
  1723. struct btree_insert_op op;
  1724. int ret = 0;
  1725. BUG_ON(current->bio_list);
  1726. BUG_ON(bch_keylist_empty(keys));
  1727. bch_btree_op_init(&op.op, 0);
  1728. op.keys = keys;
  1729. op.journal_ref = journal_ref;
  1730. op.replace_key = replace_key;
  1731. while (!ret && !bch_keylist_empty(keys)) {
  1732. op.op.lock = 0;
  1733. ret = bch_btree_map_leaf_nodes(&op.op, c,
  1734. &START_KEY(keys->keys),
  1735. btree_insert_fn);
  1736. }
  1737. if (ret) {
  1738. struct bkey *k;
  1739. pr_err("error %i", ret);
  1740. while ((k = bch_keylist_pop(keys)))
  1741. bkey_put(c, k);
  1742. } else if (op.op.insert_collision)
  1743. ret = -ESRCH;
  1744. return ret;
  1745. }
  1746. void bch_btree_set_root(struct btree *b)
  1747. {
  1748. unsigned i;
  1749. struct closure cl;
  1750. closure_init_stack(&cl);
  1751. trace_bcache_btree_set_root(b);
  1752. BUG_ON(!b->written);
  1753. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1754. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1755. mutex_lock(&b->c->bucket_lock);
  1756. list_del_init(&b->list);
  1757. mutex_unlock(&b->c->bucket_lock);
  1758. b->c->root = b;
  1759. bch_journal_meta(b->c, &cl);
  1760. closure_sync(&cl);
  1761. }
  1762. /* Map across nodes or keys */
  1763. static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op,
  1764. struct bkey *from,
  1765. btree_map_nodes_fn *fn, int flags)
  1766. {
  1767. int ret = MAP_CONTINUE;
  1768. if (b->level) {
  1769. struct bkey *k;
  1770. struct btree_iter iter;
  1771. bch_btree_iter_init(&b->keys, &iter, from);
  1772. while ((k = bch_btree_iter_next_filter(&iter, &b->keys,
  1773. bch_ptr_bad))) {
  1774. ret = btree(map_nodes_recurse, k, b,
  1775. op, from, fn, flags);
  1776. from = NULL;
  1777. if (ret != MAP_CONTINUE)
  1778. return ret;
  1779. }
  1780. }
  1781. if (!b->level || flags == MAP_ALL_NODES)
  1782. ret = fn(op, b);
  1783. return ret;
  1784. }
  1785. int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c,
  1786. struct bkey *from, btree_map_nodes_fn *fn, int flags)
  1787. {
  1788. return btree_root(map_nodes_recurse, c, op, from, fn, flags);
  1789. }
  1790. static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op,
  1791. struct bkey *from, btree_map_keys_fn *fn,
  1792. int flags)
  1793. {
  1794. int ret = MAP_CONTINUE;
  1795. struct bkey *k;
  1796. struct btree_iter iter;
  1797. bch_btree_iter_init(&b->keys, &iter, from);
  1798. while ((k = bch_btree_iter_next_filter(&iter, &b->keys, bch_ptr_bad))) {
  1799. ret = !b->level
  1800. ? fn(op, b, k)
  1801. : btree(map_keys_recurse, k, b, op, from, fn, flags);
  1802. from = NULL;
  1803. if (ret != MAP_CONTINUE)
  1804. return ret;
  1805. }
  1806. if (!b->level && (flags & MAP_END_KEY))
  1807. ret = fn(op, b, &KEY(KEY_INODE(&b->key),
  1808. KEY_OFFSET(&b->key), 0));
  1809. return ret;
  1810. }
  1811. int bch_btree_map_keys(struct btree_op *op, struct cache_set *c,
  1812. struct bkey *from, btree_map_keys_fn *fn, int flags)
  1813. {
  1814. return btree_root(map_keys_recurse, c, op, from, fn, flags);
  1815. }
  1816. /* Keybuf code */
  1817. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1818. {
  1819. /* Overlapping keys compare equal */
  1820. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1821. return -1;
  1822. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1823. return 1;
  1824. return 0;
  1825. }
  1826. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1827. struct keybuf_key *r)
  1828. {
  1829. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1830. }
  1831. struct refill {
  1832. struct btree_op op;
  1833. unsigned nr_found;
  1834. struct keybuf *buf;
  1835. struct bkey *end;
  1836. keybuf_pred_fn *pred;
  1837. };
  1838. static int refill_keybuf_fn(struct btree_op *op, struct btree *b,
  1839. struct bkey *k)
  1840. {
  1841. struct refill *refill = container_of(op, struct refill, op);
  1842. struct keybuf *buf = refill->buf;
  1843. int ret = MAP_CONTINUE;
  1844. if (bkey_cmp(k, refill->end) >= 0) {
  1845. ret = MAP_DONE;
  1846. goto out;
  1847. }
  1848. if (!KEY_SIZE(k)) /* end key */
  1849. goto out;
  1850. if (refill->pred(buf, k)) {
  1851. struct keybuf_key *w;
  1852. spin_lock(&buf->lock);
  1853. w = array_alloc(&buf->freelist);
  1854. if (!w) {
  1855. spin_unlock(&buf->lock);
  1856. return MAP_DONE;
  1857. }
  1858. w->private = NULL;
  1859. bkey_copy(&w->key, k);
  1860. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1861. array_free(&buf->freelist, w);
  1862. else
  1863. refill->nr_found++;
  1864. if (array_freelist_empty(&buf->freelist))
  1865. ret = MAP_DONE;
  1866. spin_unlock(&buf->lock);
  1867. }
  1868. out:
  1869. buf->last_scanned = *k;
  1870. return ret;
  1871. }
  1872. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1873. struct bkey *end, keybuf_pred_fn *pred)
  1874. {
  1875. struct bkey start = buf->last_scanned;
  1876. struct refill refill;
  1877. cond_resched();
  1878. bch_btree_op_init(&refill.op, -1);
  1879. refill.nr_found = 0;
  1880. refill.buf = buf;
  1881. refill.end = end;
  1882. refill.pred = pred;
  1883. bch_btree_map_keys(&refill.op, c, &buf->last_scanned,
  1884. refill_keybuf_fn, MAP_END_KEY);
  1885. trace_bcache_keyscan(refill.nr_found,
  1886. KEY_INODE(&start), KEY_OFFSET(&start),
  1887. KEY_INODE(&buf->last_scanned),
  1888. KEY_OFFSET(&buf->last_scanned));
  1889. spin_lock(&buf->lock);
  1890. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1891. struct keybuf_key *w;
  1892. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1893. buf->start = START_KEY(&w->key);
  1894. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1895. buf->end = w->key;
  1896. } else {
  1897. buf->start = MAX_KEY;
  1898. buf->end = MAX_KEY;
  1899. }
  1900. spin_unlock(&buf->lock);
  1901. }
  1902. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1903. {
  1904. rb_erase(&w->node, &buf->keys);
  1905. array_free(&buf->freelist, w);
  1906. }
  1907. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1908. {
  1909. spin_lock(&buf->lock);
  1910. __bch_keybuf_del(buf, w);
  1911. spin_unlock(&buf->lock);
  1912. }
  1913. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1914. struct bkey *end)
  1915. {
  1916. bool ret = false;
  1917. struct keybuf_key *p, *w, s;
  1918. s.key = *start;
  1919. if (bkey_cmp(end, &buf->start) <= 0 ||
  1920. bkey_cmp(start, &buf->end) >= 0)
  1921. return false;
  1922. spin_lock(&buf->lock);
  1923. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1924. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1925. p = w;
  1926. w = RB_NEXT(w, node);
  1927. if (p->private)
  1928. ret = true;
  1929. else
  1930. __bch_keybuf_del(buf, p);
  1931. }
  1932. spin_unlock(&buf->lock);
  1933. return ret;
  1934. }
  1935. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1936. {
  1937. struct keybuf_key *w;
  1938. spin_lock(&buf->lock);
  1939. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1940. while (w && w->private)
  1941. w = RB_NEXT(w, node);
  1942. if (w)
  1943. w->private = ERR_PTR(-EINTR);
  1944. spin_unlock(&buf->lock);
  1945. return w;
  1946. }
  1947. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1948. struct keybuf *buf,
  1949. struct bkey *end,
  1950. keybuf_pred_fn *pred)
  1951. {
  1952. struct keybuf_key *ret;
  1953. while (1) {
  1954. ret = bch_keybuf_next(buf);
  1955. if (ret)
  1956. break;
  1957. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1958. pr_debug("scan finished");
  1959. break;
  1960. }
  1961. bch_refill_keybuf(c, buf, end, pred);
  1962. }
  1963. return ret;
  1964. }
  1965. void bch_keybuf_init(struct keybuf *buf)
  1966. {
  1967. buf->last_scanned = MAX_KEY;
  1968. buf->keys = RB_ROOT;
  1969. spin_lock_init(&buf->lock);
  1970. array_allocator_init(&buf->freelist);
  1971. }